WorldWideScience

Sample records for ligand-binding site prediction

  1. Development of a protein-ligand-binding site prediction method based on interaction energy and sequence conservation.

    Science.gov (United States)

    Tsujikawa, Hiroto; Sato, Kenta; Wei, Cao; Saad, Gul; Sumikoshi, Kazuya; Nakamura, Shugo; Terada, Tohru; Shimizu, Kentaro

    2016-09-01

    We present a new method for predicting protein-ligand-binding sites based on protein three-dimensional structure and amino acid conservation. This method involves calculation of the van der Waals interaction energy between a protein and many probes placed on the protein surface and subsequent clustering of the probes with low interaction energies to identify the most energetically favorable locus. In addition, it uses amino acid conservation among homologous proteins. Ligand-binding sites were predicted by combining the interaction energy and the amino acid conservation score. The performance of our prediction method was evaluated using a non-redundant dataset of 348 ligand-bound and ligand-unbound protein structure pairs, constructed by filtering entries in a ligand-binding site structure database, LigASite. Ligand-bound structure prediction (bound prediction) indicated that 74.0 % of predicted ligand-binding sites overlapped with real ligand-binding sites by over 25 % of their volume. Ligand-unbound structure prediction (unbound prediction) indicated that 73.9 % of predicted ligand-binding residues overlapped with real ligand-binding residues. The amino acid conservation score improved the average prediction accuracy by 17.0 and 17.6 points for the bound and unbound predictions, respectively. These results demonstrate the effectiveness of the combined use of the interaction energy and amino acid conservation in the ligand-binding site prediction.

  2. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  3. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.

    Directory of Open Access Journals (Sweden)

    John A Capra

    2009-12-01

    Full Text Available Identifying a protein's functional sites is an important step towards characterizing its molecular function. Numerous structure- and sequence-based methods have been developed for this problem. Here we introduce ConCavity, a small molecule binding site prediction algorithm that integrates evolutionary sequence conservation estimates with structure-based methods for identifying protein surface cavities. In large-scale testing on a diverse set of single- and multi-chain protein structures, we show that ConCavity substantially outperforms existing methods for identifying both 3D ligand binding pockets and individual ligand binding residues. As part of our testing, we perform one of the first direct comparisons of conservation-based and structure-based methods. We find that the two approaches provide largely complementary information, which can be combined to improve upon either approach alone. We also demonstrate that ConCavity has state-of-the-art performance in predicting catalytic sites and drug binding pockets. Overall, the algorithms and analysis presented here significantly improve our ability to identify ligand binding sites and further advance our understanding of the relationship between evolutionary sequence conservation and structural and functional attributes of proteins. Data, source code, and prediction visualizations are available on the ConCavity web site (http://compbio.cs.princeton.edu/concavity/.

  4. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.

    Science.gov (United States)

    Capra, John A; Laskowski, Roman A; Thornton, Janet M; Singh, Mona; Funkhouser, Thomas A

    2009-12-01

    Identifying a protein's functional sites is an important step towards characterizing its molecular function. Numerous structure- and sequence-based methods have been developed for this problem. Here we introduce ConCavity, a small molecule binding site prediction algorithm that integrates evolutionary sequence conservation estimates with structure-based methods for identifying protein surface cavities. In large-scale testing on a diverse set of single- and multi-chain protein structures, we show that ConCavity substantially outperforms existing methods for identifying both 3D ligand binding pockets and individual ligand binding residues. As part of our testing, we perform one of the first direct comparisons of conservation-based and structure-based methods. We find that the two approaches provide largely complementary information, which can be combined to improve upon either approach alone. We also demonstrate that ConCavity has state-of-the-art performance in predicting catalytic sites and drug binding pockets. Overall, the algorithms and analysis presented here significantly improve our ability to identify ligand binding sites and further advance our understanding of the relationship between evolutionary sequence conservation and structural and functional attributes of proteins. Data, source code, and prediction visualizations are available on the ConCavity web site (http://compbio.cs.princeton.edu/concavity/).

  5. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods.

    Science.gov (United States)

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James

    2015-12-15

    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  6. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  7. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation

    Directory of Open Access Journals (Sweden)

    Schroeder Michael

    2006-09-01

    Full Text Available Abstract Background Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. Results We present LIGSITEcsc, an extension and implementation of the LIGSITE algorithm. LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcsc performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Conclusion The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITEcsc and its source code is available at scoppi.biotec.tu-dresden.de/pocket.

  8. COMPARATIVE MODELLING AND LIGAND BINDING SITE PREDICTION OF A FAMILY 43 GLYCOSIDE HYDROLASE FROM Clostridium thermocellum

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    2012-06-01

    Full Text Available The phylogenetic analysis of Clostridium thermocellum family 43 glycoside hydrolase (CtGH43 showed close evolutionary relation with carbohydrate binding family 6 proteins from C. cellulolyticum, C. papyrosolvens, C. cellulyticum, and A. cellulyticum. Comparative modeling of CtGH43 was performed based on crystal structures with PDB IDs 3C7F, 1YIF, 1YRZ, 2EXH and 1WL7. The structure having lowest MODELLER objective function was selected. The three-dimensional structure revealed typical 5-fold beta–propeller architecture. Energy minimization and validation of predicted model with VERIFY 3D indicated acceptability of the proposed atomic structure. The Ramachandran plot analysis by RAMPAGE confirmed that family 43 glycoside hydrolase (CtGH43 contains little or negligible segments of helices. It also showed that out of 301 residues, 267 (89.3% were in most favoured region, 23 (7.7% were in allowed region and 9 (3.0% were in outlier region. IUPred analysis of CtGH43 showed no disordered region. Active site analysis showed presence of two Asp and one Glu, assumed to form a catalytic triad. This study gives us information about three-dimensional structure and reaffirms the fact that it has the similar core 5-fold beta–propeller architecture and so probably has the same inverting mechanism of action with the formation of above mentioned catalytic triad for catalysis of polysaccharides.

  9. The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction.

    Science.gov (United States)

    Roche, Daniel B; Buenavista, Maria T; Tetchner, Stuart J; McGuffin, Liam J

    2011-07-01

    The IntFOLD server is a novel independent server that integrates several cutting edge methods for the prediction of structure and function from sequence. Our guiding principles behind the server development were as follows: (i) to provide a simple unified resource that makes our prediction software accessible to all and (ii) to produce integrated output for predictions that can be easily interpreted. The output for predictions is presented as a simple table that summarizes all results graphically via plots and annotated 3D models. The raw machine readable data files for each set of predictions are also provided for developers, which comply with the Critical Assessment of Methods for Protein Structure Prediction (CASP) data standards. The server comprises an integrated suite of five novel methods: nFOLD4, for tertiary structure prediction; ModFOLD 3.0, for model quality assessment; DISOclust 2.0, for disorder prediction; DomFOLD 2.0 for domain prediction; and FunFOLD 1.0, for ligand binding site prediction. Predictions from the IntFOLD server were found to be competitive in several categories in the recent CASP9 experiment. The IntFOLD server is available at the following web site: http://www.reading.ac.uk/bioinf/IntFOLD/.

  10. Cloud Computing for Protein-Ligand Binding Site Comparison

    Science.gov (United States)

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  11. Cloud Computing for Protein-Ligand Binding Site Comparison

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung

    2013-01-01

    Full Text Available The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  12. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  13. Predicting the right spacing between protein immobilization sites on self-assembled monolayers to optimize ligand binding.

    Science.gov (United States)

    Perez, Javier Batista; Tyagi, Deependra; Yang, Mo; Calvo, Loany; Perez, Rolando; Moreno, Ernesto; Zhu, Jinsong

    2015-09-01

    Self-assembled monolayers designed to immobilize capture antibodies are usually prepared using a mixture of functional and inactive linkers. Here, using low molar ratios (1:1 to 1:100) of the two linkers resulted in loss of binding capability of the anti-EGFR (epidermal growth factor receptor) antibody nimotuzumab, as assessed by surface plasmon resonance imaging. We then developed a simple theoretical model to predict the optimal surface density of the functional linker, taking into account the antibody size and linker diameter. A high (1:1000) dilution of the functional linker yielded the best results. As an advantage, this approach does not require chemical modification of the protein.

  14. LIGAND-BINDING SITES ON THE MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    Full Text Available Introduction. Mycobacterium tuberculosis is the causative agent of tuberculosis that remains a serious medical and social health problem. Despite intensive efforts have been made in the past decade, there are no new efficient anti-tuberculosis drugs today, and that need is growing due to the spread of drug-resistant strains of M.tuberculosis. M. tuberculosis urease (MTU, being an important factor of the bacterium viability and virulence, is an attractive target for anti-tuberculosis drugs acting by inhibition of urease activity. However, the commercially available urease inhibitors are toxic and unstable, that prevent their clinical use. Therefore, new more potent anti-tuberculosis drugs inhibiting new targets are urgently needed. A useful tool for the search of novel inhibitors is a computational drug design. The inhibitor design is significantly easier if binding sites on the enzyme are identified in advance. This paper aimed to determine the probable ligand binding sites on the surface of M. tuberculosis urease. Methods. To identify ligand binding sites on MTU surface, сomputational solvent mapping method FTSite was applied by the use of MTU homology model we have built earlier. The method places molecular probes (small organic molecules containing various functional groups on a dense grid defined around the enzyme, and for each probe finds favorable positions. The selected poses are refined by free energy minimization, the low energy conformations are clustered, and the clusters are ranked on the basis of the average free energy. FTSite server outputs the protein residues delineating a binding sites and the probe molecules representing each cluster. To predict allosteric pockets on MTU, AlloPred and AlloSite servers were applied. AlloPred uses the normal mode analysis (NMA and models how the dynamics of a protein would be altered in the presence of a modulator at a specific pocket. Pockets on the enzyme are predicted using the Fpocket

  15. Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity.

    Science.gov (United States)

    Heck, Gabriela S; Pintro, Val O; Pereira, Richard R; de Ávila, Mauricio B; Levin, Nayara M B; de Azevedo, Walter F

    2017-01-01

    Calculation of ligand-binding affinity is an open problem in computational medicinal chemistry. The ability to computationally predict affinities has a beneficial impact in the early stages of drug development, since it allows a mathematical model to assess protein-ligand interactions. Due to the availability of structural and binding information, machine learning methods have been applied to generate scoring functions with good predictive power. Our goal here is to review recent developments in the application of machine learning methods to predict ligand-binding affinity. We focus our review on the application of computational methods to predict binding affinity for protein targets. In addition, we also describe the major available databases for experimental binding constants and protein structures. Furthermore, we explain the most successful methods to evaluate the predictive power of scoring functions. Association of structural information with ligand-binding affinity makes it possible to generate scoring functions targeted to a specific biological system. Through regression analysis, this data can be used as a base to generate mathematical models to predict ligandbinding affinities, such as inhibition constant, dissociation constant and binding energy. Experimental biophysical techniques were able to determine the structures of over 120,000 macromolecules. Considering also the evolution of binding affinity information, we may say that we have a promising scenario for development of scoring functions, making use of machine learning techniques. Recent developments in this area indicate that building scoring functions targeted to the biological systems of interest shows superior predictive performance, when compared with other approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  17. LIBSA--a method for the determination of ligand-binding preference to allosteric sites on receptor ensembles.

    Science.gov (United States)

    Hocker, Harrison J; Rambahal, Nandini; Gorfe, Alemayehu A

    2014-02-24

    Incorporation of receptor flexibility into computational drug discovery through the relaxed complex scheme is well suited for screening against a single binding site. In the absence of a known pocket or if there are multiple potential binding sites, it may be necessary to do docking against the entire surface of the target (global docking). However no suitable and easy-to-use tool is currently available to rank global docking results based on the preference of a ligand for a given binding site. We have developed a protocol, termed LIBSA for LIgand Binding Specificity Analysis, that analyzes multiple docked poses against a single or ensemble of receptor conformations and returns a metric for the relative binding to a specific region of interest. By using novel filtering algorithms and the signal-to-noise ratio (SNR), the relative ligand-binding frequency at different pockets can be calculated and compared quantitatively. Ligands can then be triaged by their tendency to bind to a site instead of ranking by affinity alone. The method thus facilitates screening libraries of ligand cores against a large library of receptor conformations without prior knowledge of specific pockets, which is especially useful to search for hits that selectively target a particular site. We demonstrate the utility of LIBSA by showing that it correctly identifies known ligand binding sites and predicts the relative preference of a set of related ligands for different pockets on the same receptor.

  18. Basis for half-site ligand binding in yeast NAD(+)-specific isocitrate dehydrogenase.

    Science.gov (United States)

    Lin, An-Ping; McAlister-Henn, Lee

    2011-09-27

    Yeast NAD(+)-specific isocitrate dehydrogenase is an allosterically regulated octameric enzyme composed of four heterodimers of a catalytic IDH2 subunit and a regulatory IDH1 subunit. Despite structural predictions that the enzyme would contain eight isocitrate binding sites, four NAD(+) binding sites, and four AMP binding sites, only half of the sites for each ligand can be measured in binding assays. On the basis of a potential interaction between side chains of Cys-150 residues in IDH2 subunits in each tetramer of the enzyme, ligand binding assays of wild-type (IDH1/IDH2) and IDH1/IDH2(C150S) octameric enzymes were conducted in the presence of dithiothreitol. These assays demonstrated the presence of eight isocitrate and four AMP binding sites for the wild-type enzyme in the presence of dithiothreitol and for the IDH1/IDH2(C150S) enzyme in the absence or presence of this reagent, suggesting that interactions between sulfhydryl side chains of IDH2 Cys-150 residues limit access to these sites. However, only two NAD(+) sites could be measured for either enzyme. A tetrameric form of IDH (an IDH1(G15D)/IDH2 mutant enzyme) demonstrated half-site binding for isocitrate (two sites) in the absence of dithiothreitol and full-site binding (four sites) in the presence of dithiothreitol. Only one NAD(+) site could be measured for the tetramer under both conditions. In the context of the structure of the enzyme, these results suggest that an observed asymmetry between heterotetramers in the holoenzyme contributes to interactions between IDH2 Cys-150 residues and to half-site binding of isocitrate, but that a form of negative cooperativity may limit access to apparently equivalent NAD(+) binding sites.

  19. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  20. CBS domains: Ligand binding sites and conformational variability.

