WorldWideScience

Sample records for light harvesting complexes

  1. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites

    KAUST Repository

    Tichý, Josef

    2013-06-01

    The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were identified. One exhibited a molecular weight (18-19 kDa) similar to FCP (fucoxanthin chlorophyll protein) complexes from diatoms, however, single particle analysis and circular dichroism spectroscopy indicated similarity of this structure to the recently characterized XLH antenna of xanthophytes. In light of these data we denote this antenna complex CLH, for "Chromera Light Harvesting" complex. The other system was identified as the photosystem I with bound Light Harvesting Complexes (PSI-LHCr) related to the red algae LHCI antennae. The result of this study is the finding that C. velia, when grown in natural light conditions, possesses light harvesting antennae typically found in two different, evolutionary distant, groups of photosynthetic organisms. © 2013 Elsevier B.V. All rights reserved.

  2. The xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching.

    NARCIS (Netherlands)

    Peterman, E.J.G.; Gradinaru, C.C.; Calkoen, F.; Borst, J.C.; van Grondelle, R.; van Amerongen, H.

    1997-01-01

    A spectral and functional assignment of the xanthophylls in monomeric and trimeric light-harvesting complex II of green plants has been obtained using HPLC analysis of the pigment composition, laser-flash induced triplet- minus-singlet, fluorescence excitation, and absorption spectra. It is shown

  3. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica.

    Directory of Open Access Journals (Sweden)

    Marko Dachev

    2017-12-01

    Full Text Available The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs. Here, we analyzed the organization of photosynthetic (PS complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1 in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.

  4. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  5. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  6. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon anti-bunching

    NARCIS (Netherlands)

    Wientjes, E.; Renger, J.; Curto, A.G.; Cogdell, R.; Hulst, van N.F.

    2014-01-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we

  7. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    Science.gov (United States)

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  8. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    Science.gov (United States)

    Yang, Hsiang-Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; van Grondelle, Rienk; Moerner, W. E.

    2015-03-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and photoprotection are balanced. Some of the biological steps in the photoprotective processes have been extensively studied and physiological regulatory factors have been identified. For example, the effect of lumen pH in changing carotenoid composition has been explored. However, the importance of photophysical dynamics in the initial light-harvesting steps and its relation to photoprotection remain poorly understood. Conformational and excited-state dynamics of multi-chromophore pigment-protein complexes are often difficult to study and limited information can be extracted from ensemble-averaged measurements. To address the problem, we use the Anti-Brownian ELectrokinetic (ABEL) trap to investigate the fluorescence from individual copies of light-harvesting complex II (LHCII), the primary antenna protein in higher plants, in a solution-phase environment. Perturbative surface immobilization or encapsulation schemes are avoided, and therefore the intrinsic dynamics and heterogeneity in the fluorescence of individual proteins are revealed. We perform simultaneous measurements of fluorescence intensity (brightness), excited-state lifetime, and emission spectrum of single trapped proteins. By analyzing the correlated changes between these observables, we identify forms of LHCII with different fluorescence intensities and excited-state lifetimes. The distinct forms may be associated with different energy dissipation mechanisms in the energy transfer chain. Changes of relative populations in response to pH and carotenoid composition are observed, which may extend our understanding of the molecular mechanisms of photoprotection.

  9. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective

    Science.gov (United States)

    Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van

    2018-01-01

    The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.

  10. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites

    KAUST Repository

    Tichý , Josef; Gardian, Zdenko; Bí na, David; Koní k, Peter; Litví n, Radek V.; Herbstová , Miroslava; Pain, Arnab; Vá cha, František

    2013-01-01

    The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were

  11. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    NARCIS (Netherlands)

    Yang, Hsiang Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; Van Grondelle, Rienk; Moerner, W. E.

    2015-01-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and

  12. Assembly of the Major Light-Harvesting Complex II in Lipid Nanodiscs.

    NARCIS (Netherlands)

    Pandit, A.; Shirzad-Wasei, N.; Wlodarczyk, L.M.; Roon, H. van; Boekema, E.J.; Dekker, J.P.; Grip, W.J. de

    2011-01-01

    Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar

  13. Assembly of the Major Light-Harvesting Complex II in Lipid Nanodiscs

    NARCIS (Netherlands)

    Pandit, Anjali; Shirzad-Wasei, Nazhat; Wlodarczyk, Lucyna M.; van Roon, Henny; Boekema, Egbert J.; Dekker, Jan P.; de Grip, Willem J.; Brown, Leonid S.

    2011-01-01

    Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar

  14. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants

    International Nuclear Information System (INIS)

    Reinbothe, C.; Lebedev, N.; Reinbothe, S.

    1999-01-01

    When etiolated angiosperm seedlings break through the soil after germination, they are immediately exposed to sunlight, but at this stage they are unable to perform photosynthesis1. In the absence of chlorophyll a and chlorophyll b, two other porphyrin species cooperate as the basic light-harvesting structure of etiolated plants. Protochlorophyllide a and protochlorophyllide b (ref. 2) form supramolecular complexes with NADPH and two closely related NADPH:protochlorophyllide oxidoreductase (POR) proteins—PORA and PORB (ref. 3)—in the prolamellar body of etioplasts. Here we report that these light-harvesting POR–protochlorophyllide complexes, named LHPP, are essential for the establishment of the photosynthetic apparatus and also confer photoprotection on the plant. They collect sunlight for rapid chlorophyll a biosynthesis and, simultaneously, dissipate excess light energy in the bulk of non-photoreducible protochlorophyllide b. Based on this dual function, it seems that LHPP provides the link between skotomorphogenesis and photosynthesis that is required for efficient de-etiolation

  15. Density of phonon states in the light-harvesting complex II of green plants

    CERN Document Server

    Pieper, J K; Irrgang, K D; Renger, G

    2002-01-01

    In photosynthetic antenna complexes, the coupling of electronic transitions to low-frequency vibrations of the protein matrix (phonons) plays an essential role in light absorption and ultra-fast excitation energy transfer (EET). The model calculations presented here indicate that inelastic neutron scattering experiments provide invaluable information on the phonon density of states for light-harvesting complex II, which may permit a consistent interpretation of contradictory results from high-resolution optical spectroscopy. (orig.)

  16. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.

    Science.gov (United States)

    Wen, Fuyu; Li, Can

    2013-11-19

    Solar fuel production through artificial photosynthesis may be a key to generating abundant and clean energy, thus addressing the high energy needs of the world's expanding population. As the crucial components of photosynthesis, the artificial photosynthetic system should be composed of a light harvester (e.g., semiconductor or molecular dye), a reduction cocatalyst (e.g., hydrogenase mimic, noble metal), and an oxidation cocatalyst (e.g., photosystem II mimic for oxygen evolution from water oxidation). Solar fuel production catalyzed by an artificial photosynthetic system starts from the absorption of sunlight by the light harvester, where charge separation takes place, followed by a charge transfer to the reduction and oxidation cocatalysts, where redox reaction processes occur. One of the most challenging problems is to develop an artificial photosynthetic solar fuel production system that is both highly efficient and stable. The assembly of cocatalysts on the semiconductor (light harvester) not only can facilitate the charge separation, but also can lower the activation energy or overpotential for the reactions. An efficient light harvester loaded with suitable reduction and oxidation cocatalysts is the key for high efficiency of artificial photosynthetic systems. In this Account, we describe our strategy of hybrid photocatalysts using semiconductors as light harvesters with biomimetic complexes as molecular cocatalysts to construct efficient and stable artificial photosynthetic systems. We chose semiconductor nanoparticles as light harvesters because of their broad spectral absorption and relatively robust properties compared with a natural photosynthesis system. Using biomimetic complexes as cocatalysts can significantly facilitate charge separation via fast charge transfer from the semiconductor to the molecular cocatalysts and also catalyze the chemical reactions of solar fuel production. The hybrid photocatalysts supply us with a platform to study the

  17. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, A.V.; Wentworth, M.; Yakushevska, A.E.; Andersson, J.; Lee, P.J.; Keegstra, W.; Dekker, J.P.; Boekema, E.J.; Jansson, S.; Horton, P.

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the

  18. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the

  19. Pigment structure in the FCP-like light-harvesting complex from Chromera velia

    Czech Academy of Sciences Publication Activity Database

    Llansola-Portoles, M.J.; Uragami, C.; Pacsal, A.; Bína, David; Litvín, Radek; Robert, B.

    2016-01-01

    Roč. 1857, č. 11 (2016), s. 1759-1765 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Photosynthesis * Chlorophylls * Carotenoids * Light harvesting complex Subject RIV: CE - Biochemistry Impact factor: 4.932, year: 2016

  20. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    OpenAIRE

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII)(2) that bind 70% of PSII chlorophyll and three minor monomeric complexes(3)-which together form PSII supercomplexes(4-6). The antenna comple...

  1. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores.

    Science.gov (United States)

    Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro; Mizutani, Naoto; Komori, Daisuke; Nango, Mamoru; Miyasaka, Hiroshi; Itoh, Shigeru; Nagasawa, Yutaka; Dewa, Takehisa

    2015-10-14

    Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 α-polypeptides with a molar ratio of A647/LH2 ≃ 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Förster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.

  2. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  3. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  4. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    Science.gov (United States)

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  5. Environmental coupling and population dynamics in the PE545 light-harvesting complex

    Energy Technology Data Exchange (ETDEWEB)

    Aghtar, Mortaza; Kleinekathöfer, Ulrich, E-mail: u.kleinekathoefer@jacobs-university.de

    2016-01-15

    Long-lived quantum coherences have been shown experimentally in the Fenna–Matthews–Olson (FMO) complex of green sulfur bacteria as well as in the phycoerythrin 545 (PE545) photosynthetic antenna system of marine algae. A combination of classical molecular dynamics simulations, quantum chemistry and quantum dynamical calculations is employed to determine the excitation transfer dynamics in PE545. One key property of the light-harvesting system concerning the excitation transfer and dephasing phenomena is the spectral density. This quantity is determined from time series of the vertical excitation energies of the aggregate. In the present study we focus on the quantum dynamical simulations using the earlier QM/MM calculations as input. Employing an ensemble-averaged classical path-based wave packet dynamics, the excitation transfer dynamics between the different bilins in the PE545 complex is determined and analyzed. Furthermore, the nature of the environmental fluctuations determining the transfer dynamics is discussed. - Highlights: • Modeling of excitation energy transfer in the light-harvesting system PE545. • Combination of molecular dynamics simulations, quantum chemistry and quantum dynamics. • Spectral densities for bilins in the PE545 complex.

  6. Carotenoid-binding sites of the major light-harvesting complex II of higher plants

    NARCIS (Netherlands)

    Croce, Roberta; Weiss, Saskia; Bassi, Roberto

    1999-01-01

    Recombinant light-harvesting complex II (LHCII) proteins with modified carotenoid composition have been obtained by in vitro reconstitution of the Lhcb1 protein overexpressed in bacteria. The monomeric protein possesses three xanthophyll-binding sites. The L1 and L2 sites, localized by electron

  7. The light-harvesting complexes of higher plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers

    NARCIS (Netherlands)

    Wientjes, I.E.; Croce, R.

    2011-01-01

    The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) a1-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge

  8. The light-harvesting complexes of higher-plant Photosystem I : Lhca1/4 and Lhca2/3 form two red-emitting heterodimers

    NARCIS (Netherlands)

    Wientjes, Emilie; Croce, Roberta

    2011-01-01

    The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) al-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge

  9. Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Plumley, F.G.; Schmidt, G.W.

    1987-01-01

    A method for in vitro reconstitution of the chlorophyll a/b light-harvesting complex from LiDodSO/sub 4//heat-denatured or acetone-extracted photosynthetic membranes has been developed. Characterization of the minimum components necessary for the functional organization or pigments in these membrane complexes reveals that xanthophylls are essential structural components.

  10. High pressure near infrared study of the mutated light-harvesting complex LH2

    Directory of Open Access Journals (Sweden)

    Braun P.

    2005-01-01

    Full Text Available The pressure sensitivities of the near infrared spectra of the light-harvesting (LH2 complex and a mutant complex with a simplified BChl-B850 binding pocket were compared. In the mutant an abrupt change in the spectral properties occurred at 250 MPa, which was not observed with the native sample. Increased disorder due to collapse of the chromophore pocket is suggested.

  11. STUDY ON THE STRUCTURAL BASIS OF PERIPHERAL LIGHT HARVESTING COMPLEXES (LH2 IN PURPLE NON-SULPHUR PHOTOSYNTHETIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Tatas H.P. Brotosudarmo

    2010-12-01

    Full Text Available Photosynthesis provides an example of a natural process that has been optimized during evolution to harness solar energy efficiently and safely, and finally to use it to produce a carbon-based fuel. Initially, solar energy is captured by the light harvesting pigment-protein complexes. In purple bacteria these antenna complexes are constructed on a rather simple modular basis. Light absorbed by these antenna complexes is funnelled downhill to reaction centres, where light drives a trans-membrane redox reaction. The light harvesting proteins not only provide the scaffolding that correctly positions the bacteriochlorophyll a and carotenoid pigments for optimal energy transfer but also creates an environment that can modulate the wavelength at which different bacteriochlorophyll molecules absorb light thereby creating the energy funnel. How these proteins can modulate the absorption spectra of the bacteriochlorophylls will be discussed in this review.

  12. Synthesis and Functional Reconstitution of Light-Harvesting Complex II into Polymeric Membrane Architectures.

    Science.gov (United States)

    Zapf, Thomas; Tan, Cherng-Wen Darren; Reinelt, Tobias; Huber, Christoph; Shaohua, Ding; Geifman-Shochat, Susana; Paulsen, Harald; Sinner, Eva-Kathrin

    2015-12-01

    One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantum transport in the FMO photosynthetic light-harvesting complex.

    Science.gov (United States)

    Karafyllidis, Ioannis G

    2017-06-01

    The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.

  14. Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center and Reaction Center Plus Light Harvesting Complexes

    Science.gov (United States)

    Yaghoubi, Houman

    Harvesting solar energy can potentially be a promising solution to the energy crisis now and in the future. However, material and processing costs continue to be the most important limitations for the commercial devices. A key solution to these problems might lie within the development of bio-hybrid solar cells that seeks to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. The bio-photoelectrochemical cell technologies exploit biomimetic means of energy conversion by utilizing plant-derived photosystems which can be inexpensive and ultimately the most sustainable alternative. Plants and photosynthetic bacteria harvest light, through special proteins called reaction centers (RCs), with high efficiency and convert it into electrochemical energy. In theory, photosynthetic RCs can be used in a device to harvest solar energy and generate 1.1 V open circuit voltage and ~1 mA cm-2 short circuit photocurrent. Considering the nearly perfect quantum yield of photo-induced charge separation, efficiency of a protein-based solar cell might exceed 20%. In practice, the efficiency of fabricated devices has been limited mainly due to the challenges in the electron transfer between the protein complex and the device electrodes as well as limited light absorption. The overarching goal of this work is to increase the power conversion efficiency in protein-based solar cells by addressing those issues (i.e. electron transfer and light absorption). This work presents several approaches to increase the charge transfer rate between the photosynthetic RC and underlying electrode as well as increasing the light absorption to eventually enhance the external quantum efficiency (EQE) of bio-hybrid solar cells. The first approach is to decrease the electron transfer distance between one of the redox active sites in the RC and the underlying electrode by direct attachment of the of protein complex

  15. PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides

    DEFF Research Database (Denmark)

    Mothersole, David; Jackson, Philip J.; Vasilev, Cvetelin

    2016-01-01

    . Here we investigate the assembly of light-harvesting LH2 and reaction centre-light-harvesting1-PufX (RC-LH1-PufX) photosystem complexes using spectroscopy, pull-downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lha......A and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC-LH1-PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative...

  16. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.

    Directory of Open Access Journals (Sweden)

    Thomas S Bibby

    Full Text Available BACKGROUND: Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. METHODS: All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. CONCLUSION/SIGNIFICANCE: Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1 the phycobilisome (PBS genes of Synechococcus; (2 the pcb genes of Prochlorococcus; and (3 the iron-stress-induced (isiA genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found

  17. Crystal structure of spinach major light-harvesting complex at 2.72Å resolution

    Science.gov (United States)

    Liu, Zhenfeng; Yan, Hanchi; Wang, Kebin; Kuang, Tingyun; Zhang, Jiping; Gui, Lulu; An, Xiaomin; Chang, Wenrui

    2004-03-01

    The major light-harvesting complex of photosystem II (LHC-II) serves as the principal solar energy collector in the photosynthesis of green plants and presumably also functions in photoprotection under high-light conditions. Here we report the first X-ray structure of LHC-II in icosahedral proteoliposome assembly at atomic detail. One asymmetric unit of a large R32 unit cell contains ten LHC-II monomers. The 14 chlorophylls (Chl) in each monomer can be unambiguously distinguished as eight Chla and six Chlb molecules. Assignment of the orientation of the transition dipole moment of each chlorophyll has been achieved. All Chlb are located around the interface between adjacent monomers, and together with Chla they are the basis for efficient light harvesting. Four carotenoid-binding sites per monomer have been observed. The xanthophyll-cycle carotenoid at the monomer-monomer interface may be involved in the non-radiative dissipation of excessive energy, one of the photoprotective strategies that have evolved in plants.

  18. Complex epsilon-near-zero metamaterials for broadband light harvesting systems

    KAUST Repository

    Bonifazi, Marcella; Tian, Yi; Fratalocchi, Andrea

    2018-01-01

    We engineered an epsilon-near-zero (ENZ) material from suitably disordered metallic nanostructures. We create a new class of dispersionless composite materials that efficiently harnesses white light. By means of Atomic Force Microscopy (AFM) and Photoluminescence (PLE) measurements we experimentally demonstrate that this nanomaterial increases up to a record value the absorption of ultra-thin light harvesting films at visible and infrared wavelengths. Moreover, we obtained a 170% broadband increase of the external quantum efficiency (EQE) when these ENZ materials are inserted in an energy-harvesting module. We developed an inexpensive electrochemical deposition process that enables large-scale production of this material for energy-harvesting applications.

  19. Complex epsilon-near-zero metamaterials for broadband light harvesting systems

    KAUST Repository

    Bonifazi, Marcella

    2018-02-17

    We engineered an epsilon-near-zero (ENZ) material from suitably disordered metallic nanostructures. We create a new class of dispersionless composite materials that efficiently harnesses white light. By means of Atomic Force Microscopy (AFM) and Photoluminescence (PLE) measurements we experimentally demonstrate that this nanomaterial increases up to a record value the absorption of ultra-thin light harvesting films at visible and infrared wavelengths. Moreover, we obtained a 170% broadband increase of the external quantum efficiency (EQE) when these ENZ materials are inserted in an energy-harvesting module. We developed an inexpensive electrochemical deposition process that enables large-scale production of this material for energy-harvesting applications.

  20. Unified analysis of ensemble and single-complex optical spectral data from light-harvesting complex-2 chromoproteins for gaining deeper insight into bacterial photosynthesis

    Science.gov (United States)

    Pajusalu, Mihkel; Kunz, Ralf; Rätsep, Margus; Timpmann, Kõu; Köhler, Jürgen; Freiberg, Arvi

    2015-11-01

    Bacterial light-harvesting pigment-protein complexes are very efficient at converting photons into excitons and transferring them to reaction centers, where the energy is stored in a chemical form. Optical properties of the complexes are known to change significantly in time and also vary from one complex to another; therefore, a detailed understanding of the variations on the level of single complexes and how they accumulate into effects that can be seen on the macroscopic scale is required. While experimental and theoretical methods exist to study the spectral properties of light-harvesting complexes on both individual complex and bulk ensemble levels, they have been developed largely independently of each other. To fill this gap, we simultaneously analyze experimental low-temperature single-complex and bulk ensemble optical spectra of the light-harvesting complex-2 (LH2) chromoproteins from the photosynthetic bacterium Rhodopseudomonas acidophila in order to find a unique theoretical model consistent with both experimental situations. The model, which satisfies most of the observations, combines strong exciton-phonon coupling with significant disorder, characteristic of the proteins. We establish a detailed disorder model that, in addition to containing a C2-symmetrical modulation of the site energies, distinguishes between static intercomplex and slow conformational intracomplex disorders. The model evaluations also verify that, despite best efforts, the single-LH2-complex measurements performed so far may be biased toward complexes with higher Huang-Rhys factors.

  1. Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates

    Energy Technology Data Exchange (ETDEWEB)

    Patole, S.; Vasilev, C.; El-Zubir, O.; Wang, L.; Johnson, M. P.; Cadby, A. J.; Leggett, G. J.; Hunter, C. N.

    2015-05-15

    We describe a facile approach for nanopatterning of photosynthetic light-harvesting complexes over macroscopic areas, and use optical spectroscopy to demonstrate retention of native properties by both site-specifically and non-specifically attached photosynthetic membrane proteins. A Lloyd's mirror dual-beam interferometer was used to expose self-assembled monolayers of amine-terminated alkylthiolates on gold to laser irradiation. Following exposure, photo-oxidized adsorbates were replaced by oligo(ethylene glycol) terminated thiols, and the remaining intact amine-functionalized regions were used for attachment of the major light-harvesting chlorophyll–protein complex from plants, LHCII. These amine patterns could be derivatized with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochlorophyll–protein complexes from phototrophic bacteria could be attached with a defined surface orientation. By varying parameters such as the angle between the interfering beams and the laser irradiation dose, it was possible to vary the period and widths of NTA and amine-functionalized lines on the surfaces; periods varied from 1200 to 240 nm and linewidths as small as 60 nm (λ/4) were achieved. This level of control over the surface chemistry was reflected in the surface topology of the protein nanostructures imaged by atomic force microscopy; fluorescence imaging and spectral measurements demonstrated that the surface-attached proteins had retained their native functionality.

  2. Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants

    NARCIS (Netherlands)

    Palacios, M.A.; Caffarri, S.; Bassi, R.; Grondelle, van R.; Amerongen, van H.

    2004-01-01

    The electric-field induced absorption changes (Stark effect) of reconstituted light-harvesting complex II (LHCII) in different oligomerisation states - monomers and trimers - with different xanthophyll content have been probed at 77 K. The Stark spectra of the reconstituted control samples,

  3. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function?

    Science.gov (United States)

    Montané, M H; Kloppstech, K

    2000-11-27

    Light-harvesting complex proteins (LHCs) and early light-induced proteins (ELIPs) are essential pigment-binding components of the thylakoid membrane and are encoded by one of the largest and most complex higher plant gene families. The functional diversification of these proteins corresponded to the transition from extrinsic (phycobilisome-based) to intrinsic (LHC-based) light-harvesting antenna systems during the evolution of chloroplasts from cyanobacteria, yet the functional basis of this diversification has been elusive. Here, we propose that the original function of LHCs and ELIPs was not to collect light and to transfer its energy content to the reaction centers but to disperse the absorbed energy of light in the form of heat or fluorescence. These energy-dispersing proteins are believed to have originated in cyanobacteria as one-helix, highly light-inducible proteins (HLIPs) that later acquired four helices through two successive gene duplication steps. We suggest that the ELIPs arose first in this succession, with a primary function in energy dispersion for protection of photosynthetic pigments from photo-oxidation. We consider the LHC I and II families as more recent and very successful evolutionary additions to this family that ultimately attained a new function, thereby replacing the ancestral extrinsic light-harvesting system. Our model accounts for the non-photochemical quenching role recently shown for higher plant psbS proteins.

  4. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    Science.gov (United States)

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  5. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  6. Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes

    NARCIS (Netherlands)

    Georgakopoulou, S.; van der Zwan, G.; Olsen, J.D.; Hunter, C.N.; Niederman, R.A.; van Grondelle, R.

    2006-01-01

    Absorption and circular dichroism (CD) spectra of light-harvesting (LH)1 complexes from the purple bacteria Rhodobacter (Rba.) sphaeroides and Rhodospirillum (Rsp.) rubrum are presented. The complexes exhibit very low intensity, highly nonconservative, near-infrared (NIR) CD spectra. Absorption and

  7. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  8. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1987-01-01

    Thylakoid membranes were phosphorylated with [γ- 32 P]ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed

  9. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    International Nuclear Information System (INIS)

    Goliney, I.Yu.; Sugakov, V.I.; Valkunas, L.; Vertsimakha, G.V.

    2012-01-01

    Highlights: ► Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. ► Light absorption of LH2 is enhanced by a metal nanoparticle. ► Using nanoshells allows reaching resonance between molecular and plasmons. ► Metal nanoparticles introduce additional channel of excitation decay. ► Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  10. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goliney, I.Yu., E-mail: igoliney@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Sugakov, V.I. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Valkunas, L. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Department of Theoretical Physics, Vilnius University, Sauletekio 9, Build. 3, 10222 Vilnius (Lithuania); Vertsimakha, G.V. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. Black-Right-Pointing-Pointer Light absorption of LH2 is enhanced by a metal nanoparticle. Black-Right-Pointing-Pointer Using nanoshells allows reaching resonance between molecular and plasmons. Black-Right-Pointing-Pointer Metal nanoparticles introduce additional channel of excitation decay. Black-Right-Pointing-Pointer Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  11. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution

    NARCIS (Netherlands)

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C.; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-01-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 Å structure of pea LHC-II determined by X-ray crystallography of

  12. Coulomb couplings in solubilised light harvesting complex II (LHCII): challenging the ideal dipole approximation from TDDFT calculations.

    Science.gov (United States)

    López-Tarifa, P; Liguori, Nicoletta; van den Heuvel, Naudin; Croce, Roberta; Visscher, Lucas

    2017-07-19

    The light harvesting complex II (LHCII), is a pigment-protein complex responsible for most of the light harvesting in plants. LHCII harvests sunlight and transfers excitation energy to the reaction centre of the photo-system, where the water oxidation process takes place. The energetics of LHCII can be modulated by means of conformational changes allowing a switch from a harvesting to a quenched state. In this state, the excitation energy is no longer transferred but converted into thermal energy to prevent photooxidation. Based on molecular dynamics simulations at the microsecond time scale, we have recently proposed that the switch between different fluorescent states can be probed by correlating shifts in the chromophore-chromophore Coulomb interactions to particular protein movements. However, these findings are based upon calculations in the ideal point dipole approximation (IDA) where the Coulomb couplings are simplified as first order dipole-dipole interactions, also assuming that the chromophore transition dipole moments lay in particular directions of space with constant moduli (FIX-IDA). In this work, we challenge this approximation using the time-dependent density functional theory (TDDFT) combined with the frozen density embedding (FDE) approach. Our aim is to establish up to which limit FIX-IDA can be applied and which chromophore types are better described under this approximation. For that purpose, we use the classical trajectories of solubilised light harvesting complex II (LHCII) we have recently reported [Liguori et al., Sci. Rep., 2015, 5, 15661] and selected three pairs of chromophores containing chlorophyll and carotenoids (Chl and Car): Chla611-Chla612, Chlb606-Chlb607 and Chla612-Lut620. Using the FDE in the Tamm-Dancoff approximation (FDEc-TDA), we show that IDA is accurate enough for predicting Chl-Chl Coulomb couplings. However, the FIX-IDA largely overestimates Chl-Car interactions mainly because the transition dipole for the Cars is not

  13. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osto, Luca [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Cazzaniga, Stefano [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Bressan, Mauro [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Paleček, David [Lund Univ. (Sweden). Dept. of Chemical Physics; Židek, Karel [Lund Univ. (Sweden). Dept. of Chemical Physics; Niyogi, Krishna K. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst., Dept. of Plant and Microbial Biology; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Graduate Group in Applied Science and Technology; Zigmantas, Donatas [Lund Univ. (Sweden). Dept. of Chemical Physics; Bassi, Roberto [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Consiglio Nazionale delle Ricerche (CNR), Firenze (Italy). Istituto per la Protezione delle Piante (IPP)

    2017-04-10

    Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

  14. Quantum transport through complex networks - from light-harvesting proteins to semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Kreisbeck, Christoph

    2012-06-18

    Electron transport through small systems in semiconductor devices plays an essential role for many applications in micro-electronics. One focus of current research lies on establishing conceptually new devices based on ballistic transport in high mobility AlGaAs/AlGa samples. In the ballistic regime, the transport characteristics are determined by coherent interference effects. In order to guide experimentalists to an improved device design, the characterization and understanding of intrinsic device properties is crucial. We develop a time-dependent approach that allows us to simulate experimentally fabricated, complex devicegeometries with an extension of up to a few micrometers. Particularly, we explore the physical origin of unexpected effects that have been detected in recent experiments on transport through Aharonov-Bohm waveguide-interferometers. Such interferometers can be configured as detectors for transfer properties of embedded quantum systems. We demonstrate that a four-terminal waveguide-ring is a suitable setup for measuring the transmission phase of a harmonic quantum dot. Quantum effects are not restricted exclusively to artificial devices but have been found in biological systems as well. Pioneering experiments reveal quantum effects in light-harvesting complexes, the building blocks of photosynthesis. We discuss the Fenna-Matthews-Olson complex, which is a network of coupled bacteriochlorophylls. It acts as an energy wire in the photosynthetic apparatus of green sulfur bacteria. Recent experimental findings suggest that energy transfer takes place in the form of coherent wave-like motion, rather than through classical hopping from one bacteriochlorophyll to the next. However, the question of why and how coherent transfer emerges in light-harvesting complexes is still open. The challenge is to merge seemingly contradictory features that are observed in experiments on two-dimensional spectroscopy into a consistent theory. Here, we provide such a

  15. Engineering a pH-Regulated Switch in the Major Light-Harvesting Complex of Plants (LHCII): Proof of Principle.

    Science.gov (United States)

    Liguori, Nicoletta; Natali, Alberto; Croce, Roberta

    2016-12-15

    Under excess light, photosynthetic organisms employ feedback mechanisms to avoid photodamage. Photoprotection is triggered by acidification of the lumen of the photosynthetic membrane following saturation of the metabolic activity. A low pH triggers thermal dissipation of excess absorbed energy by the light-harvesting complexes (LHCs). LHCs are not able to sense pH variations, and their switch to a dissipative mode depends on stress-related proteins and allosteric cofactors. In green algae the trigger is the pigment-protein complex LHCSR3. Its C-terminus is responsible for a pH-driven conformational change from a light-harvesting to a quenched state. Here, we show that by replacing the C-terminus of the main LHC of plants with that of LHCSR3, it is possible to regulate its excited-state lifetime solely via protonation, demonstrating that the protein template of LHCs can be modified to activate reversible quenching mechanisms independent of external cofactors and triggers.

  16. Photoprotection in Plants Involves a Change in Lutein 1 Binding Domain in the Major Light-harvesting Complex of Photosystem II

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Liao, P.N.; Pascal, A.A.; van Grondelle, R.; Walla, P.J.; Ruban, A.V.; Robert, B.

    2011-01-01

    Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem

  17. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii[C][W

    Science.gov (United States)

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf

    2014-01-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  18. A Femtosecond Visible/Visible and Visible/Mid-Infrared Transient Absorption Study of the Light Harvesting Complex II

    NARCIS (Netherlands)

    Stahl, A.D.; Di Donato, M.; van Stokkum, I.H.M.; van Grondelle, R.; Groot, M.L.

    2009-01-01

    Light harvesting complex II (LHCII) is the most abundant protein in the thylakoid membrane of higher plants and green algae. LHCII acts to collect solar radiation, transferring this energy mainly toward photosystem II, with a smaller amount going to photosystem I; it is then converted into a

  19. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  20. Plants lacking the main light-harvesting complex retain photosystem II macro-organization.

    Science.gov (United States)

    Ruban, A V; Wentworth, M; Yakushevska, A E; Andersson, J; Lee, P J; Keegstra, W; Dekker, J P; Boekema, E J; Jansson, S; Horton, P

    2003-02-06

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes-which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function.

  1. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy.

    Science.gov (United States)

    Stamouli, Amalia; Kafi, Sidig; Klein, Dionne C G; Oosterkamp, Tjerk H; Frenken, Joost W M; Cogdell, Richard J; Aartsma, Thijs J

    2003-04-01

    The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.

  3. Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rätsep, Margus, E-mail: margus.ratsep@ut.ee; Pajusalu, Mihkel, E-mail: mihkel.pajusalu@ut.ee; Linnanto, Juha Matti, E-mail: juha.matti.linnanto@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Freiberg, Arvi, E-mail: arvi.freiberg@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)

    2014-10-21

    We have observed that an assembly of the bacteriochloropyll a molecules into B850 and B875 groups of cyclic bacterial light-harvesting complexes LH2 and LH1, respectively, results an almost total loss of the intra-molecular vibronic structure in the fluorescence spectrum, and simultaneously, an essential enhancement of its phonon sideband due to electron-phonon coupling. While the suppression of the vibronic coupling in delocalized (excitonic) molecular systems is predictable, as also confirmed by our model calculations, a boost of the electron-phonon coupling is rather unexpected. The latter phenomenon is explained by exciton self-trapping, promoted by mixing the molecular exciton states with charge transfer states between the adjacent chromophores in the tightly packed B850 and B875 arrangements. Similar, although less dramatic trends were noted for the light-harvesting complexes containing chlorophyll pigments.

  4. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  5. Ultrafast pump-probe spectroscopy of Zinc Phthalocynine (ZnPc) and light harvesting complex II (LHC II)

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2009-07-01

    Full Text Available pump-probe spectroscopy of Zinc Phthalocynine (ZnPc) and light harvesting complex II (LHC II) SAIP 7-10 July 2009, University of Kwazulu Natal. S. Ombinda-Lemboumba1, 2 A. du Plessis1, L. Botha1, D.E. Roberts1, P. Molukanele1, 3, R.W. Sparrow3, E... and phtobiology (2008) Page 12 Conclusion SAIP 7-10 July 2009, University of Kwazulu natal Femto group © CSIR 2008 www.csir.co.za • Presented our method of correcting chirp induced by white light generation. • Pump...

  6. Energy transfer dynamics in Light-Harvesting Dendrimers

    Science.gov (United States)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  7. Biogenesis of light harvesting proteins.

    Science.gov (United States)

    Dall'Osto, Luca; Bressan, Mauro; Bassi, Roberto

    2015-09-01

    The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Two dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy

    NARCIS (Netherlands)

    Oling, Frank; Boekema, EJ; deZarate, IO; Visschers, R; vanGrondelle, R; Keegstra, W; Brisson, A; Picorel, R

    1996-01-01

    Two-dimensional crystals of LH2 (B800-850) light-harvesting complexes from Ectothiorhodospira sp, and Rhodobacter capsulatus were obtained by reconstitution of purified protein into phospholipid vesicles and characterized by electron microscopy. The size of the crystals was up to several

  9. Two-dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy.

    NARCIS (Netherlands)

    Oling, F.; Boekema, E.J.; Ortiz de Zarate, I.; Visschers, R.W.; van Grondelle, R.; Keegstra, W.; Brisson, A.; Picorel, R.

    1996-01-01

    Two-dimensional crystals of LH2 (B800-850) light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus were obtained by reconstitution of purified protein into phospholipid vesicles and characterized by electron microscopy. The size of the crystals was up to several

  10. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  11. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2.

    Science.gov (United States)

    Harel, Elad; Long, Phillip D; Engel, Gregory S

    2011-05-01

    Here we present two-dimensional (2D) electronic spectra of the light-harvesting complex LH2 from purple bacteria using coherent pulses with bandwidth of over 100 nm FWHM. This broadband excitation and detection has allowed the simultaneous capture of both the B800 and B850 bands using a single light source. We demonstrate that one laser pulse is sufficient to capture the entire 2D electronic spectrum with a high signal-to-noise ratio. At a waiting time of 800 fs, we observe population transfer from the B800 to B850 band as manifested by a prominent cross peak. These results will enable observation of the dynamics of biological systems across both ultrafast (1 ms) timescales simultaneously.

  12. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica

    Czech Academy of Sciences Publication Activity Database

    Kesan, G.; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, V.; Polívka, Tomáš

    2016-01-01

    Roč. 1857, č. 4 (2016), s. 370-379 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GAP205/11/1164; GA ČR GBP501/12/G055; GA ČR(CZ) GP14-01377P Institutional support: RVO:60077344 Keywords : Carotenoids * Energy transfer * Light-harvesting complex Subject RIV: BO - Biophysics Impact factor: 4.932, year: 2016

  13. Design principles of natural light-harvesting as revealed by single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krüger, T.P.J., E-mail: tjaart.kruger@up.ac.za [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Grondelle, R. van [Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    2016-01-01

    Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfer the excitation energy to the photochemical reaction centre. The amount of harvested light is also delicately tuned to the level of solar radiation to maintain a constant energy throughput at the reaction centre and avoid the accumulation of the products of charge separation. In this Review, recent developments in the understanding of light-harvesting by plants will be discussed, based on results obtained from single molecule spectroscopy studies. Three design principles of the main light-harvesting antenna of plants will be highlighted: (a) fine, photoactive control over the intrinsic protein disorder to efficiently use intrinsically available thermal energy dissipation mechanisms; (b) the design of the protein microenvironment of a low-energy chromophore dimer to control the amount of shade absorption; (c) the design of the exciton manifold to ensure efficient funneling of the harvested light to the terminal emitter cluster.

  14. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    represented a diverse international and multidisciplinary group, with over 160 individuals attending from a total of 17 different countries. Attendees came from a wide range of fields assuring that the widest possible interdisciplinary exchanges. They included prominent biochemists, biophysicists, plant physiologists, chemical physicists, as well as theoretical and computational physical chemists, who presented their research findings or to hear the latest advances in this very dynamic field. In the choice of speakers, a balance was created between established scientists and young, emerging researchers, given this opportunity to showcase their results. Sessions were held on electronic and vibrational coherence including coherent sharing of excitations among donor and acceptor molecules during excitation energy transfer, nonphotochemical quenching, acclimation to light environments, evolution, adaptation and biodiversity of light-harvesting pigment-protein complexes, their structure and membrane organization, spectroscopy and dynamics, as well as artificial antenna systems. A joint session was also held with the participants from the Cyanobacterial Satellite Conference. A special issue of Photosynthesis Research devoted to light harvesting (Volume 121, Issue No. 1, July 2014) has recently appeared which contains peer-reviewed original research contributions arising from talks and posters presented at the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems. Edited by the Organizers of the Workshop, Robert E. Blankenship, Harry A. Frank and Robert A. Niederman, it includes topics ranging from the isolation of new bacteriochlorophyll species from green bacteria, temperature effects on the excited states of the newly discovered chlorophyll (Chl) ƒ, new architectures for enhancing energy capture by biohybrid light-harvesting complexes, forces governing the formation of light-harvesting rings, spectroscopy of carotenoids of algae and diatoms and the supramolecular

  15. Structure of the higher plant light harvesting complex I: In vivo characterization and structural interdependence of the Lhca proteins

    NARCIS (Netherlands)

    Klimmek, F.; Ganeteg, U.; Ihalainen, J.A.; van Roon, H.; Jensen, P.E.; Scheller, H.V.; Dekker, J.P.; Jansson, S.

    2005-01-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding

  16. Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants

    NARCIS (Netherlands)

    Barzda, V.; Vengris, M.; Valkunas, L.; van Amerongen, H.; van Grondelle, R.

    2000-01-01

    Laser flash-induced changes of the fluorescence yield were studied in aggregates of light-harvesting complex II (LHCII) on a time scale ranging from microseconds to seconds. Carotenoid (Car) and chlorophyll (Chl) triplet states, decaying with lifetimes of several microseconds and hundreds of

  17. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    Science.gov (United States)

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  18. Population and coherence dynamics in light harvesting complex II (LH2).

    Science.gov (United States)

    Yeh, Shu-Hao; Zhu, Jing; Kais, Sabre

    2012-08-28

    The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.

  19. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  20. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution

    OpenAIRE

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C.; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-01-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 Å structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer...

  1. High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2

    Science.gov (United States)

    Scheuring, Simon; Reiss-Husson, Francoise; Engel, Andreas; Rigaud, Jean-Louis; Ranck, Jean-Luc

    2001-01-01

    Light-harvesting complexes 2 (LH2) are the accessory antenna proteins in the bacterial photosynthetic apparatus and are built up of αβ-heterodimers containing three bacteriochlorophylls and one carotenoid each. We have used atomic force microscopy (AFM) to investigate reconstituted LH2 from Rubrivivax gelatinosus, which has a C-terminal hydrophobic extension of 21 amino acids on the α-subunit. High-resolution topographs revealed a nonameric organization of the regularly packed cylindrical complexes incorporated into the membrane in both orientations. Native LH2 showed one surface which protruded by ∼6 Å and one that protruded by ∼14 Å from the membrane. Topographs of samples reconstituted with thermolysin-digested LH2 revealed a height reduction of the strongly protruding surface to ∼9 Å, and a change of its surface appearance. These results suggested that the α-subunit of R.gelatinosus comprises a single transmembrane helix and an extrinsic C-terminus, and allowed the periplasmic surface to be assigned. Occasionally, large rings (∼120 Å diameter) surrounded by LH2 rings were observed. Their diameter and appearance suggest the large rings to be LH1 complexes. PMID:11406579

  2. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii

    CERN Document Server

    Durnford Dion, G; McKim, Sarah M; Sarchfield, Michelle L

    2003-01-01

    To compensate for increases in photon flux density (PFD), photosynthetic organisms possess mechanisms for reversibly modulating their photosynthetic apparatus to minimize photodamage. The photoacclimation response in Chlamydomonas reinhardtii was assessed following a 10-fold increase in PFD over 24h. In addition to a 50% reduction in the amount of chlorophyll and light-harvesting complexes (LHC) per cell, the expression of genes encoding polypeptides of the light-harvesting antenna were also affected. The abundance of Lhcb (a LHCH gene), Lhcb4 (a CP29-like gene), and Lhca (a LHCI gene) transcripts were reduced by 65 to 80%, within 1-2 h; however, the RNA levels of all three genes recovered to their low-light (LL) concentrations within 6-8 h. To determine the role of transcript turnover in this transient decline in abundance, the stability of all transcripts was measured. Although there was no change in the Lhcb or Lhca transcript turnover time, the Lhcb4 mRNA stability decreased 2.5-fold immediately following...

  3. Controlling Light Harvesting with Light

    NARCIS (Netherlands)

    Gwizdala, M.S.; Berera, R.; Kirilovsky, D.; van Grondelle, R.; Kruger, T.P.J.

    2016-01-01

    When exposed to intense sunlight, all organisms performing oxygenic photosynthesis implement various photoprotective strategies to prevent potentially lethal photodamage. The rapidly responding photoprotective mechanisms, occurring in the light-harvesting pigment-protein antennae, take effect within

  4. On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex

    Science.gov (United States)

    Berman, Gennady P.; Nesterov, Alexander I.; Sayre, Richard T.; Still, Susanne

    2016-03-01

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification.

  5. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Elad [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2012-05-07

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  6. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    International Nuclear Information System (INIS)

    Harel, Elad

    2012-01-01

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  7. Protein Structural Deformation Induced Lifetime Shortening of Photosynthetic Bacteria Light-Harvesting Complex LH2 Excited State

    OpenAIRE

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S.; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J. P.

    2005-01-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO2 nanoparticles in the colloidal solution. The LH2/TiO2 assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO2. The possibility that the decrease of the LH2 excited-state lifetime being caused by ...

  8. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  9. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Hey, Daniel; Rothbart, Maxi; Herbst, Josephine; Wang, Peng; Müller, Jakob; Wittmann, Daniel; Gruhl, Kirsten; Grimm, Bernhard

    2017-06-01

    The LIL3 protein of Arabidopsis ( Arabidopsis thaliana ) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  11. The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I

    DEFF Research Database (Denmark)

    Plöchinger, Magdalena; Torabi, Salar; Rantala, Marjaana

    2016-01-01

    PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of Psa......I destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated...

  12. Mechanisms of energy transfer and conversion in plant Light-Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Tiago Ferreira de

    2009-09-24

    The light-harvesting complex of photosystem II (LHC-II) is the major antenna complex in plant photosynthesis. It accounts for roughly 30% of the total protein in plant chloroplasts, which makes it arguably the most abundant membrane protein on Earth, and binds about half of plant chlorophyll (Chl). The complex assembles as a trimer in the thylakoid membrane and binds a total of 54 pigment molecules, including 24 Chl a, 18 Chl b, 6 lutein (Lut), 3 neoxanthin (Neo) and 3 violaxanthin (Vio). LHC-II has five key roles in plant photosynthesis. It: (1) harvests sunlight and transmits excitation energy to the reaction centres of photosystems II and I, (2) regulates the amount of excitation energy reaching each of the two photosystems, (3) has a structural role in the architecture of the photosynthetic supercomplexes, (4) contributes to the tight appression of thylakoid membranes in chloroplast grana, and (5) protects the photosynthetic apparatus from photo damage by non photochemical quenching (NPQ). A major fraction of NPQ is accounted for its energy-dependent component qE. Despite being critical for plant survival and having been studied for decades, the exact details of how excess absorbed light energy is dissipated under qE conditions remain enigmatic. Today it is accepted that qE is regulated by the magnitude of the pH gradient ({delta}pH) across the thylakoid membrane. It is also well documented that the drop in pH in the thylakoid lumen during high-light conditions activates the enzyme violaxanthin de-epoxidase (VDE), which converts the carotenoid Vio into zeaxanthin (Zea) as part of the xanthophyll cycle. Additionally, studies with Arabidopsis mutants revealed that the photosystem II subunit PsbS is necessary for qE. How these physiological responses switch LHC-II from the active, energy transmitting to the quenched, energy-dissipating state, in which the solar energy is not transmitted to the photosystems but instead dissipated as heat, remains unclear and is the

  13. Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from Marichromatium purpuratum.

    Science.gov (United States)

    Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J

    2014-06-01

    LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.

  14. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.

    Science.gov (United States)

    Pinnola, Alberta; Dall'Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-09-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.

  15. Investigation of detergent effects on the solution structure of spinach Light Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T; O' Neill, Hugh, E-mail: hellerwt@ornl.gov, E-mail: oneillhm@ornl.gov [Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2010-11-01

    The properties of spinach light harvesting complex II (LHC II), stabilized in the detergents Triton X-100 (TX100) and n-Octyl-{beta}-D-Glucoside (BOG), were investigated by small-angle neutron scattering (SANS). The LHC II-BOG scattering curve overlaid well with the theoretical scattering curve generated from the crystal structure of LHC II indicating that the protein preparation was in its native functional state. On the other hand, the simulated LHC II curve deviated significantly from the LHC II-TX100 experimental data. Analysis by circular dichroism spectroscopy supported the SANS analysis and showed that LHC II-TX100 is inactivated. This investigation has implications for extracting and stabilizing photosynthetic membrane proteins for the development of biohybrid photoconversion devices.

  16. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-01

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  17. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    Science.gov (United States)

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  18. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica.

    Science.gov (United States)

    Keşan, Gürkan; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, Václav; Polívka, Tomáš

    2016-04-01

    Violaxanthin-chlorophyll a protein (VCP) from Nannochloropsis oceanica is a Chl a-only member of the LHC family of light-harvesting proteins. VCP binds carotenoids violaxanthin (Vio), vaucheriaxanthin (Vau), and vaucheriaxanthin-ester (Vau-ester). Here we report on energy transfer pathways in the VCP complex. The overall carotenoid-to-Chla energy transfer has efficiency over 90%. Based on their energy transfer properties, the carotenoids in VCP can be divided into two groups; blue carotenoids with the lowest energy absorption band around 480nm and red carotenoids with absorption extended up to 530nm. Both carotenoid groups transfer energy efficiently from their S2 states, reaching efficiencies of ~70% (blue) and ~60% (red). The S1 pathway, however, is efficient only for the red carotenoid pool for which two S1 routes characterized by 0.33 and 2.4ps time constants were identified. For the blue carotenoids the S1-mediated pathway is represented only by a minor route likely involving a hot S1 state. The relaxed S1 state of blue carotenoids decays to the ground state within 21ps. Presence of a fraction of non-transferring red carotenoids with the S1 lifetime of 13ps indicates some specific carotenoid-protein interaction that must shorten the intrinsic S1 lifetime of Vio and/or Vau whose S1 lifetimes in methanol are 26 and 29ps, respectively. The VCP complex from N. oceanica is the first example of a light-harvesting complex binding only non-carbonyl carotenoids with carotenoid-to-chlorophyll energy transfer efficiency over 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Design principles and fundamental trade-offs in biomimetic light harvesting

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Birgitta Whaley, K

    2013-01-01

    Recent developments in synthetic and supramolecular chemistry have created opportunities to design organic systems with tailored nanoscale structure for various technological applications. A key application area is the capture of light energy and its conversion into electrochemical or chemical forms for photovoltaic or sensing applications. In this work we consider cylindrical assemblies of chromophores that model structures produced by several supramolecular techniques. Our study is especially guided by the versatile structures produced by virus-templated assembly. We use a multi-objective optimization framework to determine design principles and limitations in light harvesting performance for such assemblies, both in the presence and absence of disorder. We identify a fundamental trade-off in cylindrical assemblies that is encountered when attempting to maximize both efficiency of energy transfer and absorption bandwidth. We also rationalize the optimal design strategies and provide explanations for why various structures provide optimal performance. Most importantly, we find that the optimal design strategies depend on the amount of energetic and structural disorder in the system. The aim of these studies is to develop a program of quantum-informed rational design for construction of organic assemblies that have the same degree of tailored nanoscale structure as biological photosynthetic light harvesting complexes, and consequently have the potential to reproduce their remarkable light harvesting performance. (paper)

  20. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Hunter, C Neil; Blankenship, Robert E

    2016-11-03

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S* state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation-bacteriochlorophyll anion pair. These findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes.

  1. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution

    Science.gov (United States)

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-01-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 Å structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a–lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching. PMID:15719016

  2. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution.

    Science.gov (United States)

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-03-09

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a-lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching.

  3. Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens[W

    Science.gov (United States)

    Pinnola, Alberta; Dall’Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-01-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)–dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments. PMID:24014548

  4. Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-05-02

    The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.

  5. Evolution of light-harvesting complex proteins from Chl c-containing algae

    Directory of Open Access Journals (Sweden)

    Puerta M Virginia

    2011-04-01

    Full Text Available Abstract Background Light harvesting complex (LHC proteins function in photosynthesis by binding chlorophyll (Chl and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl a and b and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl a and c, and that are widely distributed in Chl c-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs. Results We reconstruct a phylogeny of LHCs from Chl c-containing algae and related lineages using data from recent sequencing projects to give ~10-fold larger taxon sampling than previous studies. The phylogeny indicates that individual taxa possess proteins from multiple LHC subfamilies and that several LHC subfamilies are found in distantly related algal lineages. This phylogenetic pattern implies functional differentiation of the gene families, a hypothesis that is consistent with data on gene expression, carotenoid binding and physical associations with other LHCs. In all probability LHCs have undergone a complex history of evolution of function, gene transfer, and lineage-specific diversification. Conclusion The analysis provides a strikingly different picture of LHC diversity than previous analyses of LHC evolution. Individual algal lineages possess proteins from multiple LHC subfamilies. Evolutionary relationships showed

  6. Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp.*

    Science.gov (United States)

    Pinnola, Alberta; Ghin, Leonardo; Gecchele, Elisa; Merlin, Matilde; Alboresi, Alessandro; Avesani, Linda; Pezzotti, Mario; Capaldi, Stefano; Cazzaniga, Stefano; Bassi, Roberto

    2015-01-01

    Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies. PMID:26260788

  7. Scalable high-performance algorithm for the simulation of exciton-dynamics. Application to the light harvesting complex II in the presence of resonant vibrational modes

    DEFF Research Database (Denmark)

    Kreisbeck, Christoph; Kramer, Tobias; Aspuru-Guzik, Alán

    2014-01-01

    high-performance many-core platforms using the Open Compute Language (OpenCL). For the light-harvesting complex II (LHC II) found in spinach, the HEOM results deviate from predictions of approximate theories and clarify the time-scale of the transfer-process. We investigate the impact of resonantly...

  8. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    Science.gov (United States)

    Lindsey, Jonathan S [Raleigh, NC; Chinnasamy, Muthiah [Raleigh, NC; Fan, Dazhong [Raleigh, NC

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  9. Synchrotron small-angle x-ray scattering investigation on integral membrane protein light-harvesting complex LH2 from photosynthetic bacterium rhodopseudomonas acidophila

    International Nuclear Information System (INIS)

    Du Luchao; Weng Yuxiang; Hong Xinguo; Xian Dingchang; Kobayashi Katsumi

    2006-01-01

    Structures of membrane protein in solution are different from that in crystal phase. We present the primary results of small angle x-ray scattering (SAXS) resolved topological structures of a light harvesting antenna membrane protein complex LH2 from photosynthetic bacteria Rhodopseudomonas acidophila in detergent solution for the first time. Our results show that the elliptical shape of the LH2 complex in solution clearly deviates from its circular structure in crystal phase determined by x-ray diffraction. This result provides an insight into the structure and function interplay in LH2. (authors)

  10. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.

    Science.gov (United States)

    Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L

    2007-09-15

    We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.

  11. The three isoforms of the light-harvesting complex II Spectroscopic features, trimer formation, and functional roles

    CERN Document Server

    Standfuss, Jorg

    2004-01-01

    The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isofo...

  12. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  13. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  14. Stability and properties of quasi-stable conformational states in the LH2 light-harvesting complex of Rbl. acidophilus bacteria formed by hexacoordination of bacteriochlorophyll a magnesium atom

    Science.gov (United States)

    Belov, Aleksandr S.; Khokhlov, Daniil V.; Glebov, Ilya O.; Poddubnyy, Vladimir V.; Eremin, Vadim V.

    2017-06-01

    Single-molecule spectroscopic experiments on several light-harvesting complexes revealed the existence of a set of metastable conformational states with different spectroscopic properties and lifetimes spanning from milliseconds to tens of seconds. In the absence of explicit structural data, a number of probable structural changes underlying the observed spectroscopic shifts were proposed. We examine the donor-acceptor interaction between the magnesium atom and the acetyl group of the adjacent bacteriochlorophylls a as a possible origin of metastable conformational states in the LH2 light-harvesting complex of Rbl. acidophilus bacteria. The results of QM/MM and molecular dynamics simulations show that such ligation can occur at room temperature and leads to one metastable coordination bond per pair of bacteriochlorophylls in the B850 ring. According to the results of Poisson-TrESP modeling, such coordination lowers the energies of the excited states of the complex by up to 163 cm-1 which causes red spectral shift of the B850 band.

  15. Workplane Illuminance Estimation for Robust Daylight Harvesting Lighting Control

    NARCIS (Netherlands)

    Zhang, S.; Birru, D.

    2012-01-01

    Daylight harvesting lighting controls can provide significant energysavings in daylit spaces. However, their performance is affected bythe changing lighting distribution in the space due to window treatments and the sun. Such impacts reduce the field performance of daylight harvesting dimming

  16. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    Science.gov (United States)

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P. [Theoretical Division, T-4, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Nesterov, Alexander I., E-mail: nesterov@cencar.udg.mx [Departamento de Física, CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara, CP 44420, Jalisco (Mexico); Sayre, Richard T. [Biological Division, B-11, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Still, Susanne [Department of Information and Computer Sciences, and Department of Physics and Astronomy, University of Hawaii at Mānoa, 1860 East–West Road, Honolulu, HI 96822 (United States)

    2016-03-22

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification. - Highlights: • Improvement of the efficiency of the charge-transfer nonphotochemical quenching in CP29. • Strategy for restoring the NPQ efficiency when the environment changes. • By changing of energy transfer rates to the sinks, one can significantly improve the performance of the NPQ.

  18. Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state

    International Nuclear Information System (INIS)

    Savolainen, Janne; Buckup, Tiago; Hauer, Juergen; Jafarpour, Aliakbar; Serrat, Carles; Motzkus, Marcus; Herek, Jennifer L.

    2009-01-01

    Ultrafast relaxation of a carotenoid in an artificial light-harvesting complex has been studied by transient absorption spectroscopy. The transient signal amplitudes at several wavelengths as well as the amplitudes of the underlying species associated spectra (SAS) are analysed for several excitation energies ranging over more than two orders of magnitude (10 nJ/pulse up to 3000 nJ/pulse). Our analysis shows that the contribution from the so-called S* signal on the long-wavelength side of the first allowed S 0 → S 2 transition has a markedly different excitation energy dependence and saturation behaviour than the electronic excited state S 1 . These observations are modelled and explained in terms of a two-photon excitation of a vibrationally hot ground state via an impulsive stimulated Raman scattering (ISRS). The experimental observations of the varying pulse energy dependencies of different excited state species are supported by an analysis based on a density-matrix formalism

  19. Artificial light harvesting by dimerized Möbius ring

    Science.gov (United States)

    Xu, Lei; Gong, Z. R.; Tao, Ming-Jie; Ai, Qing

    2018-04-01

    We theoretically study artificial light harvesting by a Möbius ring. When the donors in the ring are dimerized, the energies of the donor ring are split into two subbands. Because of the nontrivial Möbius boundary condition, both the photon and acceptor are coupled to all collective-excitation modes in the donor ring. Therefore, the quantum dynamics in the light harvesting is subtly influenced by dimerization in the Möbius ring. It is discovered that energy transfer is more efficient in a dimerized ring than that in an equally spaced ring. This discovery is also confirmed by a calculation with the perturbation theory, which is equivalent to the Wigner-Weisskopf approximation. Our findings may be beneficial to the optimal design of artificial light harvesting.

  20. Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    DEFF Research Database (Denmark)

    Ikemoto, Hideki; Tubasum, Sumera; Pullerits, Tonu

    2013-01-01

    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Towards understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescent effects of a light harvest...

  1. Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state.

    Science.gov (United States)

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J P

    2005-06-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.

  2. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    Science.gov (United States)

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  3. Resource Allocation for Outdoor Visible Light Communications with Energy Harvesting Capabilities

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz

    2018-01-25

    Visible light communication (VLC) is a promising technology that can support high data rate services for outdoor mass gathering night events while permitting energy harvesting. In this paper, a VLC system is considered where a transmitter sends data to multiple users with energy harvesting capabilities. This multi-user VLC scenario can be supported using time division multiple access (TDMA). The achievable rates using TDMA are expressed in terms of the allocated resources per user, represented by average optical intensity and time slots. This allocation is to be optimized in order to maximize the average spectral efficiency while meeting power and quality-of-service (QoS) constraints. Herein, QoS is defined as a worst-case guaranteed rate and a minimum harvested energy. To solve this optimization, the optimality conditions are first derived. Then, an efficient algorithm is developed based on the derived conditions, and its near-optimality is verified through several numerical evaluations. The obtained performance is also compared to lower-complexity algorithms, thus reflecting the performance-complexity trade-off of these algorithms.

  4. Low-temperature time-resolved spectroscopic study of the major light-harvesting complex of Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Šlouf, V.; Fuciman, M.; Johanning, S.; Hofmann, E.; Frank, H.A.; Polívka, Tomáš

    2013-01-01

    Roč. 117, 1-3 (2013), s. 257-265 ISSN 0166-8595 R&D Projects: GA ČR(CZ) GAP205/11/1164 Institutional support: RVO:60077344 Keywords : Dinoflagellates * Energy transfer * Light- harvesting * Carotenoid Subject RIV: BO - Biophysics Impact factor: 3.185, year: 2013

  5. The fine tuning of carotenoid–chlorophyll interactions in light-harvesting complexes: an important requisite to guarantee efficient photoprotection via triplet–triplet energy transfer in the complex balance of the energy transfer processes

    International Nuclear Information System (INIS)

    Di Valentin, Marilena; Carbonera, Donatella

    2017-01-01

    Triplet–triplet energy transfer (TTET) from the chlorophyll to the carotenoid triplet state is the process exploited by photosynthetic systems to protect themselves from singlet oxygen formation under light-stress conditions. A deep comprehension of the molecular strategies adopted to guarantee TTET efficiency, while at the same time maintaining minimal energy loss and efficient light-harvesting capability, is still lacking. The paramagnetic nature of the triplet state makes electron paramagnetic resonance (EPR) the method of choice when investigating TTET. In this review, we focus on our extended comparative study of two photosynthetic antenna complexes, the Peridinin–chlorophyll a -protein of dinoflagellates and the light-harvesting complex II of higher plants, in order to point out important aspects of the molecular design adopted in the photoprotection strategy. We have demonstrated that a proper analysis of the EPR data allows one to identify the pigments involved in TTET and, consequently, gain an insight into the structure of the photoprotective sites. The structural information has been complemented by a detailed description of the electronic structure provided by hyperfine spectroscopy. All these elements represent the fundamental building blocks toward a deeper understanding of the requirements for efficient photoprotection, which is fundamental to guarantee the prolonged energy conversion action of photosynthesis. (topical review)

  6. CMOS indoor light energy harvesting system for wireless sensing applications

    CERN Document Server

    Ferreira Carvalho, Carlos Manuel

    2016-01-01

    This book discusses in detail the CMOS implementation of energy harvesting.  The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed.  The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system.  The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system.  ·         Discusses several energy sources which can be used to power energy harvesting systems and includes an overview of PV cell technologies  ·         Includes an introduction to voltage step-...

  7. Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin

    Czech Academy of Sciences Publication Activity Database

    Alster, J.; Polívka, Tomáš; Arellano, J.B.; Hříbek, P.; Vácha, František; Hala, J.; Pšenčík, J.

    2012-01-01

    Roč. 111, 1-2 (2012), s. 193-204 ISSN 0166-8595 R&D Projects: GA ČR GA206/09/0375 Institutional research plan: CEZ:AV0Z50510513 Keywords : light- harvesting * astaxanthin * self-assembly * bacteriochlorophyll aggregates Subject RIV: BO - Biophysics Impact factor: 3.150, year: 2012

  8. Quantum mechanical calculations of xanthophyll-chlorophyll electronic coupling in the light-harvesting antenna of photosystem II of higher plants.

    Science.gov (United States)

    Duffy, C D P; Valkunas, L; Ruban, A V

    2013-06-27

    Light-harvesting by the xanthophylls in the antenna of photosystem II (PSII) is a very efficient process (with 80% of the absorbed energy being transfer to chlorophyll). However, the efficiencies of the individual xanthophylls vary considerably, with violaxanthin in LHCII contributing very little to light-harvesting. To investigate the origin of the variation we used Time Dependent Density Functional Theory to model the Coulombic interactions between the xanthophyll 1(1)B(u)(+) states and the chlorophyll Soret band states in the LHCII and CP29 antenna complexes. The results show that the central L1 and L2 binding sites in both complexes favored close cofacial associations between the bound xanthophylls and chlorophyll a, implying efficient energy transfer, consistent with previously reported experimental evidence. Additionally, we found that the peripheral V1 binding site in LHCII did not favor close xanthophyll-chlorophyll associations, confirming observations that violaxanthin in LHCII is not an effective light-harvester. Finally, violaxanthin bound into the L2 site of the CP29 complex was found to be very strongly coupled to its neighboring chlorophylls.

  9. Low-temperature protein dynamics of the B800 molecules in the LH2 light-harvesting complex: spectral hole burning study and comparison with single photosynthetic complex spectroscopy.

    Science.gov (United States)

    Grozdanov, Daniel; Herascu, Nicoleta; Reinot, Tõnu; Jankowiak, Ryszard; Zazubovich, Valter

    2010-03-18

    Previously published and new spectral hole burning (SHB) data on the B800 band of LH2 light-harvesting antenna complex of Rps. acidophila are analyzed in light of recent single photosynthetic complex spectroscopy (SPCS) results (for a review, see Berlin et al. Phys. Life Rev. 2007, 4, 64.). It is demonstrated that, in general, SHB-related phenomena observed for the B800 band are in qualitative agreement with the SPCS data and the protein models involving multiwell multitier protein energy landscapes. Regarding the quantitative agreement, we argue that the single-molecule behavior associated with the fastest spectral diffusion (smallest barrier) tier of the protein energy landscape is inconsistent with the SHB data. The latter discrepancy can be attributed to SPCS probing not only the dynamics of of the protein complex per se, but also that of the surrounding amorphous host and/or of the host-protein interface. It is argued that SHB (once improved models are developed) should also be able to provide the average magnitudes and probability distributions of light-induced spectral shifts and could be used to determine whether SPCS probes a set of protein complexes that are both intact and statistically relevant. SHB results are consistent with the B800 --> B850 energy-transfer models including consideration of the whole B850 density of states.

  10. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A; Blankenship, Robert E

    2011-10-01

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl. © Springer Science+Business Media B.V. 2011

  11. Potential sustainable energy source: Pheroid™ with incorporated light harvesting materials

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2010-09-01

    Full Text Available the main pigments, Chl a and b attributed main peaks around 435 nm (Chl b) and 680 nm (Chl a) respectively, as well as shoulders around 590 nm and 620 nm. Other pigments were also present, with carotenoids possibly attributing a peak...] Ruban, A.V., Horton, P., Robert, B., Resonance raman spectroscopy of the Photosystem II light- harvesting complex of green plants: A comparison of trimeric and aggregated states, Biochemistry 34, 2333 – 2337 (1995). [6] Haferkamp, S., Haase, W...

  12. Thermo-optically induced reorganizations in the main light harvesting antenna of plants. II

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Varkonyi, Zsuzsanna; Kovacs, Laszlo

    2005-01-01

    We have investigated the circular dichroism spectral transients associated with the light-induced reversible reorganizations in chirally organized macrodomains of pea thylakoid membranes and loosely stacked lamellar aggregates of the main chlorophyll a/b light harvesting complexes (LHCII) isolated...... from the same membranes. These reorganizations have earlier been assigned to originate from a thermo-optic effect. According to the thermo-optic mechanism, fast local thermal transients due to dissipation of the excess excitation energy induce elementary structural changes in the close vicinity...

  13. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  14. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    Directory of Open Access Journals (Sweden)

    L. van Rensburg

    2010-01-01

    Full Text Available Measurements of ultrafast transient processes, of temporal durations in the picosecond and femtosecond regime, are made possible by femtosecond pump probe transient absorption spectroscopy. Such an ultrafast pump probe transient absorption setup has been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper we report on our first results obtained with Malachite green as a benchmark. Malachite green was chosen because the lifetime of its excited state is well known. We also present experimental results of the ultrafast energy transfer of light-harvesting complexes in samples prepared from spinach leaves. Various pump wavelengths in the range 600–680 nm were used; the probe was a white light continuum spanning 420–700 nm. The experimental setup is described in detail in this paper. Results obtained with these samples are consistent with those expected and achieved by other researchers in this field.

  15. Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes

    NARCIS (Netherlands)

    Escalantet, Maryana; Escalante Marun, M.; Lenferink, Aufrid T.M.; Zhao, Yiping; Tas, Niels Roelof; Huskens, Jurriaan; Hunter, C. Neil; Subramaniam, Vinod; Otto, Cornelis

    2010-01-01

    Here we report the first observation of long-range transport of excitation energy within a biomimetic molecular nanoarray constructed from LH2 antenna complexes from Rhodobacter sphaeroides. Fluorescence microscopy of the emission of light after local excitation with a diffraction-limited light beam

  16. Light-Harvesting Organic Nanocrystals Capable of Photon Upconversion.

    Science.gov (United States)

    Li, Li; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2017-11-23

    Harvesting and converting low energy photons into higher ones through upconversion have great potential in solar energy conversion. A light-harvesting nanocrystal assembled from 9,10-distyrylanthracene and palladium(II) meso-tetraphenyltetrabenzoporphyrin as the acceptor and the sensitizer, respectively effects red-to-green upconversion under incoherent excitation of low power density. An upconversion quantum yield of 0.29±0.02 % is obtained upon excitation with 640 nm laser of 120 mW cm -2 . The well-organized packing of acceptor molecules with aggregation-induced emission in the nanocrystals dramatically reduces the nonradiative decay of the excited acceptor, benefits the triplet-triplet annihilation (TTA) upconversion and guides the consequent upconverted emission. This work provides a straightforward strategy to develop light-harvesting nanocrystals based on TTA upconversion, which is attractive for energy conversion and photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structure of the higher plant light harvesting complex I: in vivo characterization and structural interdependence of the Lhca proteins.

    Science.gov (United States)

    Klimmek, Frank; Ganeteg, Ulrika; Ihalainen, Janne A; van Roon, Henny; Jensen, Poul E; Scheller, Henrik V; Dekker, Jan P; Jansson, Stefan

    2005-03-01

    We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.

  18. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes

    Science.gov (United States)

    Bryant, Donald A.; Canniffe, Daniel P.

    2018-02-01

    Chlorophyll-based phototrophs, or chlorophototrophs, convert light energy into stored chemical potential energy using two types of photochemical reaction center (RC), denoted type-1 and type-2. After excitation with light, a so-called special pair of chlorophylls in the RC is oxidized, and an acceptor is reduced. To ensure that RCs function at maximal rates in diffuse and variable light conditions, chlorophototrophs have independently evolved diverse light-harvesting antenna systems to rapidly and efficiently transfer that energy to the RCs. Energy transfer between weakly coupled chromophores is generally believed to proceed by resonance energy transfer, a dipole-induced-dipole process that was initially described theoretically by Förster. Nature principally optimizes three parameters in antenna systems: the distance separating the donor and acceptor chromophores, the relative orientations of those chromophores, and the spectral overlap between the donor and the acceptor chromophores. However, there are other important biological parameters that nature has optimized, and some common themes emerge from comparisons of different antenna systems. This tutorial considers structural and functional characteristics of three fundamentally different light-harvesting antenna systems of chlorophotrophic bacteria: phycobilisomes of cyanobacteria, the light-harvesting complexes (LH1 and LH2) of purple bacteria, and chlorosomes of green bacteria. Phycobilisomes are generally considered to represent an antenna system in which the chromophores are weakly coupled, while the strongly coupled bacteriochlorophyll molecules in LH1 and LH2 are strongly coupled and are better described by exciton theory. Chlorosomes can contain up to 250 000 bacteriochlorophyll molecules, which are very strongly coupled and form supramolecular, nanotubular arrays. The general and specific principles that have been optimized by natural selection during the evolution of these diverse light-harvesting

  19. Natural strategies for photosynthetic light harvesting

    NARCIS (Netherlands)

    Croce, R.; van Amerongen, H.

    2014-01-01

    Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation

  20. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.

    Science.gov (United States)

    Ensslen, Philipp; Wagenknecht, Hans-Achim

    2015-10-20

    Light-harvesting complexes collect light energy and deliver it by a cascade of energy and electron transfer processes to the reaction center where charge separation leads to storage as chemical energy. The design of artificial light-harvesting assemblies faces enormous challenges because several antenna chromophores need to be kept in close proximity but self-quenching needs to be avoided. Double stranded DNA as a supramolecular scaffold plays a promising role due to its characteristic structural properties. Automated DNA synthesis allows incorporation of artificial chromophore-modified building blocks, and sequence design allows precise control of the distances and orientations between the chromophores. The helical twist between the chromophores, which is induced by the DNA framework, controls energy and electron transfer and thereby reduces the self-quenching that is typically observed in chromophore aggregates. This Account summarizes covalently multichromophore-modified DNA and describes how such multichromophore arrays were achieved by Watson-Crick-specific and DNA-templated self-assembly. The covalent DNA systems were prepared by incorporation of chromophores as DNA base substitutions (either as C-nucleosides or with acyclic linkers as substitutes for the 2'-deoxyribofuranoside) and as DNA base modifications. Studies with DNA base substitutions revealed that distances but more importantly relative orientations of the chromophores govern the energy transfer efficiencies and thereby the light-harvesting properties. With DNA base substitutions, duplex stabilization was faced and could be overcome, for instance, by zipper-like placement of the chromophores in both strands. For both principal structural approaches, DNA-based light-harvesting antenna could be realized. The major disadvantages, however, for covalent multichromophore DNA conjugates are the poor yields of synthesis and the solubility issues for oligonucleotides with more than 5-10 chromophore

  1. Mechanisms of Light Energy Harvesting in Dendrimers and Hyperbranched Polymers

    Directory of Open Access Journals (Sweden)

    David L. Andrews

    2011-12-01

    Full Text Available Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon—or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics.

  2. Activity of the promoter of the Lhca3.St.1 gene, encoding the potato apoprotein 2 of the light-harvesting complex of Photosystem I, in transgenic potato and tobacco plants

    NARCIS (Netherlands)

    Nap, Jan; VANSPANJE, M; Dirkse, W.G.; BAARDA, G; Mlynarova, L; Loonen, A.; GRONDHUIS, P; STIEKEMA, WJ

    We have isolated cDNA and genomic clones for the potato (Solanum tuberosum) apoprotein 2 of the light harvesting complex of Photosystem 1, designated Lhca3.St.l. The protein shows all characteristics of the family of chlorophyll a/b-binding proteins. Potato Lhca3.1 gene expression occurs

  3. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible.

    Science.gov (United States)

    Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z

    2017-09-01

    Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.

  4. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    International Nuclear Information System (INIS)

    Watanabe, M; Nakamura, A; Kunii, A; Kusano, K; Futagawa, M

    2015-01-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO 2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture. (paper)

  5. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    Science.gov (United States)

    Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.

    2015-12-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.

  6. Enhanced Light Harvesting in Dye-Sensitized Solar Cell Using External Lightguide

    Directory of Open Access Journals (Sweden)

    Chi-Hui Chien

    2011-01-01

    Full Text Available An external lightguide (EL for enhancing the light-harvesting efficiency of dye-sensitized solar cells (DSSCs was designed and developed. The EL attached to the exterior of a DSSC photoelectrode directed light on a dye-covered nanoporous TiO2 film (D-NTF of the photoelectrode. Experimental tests confirmed that the EL increased the light-harvesting efficiency of a DSSC with an active area of 0.25 cm2 by 30.69%. Photocurrent density and the power conversion efficiency were also increased by 38.12% and 25.09%, respectively.

  7. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-05-01

    Full Text Available To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  8. Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination

    NARCIS (Netherlands)

    Lucarelli, G.; Di Giacomo, F.; Zardetto, V.; Creatore, M.; Brown, T.M.

    2017-01-01

    This is the first report of an investigation on flexible perovskite solar cells for artificial light harvesting by using a white light-emitting diode (LED) lamp as a light source at 200 and 400 lx, values typically found in indoor environments. Flexible cells were developed using either

  9. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516).

    Science.gov (United States)

    McKew, Boyd A; Davey, Phillip; Finch, Stewart J; Hopkins, Jason; Lefebvre, Stephane C; Metodiev, Metodi V; Oxborough, Kevin; Raines, Christine A; Lawson, Tracy; Geider, Richard J

    2013-10-01

    Mechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL. Acclimation to LL benefited cells by increasing biomass-specific light absorption and gross photosynthesis rates under low light, whereas acclimation to HL benefited cells by reducing the rate of photoinactivation of PSII under high light. Differences in the relative abundances of proteins assigned to light-harvesting (Lhcf), photoprotection (LI818-like), and the photosystem II (PSII) core complex accompanied differences in photophysiology: specifically, Lhcf:PSII was greater under LL, whereas LI818:PSII was greater in HL. Thus, photoacclimation in E. huxleyi involved a trade-off amongst the characteristics of light absorption and photoprotection, which could be attributed to changes in the abundance and composition of proteins in the light-harvesting antenna of PSII. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  11. Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Frank, H.A.

    2010-01-01

    Roč. 43, č. 8 (2010), s. 1125-1134 ISSN 0001-4842 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * energy transfer * photosynthesis * light-harvesting Subject RIV: BO - Biophysics Impact factor: 21.840, year: 2010

  12. Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2

    DEFF Research Database (Denmark)

    Anda, Andre; Hansen, Thorsten; De Vico, Luca

    2016-01-01

    Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...... bacteriochlorophylls in LH2. We find that the excitation energies vary among the bacteriochlorophyll monomers and that they are regulated by the curvature of the macrocycle ring and the dihedral angle of an acetyl moiety. Increasing the curvature lifts the ground state energy, which causes a red shift...

  13. Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex.

    Science.gov (United States)

    Jackson, Philip J; Hitchcock, Andrew; Swainsbury, David J K; Qian, Pu; Martin, Elizabeth C; Farmer, David A; Dickman, Mark J; Canniffe, Daniel P; Hunter, C Neil

    2018-02-01

    The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc 1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Light-harvesting organic photoinitiators of polymerization.

    Science.gov (United States)

    Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre

    2013-02-12

    Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer in vivo

    Science.gov (United States)

    Sohail, Sara H.; Dahlberg, Peter D.; Allodi, Marco A.; Massey, Sara C.; Ting, Po-Chieh; Martin, Elizabeth C.; Hunter, C. Neil; Engel, Gregory S.