    Science.gov (United States)

    Ereño-Orbea, June; Oyenarte, Iker; Martínez-Cruz, Luis Alfonso

    2013-12-01

    Cystathionine β-synthase (CBS) domains or CBS motifs are conserved structural domains that are present in thousands of non functionally-related proteins from all kingdoms of life. Their importance is underlined by the range of hereditary diseases associated with mutations in their amino acid sequence. CBS motifs associate in pairs referred to as Bateman modules. In contrast with initial assumptions, it is now well documented that CBS motifs and/or Bateman modules may suffer conformational changes upon binding of adenosine derivatives, metal ions or nucleic acids. The degree and direction of these structural changes depend on the type of ligand, the intrinsic features of the binding sites and the association manner of the Bateman modules. This review aims to provide a summary of the current knowledge on the structural basis of ligand recognition and on the structural effects caused by these ligands in CBS domain containing proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. SMAP-WS: a parallel web service for structural proteome-wide ligand-binding site comparison.

    Science.gov (United States)

    Ren, Jingyuan; Xie, Lei; Li, Wilfred W; Bourne, Philip E

    2010-07-01

    The proteome-wide characterization and analysis of protein ligand-binding sites and their interactions with ligands can provide pivotal information in understanding the structure, function and evolution of proteins and for designing safe and efficient therapeutics. The SMAP web service (SMAP-WS) meets this need through parallel computations designed for 3D ligand-binding site comparison and similarity searching on a structural proteome scale. SMAP-WS implements a shape descriptor (the Geometric Potential) that characterizes both local and global topological properties of the protein structure and which can be used to predict the likely ligand-binding pocket [Xie,L. and Bourne,P.E. (2007) A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand-binding sites. BMC bioinformatics, 8 (Suppl. 4.), S9.]. Subsequently a sequence order independent profile-profile alignment (SOIPPA) algorithm is used to detect and align similar pockets thereby finding protein functional and evolutionary relationships across fold space [Xie, L. and Bourne, P.E. (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc. Natl Acad. Sci. USA, 105, 5441-5446]. An extreme value distribution model estimates the statistical significance of the match [Xie, L., Xie, L. and Bourne, P.E. (2009) A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics, 25, i305-i312.]. These algorithms have been extensively benchmarked and shown to outperform most existing algorithms. Moreover, several predictions resulting from SMAP-WS have been validated experimentally. Thus far SMAP-WS has been applied to predict drug side effects, and to repurpose existing drugs for new indications. SMAP-WS provides both a user-friendly web interface and

  2. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites.

    Science.gov (United States)

    Weill, Nathanaël; Rognan, Didier

    2010-01-01

    Inferring the biological function of a protein from its three-dimensional structure as well as explaining why a drug may bind to various targets is of crucial importance to modern drug discovery. Here we present a generic 4833-integer vector describing druggable protein-ligand binding sites that can be applied to any protein and any binding cavity. The fingerprint registers counts of pharmacophoric triplets from the Calpha atomic coordinates of binding-site-lining residues. Starting from a customized data set of diverse protein-ligand binding site pairs, the most appropriate metric and a similarity threshold could be defined for similar binding sites. The method (FuzCav) has been used in various scenarios: (i) screening a collection of 6000 binding sites for similarity to different queries; (ii) classifying protein families (serine endopeptidases, protein kinases) by binding site diversity; (iii) discriminating adenine-binding cavities from decoys. The fingerprint generation and comparison supports ultra-high throughput (ca. 1000 measures/s), does not require prior alignment of protein binding sites, and is able to detect local similarity among subpockets. It is thus particularly well suited to the functional annotation of novel genomic structures with low sequence identity to known X-ray templates.

  3. Prediction of ligand binding affinity using a multiple-conformations-multiple-protonation scheme: application to estrogen receptor α.

    Science.gov (United States)

    Mizutani, Miho Y; Takamatsu, Yoshihiro; Ichinose, Tazuko; Itai, Akiko

    2012-01-01

    A fast method that can predict the binding affinities of chemicals to a target protein with a high degree of accuracy will be very useful in drug design and regulatory science. We have been developing a scoring function for affinity prediction, which can be applied to extensive protein systems, and also trying to generate a prediction scheme that specializes in each target protein, with as high a predictive power as possible. In this study, we have constructed a prediction scheme with target-specific scores for estimating ligand-binding affinities to human estrogen receptor α (ERα), considering the major conformational change between agonist- and antagonist-bound forms and the change in protonation states of histidine at the ligand-binding site. The generated scheme calibrated with fewer training compounds (23 for the agonist-bound form, 17 for the antagonist-bound form) demonstrated good predictive power (a predictive r(2) of 0.83 for 154 validation compounds); this was also true for compounds with frameworks that were quite different from those of the training compounds. Our prediction scheme will be useful in drug development targeting ERα and in primary screening of endocrine disruptors, and provides a successful method of affinity prediction considering the major conformational changes in a protein.

  4. Molecular modeling, structural analysis and identification of ligand binding sites of trypanothione reductase from Leishmania mexicana

    Directory of Open Access Journals (Sweden)

    Ozal Mutlu

    2013-01-01

    Full Text Available Background & objectives: Trypanothione reductase (TR is a member of FAD-dependent NADPH oxidoreductase protein family and it is a key enzyme which connects the NADPH and the thiol-based redox system. Inhibition studies indicate that TR is an essential enzyme for parasite survival. Therefore, it is an attractive target enzyme for novel drug candidates. There is no structural model for TR of Leishmania mexicana (LmTR in the protein databases. In this work, 3D structure of TR from L. mexicana was identified by template-based in silico homology modeling method, resultant model was validated, structurally analyzed and possible ligand binding pockets were identified. Methods: For computational molecular modeling study, firstly, template was identified by BLAST search against PDB database. Multiple alignments were achieved by ClustalW2. Molecular modeling of LmTR was done and possible drug targeting sites were identified. Refinement of the model was done by performing local energy minimization for backbone, hydrogen and side chains. Model was validated by web-based servers. Results: A reliable 3D model for TR from L. mexicana was modeled by using L. infantum trypanothione reductase (LiTR as a template. RMSD results according to C-alpha, visible atoms and backbone were 0.809 Å, 0.732 Å and 0.728 Å respectively. Ramachandran plot indicates that model shows an acceptable stereochemistry. Conclusion: Modeled structure of LmTR shows high similarity with LiTR based on overall structural features like domains and folding patterns. Predicted structure will provide a source for the further docking studies of various peptide-based inhibitors.

  5. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  6. Protein-ligand binding region prediction (PLB-SAVE) based on geometric features and CUDA acceleration.

    Science.gov (United States)

    Lo, Ying-Tsang; Wang, Hsin-Wei; Pai, Tun-Wen; Tzou, Wen-Shoung; Hsu, Hui-Huang; Chang, Hao-Teng

    2013-01-01

    Protein-ligand interactions are key processes in triggering and controlling biological functions within cells. Prediction of protein binding regions on the protein surface assists in understanding the mechanisms and principles of molecular recognition. In silico geometrical shape analysis plays a primary step in analyzing the spatial characteristics of protein binding regions and facilitates applications of bioinformatics in drug discovery and design. Here, we describe the novel software, PLB-SAVE, which uses parallel processing technology and is ideally suited to extract the geometrical construct of solid angles from surface atoms. Representative clusters and corresponding anchors were identified from all surface elements and were assigned according to the ranking of their solid angles. In addition, cavity depth indicators were obtained by proportional transformation of solid angles and cavity volumes were calculated by scanning multiple directional vectors within each selected cavity. Both depth and volume characteristics were combined with various weighting coefficients to rank predicted potential binding regions. Two test datasets from LigASite, each containing 388 bound and unbound structures, were used to predict binding regions using PLB-SAVE and two well-known prediction systems, SiteHound and MetaPocket2.0 (MPK2). PLB-SAVE outperformed the other programs with accuracy rates of 94.3% for unbound proteins and 95.5% for bound proteins via a tenfold cross-validation process. Additionally, because the parallel processing architecture was designed to enhance the computational efficiency, we obtained an average of 160-fold increase in computational time. In silico binding region prediction is considered the initial stage in structure-based drug design. To improve the efficacy of biological experiments for drug development, we developed PLB-SAVE, which uses only geometrical features of proteins and achieves a good overall performance for protein-ligand binding

  7. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins.

    Science.gov (United States)

    Poornima, C S; Dean, P M

    1995-12-01

    Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of 'binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.

  8. Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics.

    Science.gov (United States)

    Wang, Kai; Chodera, John D; Yang, Yanzhi; Shirts, Michael R

    2013-12-01

    We present a method to identify small molecule ligand binding sites and poses within a given protein crystal structure using GPU-accelerated Hamiltonian replica exchange molecular dynamics simulations. The Hamiltonians used vary from the physical end state of protein interacting with the ligand to an unphysical end state where the ligand does not interact with the protein. As replicas explore the space of Hamiltonians interpolating between these states, the ligand can rapidly escape local minima and explore potential binding sites. Geometric restraints keep the ligands from leaving the vicinity of the protein and an alchemical pathway designed to increase phase space overlap between intermediates ensures good mixing. Because of the rigorous statistical mechanical nature of the Hamiltonian exchange framework, we can also extract binding free energy estimates for all putative binding sites. We present results of this methodology applied to the T4 lysozyme L99A model system for three known ligands and one non-binder as a control, using an implicit solvent. We find that our methodology identifies known crystallographic binding sites consistently and accurately for the small number of ligands considered here and gives free energies consistent with experiment. We are also able to analyze the contribution of individual binding sites to the overall binding affinity. Our methodology points to near term potential applications in early-stage structure-guided drug discovery.

  9. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore.

    Science.gov (United States)

    Klement, Göran; Eisele, Lina; Malinowsky, David; Nolting, Andreas; Svensson, Mats; Terp, Gitte; Weigelt, Dirk; Dabrowski, Michael

    2013-02-19

    The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.

  10. Searching the protein structure database for ligand-binding site similarities using CPASS v.2

    Directory of Open Access Journals (Sweden)

    Caprez Adam

    2011-01-01

    Full Text Available Abstract Background A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2 database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function. Findings We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cβ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated. Conclusions CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores

  11. Mapping the Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) using modeling techniques, site directed mutagenesis, circular dichroism and ligand binding assays

    Science.gov (United States)

    Rusconi, B; Maranhao, AC; Fuhrer, JP; Krotee, P; Choi, SH; Grun, F; Thireou, T; Dimitratos, SD; Woods, DF; Marinotti, O; Walter, MF; Eliopoulos, E

    2012-01-01

    The major malaria vector in Sub-Saharan Africa is the Anopheles gambiae mosquito. This species is a key target of malaria control measures. Mosquitoes find humans primarily through olfaction, yet the molecular mechanisms associated with host-seeking behavior remain largely unknown. To further understand the functionality of A. gambiae odorant binding protein 1 (AgamOBP1), we combined in silico protein structure modeling and site-directed mutagenesis to generate 16 AgamOBP1 protein analogues containing single point mutations of interest. Circular dichroism (CD) and ligand-binding assays provided data necessary to probe the effects of the point mutations on ligand binding and the overall structure of AgamOBP1. Far-UV CD spectra of mutated AgamOBP1 variants displayed both substantial decreases to ordered α-helix structure (up to 22%) and increases to disordered α-helix structure(up to 15%) with only minimal changes in random coil (unordered) structure. In mutations Y54A, Y122A and W114Q, aromatic side chain removal from the binding site significantly reduced N-phenyl-1-naphthylamine binding. Several non-aromatic mutations (L15T, L19T, L58T, L58Y, M84Q, M84K, H111A, Y122A and L124T) elicited changes to protein conformation with subsequent effects on ligand binding. This study provides empirical evidence for the in silico predicted functions of specific amino acids in AgamOBP1 folding and ligand binding characteristics. PMID:22564768

  12. Usefulness of molecular modeling in characterizing the ligand-binding sites of proteins: experience with human PDI, PDIp and COX.

    Science.gov (United States)

    Wang, Pan; Zhu, Bao-Ting

    2013-01-01

    In this paper, we discussed our recent experience with the use of computational modeling tools in studying the binding interaction of small molecular weight ligands with their protein targets. Specific examples discussed here include the interaction of estrogens with human protein disulfide isomerase (PDI) and its pancreas-specific homolog (PDIp), and the interaction of dietary flavonoids with human cyclooxygenase (COX) I and II. Using human PDIp as an example, biochemical analysis revealed that the estrogen-binding activity is only associated with PDIp's b-b´ domain combination but not associated with the single b or b´ domain or any other domains. Homology modeling was then used to build a threedimensional structure of the human PDIp's b-b´ fragment. Docking analyses predicted that a hydrogen bond, formed between the 3-hydroxyl group of estradiol and His278 of PDIp's E2-binding site, is critical for the binding interaction. This binding model was then experimentally confirmed by a series of experiments, such as selective mutations of the predicted binding site amino acid residues and the selective modifications of the functional groups of the ligands. Similar combinatorial approaches were used successfully to identify the binding site structure of human PDI for estradiol and the binding site structures of human COX I and II for their phenolic co-substrates. The success with these combinatorial approaches provides the basis for using computational modeling-guided approaches in characterizing the ligand binding site structures of complex proteins whose structures are difficult to decipher with crystallographic studies.

  13. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.

    Science.gov (United States)

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  14. A strategy for the incorporation of water molecules present in a ligand binding site into a three-dimensional quantitative structure--activity relationship analysis.

    Science.gov (United States)

    Pastor, M; Cruciani, G; Watson, K A

    1997-12-05

    Water present in a ligand binding site of a protein has been recognized to play a major role in ligand-protein interactions. To date, rational drug design techniques do not usually incorporate the effect of these water molecules into the design strategy. This work represents a new strategy for including water molecules into a three-dimensional quantitative structure-activity relationship analysis using a set of glucose analogue inhibitors of glycogen phosphorylase (GP). In this series, the structures of the ligand-enzyme complexes have been solved by X-ray crystallography, and the positions of the ligands and the water molecules at the ligand binding site are known. For the structure-activity analysis, some water molecules adjacent to the ligands were included into an assembly which encompasses both the inhibitor and the water involved in the ligand-enzyme interaction. The mobility of some water molecules at the ligand binding site of GP gives rise to differences in the ligand-water assembly which have been accounted for using a simulation study involving force-field energy calculations. The assembly of ligand plus water was used in a GRID/GOLPE analysis, and the models obtained compare favorably with equivalent models when water was excluded. Both models were analyzed in detail and compared with the crystallographic structures of the ligand-enzyme complexes in order to evaluate their ability to reproduce the experimental observations. The results demonstrate that incorporation of water molecules into the analysis improves the predictive ability of the models and makes them easier to interpret. The information obtained from interpretation of the models is in good agreement with the conclusions derived from the structural analysis of the complexes and offers valuable insights into new characteristics of the ligands which may be exploited for the design of more potent inhibitors.

  15. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site

    Science.gov (United States)

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J.; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E.; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-01-01

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics. PMID:27241473

  16. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site.

    Science.gov (United States)

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-05-31

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics.