    2017-10-01

    In photosynthetic organisms, the pigment-protein complexes that comprise the light-harvesting antenna exhibit complex electronic structures and ultrafast dynamics due to the coupling among the chromophores. Here, we present absorptive two-dimensional (2D) electronic spectra from living cultures of the purple bacterium, Rhodobacter sphaeroides, acquired using gradient assisted photon echo spectroscopy. Diagonal slices through the 2D lineshape of the LH1 stimulated emission/ground state bleach feature reveal a resolvable higher energy population within the B875 manifold. The waiting time evolution of diagonal, horizontal, and vertical slices through the 2D lineshape shows a sub-100 fs intra-complex relaxation as this higher energy population red shifts. The absorption (855 nm) of this higher lying sub-population of B875 before it has red shifted optimizes spectral overlap between the LH1 B875 band and the B850 band of LH2. Access to an energetically broad distribution of excitonic states within B875 offers a mechanism for efficient energy transfer from LH2 to LH1 during photosynthesis while limiting back transfer. Two-dimensional lineshapes reveal a rapid decay in the ground-state bleach/stimulated emission of B875. This signal, identified as a decrease in the dipole strength of a strong transition in LH1 on the red side of the B875 band, is assigned to the rapid localization of an initially delocalized exciton state, a dephasing process that frustrates back transfer from LH1 to LH2.

  16. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    Science.gov (United States)

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  17. Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Horton, P.; Ruban, A.V.

    2008-01-01

    Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by

  18. Density of vibrational States of the light-harvesting complex II of green plants studied by inelastic neutron scattering

    CERN Document Server

    Pieper, J K; Renger, G; Lechner, R E

    2004-01-01

    Results of inelastic neutron scattering (INS) experiments are reported for the solubilized trimeric light-harvesting complex of photosystem II (LHC II) in the temperature range from 5 to 100 K. Two incident neutron wavelengths of 2.0 ( similar to 20 meV) and 5.1 A ( similar to 3.2 meV) corresponding to elastic energy resolutions of DeltaE = 0.920 meV and DeltaE = 0.093 meV, respectively, are employed to study INS spectra of LHC II for both neutron energy loss and gain. Solubilized LHC II and D//2O-containing buffer solution are investigated separately in order to properly subtract the contribution of the solvent. The inelastic part of the scattering function S(Q, omega) derived for the LHC II protein resembles the well-known "Boson-peak" and is characterized by a maximum at about 2.5 meV and a strongly asymmetric line shape with a slight tailing toward higher energy transfers. Analysis of the momentum transfer dependence of S(Q, omega) reveals that both the elastic and inelastic contributions to S(Q, omega) e...

  19. Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosystem II: comparison of aggregates with trimers

    Science.gov (United States)

    Naqvi, K. Razi; Melø, T. B.; Raju, B. Bangar; Jávorfi, Tamás; Simidjiev, Ilian; Garab, Gyözö

    1997-12-01

    Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/ b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (Δ A) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet-triplet absorption band (Δ A>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chl a) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chl a, is shown to cause a parallel decline in the triplet formation yield of Chl a; on the other hand, the efficiency (100%) of Chl a-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chl a by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.

  20. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts.

    Science.gov (United States)

    Deng, Mingdan; Qian, Hongmei; Chen, Lili; Sun, Bo; Chang, Jiaqi; Miao, Huiying; Cai, Congxi; Wang, Qiaomei

    2017-05-01

    The effects of pre-harvest red light irradiation on main healthy phytochemicals as well as antioxidant activity of Chinese kale sprouts during postharvest storage were investigated. 6-day-old sprouts were treated by red light for 24h before harvest and sampled for further analysis of nutritional quality on the first, second and third day after harvest. The results indicated that red light exposure notably postponed the degradation of aliphatic, indole, and total glucosinolates during postharvest storage. The vitamin C level was remarkably higher in red light treated sprouts on the first and second day after harvest when compared with the control. In addition, red light treatment also enhanced the accumulation of total phenolics and maintained higher level of antioxidant activity than the control. All above results suggested that pre-harvest red light treatment might provide a new strategy to maintain the nutritive value of Chinese kale sprouts during postharvest storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  2. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Andrew F.; Singh, Ved P.; Engel, Gregory S. [Department of Chemistry, The Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Long, Phillip D.; Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, Illinois 60637 (United States)

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  3. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy

    International Nuclear Information System (INIS)

    Fidler, Andrew F.; Singh, Ved P.; Engel, Gregory S.; Long, Phillip D.; Dahlberg, Peter D.

    2013-01-01

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex

  4. Brevetoxin, the Dinoflagellate Neurotoxin, Localizes to Thylakoid Membranes and Interacts with the Light-Harvesting Complex II (LHCII) of Photosystem II.

    Science.gov (United States)

    Cassell, Ryan T; Chen, Wei; Thomas, Serge; Liu, Li; Rein, Kathleen S

    2015-05-04

    The brevetoxins are neurotoxins that are produced by the "Florida red tide" dinoflagellate Karenia brevis. They bind to and activate the voltage-gated sodium channels in higher organisms, specifically the Nav 1.4 and Nav 1.5 channel subtypes. However, the native physiological function that the brevetoxins perform for K. brevis is unknown. By using fluorescent and photoactivatable derivatives, brevetoxin was shown to localize to the chloroplast of K. brevis where it binds to the light-harvesting complex II (LHCII) and thioredoxin. The LHCII is essential to non-photochemical quenching (NPQ), whereas thioredoxins are critical to the maintenance of redox homeostasis within the chloroplast and contribute to the scavenging of reactive oxygen. A culture of K. brevis producing low levels of toxin was shown to be deficient in NPQ and produced reactive oxygen species at twice the rate of the toxic culture, implicating a role in NPQ for the brevetoxins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Role of ions in the regulation of light-harvesting

    Directory of Open Access Journals (Sweden)

    Radek Kana

    2016-12-01

    Full Text Available Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer. Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl- attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids, provides an electrical field. The electrical double layer is affected by the valence of the ions and interferes with the regulation of state transitions, protein interactions, and excitation energy spillover from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching of the excited state of chlorophyll a. A triggering of non-photochemical quenching proceeds via lumen acidification and is coupled to the export of positive counter-ions (Mg2+, K+ to the stroma or/and negative ions (e.g., Cl- into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+ in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of electrical double layer, proposed by James Barber (J. Barber (1980 Biochim Biophys Acta 594:253-308 in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+ and divalent (Mg2+ ions on light-harvesting and on screening of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.

  6. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    International Nuclear Information System (INIS)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong; Yu Yunjin; Cao Jianshu

    2012-01-01

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  7. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yu Yunjin [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); College of Physics Science and Technology, Shenzhen University, Guangdong 518060 (China); Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2012-06-28

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  8. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia

    Czech Academy of Sciences Publication Activity Database

    Durchan, Milan; Kesan, G.; Šlouf, M.; Fuciman, M.; Staleva, H.; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-01-01

    Roč. 1837, č. 10 (2014), s. 1748-1755 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GAP205/11/1164; GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Energy transfer * Light-harvesting * Carbonyl carotenoids Subject RIV: BO - Biophysics Impact factor: 5.353, year: 2014

  9. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    Science.gov (United States)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  10. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes.

    Science.gov (United States)

    Freiberg, Arvi; Rätsep, Margus; Timpmann, Kõu

    2012-08-01

    Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011. Published by Elsevier B.V.

  11. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII

    NARCIS (Netherlands)

    Ramanan, Charusheela; Ferretti, Marco; van Roon, Henny; Novoderezhkin, Vladimir I.; van Grondelle, Rienk

    2017-01-01

    LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein

  12. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Akhtar, Parveen; Garab, Győző; Lambrev, Petar H., E-mail: lambrev@brc.hu [Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged (Hungary)

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  13. Optically nonlinear energy transfer in light-harvesting dendrimers

    OpenAIRE

    Andrews, David; Bradshaw, DS

    2004-01-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems,organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Sta...

  14. A ratiometric rhodamine–naphthalimide pH selective probe built on the basis of a PAMAM light-harvesting architecture

    International Nuclear Information System (INIS)

    Alamry, Khalid A.; Georgiev, Nikolai I.; El-Daly, Samy Abdullah; Taib, Layla A.; Bojinov, Vladimir B.

    2015-01-01

    PAMAM light harvesting antenna of second generation was synthesized and investigated. Novel compound was configured as a wavelength-shifting bichromophoric molecule where the system surface is labeled with yellow-green emitting 4-(N,N-dimethylamino)ethylamino-1,8-naphthalimide “donor” units capable of absorbing light and efficiently transferring the energy to a focal Rhodamine 6G “acceptor”. Furthermore, the 1,8-naphthalimide periphery of the system was designed on the “fluorophore-spacer-receptor” format, capable of acting as a molecular fluorescence photoinduced electron transfer based probe. Due to the both effects, photoinduced electron transfer in the periphery of the system and pH dependent rhodamine core absorption, novel antenna is able to act as a selective ratiometric pH fluorescence probe in aqueous medium. Thus, the distinguishing features of light-harvesting systems (fluorescence resonance energy transfer) were successfully combined with the properties of classical ring-opening sensor systems, which may be beneficial for monitoring pH variations in complex samples. - Highlights: • PAMAM antenna decorated with Rhodamine 6G and 1,8-naphthalimides is synthesized. • Periphery of the antenna is designed as a PET based fluorescence probe. • System manifests excellent selective response to protons in aqueous medium. • Core emission of the systems is enhanced more than 10 times as a function of pH. • Bichromophoric system acts as a selective ratiometric probe in complex samples

  15. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    Science.gov (United States)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  16. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia.

    Science.gov (United States)

    Durchan, Milan; Keşan, Gürkan; Slouf, Václav; Fuciman, Marcel; Staleva, Hristina; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-10-01

    We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  18. Resource Allocation for Outdoor Visible Light Communications with Energy Harvesting Capabilities

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Chaaban, Anas; Alouini, Mohamed-Slim

    2018-01-01

    Visible light communication (VLC) is a promising technology that can support high data rate services for outdoor mass gathering night events while permitting energy harvesting. In this paper, a VLC system is considered where a transmitter sends data

  19. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ballottari, Matteo; Truong, Thuy B; De Re, Eleonora; Erickson, Erika; Stella, Giulio R; Fleming, Graham R; Bassi, Roberto; Niyogi, Krishna K

    2016-04-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Harvesting sunlight energy: a biophysics approach

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2011-04-01

    Full Text Available centre chlorophyll molecule where charge separation occurs in less than 100 ps and at about 95% efficiency. It has been shown that organised connective light harvesting complexes are required for long range energy transfer. By extracting these system...

  1. PS2004 Light-harvesting Systems Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Robert E.

    2005-01-01

    This special issue of the international scientific research journal Photosynthesis Research consists of 25 original peer-reviewed contributions from participants in the PS 2004 Lisht-Harvesting Systems Workshop. This workshop was held from 26-29, 2004 at Hotel Le Chantecler, Sainte-Adele, Quebec, Canada. The workshop was a satellite meeting of the XIII International Congress on Photosynthesis held August 29-September 3, 2004 in Montreal, Canada. The workshope dealt with all types of photosynthetic antenna systems and types of organisms, including anoxygenic photosynthetic bacteria, cyanobacteria, algae and higher plants, as well as in vitro studies of isolated pigments. This collection of papers is a good representation of the highly interdisciplinary nature of modern research on photosynthetic antenna complexes, utilizing techniques of advanced spectroscopy, biochemistry, molecular biology, synthetic chemistry and structural determination to understand these diverse and elegant molecular complexes.

  2. Green grasses as light harvesters in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Structural Stability of Light-harvesting Protein LH2 Adsorbed on Mesoporous Silica Supports.

    Science.gov (United States)

    Shibuya, Yuuta; Itoh, Tetsuji; Matsuura, Shun-ichi; Yamaguchi, Akira

    2015-01-01

    In the present study, we examined the reversible thermal deformation of the membrane protein light-harvesting complex LH2 adsorbed on mesoporous silica (MPS) supports. The LH2 complex from Thermochromatium tepidum cells was conjugated to MPS supports with a series of pore diameter (2.4 to 10.6 nm), and absorption spectra of the resulting LH2/MPS conjugates were observed over a temperature range of 273 - 313 K in order to examine the structure of the LH2 adsorbed on the MPS support. The experimental results confirmed that a slight ellipsoidal deformation of LH2 was induced by adsorption on the MPS supports. On the other hand, the structural stability of LH2 was not perturbed by the adsorption. Since the pore diameter of MPS support did not influence the structural stability of LH2, it could be considered that the spatial confinement of LH2 in size-matches pore did not improve the structural stability of LH2.

  4. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    KAUST Repository

    Ocakoǧlu, Kasim; Joya, Khurram Saleem; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-01-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C 18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. © 2014 the Partner Organisations.

  5. On the theory of frequency-shifted secondary emission of light-harvesting molecular systems

    International Nuclear Information System (INIS)

    Morozov, V.A.

    2001-01-01

    The expressions are obtained for the intensity of the frequency-shifted secondary emission of a chromophore playing the role of a reaction center in the simplest model three-chromophore molecular 'light-harvesting' antenna, which is constructed and oriented in space so that the incident photons coherently excite two of its chromophore pigments. The quantum-field formalism was used, which takes into account the generalized (quantum-electrodynamic) dipole-dipole, as well as radiative and nonradiative dissipative interactions between pigments and the reaction center of the antenna. The special features of the excitation spectrum of the Raman scattering line and the frequency-shifted fluorescence spectrum of the reaction center of the molecular antenna under study are discussed. A comparison of the expressions obtained for the excitation and fluorescence spectra and with the corresponding expressions obtained for a bichromophore molecular system, which differs from a three-chromophore antenna by the absence of one of the pigments, revealed the properties of the mechanism of action of light-harvesting molecular antennas that have not been found earlier. In particular, it is shown that 'the light-harvesting' caused by the collective dissipative interactions of pigments with the reaction center of the antenna can substantially exceed a sum of contributions from separate pigments

  6. Light Harvesting for Organic Photovoltaics

    Science.gov (United States)

    2016-01-01

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends. PMID:27951633

  7. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Tardy, F; Havaux, M

    1996-06-01

    The abscisic-acid-deficient aba-1 mutant of Arabidopsis thaliana is unable to epoxidize zeaxanthin. As a consequence, it contains large amounts of this carotenoid and lacks epoxy-xanthophylls. HPLC analysis of pigment contents in leaves, isolated thylakoids and preparations of the major light-harvesting complex of photosystem II (PSII) (LHC-II) indicated that zeaxanthin replaced neoxanthin, violaxanthin and antheraxanthin in the light-harvesting system of PSII in aba-1. Non-denaturing electrophoretic fractionation of solubilized thylakoids showed that the xanthophyll imbalance in aba-1 was associated with a pronounced decrease in trimeric LHC-II in favour of monomeric complexes, with a substantial increase in free pigments (mainly zeaxanthin and chlorophyll b), suggesting a decreased stability of LHC-II. The reduced thermostability of PSII in aba-1 was also deduced from in vivo chlorophyll fluorescence measurements. Wild-type and aba-1 leaves could not be distinguished on the basis of their photosynthetic performance: no significant difference was observed between the two types of leaves for light-limited and light-saturated photosynthetic oxygen evolution, PSII photochemistry and PSII to PSI electron flow. When dark-adapted leaves (grown in white light of 80 mumol m-2s-1) were suddenly exposed to red light of 150 mumol m-2s-1, there was a strong nonphotochemical quenching of chlorophyll fluorescence, the amplitude of which was virtually identical (at steady state) in aba-1 and wild-type leaves, despite the fact that the xanthophyll cycle pigment pool was completely in the form of zeaxanthin in aba-1 and almost exclusively in the form of violaxanthin in the wild type. A high concentration of zeaxanthin in aba-1 thylakoids did not, in itself, provide any particular protection against the photoinhibition of PSII. Taken together, the presented results indicate the following: (1) zeaxanthin can replace epoxy-xanthophylls in LHC-II without significantly affecting the

  8. Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures

    Science.gov (United States)

    Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.

    1995-01-01

    We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.

  9. Phylogenetic analysis of the light-harvesting system in Chromera velia.

    Science.gov (United States)

    Pan, Hao; Slapeta, Jan; Carter, Dee; Chen, Min

    2012-03-01

    Chromera velia is a newly discovered photosynthetic eukaryotic alga that has functional chloroplasts closely related to the apicoplast of apicomplexan parasites. Recently, the chloroplast in C. velia was shown to be derived from the red algal lineage. Light-harvesting protein complexes (LHC), which are a group of proteins involved in photon capture and energy transfer in photosynthesis, are important for photosynthesis efficiency, photo-adaptation/accumulation and photo-protection. Although these proteins are encoded by genes located in the nucleus, LHC peptides migrate and function in the chloroplast, hence the LHC may have a different evolutionary history compared to chloroplast evolution. Here, we compare the phylogenetic relationship of the C. velia LHCs to LHCs from other photosynthetic organisms. Twenty-three LHC homologues retrieved from C. velia EST sequences were aligned according to their conserved regions. The C. velia LHCs are positioned in four separate groups on trees constructed by neighbour-joining, maximum likelihood and Bayesian methods. A major group of seventeen LHCs from C. velia formed a separate cluster that was closest to dinoflagellate LHC, and to LHC and fucoxanthin chlorophyll-binding proteins from diatoms. One C. velia LHC sequence grouped with LI1818/LI818-like proteins, which were recently identified as environmental stress-induced protein complexes. Only three LHC homologues from C. velia grouped with the LHCs from red algae.

  10. Optically nonlinear energy transfer in light-harvesting dendrimers

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2004-08-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.

  11. Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device

    KAUST Repository

    Tsai, Meng-Lin

    2017-04-21

    Despite great improvements in traditional inorganic photodetectors and photovoltaics, more progress is needed in the detection/collection of light at low-level conditions. Traditional photodetectors tend to suffer from high noise when operated at room temperature; therefore, these devices require additional cooling systems to detect weak or dim light. Conventional solar cells also face the challenge of poor light-harvesting capabilities in hazy or cloudy weather. The real world features such varying levels of light, which makes it important to develop strategies that allow optical devices to function when conditions are less than optimal. In this work, we report an organic/inorganic hybrid device that consists of graphene quantum dot-modified poly(3,4-ethylenedioxythiophene) polystyrenesulfonate spin-coated on Si for the detection/harvest of weak light. The hybrid configuration provides the device with high responsivity and detectability, omnidirectional light trapping, and fast operation speed. To demonstrate the potential of this hybrid device in real world applications, we measured near-infrared light scattered through human tissue to demonstrate noninvasive oximetric photodetection as well as characterized the device\\'s photovoltaic properties in outdoor (i.e., weather-dependent) and indoor weak light conditions. This organic/inorganic device configuration demonstrates a promising strategy for developing future high-performance low-light compatible photodetectors and photovoltaics.

  12. Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica

    Czech Academy of Sciences Publication Activity Database

    Litvín, Radek; Bína, David; Herbstová, Miroslava; Gardian, Zdenko

    2016-01-01

    Roč. 130, 1-3 (2016), s. 137-150 ISSN 0166-8595 R&D Projects: GA ČR(CZ) GP14-01377P Institutional support: RVO:60077344 Keywords : Light harvesting * Thylakoid membrane * Vaucheriaxanthin * Violaxanthin–chlorophyll protein Subject RIV: BO - Biophysics Impact factor: 3.864, year: 2016

  13. Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting.

    Science.gov (United States)

    Shin, Won-Ho; Yang, Se-Hoon; Kwon, Do-Hoon; Han, Sang-Kook

    2016-10-31

    We propose a self-reverse-biased solar panel optical receiver for energy harvesting and visible light communication. Since the solar panel converts an optical component into an electrical component, it provides both energy harvesting and communication. The signal component can be separated from the direct current component, and these components are used for communication and energy harvesting. We employed a self-reverse-biased receiver circuit to improve the communication and energy harvesting performance. The reverse bias on the solar panel improves the responsivity and response time. The proposed system achieved 17.05 mbps discrete multitone transmission with a bit error rate of 1.1 x 10-3 and enhanced solar energy conversion efficiency.

  14. Dark states and delocalization: Competing effects of quantum coherence on the efficiency of light harvesting systems.

    Science.gov (United States)

    Hu, Zixuan; Engel, Gregory S; Alharbi, Fahhad H; Kais, Sabre

    2018-02-14

    Natural light harvesting systems exploit electronic coupling of identical chromophores to generate efficient and robust excitation transfer and conversion. Dark states created by strong coupling between chromophores in the antenna structure can significantly reduce radiative recombination and enhance energy conversion efficiency. Increasing the number of the chromophores increases the number of dark states and the associated enhanced energy conversion efficiency yet also delocalizes excitations away from the trapping center and reduces the energy conversion rate. Therefore, a competition between dark state protection and delocalization must be considered when designing the optimal size of a light harvesting system. In this study, we explore the two competing mechanisms in a chain-structured antenna and show that dark state protection is the dominant mechanism, with an intriguing dependence on the parity of the number of chromophores. This dependence is linked to the exciton distribution among eigenstates, which is strongly affected by the coupling strength between chromophores and the temperature. Combining these findings, we propose that increasing the coupling strength between the chromophores can significantly increase the power output of the light harvesting system.

  15. Improving light harvesting in polymer photodetector devices through nanoindented metal mask films

    NARCIS (Netherlands)

    Macedo, A. G.; Zanetti, F.; Mikowski, A.; Hummelen, J. C.; Lepienski, C. M.; da Luz, M. G. E.; Roman, L. S.

    2008-01-01

    To enhance light harvesting in organic photovoltaic devices, we propose the incorporation of a metal (aluminum) mask film in the system's usual layout. We fabricate devices in a sandwich geometry, where the mask (nanoindented with a periodic array of holes of sizes d and spacing s) is added between

  16. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII).

    Science.gov (United States)

    Schaller, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Wilhelm, Christian; Strzałka, Kazimierz; Goss, Reimund

    2010-03-01

    In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Adaptation of Rhodopseudomonas acidophila strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2?

    Science.gov (United States)

    Gardiner, A T; Niedzwiedzki, D M; Cogdell, R J

    2018-04-01

    Typical purple bacterial photosynthetic units consist of light harvesting one/reaction centre 'core' complexes surrounded by light harvesting two complexes. Factors such as the number and size of photosynthetic units per cell, as well as the type of light harvesting two complex that is produced, are controlled by environmental factors. In this paper, the change in the type of LH2 present in the Rhodopsuedomonas acidophila strain 7050 is described when cells are grown at a range of different light intensities. This species contains multiple pucBA genes that encode the apoproteins that form light-harvesting complex two, and a more complex mixture of spectroscopic forms of this complex has been found than was previously thought to be the case. Femto-second time resolved absorption has been used to investigate how the energy transfer properties in the membranes of high-light and low-light adapted cells change as the composition of the LH2 complexes varies.

  19. Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls.

    Science.gov (United States)

    Bassi, R; Caffarri, S

    2000-01-01

    Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence of different mechanisms of photoprotection and regulation based on xanthophyll binding to Lhc proteins into multiple sites and the exchange of chromophores between different Lhc proteins during exposure of plants to high light stress and the operation of the xanthophyll cycle. The use of recombinant Lhc proteins has revealed up to four binding sites in members of Lhc families with distinct selectivity for xanthophyll species which are here hypothesised to have different functions. Site L1 is selective for lutein and is here proposed to be essential for catalysing the protection from singlet oxygen by quenching chlorophyll triplets. Site L2 and N1 are here proposed to act as allosteric sites involved in the regulation of chlorophyll singlet excited states by exchanging ligand during the operation of the xanthophyll cycle. Site V1 of the major antenna complex LHC II is here hypothesised to be a deposit for readily available substrate for violaxanthin de-epoxidase rather than a light harvesting pigment. Moreover, xanthophylls bound to Lhc proteins can be released into the lipid bilayer where they contribute to the scavenging of reactive oxygen species produced in excess light.

  20. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Alamri, Amal M.

    2016-06-24

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  1. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Alamri, Amal M.; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  2. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    Science.gov (United States)

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  3. Ring-to-chain conformation may be a determining factor in the ability of xanthophylls to bind to the bulk light-harvesting complex of plants

    Science.gov (United States)

    Young, Andrew J.; Phillip, Denise M.; Hashimoto, Hideki

    2002-12-01

    The binding of xanthophylls to the main light-harvesting complex (LHC) of higher plants has been studied using the technique of in vitro reconstitution. This demonstrated that the carotenoid diol lactucaxanthin (native to many LHC) would not support the assembly of LHC whilst other diols, notably zeaxanthin and lutein would. Analysis of the most stable forms of the carotenoid end-groups found in xanthophylls native to higher plant LHC (as determined by theoretical calculations) revealed profound differences in the adiabatic potential energy curves for the C5-C6-C7-C8-torsion angle for the ɛ end-groups in lactucaxanthin (6-s- trans), in comparison to carotenoids possessing a 3-hydroxy β end-group (zeaxanthin; 6-s- cis), 3-hydroxy-4-keto β end-group (astaxanthin, 6-s- cis) or a 3-hydroxy-5,6-epoxy end-group (violaxanthin, distorted 6-s- cis). The (ɛ end-groups of other carotenoids studied were 6-s- trans. We examine the possible relationship between carotenoid ring-to-chain conformation and binding to LHC.

  4. Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance.

    Science.gov (United States)

    Ding, Hao; Lv, Jindian; Wu, Huaping; Chai, Guozhong; Liu, Aiping

    2018-01-01

    A 'sandwich'-structured TiO 2 NR/HGN/CdS photoanode was successfully fabricated by the electrophoretic deposition of hollow gold nanospheres (HGNs) on the surface of TiO 2 nanorods (NRs). The HGNs presented a wide surface plasmon resonance character in the visible region from 540 to 630 nm, and further acted as the scatter elements and light energy 'antennas' to trap the local-field light near the TiO 2 NR/CdS layer, resulting in the increase of the light harvesting. An outstanding enhancement in the photochemical behaviour of TiO 2 NR/HGN/CdS photoanodes was attained by the contribution of HGNs in increasing the light absorption and the number of electron-hole pairs of photosensitive semiconductors. The optimized photochemical performance of TiO 2 NR/HGN/CdS photoanodes by using plasmonic HGNs demonstrated their potential application in energy conversion devices.

  5. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures

    Science.gov (United States)

    Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong

    2014-05-01

    The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.

  6. Enzyme-Triggered Defined Protein Nanoarrays: Efficient Light-Harvesting Systems to Mimic Chloroplasts.

    Science.gov (United States)

    Zhao, Linlu; Zou, Haoyang; Zhang, Hao; Sun, Hongcheng; Wang, Tingting; Pan, Tiezheng; Li, Xiumei; Bai, Yushi; Qiao, Shanpeng; Luo, Quan; Xu, Jiayun; Hou, Chunxi; Liu, Junqiu

    2017-01-24

    The elegance and efficiency by which chloroplasts harvest solar energy and conduct energy transfer have been a source of inspiration for chemists to mimic such process. However, precise manipulation to obtain orderly arranged antenna chromophores in constructing artificial chloroplast mimics was a great challenge, especially from the structural similarity and bioaffinity standpoints. Here we reported a design strategy that combined covalent and noncovalent interactions to prepare a protein-based light-harvesting system to mimic chloroplasts. Cricoid stable protein one (SP1) was utilized as a building block model. Under enzyme-triggered covalent protein assembly, mutant SP1 with tyrosine (Tyr) residues at the designated sites can couple together to form nanostructures. Through controlling the Tyr sites on the protein surface, we can manipulate the assembly orientation to respectively generate 1D nanotubes and 2D nanosheets. The excellent stability endowed the self-assembled protein architectures with promising applications. We further integrated quantum dots (QDs) possessing optical and electronic properties with the 2D nanosheets to fabricate chloroplast mimics. By attaching different sized QDs as donor and acceptor chromophores to the negatively charged surface of SP1-based protein nanosheets via electrostatic interactions, we successfully developed an artificial light-harvesting system. The assembled protein nanosheets structurally resembled the natural thylakoids, and the QDs can achieve pronounced FRET phenomenon just like the chlorophylls. Therefore, the coassembled system was meaningful to explore the photosynthetic process in vitro, as it was designed to mimic the natural chloroplast.

  7. HPLC-DAD-ESI/MS identification of light harvesting and light screening pigments in the lake sediments at Edmonson Point.

    Science.gov (United States)

    Giovannetti, Rita; Alibabaei, Leila; Zannotti, Marco; Ferraro, Stefano; Petetta, Laura

    2013-01-01

    The composition of sedimentary pigments in the Antarctic lake at Edmonson Point has been investigated and compared with the aim to provide a useful analytical method for pigments separation and identification, providing reference data for future assessment of possible changes in environmental conditions. Reversed phase high performance liquid chromatography (HPLC) with electrospray-mass spectrometry (ESI-MS) detection and diode array detection (DAD) has been used to identify light screening and light harvesting pigments. The results are discussed in terms of local environmental conditions.

  8. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    Science.gov (United States)

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  9. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  10. Reduced-order modeling of piezoelectric energy harvesters with nonlinear circuits under complex conditions

    Science.gov (United States)

    Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong

    2018-04-01

    A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.

  11. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions

    Science.gov (United States)

    Kong, Fanna; Zhou, Yang; Sun, Peipei; Cao, Min; Li, Hong; Mao, Yunxiang

    2016-02-01

    Photosynthesis includes the collection of light and the transfer of solar energy using light-harvesting chlorophyll a/b-binding (LHC) proteins. In high plants, the LHC gene family includes LHCA and LHCB sub-families, which encode proteins constituting the light-harvesting complex of photosystems I and II. Zostera marina L. is a monocotyledonous angiosperm and inhabits submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of divergence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relationship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.

  12. HPLC-DAD-ESI/MS Identification of Light Harvesting and Light Screening Pigments in the Lake Sediments at Edmonson Point

    Directory of Open Access Journals (Sweden)

    Rita Giovannetti

    2013-01-01

    Full Text Available The composition of sedimentary pigments in the Antarctic lake at Edmonson Point has been investigated and compared with the aim to provide a useful analytical method for pigments separation and identification, providing reference data for future assessment of possible changes in environmental conditions. Reversed phase high performance liquid chromatography (HPLC with electrospray-mass spectrometry (ESI-MS detection and diode array detection (DAD has been used to identify light screening and light harvesting pigments. The results are discussed in terms of local environmental conditions.

  13. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.

    Science.gov (United States)

    Etgar, Lioz

    2013-02-04

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  14. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  15. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Science.gov (United States)

    Etgar, Lioz

    2013-01-01

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318

  16. Multifunctional Device based on phosphor-piezoelectric PZT: lighting, speaking, and mechanical energy harvesting.

    Science.gov (United States)

    Lee, Sunghoon; Kang, Taewook; Lee, Wunho; Afandi, Mohammad M; Ryu, Jongho; Kim, Jongsu

    2018-01-10

    We demonstrated the tri-functional device based on all powder-processing methods by using ZnS powder as phosphor layer and piezoelectric material as dielectric layer. The fabricated device generated the electroluminescent (EL) light from phosphor and the sound from piezoelectric sheet under a supply of external electric power, and additionally harvested the reverse-piezoelectric energy to be converted into EL light. Under sinusoidal applied voltage, EL luminances were exponentially increased with a maximum luminous efficiency of 1.3 lm/W at 40 V and 1,000 Hz, and sound pressure levels (SPLs) were linearly increased. The EL luminances were linearly dependent on applied frequency while the SPLs showed the parabolic increase behavior below 1,000 Hz and then the flat response. The temperature dependence on EL luminances and SPLs was demonstrated; the former was drastically increased and the latter was slightly decreased with the increase of temperature. Finally, as an energy harvesting application, the piezoelectric-induced electroluminescence effect was demonstrated by applying only mechanical pressure to the device without any external electric power.

  17. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters

    KAUST Repository

    Grä tzel, Carole; Zakeeruddin, Shaik M.

    2013-01-01

    Mesoscopic solar cells are one of the most promising photovoltaic technologies among third generation photovoltaics due to their low cost and high efficiency. The morphology of wide-band semiconductors, sensitized with molecular or nanosized light harvesters, used as electron collectors contribute substantially to the device performance. Recent developments in the use of organic-inorganic layer structured perovskites as light absorbers and as electron or hole transport materials allows reduction in the thickness of photoanodes to the submicron level and have raised the power conversion efficiency of solid state mesoscopic solar cells above the 10% level.

  18. Complex Light and Optical Forces X

    DEFF Research Database (Denmark)

    This year marked the 10th Anniversary Edition of the conference on Complex Light and Optical Forces that is part of Photonics West. We again had a record number of submissions, indicative of the rising visibility and stature of this conference. Indeed, Complex Light and Optical Forces is still...... the only yearly venue worldwide for presenting research on complex light. This year we did not find a need to organize joint sessions with other conferences at Photonics West....

  19. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable

  20. The binding of Xanthophylls to the bulk light-harvesting complex of photosystem II of higher plants. A specific requirement for carotenoids with a 3-hydroxy-beta-end group.

    Science.gov (United States)

    Phillip, Denise; Hobe, Stephan; Paulsen, Harald; Molnar, Peter; Hashimoto, Hideki; Young, Andrew J

    2002-07-12

    The pigment composition of the light-harvesting complexes (LHCs) of higher plants is highly conserved. The bulk complex (LHCIIb) binds three xanthophyll molecules in combination with chlorophyll (Chl) a and b. The structural requirements for binding xanthophylls to LHCIIb have been examined using an in vitro reconstitution procedure. Reassembly of the monomeric recombinant LHCIIb was performed using a wide range of native and nonnative xanthophylls, and a specific requirement for the presence of a hydroxy group at C-3 on a single beta-end group was identified. The presence of additional substituents (e.g. at C-4) did not interfere with xanthophyll binding, but they could not, on their own, support reassembly. cis isomers of zeaxanthin, violaxanthin, and lutein were not bound, whereas all-trans-neoxanthin and different chiral forms of lutein and zeaxanthin were incorporated into the complex. The C-3 and C-3' diols lactucaxanthin (a carotenoid native to many plant LHCs) and eschscholtzxanthin (a retro-carotenoid) both behaved very differently from lutein and zeaxanthin in that they would not support complex reassembly when used alone. Lactucaxanthin could, however, be bound when lutein was also present, and it showed a high affinity for xanthophyll binding site N1. In the presence of lutein, lactucaxanthin was readily bound to at least one lutein-binding site, suggesting that the ability to bind to the complex and initiate protein folding may be dependent on different structural features of the carotenoid molecule. The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed.

  1. Light harvesting by dye linked conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Troensegaard Nielsen, K.

    2006-06-15

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obvious abundant sources of energy in the solar system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention in the last decades. There are still a lot of parameters to optimize if the plastic solar cell shall be able to compete with the silicon solar cells. One of the parameters is to ensure a high degree of charge carrier separation. Charge carrier separation can only happen at heterojunctions, which cover for example the interfaces between the polymers and the electrodes or the interface between an n-conductor and a p-conductor. The facts that the charge carrier separation only happens at the heterojunctions limits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar cells with a molecular heterojunction. The molecular heterojunction has been obtained by synthesizing a three domain super molecular assembly termed NPN. NPN consists of two poly[1-(2,5-dioctyltolanyl)ethynylene] chains (N-domains) coupled to the [10,20-bis(3,5-bistert-butylphenyl]-5,15-dibromoporphinato]zinc(II) (P-domain). It is shown that the N domains in NPN work as effective light harvesting antennas for the P domain and effectively transfer electrically generated excitons in the N domain to the P domain. Unfortunately the P domain does not separate the charge carriers but instead works as a charge carrier trap. This results in a performance of solar cells made of NPN that is much lower than the performance of solar cells made of pure poly[1-(2,5-dioctyltolanyl

  2. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  3. Dimers of light-harvesting complex 2 from Rhodobacter sphaeroides characterized in reconstituted 2D crystals with atomic force microscopy

    NARCIS (Netherlands)

    Liu, Lu-Ning; Aartsma, Thijs J.; Frese, Raoul N.

    Microscopic and light spectroscopic investigations on the supramolecular architecture of bacterial photosynthetic membranes have revealed the photosynthetic protein complexes to be arranged in a densely packed energy-transducing network. Protein packing may play a determining role in the formation

  4. Role of Carotenoids in Light-Harvesting Processes in an Antenna Protein from the Chromophyte Xanthonema debile

    Czech Academy of Sciences Publication Activity Database

    Durchan, Milan; Tichý, Josef; Litvín, Radek; Šlouf, V.; Gardian, Zdenko; Hříbek, P.; Vácha, František; Polívka, Tomáš

    2012-01-01

    Roč. 116, č. 30 (2012), s. 8880-8889 ISSN 1520-6106 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : xanthophytes * carotenoids * light harvesting * energy transfer Subject RIV: BO - Biophysics Impact factor: 3.607, year: 2012

  5. Si Functionalization With Dye Molecular as Light-Harvesting Material

    International Nuclear Information System (INIS)

    Nurul Aqidah Mohd Sinin; Mohd Adib Ibrahim; Mohd Asri Mat Teridi; Norasikin Ahmad Ludin; Suhaila Sepeai; Kamaruzzaman Sopian

    2015-01-01

    The surface plays an important role in thin silicon solar cells, especially with regard to the surface state and interface electronic properties that influence the electron and hole to recombine. In order to keep the recombination loss at a tolerable minimum and avoid an unacceptably large efficiency loss when moving towards thinner silicon materials, the surface must be electronically well passivated. Passivation is the most significant step for the functionalization of silicon. In this study, Si functionalization with a dye molecule might increase the absorption of light that acts as light-harvesting material on the silicon surface. Two types of dye molecular were used; DiL (λ_p_e_a_k = 549 nm) and DiO (λ_p_e_a_k = 484 nm). Both dyes were deposited using a spin-coating technique. These dye layers on the silicon surface were characterized using a Kelvin probe (KP) and photoluminescence (PL) spectroscopy. A different mechanism of slow charge trapping and detrapping was observed using KP measurement. A lifetime decay was observed that indicated a slow process of charge detrapping, owing to light trapping inside the dye/ SiNW interface, with a slow process for an equilibrium to establish between the surface states and the space charge region. An average lifetime of the entire fluorescence decay process was recorded at about 1.24 ns (DiO) and 0.22 ns (DiL), using PL spectroscopy. We show conclusively that these two types of dye can be used as light absorbers, in order to improve the surface properties of the silicon. (author)

  6. Dynamic complexities in a pest control model with birth pulse and harvesting

    International Nuclear Information System (INIS)

    Goel, A.; Gakkhar, S.

    2016-01-01

    In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.

  7. Dynamic complexities in a pest control model with birth pulse and harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Goel, A., E-mail: goelanju23@gmail.com; Gakkhar, S., E-mail: sungkfma@iitr.ernet.in [Department of Mathematics, Indian Institute of Technology, Roorkee, Uttarakhand 247667 (India)

    2016-04-06

    In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.

  8. Photodynamic effect of light-harvesting, long-lived triplet excited state Ruthenium(II)-polyimine-coumarin complexes: DNA binding, photocleavage and anticancer studies.

    Science.gov (United States)

    Nomula, Raju; Wu, Xueyan; Zhao, Jianzhang; Munirathnam, Nagegownivari R

    2017-10-01

    Two coumarin based Ru II -polyimine complexes (Ru-1 and Ru-2) showing intense absorption of visible light and long-lived triplet excited states (~12-15μs) were used for study of the interaction with DNA. The binding of the complexes with CT-DNA were studied by UV-vis, fluorescence and time-resolved nanosecond transient absorption (ns-TA) spectroscopy. The results suggesting that the complexes interact with CT-DNA by intercalation mode of binding, showing the binding constants (K b ) 6.47×10 4 for Ru-1 and 5.94×10 4 M -1 for Ru-2, in contrast no such results were found for Ru-0. The nanosecond transient absorption spectra of these systems in the presence of CT-DNA showing a clear perturbation in the bleaching region was observed compare to buffer alone. Visible light photoirradiation DNA cleavage was investigated for these complexes by treating with the supercoiled pUC19 DNA and irradiated at 450nm. The reactive species produced upon irradiation of current agents is singlet oxygen ( 1 O 2 ), which results in the generation of other reactive oxygen species (ROS). The complexes shown efficient cleavage activity, converted complete supercoiled DNA to nicked circular at as low as 20μM concentration in 30min of light irradiation time. Significant amount of linear form was generated by Ru-1 at the same conditions. Even though Ru-0 has significant 1 O 2 quantum yield but shown lower cleavage activity compared to other two analogs is due the miserable interaction (binding) with DNA. The cytotoxicity in vitro of the complexes toward HeLa, BEL-7402 and MG-63 cells was assessed by MTT assay. The cellular uptake was observed on BEL-7402 cells under fluorescence microscope. The complexes shown appreciable cytotoxicity towards the cancer cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Diamond functionalization with light-harvesting molecular wires: improved surface coverage by optimized Suzuki cross-coupling conditions

    Czech Academy of Sciences Publication Activity Database

    Yeap, W. S.; Bevk, D.; Liu, X.; Krýsová, Hana; Pasquarelli, A.; Vanderzande, D.; Lutsen, L.; Kavan, Ladislav; Fahlman, M.; Maes, W.; Haenen, K.

    2014-01-01

    Roč. 4, AUG 2014 (2014), s. 42044-42053 ISSN 2046-2069 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : Functionalizations * Light-harvesting * Molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.840, year: 2014

  10. Efficient dye-sensitized solar cells from curved silicate microsheet caged TiO2 photoanodes. An avenue of enhancing light harvesting

    International Nuclear Information System (INIS)

    Wang, Zubin; Tang, Qunwei; He, Benlin; Chen, Haiyan; Yu, Liangmin

    2015-01-01

    Graphical abstract: - Highlights: • Curved silicate microsheets are incorporated with TiO 2 for light harvesting in DSSC • The optical matching between silicate and TiO 2 is superior to light reflection. • The curved silicate can hinder the recombination reaction of electrons with I 3 − . • The DSSC with TiO 2 /curved silicate photoanode shows an efficiency of 9.22% - Abstract: Enhancement of light harvesting has been a persistent objective for elevating dye excitation and therefore power conversion efficiency of dye-sensitized solar cells (DSSCs). Here we launch a strategy of markedly enhancing light harvesting by caging TiO 2 nanoparticles with curved silica microsheets. The results show that the strategy is versatile in suppressing the recombination reaction of electrons with I 3 − species in liquid electrolyte. Due to the superior reflective behaviors of curved silica microsheets, an optimal efficiency of 9.22% is recorded under simulated air mass 1.5 global sunlight on the DSSC in comparison with 6.51% and 7.51% from pristine TiO 2 and planar silicate microsheet incorporated TiO 2 photoanode based solar cells, respectively. This strategy is also believed to be applicable to other solar cells such as perovskite solar cells and quantum dot-sensitized solar cells.

  11. Residual Energy Harvesting from Light Transients Using Hematite as an Intrinsic Photocapacitor in a Symmetrical Cell

    NARCIS (Netherlands)

    Blom, Burgert; van Leeuwen, Nicole; Xie, Mengying; Adamaki, Vana; Bowen, Chris R.; de Araujo, Moises A.; Mascaro, Lucia H.; Cameron, Petra J.; Marken, Frank

    2017-01-01

    Hematite as a sustainable photoabsorber material offers a band gap close to 2 eV and photoanode characteristics, but usually requires additional catalysts to enhance surface redox chemistry during steady state light energy harvesting for water splitting. Here, for a highly doped hematite film,

  12. Facile Synthesis of Colloidal CuO Nanocrystals for Light-Harvesting Applications

    KAUST Repository

    Lim, Yee-Fun; Choi, Joshua J.; Hanrath, Tobias

    2012-01-01

    CuO is an earth-abundant, nontoxic, and low band-gap material; hence it is an attractive candidate for application in solar cells. In this paper, a synthesis of CuO nanocrystals by a facile alcohothermal route is reported. The nanocrystals are dispersible in a solvent mixture of methanol and chloroform, thus enabling the processing of CuO by solution. A bilayer solar cell comprising of CuO nanocrystals and phenyl-C61-butyric acid methyl ester (PCBM) achieved a power conversion efficiency of 0.04%, indicating the potential of this material for light-harvesting applications.

  13. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Bocian, David F; Holten, Dewey; Hunter, C Neil

    2015-01-01

    Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata.

    Science.gov (United States)

    Schaller-Laudel, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Daum, Sebastian; Bacia, Kirsten; Wilhelm, Christian; Goss, Reimund

    2017-07-01

    The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation. © 2017 Scandinavian Plant Physiology Society.

  15. [Influence of LDAO on the conformation and release of bacteriochlorophyll of peripheral light-harvesting complex (LH2) from Rhodobacter azotoformans].

    Science.gov (United States)

    Zhao, Gen-gui; Dong, Yan-min; Yang, Su-ping; Jiao, Nian-zhi; Qu, Yin-bo

    2010-10-01

    The aim of this study is to reveal the interaction relationships between lauryl dimethylamine N-oxide (LDAO) and peripheral light-harvesting complex (LH2) as well as the influence of LDAO on structure and function of LH2. In the present work, the effects of LDAO on the conformation and release processes of bacteriochlorophyll (BChl) of LH2 when incubated under different temperature and pH in the presence and absence of LDAO were investigated by spectroscopy. The results indicated that (1) the presence of LDAO resulted in alterations in the conformation, alpha-helix content, and spectra of Tyr and B850 band of LH2 at room temperature and pH 8.0. Moreover, energy transfer efficiency of LH2 was enhanced markedly in the presence of LDAO. (2) At 60 degrees C, both the B800 and B850 band of LH2 were released and transited into free BChl at pH 8.0. However, the release rates of bacteriochlorophylls of B800 and B850 band from LH2 were slowed down and the release processes were changed when incubated in the presence of LDAO. Hence, the stability of LH2 was improved in the presence of LDAO. (3) The accelerated release processes of bacteriochlorophylls of B800 and B850 band of LH2 were induced to transform into bacteriopheophytin (BPhe) and free BChl by LDAO in strong acid and strong alkalic solution at room temperature. However, the kinetic patterns of the B800 and B850 band were remarkably different. The release and self-assemble processes of B850 in LH2 were observed in strong acid solution without LDAO. Therefore, the different release behaviors of B800 and B850 of LH2 are induced by LDAO under different extreme environmental conditions.

  16. Porphyrin nanorods characterisation for an artificial light harvesting and energy transfer system

    CSIR Research Space (South Africa)

    Mongwaketsi, N

    2010-01-01

    Full Text Available s 1 0 h r s 1 3 h r s 1 5 h r s 1 8 h r s Porphyrin Nanorods Characterization for an Artificial Light Harvesting and Energy Transfer System Nametso Mongwaketsi1,2,3, Raymond Sparrow2, Bert Klumperman3, Malik Maaza1 1 NanoSciences Lab..., Materials Research Dept, iThemba LABS, PO Box 722, Somerset West, 7129, South Africa 2 CSIR Biosciences, PO Box 395, Pretoria, 0001, South Africa 3 Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X 1, Matieland, 7602...

  17. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion.

    Science.gov (United States)

    Russo, Monia Teresa; Annunziata, Rossella; Sanges, Remo; Ferrante, Maria Immacolata; Falciatore, Angela

    2015-12-01

    Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cyanobacterial flv4-2 Operon-Encoded Proteins Optimize Light Harvesting and Charge Separation in Photosystem II.

    Science.gov (United States)

    Chukhutsina, Volha; Bersanini, Luca; Aro, Eva-Mari; van Amerongen, Herbert

    2015-05-01

    Photosystem II (PSII) complexes drive the water-splitting reaction necessary to transform sunlight into chemical energy. However, too much light can damage and disrupt PSII. In cyanobacteria, the flv4-2 operon encodes three proteins (Flv2, Flv4, and Sll0218), which safeguard PSII activity under air-level CO2 and in high light conditions. However, the exact mechanism of action of these proteins has not been clarified yet. We demonstrate that the PSII electron transfer properties are influenced by the flv4-2 operon-encoded proteins. Accelerated secondary charge separation kinetics was observed upon expression/overexpression of the flv4-2 operon. This is likely induced by docking of the Flv2/Flv4 heterodimer in the vicinity of the QB pocket of PSII, which, in turn, increases the QB redox potential and consequently stabilizes forward electron transfer. The alternative electron transfer route constituted by Flv2/Flv4 sequesters electrons from QB(-) guaranteeing the dissipation of excess excitation energy in PSII under stressful conditions. In addition, we demonstrate that in the absence of the flv4-2 operon-encoded proteins, about 20% of the phycobilisome antenna becomes detached from the reaction centers, thus decreasing light harvesting. Phycobilisome detachment is a consequence of a decreased relative content of PSII dimers, a feature observed in the absence of the Sll0218 protein. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  19. Harvesting bioenergy with rationally designed complex functional materials

    Science.gov (United States)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  20. Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex

    Science.gov (United States)

    Chin, A. W.; Mangaud, E.; Atabek, O.; Desouter-Lecomte, M.

    2018-06-01

    Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the dissipative system-environment models underlying these proposals is presently very challenging in supramolecular materials. A promising alternative is to use simpler and highly tunable "quantum simulators" built from programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al., Nat. Commun. 9, 904 (2018), 10.1038/s41467-018-03312-x]. We simulate the real-time dynamics of an exciton coupled to a quantum bath as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but completely incoherent relaxation from a high-lying "bright" exciton into a doublet of closely spaced "dark" excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network (quantum beats). Importantly, we show that this behavior also survives when the environmental noise is classically stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities of designing matched electronic and spectral noise structures for robust coherence generation that do not require coherent excitation or cold environments.

  1. Heteronuclear 2D (1H-13C) MAS NMR Resolves the Electronic Structure of Coordinated Histidines in Light-Harvesting Complex II: Assessment of Charge Transfer and Electronic Delocalization Effect

    International Nuclear Information System (INIS)

    Matysik, Joerg; Boer, Ido de; Gast, Peter; Gorkom, Hans J. van; Groot, Huub J.M. de

    2004-01-01

    In a recent MAS NMR study, two types of histidine residues in the light-harvesting complex II (LH2) of Rhodopseudomonas acidophila were resolved: Type 1 (neutral) and Type 2 (positively charged) (Alia et al. J. Am. Chem. Soc.). The isotropic 13 C shifts of histidines coordinating to B850 BChl a are similar to fully positively charged histidine, while the 15 N shift anisotropy shows a predominantly neutral character. In addition the possibility that the ring currents are quenched by overlap in the superstructure of the complete ring of 18 B850 molecules in the LH2 complex could not be excluded. In the present work, by using two-dimensional heteronuclear ( 1 H- 13 C) dipolar correlation spectroscopy with phase-modulated Lee-Goldburg homonuclear 1 H decoupling applied during the t 1 period, a clear and unambiguous assignment of the protons of histidine interacting with the magnesium of a BChl a molecule is obtained and a significant ring current effect from B850 on the coordinating histidine is resolved. Using the ring current shift on 1 H, we refine the 13 C chemical shift assignment of the coordinating histidine and clearly distinguish the electronic structure of coordinating histidines from that of fully positively charged histidine. The DFT calculations corroborate that the coordinating histidines carry ∼0.2 electronic equivalent of positive charge in LH2. In addition, the data indicate that the ground state electronic structures of individual BChl a/His complexes is largely independent of supermolecular π interactions in the assembly of 18 B850 ring in LH2

  2. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  3. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers.

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  4. Core–shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    To achieve highly efficient mesoscopic perovskite solar cells (PSCs), the structure and properties of an electron transport layer (ETL) or material (ETM) have been shown to be of supreme importance. Particularly, the core-shell heterostructured mesoscopic ETM architecture has been recognized as a successful electrode design, because of its large internal surface area, superior light-harvesting efficiency and its ability to achieve fast charge transport. Here we report the successful fabrication of a hysteresis-free, 15.3% efficient PSC using vertically aligned ZnO nanorod/TiO2 shell (ZNR/TS) core-shell heterostructured ETMs for the first time. We have also added a conjugated polyelectrolyte polymer into the growth solution to promote the growth of high aspect ratio (AR) ZNRs and substantially improve the infiltration of the perovskite light absorber into the ETM. The PSCs based on the as-synthesized core-shell ZnO/TiO2 heterostructured ETMs exhibited excellent performance enhancement credited to the superior light harvesting capability, larger surface area, prolonged charge-transport pathways and lower recombination rate. The unique ETM design together with minimal hysteresis introduces core-shell ZnO/TiO2 heterostructures as a promising mesoscopic electrode approach for the fabrication of efficient PSCs. This journal is © The Royal Society of Chemistry.

  5. Identifying the quantum correlations in light-harvesting complexes

    International Nuclear Information System (INIS)

    Bradler, Kamil; Wilde, Mark M.; Vinjanampathy, Sai; Uskov, Dmitry B.

    2010-01-01

    One of the major efforts in the quantum biological program is to subject biological systems to standard tests or measures of quantumness. These tests and measures should elucidate whether nontrivial quantum effects may be present in biological systems. Two such measures of quantum correlations are the quantum discord and the relative entropy of entanglement. Here, we show that the relative entropy of entanglement admits a simple analytic form when dynamics and accessible degrees of freedom are restricted to a zero- and single-excitation subspace. We also simulate and calculate the amount of quantum discord that is present in the Fenna-Matthews-Olson protein complex during the transfer of an excitation from a chlorosome antenna to a reaction center. We find that the single-excitation quantum discord and single-excitation relative entropy of entanglement are equal for all of our numerical simulations, but a proof of their general equality for this setting evades us for now. Also, some of our simulations demonstrate that the relative entropy of entanglement without the single-excitation restriction is much lower than the quantum discord. The first picosecond of dynamics is the relevant time scale for the transfer of the excitation, according to some sources in the literature. Our simulation results indicate that quantum correlations contribute a significant fraction of the total correlation during this first picosecond in many cases, at both cryogenic and physiological temperatures.

  6. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    Science.gov (United States)

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  7. [Survival strategy of photosynthetic organisms. 1. Variability of the extent of light-harvesting pigment aggregation as a structural factor optimizing the function of oligomeric photosynthetic antenna. Model calculations].

    Science.gov (United States)

    Fetisova, Z G

    2004-01-01

    In accordance with our concept of rigorous optimization of photosynthetic machinery by a functional criterion, this series of papers continues purposeful search in natural photosynthetic units (PSU) for the basic principles of their organization that we predicted theoretically for optimal model light-harvesting systems. This approach allowed us to determine the basic principles for the organization of a PSU of any fixed size. This series of papers deals with the problem of structural optimization of light-harvesting antenna of variable size controlled in vivo by the light intensity during the growth of organisms, which accentuates the problem of antenna structure optimization because optimization requirements become more stringent as the PSU increases in size. In this work, using mathematical modeling for the functioning of natural PSUs, we have shown that the aggregation of pigments of model light-harvesting antenna, being one of universal optimizing factors, furthermore allows controlling the antenna efficiency if the extent of pigment aggregation is a variable parameter. In this case, the efficiency of antenna increases with the size of the elementary antenna aggregate, thus ensuring the high efficiency of the PSU irrespective of its size; i.e., variation in the extent of pigment aggregation controlled by the size of light-harvesting antenna is biologically expedient.

  8. Efficient solar light harvesting CdS/Co{sub 9}S{sub 8} hollow cubes for Z-scheme photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Bocheng; Zhu, Qiaohong; Du, Mengmeng; Fan, Linggang; Xing, Mingyang; Zhang, Jinlong [Key Lab. for Advanced Materials and Inst. of Fine Chemicals, School of Chemistry and Molecular Engineering, East China Univ. of Science and Technology, Shanghai (China)

    2017-03-01

    Hollow structures with an efficient light harvesting and tunable interior component offer great advantages for constructing a Z-scheme system. Controlled design of hollow cobalt sulfide (Co{sub 9}S{sub 8}) cubes embedded with cadmium sulfide quantum dots (QDs) is described, using hollow Co(OH){sub 2} as the template and a one-pot hydrothermal strategy. The hollow CdS/Co{sub 9}S{sub 8} cubes utilize multiple reflections of light in the cubic structure to achieve enhanced photocatalytic activity. Importantly, the photoexcited charge carriers can be effectively separated by the construction of a redox-mediator-free Z-scheme system. The hydrogen evolution rate over hollow CdS/Co{sub 9}S{sub 8} is 134 and 9.1 times higher than that of pure hollow Co{sub 9}S{sub 8} and CdS QDs under simulated solar light irradiation, respectively. Moreover, this is the first report describing construction of a hollow Co{sub 9}S{sub 8} based Z-scheme system for photocatalytic water splitting, which gives full play to the advantages of light-harvesting and charges separation. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  10. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity.

    Science.gov (United States)

    Taisova, A S; Yakovlev, A G; Fetisova, Z G

    2014-03-01

    This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell

  11. OAI-PMH for resource harvesting, tutorial 2

    CERN Multimedia

    CERN. Geneva; Nelson, Michael

    2005-01-01

    A variety of examples have arisen in which the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) has been used for applications beyond bibliographic metadata interchange. One of these examples is the use of OAI-PMH to harvest resources and not just metadata. Advanced resource discovery and preservations capabilities are possible by combining complex object formats such as MPEG-21 DIDL, METS and SCORM with the OAI-PMH. In this tutorial, we review community conventions and practices that have provided the impetus for resource harvesting. We show how the introduction of complex object formats for the representation of resources leads to a robust, OAI-PMH-based framework for resource harvesting. We detail how complex object formats fit in the OAI-PMH data model, and how (compound) digital objects can be represented using a complex object format for exposure by an OAI-PMH repository. We also cover tools that are available for the implementation of an OAI-PMH-based resource harvesting solution. Fu...

  12. Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Davide Saccone

    2016-02-01

    Full Text Available Terpyridine and quaterpyridine-based complexes allow wide light harvesting of the solar spectrum. Terpyridines, with respect to bipyridines, allow for achieving metal-complexes with lower band gaps in the metal-to-ligand transition (MLCT, thus providing a better absorption at lower energy wavelengths resulting in an enhancement of the solar light-harvesting ability. Despite the wider absorption of the first tricarboxylate terpyridyl ligand-based complex, Black Dye (BD, dye-sensitized solar cell (DSC performances are lower if compared with N719 or other optimized bipyridine-based complexes. To further improve BD performances several modifications have been carried out in recent years affecting each component of the complexes: terpyridines have been replaced by quaterpyridines; other metals were used instead of ruthenium, and thiocyanates have been replaced by different pinchers in order to achieve cyclometalated or heteroleptic complexes. The review provides a summary on design strategies, main synthetic routes, optical and photovoltaic properties of terpyridine and quaterpyridine ligands applied to photovoltaic, and focuses on n-type DSCs.

  13. Continuous light-emitting Diode (LED) lighting for improving food quality

    OpenAIRE

    Lu, C; Bian, Z

    2016-01-01

    Lighting-emitting diodes (LEDs) have shown great potential for plant growth and development, with higher luminous efficiency and positive impact compared with other artificial lighting. The combined effects of red/blue or/and green, and white LED light on plant growth and physiology, including chlorophyll fluorescence, nitrate content and phytochemical concentration before harvest, were investigated. The results showed that continuous light (CL)\\ud exposure at pre-harvest can effectively redu...

  14. Energy transfer dynamics from individual semiconductor nanoantennae to dye molecules with implication to light-harvesting nanosystems

    Science.gov (United States)

    Shan, Guangcun; Hu, Mingjun; Yan, Ze; Li, Xin; Huang, Wei

    2018-03-01

    Semiconductor nanocrystals can be used as nanoscale optical antennae to photoexcite individual dye molecules in an ensemble via energy transfer mechanism. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. Herein we investigate the effect of the average donor-acceptor spacing on the time-resolved fluorescence intensity and dynamics of single donor-acceptor pairs with the dye acceptor concentration decreasing by using quantum Monte-Carlo simulation of FRET dynamics. Our results validated that the spatial disorder controlling the microscopic energy transfer rates accounts for the scatter in donor fluorescence lifetimes and intensities, which provides a new design guideline for artificial light-harvesting nanosystems.

  15. Photoelectrochemical Complexes of Fucoxanthin-Chlorophyll Protein for Bio-Photovoltaic Conversion with a High Open-Circuit Photovoltage.

    Science.gov (United States)

    Zhang, Tianning; Liu, Cheng; Dong, Wenjing; Wang, Wenda; Sun, Yan; Chen, Xin; Yang, Chunhong; Dai, Ning

    2017-12-05

    Open-circuit photovoltage (V oc ) is among the critical parameters for achieving an efficient light-to-charge conversion in existing solar photovoltaic devices. Natural photosynthesis exploits light-harvesting chlorophyll (Chl) protein complexes to transfer sunlight energy efficiently. We describe the exploitation of photosynthetic fucoxanthin-chlorophyll protein (FCP) complexes for realizing photoelectrochemical cells with a high V oc . An antenna-dependent photocurrent response and a V oc up to 0.72 V are observed and demonstrated in the bio-photovoltaic devices fabricated with photosynthetic FCP complexes and TiO 2 nanostructures. Such high V oc is determined by fucoxanthin in FCP complexes, and is rarely found in photoelectrochemical cells with other natural light-harvesting antenna. We think that the FCP-based bio-photovoltaic conversion will provide an opportunity to fabricate environmental benign photoelectrochemical cells with high V oc , and also help improve the understanding of the essential physics behind the light-to-charge conversion in photosynthetic complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Light-harvesting features revealed by the structure of plant Photosystem I

    CERN Document Server

    Ben-Shem, A; Nelson, N; 10.1023/B:PRES.0000036881.23512.42

    2004-01-01

    Oxygenic photosynthesis is driven by two multi-subunit membrane protein complexes, Photosystem I and Photosystem II. In plants and green algae, both complexes are composed of two moieties: a reaction center (RC), where light-induced charge translocation occurs, and a peripheral antenna that absorbs light and funnels its energy to the reaction center. The peripheral antenna of PS I (LHC I) is composed of four gene products (Lhca 1-4) that are unique among the chlorophyll a/b binding proteins in their pronounced long-wavelength absorbance and in their assembly into dimers. The recently determined structure of plant Photosystem I provides the first relatively high- resolution structural model of a super-complex containing a reaction center and its peripheral antenna. We describe some of the structural features responsible for the unique properties of LHC I and discuss the advantages of the particular LHC I dimerization mode over monomeric or trimeric forms. In addition, we delineate some of the interactions betw...

  17. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  18. Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration

    Science.gov (United States)

    Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing

    2017-08-01

    Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.

  19. Singlet-triplet annihilation in single LHCII complexes

    NARCIS (Netherlands)

    Gruber, J.M.; Chmeliov, J.; Kruger, T.P.J.; Valkunas, L.; van Grondelle, R.

    2015-01-01

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching

  20. Phycocyanin: One Complex, Two States, Two Functions

    NARCIS (Netherlands)

    Gwizdala, Michal; Krüger, Tjaart P.J.; Wahadoszamen, Md; Gruber, J. Michael; Van Grondelle, Rienk

    2018-01-01

    Solar energy captured by pigments embedded in light-harvesting complexes can be transferred to neighboring pigments, dissipated, or emitted as fluorescence. Only when it reaches a reaction center is the excitation energy stabilized in the form of a charge separation and converted into chemical

  1. Accumulation and connectivity of coarse woody debris in partial harvest and unmanaged relict forests.

    Directory of Open Access Journals (Sweden)

    Robert C Morrissey

    Full Text Available When a tree dies, it continues to play an important ecological role within forests. Coarse woody debris (CWD, including standing deadwood (SDW and downed deadwood (DDW, is an important functional component of forest ecosystems, particularly for many dispersal-limited saproxylic taxa and for metapopulation dynamics across landscapes. Processes, such as natural disturbance or management, modify forest composition and structure, thereby influencing CWD abundance and distribution. Many studies have compared older forests to forests managed with even-aged silvicultural systems and observed a prolonged period of low CWD occurrence after harvesting. With fine-scale spatial data, our study compares the long-term impacts of light partial harvesting on the CWD structure of eastern deciduous hardwood forests. We mapped and inventoried DDW and SDW using variable radius plots based on a 10 m × 10 m grid throughout an unmanaged, structurally-complex relict forest and two nearby forests that were partially harvested over 46 years ago. The relict stand had significantly larger individual pieces and higher accumulations of DDW and SDW than both of the partially harvested stands. Connectivity of CWD was much higher in the relict stand, which had fewer, larger patches. Larger pieces and higher proportion of decay-resistant species (e.g. Quercus spp. in the relict forest resulted in slower decomposition, greater accumulation and increased connectivity of CWD. Partial harvests, such that occur with selection forestry, are generally considered less disruptive of ecosystem services, but this study highlights the long-term impacts of even light partial harvests on CWD stocks and distribution. When planning harvesting events, forest managers should also consider alternative methods to ensure the sustainability of deadwood resources and function.

  2. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces

    International Nuclear Information System (INIS)

    Escalante, Maryana; Maury, Pascale; Bruinink, Christiaan M; Werf, Kees van der; Olsen, John D; Timney, John A; Huskens, Jurriaan; Hunter, C Neil; Subramaniam, Vinod; Otto, Cees

    2008-01-01

    We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures

  3. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Maryana [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Maury, Pascale [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Bruinink, Christiaan M [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Werf, Kees van der [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Olsen, John D [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Timney, John A [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Huskens, Jurriaan [Molecular Nanofabrication Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hunter, C Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom); Subramaniam, Vinod [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Otto, Cees [Biophysical Engineering Group, MESA and Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2008-01-16

    We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures.

  4. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution

    KAUST Repository

    Bhunia, Manas Kumar

    2014-08-14

    Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6-triaminopyrimidine as a dopant. The solid state NMR spectrum of 15N-enriched CN confirms the triazine as a building unit. Controlling the amount and arrangements of dopants in the CN structure can dramatically enhance the photocatalytic performance for H2 evolution. The polytriazine imide (PTI) exhibits the apparent quantum efficiency (AQE) of 15% at 400 nm. This method successfully enables a substantial amount of visible light to be harvested for H2 evolution, and provides a promising route for the rational design of a variety of highly active crystalline CN photocatalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lighting during grow-out and Salmonella in broiler flocks

    Directory of Open Access Journals (Sweden)

    Bailey Richard H

    2010-06-01

    Full Text Available Abstract Background Lighting is used during conventional broiler grow-out to modify bird behaviour to reach the goals of production and improve bird welfare. The protocols for lighting intensity vary. In a field study, we evaluated if the lighting practices impact the burden of Salmonella in broiler flocks. Methods Conventional grow-out flocks reared in the states of Alabama, Mississippi and Texas, USA in 2003 to 2006 were sampled 1 week before harvest (n = 58 and upon arrival for processing (n = 56 by collecting feathered carcass rinsate, crop and one cecum from each of 30 birds, and during processing by collecting rinsate of 30 carcasses at pre-chilling (n = 56 and post-chilling points (n = 54. Litter samples and drag swabs of litter were collected from the grow-out houses after bird harvest (n = 56. Lighting practices for these flocks were obtained with a questionnaire completed by the growers. Associations between the lighting practices and the burden of Salmonella in the flocks were tested while accounting for variation between the grow-out farms, their production complexes and companies. Results Longer relative duration of reduced lights during the grow-out period was associated with reduced detection of Salmonella on the exterior of birds 1 week before harvest and on the broiler carcasses at the post-chilling point of processing. In addition, starting reduced lights for ≥18 hours per day later in the grow-out period was associated with decreased detection of Salmonella on the exterior of broilers arriving for processing and in the post-harvest drag swabs of litter from the grow-out house. Conclusions The results of this field study show that lighting practices implemented during broiler rearing can impact the burden of Salmonella in the flock. The underlying mechanisms are likely to be interactive.

  6. The organization of LH2 complexes in membranes from Rhodobacter sphaeroides.

    Science.gov (United States)

    Olsen, John D; Tucker, Jaimey D; Timney, John A; Qian, Pu; Vassilev, Cvetelin; Hunter, C Neil

    2008-11-07

    The mapping of the photosynthetic membrane of Rhodobacter sphaeroides by atomic force microscopy (AFM) revealed a unique organization of arrays of dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) core complexes surrounded and interconnected by light-harvesting LH2 complexes (Bahatyrova, S., Frese, R. N., Siebert, C. A., Olsen, J. D., van der Werf, K. O., van Grondelle, R., Niederman, R. A., Bullough, P. A., Otto, C., and Hunter, C. N. (2004) Nature 430, 1058-1062). However, membrane regions consisting solely of LH2 complexes were under-represented in these images because these small, highly curved areas of membrane rendered them difficult to image even using gentle tapping mode AFM and impossible with contact mode AFM. We report AFM imaging of membranes prepared from a mutant of R. sphaeroides, DPF2G, that synthesizes only the LH2 complexes, which assembles spherical intracytoplasmic membrane vesicles of approximately 53 nm diameter in vivo. By opening these vesicles and adsorbing them onto mica to form small, LH2-only membranes for the first time. The transition from highly curved vesicle to the planar sheet is accompanied by a change in the packing of the LH2 complexes such that approximately half of the complexes are raised off the mica surface by approximately 1 nm relative to the rest. This vertical displacement produces a very regular corrugated appearance of the planar membrane sheets. Analysis of the topographs was used to measure the distances and angles between the complexes. These data are used to model the organization of LH2 complexes in the original, curved membrane. The implications of this architecture for the light harvesting function and diffusion of quinones in native membranes of R. sphaeroides are discussed.

  7. Emission lineshapes of the B850 band of light-harvesting 2 (LH2) complex in purple bacteria: a second order time-nonlocal quantum master equation approach.

    Science.gov (United States)

    Kumar, Praveen; Jang, Seogjoo

    2013-04-07

    The emission lineshape of the B850 band in the light harvesting complex 2 of purple bacteria is calculated by extending the approach of 2nd order time-nonlocal quantum master equation [S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9312 (2003)]. The initial condition for the emission process corresponds to the stationary excited state density where exciton states are entangled with the bath modes in equilibrium. This exciton-bath coupling, which is not diagonal in either site excitation or exciton basis, results in a new inhomogeneous term that is absent in the expression for the absorption lineshape. Careful treatment of all the 2nd order terms are made, and explicit expressions are derived for both full 2nd order lineshape expression and the one based on secular approximation that neglects off-diagonal components in the exciton basis. Numerical results are presented for a few representative cases of disorder and temperature. Comparison of emission line shape with the absorption line shape is also made. It is shown that the inhomogeneous term coming from the entanglement of the system and bath degrees of freedom makes significant contributions to the lineshape. It is also found that the perturbative nature of the theory can result in negative portion of lineshape in some situations, which can be removed significantly by inclusion of the inhomogeneous term and completely by using the secular approximation. Comparison of the emission and absorption lineshapes at different temperatures demonstrates the role of thermal population of different exciton states and exciton-phonon couplings.

  8. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza

    2016-11-01

    Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.

  9. Physiological and biochemical studies on the yellowing of spruce trees in higher altitudes. Pt. 1. Protection of pigments in the light-harvesting Chl-a/b-protein against photooxidation - the role of apoprotein and pigment organisation

    Energy Technology Data Exchange (ETDEWEB)

    Siefermanns-Harms, D.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A.

    1988-04-01

    The light-harvesting Chl-a/b-protein complex (LHC) from Spinacea oleracia, Lactuca sativa and Picea abies is stable under strong white light (> 350 nm, 1000 w/m/sub 2/). Therefore, LHC preparations were used to examine requirements for the protection of LHC-bound pigments from photooxidation. - The presence of carotenoids in the LHC and their arrangement in close proximity with the chlorophylls are not sufficient for pigment protection under light. - An intact LHC apoprotein is required to protect the pigments from photooxidation. Evidently, the intact LHC apoprotein represents a barrier for O/sub 2/ limiting O/sub 2/ access to the microenvironment of the pigments. - The composition of the pigment fraction destroyed under light depends on the state of the LHC. If only the integrity of the apoprotein is impaired, both, chlorophylls and carotenoids are subjected to photooxidation.

  10. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    NARCIS (Netherlands)

    Tóth, T.N.; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Gyozo; Kovács, László; Gombos, Zoltán; Amerongen, Van Herbert

    2015-01-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of

  11. Harvesting a short rotation forest

    Energy Technology Data Exchange (ETDEWEB)

    Perttu, K L [ed.

    1984-12-01

    Willow and Sallow, considered of great interest for Swedish conditions, present new problems in harvesting. Traditional logging techniques offer few elements of equipment or methods. Light whips may be comminuted to a bulk product, easy to handle, difficult to store, requiring a hot logging system - and requiring a heavy, powerful harvester. Aggregating the material introduces an intermediate wood-fuel unit, suitable for storing, transport and infeed into any comminuter. If the harvester produced billets it would require less energy for its operation and it may be used for other purposes such as pre-commercial thinning or row thinning during the growing season. A few groups of designers have worked on analyses of requirements and possible solutions. Test rigs for severing and bundling were built and evaluated. Public funding was made available for design work on harvesters. Five groups were selected to produce layout designs of large and small harvesters. An evaluation procedure was performed, leading to selection of two concepts, slightly reworked from their original shapes. One is a large self-propelled front-sutting harvester, the other is a harvesting unit to be mounted on a suitable farm tractor. With 3 refs.

  12. Lighting characteristics of complex fenestration systems

    Energy Technology Data Exchange (ETDEWEB)

    Laouadi, A. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Research in Construction; Parekh, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre, Sustainable Buildings and Community Group

    2006-07-01

    Innovations in window technologies have been motivated by the need for energy conservation in buildings. Shading devices and windows with complex glazings such as smart glazings, translucent and transparent insulation, and patterned glass are among the newly developed products. Although complex fenestration systems (CFS) have superior energy performance, a potential glare problem can have a significant effect on the indoor environment as experienced by occupants. A good view and glare-free environment are important for the commercialization of fenestration products. This study addressed the development of new lighting quality indices for the outdoor view, indoor view and window luminance. It was noted that the outdoor view gives a feeling of connection to the outside, an indoor view affects the feelings of privacy, while window luminance indicates the potential risk of discomfort glare. The study applied the new lighting quality indices on a typical complex fenestration system consisting of a double clear window combined with different types of an interior perforated shading screen with opaque and translucent materials. According to simulation results, the light-coloured screen has a significant impact on the outdoor view and window's luminance, and depends largely on the sky conditions. Under clear sky conditions, the luminance of a window with a translucent screen can increase by up to 80 per cent compared to overcast sky conditions. This study aspires to have these indices be part of a fenestration product ratings for indoor environment quality. 19 refs., 1 tab., 3 figs.

  13. Synthesis of borylated porphyrin and bromo- porphyrin as building blocks for light harvesting antenna molecule

    Science.gov (United States)

    Radzuan, Nuur Haziqah Mohd; Hassan, Nurul Izzaty; Bakar, Muntaz Abu

    2018-04-01

    The building blocks for synthesis of light harvesting antenna which are 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-diphenylporphyrin, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-dihexylporphyrin and 5,10,15,20-tetra-(bromophenyl)porphyrin were synthesized. Borylated porphyrin was synthesized by Suzuki coupling reaction between A2BC bromo-porphyrin and pinacolborane. Whereas 5,10,15,20-tetra-(bromophenyl) porphyrin was synthesized by Lindsey condensation reaction between pyrrole and 4-bromobenzaldehyde. 1H-NMR, 13C-NMR spectroscopy and UV-visible spectroscopy confirmed the successful formation of all compounds.

  14. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Chen, Miao; Liu, Wei; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-03-25

    Nearly 100% triplet harvesting in conventional fluorophor-based organic light-emitting devices is realized through energy transfer from exciplex. The best C545T-doped device using the exciplex host exhibits a maximum current efficiency of 44.0 cd A(-1) , a maximum power efficiency of 46.1 lm W(-1) , and a maximum external quantum efficiency of 14.5%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially...

  16. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.

  17. Fluorescence spectroscopy of conformational changes of single LH2 complexes

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezhkin, V.; Cogdell, R.J.; van Grondelle, R.

    2005-01-01

    We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as

  18. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  19. Identification and characterization of multiple emissive species in aggregated minor antenna complexes

    Czech Academy of Sciences Publication Activity Database

    Wahadoszamen, M.; Belgio, Erica; Rahman, M.A.; Ara, A.M.; Ruban, A.V.; van Grondelle, R.

    2016-01-01

    Roč. 1857, č. 12 (2016), s. 1917-1924 ISSN 0005-2728 Institutional support: RVO:61388971 Keywords : Light harvesting * Minor antenna complexes * Photoprotective energy dissipation Subject RIV: EE - Microbiology, Virology Impact factor: 4.932, year: 2016

  20. Light induced electron transfer reactions of metal complexes

    International Nuclear Information System (INIS)

    Sutin, N.; Creutz, C.

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  1. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants.

    Science.gov (United States)

    Wang, Peng; Grimm, Bernhard

    2016-11-01

    State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Influence of harvest time and frequency on light interception and biomass yield of festulolium and tall fescue cultivated on a peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Andersen, Mathias Neumann

    2016-01-01

    managements,which contributed to similar IPAR (908–919 MJ m−2), total biomass yield (16.4–18.8 Mg DM ha−1yr−1)and RUE (1.80–2.07 g MJ−1) for all managements. Whereas both crops were highly productive under both3C management and 2C management with first harvest after flowering (i.e., 2C-late), the 2C......tIn this study, we report efficiencies of light capture and biomass yield of festulolium and tall fescue cul-tivated on a riparian fen in Denmark under different harvesting managements. Green biomass targetedfor biogas production was harvested either as two cuts (2C) or three cuts (3C) in a year....... Three differenttimings of the first cut in the 2C systems were included as early (2C-early), middle (2C-mid) and late (2C-late) cuts corresponding to pre-heading, inflorescence emergence and flowering stages, respectively. Thefraction of intercepted photosynthetically active radiation (fPAR) was derived...