  17. Characterization of the ligand binding site of the bovine IgA Fc receptor (bFc alpha R).

    Science.gov (United States)

    Morton, H Craig; Pleass, Richard J; Woof, Jenny M; Brandtzaeg, Per

    2004-12-24

    Recently, we identified a bovine IgA Fc receptor (bFc alpha R), which shows high homology to the human myeloid Fc alpha R, CD89. IgA binding has previously been shown to depend on several specific residues located in the B-C and F-G loops of the membrane-distal extracellular domain 1 of CD89. To compare the ligand binding properties of these two Fc alpha Rs, we have mapped the IgA binding site of bFc alpha R. We show that, in common with CD89, Tyr-35 in the B-C loop is essential for IgA binding. However, in contrast to earlier observations on CD89, mutation of residues in the F-G loop did not significantly inhibit IgA binding.

  18. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  19. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2012-04-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations.

  20. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme

    Science.gov (United States)

    Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-01

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928–0.988,  = 0.894–0.954, RMSE = 0.002–0.412, s = 0.001–0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  1. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  2. Ligand-induced conformational changes: Improved predictions of ligand binding conformations and affinities

    DEFF Research Database (Denmark)

    Frimurer, T.M.; Peters, Günther H.J.; Iversen, L.F.

    2003-01-01

    A computational docking strategy using multiple conformations of the target protein is discussed and evaluated. A series of low molecular weight, competitive, nonpeptide protein tyrosine phosphatase inhibitors are considered for which the x-ray crystallographic structures in complex with protein...... tyrosine phosphatase 1 B (PTP1B) are known. To obtain a quantitative measure of the impact of conformational changes induced by the inhibitors, these were docked to the active site region of various structures of PTP1B using the docking program FlexX. Firstly, the inhibitors were docked to a PTP1B crystal...... predicted binding energy and a correct docking mode. Thirdly, to improve the predictability of the docking procedure in the general case, where only a single target protein structure is known, we evaluate an approach which takes possible protein side-chain conformational changes into account. Here, side...

  3. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site

    DEFF Research Database (Denmark)

    Severinsen, Kasper; Müller, Heidi Kaastrup; Wiborg, Ove

    2008-01-01

    and [(3)H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK-293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity...

  4. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding.

    Science.gov (United States)

    Seidel, Susanne A I; Wienken, Christoph J; Geissler, Sandra; Jerabek-Willemsen, Moran; Duhr, Stefan; Reiter, Alwin; Trauner, Dirk; Braun, Dieter; Baaske, Philipp

    2012-10-15

    Look, no label! Microscale thermophoresis makes use of the intrinsic fluorescence of proteins to quantify the binding affinities of ligands and discriminate between binding sites. This method is suitable for studying binding interactions of very small amounts of protein in solution. The binding of ligands to iGluR membrane receptors, small-molecule inhibitorss to kinase p38, aptamers to thrombin, and Ca(2+) ions to synaptotagmin was quantified.

  5. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening.

    Science.gov (United States)

    Sijbesma, Eline; Skora, Lukasz; Leysen, Seppe; Brunsveld, Luc; Koch, Uwe; Nussbaumer, Peter; Jahnke, Wolfgang; Ottmann, Christian

    2017-08-01

    Proteins typically interact with multiple binding partners, and often different parts of their surfaces are employed to establish these protein-protein interactions (PPIs). Members of the class of 14-3-3 adapter proteins bind to several hundred other proteins in the cell. Multiple small molecules for the modulation of 14-3-3 PPIs have been disclosed; however, they all target the conserved phosphopeptide binding channel, so that selectivity is difficult to achieve. Here we report on the discovery of two individual secondary binding sites that have been identified by combining nuclear magnetic resonance-based fragment screening and X-ray crystallography. The two pockets that these fragments occupy are part of at least three physiologically relevant and structurally characterized 14-3-3 PPI interfaces, including those with serotonin N-acetyltransferase and plant transcription factor FT. In addition, the high degree of conservation of the two sites implies their relevance for 14-3-3 PPIs. This first identification of secondary sites on 14-3-3 proteins bound by small molecule ligands might facilitate the development of new chemical tool compounds for more selective PPI modulation.

  6. Myelin 2',3'-cyclic nucleotide 3'-phosphodiesterase: active-site ligand binding and molecular conformation.

    Directory of Open Access Journals (Sweden)

    Matti Myllykoski

    Full Text Available The 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase is a highly abundant membrane-associated enzyme in the myelin sheath of the vertebrate nervous system. CNPase is a member of the 2H phosphoesterase family and catalyzes the formation of 2'-nucleotide products from 2',3'-cyclic substrates; however, its physiological substrate and function remain unknown. It is likely that CNPase participates in RNA metabolism in the myelinating cell. We solved crystal structures of the phosphodiesterase domain of mouse CNPase, showing the binding mode of nucleotide ligands in the active site. The binding mode of the product 2'-AMP provides a detailed view of the reaction mechanism. Comparisons of CNPase crystal structures highlight flexible loops, which could play roles in substrate recognition; large differences in the active-site vicinity are observed when comparing more distant members of the 2H family. We also studied the full-length CNPase, showing its N-terminal domain is involved in RNA binding and dimerization. Our results provide a detailed picture of the CNPase active site during its catalytic cycle, and suggest a specific function for the previously uncharacterized N-terminal domain.

  7. Flavonol Activation Defines an Unanticipated Ligand-Binding Site in the Kinase-RNase Domain of IRE1

    Energy Technology Data Exchange (ETDEWEB)

    Wiseman, R. Luke; Zhang, Yuhong; Lee, Kenneth P.K.; Harding, Heather P.; Haynes, Cole M.; Price, Joshua; Sicheri, Frank; Ron, David (Scripps); (Toronto); (NYUSM)

    2010-08-18

    Signaling in the most conserved branch of the endoplasmic reticulum (ER) unfolded protein response (UPR) is initiated by sequence-specific cleavage of the HAC1/XBP1 mRNA by the ER stress-induced kinase-endonuclease IRE1. We have discovered that the flavonol quercetin activates yeast IRE1's RNase and potentiates activation by ADP, a natural activating ligand that engages the IRE1 nucleotide-binding cleft. Enzyme kinetics and the structure of a cocrystal of IRE1 complexed with ADP and quercetin reveal engagement by quercetin of an unanticipated ligand-binding pocket at the dimer interface of IRE1's kinase extension nuclease (KEN) domain. Analytical ultracentrifugation and crosslinking studies support the preeminence of enhanced dimer formation in quercetin's mechanism of action. These findings hint at the existence of endogenous cytoplasmic ligands that may function alongside stress signals from the ER lumen to modulate IRE1 activity and at the potential for the development of drugs that modify UPR signaling from this unanticipated site.

  8. Computational design of an endo-1,4-[beta]-xylanase ligand binding site

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Andrew; Kaufmann, Kristian W.; Fortenberry, Carie; Harp, Joel M.; Mizoue, Laura S.; Meiler, Jens (Vanderbilt)

    2012-09-05

    The field of computational protein design has experienced important recent success. However, the de novo computational design of high-affinity protein-ligand interfaces is still largely an open challenge. Using the Rosetta program, we attempted the in silico design of a high-affinity protein interface to a small peptide ligand. We chose the thermophilic endo-1,4-{beta}-xylanase from Nonomuraea flexuosa as the protein scaffold on which to perform our designs. Over the course of the study, 12 proteins derived from this scaffold were produced and assayed for binding to the target ligand. Unfortunately, none of the designed proteins displayed evidence of high-affinity binding. Structural characterization of four designed proteins revealed that although the predicted structure of the protein model was highly accurate, this structural accuracy did not translate into accurate prediction of binding affinity. Crystallographic analyses indicate that the lack of binding affinity is possibly due to unaccounted for protein dynamics in the 'thumb' region of our design scaffold intrinsic to the family 11 {beta}-xylanase fold. Further computational analysis revealed two specific, single amino acid substitutions responsible for an observed change in backbone conformation, and decreased dynamic stability of the catalytic cleft. These findings offer new insight into the dynamic and structural determinants of the {beta}-xylanase proteins.

  9. A novel method for protein-ligand binding affinity prediction and the related descriptors exploration.

    Science.gov (United States)

    Li, Shuyan; Xi, Lili; Wang, Chengqi; Li, Jiazhong; Lei, Beilei; Liu, Huanxiang; Yao, Xiaojun

    2009-04-30

    In this study, a novel method was developed to predict the binding affinity of protein-ligand based on a comprehensive set of structurally diverse protein-ligand complexes (PLCs). The 1300 PLCs with binding affinity (493 complexes with K(d) and 807 complexes with K(i)) from the refined dataset of PDBbind Database (release 2007) were studied in the predictive model development. In this method, each complex was described using calculated descriptors from three blocks: protein sequence, ligand structure, and binding pocket. Thereafter, the PLCs data were rationally split into representative training and test sets by full consideration of the validation of the models. The molecular descriptors relevant to the binding affinity were selected using the ReliefF method combined with least squares support vector machines (LS-SVMs) modeling method based on the training data set. Two final optimized LS-SVMs models were developed using the selected descriptors to predict the binding affinities of K(d) and K(i). The correlation coefficients (R) of training set and test set for K(d) model were 0.890 and 0.833. The corresponding correlation coefficients for the K(i) model were 0.922 and 0.742, respectively. The prediction method proposed in this work can give better generalization ability than other recently published methods and can be used as an alternative fast filter in the virtual screening of large chemical database. (c) 2008 Wiley Periodicals, Inc.

  10. Cloud computing approaches for prediction of ligand binding poses and pathways.

    Science.gov (United States)

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-22

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.

  11. Structural insights into a novel interkingdom signaling circuit by cartography of the ligand-binding sites of the homologous quorum sensing LuxR-family.

    Science.gov (United States)

    Covaceuszach, Sonia; Degrassi, Giuliano; Venturi, Vittorio; Lamba, Doriano

    2013-10-15

    Recent studies have identified a novel interkingdom signaling circuit, via plant signaling molecules, and a bacterial sub-family of LuxR proteins, bridging eukaryotes and prokaryotes. Indeed pivotal plant-bacteria interactions are regulated by the so called Plant Associated Bacteria (PAB) LuxR solo regulators that, although closely related to the quorum sensing (QS) LuxR family, do not bind or respond to canonical quorum sensing N-acyl homoserine lactones (AHLs), but only to specific host plant signal molecules. The large body of structural data available for several members of the QS LuxR family complexed with different classes of ligands (AHLs and other compounds), has been exploited to dissect the cartography of their regulatory domains through structure-based multiple sequence alignments, structural superimposition and a comparative analysis of the contact residues involved in ligand binding. In the absence of experimentally determined structures of members of the PAB LuxR solos subfamily, an homology model of its prototype OryR is presented, aiming to elucidate the architecture of its ligand-binding site. The obtained model, in combination with the cartography of the regulatory domains of the homologous QS LuxRs, provides novel insights into the 3D structure of its ligand-binding site and unveils the probable molecular determinants responsible for differences in selectivity towards specific host plant signal molecules, rather than to canonical QS compounds.

  12. Mapping of the ligand-binding site on the b' domain of human PDI: interaction with peptide ligands and the x-linker region.

    Science.gov (United States)

    Byrne, Lee J; Sidhu, Ateesh; Wallis, A Katrine; Ruddock, Lloyd W; Freedman, Robert B; Howard, Mark J; Williamson, Richard A

    2009-09-25

    PDI (protein disulfide-isomerase) catalyses the formation of native disulfide bonds of secretory proteins in the endoplasmic reticulum. PDI consists of four thioredoxin-like domains, of which two contain redox-active catalytic sites (a and a'), and two do not (b and b'). The b' domain is primarily responsible for substrate binding, although the nature and specificity of the substrate-binding site is still poorly understood. In the present study, we show that the b' domain of human PDI is in conformational exchange, but that its structure is stabilized by the addition of peptide ligands or by binding the x-linker region. The location of the ligand-binding site in b' was mapped by NMR chemical shift perturbation and found to consist primarily of residues from the core beta-sheet and alpha-helices 1 and 3. This site is where the x-linker region binds in the X-ray structure of b'x and we show that peptide ligands can compete with x binding at this site. The finding that x binds in the principal ligand-binding site of b' further supports the hypothesis that x functions to gate access to this site and so modulates PDI activity.

  13. A multi-resolution model to capture both global fluctuations of an enzyme and molecular recognition in the ligand-binding site

    CERN Document Server

    Fogarty, Aoife C; Kremer, Kurt

    2016-01-01

    In multi-resolution simulations, different system components are simultaneously modelled at different levels of resolution, these being smoothly coupled together. In the case of enzyme systems, computationally expensive atomistic detail is needed in the active site to capture the chemistry of substrate binding. Global properties of the rest of the protein also play an essential role, determining the structure and fluctuations of the binding site; however, these can be modelled on a coarser level. Similarly, in the most computationally efficient scheme only the solvent hydrating the active site requires atomistic detail. We present a methodology to couple atomistic and coarse-grained protein models, while solvating the atomistic part of the protein in atomistic water. This allows a free choice of which protein and solvent degrees of freedom to include atomistically, without loss of accuracy in the atomistic description. This multi-resolution methodology can successfully model stable ligand binding, and we furt...

  14. Mapping part of the functional epitope for ligand binding on the receptor for urokinase-type plasminogen activator by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Gårdsvoll, H; Danø, K; Ploug, M

    1999-01-01

    thereof on the kinetics of uPA binding in real-time by surface plasmon resonance. Only four positions in loop 3 of uPAR domain I exhibited significant changes in the contribution to the free energy of uPA binding (DeltaDeltaG >/= 1.3 kcal mol(-1)) upon single-site substitutions to alanine (i.e. Arg(53...... the possible involvement of uPAR domain I and particularly loop 3 thereof in ligand binding (Ploug, M. (1998) Biochemistry 37, 16494-16505). Guided by these results we have now performed an alanine scanning analysis of this region in uPAR by site-directed mutagenesis and subsequently measured the effects......), Leu(55), Tyr(57), and Leu(66)). The energetic impact of these four alanine substitutions was not caused by gross structural perturbations, since all monoclonal antibodies tested having conformation-dependent epitopes on this domain exhibited unaltered binding kinetics. These sites together...

  15. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. Due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we constructed several balanced data sets, for each of which a random forest (RF)-based classifier was trained. The ensemble of these RF classifiers formed a sequence-based protein-ligand binding site predictor. Experimental results on CASP9 targets demonstrated that our method compared favorably with the state-of-the-art. © Springer-Verlag Berlin Heidelberg 2013.