  3. Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Tian, Lirong; Liu, Zheyi; Wang, Fangjun; Shen, Liangliang; Chen, Jinghua; Chang, Lijing; Zhao, Songhao; Han, Guangye; Wang, Wenda; Kuang, Tingyun; Qin, Xiaochun; Shen, Jian-Ren

    2017-09-01

    Photosystem I (PSI)-light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI-LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI-LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI-LHCI is empty in the red algal PSI-LHCI. The PSI-LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI-LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI-LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI-LHCI complex.

  4. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation.

    Science.gov (United States)

    Molotokaite, Egle; Remelli, William; Casazza, Anna Paola; Zucchelli, Giuseppe; Polli, Dario; Cerullo, Giulio; Santabarbara, Stefano

    2017-10-26

    The dynamics of excited state equilibration and primary photochemical trapping have been investigated in the photosystem I-light harvesting complex I isolated from spinach, by the complementary time-resolved fluorescence and transient absorption approaches. The combined analysis of the experimental data indicates that the excited state decay is described by lifetimes in the ranges of 12-16 ps, 32-36 ps, and 64-77 ps, for both detection methods, whereas faster components, having lifetimes of 550-780 fs and 4.2-5.2 ps, are resolved only by transient absorption. A unified model capable of describing both the fluorescence and the absorption dynamics has been developed. From this model it appears that the majority of excited state equilibration between the bulk of the antenna pigments and the reaction center occurs in less than 2 ps, that the primary charge separated state is populated in ∼4 ps, and that the charge stabilization by electron transfer is completed in ∼70 ps. Energy equilibration dynamics associated with the long wavelength absorbing/emitting forms harbored by the PSI external antenna are also characterized by a time mean lifetime of ∼75 ps, thus overlapping with radical pair charge stabilization reactions. Even in the presence of a kinetic bottleneck for energy equilibration, the excited state dynamics are shown to be principally trap-limited. However, direct excitation of the low energy chlorophyll forms is predicted to lengthen significantly (∼2-folds) the average trapping time.

  5. Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications

    International Nuclear Information System (INIS)

    Shakir, Imran; Ali, Zahid; Kang, Dae Joon

    2014-01-01

    Highlights: • Layer by layer assembly of gold nanoparticles and graphene. • Efficient visible light photocatalysis. • Plasmonic resonances by nanoparticles are utilized for visible light scattering. • Electron scavenging reaction. • Easy handling and recycling. - Abstract: The synthesis of a photocatalyst that is highly active under visible light is one of the most challenging tasks for solar-energy utilization. Here we report a multilayer assembly of gold nanoparticles and graphene that offers dual functionality to efficiently harness visible photons. Firstly, plasmonic resonances by gold nanoparticles are utilized for visible light scattering; secondly the electron scavenging reaction is enhanced by the gold nanoparticles trapping the electrons that are injected from the dye into the graphene. Moreover, the structure is in the form of a thin film, which demonstrates the potential for easy handling and recycling. Precise control over light harvesting and the photocatalytic response is achieved by controlling the number of layers

  6. Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Shakir, Imran, E-mail: shakir@skku.edu [Deanship of scientific research, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Ali, Zahid [BK 21 Physics Research Division, Department of Energy Science, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); National Institute of Lasers and Optronics, Islamabad (Pakistan); Kang, Dae Joon [BK 21 Physics Research Division, Department of Energy Science, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-12-25

    Highlights: • Layer by layer assembly of gold nanoparticles and graphene. • Efficient visible light photocatalysis. • Plasmonic resonances by nanoparticles are utilized for visible light scattering. • Electron scavenging reaction. • Easy handling and recycling. - Abstract: The synthesis of a photocatalyst that is highly active under visible light is one of the most challenging tasks for solar-energy utilization. Here we report a multilayer assembly of gold nanoparticles and graphene that offers dual functionality to efficiently harness visible photons. Firstly, plasmonic resonances by gold nanoparticles are utilized for visible light scattering; secondly the electron scavenging reaction is enhanced by the gold nanoparticles trapping the electrons that are injected from the dye into the graphene. Moreover, the structure is in the form of a thin film, which demonstrates the potential for easy handling and recycling. Precise control over light harvesting and the photocatalytic response is achieved by controlling the number of layers.

  7. Influence of vibronic contribution on light harvesting efficiency of NKX-2587 derivatives with oligothiophene as π-conjugated linker

    Science.gov (United States)

    Yang, Pan; Zhang, Yang; Li, Ming; Shen, Wei; He, Rongxing

    2018-01-01

    Based on the NKX-2587 molecule we designed ten sensitizers with 1-10 thiophene moieties to investigate how the number of thiophene unit in the spacer influences the absorption spectra of sensitizer in dye sensitized solar cells (DSSCs). The parameters of short-circuit current density (Jsc), open circuit voltage (Voc), the light harvesting efficiency (LHE), injection driving force (Δ Ginject), and transferred electron number (nc), were calculated and discussed in detail. Results indicated that the increasing of thiophene units makes for the enhancement of oscillator strengths (f), although the red shift of vertical electronic absorption spectra is small. For the designed sensitizers with 1-5 thiophene units, their ΔGinject and nc raise gradually with the increasing of thiophene number. However, for those sensitizers with 6-10 thiophene units, the ΔGinject and nc decrease continuously with the increasing of thiophene units. In order to study how the oligothiophene as π-conjugated linker affects light harvesting efficiency of DSSCs, the vibrationally resolved electronic spectra of five metal-free NKX-2587 derivatives with 1-5 thiophene units were simulated within the Franck-Condon approximation including the Herzberg-Teller and Duschinsky effects. The present theoretical results provided helpful guidance for understanding the sources of spectral intensities of dye molecules, and a valuable method for rational design of new molecules to improve the energy conversion efficiency (η) of DSSCs.

  8. Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides

    International Nuclear Information System (INIS)

    Sener, Melih; Hsin, Jen; Trabuco, Leonardo G.; Villa, Elizabeth; Qian, Pu; Hunter, C. Neil; Schulten, Klaus

    2009-01-01

    The light-harvesting apparatus of the purple bacterial photosynthetic unit consists of a pool of peripheral light-harvesting complexes that transfer excitation energy to a reaction center (RC) via the surrounding pigment-protein complex LH1. Recent electron microscopy and atomic force microscopy studies have revealed that RC-LH1 units of Rhodobacter (Rba.) sphaeroides form membrane-bending dimeric complexes together with the polypeptide PufX. We present a structural model for these RC-LH1-PufX dimeric complexes constructed using the molecular dynamics flexible fitting method based on an EM density map. The arrangement of the LH1 BChls displays a distortion near the proposed location of the PufX polypeptide. The resulting atomic model for BChl arrays is used to compute the excitonic properties of the dimeric RC-LH1 complex. A comparison is presented between the structural and excitonic features of the S-shaped dimeric BChl array of Rba. sphaeroides and the circular BChl arrangement found in other purple bacteria

  9. Light quantity affects the regulation of cell shape in Fremyella diplosiphon

    Directory of Open Access Journals (Sweden)

    Bagmi ePattanaik

    2012-05-01

    Full Text Available In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL, F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL- absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs, and the shape of cells are short and rounded. Conversely, under green light (GL, F. diplosiphon cells are red in color due to accumulation of GL- absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensity, which is generally enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity, independent of whether it is light of

  10. Influence of intensive light exposure on the complex impedance of polymer light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Fábio Rogério Cury

    2008-06-01

    Full Text Available In this work we investigated the effect of visible radiation on the electrical properties of poly[(2-methoxy-5-hexyloxy-p-phenylenevinylene]- MH-PPV films and light emitting diodes. Complex impedance measurements of (Au or ITO/MH-PPV/(Au or Al samples were carried out at room temperature and exposed to white light. Over the frequency range from 100 mHz to 2 MHz, the electrical results of Au/MH-PPV/Au was dominated by the Cole-Cole approach, where the electrode influence is negligible. However, some additional influence of the interface was observed to occur when Al was used as electrode. These effects were observed under both dark and visible-light illumination conditions. A simple model based on resistor-capacitor parallel circuits was developed to represent the complex impedance of the samples, thereby separating bulk and interface contributions. We observed that the polymer electrical resistivity decreased while the dielectric constant of the polymer and the thickness of the Al/MH-PPV layer were almost constant with increasing light intensity. The decrease of the polymer layer resistance comes from a better charge injection due to a light induced dissociation of positive charge carriers at the electrode.

  11. Control of electro-chemical processes using energy harvesting materials and devices.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Adamaki, Vana; Khanbareh, Hamideh; Bowen, Chris R

    2017-12-11

    Energy harvesting is a topic of intense interest that aims to convert ambient forms of energy such as mechanical motion, light and heat, which are otherwise wasted, into useful energy. In many cases the energy harvester or nanogenerator converts motion, heat or light into electrical energy, which is subsequently rectified and stored within capacitors for applications such as wireless and self-powered sensors or low-power electronics. This review covers the new and emerging area that aims to directly couple energy harvesting materials and devices with electro-chemical systems. The harvesting approaches to be covered include pyroelectric, piezoelectric, triboelectric, flexoelectric, thermoelectric and photovoltaic effects. These are used to influence a variety of electro-chemical systems such as applications related to water splitting, catalysis, corrosion protection, degradation of pollutants, disinfection of bacteria and material synthesis. Comparisons are made between the range harvesting approaches and the modes of operation are described. Future directions for the development of electro-chemical harvesting systems are highlighted and the potential for new applications and hybrid approaches are discussed.

  12. Profiling the transcriptome of Gracilaria changii (Rhodophyta) in response to light deprivation.

    Science.gov (United States)

    Ho, Chai-Ling; Teoh, Seddon; Teo, Swee-Sen; Rahim, Raha Abdul; Phang, Siew-Moi

    2009-01-01

    Light regulates photosynthesis, growth and reproduction, yield and properties of phycocolloids, and starch contents in seaweeds. Despite its importance as an environmental cue that regulates many developmental, physiological, and biochemical processes, the network of genes involved during light deprivation are obscure. In this study, we profiled the transcriptome of Gracilaria changii at two different irradiance levels using a cDNA microarray containing more than 3,000 cDNA probes. Microarray analysis revealed that 93 and 105 genes were up- and down-regulated more than 3-fold under light deprivation, respectively. However, only 50% of the transcripts have significant matches to the nonredundant peptide sequences in the database. The transcripts that accumulated under light deprivation include vanadium chloroperoxidase, thioredoxin, ferredoxin component, and reduced nicotinamide adenine dinucleotide dehydrogenase. Among the genes that were down-regulated under light deprivation were genes encoding light harvesting protein, light harvesting complex I, phycobilisome 7.8 kDa linker polypeptide, low molecular weight early light-inducible protein, and vanadium bromoperoxidase. Our findings also provided important clues to the functions of many unknown sequences that could not be annotated using sequence comparison.

  13. An artificial light-harvesting array constructed from multiple Bodipy dyes.

    Science.gov (United States)

    Ziessel, Raymond; Ulrich, Gilles; Haefele, Alexandre; Harriman, Anthony

    2013-07-31

    An artificial light-harvesting array, comprising 21 discrete chromophores arranged in a rational manner, has been synthesized and characterized fully. The design strategy follows a convergent approach that leads to a molecular-scale funnel, having an effective chromophore concentration of 0.6 M condensed into ca. 55 nm(3), able to direct the excitation energy to a focal point. A cascade of electronic energy-transfer steps occurs from the rim to the focal point, with the rate slowing down as the exciton moves toward its ultimate target. Situated midway along each branch of the V-shaped array, two chromophoric relays differ only slightly in terms of their excitation energies, and this situation facilitates reverse energy transfer. Thus, the excitation energy becomes spread around the array, a situation reminiscent of a giant holding pattern for the photon that can sample many different chromophores before being trapped by the terminal acceptor. At high photon flux under conditions of relatively slow off-load to a device, such as a solar cell, electronic energy transfer encounters one or more barriers that hinder forward progress of the exciton and thereby delays arrival of the second photon. Preliminary studies have addressed the ability of the array to function as a sensitizer for amorphous silicon solar cells.

  14. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    Science.gov (United States)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2

  15. Spectral-Efficiency - Illumination Pareto Front for Energy Harvesting Enabled VLC System

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz

    2017-12-13

    The continuous improvement in optical energy harvesting devices motivates visible light communication (VLC) system developers to utilize such available free energy sources. An outdoor VLC system is considered where an optical base station sends data to multiple users that are capable of harvesting the optical energy. The proposed VLC system serves multiple users using time division multiple access (TDMA) with unequal time and power allocation, which are allocated to improve the system performance. The adopted optical system provides users with illumination and data communication services. The outdoor optical design objective is to maximize the illumination, while the communication design objective is to maximize the spectral efficiency (SE). The design objectives are shown to be conflicting, therefore, a multiobjective optimization problem is formulated to obtain the Pareto front performance curve for the proposed system. To this end, the marginal optimization problems are solved first using low complexity algorithms. Then, based on the proposed algorithms, a low complexity algorithm is developed to obtain an inner bound of the Pareto front for the illumination-SE tradeoff. The inner bound for the Pareto-front is shown to be close to the optimal Pareto-frontier via several simulation scenarios for different system parameters.

  16. Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezkhin, V.; Cogdell, R.J.; van Grondelle, R.

    2004-01-01

    We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as

  17. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants1[OPEN

    Science.gov (United States)

    Wang, Peng

    2016-01-01

    State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos. Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. PMID:27663408

  18. High relative humidity pre-harvest reduces post-harvest proliferation of Salmonella in tomatoes.

    Science.gov (United States)

    Devleesschauwer, Brecht; Marvasi, Massimiliano; Giurcanu, Mihai C; Hochmuth, George J; Speybroeck, Niko; Havelaar, Arie H; Teplitski, Max

    2017-09-01

    Outbreaks of human illness caused by enteric pathogens such as Salmonella are increasingly linked to the consumption of fruits and vegetables. Knowledge on the factors affecting Salmonella proliferation on fresh produce therefore becomes increasingly important to safeguard public health. Previous experiments showed a limited impact of pre-harvest production practices on Salmonella proliferation on tomatoes, but suggested a significant effect of harvest time. We explored the data from two previously published and one unpublished experiment using regression trees, which allowed overcoming the interpretational difficulties of classical statistical models with higher order interactions. We assessed the effect of harvest time by explicitly modeling the climatic conditions at harvest time and by performing confirmatory laboratory experiments. Across all datasets, regression trees confirmed the dominant effect of harvest time on Salmonella proliferation, with humidity-related factors emerging as the most important underlying climatic factors. High relative humidity the week prior to harvest was consistently associated with lower Salmonella proliferation. A controlled lab experiment confirmed that tomatoes containing their native epimicrobiota supported significantly lower Salmonella proliferation when incubated at higher humidity prior to inoculation. The complex interactions between environmental conditions and the native microbiota of the tomato crop remain to be fully understood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light-Harvesting Ability and Photovoltaic Performance

    KAUST Repository

    Qi, Qingbiao; Li, Renzhi; Luo, Jie; Zheng, Bin; Huang, Kuo-Wei; Wang, Peng; Wu, Jishan

    2015-01-01

    Push-pull type porphyrin-based sensitizers have become promising candidates for high-efficiency dye sensitized solar cells (DSCs). It is of importance to understand the fundamental structure-physical property-photovoltaic performance relationships by varying the donor and acceptor moieties. In this work, two new porphyrin-based sensitizers, WW-7 and WW-8, were synthesized and compared with the known sensitizer YD20. All the three dyes have the same porphyrin core and acceptor group (ethynylbenzoic acid) but their donor groups vary from the triphenylamine in YD20 to meso-diphenylaminoanthracene in WW-7 to N-phenyl carbazole in WW-8. Co(II/III)-based DSC device characterizations revealed that WW-7 showed enhanced light harvesting ability in comparison to YD20 with improved incident photon-to-collected electron conversion efficiencies (IPCEs). As a result, WW-7 displayed much higher short circuit current (Jsc: 13.54 mA cm-2) and open-circuit voltage (Voc: 0.829 V), with a power conversion efficiency (η) as high as 7.7%. Under the same conditions, YD20 cell exhibited a power conversion efficiency of 6.6% and the dye WW-8 showed even lower efficiency (η = 4.6%). Detailed physical measurements and theoretic calculations were conducted to understand the difference and reveal how three different donor structures affect their molecular orbital profile, light-harvesting ability, energy level alignment, and eventually the photovoltaic performance.

  20. Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light-Harvesting Ability and Photovoltaic Performance

    KAUST Repository

    Qi, Qingbiao

    2015-06-23

    Push-pull type porphyrin-based sensitizers have become promising candidates for high-efficiency dye sensitized solar cells (DSCs). It is of importance to understand the fundamental structure-physical property-photovoltaic performance relationships by varying the donor and acceptor moieties. In this work, two new porphyrin-based sensitizers, WW-7 and WW-8, were synthesized and compared with the known sensitizer YD20. All the three dyes have the same porphyrin core and acceptor group (ethynylbenzoic acid) but their donor groups vary from the triphenylamine in YD20 to meso-diphenylaminoanthracene in WW-7 to N-phenyl carbazole in WW-8. Co(II/III)-based DSC device characterizations revealed that WW-7 showed enhanced light harvesting ability in comparison to YD20 with improved incident photon-to-collected electron conversion efficiencies (IPCEs). As a result, WW-7 displayed much higher short circuit current (Jsc: 13.54 mA cm-2) and open-circuit voltage (Voc: 0.829 V), with a power conversion efficiency (η) as high as 7.7%. Under the same conditions, YD20 cell exhibited a power conversion efficiency of 6.6% and the dye WW-8 showed even lower efficiency (η = 4.6%). Detailed physical measurements and theoretic calculations were conducted to understand the difference and reveal how three different donor structures affect their molecular orbital profile, light-harvesting ability, energy level alignment, and eventually the photovoltaic performance.

  1. Regional impacts of iron-light colimitation in a global biogeochemical model

    Science.gov (United States)

    Galbraith, E. D.; Gnanadesikan, A.; Dunne, J. P.; Hiscock, M. R.

    2010-03-01

    Laboratory and field studies have revealed that iron has multiple roles in phytoplankton physiology, with particular importance for light-harvesting cellular machinery. However, although iron-limitation is explicitly included in numerous biogeochemical/ecosystem models, its implementation varies, and its effect on the efficiency of light harvesting is often ignored. Given the complexity of the ocean environment, it is difficult to predict the consequences of applying different iron limitation schemes. Here we explore the interaction of iron and nutrient cycles in an ocean general circulation model using a new, streamlined model of ocean biogeochemistry. Building on previously published parameterizations of photoadaptation and export production, the Biogeochemistry with Light Iron Nutrients and Gasses (BLING) model is constructed with only four explicit tracers but including macronutrient and micronutrient limitation, light limitation, and an implicit treatment of community structure. The structural simplicity of this computationally-inexpensive model allows us to clearly isolate the global effect that iron availability has on maximum light-saturated photosynthesis rates vs. the effect iron has on photosynthetic efficiency. We find that the effect on light-saturated photosynthesis rates is dominant, negating the importance of photosynthetic efficiency in most regions, especially the cold waters of the Southern Ocean. The primary exceptions to this occur in iron-rich regions of the Northern Hemisphere, where high light-saturated photosynthesis rates allow photosynthetic efficiency to play a more important role. In other words, the ability to efficiently harvest photons has little effect in regions where light-saturated growth rates are low. Additionally, we speculate that the phytoplankton cells dominating iron-limited regions tend to have relatively high photosynthetic efficiency, due to reduced packaging effects. If this speculation is correct, it would imply that

  2. Regional impacts of iron-light colimitation in a global biogeochemical model

    Directory of Open Access Journals (Sweden)

    E. D. Galbraith

    2010-03-01

    Full Text Available Laboratory and field studies have revealed that iron has multiple roles in phytoplankton physiology, with particular importance for light-harvesting cellular machinery. However, although iron-limitation is explicitly included in numerous biogeochemical/ecosystem models, its implementation varies, and its effect on the efficiency of light harvesting is often ignored. Given the complexity of the ocean environment, it is difficult to predict the consequences of applying different iron limitation schemes. Here we explore the interaction of iron and nutrient cycles in an ocean general circulation model using a new, streamlined model of ocean biogeochemistry. Building on previously published parameterizations of photoadaptation and export production, the Biogeochemistry with Light Iron Nutrients and Gasses (BLING model is constructed with only four explicit tracers but including macronutrient and micronutrient limitation, light limitation, and an implicit treatment of community structure. The structural simplicity of this computationally-inexpensive model allows us to clearly isolate the global effect that iron availability has on maximum light-saturated photosynthesis rates vs. the effect iron has on photosynthetic efficiency. We find that the effect on light-saturated photosynthesis rates is dominant, negating the importance of photosynthetic efficiency in most regions, especially the cold waters of the Southern Ocean. The primary exceptions to this occur in iron-rich regions of the Northern Hemisphere, where high light-saturated photosynthesis rates allow photosynthetic efficiency to play a more important role. In other words, the ability to efficiently harvest photons has little effect in regions where light-saturated growth rates are low. Additionally, we speculate that the phytoplankton cells dominating iron-limited regions tend to have relatively high photosynthetic efficiency, due to reduced packaging effects. If this speculation is correct

  3. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1 associated with agronomic traits in barley.

    Directory of Open Access Journals (Sweden)

    Yanshi Xia

    Full Text Available Light-harvesting chlorophyll a/b-binding protein (LHCP is one of the most abundant chloroplast proteins in plants. Its main function is to collect and transfer light energy to photosynthetic reaction centers. However, the roles of different LHCPs in light-harvesting antenna systems remain obscure. Exploration of nucleotide variation in the genes encoding LHCP can facilitate a better understanding of the functions of LHCP. In this study, nucleotide variations in Lhcb1, a LHCP gene in barley, were investigated across 292 barley accessions collected from 35 different countries using EcoTILLING technology, a variation of the Targeting Induced Local Lesions In Genomes (TILLING. A total of 23 nucleotide variations were detected including three insert/deletions (indels and 20 single nucleotide polymorphisms (SNPs. Among them, 17 SNPs were in the coding region with nine missense changes. Two SNPs with missense changes are predicted to be deleterious to protein function. Seventeen SNP formed 31 distinguishable haplotypes in the barley collection. The levels of nucleotide diversity in the Lhcb1 locus differed markedly with geographic origins and species of accessions. The accessions from Middle East Asia exhibited the highest nucleotide and haplotype diversity. H. spontaneum showed greater nucleotide diversity than H. vulgare. Five SNPs in Lhcb1 were significantly associated with at least one of the six agronomic traits evaluated, namely plant height, spike length, number of grains per spike, thousand grain weight, flag leaf area and leaf color, and these SNPs may be used as potential markers for improvement of these barley traits.

  4. Applying New Technologies to Transform Blueberry Harvesting

    Directory of Open Access Journals (Sweden)

    Fumiomi Takeda

    2017-05-01

    Full Text Available The growth of the blueberry industry in the past three decades has been remarkably robust. However, a labor shortage for hand harvesting, increasingly higher labor costs, and low harvest efficiencies are becoming bottlenecks for sustainable development of the fresh market blueberry production. In this study, we evaluated semi-mechanical harvesting systems consisting of a harvest-aid platform with soft fruit catching surfaces that collected the fruit detached by portable, hand-held, pneumatic shakers. The softer fruit catching surfaces were not glued to the hard sub-surfaces of the harvest-aid platform, but suspended over them. Also, the ergonomic aspect of operating powered harvesting equipment was determined. The pneumatic shakers removed 3.5 to 15 times more fruit (g/min than by hand. Soft fruit catching surfaces reduced impact force and bruise damage. Fruit firmness was higher in fruit harvested by hand compared to that by pneumatic shakers in some cultivars. The bruise area was less than 8% in fruit harvested by hand and with semi-mechanical harvesting system. The percentage of blue, packable fruit harvested by pneumatic shakers comprised as much as 90% of the total, but less than that of hand-harvested fruit. The ergonomic analysis by electromyography showed that muscle strain in the back, shoulders, and forearms was low in workers operating the light-weight, pneumatic shakers that were tethered to the platform with a tool balancer. The new harvesting method can reduce the labor requirement to about 100 hour/hectare/year and help to mitigate the rising labor cost and shortage of workers for harvesting fresh-market quality blueberries.

  5. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer

    2017-02-09

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different artificial light sources and sunlight entering the room. The relay receives data packet over a VLC channel and uses the harvested energy to retransmit it to a mobile terminal over an RF channel. We develop a novel statistical model for the harvested electrical power and analyze the probability of data packet loss. We define a system design parameter (α ∈ [0, 1)) that controls the time dedicated for excess energy harvesting and data packet retransmission. It was found that the parameter has an optimal value which minimizes the packet loss probability. Further more, this optimal value is independent of the RF channel path loss. However, optimal showed inverse dependence on the packet size.

  6. Engineering Designed Proteins for Light Capture, Energy Transfer, and Emissive Sensing In Vivo

    Science.gov (United States)

    Mancini, Joshua A.

    Proteins that are used for photosynthetic light harvesting and biological signaling are critical to life. These types of proteins act as scaffolds that hold small, sometimes metal-containing organic molecules in precise locations for light absorption and successive use. For signaling proteins, this energy can be used to induce a photoisomerization of the small molecule that can turn on or off a signaling cascade that controls the physiology of an organism. Alternatively, photosynthetic light-harvesting proteins funnel this energy in a directional manner towards a charge separating catalytic component that can change this light energy into chemical energy. The protein environment also serves to tune the photophysical properties of the small molecules. This is seen extensively with the linear tetrapyrroles that are used in both photosynthetic and signaling proteins. Many efforts have been made to harness these natural proteins for societal use, including improving photophysical properties and interfacing capabilities with manmade catalytic components. Several methods of achieving improvement have entailed structurally guided mutation and directed evolution. However, these methods all have their limitations due to the inherent complexity and fragility of the natural proteins. This work presents an alternative more robust method to natural proteins. My thesis states: that man-made proteins, known as maquettes, employing basic rules of protein folding, can be designed to become light harvesting and signaling proteins that can be assembled fully in vivo providing an alternative, robust, and versatile platform for meeting the diverse array of societal "green chemistry" and biomedical needs. This in vivo assembly is carried out by interacting with cyanobacterial protein and pigment machinery, both as stand-alone units and as protein fusions with natural antenna complexes. Additionally, this work offers insight for fast and tight binding of circular and linear tetrapyrroles

  7. High School Harvest: Combining Food Service Training and Institutional Procurement

    Science.gov (United States)

    Conner, David; Estrin, Hans; Becot, Florence

    2014-01-01

    This article discusses High School Harvest (HSH), an Extension educator-led project in five Vermont schools to provide students with job training and food system education and to provide lightly processed produce to school lunch programs. One hundred and twenty-one students participated, logging 8,752 hours growing, harvesting, and processing…

  8. Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides

    International Nuclear Information System (INIS)

    Hunter, C.N.; Pennoyer, J.D.; Niederman, R.A.

    1982-01-01

    The B875 and B800-850 light-harvesting pigment-protein complexes of Rhodopseudomonas sphaeroides are characterized further by lithium dodecyl sulfate/polyacrylamide gel electrophoresis at 4 degrees C. Bacteriochlorophyll a was shown in reconstruction studies to remain complexed with its respective binding proteins during this procedure. From distributions in these gels, a quantitative description for the arrangement of the complexes is proposed. Assembly of the complexes was examined in delta-aminolevulinate-requiring mutant H-5 after a shift from high- to low-light intensity. After 10 h of delta-[ 3 H]aminolevulinate labeling, the specific radioactivity of bacteriochlorophyll in a fraction containing putative membrane invaginations reached the maximal level, while that of the mature photosynthetic membrane was at only one-third this level. This suggests that membrane invaginations are sites of preferential bacteriochlorophyll synthesis in which completed pigment-proteins exist transiently. Analysis of the 3 H distribution after electrophoretic separation further suggests that photosynthetic membranes grow mainly by addition of B800-850 to preformed membrane consisting largely of B875 and photochemical reaction centers. These results corroborate the above model for the structural organization of the light-harvesting system and indicate that the structurally and functionally discrete B800-850 pool is not completely assembled until all B875 sites for B800-850 interactions are occupied

  9. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  10. N -annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells

    KAUST Repository

    Luo, Jie; Xu, Mingfei; Li, Renzhi; Huang, Kuo-Wei; Jiang, Changyun; Qi, Qingbiao; Zeng, Wangdong; Zhang, Jie; Chi, Chunyan; Wang, Peng; Wu, Jishan

    2014-01-01

    Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize

  11. Impulse-Excited Energy Harvester based on Potassium-Ion- Electret

    Science.gov (United States)

    Ashizawa, H.; Mitsuya, H.; Ishibashi, K.; Ishikawa, T.; Fujita, H.; Hashiguchi, G.; Toshiyoshi, H.

    2015-12-01

    We have developed an energy harvester that is specifically desired for impulse acceleration of infrastructure vibrations such as sudden motion at railway bridges. The energy harvester based on potassium-ion-electret on the sidewalls of 1.8- μm-gap comb electrodes generated a 64 μAp-p current during low impulse acceleration, which was large enough to light a green LED.

  12. Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors.

    Science.gov (United States)

    Song, Li; Hu, Yongsheng; Liu, Zheqin; Lv, Ying; Guo, Xiaoyang; Liu, Xingyuan

    2017-01-25

    The utilization of triplet excitons plays a key role in obtaining high emission efficiency for organic electroluminescent devices. However, to date, only phosphorescent materials have been implemented to harvest the triplet excitons in the organic light-emitting field effect transistors (OLEFETs). In this work, we report the first incorporation of exciplex thermally activated delayed fluorescence (TADF) emitters in heterostructured OLEFETs to harvest the triplet excitons. By developing a new kind of exciplex TADF emitter constituted by m-MTDATA (4,4',4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) as the donor and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene) as the acceptor, an exciton utilization efficiency of 74.3% for the devices was achieved. It is found that the injection barrier between hole transport layer and emission layer as well as the ratio between donor and acceptor would influence the external quantum efficiency (EQE) significantly. Devices with a maximum EQE of 3.76% which is far exceeding the reported results for devices with conventional fluorescent emitters were successfully demonstrated. Moreover, the EQE at high brightness even outperformed the result for organic light-emitting diode based on the same emitter. Our results demonstrate that the exciplex TADF emitters can be promising candidates to develop OLEFETs with high performance.

  13. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    Science.gov (United States)

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dynamics simulation of a π-conjugated light-harvesting dendrimer II: phenylene-based dendrimer (phDG2)

    International Nuclear Information System (INIS)

    Kodama, Yasunobu; Ishii, Soh; Ohno, Kaoru

    2009-01-01

    We investigate the light-harvesting property of a π-conjugated dendrimer, phenylene-based dendrimer (phDG2), by carrying out a semi-classical Ehrenfest dynamics simulation based on the time-dependent density functional theory. Similar to our previous study of star-shaped stilbenoid phthalocyanine (SSS1Pc), phDG2 shows electron and hole transfer from the periphery to the core through a π-conjugated network when an electron is selectively excited in the periphery. The one-way electron and hole transfer occurs more easily in dendrimers with planar structure than in those with steric hindrance because π-conjugation is well maintained in the planar structure. The present results explain recent experiments by Akai et al (2005 J. Lumin. 112 449).

  15. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  16. Extending the NIF DISCO framework to automate complex workflow: coordinating the harvest and integration of data from diverse neuroscience information resources.

    Science.gov (United States)

    Marenco, Luis N; Wang, Rixin; Bandrowski, Anita E; Grethe, Jeffrey S; Shepherd, Gordon M; Miller, Perry L

    2014-01-01

    This paper describes how DISCO, the data aggregator that supports the Neuroscience Information Framework (NIF), has been extended to play a central role in automating the complex workflow required to support and coordinate the NIF's data integration capabilities. The NIF is an NIH Neuroscience Blueprint initiative designed to help researchers access the wealth of data related to the neurosciences available via the Internet. A central component is the NIF Federation, a searchable database that currently contains data from 231 data and information resources regularly harvested, updated, and warehoused in the DISCO system. In the past several years, DISCO has greatly extended its functionality and has evolved to play a central role in automating the complex, ongoing process of harvesting, validating, integrating, and displaying neuroscience data from a growing set of participating resources. This paper provides an overview of DISCO's current capabilities and discusses a number of the challenges and future directions related to the process of coordinating the integration of neuroscience data within the NIF Federation.

  17. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts.

    Science.gov (United States)

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-06-26

    Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV). Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVA L , UVA H ) or UVB (UVB L , UVB H ) with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m², respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v / v ) extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVB H treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVA L radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%), 4- O -caffeoylquinic acid (~42%), gallic acid derivative (~48%) and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%). Increases in sinapoyl malate (~12%), gallotannic acid (~48%) and 5-sinapoyl-quinic acid (~121%) were observed with UVB H Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.

  18. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Melissa Moreira-Rodríguez

    2017-06-01

    Full Text Available Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV. Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVAL, UVAH or UVB (UVBL, UVBH with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m2, respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v/v extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVBH treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVAL radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%, 4-O-caffeoylquinic acid (~42%, gallic acid derivative (~48% and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%. Increases in sinapoyl malate (~12%, gallotannic acid (~48% and 5-sinapoyl-quinic acid (~121% were observed with UVBH Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.

  19. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  20. Complexes of light lanthanides with 2,4-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    WIESLAWA FERENC

    2000-01-01

    Full Text Available The complexes of light lanthanides with 2,4-dimethoxybenzoic acid of the formula: Ln(C9H9O43·nH2O where Ln = La(III, Ce(III, Pr(III, Nd(III, Sm(III, Eu(III, Gd(IIII, and n = 3 for La(III, Gd(III, n = 2 for Sm(III, Eu(III, and n = 0 for Ce(III, Pr(III, Nd(III have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric studies and X-ray diffraction measurements. The complexes have colours typical for Ln3+ ions (La, Ce, Eu, Gd-white, Sm-cream, Pr-green, Nd-violet. The carboxylate group in these complexes is a symmetrical, bidentate, chelating ligand. They are crystalline compounds characterized by various symmetry. On heating in air to 1273 K the 2,4-dimethoxybenzoates of the light lanthanides decompose in various ways. The hydrated complexes decompose in two or three steps while those of anhydrous ones only in one or two. The trihydrate of lanthanum 2,4-dimethoxybenzoate first dehydrates to form the anhydrous salt, which then decomposes to La2O3via the intermediate formation of La2O2CO3. The hydrates of Sm(III, Eu(III, Gd(III decompose in two stages. First, they dehydrate forming the anhydrous salts, which then decompose directly to the oxides of the respective metals. The anhydrous complexes of Ce(III, Pr(III decompose in one step, while that of Nd(III in two. The solubilities of the 2,4-dimethoxybenzoates of the light lanthanides in water and ethanol at 293 K are in the order of: 10-3 mol dm-3 and 10-4-10-3 mol dm-3, respectively.

  1. Application of spectrally resolved fluorescence induction to study light-induced nonphotochemical quenching in algae

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Radek

    2018-01-01

    Roč. 56, č. 1 (2018), s. 132-138 ISSN 0300-3604 R&D Projects: GA MŠk(CZ) LO1416; GA ČR(CZ) GA16-10088S Institutional support: RVO:61388971 Keywords : fluorescence parameters * light-harvesting complex * photoprotection Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.507, year: 2016

  2. Porphyrin-based polymeric nanostructures for light harvesting applications: Ab initio calculations

    Science.gov (United States)

    Orellana, Walter

    The capture and conversion of solar energy into electricity is one of the most important challenges to the sustainable development of mankind. Among the large variety of materials available for this purpose, porphyrins concentrate great attention due to their well-known absorption properties in the visible range. However, extended materials like polymers with similar absorption properties are highly desirable. In this work, we investigate the stability, electronic and optical properties of polymeric nanostructures based on free-base porphyrins and phthalocyanines (H2P, H2Pc), within the framework of the time-dependent density functional perturbation theory. The aim of this work is the stability, electronic, and optical characterization of polymeric sheets and nanotubes obtained from H2P and H2Pc monomers. Our results show that H2P and H2Pc sheets exhibit absorption bands between 350 and 400 nm, slightly different that the isolated molecules. However, the H2P and H2Pc nanotubes exhibit a wide absorption in the visible and near-UV range, with larger peaks at 600 and 700 nm, respectively, suggesting good characteristic for light harvesting. The stability and absorption properties of similar structures obtained from ZnP and ZnPc molecules is also discussed. Departamento de Ciencias Físicas, República 220, 037-0134 Santiago, Chile.

  3. Triboelectric effect in energy harvesting

    Science.gov (United States)

    Logothetis, I.; Vassiliadis, S.; Siores, E.

    2017-10-01

    With the development of wearable technology, much research has been undertaken in the field of flexible and stretchable electronics for use in interactive attire. The challenging problem wearable technology faces is the ability to provide energy whilst keeping the endproduct comfortable, light, ergonomic and nonintrusive. Energy harvesting, or energy scavenging as it is also known, is the process by which ambient energy is captured and converted into electric energy. The triboelectric effect converts mechanical energy into electrical energy based on the coupling effect of triboelectrification and electrostatic induction and is utilized as the basis for triboelectric generators (TEG). TEG’s are promising for energy harvesting due their high output power and efficiency in conjunction with simple and economical production. Due to the wide availability of materials and ease of integration, in order to produce the triboelectric effect such functional materials are effective for wearable energy harvesting systems. Flexible TEG’s can be built and embedded into attire, although a thorough understanding of the underlying principle of how TEG’s operate needs to be comprehended for the development and in incorporation in smart technical textiles. This paper presents results associated with TEG’S and discusses their suitability for energy harvesting in textiles structures.

  4. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu

    2012-12-06

    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  5. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu; Yabiku, Yu; Habuchi, Satoshi; Tsukatani, Yusuke; Bryant, Donald A.; Vá cha, Martin

    2012-01-01

    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  6. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    Science.gov (United States)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm-3 and 378.79 μW cm-3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  7. Photosynthetic complex LH2 – Absorption and steady state fluorescence spectra

    International Nuclear Information System (INIS)

    Zapletal, David; Heřman, Pavel

    2014-01-01

    Nowadays, much effort is devoted to the study of photosynthesis which could be the basis for an ideal energy source in the future. To be able to create such an energy source – an artificial photosynthetic complex, the first step is a detailed understanding of the function of photosynthetic complexes in living organisms. Photosynthesis starts with the absorption of a solar photon by one of the LH (light-harvesting) pigment–protein complexes and transferring the excitation energy to the reaction center where a charge separation is initiated. The geometric structure of some LH complexes is known in great detail, e.g. for the LH2 complexes of purple bacteria. For understanding of photosynthesis first stage efficiency, it is necessary to study especially optical properties of LH complexes. In this paper we present simulated absorption and steady-state fluorescence spectra for ring molecular system within full Hamiltonian model. Such system can model bacteriochlorophyll ring of peripheral light-harvesting complex LH2 from purple bacterium Rhodopseudomonas acidophila (Rhodoblastus acidophilus). Dynamic disorder (coupling with phonon bath) simultaneously with uncorrelated static disorder (transfer integral fluctuations) is used in our present simulations. We compare and discuss our new results with our previously published ones and of course with experimental data. - Highlights: • We model absorption and steady state fluorescence spectra for B850 ring from LH2. • Fluctuations of environment is modelled by static and dynamic disorder. • Full Hamiltonian model is compared with the nearest neighbour approximation one. • Simulated fluorescence spectrum is compared with experimental data

  8. General lighting requirements for photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, D.R. [Univ. of Dayton, OH (United States)

    1994-12-31

    A review of the general lighting requirements for photosynthesis reveals that four aspects of light are important: irradiance, quality, timing and duration. These properties of light affect photosynthesis by providing the energy that drives carbon assimilation as well as by exerting control over physiology, structure and morphology of plants. Irradiance, expressed as energy flux, W m{sup -2}, or photon irradiance, {mu}mol m{sup -2} s{sup -1}, determines the rate at which energy is being delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition of light, is important because photons differ in their probability of being absorbed by the light harvesting complex and hence their ability to drive carbon assimilation. Also the various light receptors for light-mediated regulation of plant form and physiology have characteristic absorption spectra and hence photons differ in their effectiveness for eliciting responses. Duration is important because both carbon assimilation and regulation are affected by the total energy or integrated irradiance delivered during a given period. Many processes associated with photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important because the effectiveness of light in the regulation of plant processes varies with the phase of the diumal cycle as determined by the plant`s time-measuring mechanisms.

  9. Harvest: a web-based biomedical data discovery and reporting application development platform.

    Science.gov (United States)

    Italia, Michael J; Pennington, Jeffrey W; Ruth, Byron; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; Miller, Jeffrey; White, Peter S

    2013-01-01

    Biomedical researchers share a common challenge of making complex data understandable and accessible. This need is increasingly acute as investigators seek opportunities for discovery amidst an exponential growth in the volume and complexity of laboratory and clinical data. To address this need, we developed Harvest, an open source framework that provides a set of modular components to aid the rapid development and deployment of custom data discovery software applications. Harvest incorporates visual representations of multidimensional data types in an intuitive, web-based interface that promotes a real-time, iterative approach to exploring complex clinical and experimental data. The Harvest architecture capitalizes on standards-based, open source technologies to address multiple functional needs critical to a research and development environment, including domain-specific data modeling, abstraction of complex data models, and a customizable web client.

  10. Self-assembly of natural light-harvesting bacteriochlorophylls of green sulfur photosynthetic bacteria in silicate capsules as stable models of chlorosomes.

    Science.gov (United States)

    Saga, Yoshitaka; Akai, Sho; Miyatake, Tomohiro; Tamiaki, Hitoshi

    2006-01-01

    Naturally occurring bacteriochlorophyll(BChl)s-c, -d, and -e from green sulfur photosynthetic bacteria were self-assembled in an aqueous solution in the presence of octadecyltriethoxysilane and tetraethoxysilane, followed by polycondensation of the alkoxysilanes by incubation for 50 h at 25 degrees C. The resulting BChl self-assemblies in silicate capsules exhibited visible absorption and circular dichroism spectra similar to the corresponding natural light-harvesting systems (chlorosomes) of green sulfur bacteria. Dynamic light scattering measurements indicated that the silicate capsules had an average hydrodynamic diameter of several hundred nanometers. BChl self-aggregates in silicate capsules were significantly stable to a nonionic surfactant Triton X-100, which was apt to decompose the BChl aggregates to their monomeric form, compared with conventional micelle systems. BChls in silicate capsules were more tolerant to demetalation of the central magnesium under acidic conditions than the natural systems.

  11. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    Directory of Open Access Journals (Sweden)

    Zaki S Seddigi

    Full Text Available In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  12. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    Science.gov (United States)

    Seddigi, Zaki S; Gondal, Mohammed A; Baig, Umair; Ahmed, Saleh A; Abdulaziz, M A; Danish, Ekram Y; Khaled, Mazen M; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  13. Enhanced light harvesting of TiO{sub 2}/La{sub 0.95}Tb{sub 0.05}PO{sub 4} photoanodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongna; He, Benlin, E-mail: blhe@ouc.edu.cn; Tang, Qunwei, E-mail: tangqunwei@ouc.edu.cn

    2016-04-15

    With an aim of enhancing light harvesting for dye adsorption and therefore photovoltaic performances of dye-sensitized solar cells (DSSCs), we present here an employment of La{sub 0.95}Tb{sub 0.05}PO{sub 4} incorporated TiO{sub 2} nanocrystallites as photoanodes. The preliminary results demonstrate that the dye absorption and therefore electron generation have been markedly enhanced, arising from the conversion of ultraviolet to visible light by La{sub 0.95}Tb{sub 0.05}PO{sub 4}. The crystal structure and light harvesting performances of photoanodes are optimized by adjusting La{sub 0.95}Tb{sub 0.05}PO{sub 4} dosage. The power conversion efficiency is enhanced from 6.52% for pristine TiO{sub 2} based DSSC to 7.27% for the device employing TiO{sub 2}/0.5 wt% La{sub 0.95}Tb{sub 0.05}PO{sub 4}, yielding an efficiency enhancement by 11.35%. This study provides a new strategy for the fabrication of highly efficient DSSCs. - Highlights: • TiO{sub 2}/La{sub 0.95}Tb{sub 0.05}PO{sub 4} nanocrystallites are fabricated by a facile hydrothermal method. • The light intensity and therefore dye excitation have been markedly enhanced. • A conversion efficiency of 7.27% for the DSSC employing TiO{sub 2}/0.5 wt% La{sub 0.95}Tb{sub 0.05}PO{sub 4} is obtained. • The strategy provides new opportunities for efficient DSSCs.

  14. Dynamic Voltage-Frequency and Workload Joint Scaling Power Management for Energy Harvesting Multi-Core WSN Node SoC

    Directory of Open Access Journals (Sweden)

    Xiangyu Li

    2017-02-01

    Full Text Available This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430, and that it can make a system do more valuable works and make more than 99.9% use of the power budget.

  15. Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy

    KAUST Repository

    Hansen, Benjamin J.

    2010-07-27

    Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor. © 2010 American Chemical Society.

  16. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO{sub 2} spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Lin, Yuan; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen [Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Jia, Jianguang [Department of Chemistry, School of Science, Beijing University of Chemical Technology, Beijing 100029 (China)

    2008-07-15

    Cauliflower-like TiO{sub 2} rough spheres, which are about 200 nm large, have greatly enhanced light harvesting efficiency and energy conversion efficiency of dye-sensitized solar cells (DSC), due to their high light scattering effect and large BET surface area (80.7 m{sup 2} g{sup -1}) even after calcinations at 450 C for 30 min. The large size TiO{sub 2} rough and smooth spheres, produced at different initial temperatures by hydrolysis of Ti(OBu){sub 4} with P105 (EO{sub 37}PO{sub 56}EO{sub 37}) or F68 (EO{sub 78}PO{sub 30}EO{sub 78}) tri-block copolymer as structural agents, have nearly the same diameter of {proportional_to}275 nm and strong light scattering effects in the wavelength of 400-750 nm. However, rough spheres have even higher light scattering effect and larger BET surface area than smooth spheres for the roughness of the surface. By adding 25 wt.% large TiO{sub 2} spheres into the over-layer of TiO{sub 2} film composed of {proportional_to}20 nm TiO{sub 2} particles as light scattering centers, the energy conversion efficiency of the film containing rough spheres reaches 7.36%, much larger than that of smooth spheres (6.25%). From another point of view, the TiO{sub 2} rough spheres may have the satisfying ability in other fields of application such as photo-catalysis, drug carriers and so on. (author)

  17. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    Science.gov (United States)

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  18. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: a Redfield theory approach

    NARCIS (Netherlands)

    Novoderezhkin, V.; Salverda, J.M.; Amerongen, van H.; Grondelle, van R.

    2003-01-01

    We propose an exciton model for the peripheral plant light-harvesting complex LHCII that allows us to explain the absorption (OD) and linear dichroism (LD) spectra, the superradiance (SR), the pump-probe transient absorption (TA), the three-pulse photon echo peak shift (3PEPS), and transient grating

  19. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: A redfield theory approach

    NARCIS (Netherlands)

    Novoderezhkin, V.; Salverda, J.M.; van Amerongen, H.; van Grondelle, R.

    2003-01-01

    We propose an exciton model for the peripheral plant light-harvesting complex LHCII that allows us to explain the absorption (OD) and linear dichroism (LD) spectra, the superradiance (SR), the pump-probe transient absorption (TA), the three-pulse photon echo peak shift (3PEPS), and transient grating

  20. Illumination, data transmission, and energy harvesting: the threefold advantage of VLC.

    Science.gov (United States)

    Sandalidis, Harilaos G; Vavoulas, Alexander; Tsiftsis, Theodoros A; Vaiopoulos, Nicholas

    2017-04-20

    Visible light communication (VLC) is a promising technology that meets illumination and information transmission requirements in an indoor environment. Because light waves convey energy, a VLC link may exploit that fact for energy harvesting purposes. In this context, a single light emitting diode lamp located at a close distance over a tablet or laptop PC can potentially offer simultaneous lighting, Internet access, and battery recharging without cables. The present study introduces this threefold role of VLC systems by properly adapting some energy harvesting receiver architectures recently launched for usage in RF communications. The rate-energy trade-off for these architectures is revealed in order to maximize the efficiency of simultaneous energy and information reception, by elaborating on indicative numerical results. Furthermore, the performance in terms of the bit-error rate for pulse amplitude modulated signals is investigated. The results obtained offer some useful insights into the effective optical receiver implementation from the aspect of information theory.

  1. Evaluation of mechanical harvesting in viticulture

    Directory of Open Access Journals (Sweden)

    Pavel Zemánek

    2005-01-01

    Full Text Available Harvesting by mashine was in CZ tested at bygones century (70th. Tests rekord were bad (high share of leaf, detritus of concrete column, losses of berries.Lasting fall of worker in agriculture and vehement growth floricultural surfaces – vineyard (somewhere 19.000 hectare, requires complex rationalization and mechanization of all works stages which needs needlework. Harvisting in viniculture needs perhaps 30% of all working time (200–250 o‘clock on 1 hectare. Incidence thereof begun most of bigger producers in our country with mechanical harvisting. Technical performance of this machines turn up. There are not available data about costs and their work quality.The benefit deal with classification of mechanical harvesting (juice adhering, berries lost, damage of vineyard transaction by the help of semi-trailer and self-propelled harvesters.

  2. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Directory of Open Access Journals (Sweden)

    Junfei Gu

    2017-06-01

    Full Text Available Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS. Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl and a normally pigmented control (Z802 were subjected to high (HL and low light (LL. Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC binding proteins, electron transport rates (ETR, photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size.

  3. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Science.gov (United States)

    Gu, Junfei; Zhou, Zhenxiang; Li, Zhikang; Chen, Ying; Wang, Zhiqin; Zhang, Hao; Yang, Jianchang

    2017-01-01

    Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS). Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size. PMID:28676818

  4. Complex dynamics of a stochastic discrete modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting

    Directory of Open Access Journals (Sweden)

    A. Elhassanein

    2014-06-01

    Full Text Available This paper introduced a stochastic discretized version of the modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting. The dynamical behavior of the proposed model was investigated. The existence and stability of the equilibria of the skeleton were studied. Numerical simulations were employed to show the model's complex dynamics by means of the largest Lyapunov exponents, bifurcations, time series diagrams and phase portraits. The effects of noise intensity on its dynamics and the intermittency phenomenon were also discussed via simulation.

  5. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  6. Wind energy harvesting with a piezoelectric harvester

    International Nuclear Information System (INIS)

    Wu, Nan; Wang, Quan; Xie, Xiangdong

    2013-01-01

    An energy harvester comprising a cantilever attached to piezoelectric patches and a proof mass is developed for wind energy harvesting, from a cross wind-induced vibration of the cantilever, by the electromechanical coupling effect of piezoelectric materials. The vibration of the cantilever under the cross wind is induced by the air pressure owing to a vortex shedding phenomenon that occurs on the leeward side of the cantilever. To describe the energy harvesting process, a theoretical model considering the cross wind-induced vibration on the piezoelectric coupled cantilever energy harvester is developed, to calculate the charge and the voltage from the harvester. The influences of the length and location of the piezoelectric patches as well as the proof mass on the generated electric power are investigated. Results show that the total generated electric power can be as high as 2 W when the resonant frequency of the cantilever harvester is close to the vortex shedding frequency. Moreover, a value of total generated electric power up to 1.02 W can be practically realized for a cross wind with a variable wind velocity of 9–10 m s −1 by a harvester with a length of 1.2 m. This research facilitates an effective and compact wind energy harvesting device. (paper)

  7. Study of color parameters of light exposed and light exposed wool fabrics dyed with 1:1 chromium (III) based complex dyes

    International Nuclear Information System (INIS)

    Kausar, N.; Ahmad, M.A.; Wahab, M.A.

    2009-01-01

    Derivatives of a-amino benzoic acid (anthranilic acid) were synthesized using 1-naphthol-3,6-disulfonic acid, 1-Naphthol-8 amino-3, 6-di-sulfonic acid; 1-naphthol-3-sulfonic acid, 6-methylamino-1-naphthol-3-sulfonic acid or 1-naphthol-3-sulfonic acid, 6-phenylamino-l-naphthol-3-sulfonic acid as a coupling component. These derivatives were used to synthesize chromium (Ill) complexes. After isolation, these complexes were applied on pure wool fabric by exhaust process to evaluate hue, wash fastness and light fastness properties. The complexes delivered a change in color equivalent to gray scale step 3/5 to 4/5 for wash fastness test. During the study of light fastness, it was monitored that the hue of dyed fabrics enhanced after exposing them to Light. (author)

  8. Complex foraging ecology of the red harvester ant and its effect on the soil seed bank

    Science.gov (United States)

    Luna, Pedro; García-Chávez, Juan Héctor; Dáttilo, Wesley

    2018-01-01

    Granivory is an important interaction in the arid and semi-arid zones of the world, since seeds form an abundant and nutritious resource in these areas. While species of the genus Pogonomyrmex have been studied in detail as seed predators, their impact on seed abundance in the soil has not yet been explored in sufficient depth. We studied the impact of the harvesting activities of the ant Pogonomyrmex barbatus on seed abundance in the soil of the Zapotitlán valley, Mexico. We found that P. barbatus activity significantly impacts the abundance of seeds in the soil, which is lower in the sites where P. barbatus forages than it is in sites with no recorded foraging. We also found that P. barbatus distributes intact seeds of three tree species, two of which are nurse plants, and could consequently be promoting the establishment of these species. Using tools derived from graph theory, we observed that the ant-seed interactions exhibit a nested pattern; where more depredated seed species seem to be the more spatially abundant in the environment. This study illustrates the complex foraging ecology of the harvester ant P. barbatus and elucidates its effect on the soil seed bank in a semi-arid environment.

  9. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  10. Efficient organic light-emitting devices with platinum-complex emissive layer

    KAUST Repository

    Yang, Xiaohui

    2011-01-18

    We report efficient organic light-emitting devices having a platinum-complex emissive layer with the peak external quantum efficiency of 17.5% and power efficiency of 45 lm W−1. Variation in the device performance with platinum-complex layer thickness can be attributed to the interplay between carrier recombination and intermolecular interactions in the layer. Efficient white devices using double platinum-complex layers show the external quantum efficiency of 10%, the Commission Internationale d’Énclairage coordinates of (0.42, 0.41), and color rendering index of 84 at 1000 cd m−2.

  11. Efficient organic light-emitting devices with platinum-complex emissive layer

    KAUST Repository

    Yang, Xiaohui; Wu, Fang-Iy; Haverinen, Hanna; Li, Jian; Cheng, Chien-Hong; Jabbour, Ghassan E.

    2011-01-01

    We report efficient organic light-emitting devices having a platinum-complex emissive layer with the peak external quantum efficiency of 17.5% and power efficiency of 45 lm W−1. Variation in the device performance with platinum-complex layer thickness can be attributed to the interplay between carrier recombination and intermolecular interactions in the layer. Efficient white devices using double platinum-complex layers show the external quantum efficiency of 10%, the Commission Internationale d’Énclairage coordinates of (0.42, 0.41), and color rendering index of 84 at 1000 cd m−2.

  12. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer; Yang, Hong-Chuan; Gebali, Fayez; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different

  13. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety

    Science.gov (United States)

    Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin

    2017-06-01

    Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.

  14. Porphyrin nanorods-polymer composites for solar radiation harvesting applications

    CSIR Research Space (South Africa)

    Mongwaketsi, NP

    2014-09-01

    Full Text Available harvesting systems requires several key factors, such as absorption in the UV-visible and near-infrared wavelengths, energy transfer ability and the selection of light absorbing pigments. Another key factor is the organizational structure through which...

  15. Educational complex of light-colored modeling of urban environment

    Directory of Open Access Journals (Sweden)

    Karpenko Vladimir E.

    2018-01-01

    Full Text Available Mechanisms, methodological tools and structure of a training complex of light-colored modeling of the urban environment are developed in this paper. The following results of the practical work of students are presented: light composition and installation, media facades, lighting of building facades, city streets and embankment. As a result of modeling, the structure of the light form is determined. Light-transmitting materials and causing characteristic optical illusions, light-visual and light-dynamic effects (video-dynamics and photostatics, basic compositional techniques of light form are revealed. The main elements of the light installation are studied, including a light projection, an electronic device, interactivity and relationality of the installation, and the mechanical device which becomes a part of the installation composition. The meaning of modern media facade technology is the transformation of external building structures and their facades into a changing information cover, into a media content translator using LED technology. Light tectonics and the light rhythm of the plastics of the architectural object are built up through point and local illumination, modeling of the urban ensemble assumes the structural interaction of several light building models with special light-composition techniques. When modeling the social and pedestrian environment, the lighting parameters depend on the scale of the chosen space and are adapted taking into account the visual perception of the pedestrian, and the atmospheric effects of comfort and safety of the environment are achieved with the help of special light compositional techniques. With the aim of realizing the tasks of light modeling, a methodology has been created, including the mechanisms of models, variability and complementarity. The perspectives of light modeling in the context of structural elements of the city, neuropsychology, wireless and bioluminescence technologies are proposed

  16. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  17. Upright nanopyramid structured cover glass with light harvesting and self-cleaning effects for solar cell applications

    International Nuclear Information System (INIS)

    Amalathas, Amalraj Peter; Alkaisi, Maan M

    2016-01-01

    In this paper, we demonstrate the effect of upright nanopyramid (UNP) structured cover glass with light harvesting and self-cleaning functions on the device performance of monocrystalline Si solar cells. The UNP structures were fabricated on the surface of the glass substrate by simple, high throughput and low cost UV nanoimprint lithography, using a Si master mold with inverted nanopyramid (INP) structures. The diffuse transmittance and haze ratio values were significantly increased for UNP patterned glass, especially in the wavelength range 300–600 nm compared to the bare glass; this implies that antireflection and strong light scattering are due to the UNP structures. By replacing a bare cover glass with UNP patterned glass, the power conversion efficiency of the monocrystalline Si solar cell was substantially enhanced by about 10.97%; this is mainly due to the increased short-circuit current density J SC of 32.39 mA cm −2 compared to the reference cell with bare cover glass (i.e. J SC   =  31.60 mA cm −2 ). In addition, unlike the bare cover glass (i.e. θ CA ∼ 36°), the fluorinated UNP structured cover glass exhibited a hydrophobic surface with a water contact angle ( θ CA ) of ∼132° and excellent self-cleaning of dust particles by rolling down water droplets. (paper)

  18. Understanding the role of nonlinearities in the transduction of vibratory energy harvesters

    Science.gov (United States)

    Masana, Ravindra Shiva Charan

    The last two decades have witnessed several advances in micro-fabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power source, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to power and maintain low-power electronics. While linear vibratory energy harvesters have received the majority of the literature's attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to the common belief that they can be utilized to improve performance especially in random and non-stationary vibratory environments. This dissertation aims to critically investigate this belief by drawing a clearer picture of the role of nonlinearities in the transduction of energy harvesters and by defining the conditions under which nonlinearities can be used to enhance performance. To achieve this goal, the Thesis is divided into three parts. The first part investigates the performance of mono- and bi-stable energy harvesters under harmonic excitations and carries a detailed analysis of their relative performance. The second part investigates their response to broadband and narrowband random excitations and again analyzes their relative behavior. The third part exploits the super-harmonic resonance bands of bi-stable energy harvesters for the

  19. Sprayed films of europium complexes toward light conversion devices

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Sabrina A.; Aoki, Pedro H.B.; Constantino, Carlos J.L.; Pires, Ana Maria, E-mail: anapires@fct.unesp.br

    2014-09-15

    Rare-earth complexes have become subject of intensive research due to the high quantum efficiency of their emission, very narrow bands, and excellent fluorescence monochromaticity. The chemical design and characterization of Eu complexes based on β-diketone ligands hexafluoroacetylacetate (hfac) and dibenzoylmetanate (dbm) is reported here. K[Eu(dbm){sub 4}] and K[Eu(hfac){sub 4}] complexes were immobilized as thin films by using the spray technique, a promising methodology for practical applications. The latter provides not only a faster layer deposition but also larger coated areas compared to conventional methods, such as layer-by-layer (LbL) and Langmuir–Blodgett (LB). The growth of the sprayed films was monitored through microbalance (QCM) and ultraviolet–visible (UV–Vis) absorption spectroscopy, which reveal a higher mass and absorbance per deposited layer of K[Eu(dbm){sub 4}] film. Micro-Raman images display a more homogeneous spatial distribution of the K[Eu(dbm){sub 4}] complex throughout the film, when compared to K[Eu(hfac){sub 4}] film. At nanometer scale, atomic force microscopy (AFM) images indicate that the roughness of the K[Eu(hfac){sub 4}] film is approximately one order of magnitude higher than that for the K[Eu(dbm){sub 4}] film, which pattern is kept at micrometer scale according to micro-Raman measurements. The photoluminescence data show that the complexes remain as pure red emitters upon spray immobilization. Besides, the quantum efficiency for the sprayed films are found equivalent to the values achieved for the powders, highlighting the potential of the films for application in light conversion devices. - Highlights: • Rare earth complexes thin films based on β-diketone ligands. • Spraying procedures to fabricate layer-by-layer (LbL) luminescent thin films. • Chemical design of Eu complexes based on hfac and dbm β-diketones ligands immobilized as sprayed films. • Pure red emitters upon spray immobilization. • Sprayed

  20. The Harvest and Management of Migratory Bird Eggs by Inuit in Nunatsiavut, Labrador

    Science.gov (United States)

    Natcher, David; Felt, Larry; Chaulk, Keith; Procter, Andrea

    2012-12-01

    This paper presents the results of collaborative research conducted in 2007 on the harvest of migratory bird eggs by Inuit households of Nunatsiavut, Labrador. Harvest variability between communities and species is examined, as is the social and ecological factors affecting the 2007 Inuit egg harvest. Representing the first comprehensive account of Inuit egg use in Labrador, this information should be valuable to agencies responsible for managing migratory bird populations in North America and will contribute to a more informed understanding of the complexity and temporal variability in subsistence harvesting among Labrador Inuit. It is argued that the recognition of this complexity will be critical as the Nunatsiavut Government and other wildlife management agencies formulate management policies that are supportive rather, than constraining, to Inuit resource use in the future.

  1. The effects of harvest on waterfowl populations

    Science.gov (United States)

    Cooch, Evan G.; Guillemain, Matthieu; Boomer, G Scott; Lebreton, Jean-Dominique; Nichols, James D.

    2014-01-01

    Change in the size of populations over space and time is, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change in the abundance is the simple difference between the number of individuals entering the population and the number leaving the population, either or both of which may change in response to factors intrinsic and extrinsic to the population. While harvest of individuals from a population constitutes a clear extrinsic source of removal of individuals, the response of populations to harvest is frequently complex, reflecting an interaction of harvest with one or more population processes. Here we consider the role of these interactions, and factors influencing them, on the effective harvest management of waterfowl populations. We review historical ideas concerning harvest and discuss the relationship(s) between waterfowl life histories and the development and application of population models to inform harvest management. The influence of population structure (age, spatial) on derivation of optimal harvest strategies (with and without explicit consideration of various sources of uncertainty) is considered. In addition to population structure, we discuss how the optimal harvest strategy may be influenced by: 1) patterns of density-dependence in one or more vital rates, and 2) heterogeneity in vital rates among individuals within an age-sex-size class. Although derivation of the optimal harvest strategy for simple population models (with or without structure) is generally straightforward, there are several potential difficulties in application. In particular, uncertainty concerning the population structure at the time of harvest, and the ability to regulate the structure of the harvest itself, are significant complications. We therefore review the evidence of effects of harvest on waterfowl populations. Some of this evidence has

  2. Procedural Design of Exterior Lighting for Buildings with Complex Constraints

    KAUST Repository

    Schwarz, Michael

    2014-10-01

    We present a system for the lighting design of procedurally modeled buildings. The design is procedurally specified as part of the ordinary modeling workflow by defining goals for the illumination that should be attained and locations where luminaires may be installed to realize these goals. Additionally, constraints can be modeled that make the arrangement of the installed luminaires respect certain aesthetic and structural considerations. From this specification, the system automatically generates a lighting solution for any concrete model instance. The underlying, intricate joint optimization and constraint satisfaction problem is approached with a stochastic scheme that operates directly in the complex subspace where all constraints are observed. To navigate this subspace efficaciously, the actual lighting situation is taken into account. We demonstrate our system on multiple examples spanning a variety of architectural structures and lighting designs. Copyright held by the Owner/Author.

  3. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    Science.gov (United States)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  4. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting.

    Science.gov (United States)

    Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su

    2015-04-01

    We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.

  5. Sustained operation of sensor nodes with energy harvesters and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Bernd-Christian

    2013-06-01

    Sensor nodes powered by energy harvesters and supercapacitors open the door to unlimited and uninterrupted operation. This dissertation closes the persistent gap of system integration w.r.t. holistic online energy assessment, develops a new concept for harvest forecasting while assessing the behavior and quality of known approaches, and proposes a novel load adaptation scheme to achieve sustained and uniform sensor node operation with low complexity and computational overhead. For this purpose, a prototype of an energy harvester with a supercapacitor for off-the-shelf sensor nodes is developed and used for practical evaluation.

  6. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    Science.gov (United States)

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-04

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  7. Assembly of Photosynthetic Antenna Protein Complexes from Algae for Development of Nano-biodevice and Its Fuelization

    Science.gov (United States)

    2013-05-20

    bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure determined to high resolution...Introduction] In a bacterial photosynthesis , light-harvesting complex 2 (LH2) and lightharvesting-reaction center complex (LH1-RC) play the key...Artificial Leaf 6CO2 + 6H2O C6H12O6 (Glucose) +6O2 Natural Leaf Photosynthesis and redox proteins are well-organized into thylakoid membrane in natural leaf

  8. Measuring the Complexity of Self-Organizing Traffic Lights

    Directory of Open Access Journals (Sweden)

    Darío Zubillaga

    2014-04-01

    Full Text Available We apply measures of complexity, emergence, and self-organization to an urban traffic model for comparing a traditional traffic-light coordination method with a self-organizing method in two scenarios: cyclic boundaries and non-orientable boundaries. We show that the measures are useful to identify and characterize different dynamical phases. It becomes clear that different operation regimes are required for different traffic demands. Thus, not only is traffic a non-stationary problem, requiring controllers to adapt constantly; controllers must also change drastically the complexity of their behavior depending on the demand. Based on our measures and extending Ashby’s law of requisite variety, we can say that the self-organizing method achieves an adaptability level comparable to that of a living system.

  9. Antenna complexes protect Photosystem I from Photoinhibition

    Science.gov (United States)

    Alboresi, Alessandro; Ballottari, Matteo; Hienerwadel, Rainer; Giacometti, Giorgio M; Morosinotto, Tomas

    2009-01-01

    Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed. PMID:19508723

  10. Applications of energy harvesting for ultralow power technology

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.

    2015-06-01

    Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.

  11. Ecosystem Responses to Partial Harvesting in Eastern Boreal Mixedwood Stands

    Directory of Open Access Journals (Sweden)

    Brian D. Harvey

    2013-05-01

    Full Text Available Partial harvesting has been proposed as a key aspect to implementing ecosystem management in the Canadian boreal forest. We report on a replicated experiment located in boreal mixedwoods of Northwestern Quebec. In the winter of 2000–2001, two partial harvesting treatments, one using a dispersed pattern, and a second, which created a (400 m2 gap pattern, were applied to a 90-year-old aspen-dominated mixed stand. The design also included a clear cut and a control. Over the course of the following eight years, live tree, coarse woody debris, regeneration and ground beetles were inventoried at variable intervals. Our results indicate that all harvesting treatments created conditions favorable to balsam fir (Abies balsamea sapling growth and trembling aspen (Populus tremuloides sapling recruitment. However, balsam fir and trembling aspen regeneration and ground beetles response to gap cuts were closer to patterns observed in clear cuts than in dispersed harvesting. The underlying reasons for these differing patterns can be linked to factors associated with the contrasting light regimes created by the two partial harvesting treatments. The study confirms that partially harvesting is an ecologically sound approach in boreal mixedwoods and could contribute to maintaining the distribution of stand ages at the landscape level.

  12. Harvest Regulations and Implementation Uncertainty in Small Game Harvest Management

    Directory of Open Access Journals (Sweden)

    Pål F. Moa

    2017-09-01

    Full Text Available A main challenge in harvest management is to set policies that maximize the probability that management goals are met. While the management cycle includes multiple sources of uncertainty, only some of these has received considerable attention. Currently, there is a large gap in our knowledge about implemention of harvest regulations, and to which extent indirect control methods such as harvest regulations are actually able to regulate harvest in accordance with intended management objectives. In this perspective article, we first summarize and discuss hunting regulations currently used in management of grouse species (Tetraonidae in Europe and North America. Management models suggested for grouse are most often based on proportional harvest or threshold harvest principles. These models are all built on theoretical principles for sustainable harvesting, and provide in the end an estimate on a total allowable catch. However, implementation uncertainty is rarely examined in empirical or theoretical harvest studies, and few general findings have been reported. Nevertheless, circumstantial evidence suggest that many of the most popular regulations are acting depensatory so that harvest bag sizes is more limited in years (or areas where game density is high, contrary to general recommendations. A better understanding of the implementation uncertainty related to harvest regulations is crucial in order to establish sustainable management systems. We suggest that scenario tools like Management System Evaluation (MSE should be more frequently used to examine robustness of currently applied harvest regulations to such implementation uncertainty until more empirical evidence is available.

  13. Analysis of complex wetland ecological system: Effect of harvesting

    Directory of Open Access Journals (Sweden)

    Nilesh Kumar Thakur

    2017-12-01

    Full Text Available In this paper, we have studied interaction among diffusive phytoplankton, zooplankton and fish population with Beddington-DeAngelis type functional response for the zooplankton and Holling type III for fish. The stability analysis of the model system with diffusion and without diffusion has been analyzed. The conditions for Maximum sustainable yield and Optimal harvesting policy for non-spatial model have been discussed. Our study may be helpful to improve and manage ecosystem services provided by wetlands on an agricultural landscapes include fisheries, water conservation, climate change and many more.

  14. Interplay between Dephasing and Geometry and Directed Heat Flow in Exciton Transfer Complexes

    OpenAIRE

    Dubi, Yonatan

    2015-01-01

    The striking efficiency of energy transfer in natural photosynthetic systems and the recent evidence of long-lived quantum coherence in biological light harvesting complexes has triggered much excitement, due to the evocative possibility that these systems - essential to practically all life on earth -- use quantum mechanical effects to achieve optimal functionality. A large body of theoretical work has addressed the role of local environments in determining the transport properties of excito...

  15. NUTRIENT BALANCE IN WATER HARVESTING SOILS

    Directory of Open Access Journals (Sweden)

    Díaz, F

    2005-05-01

    Full Text Available Dryland farming on Fuerteventura and Lanzarote (Canary Islands, Spain, which has an annual rainfall of less than 150 mm/year, has been based traditionally on water harvesting techniques (known locally as “gavias”. Periods of high productivity alternate with those of very low yield. The systems are sustainable in that they reduce erosive processes, contribute to soil and soil-water conservation and are largely responsible for maintaining the soil’s farming potential. In this paper we present the chemical fertility status and nutrient balance of soils in five “gavia” systems. The results are compared with those obtained in adjacent soils where this water harvesting technique is not used. The main crops are wheat, barley, maize, lentils and chick-peas. Since neither organic nor inorganic fertilisers are used, nutrients are derived mainly from sediments carried by runoff water. Nutrients are lost mainly through crop harvesting and harvest residues. The soils where water harvesting is used have lower salt and sodium in the exchange complex, are higher in carbon, nitrogen, copper and zinc and have similar phosphorous and potassium content. It is concluded that the systems improve the soil’s natural fertility and also that natural renovation of nutrients occurs thanks to the surface deposits of sediments, which mix with the arable layer. The system helps ensure adequate fertility levels, habitual in arid regions, thus allowing dryland farming to be carried out.

  16. Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition

    NARCIS (Netherlands)

    van Leeuwe, MA; Stefels, J

    A strain of Phaeocystis sp., isolated in the Southern Ocean, was cultured under iron- and light-limited conditions. The cellular content of chlorophyll a and accessory light-harvesting (LH) pigments increased under low light intensities. Iron limitation resulted in a decrease of all light-harvesting

  17. Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization

    International Nuclear Information System (INIS)

    Lobello, Maria Grazia; Fantacci, Simona; Manfredi, Norberto; Coluccini, Carmine; Abbotto, Alessandro; Nazeeruddin, Mohammed K.; De Angelis, Filippo

    2014-01-01

    We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO 2 nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO 2

  18. Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lobello, Maria Grazia; Fantacci, Simona [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy); Manfredi, Norberto; Coluccini, Carmine [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Abbotto, Alessandro, E-mail: alessandro.abbotto@unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Nazeeruddin, Mohammed K., E-mail: mdkhaja.nazeeruddin@epfl.ch [Laboratory for Photonics and Interfaces, Station 6, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); De Angelis, Filippo, E-mail: filippo@thch.unipg.it [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy)

    2014-06-02

    We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO{sub 2} nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO{sub 2}.

  19. TOC and TRIZ: using a dual-methodological approach to solve a forest harvesting problem

    Science.gov (United States)

    Ian Conradie

    2005-01-01

    Although cut-to-length forest harvesting with harvesters and forwarders is hardly used in some parts of the world, it has many advantages over conventional harvesting systems. Research has shown that the core reason for the low adoption of CTL in the southeastern USA is the complexity of the equipment to optimize value recovery. In this paper we delve deeper into this...

  20. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    Science.gov (United States)

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  1. Sustainability of Mangrove Harvesting: How do Harvesters' Perceptions Differ from Ecological Analysis?

    Directory of Open Access Journals (Sweden)

    Laura López-Hoffman

    2006-12-01

    Full Text Available To harvest biological resources sustainably, it is first necessary to understand what "sustainability" means in an ecological context, and what it means to the people who use the resources. As a case study, we examined the extractive logging of the mangrove Rhizophora mangle in the Río Limón area of Lake Maracaibo, in western Venezuela. The ecological definition of sustainable harvesting is harvesting that allows population numbers to be maintained or to increase over time. In interviews, the harvesters defined sustainable harvesting as levels permitting the maintenance of the mangrove population over two human generations, about 50 yr. In Río Limón, harvesters extract a combination of small adult and juvenile trees. Harvesting rates ranged from 7-35% of small adult trees. These harvesting levels would be sustainable according to the harvester's definition as long as juvenile harvesting was less than 40%. However, some harvesting levels that would be sustainable according to the harvesters were ecologically unsustainable, i.e., eventually causing declines in mangrove population numbers. It was also determined that the structure of mangrove forests was significantly affected by harvesting; even areas harvested at low, ecologically sustainable intensities had significantly fewer adult trees than undisturbed sites. Western Venezuela has no organized timber industry, so mangrove logs are used in many types of construction. A lagging economy and a lack of alternative construction materials make mangrove harvesting inevitable, and for local people, an economic necessity. This creates a trade-off between preserving the ecological characteristics of the mangrove population and responding to human needs. In order to resolve this situation, we recommended a limited and adaptive mangrove harvesting regime. We also suggest that harvesters could participate in community-based management programs as harvesting monitors.

  2. Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy

    NARCIS (Netherlands)

    Cohen Stuart, T.A.; Vengris, M.; Novoderezhkin, V.I.; Cogdell, R.J.; Hunter, C.N.; van Grondelle, R.

    2011-01-01

    The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a

  3. Modeling the complex impacts of timber harvests to find optimal management regimes for Amazon tidal floodplain forests

    Science.gov (United States)

    Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.

    2015-01-01

    At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine

  4. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.

    Science.gov (United States)

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Early regeneration response to aggregated overstory and harvest residue retention in Populus tremuloides (Michx.)-dominated forests

    Science.gov (United States)

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik

    2017-01-01

    Recent emphasis on increasing structural complexity and species diversity reflective of natural ecosystems through the use of retention harvesting approaches is coinciding with increased demand for forest-derived bioenergy feedstocks, largely sourced through the removal of harvest residues associated with whole-tree harvest. Uncertainties about the consequences of such...

  6. Apo-bacteriophytochromes modulate bacterial photosynthesis in response to low light.

    Science.gov (United States)

    Fixen, Kathryn R; Baker, Anna W; Stojkovic, Emina A; Beatty, J Thomas; Harwood, Caroline S

    2014-01-14

    Bacteriophytochromes (BphPs) are light-sensing regulatory proteins encoded by photosynthetic and nonphotosynthetic bacteria. This protein class has been characterized structurally, but its biological activities remain relatively unexplored. Two BphPs in the anoxygenic photosynthetic bacterium Rhodopseudomonas palustris, designated regulatory proteins RpBphP2 and RpBphP3, are configured as light-regulated histidine kinases, which initiate a signal transduction system that controls expression of genes for the low light harvesting 4 (LH4) antenna complex. In vitro, RpBphP2 and RpBphP3 respond to light quality by reversible photoconversion, a property that requires the light-absorbing chromophore biliverdin. In vivo, RpBphP2 and RpBphP3 are both required for the expression of the LH4 antenna complex under anaerobic conditions, but biliverdin requires oxygen for its synthesis by heme oxygenase. On further investigation, we found that the apo-bacteriophytochrome forms of RpBphP2 and RpBphP3 are necessary and sufficient to control LH4 expression in response to light intensity in conjunction with other signal transduction proteins. One possibility is that the system senses a reduced quinone pool generated when light energy is absorbed by bacteriochlorophyll. The biliverdin-bound forms of the BphPs have the additional property of being able to fine-tune LH4 expression in response to light quality. These observations support the concept that some bacteriophytochromes can function with or without a chromophore and may be involved in regulating physiological processes not directly related to light sensing.