  16. Differential effects of methoxy group on the interaction of curcuminoids with two major ligand binding sites of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Hiroki Sato

    Full Text Available Curcuminoids are a group of compounds with a similar chemical backbone structure but containing different numbers of methoxy groups that have therapeutic potential due to their anti-inflammatory and anti-oxidant properties. They mainly bind to albumin in plasma. These findings influence their body disposition and biological activities. Spectroscopic analysis using site specific probes on human serum albumin (HSA clearly indicated that curcumin (Cur, demethylcurcumin (Dmc and bisdemethoxycurcumin (Bdmc bind to both Site I (sub-site Ia and Ib and Site II on HSA. At pH 7.4, the binding constants for Site I were relatively comparable between curcuminoids, while the binding constants for Site II at pH 7.4 were increased in order Cur < Dmc < Bdmc. Binding experiments using HSA mutants showed that Trp214 and Arg218 at Site I, and Tyr411 and Arg410 at Site II are involved in the binding of curcuminoids. The molecular docking of all curcuminoids to the Site I pocket showed that curcuminoids stacked with Phe211 and Trp214, and interacted with hydrophobic and aromatic amino acid residues. In contrast, each curcuminoid interacted with Site II in a different manner depending whether a methoxy group was present or absent. A detailed analysis of curcuminoids-albumin interactions would provide valuable information in terms of understanding the pharmacokinetics and the biological activities of this class of compounds.

  17. Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Hansen, Kasper B; Naur, Peter

    2016-01-01

    -term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2(LC)), which promotes spontaneous channel activation. We identify...

  18. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding.

    Science.gov (United States)

    Layfield, Joshua P; Hammes-Schiffer, Sharon

    2013-01-16

    The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analogue equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active-site water molecule that is directly hydrogen-bonded to the nitrile probe, resulting in a more linear C≡N--H angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis.

  19. Differential Effects of Structural Modifications on the Competition of Chalcones for the PIB Amyloid Imaging Ligand-Binding Site in Alzheimer's Disease Brain and Synthetic Aβ Fibrils.

    Science.gov (United States)

    Fosso, Marina Y; McCarty, Katie; Head, Elizabeth; Garneau-Tsodikova, Sylvie; LeVine, Harry

    2016-02-17

    Alzheimer's disease (AD) is a complex brain disorder that still remains ill defined. In order to understand the significance of binding of different clinical in vivo imaging ligands to the polymorphic pathological features of AD brain, the molecular characteristics of the ligand interacting with its specific binding site need to be defined. Herein, we observed that tritiated Pittsburgh Compound B ((3)H-PIB) can be displaced from synthetic Aβ(1-40) and Aβ(1-42) fibrils and from the PIB binding complex purified from human AD brain (ADPBC) by molecules containing a chalcone structural scaffold. We evaluated how substitution on the chalcone scaffold alters its ability to displace (3)H-PIB from the synthetic fibrils and ADPBC. By comparing unsubstituted core chalcone scaffolds along with the effects of bromine and methyl substitution at various positions, we found that attaching a hydroxyl group on the ring adjacent to the carbonyl group (ring I) of the parent member of the chalcone family generally improved the binding affinity of chalcones toward ADPBC and synthetic fibrils F40 and F42. Furthermore, any substitution on ring I at the ortho-position of the carbonyl group greatly decreases the binding affinity of the chalcones, potentially as a result of steric hindrance. Together with the finding that neither our chalcones nor PIB interact with the Congo Red/X-34 binding site, these molecules provide new tools to selectively probe the PIB binding site that is found in human AD brain, but not in brains of AD pathology animal models. Our chalcone derivatives also provide important information on the effects of fibril polymorphism on ligand binding.

  20. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    The urokinase plasminogen activator receptor (uPAR) is a membrane protein comprised of three extracellular domains. In order to study the importance of this domain organization in the ligand-binding process of the receptor we subjected a recombinant, soluble uPAR (suPAR) to specific proteolytic c...

  1. Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain.

    Science.gov (United States)

    Doering, Jon A; Giesy, John P; Wiseman, Steve; Hecker, Markus

    2013-03-01

    Dioxin-like compounds are chronically toxic to most vertebrates. However, dramatic differences in sensitivity to these chemicals exist both within and among vertebrate classes. A recent study found that in birds, critical amino acid residues in the aryl hydrocarbon receptor (AhR) ligand binding domain are predictive of sensitivity to dioxin-like compounds in a range of species. It is currently unclear whether similar predictive relationships exist for fishes, a group of animals at risk of exposure to dioxin-like compounds. Effects of dioxin-like compounds are mediated through the AhR in fishes and birds. However, AhR dynamics are more complex among fishes. Fishes possess AhRs that can be grouped within at least three distinct clades (AhR1, AhR2, AhR3) with each clade possibly containing multiple isoforms. AhR2 has been shown to be the active form in most teleosts, with AhR1 not binding dioxin-like compounds. The role of AhR3 in dioxin-like toxicity has not been established to date and this clade is only known to be expressed in some cartilaginous fishes. Furthermore, multiple mechanisms of sensitivity to dioxin-like compounds that are not relevant in birds could exist among fishes. Although, at this time, deficiencies exist for the development of such a predictive relationship for application to fishes, successfully establishing such relationships would offer a substantial improvement in assessment of risks of dioxin-like compounds for this class of vertebrates. Elucidation of such relationships would provide a mechanistic foundation for extrapolation among species to allow the identification of the most sensitive fishes, with the ultimate goal of the prediction of risk posed to endangered species that are not easily studied.

  2. Information theory-based scoring function for the structure-based prediction of protein-ligand binding affinity.

    Science.gov (United States)

    Kulharia, Mahesh; Goody, Roger S; Jackson, Richard M

    2008-10-01

    The development and validation of a new knowledge based scoring function (SIScoreJE) to predict binding energy between proteins and ligands is presented. SIScoreJE efficiently predicts the binding energy between a small molecule and its protein receptor. Protein-ligand atomic contact information was derived from a Non-Redundant Data set (NRD) of over 3000 X-ray crystal structures of protein-ligand complexes. This information was classified for individual "atom contact pairs" (ACP) which is used to calculate the atomic contact preferences. In addition to the two schemes generated in this study we have assessed a number of other common atom-type classification schemes. The preferences were calculated using an information theoretic relationship of joint entropy. Among 18 different atom-type classification schemes "ScoreJE Atom Type set2" (SATs2) was found to be the most suitable for our approach. To test the sensitivity of the method to the inclusion of solvent, Single-body Solvation Potentials (SSP) were also derived from the atomic contacts between the protein atom types and water molecules modeled using AQUARIUS2. Validation was carried out using an evaluation data set of 100 protein-ligand complexes with known binding energies to test the ability of the scoring functions to reproduce known binding affinities. In summary, it was found that a combined SSP/ScoreJE (SIScoreJE) performed significantly better than ScoreJE alone, and SIScoreJE and ScoreJE performed better than GOLD::GoldScore, GOLD::ChemScore, and XScore.

  3. Structural model of a putrescine-cadaverine permease from Trypanosoma cruzi predicts residues vital for transport and ligand binding.

    Science.gov (United States)

    Soysa, Radika; Venselaar, Hanka; Poston, Jacqueline; Ullman, Buddy; Hasne, Marie-Pierre

    2013-06-15

    The TcPOT1.1 gene from Trypanosoma cruzi encodes a high affinity putrescine-cadaverine transporter belonging to the APC (amino acid/polyamine/organocation) transporter superfamily. No experimental three-dimensional structure exists for any eukaryotic member of the APC family, and thus the structural determinants critical for function of these permeases are unknown. To elucidate the key residues involved in putrescine translocation and recognition by this APC family member, a homology model of TcPOT1.1 was constructed on the basis of the atomic co-ordinates of the Escherichia coli AdiC arginine/agmatine antiporter crystal structure. The TcPOT1.1 homology model consisted of 12 transmembrane helices with the first ten helices organized in two V-shaped antiparallel domains with discontinuities in the helical structures of transmembrane spans 1 and 6. The model suggests that Trp241 and a Glu247-Arg403 salt bridge participate in a gating system and that Asn245, Tyr148 and Tyr400 contribute to the putrescine-binding pocket. To test the validity of the model, 26 site-directed mutants were created and tested for their ability to transport putrescine and to localize to the parasite cell surface. These results support the robustness of the TcPOT1.1 homology model and reveal the importance of specific aromatic residues in the TcPOT1.1 putrescine-binding pocket.

  4. Aromatic side-chain cluster of biotin binding site of avidin allows circular dichroism spectroscopic investigation of its ligand binding properties.

    Science.gov (United States)

    Zsila, Ferenc

    2011-01-01

    Promiscuous ligand binding by hen egg-white avidin has been demonstrated and studied by using circular dichroism (CD) spectroscopy complemented by molecular docking calculations. It has been shown that the biotin-binding pocket of avidin is able to accommodate a wide variety of chemical compounds including therapeutic drugs (e.g., thalidomide, NSAIDs, antihistamines), natural compounds (bilirubin, myristic acid), and synthetic agents (xanthenone dyes). The cluster of aromatic residues located at the biotin-binding pocket renders the intrinsic CD spectrum of avidin sensitive to ligand binding that results in the increase of the vibronic components of the (1) L(b) transition of the Trp residues. Extrinsic (induced) CD bands measured with chemically diverse avidin ligands are generated by intramolecular coupled oscillator (e.g., bilirubin) or by intermolecular ligand-Trp exciton coupling mechanism [e.g., 2-(4'-hydroxyazobenzene)-benzoic acid (HABA)]. Among the compounds of which avidin-binding affinity constants have been calculated, two novel high-affinity ligands, flufenamic acid and an enzyme inhibitor thiazole derivative have been identified (K(d) ≈ 1 μM). Avidin binding mode of the ligand molecules has been discussed in the light of docking results. The induced CD profile of the thiazole derivative has been correlated with the stereochemistry of its docked conformation. The important role in the ligand binding of a polar side-chain cluster at the bottom of the biotin-binding cavity as well as the analogous avidin-binding mode of HABA and fenamic acid type NSAIDs have been proposed. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge.

    Science.gov (United States)

    Perryman, Alexander L; Santiago, Daniel N; Forli, Stefano; Martins, Diogo Santos; Olson, Arthur J

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  6. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus

    Science.gov (United States)

    Rey-Burusco, M. Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R.; Roe, Andrew J.; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W.; Córsico, Betina; Smith, Brian O.

    2015-01-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein–ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  7. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus.

    Science.gov (United States)

    Rey-Burusco, M Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R; Roe, Andrew J; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W; Córsico, Betina; Smith, Brian O

    2015-11-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male.

  8. Critical role of the H6-H7 loop in the conformational adaptation of all-trans retinoic acid and synthetic retinoids within the ligand-binding site of RARalpha.

    Science.gov (United States)

    Mailfait, S; Thoreau, E; Belaiche, D; Formstecher And B Sablonniè, P

    2000-06-01

    The pleiotropic effects of the natural and synthetic retinoids are mediated by the activation of the two subfamilies of nuclear receptors, the retinoic acid receptors (RARs) and the retinoic X receptors (RXRs). At the molecular level, these events begin with the specific ligand recognition by a nuclear receptor subtype. The adaptation of ligands to the receptor binding site leads to an optimal number of interactions for binding and selectivity which justifies elucidation of the structural requirements of the ligand binding pocket. To explore the contribution of H6-H7 loop folding in the ligand-induced conformational changes explained by the mouse-trap model, four RARalpha mutants were constructed. Ligand binding and transactivation studies revealed that three residues from the H6-H7 loop (Gly(301), Phe(302) and Gly(303)) are critical for the conformational adaptation of both synthetic agonists and antagonists. Model building and analysis of both RARalpha-ATRA and RARalpha-CD367 complexes demonstrate that accommodation of CD367 results in a less tight contact of the saturated ring of this ligand with the amino acid side chains of the receptor ligand-binding pocket compared with that of ATRA. According to the flexibility of the agonists tested (ATRA>TTNPB=Am580> CD367), we observed a decrease in binding that was dependent on ligand structure rigidity. In contrast, the binding and transactivating activities of the L266A mutant confirmed the structural constraints imposed by synthetic ligands on binding affinity for the receptor and revealed that subtle local rearrangements induced by specific conformational adaptation changes result in different binding affinities. Our results illustrate the dynamic nature of the interaction between RARalpha and its ligands and demonstrate the critical role of the H6-H7 loop in the binding of both synthetic retinoid agonists and antagonists.

  9. Photoaffinity labeling of the human receptor for urokinase-type plasminogen activator using a decapeptide antagonist. Evidence for a composite ligand-binding site and a short interdomain separation

    DEFF Research Database (Denmark)

    Ploug, M; Ostergaard, S; Hansen, L B

    1998-01-01

    labeling. Proteolytic domain mapping using chymotrypsin revealed a specific labeling of both uPAR domain I and domains II + III dependent on the position of the photoprobe in the antagonist. On the basis of these studies, we propose the existence of a composite ligand binding site in uPAR combined......Binding of urokinase-type plasminogen activator (uPA) to its cellular receptor (uPAR) renders the cell surface a favored site for plasminogen activation. Recently, a 15-mer peptide antagonist of the uPA-uPAR interaction, with an IC50 value of 10 nM, was identified using phage display technology...... [Goodson, R. J., Doyle, M. V., Kaufman, S. E., and Rosenberg, S. (1994) Proc. Natl. Acad. Sci. 91, 7129-7133]. In the present study, the molecular aspects of the interaction between this peptide and uPAR have been investigated. We have characterized the real-time receptor binding kinetics...

  10. Mapping of ligand-binding cavities in proteins.

    Science.gov (United States)

    Andersson, C David; Chen, Brian Y; Linusson, Anna

    2010-05-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs.

  11. Coarse-grained molecular dynamics simulations of protein-ligand binding.

    Science.gov (United States)

    Negami, Tatsuki; Shimizu, Kentaro; Terada, Tohru

    2014-09-30

    Coarse-grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein-ligand binding processes. We chose two protein-ligand systems, the levansucrase-sugar (glucose or sucrose), and LinB-1,2-dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand-binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse-grained (CG) ligand molecules revealed potential ligand-binding sites on the protein surfaces other than the real ligand-binding sites. The ligands bound most strongly to the real ligand-binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase-sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand-binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein-ligand binding processes.

  12. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    OpenAIRE

    Butler, Ethan B.; Xiong, Yong; Wang, Jimin; Strobel, Scott A.

    2011-01-01

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6Å crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for ho...

  13. Putative sigma(3) sites in mammalian brain have histamine H(1) receptor properties: evidence from ligand binding and distribution studies with the novel H(1) radioligand [(3)H]-(-)-trans-1-phenyl-3-aminotetralin.