  7. 25th anniversary article: A soft future: from robots and sensor skin to energy harvesters.

    Science.gov (United States)

    Bauer, Siegfried; Bauer-Gogonea, Simona; Graz, Ingrid; Kaltenbrunner, Martin; Keplinger, Christoph; Schwödiauer, Reinhard

    2014-01-08

    Scientists are exploring elastic and soft forms of robots, electronic skin and energy harvesters, dreaming to mimic nature and to enable novel applications in wide fields, from consumer and mobile appliances to biomedical systems, sports and healthcare. All conceivable classes of materials with a wide range of mechanical, physical and chemical properties are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before are achieved. In this review we discuss soft robots which allow actuation with several degrees of freedom. We show that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space. We introduce latest research examples in sensor skin development and discuss ultraflexible electronic circuits, light emitting diodes and solar cells as examples. Additional functionalities of sensor skin, such as visual sensors inspired by animal eyes, camouflage, self-cleaning and healing and on-skin energy storage and generation are briefly reviewed. Finally, we discuss a paradigm change in energy harvesting, away from hard energy generators to soft ones based on dielectric elastomers. Such systems are shown to work with high energy of conversion, making them potentially interesting for harvesting mechanical energy from human gait, winds and ocean waves. © 2013 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16 (Czech Republic); Cranston, Laura J.; Cogdell, Richard J. [Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Lincoln, Craig N.; Hauer, Jürgen, E-mail: juergen.hauer@tuwien.ac.at [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna (Austria); Savolainen, Janne [Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum (Germany)

    2015-06-07

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  9. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    International Nuclear Information System (INIS)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Hauer, Jürgen; Savolainen, Janne

    2015-01-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

  10. Peripheral Light-Harvesting LH2 Complex Can Be Assembled in Cells of Nonsulfur Purple Bacterium Rhodoblastus acidophilus without Carotenoids.

    Science.gov (United States)

    Bol'shakov, M A; Ashikhmin, A A; Makhneva, Z K; Moskalenko, A A

    2015-09-01

    The effect of carotenoids on the assembly of LH2 complex in cells of the purple nonsulfur bacterium Rhodoblastus acidophilus was investigated. For this purpose, the bacterial culture was cultivated with an inhibitor of carotenoid biosynthesis - 71 µM diphenylamine (DPA). The inhibitor decreased the level of biosynthesis of the colored carotenoids in membranes by ~58%. It was found that a large amount of phytoene was accumulated in them. This carotenoid precursor was bound nonspecifically to LH2 complex and did not stabilize its structure. Thermostability testing of the isolated LH2 complex together with analysis of carotenoid composition revealed that the population of this complex was heterogeneous with respect to carotenoid composition. One fraction of the LH2 complex with carotenoid content around 90% remains stable and was not destroyed under heating for 15 min at 50°C. The other fraction of LH2 complex containing on average less than one molecule of carotenoid per complex was destroyed under heating, forming a zone of free pigments (and polypeptides). The data suggest that a certain part of the LH2 complexes is assembled without carotenoids in cells of the nonsulfur bacterium Rbl. acidophilus grown with DPA. These data contradict the fact that the LH2 complex from nonsulfur bacteria cannot be assembled without carotenoids, but on the other hand, they are in good agreement with the results demonstrated in our earlier studies of the sulfur bacteria Allochromatium minutissimum and Ectothiorhodospira haloalkaliphila. Carotenoidless LH2 complex was obtained from these bacteria with the use of DPA (Moskalenko, A. A., and Makhneva, Z. K. (2012) J. Photochem. Photobiol., 108, 1-7; Ashikhmin, A., et al. (2014) Photosynth. Res., 119, 291-303).

  11. Light activated bionanodevices

    CSIR Research Space (South Africa)

    Sparrow, RW

    2006-02-27

    Full Text Available production and Kinesin motor protein movement. It has been designed in a modular concept with three sections: energy trapping (light harvesting) and transfer; energy conversion to produce ATP; and mechanical translation. The potential applications of such a...

  12. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance.

    Science.gov (United States)

    Muzziotti, Dayana; Adessi, Alessandra; Faraloni, Cecilia; Torzillo, Giuseppe; De Philippis, Roberto

    2017-04-01

    The ability of Rhodopseudomonas palustris cells to rapidly acclimate to high light irradiance is an essential issue when cells are grown under sunlight. The aim of this study was to investigate the photo-acclimation process in Rhodopseudomonas palustris 42OL under different culturing conditions: (i) anaerobic (AnG), (ii) aerobic (AG), and (iii) under H 2 -producing (HP) conditions both at low (LL) and high light (HL) irradiances. The results obtained clearly showed that the photosynthetic unit was significantly affected by the light irradiance at which Rp. palustris 42OL was grown. The synthesis of carotenoids was affected by both illumination and culturing conditions. At LL, lycopene was the main carotenoid synthetized under all conditions tested, while at HL under HP conditions, it resulted the predominant carotenoid. Oppositely, under AnG and AG at HL, rhodovibrin was the major carotenoid detected. The increase in light intensity produced a deeper variation in light-harvesting complexes (LHC) ratio. These findings are important for understanding the ecological distribution of PNSB in natural environments, mostly characterized by high light intensities, and for its growth outdoors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. High-efficiency tris(8-hydroxyquinoline)aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting.

    Science.gov (United States)

    Pérez-Bolívar, César; Takizawa, Shin-ya; Nishimura, Go; Montes, Victor A; Anzenbacher, Pavel

    2011-08-08

    Combinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6. Compounds 1-6 displayed the emission tuning between 478 and 526 nm, and fluorescence quantum yield between 0.15 and 0.57. The compounds 2-6 were used as emitters and hosts in organic light-emitting diodes (OLEDs). The highest OLED external quantum efficiency (EQE) observed was 4.6%, which is among the highest observed for Alq(3) complexes. Also, the compounds 3-5 were used as hosts for red phosphorescent dopants to obtain white light-emitting diodes (WOLED). The WOLEDs displayed high efficiency (EQE up to 19%) and high white color purity (color rendering index (CRI≈85). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Designing A General Deep Web Harvester by Harvestability Factor

    NARCIS (Netherlands)

    Khelghati, Mohammadreza; van Keulen, Maurice; Hiemstra, Djoerd

    2014-01-01

    To make deep web data accessible, harvesters have a crucial role. Targeting different domains and websites enhances the need of a general-purpose harvester which can be applied to different settings and situations. To develop such a harvester, a large number of issues should be addressed. To have

  15. Normalization of informatisation parameter on airfield light-signal bar at flights in complex meteorological conditions

    Directory of Open Access Journals (Sweden)

    П.В. Попов

    2005-03-01

    Full Text Available  The technique of maintenance of the set level of flights safetivness is developed by normalization of informatisation parameters functional groups of light-signal lightings at technological stages of interaction of crew of the airplane with the airfield light-signals bar at flights in a complex weathercast conditions.

  16. Novel type of red-shifted chlorophyll alpha antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems

    Czech Academy of Sciences Publication Activity Database

    Kotabová, Eva; Jarešová, Jana; Kaňa, Radek; Sobotka, Roman; Bína, David; Prášil, Ondřej

    2014-01-01

    Roč. 1837, č. 6 (2014), s. 734-743 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : Chromera velia * Chromatic adaptation * red-shifted chloroplhyl * light-harvesting complex Subject RIV: BO - Biophysics; CE - Biochemistry (MBU-M) Impact factor: 5.353, year: 2014

  17. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    Science.gov (United States)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  18. Preliminary design of a coffee harvester

    Directory of Open Access Journals (Sweden)

    Raphael Magalhães Gomes Moreira

    2016-10-01

    Full Text Available Design of an agricultural machine is a highly complex process due to interactions between the operator, machine, and environment. Mountain coffee plantations constitute an economic sector that requires huge investments for the development of agricultural machinery to improve the harvesting and post-harvesting processes and to overcome the scarcity of work forces in the fields. The aim of this study was to develop a preliminary design for a virtual prototype of a coffee fruit harvester. In this study, a project methodology was applied and adapted for the development of the following steps: project planning, informational design, conceptual design, and preliminary design. The construction of a morphological matrix made it possible to obtain a list of different mechanisms with specific functions. The union between these mechanisms resulted in variants, which were weighed to attribute scores for each selected criterion. From each designated proposal, two variants with the best scores were selected and this permitted the preparation of the preliminary design of both variants. The archetype was divided in two parts, namely the hydraulically articulated arms and the harvesting system that consisted of the vibration mechanism and the detachment mechanism. The proposed innovation involves the use of parallel rods, which were fixed in a plane and rectangular metal sheet. In this step, dimensions including a maximum length of 4.7 m, a minimum length of 3.3 m, and a total height of 2.15 m were identified based on the functioning of the harvester in relation to the coupling point of the tractor.

  19. Replicative manufacturing of complex lighting optics by non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, Holger; Vu, Anh Tuan; Dambon, Olaf; Klocke, Fritz

    2016-09-01

    The advantages of LED lighting, especially its energy efficiency and the long service life have led to a wide distribution of LED technology in the world. However, in order to make fully use of the great potential that LED lighting offers, complex optics are required to distribute the emitted light from the LED efficiently. Nowadays, many applications use polymer optics which can be manufactured at low costs. However, due to ever increasing luminous power, polymer optics reach their technological limits. Due to its outstanding properties, especially its temperature resistance, resistance against UV radiation and its long term stability, glass is the alternative material of choice for the use in LED optics. This research is introducing a new replicative glass manufacturing approach, namely non-isothermal glass molding (NGM) which is able to manufacture complex lighting optics in high volumes at competitive prices. The integration of FEM simulation at the early stage of the process development is presented and helps to guarantee a fast development cycle. A coupled thermo-mechanical model is used to define the geometry of the glass preform as well as to define the mold surface geometry. Furthermore, simulation is used to predict main process outcomes, especially in terms of resulting form accuracy of the molded optics. Experiments conducted on a commercially available molding machine are presented to validate the developed simulation model. Finally, the influence of distinct parameters on important process outcomes like form accuracy, surface roughness, birefringence, etc. is discussed.

  20. Morphology of bone particles after harvesting with 4 different devices.

    Science.gov (United States)

    Papadimitriou, Dimitrios E V; Schmidt, Erich C; Caton, Jack G; Romanos, Georgios E

    2013-04-01

    Autogenous bone is routinely used for regeneration of osseous defects around teeth and implants, and different instruments are available for bone harvesting. The purpose of this study was to describe the morphology of bone particles after harvesting with 4 different instruments. Bone particles were harvested from fresh cow ribs with 2 different types of back action chisels, a safescraper and a sonic device. The samples were examined morphologically using light microscopy and scanning electron microscopy. The bone particles after the back action chisel I had an appearance similar to "pencil shavings." With the back action chisel II, they were like thin paper with an "accordion bellows" appearance. After removal with the safescraper, they had an irregular shape (with an irregular surface) resembling "crushed stone." Finally, the appearance of the bone particles obtained with the sonic device was homogenous, condensed and continuous, and had a "seaweed" appearance. Harvesting of bone particles with 4 different devices produce distinctly difference sizes and shapes, which may influence the results of grafting procedures.

  1. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  2. Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy.

    Science.gov (United States)

    Amat, Fernando; Keller, Philipp J

    2013-05-01

    Understanding the development of complex multicellular organisms as a function of the underlying cell behavior is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics in entire developing embryos is an indispensable step towards such a system-level understanding. In recent years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting datasets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of development. However, the complexity and size of these multi-terabyte recordings typically preclude comprehensive manual analyses. Thus, new computational approaches are required to automatically segment cell morphologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal, and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organisms, including fruit fly, zebrafish and mouse. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  3. Energy harvesting from high-rise buildings by a piezoelectric harvester device

    International Nuclear Information System (INIS)

    Xie, X.D.; Wang, Q.; Wang, S.J.

    2015-01-01

    A novel piezoelectric technology of harvesting energy from high-rise buildings is developed. While being used to harness vibration energy of a building, the technology is also helpful to dissipate vibration of the building by the designed piezoelectric harvester as a tuned mass damper. The piezoelectric harvester device is made of two groups of series piezoelectric generators connected by a shared shaft. The shaft is driven by a linking rod hinged on a proof mass on the tip of a cantilever fixed on the roof of the building. The influences of some practical considerations, such as the mass ratio of the proof mass to the main structure, the ratios of the length and flexural rigidity of the cantilever to those of the main structure, on the root mean square (RMS) of the generated electric power and the energy harvesting efficiency of the piezoelectric harvester device are discussed. The research provides a new method for an efficient and practical energy harvesting from high-rise buildings by piezoelectric harvesters. - Highlights: • A new piezoelectric technology in energy harvesting from high-rise buildings is introduced. • A new mathematics model to calculate the energy harvested by the piezoelectric device is developed. • A novel efficient design of the piezoelectric harvester device in provided. • An electric power up to 432 MW under a seismic excitation at a frequency of 30 rad/s is achieved.

  4. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.

    Science.gov (United States)

    Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T

    2017-01-01

    We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.

  5. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO{sub 2} overlay coating on TiO{sub 2} nanoparticle working electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueyang; Fang, Jian [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia); Gao, Mei [CSIRO Materials Science and Engineering, Melbourne, VIC 3169 (Australia); Wang, Hongxia [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia); Yang, Weidong [CSIRO Materials Science and Engineering, Melbourne, VIC 3169 (Australia); Lin, Tong, E-mail: tong.lin@deakin.edu.au [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia)

    2015-02-01

    Novel TiO{sub 2} single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO{sub 2} nanorods on TiO{sub 2} nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO{sub 2} nanorods had lower dye loading than TiO{sub 2} nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO{sub 2} nanorods received less resistance than that in TiO{sub 2} nanoparticle aggregation. By just applying a thin layer of TiO{sub 2} nanorods on TiO{sub 2} nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO{sub 2} nanoparticle layer covered with 3 μm thick TiO{sub 2} nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO{sub 2} nanorods were prepared for DSSC application. • TiO{sub 2} nanorods show effective light scattering performance. • TiO{sub 2} nanorods have higher electron transfer efficiency than TiO{sub 2} nanoparticles. • TiO{sub 2} nanorods on TiO{sub 2} nanoparticle electrode improve DSSC efficiency.

  6. Visible lights induced polymerization reactions: interactions between rose bengal and iron aren complex

    International Nuclear Information System (INIS)

    Burget, D.; Grotzinger, C.; Jacques, P.; Fouassier, J.P.

    1999-01-01

    The present paper is devoted to an investigation of the interactions between Rose Bengal (RB) and an Iron aren (Irg(+)) complex that are usable in visible light induced polymerization reactions. Steady state and flash photolysis experiments were performed in order to elucidate the nature of the intermediates formed after light excitation. A complete scheme of evolution of the excited states is discussed

  7. High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety.

    Science.gov (United States)

    Chen, Xiwen; Liao, Jin-Long; Liang, Yongmin; Ahmed, M O; Tseng, Hao-En; Chen, Show-An

    2003-01-22

    We report a new route for the design of electroluminescent polymers by grafting high-efficiency phosphorescent organometallic complexes as dopants and charge transport moieties onto alky side chains of fully conjugated polymers for polymer light-emitting diodes (PLED) with single layer/single polymers. The polymer system studied involves polyfluorene (PF) as the base conjugated polymer, carbazole (Cz) as the charge transport moiety and a source for green emission by forming an electroplex with the PF main chain, and cyclometalated iridium (Ir) complexes as the phosphorescent dopant. Energy transfer from the green Ir complex or an electroplex formed between the fluorene main chain and side-chain carbazole moieties, in addition to that from the PF main chain, to the red Ir complex can significantly enhance the device performance, and a red light-emitting device with the high efficiency 2.8 cd/A at 7 V and 65 cd/m2, comparable to that of the same Ir complex-based OLED, and a broad-band light-emitting device containing blue, green, and red peaks (2.16 cd/A at 9 V) are obtained.

  8. Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

    Directory of Open Access Journals (Sweden)

    Maher Kayal

    2013-02-01

    Full Text Available This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used to transmit the measurement results to a base station. As the harvested solar energy varies considerably in different lighting conditions, in order to guarantee autonomous operation of the sensor, the proposed area- and energy-efficient circuit scales the power consumption and performance of the sensor. The power management circuit dynamically decreases the operating frequency of digital circuits and bias currents of analog circuits in the sensor interface circuit and increases the idle time of the transceiver under reduced light intensity. The proposed microsystem has been implemented in a 0.18 µm complementary metal-oxide-semiconductor (CMOS process and occupies a core area of only 0.25 mm2. This circuit features a low power consumption of 2.1 µW when operating at its highest performance. It operates with low power supply voltage in the 0.8V to 1.6 V range.

  9. Harvest facility protects and improves fishery

    International Nuclear Information System (INIS)

    Hampton, T.; Daley, W.

    1991-01-01

    This paper reports that by constructing a trap and transfer/harvest facility to control anadromous fish migration, the trout fishery on the Boardman River was protected and the salmon fishery was improved. The James P. Price Fish Trap and Transfer/Harvest Facility at Traverse City, Michigan, was constructed by the Traverse City Light and Power Department because of a licensing condition during the redevelopment of the Boardman and Sabin hydroelectric plants. The facility was constructed along with a fish ladder at the Union Street Dam to control the anadromous fish migration in lieu of constructing fish ladders at the Union Street, Sabin and Boardman Dams. The Michigan Department of Natural Resources (MDNR) and the U.S. Fish and Wildlife Service required that the fish ladders be constructed before the hydroelectric plants could be reactivated. The MDNR was also planning to introduce salmon into the Boardman River as far up as the reservoir of the Boardman Dam, which is the third dam from the mouth of the river

  10. Ground-State Electronic Structure of RC-LH1 and LH2 Pigment Assemblies of Purple Bacteria via the EBF-MO Method.

    Science.gov (United States)

    Shrestha, Kushal; Jakubikova, Elena

    2015-08-20

    Light-harvesting antennas are protein-pigment complexes that play a crucial role in natural photosynthesis. The antenna complexes absorb light and transfer energy to photosynthetic reaction centers where charge separation occurs. This work focuses on computational studies of the electronic structure of the pigment networks of light-harvesting complex I (LH1), LH1 with the reaction center (RC-LH1), and light-harvesting complex II (LH2) found in purple bacteria. As the pigment networks of LH1, RC-LH1, and LH2 contain thousands of atoms, conventional density functional theory (DFT) and ab initio calculations of these systems are not computationally feasible. Therefore, we utilize DFT in conjunction with the energy-based fragmentation with molecular orbitals method and a semiempirical approach employing the extended Hückel model Hamiltonian to determine the electronic properties of these pigment assemblies. Our calculations provide a deeper understanding of the electronic structure of natural light-harvesting complexes, especially their pigment networks, which could assist in rational design of artificial photosynthetic devices.

  11. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    Science.gov (United States)

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic

  12. Optimal Design of Dual-Hop VLC/RF Communication System With Energy Harvesting

    KAUST Repository

    Rakia, Tamer; Yang, Hong Chuan; Gebali, Fayez; Alouini, Mohamed-Slim

    2016-01-01

    In this letter, we consider a dual-hop heterogeneous visible light communication (VLC)/radio frequency (RF) communication system to extend the coverage of VLC systems. Besides detecting the information over VLC link, the relay is able to harvest

  13. Conjugated Polymers for Flexible Energy Harvesting and Storage.

    Science.gov (United States)

    Zhang, Zhitao; Liao, Meng; Lou, Huiqing; Hu, Yajie; Sun, Xuemei; Peng, Huisheng

    2018-03-01

    Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium-ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Light-harvesting dendrimer zinc-phthalocyanines chromophores labeled single-wall carbon nanotube nanoensembles: Synthesis and photoinduced electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongqin [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Pan, Sujuan; Ma, Dongdong; He, Dandan; Wang, Yuhua [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China); Xie, Shusen [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Peng, Yiru, E-mail: yirupeng@fjnu.edu.cn [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China)

    2016-11-15

    A novel series of light-harvesting dendrimer zinc-phthalocyanines chromophores labeled-single-wall carbon nanotubes (SWNTs) nanoparticles, in which 0–2 generations dendrimer zinc phthalocyanines covalently linked with SWNTs using either ethylenediamine or hexamethylenediamine as the space linkers were prepared. The structures and morphologies of these nanoconjugates were comprehensively characterized by Raman spectroscopy, transmission electron microscopy and thermal gravimetric analysis methods. Their photophysical properties were investigated by fluorescence and time-resolved spectroscopic methods. The photoinduced intramolecular electron transfer occurred from phthalocyanines (donors) to SWNTs (acceptors). Besides, the electron transfer exchange rates and exchange efficacies between the dendritic phthalocyanines and single-wall carbon nanotubes increased as the length of spacer linker decreased, or as the dendritic generation increased. Cyclic voltammetry (CV) method further confirmed thermodynamics possibility of the electron transfer from phthalocyanines to single-wall carbon nanotubes. These new nanoconjugates are fundamentally important due to the synergy effects of both carbon nanotubes and dendrimer phthalocyanines, which may find potential applications in the fields of drug delivery, biological labeling, or others.

  15. Energy Harvesting - Wireless Sensor Networks for Indoors Applications Using IEEE 802.11

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Sørensen, Thomas; Madsen, Jan

    2014-01-01

    The paper investigates the feasibility of using IEEE 802.11 in energy harvesting low-power sensing applications. The investigation is based on a prototype carbon dioxide sensor node that is powered by artificial indoors light. The wireless communication module of the sensor node is based on the RTX......4100 module. RTX4100 incorporates a wireless protocol that duty-cycles the radio while being compatible with IEEE 802.11 access points. The presented experiments demonstrate sustainable operation but indicate a trade-off between the benefits of using IEEE 802.11 in energy harvesting applications...

  16. Optimal Design of Dual-Hop VLC/RF Communication System With Energy Harvesting

    KAUST Repository

    Rakia, Tamer

    2016-07-28

    In this letter, we consider a dual-hop heterogeneous visible light communication (VLC)/radio frequency (RF) communication system to extend the coverage of VLC systems. Besides detecting the information over VLC link, the relay is able to harvest energy from the first-hop VLC link, by extracting the direct current component of the received optical signal, and uses the harvested energy to retransmit the data to a mobile terminal over the second-hop RF link. We investigate the optimal design of the hybrid system in terms of data rate maximization.

  17. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C.; King, P. W.

    2016-04-21

    The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3. The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.

  18. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction

    International Nuclear Information System (INIS)

    Upadrashta, Deepesh; Yang, Yaowen

    2015-01-01

    Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction. (paper)

  19. A comparison between excavator-based harvester productivity in ...

    African Journals Online (AJOL)

    Due to the labour challenges in South Africa, mechanised forestry equipment has increasingly been required to operate in complex forest conditions – such as coppiced Eucalyptus compartments – where they have not operated before. For this reason, harvesters are either used in certain coppiced compartments with ...

  20. Light transport and lasing in complex photonic structures

    Science.gov (United States)

    Liew, Seng Fatt

    Complex photonic structures refer to composite optical materials with dielectric constant varying on length scales comparable to optical wavelengths. Light propagation in such heterogeneous composites is greatly different from homogeneous media due to scattering of light in all directions. Interference of these scattered light waves gives rise to many fascinating phenomena and it has been a fast growing research area, both for its fundamental physics and for its practical applications. In this thesis, we have investigated the optical properties of photonic structures with different degree of order, ranging from periodic to random. The first part of this thesis consists of numerical studies of the photonic band gap (PBG) effect in structures from 1D to 3D. From these studies, we have observed that PBG effect in a 1D photonic crystal is robust against uncorrelated disorder due to preservation of long-range positional order. However, in higher dimensions, the short-range positional order alone is sufficient to form PBGs in 2D and 3D photonic amorphous structures (PASS). We have identified several parameters including dielectric filling fraction and degree of order that can be tuned to create a broad isotropic PBG. The largest PBG is produced by the dielectric networks due to local uniformity in their dielectric constant distribution. In addition, we also show that deterministic aperiodic structures (DASs) such as the golden-angle spiral and topological defect structures can support a wide PBG and their optical resonances contain unexpected features compared to those in photonic crystals. Another growing research field based on complex photonic structures is the study of structural color in animals and plants. Previous studies have shown that non-iridescent color can be generated from PASs via single or double scatterings. For better understanding of the coloration mechanisms, we have measured the wavelength-dependent scattering length from the biomimetic samples. Our

  1. Forest harvesting reduces the soil metagenomic potential for biomass decomposition.

    Science.gov (United States)

    Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W

    2015-11-01

    Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.

  2. Color Shade Nets Improve Vegetables Quality at Harvest and Maintain Quality During Storage

    Directory of Open Access Journals (Sweden)

    Ilić Zoran S.

    2018-03-01

    Full Text Available The photoselective, light-dispersive shade nets can be used as an alternative to protect crops from adverse environmental conditions such as; excessive solar radiation, heat and drought stress, wind and hail, birds, flying pests, thus improving crop’s production, yield and quality. The physiological parameters discussed in the review include: vegetable growth parameters (leaf area, leaf chlorophyll, tissue structure, fruit ripening, physiological disorders, pest and disease incidence, fruit quality parameters (soluble solids content and titratable acidity, bioactive compounds (antioxidant activity, ascorbic acid, carotenoid and flavonoid contents and aroma volatile compounds at harvest. Also, it is evident in the reviewed literature that light quality influences the biosynthesis, accumulation and retention of vegetable phytochemicals, as well as the decay development during storage. These new strategies to modulate light quality should be conveyed to vegetable producing farmers, thus allowing them to preserve the freshness and post-harvest quality of vegetables for an extended period of time, and to meet the consumers demand for vegetables with high nutritional value all year round. Research on light manipulation in horticultural systems is necessary for a sustainable and market-oriented open field and greenhouse vegetable production in the future.

  3. Sustainability and profitability in ecological systems with harvesting

    International Nuclear Information System (INIS)

    Gaff, S.J.; Protopopescu, V.

    1992-08-01

    A simple model of economic and ecological interplay for a system of two interacting populations grown in a closed environment and harvested periodically for economic purposes was analyzed. The analysis was carried out by exploring the parameter space of the model, defined by a discrete map, a harvesting strategy, and an objective functional. Results showed nonmonotonicities of the outcome and sharp sensitivities that depend on the values of the parameters and that are caused by the discrete nature of the system. This approach may prove useful for solving problems that cannot be solved analytically and for providing some guidance in the management of complex systems

  4. Post-harvest physiology

    Science.gov (United States)

    Weather and management constraints, as well as the intended use of the harvested forage, all influence the forage harvest system selected by the producer. Generally, maximum retention of dry matter from harvested forage crops is achieved at moistures intermediate between the standing fresh crop and ...

  5. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    International Nuclear Information System (INIS)

    Matova, S P; Elfrink, R; Vullers, R J M; Van Schaijk, R

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with adjustable resonance frequencies have been designed—one with a solid bottom and one with membrane on the bottom. The resonance frequencies of the resonators were matched to the complementing piezoelectric harvesters during harvesting. The aim of the presented work is a feasibility study on using packaged piezoelectric energy harvesters with Helmholtz resonators for airflow energy harvesting. The maximum energy we were able to obtain was 42.2 µW at 20 m s −1

  6. Managing harvest and habitat as integrated components

    Science.gov (United States)

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  7. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. I. Isolated, non-interacting LH2 complexes.

    Science.gov (United States)

    Pflock, Tobias J; Oellerich, Silke; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We have employed time-resolved spectroscopy on the picosecond time scale in combination with dynamic Monte Carlo simulations to investigate the photophysical properties of light-harvesting 2 (LH2) complexes from the purple photosynthetic bacterium Rhodopseudomonas acidophila. The variations of the fluorescence transients were studied as a function of the excitation fluence, the repetition rate of the excitation and the sample preparation conditions. Here we present the results obtained on detergent solubilized LH2 complexes, i.e., avoiding intercomplex interactions, and show that a simple four-state model is sufficient to grasp the experimental observations quantitatively without the need for any free parameters. This approach allows us to obtain a quantitative measure for the singlet-triplet annihilation rate in isolated, noninteracting LH2 complexes.

  8. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    Science.gov (United States)

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-02

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  9. Linear-dichroism measurements on the LH2 antenna complex of Rhodopseudomonas Acidophila strain 10050 show that the transition dipole moment of the Carotenoid Rhodopin Glucoside us nit collinair with the long molecular axis

    NARCIS (Netherlands)

    Georgakopoulou, S.; Gogdell, R.J.; Grondelle, van R.; Amerongen, van H.

    2003-01-01

    We have applied linear-dichroism experiments to determine the orientation of the transition dipole moment, corresponding to the main absorption band of the carotenoid, rhodopin glucoside, in the light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050. The crystal structure of this

  10. Helical Piezoelectric Energy Harvester and Its Application to Energy Harvesting Garments

    Directory of Open Access Journals (Sweden)

    Minsung Kim

    2017-04-01

    Full Text Available In this paper, we propose a helical piezoelectric energy harvester, examine its application to clothes in the form of an energy harvesting garment, and analyze its design and characteristics. The helical harvester is composed of an elastic core and a polymer piezoelectric strap twining the core. The fabricated harvester is highly elastic and can be stretched up to 158% of its initial length. Following the experiments using three different designs, the maximum output power is measured as 1.42 mW at a 3 MΩ load resistance and 1 Hz motional frequency. The proposed helical harvesters are applied at four positions of stretchable tight-fitting sportswear, namely shoulder, arm joint, knee, and hip. The maximum output voltage is measured as more than 20 V from the harvester at the knee position during intended body motions. In addition, electric power is also generated from this energy harvesting garment during daily human motions, which is about 3.9 V at the elbow, 3.1 V at the knee, and 4.4 V at the knee during push-up, walking, and squatting motions, respectively.

  11. Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes.

    Science.gov (United States)

    Fuciman, Marcel; Enriquez, Miriam M; Polívka, Tomáš; Dall'Osto, Luca; Bassi, Roberto; Frank, Harry A

    2012-03-29

    The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment-protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ). The data reveal specific singlet energy transfer routes and excited state spectra and dynamics that depend on the xanthophyll present in the complex.

  12. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

    Science.gov (United States)

    Samanta, Suman K; Bhattacharya, Santanu

    2012-12-03

    We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides.

    Science.gov (United States)

    Adams, Peter G; Mothersole, David J; Ng, Irene W; Olsen, John D; Hunter, C Neil

    2011-09-01

    In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation. 2011 Elsevier B.V. All rights reserved.

  14. Towards airflow sensors with energy harvesting and wireless transmitting properties

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Sørensen, John Aasted; Lynggaard, Per

    2018-01-01

    to traditional anemometers, ultrasonic measurement or expensive LIDAR (Light Imaging, Detection and Ranging) systems. This paper presents the initial design considerations for a low-cost combined air speed and wind direction sensor, which harvests energy to drive it and to power the wireless transmission...... of system configurations and measurements. An energy-budget for this transmission is included....

  15. Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella vulgaris and Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sarman Oktovianus Gultom

    2014-07-01

    Full Text Available Microalgae harvesting is a labor- and energy-intensive process and new approaches to harvesting microalgae need to be developed in order to decrease the costs. In this study; co-cultivatation of filamentous fungus (Aspergillus niger and microalgae (Chlorella vulgaris to form cell pellets was evaluated under different conditions, including organic carbon source (glucose; glycerol; and sodium acetate concentration; initial concentration of fungal spores and microalgal cells and light. Results showed that 2 g/L of glucose with a 1:300 ratio of fungi to microalgae provided the best culturing conditions for the process to reach >90% of cell harvest efficiency. The results also showed that an organic carbon source was required to sustain the growth of fungi and form the cell pellets. The microalgae/fungi co-cultures at mixotrophic conditions obtained much higher total biomass than pure cultures of each individual strains; indicating the symbiotic relationship between two strains. This can benefit the microbial biofuel production in terms of cell harvest and biomass production.

  16. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad

    2018-02-12

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power supply of green (renewable) and traditional micro-grid, such that traditional micro-grid is not exploited as long as the BSS can meet their power demands from harvested and stored green energy. Therefore, our goal is to minimize the networkwide energy consumption subject to users\\' certain quality of service and BSS\\' power consumption constraints. As a result of binary BS sleeping status and user-cell association variables, proposed is formulated as a binary linear programming (BLP) problem. A green communication algorithm based on binary particle swarm optimization is implemented to solve the problem with low complexity time.

  17. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.

    Science.gov (United States)

    Brown, Katherine A; Harris, Derek F; Wilker, Molly B; Rasmussen, Andrew; Khadka, Nimesh; Hamby, Hayden; Keable, Stephen; Dukovic, Gordana; Peters, John W; Seefeldt, Lance C; King, Paul W

    2016-04-22

    The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3. Copyright © 2016, American Association for the Advancement of Science.

  18. Rainwater harvesting - An investigation into the potential for rainwater harvesting in Bradford

    OpenAIRE

    Doncaster, S.; Blanksby, J.; Shepherd, W.

    2012-01-01

    This report provides a brief review of rainwater harvesting and rainwater harvesting tools, which are then used in case study examples for domestic, office block and warehouse rain water harvesting scenarios. Rainwater harvesting is placed in an historical context as a source of water supply and in a modern context as being complementary to centralised water distribution networks with benefits for wider water management including flood risk treatment as well as providing environmental and eco...

  19. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K [Eko-Log Oy, Kuopio (Finland)

    1997-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  20. Bundling harvester; Nippukorjausharvesteri

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, K. [Eko-Log Oy, Kuopio (Finland)

    1996-12-31

    The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy

  1. Light harvesting tetrafullerene nanoarray for organic solar cells

    NARCIS (Netherlands)

    Atienza, C.M.; Fernández, G.; Sánchez, L.; Martin, N.; Sá Dantas, I.; Wienk, M.M.; Janssen, R.A.J.; Rahman, A.G.M.; Guldi, D.M.

    2006-01-01

    A light absorbing -conjugated oligomer–tetrafullerene nanoarray has been synthesized and its photophysical study reveals the presence of an intramolecular energy transfer. A phototovoltaic device fabricated from this nanoarray and poly(3-hexylthiophene) shows an external quantum efficiency of 15% at

  2. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.

    Science.gov (United States)

    Kim, Youngsoo; Smith, Jeremy G; Jain, Prashant K

    2018-05-07

    Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO 2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO 2 reduction to other challenging multi-electron, multi-proton transformations such as N 2 fixation.

  3. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Dahlberg, P. D. [Graduate Program in the Biophysical Sciences, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Gardiner, A. T.; Cogdell, R. J. [Department of Botany, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  4. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.

    Science.gov (United States)

    Beccari, Giovanni; Senatore, Maria Teresa; Tini, Francesco; Sulyok, Michael; Covarelli, Lorenzo

    2018-05-20

    In recent years, due to the negative impact of toxigenic mycobiota and of the accumulation of their secondary metabolites in malting barley grains, monitoring the evolution of fungal communities in a certain cultivation area as well as detecting the different mycotoxins present in the raw material prior to malting and brewing processes have become increasingly important. In this study, a survey was carried out on malting barley samples collected after their harvest in the Umbria region (central Italy). Samples were analyzed to determine the composition of the fungal community, to identify the isolated Fusarium species, to quantify fungal secondary metabolites in the grains and to characterize the in vitro mycotoxigenic profile of a subset of the isolated Fusarium strains. The fungal community of barley grains was mainly composed of microorganisms belonging to the genus Alternaria (77%), followed by those belonging to the genus Fusarium (27%). The Fusarium head blight (FHB) complex was represented by nine species with the predominance of Fusarium poae (37%), followed by Fusarium avenaceum (23%), Fusarium graminearum (22%) and Fusarium tricinctum (7%). Secondary metabolites biosynthesized by Alternaria and Fusarium species were present in the analyzed grains. Among those biosynthesized by Fusarium species, nivalenol and enniatins were the most prevalent ones. Type A trichothecenes (T-2 and HT-2 toxins) as well as beauvericin were also present with a high incidence. Conversely, the number of samples contaminated with deoxynivalenol was low. Conjugated forms, such as deoxynivalenol-3-glucoside and HT-2-glucoside, were detected for the first time in malting barley grains cultivated in the surveyed area. In addition, strains of F. avenaceum and F. tricinctum showed the ability to biosynthesize in vitro high concentrations of enniatins. The analysis of fungal secondary metabolites, both in the grains and in vitro, revealed also the presence of other compounds, for which

  5. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-03-01

    Full Text Available The objective of this study was to investigate the response of light emitting diodes (LEDs at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm, red (639 nm and blue (470 nm LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1 and was lowered with decreased light intensity (70–80 μmol m−2 s−1. The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  6. Harvest time and post-harvest quality of Fuyu persimmon treated before harvest with gibberellic acid and aminoetoxyvinilglycine

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Ayub

    2008-12-01

    Full Text Available The aim of this work was to evaluate the effects of gibberellic acid (GA3 and aminoetoxyvinilglycine (AVG applied in preharvest spraying, on the retardation of the harvest and on the quality of persimmon fruits cv. Fuyu. The experiment was carried in randomized complete block design. The treatments were: control, 136mgL-1 of AVG, 272 mgL-1 of AVG, 36mgL-1 of GA3, 72mgL-1 of GA3 and 136mgL-1 of AVG + 36mgL-1 of GA3, spraying 30 days before the first harvest. The fruits were harvested twice and stored at 4ºC. The chemical and physical evaluations of the fruits were carried out the date of the harvest and at intervals of 15 days followed by four days at 20ºC. In conclusion, the application of AVG (136mgL-1 or GA3 (72mgL-1 maintained the firmness of the fruits and delayed harvest by twenty days. However, fruits harvested in the initial state of ripening were more sensitive to chilling injury and were unable to support 15 days of storage at 4ºC. The plant growth regulators were not efficient in prolonged storage due to the fact that the concentration of sugars was lower in the treatments than in the control.