    Science.gov (United States)

    Booth, R G; Owens, C E; Brown, R L; Bucholtz, E C; Lawler, C P; Wyrick, S D

    1999-08-07

    A novel phenylaminotetralin (PAT) radioligand, [(3)H]-(1R, 3S)-(-)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene ([(3)H]-[-]-trans-H(2)-PAT), is shown here to label a saturable (B(max)=39+/-6 fmol/mg protein) population of sites with high affinity (K(d)=0.13+/-0.03 nM) in guinea pig brain. Consistent with previous studies which showed that PATs stimulate catecholamine (dopamine) synthesis in rat striatum, autoradiographic brain receptor mapping studies here indicate that [(3)H]-(-)-trans-H(2)-PAT-labeled sites are highly localized in catecholaminergic nerve terminal fields in hippocampus, nucleus accumbens, and striatum in guinea pig brain. Competition binding studies with a broad range of CNS receptor-active ligands and CNS radioreceptor screening assays indicate that the pharmacological binding profile of brain [(3)H]-(-)-trans-H(2)-PAT sites closely resembles histamine H(1)-type receptors. Comparative studies using the histamine H(1) antagonist radioligand, [(3)H]mepyramine, indicate that the H(1) ligand binding profile and guinea pig brain distribution of H(1) receptors and [(3)H]-(-)-trans-H(2)-PAT sites are nearly identical; moreover, both sites have about 40-fold stereoselective affinity for (-)- over (+)-trans-H(2)-PAT. These results are discussed in light of previous studies which suggested that PATs stimulate dopamine synthesis through interaction with a novel sigma-type (sigma(3)) receptor in rodent brain; it now appears instead that PATs represent a new class of ligands for brain histamine H(1) receptors that can be stereoselectively labeled with [(3)H]-(-)-trans-H(2)-PAT. Copyright 1999 Published by Elsevier Science B.V.

  14. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    . The purified suPAR was cross-linked to the radiolabeled amino-terminal fragment (ATF) of urokinase, followed by cleavage with chymotrypsin. In accordance with the cleavage pattern found for the uncomplexed receptor, this treatment led to cleavage between D1 and D(2 + 3). Analysis of the radiolabeled fragments...... revealed the expected ligand labeling of D1 but a clear labeling of D(2 + 3) was also found, indicating that this part of the molecule is also situated in close contact with ATF in the receptor-ligand complex. The latter contact site may contribute to the role of molecular regions outside D1 in high...

  15. Novel computational methodologies for structural modeling of spacious ligand binding sites of G-protein-coupled receptors: development and application to human leukotriene B4 receptor.

    Science.gov (United States)

    Ishino, Yoko; Harada, Takanori

    2012-01-01

    This paper describes a novel method to predict the activated structures of G-protein-coupled receptors (GPCRs) with high accuracy, while aiming for the use of the predicted 3D structures in in silico virtual screening in the future. We propose a new method for modeling GPCR thermal fluctuations, where conformation changes of the proteins are modeled by combining fluctuations on multiple time scales. The core idea of the method is that a molecular dynamics simulation is used to calculate average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the picosecond or nanosecond time scale, and then evolutionary computation including receptor-ligand docking simulations functions to determine the rotation angle of each helix of a GPCR protein as a movement on a longer time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the proposed method was able to derive the appropriate 3D structure of the active-state GPCR which docks with its agonists.

  16. Novel Computational Methodologies for Structural Modeling of Spacious Ligand Binding Sites of G-Protein-Coupled Receptors: Development and Application to Human Leukotriene B4 Receptor

    Directory of Open Access Journals (Sweden)

    Yoko Ishino

    2012-01-01

    Full Text Available This paper describes a novel method to predict the activated structures of G-protein-coupled receptors (GPCRs with high accuracy, while aiming for the use of the predicted 3D structures in in silico virtual screening in the future. We propose a new method for modeling GPCR thermal fluctuations, where conformation changes of the proteins are modeled by combining fluctuations on multiple time scales. The core idea of the method is that a molecular dynamics simulation is used to calculate average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the picosecond or nanosecond time scale, and then evolutionary computation including receptor-ligand docking simulations functions to determine the rotation angle of each helix of a GPCR protein as a movement on a longer time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the proposed method was able to derive the appropriate 3D structure of the active-state GPCR which docks with its agonists.

  17. Peptidomimetic escape mechanisms arise via genetic diversity in the ligand-binding site of the hepatitis C virus NS3/4A serine protease.

    Science.gov (United States)

    Welsch, Christoph; Shimakami, Tetsuro; Hartmann, Christoph; Yang, Yan; Domingues, Francisco S; Lengauer, Thomas; Zeuzem, Stefan; Lemon, Stanley M

    2012-03-01

    It is a challenge to develop direct-acting antiviral agents that target the nonstructural protein 3/4A protease of hepatitis C virus because resistant variants develop. Ketoamide compounds, designed to mimic the natural protease substrate, have been developed as inhibitors. However, clinical trials have revealed rapid selection of resistant mutants, most of which are considered to be pre-existing variants. We identified residues near the ketoamide-binding site in x-ray structures of the genotype 1a protease, co-crystallized with boceprevir or a telaprevir-like ligand, and then identified variants at these positions in 219 genotype-1 sequences from a public database. We used side-chain modeling to assess the potential effects of these variants on the interaction between ketoamide and the protease, and compared these results with the phenotypic effects on ketoamide resistance, RNA replication capacity, and infectious virus yields in a cell culture model of infection. Thirteen natural binding-site variants with potential for ketoamide resistance were identified at 10 residues in the protease, near the ketoamide binding site. Rotamer analysis of amino acid side-chain conformations indicated that 2 variants (R155K and D168G) could affect binding of telaprevir more than boceprevir. Measurements of antiviral susceptibility in cell-culture studies were consistent with this observation. Four variants (ie, Q41H, I132V, R155K, and D168G) caused low-to-moderate levels of ketoamide resistance; 3 of these were highly fit (Q41H, I132V, and R155K). Using a comprehensive sequence and structure-based analysis, we showed how natural variation in the hepatitis C virus protease nonstructural protein 3/4A sequences might affect susceptibility to first-generation direct-acting antiviral agents. These findings increase our understanding of the molecular basis of ketoamide resistance among naturally existing viral variants. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All

  18. Ligand Migration in the Gaseous Insulin-CB7 Complex—A Cautionary Tale About the Use of ECD-MS for Ligand Binding Site Determination

    Science.gov (United States)

    Heath, Brittany L.; Jockusch, Rebecca A.

    2012-11-01

    Knowledge of the structure of protein-ligand complexes can aid in understanding their roles within complex biological processes. Here we use electrospray ionization (ESI) coupled to a Fourier transform ion cyclotron resonance mass spectrometer to investigate the noncovalent binding of the macrocycle cucurbit[7]uril (CB7) to bovine insulin. Recent condensed-phase experiments (Chinai et al., J. Am. Chem. Soc. 133:8810-8813, 2011) indicate that CB7 binds selectively to the N-terminal phenylalanine of the insulin B-chain. Competition experiments employing ESI mass spectrometry to assess complex formation between CB7 and wild type insulin B-chain vs. a mutant B-chain, confirm that the N-terminal phenylalanine plays in important role in solution-phase binding. However, analysis of fragment ions produced by electron capture dissociation (ECD) of CB7 complexed to intact insulin and to the insulin B-chain suggests a different picture. The apparent gas-phase binding site, as identified by the ECD, lies further along the insulin B-chain. Together, these studies thus indicate that the CB7 ligand migrates in the ESI mass spectrometry analysis. Migration is likely aided by the presence of additional interactions between CB7 and the insulin B-chain, which are not observed in the crystal structure. While this conformational difference may result simply from the removal of solvent and addition of excess protons by the ESI, we propose that the migration may be enhanced by charge reduction during the ECD process itself because ion-dipole interactions are key to CB7 binding. The results of this study caution against using ECD-MS as a stand-alone structural probe for the determination of solution-phase binding sites.

  19. Kinetic analysis of ligand binding to the Ehrlich cell nucleoside transporter: Pharmacological characterization of allosteric interactions with the sup 3 Hnitrobenzylthioinosine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, J.R. (Department of Pharmacology and Toxicology, University of Western Ontario, London (Canada))

    1991-06-01

    Kinetic analysis of the binding of {sup 3}Hnitrobenzylthioinosine ({sup 3}H NBMPR) to Ehrlich ascites tumor cell plasma membranes was conducted in the presence and absence of a variety of nucleoside transport inhibitors and substrates. The association of {sup 3}H NBMPR with Ehrlich cell membranes occurred in two distinct phases, possibly reflecting functional conformation changes in the {sup 3}HNBMPR binding site/nucleoside transporter complex. Inhibitors of the equilibrium binding of {sup 3}HNBMPR, tested at submaximal inhibitory concentrations, generally decreased the rate of association of {sup 3}HNBMPR, but the magnitude of this effect varied significantly with the agent tested. Adenosine and diazepam had relatively minor effects on the association rate, whereas dipyridamole and mioflazine slowed the rate dramatically. Inhibitors of nucleoside transport also decreased the rate of dissociation of {sup 3}HNBMPR, with an order of potency significantly different from their relative potencies as inhibitors of the equilibrium binding of {sup 3}HNBMPR. Dilazep, dipyridamole, and mioflazine were effective inhibitors of both {sup 3}HNBMPR dissociation and equilibrium binding. The lidoflazine analogue R75231, on the other hand, had no effect on the rate of dissociation of {sup 3}HNBMPR at concentrations below 300 microM, even though it was one of the most potent inhibitors of {sup 3}HNBMPR binding tested (Ki less than 100 nM). In contrast, a series of natural substrates for the nucleoside transport system enhanced the rate of dissociation of {sup 3}HNBMPR with an order of effectiveness that paralleled their relative affinities for the permeant site of the transporter. The most effective enhancers of {sup 3}HNBMPR dissociation, however, were the benzodiazepines diazepam, chlordiazepoxide, and triazolam.

  20. Formyl peptide receptor chimeras define domains involved in ligand binding.

    Science.gov (United States)

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  1. Ligand binding mechanics of maltose binding protein.

    Science.gov (United States)

    Bertz, Morten; Rief, Matthias

    2009-11-13

    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  2. Combined Approach of Patch-Surfer and PL-PatchSurfer for Protein-Ligand Binding Prediction in CSAR 2013 and 2014.

    Science.gov (United States)

    Zhu, Xiaolei; Shin, Woong-Hee; Kim, Hyungrae; Kihara, Daisuke

    2016-06-27

    The Community Structure-Activity Resource (CSAR) benchmark exercise provides a unique opportunity for researchers to objectively evaluate the performance of protein-ligand docking methods. Patch-Surfer and PL-PatchSurfer, molecular surface-based methods for predicting binding ligands of proteins developed in our group, were tested on both CSAR 2013 and 2014 benchmark exercises in combination with an empirical scoring function-based method, AutoDock, while we only participated in CSAR 2013 using Patch-Surfer. The prediction results for Phase 1 task in CSAR 2013 showed that Patch-Surfer was able to rank all the four designed binding proteins within top ranks, outperforming AutoDock Vina. In Phase 2 of 2013, PL-PatchSurfer correctly selected the correct ligand pose for two target proteins. PL-PatchSurfer performed reasonably well in ranking ligands according to their binding affinity and in selecting near-native ligand poses in 2013 Phase 3 and 2014 Phase 1, respectively, although AutoDock Vina showed better performance. Lastly, in the 2014 Phase 2 exercise, the PL-PatchSurfer scores computed for ligands to target protein pairs correlated well with their pIC50 values, which was better or comparable to results by other participants. Overall, our methods showed fairly good performance in CSAR 2013 and 2014. Unique characteristics of the methods are discussed in comparison with AutoDock.

  3. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  4. Identification of specific sites involved in ligand binding by photoaffinity labeling of the receptor for the urokinase-type plasminogen activator. Residues located at equivalent positions in uPAR domains I and III participate in the assembly of a composite ligand-binding site

    DEFF Research Database (Denmark)

    Ploug, M

    1998-01-01

    PA binding (SLNFSQYLWS) were previously tagged by specific site-directed photoaffinity labeling [Ploug, M., Ostergaard, S., Hansen, L. B. L., Holm, A., and Dano, K. (1998) Biochemistry 37, 3612-3622]. Replacement of the key functional residues Phe4 and Trp9 with either benzophenone or (trifluoromethyl......)aryldiazirine rendered this peptide antagonist photoactivatable, and as a consequence, it incorporated covalently upon photolysis into either uPAR domain I or domain III depending on the actual position of the photophore in the sequence. The residues of uPAR specifically targeted by photoaffinity labeling were...... identified by matrix-assisted laser desorption mass spectrometry, NH2-terminal sequence analysis, and amino acid composition analysis after enzymatic fragmentation and HPLC purification. According to these data, the formation of the receptor-ligand complex positions Phe4 of the peptide antagonist very close...

  5. Topological Analyses of Protein-Ligand Binding: a Network Approach.

    Science.gov (United States)

    Costanzi, Stefano

    2016-01-01

    Proteins can be conveniently represented as networks of interacting residues, thus allowing the study of several network parameters that can shed light onto several of their structural and functional aspects. With respect to the binding of ligands, which are central for the function of many proteins, network analysis may constitute a possible route to assist the identification of binding sites. As the bulk of this review illustrates, this has generally been easier for enzymes than for non-enzyme proteins, perhaps due to the different topological nature of the binding sites of the former over those of the latter. The article also illustrates how network representations of binding sites can be used to search PDB structures in order to identify proteins that bind similar molecules and, lastly, how codifying proteins as networks can assist the analysis of the conformational changes consequent to ligand binding.

  6. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    Science.gov (United States)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  7. Accelerated Molecular Dynamics Simulations of Ligand Binding to a Muscarinic G-protein Coupled Receptor

    Science.gov (United States)

    Kappel, Kalli; Miao, Yinglong; McCammon, J. Andrew

    2017-01-01

    Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc), and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs. PMID:26537408

  8. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2013-01-01

    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  9. β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study.

    Directory of Open Access Journals (Sweden)

    Lenin Domínguez-Ramírez

    Full Text Available β-lactoglobulin (BLG is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control

  10. β-Lactoglobulin's Conformational Requirements for Ligand Binding at the Calyx and the Dimer Interphase: a Flexible Docking Study

    Science.gov (United States)

    Domínguez-Ramírez, Lenin; Del Moral-Ramírez, Elizabeth; Cortes-Hernández, Paulina; García-Garibay, Mariano; Jiménez-Guzmán, Judith

    2013-01-01

    β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i) 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii) Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii) Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv) lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control binding. PMID

  11. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.

    Science.gov (United States)

    Ruff, Karen M; Strobel, Scott A

    2014-11-01

    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform.

  12. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing [Oklahoma State University, Stillwater, OK 74078 (United States); Liu, Caini; Qian, Wen [Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Han, Yue [Oklahoma State University, Stillwater, OK 74078 (United States); Li, Xiaoxia, E-mail: lix@ccf.org [Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Deng, Junpeng, E-mail: lix@ccf.org [Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-05-01

    Crystal structure of the SEFIR domain from human IL-17 receptor A provides new insights into IL-17 signaling. Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein–protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC′{sub ins}) and a flexible loop (CC′). The DD′ loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC′{sub ins} helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR–SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.

  13. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    Science.gov (United States)

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  15. Exploiting protein flexibility to predict the location of allosteric sites

    Directory of Open Access Journals (Sweden)

    Panjkovich Alejandro

    2012-10-01

    Full Text Available Abstract Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity, by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing

  16. Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling.

    Science.gov (United States)

    Pawar, Parag; Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2008-10-01

    Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales.

  17. Protein-binding site prediction based on three-dimensional protein modeling.

    Science.gov (United States)

    Oh, Mina; Joo, Keehyoung; Lee, Jooyoung

    2009-01-01

    Structural information of a protein can guide one to understand the function of the protein, and ligand binding is one of the major biochemical functions of proteins. We have applied a two-stage template-based ligand binding site prediction method to CASP8 targets and achieved high quality results with accuracy/coverage = 70/80 (LEE). First, templates are used for protein structure modeling and then for binding site prediction by structural clustering of ligand-containing templates to the predicted protein model. Remarkably, the results are only a few percent worse than those one can obtain from native structures, which were available only after the prediction. Prediction was performed without knowing identity of ligands, and consequently, in many cases the ligand molecules used for prediction were different from the actual ligands, and yet we find that the prediction was quite successful. The current approach can be easily combined with experiments to investigate protein activities in a systematic way. Copyright 2009 Wiley-Liss, Inc.

  18. Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus

    Directory of Open Access Journals (Sweden)

    Fernando A Pagliai

    2015-11-01

    Full Text Available LdtR is a transcriptional activator involved in the regulation of a putative L,D transpeptidase in Liberibacter asiaticus, an unculturable pathogen and one of the causative agents of Huanglongbing disease. Using small molecule screens we identified benzbromarone as an inhibitor of LdtR activity, which was confirmed using in vivo and in vitro assays. Based on these previous results, the objective of this work was to identify the LdtR ligand binding pocket and characterize its interactions with benzbromarone. A structural model of LdtR was constructed and the molecular interactions with the ligand were predicted using the SwissDock interface. Using site-directed mutagenesis, these residues were changed to alanine. Electrophoretic mobility shift assays, thermal denaturation, isothermal titration calorimetry experiments, and in vivo assays were used to identify residues T43, L61, and F64 in the Benz1 pocket of LdtR as the amino acids most likely involved in the binding to benzbromarone. These results provide new information on the binding mechanism of LdtR to a modulatory molecule and provide a blue print for the design of therapeutics for other members of the MarR family of transcriptional regulators involved in pathogenicity.

  19. Homodimerization enhances both sensitivity and dynamic range of the ligand-binding domain of type 1 metabotropic glutamate receptor.

    Science.gov (United States)

    Serebryany, Eugene; Folta-Stogniew, Ewa; Liu, Jian; Yan, Elsa C Y

    2016-12-01

    Cooperativity in ligand binding is a key emergent property of protein oligomers. Positive cooperativity (higher affinity for subsequent binding events than for initial binding) is frequent. However, the symmetrically homodimeric ligand-binding domain (LBD) of metabotropic glutamate receptor type 1 exhibits negative cooperativity. To investigate its origin and functional significance, we measured the response to glutamate in vitro of wild-type and C140S LBD as a function of the extent of dimerization. Our results indicate that homodimerization enhances the affinity of the first, but not the second, binding site, relative to the monomer, giving the dimeric receptor both greater sensitivity and a broader dynamic range.

  20. Partial association of restriction polymorphism of the ligand binding ...

    African Journals Online (AJOL)

    Mohamed Hessien

    2015-11-02

    Nov 2, 2015 ... in the ligand binding domain (LBD) impair the receptor activity and play a crucial role in the devel- opment and .... Groups. Benign prostatic hyperplasia. Prostate cancer n. 15. 15. Age (yr) .... Frequency/cut position. Exon 4/5.

  1. Biosensors engineered from conditionally stable ligand-binding domains

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  2. The thermodynamic principles of ligand binding in chromatography and biology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2007-01-01

    the general thermodynamic principles of ligand binding. Models of the multi-component adsorption in ion-exchange and hydrophobic chromatography, HIC and RPLC, are developed. The parameters in the models have a well-defined physical significance. The models are compared to the Langmuir model...

  3. GluR2 ligand-binding core complexes

    DEFF Research Database (Denmark)

    Kasper, C; Lunn, M-L; Liljefors, T

    2002-01-01

    X-ray structures of the GluR2 ligand-binding core in complex with (S)-Des-Me-AMPA and in the presence and absence of zinc ions have been determined. (S)-Des-Me-AMPA, which is devoid of a substituent in the 5-position of the isoxazolol ring, only has limited interactions with the partly hydrophobic...

  4. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.

    Directory of Open Access Journals (Sweden)

    Jenny Persson

    2006-05-01

    Full Text Available Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP, a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function.

  5. Fast dynamics perturbation analysis for prediction of protein functional sites

    Directory of Open Access Journals (Sweden)

    Cohn Judith D

    2008-01-01

    Full Text Available Abstract Background We present a fast version of the dynamics perturbation analysis (DPA algorithm to predict functional sites in protein structures. The original DPA algorithm finds regions in proteins where interactions cause a large change in the protein conformational distribution, as measured using the relative entropy Dx. Such regions are associated with functional sites. Results The Fast DPA algorithm, which accelerates DPA calculations, is motivated by an empirical observation that Dx in a normal-modes model is highly correlated with an entropic term that only depends on the eigenvalues of the normal modes. The eigenvalues are accurately estimated using first-order perturbation theory, resulting in a N-fold reduction in the overall computational requirements of the algorithm, where N is the number of residues in the protein. The performance of the original and Fast DPA algorithms was compared using protein structures from a standard small-molecule docking test set. For nominal implementations of each algorithm, top-ranked Fast DPA predictions overlapped the true binding site 94% of the time, compared to 87% of the time for original DPA. In addition, per-protein recall statistics (fraction of binding-site residues that are among predicted residues were slightly better for Fast DPA. On the other hand, per-protein precision statistics (fraction of predicted residues that are among binding-site residues were slightly better using original DPA. Overall, the performance of Fast DPA in predicting ligand-binding-site residues was comparable to that of the original DPA algorithm. Conclusion Compared to the original DPA algorithm, the decreased run time with comparable performance makes Fast DPA well-suited for implementation on a web server and for high-throughput analysis.

  6. Dynamics of biomolecules, ligand binding & biological functions

    Science.gov (United States)

    Yi, Myunggi

    validation of Gouy-Chapman (GC) theory to charged lipid membranes, a test of GC theory by MD simulations has been elusive. Here we demonstrate that the ion distributions at different salt concentrations in anionic lipid bilayer systems agree well with GC predictions using MD simulations. Na+ ions are adsorbed to the bilayer through favorable interactions with carbonyls and hydroxyls, reducing the surface charge density by 72.5%. The interactions of amantadine, an antiinfluenza A drug, with DMPC bilayers are investigated by an MD simulation and by solid-state NMR. The MD simulation results and NMR data demonstrate that amantadine is located within the interfacial region with upward orientation and interacts with the lipid headgroup and glycerol backbone, while the adamantane group of amantadine interacts with the glycerol backbone and much of fatty acyl chain, as it wraps underneath of the drug. The lipid headgroup orientation is influenced by the drug as well. The recent prevalence of amantadine-resistant mutants makes a development of new drug urgent. The mechanism of inhibition of M2 proton channel in influenza virus A by amantadine is investigated. In the absence of high resolution structure, we model the apo and drug bound forms based on NMR structures. MD simulations demonstrate that channel pore is blocked by a primary gate formed by Trp41 helped by His37 and a secondary gate formed by Val27. The blockage by the secondary gate is extended by the drug bound just below the gate, resulting in a broken water wire throughout the simulation, suggesting a novel role of Val27 in the inhibition by amantadine. Recent X-ray structure validates the simulation results.

  7. Design of protein-ligand binding based on the molecular-mechanics energy model.

    Science.gov (United States)

    Boas, F Edward; Harbury, Pehr B

    2008-07-04

    While the molecular-mechanics field has standardized on a few potential energy functions, computational protein design efforts are based on potentials that are unique to individual laboratories. Here we show that a standard molecular-mechanics potential energy function without any modifications can be used to engineer protein-ligand binding. A molecular-mechanics potential is used to reconstruct the coordinates of various binding sites with an average root-mean-square error of 0.61 A and to reproduce known ligand-induced side-chain conformational shifts. Within a series of 34 mutants, the calculation can always distinguish between weak (K(d)>1 mM) and tight (K(d)mechanics potential is used to redesign a ribose-binding site. Out of a search space of 2 x 10(12) sequences, the calculation selects a point mutant of the native protein as the top solution (experimental K(d)=17 microM) and the native protein as the second best solution (experimental K(d)=210 nM). The quality of the predictions depends on the accuracy of the generalized Born electrostatics model, treatment of protonation equilibria, high-resolution rotamer sampling, a final local energy minimization step, and explicit modeling of the bound, unbound, and unfolded states. The application of unmodified molecular-mechanics potentials to protein design links two fields in a mutually beneficial way. Design provides a new avenue for testing molecular-mechanics energy functions, and future improvements in these energy functions will presumably lead to more accurate design results.

  8. Modeling regionalized volumetric differences in protein-ligand binding cavities.

    Science.gov (United States)

    Chen, Brian Y; Bandyopadhyay, Soutir

    2012-06-21

    Identifying elements of protein structures that create differences in protein-ligand binding specificity is an essential method for explaining the molecular mechanisms underlying preferential binding. In some cases, influential mechanisms can be visually identified by experts in structural biology, but subtler mechanisms, whose significance may only be apparent from the analysis of many structures, are harder to find. To assist this process, we present a geometric algorithm and two statistical models for identifying significant structural differences in protein-ligand binding cavities. We demonstrate these methods in an analysis of sequentially nonredundant structural representatives of the canonical serine proteases and the enolase superfamily. Here, we observed that statistically significant structural variations identified experimentally established determinants of specificity. We also observed that an analysis of individual regions inside cavities can reveal areas where small differences in shape can correspond to differences in specificity.

  9. Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip?

    Science.gov (United States)

    Geschwindner, Stefan; Ulander, Johan; Johansson, Patrik

    2015-08-27

    The use of ligand binding thermodynamics has been proposed as a potential success factor to accelerate drug discovery. However, despite the intuitive appeal of optimizing binding enthalpy, a number of factors complicate routine use of thermodynamic data. On a macroscopic level, a range of experimental parameters including temperature and buffer choice significantly influence the observed thermodynamic signatures. On a microscopic level, solute effects, structural flexibility, and cooperativity lead to nonlinear changes in enthalpy. This multifactorial character hides essential enthalpy contributions of intermolecular contacts, making them experimentally nonobservable. In this perspective, we present three case studies, reflect on some key factors affecting thermodynamic signatures, and investigate their relation to the hydrophobic effect, enthalpy-entropy compensation, lipophilic ligand efficiency, and promiscuity. The studies highlight that enthalpy and entropy cannot be used as direct end points but can together with calculations increase our understanding of ligand binding and identify interesting outliers that do not behave as expected.

  10. A statistical mechanics handbook for protein-ligand binding simulation.

    Science.gov (United States)

    Rocchia, Walter; Bonella, Sara

    2013-01-01

    In this work, the fundamental elements of statistical mechanics underlying the simulation of the protein-ligand binding process, such as statistical ensembles and the concept of microscopic estimators of macroscopic observables and free energy, are summarized in a self consistent fashion. Particular attention is then devoted to the introduction of some mathematical tools that are used in atomistic simulations aimed at estimating binding affinities and free energy profiles, and to the illustration of the origins of the difficulties encountered in this endeavor.

  11. Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers.

    Science.gov (United States)

    Jarillo, Javier; Morín, José A; Beltrán-Heredia, Elena; Villaluenga, Juan P G; Ibarra, Borja; Cao, Francisco J

    2017-01-01

    Ligands binding to polymers regulate polymer functions by changing their physical and chemical properties. This ligand regulation plays a key role in many biological processes. We propose here a model to explain the mechanical, thermodynamic, and kinetic properties of the process of binding of small ligands to long biopolymers. These properties can now be measured at the single molecule level using force spectroscopy techniques. Our model performs an effective decomposition of the ligand-polymer system on its covered and uncovered regions, showing that the elastic properties of the ligand-polymer depend explicitly on the ligand coverage of the polymer (i.e., the fraction of the polymer covered by the ligand). The equilibrium coverage that minimizes the free energy of the ligand-polymer system is computed as a function of the applied force. We show how ligands tune the mechanical properties of a polymer, in particular its length and stiffness, in a force dependent manner. In addition, it is shown how ligand binding can be regulated applying mechanical tension on the polymer. Moreover, the binding kinetics study shows that, in the case where the ligand binds and organizes the polymer in different modes, the binding process can present transient shortening or lengthening of the polymer, caused by changes in the relative coverage by the different ligand modes. Our model will be useful to understand ligand-binding regulation of biological processes, such as the metabolism of nucleic acid. In particular, this model allows estimating the coverage fraction and the ligand mode characteristics from the force extension curves of a ligand-polymer system.

  12. Engineering cofactor and ligand binding in an artificial neuroglobin

    Science.gov (United States)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a

  13. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.;

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...... of 25 mu M, while the IC50 of AP-(27-38)-peptide and AP-(33-38)-peptide are 10 mu M and 2 mu M, respectively, The understanding of the structure and function of active AP peptides will be useful for development of amyloid-targeted diagnostics and therapeutics....

  14. Protein-ligand binding sites. Identification, characterization and interrelations

    OpenAIRE

    Schmidtke, Peter

    2011-01-01

    El trabajo presentado en esta tesis cubre varios campos de investigación relacionados con el desarrollo de moléculas bioactivas. Se compone de cinco partes distintas que se resumen aquí. Predicción de la utilidad farmacológica de dianas terapéuticas. El desarrollo de fármacos está generalmente dirigido a inhibir la función de una proteína específica. Pero para validar esta proteína como diana terapéutica, al principio de un proyecto de descubrimiento de fármacos se tiene que saber si ...