  7. Complex modal properties of coupled moderately light equipment-structure systems

    International Nuclear Information System (INIS)

    Gupta, A.K.; Jaw Jingwen

    1986-01-01

    A new improved perturbation method for evaluating complex modal properties of coupled equipment-structure systems is presented. The method is applicable even when the equipment is not very light, and when the secondary system (equipment) introduces static constraint on the primary system (structure). The new method is applied to nine 8DOF coupled multiply connected equipment-structure systems. It is shown that the new method yields results which are in excellent agreement with the corresponding exact results. (orig.)

  8. heteroHarvest: Harvesting Information from Heterogeneous Sources

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    The abundance of information regarding any topic makes the Internet a very good resource. Even though searching the Internet is very easy, what remains difficult is to automate the process of information extraction from the available online information due to the lack of structure and the diversity...... in the sharing methods. Most of the times, information is stored in different proprietary formats, complying with different standards and protocols which makes tasks like data mining and information harvesting very difficult. In this paper, an information harvesting tool (heteroHarvest) is presented...... with objectives to address these problems by filtering the useful information and then normalizing the information in a singular non hypertext format. Finally we describe the results of experimental evaluation. The results are found promising with an overall error rate equal to 6.5% across heterogeneous formats....

  9. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.

    Science.gov (United States)

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun

    2015-06-24

    Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

  10. Design of a wildlife avoidance planning system for autonomous harvesting operations

    DEFF Research Database (Denmark)

    Bochtis, Dionysis D.; Grøn Sørensen, Claus; Green, Ole

    2014-01-01

    Harvesting and mowing operations are among the main potential stressors affecting wildlife within agricultural landscapes, leading to large animal losses. A number of studies have been conducted on harvesting practices to address the problem of wildlife mortality, providing a number of management...... actions or field area coverage strategies. Nevertheless, these are general rules limited to simple-shaped fields, and which are not applicable to more complex operational situations. The objectives of the present study were to design a system capable of deriving a wildlife avoidance driving pattern...

  11. Radiation quality effects on pigment-protein complex of maize and pine

    International Nuclear Information System (INIS)

    Milivojevic, D.B.

    1990-01-01

    Maize hybrid ZP-704 and Pinus nigra seedlings were grown under the same low irradiance (2.0 µmol/s m²) of white (WR), blue (BR) or red (RR) irradiation and adapted similarly. Radiation quality differences during chloroplast development had a greater effect on the ratio of PSII:PSI complexes than on chlorophyll (Chl) a:b ratio. RR in mesophyll chloroplasts induced primarily an increased accumulation of Chl a, b, xanthophylls, light-harvesting complex proteins LHC1 and LHC3, and PSII-bound polypeptides. BR-treated plants were more efficient in the synthesis of β-carotene, Chl-proteins and PSI-bound polypeptides. BR resulted in the production of sun type chloroplasts while RR gave shade type chloroplasts and WR resulted in intermediate chloroplasts

  12. Stirring of the propagation and the absorption of light in complex nanophotonic media

    NARCIS (Netherlands)

    Ojambati, Oluwafemi Stephen

    2016-01-01

    This thesis presents experimental investigations into the propagation of light inside both disordered and ordered complex photonic systems. The experimental results are interpreted using theoretical and numerical models. One of the main focus of this thesis is to determine experimentally and

  13. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    Science.gov (United States)

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  14. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Science.gov (United States)

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  15. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-12-01

    Full Text Available In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV measurement. The energy harvesting wireless sensor network (WSN was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an

  16. Light Management in Optoelectronic Devices with Disordered and Chaotic Structures

    KAUST Repository

    Khan, Yasser

    2012-07-01

    With experimental realization, energy harvesting capabilities of chaotic microstructures were explored. Incident photons falling into chaotic trajectories resulted in energy buildup for certain frequencies. As a consequence, many fold enhancement in light trapping was observed. These ellipsoid like chaotic microstructures demonstrated 25% enhancement in light trapping at 450nm excitation and 15% enhancement at 550nm excitation. Optimization of these structures can drive novel chaos-assisted energy harvesting systems. In subsequent sections of the thesis, prospect of broadband light extraction from white light emitting diodes were investigated, which is an unchallenged but quintessential problem in solid-state lighting. Size dependent scattering allows microstructures to interact strongly with narrow-band light. If disorder is introduced in spread and sizes of microstructures, broadband light extraction is possible. A novel scheme with Voronoi tessellation to quantify disorder in physical systems was also introduced, and a link between voronoi disorder and state disorder of statistical mechanics was established. Overall, in this thesis some nascent concepts regarding disorder and chaos were investigated to efficiently manage electromagnetic waves in optoelectronic devices.

  17. Toward a semi-mechanical harvesting platform system for harvesting blueberries with fresh-market quality

    Science.gov (United States)

    Major concerns related to harvesting blueberries for fresh market with over-the-row (OTR) harvesters are that the quality of the fruit harvested with OTR machines is generally low and ground loss is excessive. Machine-harvested blueberries have more internal bruise and usually soften rapidly in col...

  18. How to harvest efficient laser from solar light

    Science.gov (United States)

    Zhao, Changming; Guan, Zhe; Zhang, Haiyang

    2018-02-01

    Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.

  19. Viability of osteocytes in bone autografts harvested for dental implantology

    International Nuclear Information System (INIS)

    Guillaume, Bernard; Gaudin, Christine; Georgeault, Sonia; Mallet, Romain; Basle, Michel F; Chappard, Daniel

    2009-01-01

    Bone autograft remains a very useful and popular way for filling bone defects. In maxillofacial surgery or implantology, it is used to increase the volume of the maxilla or mandible before placing dental implants. Because there is a noticeable delay between harvesting the graft and its insertion in the receiver site, we evaluated the morphologic changes at the light and transmission electron microscopy levels. Five patients having an autograft (bone harvested from the chin) were enrolled in the study. A small fragment of the graft was immediately fixed after harvesting and a second one was similarly processed at the end of the grafting period when bone has been stored at room temperature for a 20 min ± 33 s period in saline. A net increase in the number of osteocyte lacunae filled with cellular debris was observed (+41.5%). However no cytologic alteration could be observed in the remaining osteocytes. The viability of these cells is known to contribute to the success of autograft in association with other less well-identified factors.

  20. Development of multi-functional combine harvester with grain harvesting and straw baling

    International Nuclear Information System (INIS)

    Tang, Z.; Li, Y.; Cheng, C.

    2017-01-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  1. Development of multi-functional combine harvester with grain harvesting and straw baling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Z.; Li, Y.; Cheng, C.

    2017-09-01

    The decomposition and burning of straw results in serious environmental pollution, and research is needed to improve strategies for straw collection to reduce pollution. This work presents an integrated design of multi-functional rice combine harvester that allows grain harvesting and straw baling. This multi-functional combine harvester could reduce the energy consumption required for rice harvesting and simplify the process of harvesting and baling. The transmission schematic, matching parameters and the rotation speed of threshing cylinder and square baler were designed and checked. Then the evaluation of grain threshing and straw baling were tested on a transverse threshing cylinders device tes rig and straw square bales compression test rig. The test results indicated that, with a feeding rate of 3.0 kg/s, the remaining straw flow rate at the discharge outlet was only 1.22 kg/s, which indicates a variable mass threshing process by the transverse threshing cylinder. Then the optimal diameter, length and rotating speed of multi-functional combine harvester transverse threshing cylinder were 554 mm, 1590 mm, and 850 r/min, respectively. The straw bale compression rotating speed of crank compression slider and piston was 95 r/min. Field trials by the multi-functional combine harvester formed bales with height×width×length of 40×50×54-63 cm, bale mass of 22.5 to 26.0 kg and bale density 206 to 216 kg/m3. This multi-functional combine harvester could be used for stem crops (such as rice, wheat and soybean) grain harvesting and straw square baling, which could reduce labor cost and power consumption.

  2. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    International Nuclear Information System (INIS)

    Pearson, M R; Eaton, M J; Pullin, R; Featherston, C A; Holford, K M

    2012-01-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  3. Influence of harvest time on the composition and quality of Rosinjola cultivar virgin olive oils

    Directory of Open Access Journals (Sweden)

    Olivera Koprivnjak

    2012-01-01

    Full Text Available The aim of this investigation was to determine the influence of Rosinjola cultivar fruits harvest time on oil content in olive pastes and on composition and quality of obtained oils. In the late harvest time the higher value of oil in the dry matter of olive paste was determined than in the early harvest time, but the late harvest negatively affected oil quality parameters. The proportion of oleic acid decreased slightly in the late harvest time and linoleic acid increased. The ratio of oleic/linoleic acid, total phenols and ortho-diphenols, as well as bitterness index and antioxidant capacity decreased in the oil obtained from black fruit. Late harvest time influenced the decrease in chlorophyll and carotenoid content and color parameter values (a*, b* and C in obtained oils, but lightness (L* increased. The concentration of volatiles responsible for positive odour of Rosinjola oils decreased, except for aldehydes which increased slightly. Sensory score of oil obtained from the late harvest time decreased, as well as intensities of sensory characteristics olive fruity, apple, green grass, bitter and pungent, while the intensities of characteristics sweet and ripe fruits increased. Oils obtained in the early harvest time were described as harmonious and astringent with pronounced green odour notes, and oils obtained in the late harvest time as overripe and without freshness. The obtained results are important for optimal harvest time determination and understanding the potential of Rosinjola cultivar for production of high quality virgin olive oil with targeted and specific characteristics.

  4. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells

    KAUST Repository

    Sergeant, Nicholas P.; Hadipour, Afshin; Niesen, Bjoern; Cheyns, David; Heremans, Paul; Peumans, Peter; Rand, Barry P.

    2012-01-01

    The use of an ITO-free MoO 3/Ag/MoO 3 anode to control the photon harvesting in PCDTBT:PC 70BM solar cells is proposed. At first sight, the fact that these anodes possess reduced far-field transmission compared to ITO may seem to be a disadvantage

  5. Direct Observation of Energy Detrapping in LH1-RC Complex by Two-Dimensional Electronic Spectroscopy.

    Science.gov (United States)

    Ma, Fei; Yu, Long-Jiang; Hendrikx, Ruud; Wang-Otomo, Zheng-Yu; van Grondelle, Rienk

    2017-01-18

    The purple bacterial core light harvesting antenna-reaction center (LH1-RC) complex is the simplest system able to achieve the entire primary function of photosynthesis. During the past decade, a variety of photosynthetic proteins were studied by a powerful technique, two-dimensional electronic spectroscopy (2DES). However, little attention has been paid to LH1-RC, although its reversible uphill energy transfer, trapping, and backward detrapping processes, represent a crucial step in the early photosynthetic reaction dynamics. Thus, in this work, we employed 2DES to study two LH1-RC complexes of Thermochromatium (Tch.) tepidum. By direct observation of detrapping, the complex reversible process was clearly identified and an overall scheme of the excitation evolution in LH1-RC was obtained.

  6. Stand, Harvest, and Equipment Interactions in Simulated Harvesting Prescriptions

    Science.gov (United States)

    Jingxin Wang; W. Dale Greene; Bryce J. Stokes

    1998-01-01

    We evaluated potential interactions of stand type, harvesting method, and equipment in an experiment using interactive simulation. We examined three felling methods (chain saw, feller-buncher, harvester) and two extraction methods (grapple skidder and forwarder) performing clearcuts, sheltenvood cuts, and single-tree selection cuts in both an uneven-aged natural stand...

  7. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Carmen Ruger-Herreros

    Full Text Available The activation of transcription by light in the fungus Neurospora crassa requires the White Collar Complex (WCC, a photoreceptor and transcription factor complex. After light reception two WCCs interact and bind the promoters of light-regulated genes to activate transcription. This process is regulated by VVD, a small photoreceptor that disrupts the interaction between WCCs and leads to a reduction in transcription after long exposures to light. The N. crassa RCO-1/RCM-1 repressor complex is the homolog of the Tup1-Ssn6 repressor complex in yeast, and its absence modifies photoadaptation. We show that the absence of the RCO-1/RCM-1 repressor complex leads to several alterations in transcription that are gene-specific: an increase in the accumulation of mRNAs in the dark, a repression of transcription, and a derepression of transcription after long exposures to light. The absence of the RCO-1/RCM-1 repressor complex leads to lower VVD levels that are available for the regulation of the activity of the WCC. The reduction in the amount of VVD results in increased WCC binding to the promoters of light-regulated genes in the dark and after long exposures to light, leading to the modification of photoadaptation that has been observed in rco-1 and rcm-1 mutants. Our results show that the photoadaptation phenotype of mutants in the RCO-1/RCM-1 repressor complex is, at least in part, an indirect consequence of the reduction of vvd transcription, and the resulting modification in the regulation of transcription by the WCC.

  8. Effect of time of harvest, stage of fruit ripening, and post-harvest ...

    African Journals Online (AJOL)

    Seeds were extracted from half of the fruits harvested from each stage immediately after harvest while the other halves were stored at room temperature to ripen to the soft-red stage before seed extraction. Fruit weight in both cultivars decreased with plant age. Fruits harvested at the yellow-ripe stage produced the highest ...

  9. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    Science.gov (United States)

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; Niedzwiedzki, Dariusz M.; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J.; Jackson, Philip J.; Martin, Elizabeth C.; Li, Ying; Holten, Dewey; Neil Hunter, C.

    2015-01-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the

  10. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    NARCIS (Netherlands)

    Matova, S.P.; Elfrink, R.; Vullers, R.J.M.; Schaijk, R. van

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with

  11. Fog Harvesting with Harps.

    Science.gov (United States)

    Shi, Weiwei; Anderson, Mark J; Tulkoff, Joshua B; Kennedy, Brook S; Boreyko, Jonathan B

    2018-04-11

    Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture microscopic fog droplets, whereas fine meshes suffer from clogging issues. Here, we design and fabricate fog harvesters comprising an array of vertical wires, which we call "fog harps". Under controlled laboratory conditions, the fog-harvesting rates for fog harps with three different wire diameters were compared to conventional meshes of equivalent dimensions. As expected for the mesh structures, the mid-sized wires exhibited the largest fog collection rate, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog-harvesting rate continually increased with decreasing wire diameter for the fog harps due to efficient droplet shedding that prevented clogging. This resulted in a 3-fold enhancement in the fog-harvesting rate for the harp design compared to an equivalent mesh.

  12. Energy harvesting using TEG and PV cell for low power application

    Science.gov (United States)

    Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain

    2018-02-01

    A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.

  13. Historical harvests reduce neighboring old-growth basal area across a forest landscape.

    Science.gov (United States)

    Bell, David M; Spies, Thomas A; Pabst, Robert

    2017-07-01

    of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests. © 2017 by the Ecological Society of America.

  14. A new harvest operation cost model to evaluate forest harvest layout alternatives

    Science.gov (United States)

    Mark M. Clark; Russell D. Meller; Timothy P. McDonald; Chao Chi Ting

    1997-01-01

    The authors develop a new model for harvest operation costs that can be used to evaluate stands for potential harvest. The model is based on felling, extraction, and access costs, and is unique in its consideration of the interaction between harvest area shapes and access roads. The scientists illustrate the model and evaluate the impact of stand size, volume, and road...

  15. Crystallographic Structure of Xanthorhodopsin, the Light-Driven Proton Pump With a Dual Chromophore

    International Nuclear Information System (INIS)

    Luecke, H.; Schobert, B.; Stagno, J.; Imasheva, E.S.; Wang, J.M.; Balashov, S.P.; Lanyi, J.K

    2008-01-01

    Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein-carotenoid complex by X-ray diffraction, to 1.9-(angstrom) resolution. Although it contains 7 transmembrane helices like bacteriorhodopsin and archaerhodopsin, the structure of xanthorhodopsin is considerably different from the 2 archaeal proteins. The crystallographic model for this rhodopsin introduces structural motifs for proton transfer during the reaction cycle, particularly for proton release, that are dramatically different from those in other retinal-based transmembrane pumps. Further, it contains a histidine-aspartate complex for regulating the pK a of the primary proton acceptor not present in archaeal pumps but apparently conserved in eubacterial pumps. In addition to aiding elucidation of a more general proton transfer mechanism for light-driven energy transducers, the structure defines also the geometry of the carotenoid and the retinal. The close approach of the 2 polyenes at their ring ends explains why the efficiency of the excited-state energy transfer is as high as ∼45%, and the 46 o angle between them suggests that the chromophore location is a compromise between optimal capture of light of all polarization angles and excited-state energy transfer

  16. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.

    2016-01-01

    . To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal

  17. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    Science.gov (United States)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  18. Reversible Low-Light Induced Photoswitching of Crowned Spiropyran-DO3A Complexed with Gadolinium(III Ions

    Directory of Open Access Journals (Sweden)

    André Knoesen

    2012-05-01

    Full Text Available Photoswitchable spiropyran has been conjugated to the crowned ring system DO3A, which improves its solubility in dipolar and polar media and stabilizes the merocyanine isomer. Adding the lanthanide ion gadolinium(III to the macrocyclic ring system leads to a photoresponsive magnetic resonance imaging contrast agent that displays an increased spin-lattice relaxation time (T1 upon visible light stimulation. In this work, the photoresponse of this photochromic molecule to weak light illumination using blue and green light emitting diodes was investigated, simulating the emission spectra from bioluminescent enzymes. Photon emission rate of the light emitting diodes was changed, from 1.75 × 1016 photons·s−1 to 2.37 × 1012 photons·s−1. We observed a consistent visible light-induced isomerization of the merocyanine to the spiropyran form with photon fluxes as low as 2.37 × 1012 photons·s−1 resulting in a relaxivity change of the compound. This demonstrates the potential for use of the described imaging probes in low light level applications such as sensing bioluminescence enzyme activity. The isomerization behavior of gadolinium(III-ion complexed and non-complexed spiropyran-DO3A was analyzed in water and ethanol solution in response to low light illumination and compared to the emitted photon emission rate from over-expressed Gaussia princeps luciferase.

  19. Microalgae harvesting techniques: A review.

    Science.gov (United States)

    Singh, Gulab; Patidar, S K

    2018-07-01

    Microalgae with wide range of commercial applications have attracted a lot of attention of the researchers in the last few decades. However, microalgae utilization is not economically sustainable due to high cost of harvesting. A wide range of solid - liquid separation techniques are available for microalgae harvesting. The techniques include coagulation and flocculation, flotation, centrifugation and filtration or a combination of various techniques. Despite the importance of harvesting to the economics and energy balance, there is no universal harvesting technique for microalgae. Therefore, this review focuses on assessing technical, economical and application potential of various harvesting techniques so as to allow selection of an appropriate technology for cost effectively harvesting of microalgae from their culture medium. Various harvesting and concentrating techniques of microalgae were reviewed to suggest order of suitability of the techniques for four main microalgae applications i.e biofuel, human and animal food, high valued products, and water quality restoration. For deciding the order of suitability, a comparative analysis of various harvesting techniques based on the six common criterions (i.e biomass quality, cost, biomass quantity, processing time, species specific and toxicity) has been done. Based on the order of various techniques vis-a-vis various criteria and preferred order of criteria for various applications, order of suitability of harvesting techniques for various applications has been decided. Among various harvesting techniques, coagulation and flocculation, centrifugation and filtration were found to be most suitable for considered applications. These techniques may be used alone or in combination for increasing the harvesting efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity.

    Science.gov (United States)

    Etienne, Audrey; Génard, Michel; Lobit, Philippe; Bugaud, Christophe

    2014-11-18

    Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free

  1. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2.

    Science.gov (United States)

    Zerlauskiene, O; Trinkunas, G; Gall, A; Robert, B; Urboniene, V; Valkunas, L

    2008-12-11

    A comparative analysis of the temperature dependence of the absorption spectra of the LH2 complexes from different species of photosynthetic bacteria, i.e., Rhodobacter sphaeroides, Rhodoblastus acidophilus, and Phaeospirillum molischianum, was performed in the temperature range from 4 to 300 K. Qualitatively, the temperature dependence is similar for all of the species studied. The spectral bandwidths of both B800 and B850 bands increases with temperature while the band positions shift in opposite directions: the B800 band shifts slightly to the red while the B850 band to the blue. These results were analyzed using the modified Redfield theory based on the exciton model. The main conclusion drawn from the analysis was that the spectral density function (SDF) is the main factor underlying the strength of the temperature dependence of the bandwidths for the B800 and B850 electronic transitions, while the bandwidths themselves are defined by the corresponding inhomogeneous distribution function (IDF). Slight variation of the slope of the temperature dependence of the bandwidths between species can be attributed to the changes of the values of the reorganization energies and characteristic frequencies determining the SDF. To explain the shift of the B850 band position with temperature, which is unusual for the conventional exciton model, a temperature dependence of the IDF must be postulated. This dependence can be achieved within the framework of the modified (dichotomous) exciton model. The slope of the temperature dependence of the B850 bandwidth is then defined by the value of the reorganization energy and by the difference between the transition energies of the dichotomous states of the pigment molecules. The equilibration factor between these dichotomous states mainly determines the temperature dependence of the peak shift.

  2. PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester.

    Science.gov (United States)

    Kim, Younghoon; Na, Jongbeom; Park, Chihyun; Shin, Haijin; Kim, Eunkyoung

    2015-08-05

    An efficient thin film acoustic energy harvester was explored using flexible poly(3,4-ethylene dioxythiophene) (PEDOT) films as electrodes in an all-organic triboelectric generator (AO-TEG). A thin film AO-TEG structured as PEDOT/Kapton//PET/PEDOT was prepared by the solution casting polymerization(SCP) on the dielectric polymer films. As-prepared AO-TEG showed high flexibility and durability due to the strong adhesion between the electrodes and the dielectric polymer. The short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power density (Pw) reached 50 mA/m(2), 700 V, and 12.9 W/m(2) respectively. The output current density decreased with the increase in the electrode resistance (Re), but the energy loss in the organic electrodes was negligible. The AO-TEG could light up 180 LEDs instantaneously upon touching of the AO-TEG with a palm (∼120 N). With the flexible structure, the AO-TEG was worn as clothes and generated electricity to light LEDs upon regular human movement. Furthermore, the AO-TEG was applicable as a thin film acoustic energy harvester, which used music to generate electricity enough for powering of 5 LEDs. An AO-TEG with a PEDOT electrode (Re = 200 Ω) showed instantaneous peak-to-peak voltage generation of 11 V under a sound pressure level (SPL) of 90-100 dB. The harvested acoustic energy through the AO-TEG was 350 μJ from the 4 min playing of the same single song. This is the first demonstration of a flexible triboelectric generator (TEG) using an organic electrode for harvesting acoustic energy from ambient environment.

  3. Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex

    Science.gov (United States)

    Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.

    2004-07-01

    In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.

  4. Some features of light propagation through layers with a complex refractive index

    International Nuclear Information System (INIS)

    Efimov, V.V.; Sementsov, D.I.

    1994-01-01

    By solving Maxwell's equations, expressions are obtained for the energy fluxes both inside and outside a layer with a complex refractive index at normal incidence of light. It is shown that inside the layer, along with fluxes of forward and backward waves, an interference flux can be distinguished whose magnitude is proportional to the imaginary part of the refractive index. A detailed numerical analysis of the energy transmission (T) and reflection (R) coefficients versus the thickness of the layer with negative absorption is performed for normal incidence of light onto the layer surface. Total distribution of the energy flux over the layer thickness is considered both for absorbing and amplifying layers. 13 refs., 4 figs

  5. Low light illumination study on commercially available homojunction photovoltaic cells

    International Nuclear Information System (INIS)

    Russo, Johnny; Ray, William; Litz, Marc S.

    2017-01-01

    Highlights: • COTS PV cells are tested under indoor and narrow light spectra. • InGaP is the most efficient under low light conditions (0.5–100 μW_o_p_t/cm"2). • InGaP is selected for isotope battery. • Optimal incident wavelength (614 nm) for InGaP is identified in model. - Abstract: Low illumination (10"−"4 suns) and indoor light energy harvesting is needed to meet the demands of zero net energy (ZNE) building, Internet of Things (IoT), and beta-photovoltaic energy harvesting systems to power remote sensors. Photovoltaic (PV) solar cells under low intensity and narrow (±40 nm) light spectrum conditions are not well characterized nor developed, especially for commercially available devices and scalable systems. PV operating characteristics under 1 sun illumination decrease at lower light intensity and narrow spectrum conditions (efficiency drops from ∼25% at 100 mW_o_p_t/cm"2 to 2% at 1 μW_o_p_t/cm"2). By choosing a PV with a bandgap that matches the light source operating wavelength, the total system efficiency can be improved. By quantifying losses on homojunction photovoltaics (thermalization and leakage current), we have determined the theoretical optimized efficiency for a set of PV material and a selected set of light sources. We measure single-junction solar cells’ parameters under three different light sources (indoor light and narrow spectrum LED sources) with light intensities ranging from 0.5 to 100 μW_o_p_t/cm"2. Measurements show that indium gallium phosphide (InGaP) PV has the highest surface power density and conversion efficiency (29% under ≈1 μW_o_p_t/cm"2 from a 523 nm central peak LED). A beta-photovoltaic experimental study identifies InGaP to be optimized for use with the ZnS:Cu, Al and tritium at STP. The results have guided the selection of PV material for scalable isotope batteries and other low-light energy harvesting systems.

  6. Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy

    Science.gov (United States)

    Kim, Min-Ki; Kim, Myoung-Soo; Jo, Sung-Eun; Kim, Yong-Jun

    2016-12-01

    The triboelectric nanogenerator, an energy harvesting device that converts external kinetic energy into electrical energy through using a nano-structured triboelectric material, is well known as an energy harvester with a simple structure and high output voltage. However, triboelectric nanogenerators also inevitably generate heat resulting from the friction that arises from their inherent sliding motions. In this paper, we present a hybrid nanogenerator, which integrates a triboelectric generator and a thermoelectric generator (TEG) for harvesting both the kinetic friction energy and the heat energy that would otherwise be wasted. The triboelectric part consists of a polytetrafluoroethylene (PTFE) film with nano-structures and a movable aluminum panel. The thermoelectric part is attached to the bottom of the PTFE film by an adhesive phase change material layer. We confirmed that the hybrid nanogenerator can generate an output power that is higher than that generated by a single triboelectric nanogenerator or a TEG. The hybrid nanogenerator was capable of producing a power density of 14.98 mW cm-2. The output power, produced from a sliding motion of 12 cm s-1, was capable of instantaneously lighting up 100 commercial LED bulbs. The hybrid nanogenerator can charge a 47 μF capacitor at a charging rate of 7.0 mV s-1, which is 13.3% faster than a single triboelectric generator. Furthermore, the efficiency of the device was significantly improved by the addition of a heat source. This hybrid energy harvester does not require any difficult fabrication steps, relative to existing triboelectric nanogenerators. The present study addresses a method for increasing the efficiency while solving other problems associated with triboelectric nanogenerators.

  7. Efficient light-emitting devices based on platinum-complexes-anchored polyhedral oligomeric silsesquioxane materials

    KAUST Repository

    Yang, Xiaohui

    2010-08-24

    The synthesis, photophysical, and electrochemical characterization of macromolecules, consisting of an emissive platinum complex and carbazole moieties covalently attached to a polyhedral oligomeric silsesquioxane (POSS) core, is reported. Organic light-emitting devices based on these POSS materials exhibit a peak external quantum efficiency of ca. 8%, which is significantly higher than that of the analogous devices with a physical blend of the platinum complexes and a polymer matrix, and they represent noticeable improvement in the device efficiency of solution-processable phosphorescent excimer devices. Furthermore, the ratio of monomer and excimer/aggregate electroluminescent emission intensity, as well as the device efficiency, increases as the platinum complex moiety presence on the POSS macromolecules decreases. © 2010 American Chemical Society.

  8. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs

    Czech Academy of Sciences Publication Activity Database

    Selyanin, Vadim; Hauruseu, Dzmitry; Koblížek, Michal

    2016-01-01

    Roč. 128, č. 1 (2016), s. 35-43 ISSN 0166-8595 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : Bacteriochlorophyll * Purple non-sulfur bacteria * Photosynthetic unit size Subject RIV: EE - Microbiology, Virology Impact factor: 3.864, year: 2016

  9. Timber harvest as the predominant disturbance regime in northeastern U.S. forests: Effects of harvest intensification

    Science.gov (United States)

    Brown, Michelle L.; Canham, Charles D.; Murphy, Lora; Donovan, Therese M.

    2018-01-01

    Harvesting is the leading cause of adult tree mortality in forests of the northeastern United States. While current rates of timber harvest are generally sustainable, there is considerable pressure to increase the contribution of forest biomass to meet renewable energy goals. We estimated current harvest regimes for different forest types and regions across the U.S. states of New York, Vermont, New Hampshire, and Maine using data from the U.S. Forest Inventory and Analysis Program. We implemented the harvest regimes in SORTIE‐ND, an individual‐based model of forest dynamics, and simulated the effects of current harvest regimes and five additional harvest scenarios that varied by harvest frequency and intensity over 150 yr. The best statistical model for the harvest regime described the annual probability of harvest as a function of forest type/region, total plot basal area, and distance to the nearest improved road. Forests were predicted to increase in adult aboveground biomass in all harvest scenarios in all forest type and region combinations. The magnitude of the increase, however, varied dramatically—increasing from 3% to 120% above current landscape averages as harvest frequency and intensity decreased. The variation can be largely explained by the disproportionately high harvest rates estimated for Maine as compared with the rest of the region. Despite steady biomass accumulation across the landscape, stands that exhibited old‐growth characteristics (defined as ≥300 metric tons of biomass/hectare) were rare (8% or less of stands). Intensified harvest regimes had little effect on species composition due to widespread partial harvesting in all scenarios, resulting in dominance by late‐successional species over time. Our analyses indicate that forest biomass can represent a sustainable, if small, component of renewable energy portfolios in the region, although there are tradeoffs between carbon sequestration in forest biomass and sustainable

  10. Highly efficient green light harvesting from Mg doped ZnO nanoparticles: Structural and optical studies

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sarla, E-mail: mail2sarlasharma@gmail.com [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Vyas, Rishi [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Sharma, Neha [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Singh, Vidyadhar [Okinawa Institute of Science and Technology, Graduate University, Okinawa 9040495 (Japan); Singh, Arvind [Department of Physics, Institute of Chemical Technology, Mumbai 400 019 (India); Kataria, Vanjula; Gupta, Bipin Kumar [National Physical Laboratory (CSIR), New Delhi 110012 (India); Vijay, Y.K. [Department of Physics, University of Rajasthan, Jaipur 302055 (India)

    2013-03-05

    Graphical abstract: Demonstration of highly efficient green light emission harvesting from Mg doped ZnO nanoparticles were synthesized via facile wet chemical route with an average particle size ∼15 nm. The resulted nanoparticles exhibit intense green emission peaking at 530 nm upon 325 nm excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg and beyond it exhibits a decrees in emission. The obtained highly luminescent green emission of ZnO nanoparticle would be an ultimate choice for next generation optoelectronics device materials. Highlights: ► Zn{sub 1−x}Mg{sub x}O nanoparticles were prepared by mechanochemical processing. ► High blue emission intensity was observed contrary to previous reports. ► Blue emission is suggested to be originating from the high density of defects. ► Defect density in as-milled condition is very high resulting in high emission. ► Mg promoted non-radiative recombination and lowered intensities. -- Abstract: Highly efficient green light emission was observed from Mg doped ZnO nanoparticles synthesized via facile wet chemical route with an average particle size ∼15 nm. The XRD analysis confirmed the growth of wurtzite phase of ZnO nanoparticles. Moreover, the optical properties of these nanoparticles were investigated by different spectroscopic techniques. The resulted nanoparticles exhibit intense green emission peaking at 530 nm (2.34 eV) upon 325 nm (3.81 eV) excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg, and beyond it exhibits a decrees in emission. Furthermore, by varying the band gap from 3.50 to 3.61 eV, the PL spectra showed a near band edge (NBE) emission at wavelength around 370 nm (3.35 eV) and a broad deep level emission in the visible region. The obtained highly

  11. Safety and health in forest harvesting operations. Diagnosis and preventive actions. A review.

    OpenAIRE

    P. Albizu-Urionabarrenetxea; E. Tolosana-Esteban; E. Roman-Jordan

    2013-01-01

    Aim of study: to review the present state of the art in relation to the main labour risks and the most relevant results of recent studies evaluating the safety and health conditions of the forest harvesting work and better ways to reduce accidents.Area of study: It focuses mainly on developed Countries, where the general concern about work risks prevention, together with the complex idiosyncrasy of forest work in forest harvesting operations, has led to a growing interest from the forest scie...

  12. The Arabidopsis szl1 Mutant Reveals a Critical Role of β-Carotene in Photosystem I Photoprotection1[C][W

    Science.gov (United States)

    Cazzaniga, Stefano; Li, Zhirong; Niyogi, Krishna K.; Bassi, Roberto; Dall’Osto, Luca

    2012-01-01

    Carotenes and their oxygenated derivatives, the xanthophylls, are structural determinants in both photosystems (PS) I and II. They bind and stabilize photosynthetic complexes, increase the light-harvesting capacity of chlorophyll-binding proteins, and have a major role in chloroplast photoprotection. Localization of carotenoid species within each PS is highly conserved: Core complexes bind carotenes, whereas peripheral light-harvesting systems bind xanthophylls. The specific functional role of each xanthophyll species has been recently described by genetic dissection, however the in vivo role of carotenes has not been similarly defined. Here, we have analyzed the function of carotenes in photosynthesis and photoprotection, distinct from that of xanthophylls, by characterizing the suppressor of zeaxanthin-less (szl) mutant of Arabidopsis (Arabidopsis thaliana) which, due to the decreased activity of the lycopene-β-cyclase, shows a lower carotene content than wild-type plants. When grown at room temperature, mutant plants showed a lower content in PSI light-harvesting complex I complex than the wild type, and a reduced capacity for chlorophyll fluorescence quenching, the rapidly reversible component of nonphotochemical quenching. When exposed to high light at chilling temperature, szl1 plants showed stronger photoxidation than wild-type plants. Both PSI and PSII from szl1 were similarly depleted in carotenes and yet PSI activity was more sensitive to light stress than PSII as shown by the stronger photoinhibition of PSI and increased rate of singlet oxygen release from isolated PSI light-harvesting complex I complexes of szl1 compared with the wild type. We conclude that carotene depletion in the core complexes impairs photoprotection of both PS under high light at chilling temperature, with PSI being far more affected than PSII. PMID:23029671

  13. Shaping Microwave Fields Using Nonlinear Unsolicited Feedback: Application to Enhance Energy Harvesting

    Science.gov (United States)

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2017-12-01

    Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.

  14. The role of crown architecture for light harvesting and carbon gain in extreme light environments assessed with a structurally realistic 3-D model

    Directory of Open Access Journals (Sweden)

    Valladares, Fernando

    2000-06-01

    Full Text Available Main results from different studies of crown architecture adaptation to extreme light environments are presented. Light capture and carbon gain by plants from low (forest understory and high (open Mediterranean-type ecosystems light environments were simulated with a 3-D model (YPLANT, which was developed specifically to analyse the structural features that determine light interception and photosynthesis at the whole plant level. Distantly related taxa with contrasting architectures exhibited similar efficiencies of light interception (functional convergence. Between habitats large differences in architecture existed depending on whether light capture must be maximised or whether excess photon flux density must be avoided. These differences are realised both at the species level and within a species because of plastic adjustments of crown architecture to the external light environment. Realistic, 3-D architectural models are indispensable tools in this kind of comparative studies due to the intrinsic complexity of plant architecture. Their efficient development requires a fluid exchange of ideas between botanists, ecologists and plant modellers.Se presentan los resultados principales de varios estudios sobre las adaptaciones del follaje a ambientes lumínicos extremos. Plantas de ambientes oscuros (sotobosques de bosques templados y tropicales y de ambientes muy luminosos (ecosistemas abiertos de tipo Mediterráneo han sido estudiadas mediante un modelo (YPLANT que permite la reconstrucción tridimensional de la parte aérea de las plantas e identificar los rasgos estructurales que determinan la interceptación de luz y la fotosíntesis y transpiraci6n potencial a nivel de toda la copa. Taxones no relacionados y con arquitecturas muy diferentes mostraron una eficiencia en la interceptaci6n de luz similar (convergencia funcional. La comparación entre hábitat revelo grandes diferencias arquitecturales dependiendo de si la absorción de luz deb

  15. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Sebastian B., E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Hartmann, David; Sarfert, Wiebke, E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-09-14

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2´-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy)₂(pbpy)][PF₆]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  16. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lewis A.; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-09-14

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  17. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    International Nuclear Information System (INIS)

    Baker, Lewis A.; Habershon, Scott

    2015-01-01

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  18. Novel aspects of chlorophyll a/b-binding proteins

    NARCIS (Netherlands)

    Bassi, Roberto; Sandonà, Dorianna; Croce, Roberta

    1997-01-01

    The light-harvesting proteins (LHC) constitute a multigene family including, in higher plants, at least 12 members whose location, within the photosynthetic membrane, relative abundance and putative function appear to be very different. The major light-harvesting complex of photosystem II (LHCII) is

  19. Harvest of woody crops with a bio-baler in eight different environments in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Current, D. [Minnesota Univ., MN (United States); Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada); Hebert, P.L. [Laval Univ., Quebec City, PQ (Canada). Dept. des sols et de genie agroalimentaire; Robert, F.S. [Laval Univ., Quebec City, PQ (Canada). Sols et environnement; Gillitzdr, P.

    2010-07-01

    The biobaler was originally developed for short-rotation willow plantations, but can currently harvest a wide range of woody crops with a basal diameter up to 150 mm. The biobaler is an alternate approach to harvest woody crops as round bales, generally 1.2 m wide by 1.5 m diameter. In addition to harvesting trees, it can improve management of wild brush, forest understory vegetation and encroaching small trees on abandoned land. It allows easy handling, storage and transportation to sites where the biomass can be used for energy use or other applications. This paper reported on a study that was conducted in the fall of 2009 in which a third generation biobaler was used on 8 different sites across Minnesota, notably Waseca, Madelia, Faribault, Afton, Ogilvie, Hinckley, Aurora and Hibbing. A total of 160 bales were harvested from these sites. The average bale mass was 466 kg and average bale density was 296 kg/m{sup 3}. The moisture content averaged 44.9 per cent and the bale dry matter density averaged 163 kg DM/m{sup 3}. The harvested biomass per unit area ranged from 2.49 t/ha on lightly covered land to 55.24 t/ha on densely covered land. The harvested or recovered biomass was 72.3 per cent of the original cottonwood in Madelia; 75.8 per cent of the original oak and maple shrubs in Afton; and 73.5 per cent of the poplar regeneration in Hibbing. The actual harvest rate averaged 17.40 bales/h.

  20. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.