  15. T cell receptor signaling can directly enhance the avidity of CD28 ligand binding.

    Directory of Open Access Journals (Sweden)

    Mariano Sanchez-Lockhart

    Full Text Available T cell activation takes place in the context of a spatial and kinetic reorganization of cell surface proteins and signaling molecules at the contact site with an antigen presenting cell, termed the immunological synapse. Coordination of the activation, recruitment, and signaling from T cell receptor (TCR in conjunction with adhesion and costimulatory receptors regulates both the initiation and duration of signaling that is required for T cell activation. The costimulatory receptor, CD28, is an essential signaling molecule that determines the quality and quantity of T cell immune responses. Although the functional consequences of CD28 engagement are well described, the molecular mechanisms that regulate CD28 function are largely unknown. Using a micropipet adhesion frequency assay, we show that TCR signaling enhances the direct binding between CD28 and its ligand, CD80. Although CD28 is expressed as a homodimer, soluble recombinant CD28 can only bind ligand monovalently. Our data suggest that the increase in CD28-CD28 binding is mediated through a change in CD28 valency. Molecular dynamic simulations and in vitro mutagenesis indicate that mutations at the base of the CD28 homodimer interface, distal to the ligand-binding site, can induce a change in the orientation of the dimer that allows for bivalent ligand binding. When expressed in T cells, this mutation allows for high avidity CD28-CD80 interactions without TCR signaling. Molecular dynamic simulations also suggest that wild type CD28 can stably adopt a bivalent conformation. These results support a model whereby inside-out signaling from the TCR can enhance CD28 ligand interactions by inducing a change in the CD28 dimer interface to allow for bivalent ligand binding and ultimately the transduction of CD28 costimulatory signals that are required for T cell activation.

  16. A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins.

    Science.gov (United States)

    Chen, Ava S-Y; Westwood, Nicholas J; Brear, Paul; Rogers, Graeme W; Mavridis, Lazaros; Mitchell, John B O

    2016-04-01

    We created a computational method to identify allosteric sites using a machine learning method trained and tested on protein structures containing bound ligand molecules. The Random Forest machine learning approach was adopted to build our three-way predictive model. Based on descriptors collated for each ligand and binding site, the classification model allows us to assign protein cavities as allosteric, regular or orthosteric, and hence to identify allosteric sites. 43 structural descriptors per complex were derived and were used to characterize individual protein-ligand binding sites belonging to the three classes, allosteric, regular and orthosteric. We carried out a separate validation on a further unseen set of protein structures containing the ligand 2-(N-cyclohexylamino) ethane sulfonic acid (CHES).

  17. Engineering periplasmic ligand binding proteins as glucose nanosensors

    Directory of Open Access Journals (Sweden)

    Constance J. Jeffery

    2011-01-01

    Full Text Available Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

  18. Structural evidence for conformational changes of Delta class glutathione transferases after ligand binding.

    Science.gov (United States)

    Wongsantichon, Jantana; Robinson, Robert C; Ketterman, Albert J

    2012-05-01

    We report four new crystal structures for Delta class glutathione transferases from insects. We compare these new structures as well as several previously reported structures to determine that structural transitions can be observed with ligand binding. These transitions occurred in the regions around the active site entrance, including alpha helix 2, C-terminus of alpha helix 4 including the loop to helix 5 and the C-terminus of helix 8. These structural movements have been reported or postulated to occur for several other glutathione transferase classes; however, this is the first report showing structural evidence of all these movements occurring, in this case in Delta class glutathione transferases. These fluctuations also can be observed occurring within a single structure as there is ligand bound in only one subunit and each subunit is undergoing different conformational transitions. The structural comparisons show reorganizations occur both pre- and post-GSH ligand binding communicated through the subunit interface of the quaternary assembly. Movements of these positions would allow 'breathing' of the active site for substrate entrance, topological rearrangement for varying substrate specificity and final product release.

  19. Relationships of ligand binding, redox properties, and protonation in Coprinus cinereus peroxidase.

    Science.gov (United States)

    Ciaccio, Chiara; Rosati, Antonella; De Sanctis, Giampiero; Sinibaldi, Federica; Marini, Stefano; Santucci, Roberto; Ascenzi, Paolo; Welinder, Karen G; Coletta, Massimo

    2003-05-23

    The pH dependence of the redox potentials and kinetics for CO association and dissociation was determined between pH 3.0 and 13.0 at 25 degrees C for the wild-type Coprinus cinereus fungal peroxidase and for a site-directed mutant in which Asp245, which is H-bonded to N delta of the imidazole of the proximal His183, was substituted with Asn. The determination of these functional properties allowed this information to be merged in a self-consistent fashion and to formulate for the first time a complete scheme employing the minimum number of groups required to describe the whole proton-linked behavior of both redox and ligand binding properties. The overall pH dependence can be accounted for by four redox- and ligand-linked groups. The proximal H-bond, which is strictly conserved in all peroxidases, will still be present in the site-specific mutant, but will no longer have an ionic character, and this event will bring about an alteration of redox equilibria and CO binding kinetics, envisaging a relevant role played by this H-bond also in modulating redox properties and ligand binding equilibria.

  20. Exhaustive comparison and classification of ligand-binding surfaces in proteins

    Science.gov (United States)

    Murakami, Yoichi; Kinoshita, Kengo; Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Many proteins function by interacting with other small molecules (ligands). Identification of ligand-binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand-binding protein sequences and functions. Consequently, we classified the patches into ∼2000 well-characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross-fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes. PMID:23934772

  1. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Mortisugu, Kei [RIKEN, Japan; Njunda, Brigitte [Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR); Smith, Jeremy C [ORNL

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure while gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.

  2. Structural Dynamics of the Cereblon Ligand Binding Domain

    Science.gov (United States)

    Hartmann, Marcus D.; Boichenko, Iuliia; Coles, Murray; Lupas, Andrei N.; Hernandez Alvarez, Birte

    2015-01-01

    Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution. PMID:26024445

  3. Structural dynamics of the cereblon ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Marcus D Hartmann

    Full Text Available Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution.

  4. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin.

    Science.gov (United States)

    Johnston, Ryne C; Zhou, Jing; Smith, Jeremy C; Parks, Jerry M

    2016-08-04

    Redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. A major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co-ligand binding equilibrium constants (Kon/off), pKas, and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co(III), Co(II), and Co(I) species, respectively, and the second model features saturation of each vacant axial coordination site on Co(II) and Co(I) species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co-axial ligand binding, leading to substantial errors in predicted pKas and

  5. Prediction of calcium-binding sites by combining loop-modeling with machine learning

    Directory of Open Access Journals (Sweden)

    Altman Russ B

    2009-12-01

    Full Text Available Abstract Background Protein ligand-binding sites in the apo state exhibit structural flexibility. This flexibility often frustrates methods for structure-based recognition of these sites because it leads to the absence of electron density for these critical regions, particularly when they are in surface loops. Methods for recognizing functional sites in these missing loops would be useful for recovering additional functional information. Results We report a hybrid approach for recognizing calcium-binding sites in disordered regions. Our approach combines loop modeling with a machine learning method (FEATURE for structure-based site recognition. For validation, we compared the performance of our method on known calcium-binding sites for which there are both holo and apo structures. When loops in the apo structures are rebuilt using modeling methods, FEATURE identifies 14 out of 20 crystallographically proven calcium-binding sites. It only recognizes 7 out of 20 calcium-binding sites in the initial apo crystal structures. We applied our method to unstructured loops in proteins from SCOP families known to bind calcium in order to discover potential cryptic calcium binding sites. We built 2745 missing loops and evaluated them for potential calcium binding. We made 102 predictions of calcium-binding sites. Ten predictions are consistent with independent experimental verifications. We found indirect experimental evidence for 14 other predictions. The remaining 78 predictions are novel predictions, some with intriguing potential biological significance. In particular, we see an enrichment of beta-sheet folds with predicted calcium binding sites in the connecting loops on the surface that may be important for calcium-mediated function switches. Conclusion Protein crystal structures are a potentially rich source of functional information. When loops are missing in these structures, we may be losing important information about binding sites and active

  6. Renormalization of myoglobin-ligand binding energetics by quantum many-body effects

    CERN Document Server

    Weber, Cedric; O'Regan, David D; Payne, Mike C

    2014-01-01

    We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory (DMFT). This combination of methods explicitly accounts for dynamical and multi-reference quantum physics, such as valence and spin fluctuations, of the 3d electrons, whilst treating a significant proportion of the protein (more than 1000 atoms) with density functional theory. The computed electronic structure of the myoglobin complexes and the nature of the Fe-O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a st...

  7. Computational approaches to modeling receptor flexibility upon ligand binding: Application to interfacially activated enzymes

    DEFF Research Database (Denmark)

    Wade, R.C.; Sobolev, V.; Ortiz, A.R. .

    1998-01-01

    Receptors generally undergo conformational change upon ligand binding. We describe how fairly simple techniques may be used in docking and design studies to account for some of the changes in the conformations of proteins on ligand binding. Simulations of protein-ligand interactions that give a m...

  8. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    Science.gov (United States)

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions.

  9. Fundamentals of large-molecule protein therapeutic bioanalysis using ligand-binding assays.

    Science.gov (United States)

    Thway, Theingi M

    2016-01-01

    This article provides an overview of ligand-binding assays, including the origin and evolution of the primary concepts, in addition to reviewing commonly used assay formats. The birth of ligand-binding assays began with a radioimmunoassay developed to measure insulin in 1960. Fundamental to ligand-binding assay design is the requirement of at least one protein that interacts with the analyte of interest. Enzyme immunoassay has largely supplanted radioimmunoassay as the ligand-binding assay of choice in today's laboratory environment. This article illustrates various assay formats such as competitive, sandwich and bridging, in addition to, describing critical reagents necessary for their design. The utility of ligand-binding assays in therapeutic protein development and comparison to alternative bioanalysis platforms is discussed.

  10. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  11. Structure of the homodimeric androgen receptor ligand-binding domain

    Science.gov (United States)

    Nadal, Marta; Prekovic, Stefan; Gallastegui, Nerea; Helsen, Christine; Abella, Montserrat; Zielinska, Karolina; Gay, Marina; Vilaseca, Marta; Taulès, Marta; Houtsmuller, Adriaan B.; van Royen, Martin E.; Claessens, Frank; Fuentes-Prior, Pablo; Estébanez-Perpiñá, Eva

    2017-01-01

    The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over 40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental effect on the transactivating properties of full-length AR, despite retained hormone-binding capacity. The conservation of essential residues suggests that the unveiled dimerization mechanism might be shared by other nuclear receptors. Our work defines AR-LBD homodimerization as an essential step in the proper functioning of this important transcription factor. PMID:28165461

  12. ITC analysis of ligand binding to preQ₁ riboswitches.

    Science.gov (United States)

    Liberman, Joseph A; Bogue, Jarrod T; Jenkins, Jermaine L; Salim, Mohammad; Wedekind, Joseph E

    2014-01-01

    Riboswitches regulate genes by binding to small-molecule effectors. Isothermal titration calorimetry (ITC) provides a label-free method to quantify the equilibrium association constant, K(A), of a riboswitch interaction with its cognate ligand. In addition to probing affinity and specific chemical contributions that contribute to binding, ITC can be used to measure the thermodynamic parameters of an interaction (ΔG, ΔH, and ΔS), in addition to the binding stoichiometry (N). Here, we describe methods developed to measure the binding affinity of various preQ1 riboswitch classes for the pyrrolopyrimidine effector, preQ1. Example isotherms are provided along with a review of various preQ1-II (class 2) riboswitch mutants that were interrogated by ITC to quantify the energetic contributions of specific interactions visualized in the crystal structure. Protocols for ITC are provided in sufficient detail that the reader can reproduce experiments independently, or develop derivative methods suitable for analyzing novel riboswitch-ligand binding interactions.

  13. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations

    Science.gov (United States)

    Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio

    2017-01-01

    G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 (d[AG3(T2AG3)3]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy (ΔGb0 = −10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands. PMID:28232513

  14. Hydrophobic side chain dynamics of a glutamate receptor ligand binding domain.

    Science.gov (United States)

    Maltsev, Alexander S; Oswald, Robert E

    2010-03-26

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate much of the fast excitatory neurotransmission in the central nervous system. The extracellular ligand binding core (S1S2) of the GluR2 subtype of ionotropic glutamate receptors can be produced as a soluble protein with properties essentially identical to the corresponding domain in the intact, membrane-bound protein. Using a variety of biophysical techniques, much has been learned about the structure and dynamics of S1S2 and the relationship between its ligand-induced conformational changes and the function of the receptor. It is clear that dynamic processes are essential to the function of ionotropic glutamate receptors. We have isotopically labeled side chain methyls of GluR2 S1S2 and used NMR spectroscopy to study their dynamics on the ps-ns and mus-ms time scales. Increased disorder is seen in regions that are part of the key dimer interface in the intact protein. When glutamate is bound, the degree of ps-ns motion is less than that observed with other ligands, suggesting that the physiological agonist binds to a preformed binding site. At the slower time scales, the degree of S1S2 flexibility induced by ligand binding is greatest for willardiine partial agonists, least for antagonists, and intermediate for full agonists. Notable differences among bound ligands are in the region of the protein that forms a hinge between two lobes that close upon agonist binding, and along the beta-sheet in Lobe 2. These motions provide clues as to the functional properties of partial agonists and to the conformational changes associated with lobe closure and channel activation.

  15. Directed evolution of estrogen receptor proteins with altered ligand-binding specificities.

    Science.gov (United States)

    Islam, Kazi Mohammed Didarul; Dilcher, Meik; Thurow, Corinna; Vock, Carsten; Krimmelbein, Ilga Kristine; Tietze, Lutz Friedjan; Gonzalez, Victor; Zhao, Huimin; Gatz, Christiane

    2009-01-01

    Transcriptional activators that respond to ligands with no cellular targets are powerful tools that can confer regulated expression of a transgene in almost all biological systems. In this study, we altered the ligand-binding specificity of the human estrogen receptor alpha (hER alpha) so that it would recognize a non-steroidal synthetic compound with structural similarities to the phytoestrogen resveratrol. For this purpose, we performed iterative rounds of site-specific saturation mutagenesis of a fixed set of ligand-contacting residues and subsequent random mutagenesis of the entire ligand-binding domain. Selection of the receptor mutants and quantification of the interaction were carried out by exploiting a yeast two-hybrid system that reports the ligand-dependent interaction between hER alpha and steroid receptor coactivator-1 (SRC-1). The screen was performed with a synthetic ligand (CV3320) that promoted growth of the reporter yeast strain to half maximal levels at a concentration of 3.7 microM. The optimized receptor mutant (L384F/L387M/Y537S) showed a 67-fold increased activity to the synthetic ligand CV3320 (half maximal yeast growth at 0.055 microM) and a 10-fold decreased activity to 17beta-estradiol (E2; half maximal yeast growth at 4 nM). The novel receptor-ligand pair partially fulfills the requirements for a specific 'gene switch' as it responds to concentrations of the synthetic ligand which do not activate the wildtype receptor. Due to its residual responsiveness to E2 at concentrations (4 nM) that might occur in vivo, further improvements have to be performed to render the system applicable in organisms with endogenous E2 synthesis.

  16. Analysis of Peptide Ligand Binding to FGFR1

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Simulating annealing algorithm was used in docking computation to predict a selected peptide VYMSPF(P2) binding site on the ectodomain of FGFR1. The peptide is located on the hydrophobic surface of the receptor, which is critical for FGF binding. The synthesized peptide can effectively inhibit the mitogenic activity of aFGF, and has a potential to become a therapeutic agent as an aFGF antagonist.

  17. Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation.

    Science.gov (United States)

    Su, Ji-Guo; Zhao, Shu-Xin; Wang, Xiao-Feng; Li, Chun-Hua; Li, Jing-Yuan

    2016-08-01

    Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties.

  18. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    Science.gov (United States)

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  19. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J;

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA...

  20. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    Directory of Open Access Journals (Sweden)

    Yan Li

    2015-04-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2 is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP binding site (Site I and two non-competitive binding sites (Site II and III. In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV. All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate. In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.

  1. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    Science.gov (United States)

    Li, Yan; Zhang, Jingxiao; Gao, Weimin; Zhang, Lilei; Pan, Yanqiu; Zhang, Shuwei; Wang, Yonghua

    2015-01-01

    Cyclin-dependent kinase 2 (CDK2) is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP) binding site (Site I) and two non-competitive binding sites (Site II and III). In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV). All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate). In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2. PMID:25918937

  2. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    Science.gov (United States)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  3. eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape

    Science.gov (United States)

    Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki

    2007-01-01

    We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a PDB format file as the output. In addition, the predicted interacting interface is displayed to facilitate the examination of the virtual complex structure on our own applet viewer with the web browser (URL: http://eF-site.hgc.jp/eF-seek). PMID:17567616

  4. Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase

    Science.gov (United States)

    Myllykoski, Matti; Kursula, Petri

    2017-01-01

    The 2H phosphoesterase family contains enzymes with two His-X-Ser/Thr motifs in the active site. 2H enzymes are found in all kingdoms of life, sharing little sequence identity despite the conserved overall fold and active site. For many 2H enzymes, the physiological function is unknown. Here, we studied the structure of the 2H family member LigT from Escherichia coli both in the apo form and complexed with different active-site ligands, including ATP, 2′-AMP, 3′-AMP, phosphate, and NADP+. Comparisons to the well-characterized vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) highlight specific features of the catalytic cycle and substrate recognition in both enzymes. The role played by the helix α7, unique to CNPases within the 2H family, is apparently taken over by Arg130 in the bacterial enzyme. Other residues and loops lining the active site groove are likely to be important for RNA substrate binding. We visualized conformational changes related to ligand binding, as well as the position of the nucleophilic water molecule. We also present a low-resolution model of E. coli LigT bound to tRNA in solution, and provide a model for RNA binding by LigT, involving flexible loops lining the active site cavity. Taken together, our results both aid in understanding the common features of 2H family enzymes and help highlight the distinct features in the 2H family members, which must result in different reaction mechanisms. Unique aspects in different 2H family members can be observed in ligand recognition and binding, and in the coordination of the nucleophilic water molecule and the reactive phosphate moiety. PMID:28141848

  5. Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding.

    Science.gov (United States)

    Kristiansen, M; Kozyraki, R; Jacobsen, C; Nexø, E; Verroust, P J; Moestrup, S K

    1999-07-16

    Cubilin, the receptor for intrinsic factor-vitamin B12, is a novel type of high molecular weight receptor consisting of a 27 CUB (complement components C1r/C1s, Uegf, and bone morphogenic protein-1) domain cluster preceded by 8 epidermal growth factor repeats and a short N-terminal sequence. In addition to binding the vitamin B12-carrier complex, cubilin also binds receptor-associated protein. To delineate the structures for membrane association and ligand binding we established a panel of stable transfected Chinese hamster ovary cells expressing overlapping segments of rat cubilin. Analysis of conditioned media and cell extracts of transfected cells revealed that the N-terminal cubilin region conveys membrane association. Helical plotting of this region demonstrated a conserved amphipathic helix pattern (Lys74-Glu109) as a candidate site for hydrophobic interactions. Ligand affinity chromatography and surface plasmon resonance analysis of the secreted cubilin fragments showed ligand binding in the CUB domain region. Further dissection of binding-active fragments localized the binding site for intrinsic factor-vitamin B12 to CUB domains 5-8 and a receptor-associated protein-binding site to CUB domains 13-14. In conclusion, the N-terminal cubilin region seems crucial for membrane association, whereas the CUB domain cluster harbors distinct sites for ligand binding.

  6. Protein-Ligand Binding from Distancefield Distances and Hamiltonian Replica Exchange Simulations.

    Science.gov (United States)

    de Ruiter, Anita; Oostenbrink, Chris

    2013-02-12

    The calculation of protein-ligand binding free energies is an important goal in the field of computational chemistry. Applying path-sampling methods for this purpose involves calculating the associated potential of mean force (PMF) and gives insight into the binding free energy along the binding process. Without a priori knowledge about the binding path, sampling reversible binding can be difficult to achieve. To alleviate this problem, we introduce the distancefield (DF) as a reaction coordinate for such calculations. DF is a grid-based method in which the shortest distance between the binding site and a ligand is determined avoiding routes that pass through the protein. Combining this reaction coordinate with Hamiltonian replica exchange molecular dynamics (HREMD) allows for the reversible binding of the ligand to the protein. A comparison is made between umbrella sampling using regular distance restraints and HREMD with DF restraints to study aspirin binding to the protein phospholipase A2. Although the free energies of binding are similar for both methods, the increased sampling with HREMD has a significant influence on the shape of the PMF. A remarkable agreement between the calculated binding free energies from the PMF and the experimental estimate is obtained.

  7. Ligand binding-dependent functions of the lipocalin NLaz: an in vivo study in Drosophila.

    Science.gov (United States)

    Ruiz, Mario; Ganfornina, Maria D; Correnti, Colin; Strong, Roland K; Sanchez, Diego

    2014-04-01

    Lipocalins are small extracellular proteins mostly described as lipid carriers. The Drosophila lipocalin NLaz (neural Lazarillo) modulates the IIS pathway and regulates longevity, stress resistance, and behavior. Here, we test whether a native hydrophobic pocket structure is required for NLaz to perform its functions. We use a point mutation altering the binding pocket (NLaz(L130R)) and control mutations outside NLaz binding pocket. Tryptophan fluorescence titration reveals that NLaz(L130R) loses its ability to bind ergosterol and the pheromone 7(z)-tricosene but retains retinoic acid binding. Using site-directed transgenesis in Drosophila, we test the functionality of the ligand binding-altered lipocalin at the organism level. NLaz-dependent life span reduction, oxidative stress and starvation sensitivity, aging markers accumulation, and deficient courtship are rescued by overexpression of NLaz(WT), but not of NLaz(L130R). Transcriptional responses to aging and oxidative stress show a large set of age-responsive genes dependent on the integrity of NLaz binding pocket. Inhibition of IIS activity and modulation of oxidative stress and infection-responsive genes are binding pocket-dependent processes. Control of energy metabolites on starvation appears to be, however, insensitive to the modification of the NLaz binding pocket.

  8. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.

    Science.gov (United States)

    Teigen, Knut; McKinney, Jeffrey Alan; Haavik, Jan; Martínez, Aurora

    2007-01-01

    Hydroxylation of the aromatic amino acids phenylalanine, tyrosine and tryptophan is carried out by a family of non-heme iron and tetrahydrobiopterin (BH4) dependent enzymes, i.e. the aromatic amino acid hydroxylases (AAHs). The reactions catalyzed by these enzymes are important for biomedicine and their mutant forms in humans are associated with phenylketonuria (phenylalanine hydroxylase), Parkinson's disease and DOPA-responsive dystonia (tyrosine hydroxylase), and possibly neuropsychiatric and gastrointestinal disorders (tryptophan hydroxylase 1 and 2). We attempt to rationalize current knowledge about substrate and inhibitor specificity based on the three-dimensional structures of the enzymes and their complexes with substrates, cofactors and inhibitors. In addition, further insights on the selectivity and affinity determinants for ligand binding in the AAHs were obtained from molecular interaction field (MIF) analysis. We applied this computational structural approach to a rational analysis of structural differences at the active sites of the enzymes, a strategy that can help in the design of novel selective ligands for each AAH.

  9. Ligand binding in the conserved interhelical loop of CorA, a magnesium transporter from Mycobacterium tuberculosis.

    Science.gov (United States)

    Hu, Jian; Sharma, Mukesh; Qin, Huajun; Gao, Fei Philip; Cross, Timothy A

    2009-06-05

    CorA is a constitutively expressed magnesium transporter in many bacteria. The crystal structures of Thermotoga maritima CorA provide an excellent structural framework for continuing studies. Here, the ligand binding properties of the conserved interhelical loop, the only portion of the protein exposed to the periplasmic space, are characterized by solution nuclear magnetic resonance spectroscopy. Through titration experiments performed on the isolated transmembrane domain of Mycobacterium tuberculosis CorA, it was found that two CorA substrates (Mg2+ and Co2+) and the CorA-specific inhibitor (Co(III) hexamine chloride) bind in the loop at the same binding site. This site includes the glutamic acid residue from the conserved "MPEL" motif. The relatively large dissociation constants indicate that such interactions are weak but not atypical for channels. The present data support the hypothesis that the negatively charged loop could act as an electrostatic ring, increasing local substrate concentrations before transport across the membrane.

  10. Cloning, ligand-binding, and temporal expression of ecdysteroid receptors in the diamondback moth, Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Tang Baozhen

    2012-10-01

    Full Text Available Abstract Background The diamondback moth, Plutella xylostella (L. (Lepidoptera: Plutellidae, is a devastating pest of cruciferous crops worldwide, and has developed resistance to a wide range of insecticides, including diacylhydrazine-based ecdysone agonists, a highly selective group of molt-accelerating biopesticides targeting the ecdysone receptors. Result In this study, we cloned and characterized the ecdysone receptors from P. xylostella, including the two isoforms of EcR and a USP. Sequence comparison and phylogenetic analysis showed striking conservations among insect ecdysone receptors, especially between P. xylostella and other lepidopterans. The binding affinity of ecdysteroids to in vitro-translated receptor proteins indicated that PxEcRB isoform bound specifically to ponasterone A, and the binding affinity was enhanced by co-incubation with PxUSP (Kd =3.0±1.7 nM. In contrast, PxEcRA did not bind to ponasterone A, even in the presence of PxUSP. The expression of PxEcRB were consistently higher than that of PxEcRA across each and every developmental stage, while the pattern of PxUSP expression is more or less ubiquitous. Conclusions Target site insensitivity, in which the altered binding of insecticides (ecdysone agonists to their targets (ecdysone receptors leads to an adaptive response (resistance, is one of the underlying mechanisms of diacylhydrazine resistance. Given the distinct differences at expression level and the ligand-binding capacity, we hypothesis that PxEcRB is the ecdysone receptor that controls the remodeling events during metamorphosis. More importantly, PxEcRB is the potential target site which is modified in the ecdysone agonist-resistant P. xylostella.

  11. Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian Notch ligands.

    Science.gov (United States)

    Taylor, Paul; Takeuchi, Hideyuki; Sheppard, Devon; Chillakuri, Chandramouli; Lea, Susan M; Haltiwanger, Robert S; Handford, Penny A

    2014-05-20

    The Notch signaling pathway is essential for many aspects of development, cell fate determination, and tissue homeostasis. Notch signaling can be modulated by posttranslational modifications to the Notch receptor, which are known to alter both ligand binding and receptor activation. We have modified the ligand-binding region (EGF domains 11-13) of human Notch1 (hN1) with O-fucose and O-glucose glycans and shown by flow cytometry and surface plasmon resonance that the Fringe-catalyzed addition of GlcNAc to the O-fucose at T466 in EGF12 substantially increases binding to Jagged1 and Delta-like 1 (DLL1) ligands. We have subsequently determined the crystal structures of EGF domains 11-13 of hN1 modified with either the O-fucose monosaccharide or the GlcNAc-fucose disaccharide at T466 of EGF12 and observed no change in backbone structure for each variant. Collectively, these data demonstrate a role for GlcNAc in modulating the ligand-binding site in hN1 EGF12, resulting in an increased affinity of this region for ligands Jagged1 and DLL1. We propose that this finding explains the Fringe-catalyzed enhancement of Notch-Delta signaling observed in flies and humans, but suggest that the inhibitory effect of Fringe on Jagged/Serrate mediated signaling involves other regions of Notch.

  12. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Rønne, E; Solberg, H

    1992-01-01

    -domain form, uPAR(2+3), lacking ligand-binding domain 1. Trypsin treatment showed that both variants are present on the outside of the cells. Addition to the culture medium of an anticatalytic monoclonal antibody to uPA inhibited the formation of the uPAR(2+3), indicating that uPA is involved in its...

  13. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  14. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology...

  15. On the Denaturation Mechanisms of the Ligand Binding Domain of Thyroid Hormone Receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Telles de Souza, P C; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of t

  16. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    Science.gov (United States)

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules.

  17. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    Science.gov (United States)

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  18. On the denaturation mechanisms of the ligand binding domain of thyroid hormone receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Souza, Paulo C T; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics simulations to investigate unfolding of the LBDs of t

  19. On the Denaturation Mechanisms of the Ligand Binding Domain of Thyroid Hormone Receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Telles de Souza, P C; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of t

  20. Ligand Binding Kinetics of the Quorum Sensing Regulator PqsR

    DEFF Research Database (Denmark)

    Welch, Martin; Hodgkinson, James T.; Gross, Jeremy;

    2013-01-01

    The Pseudomonas aeruginosa quinolone signal (PQS) is a quorum sensing molecule that plays an important role in regulating the virulence of this organism. We have purified the ligand binding domain of the receptor PqsRLBD for PQS and have used Förster resonance energy transfer fluorimetry...

  1. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-states...

  2. Protein Unfolding Coupled to Ligand Binding: Differential Scanning Calorimetry Simulation Approach

    Science.gov (United States)

    Celej, Maria Soledad; Fidelio, Gerardo Daniel; Dassie, Sergio Alberto

    2005-01-01

    A comprehensive theoretical description of thermal protein unfolding coupled to ligand binding is presented. The thermodynamic concepts are independent of the method used to monitor protein unfolding but a differential scanning calorimetry is being used as a tool for examining the unfolding process.

  3. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud;

    2003-01-01

    G protein-coupled receptors (GPCRs) constitute a large class of seven transmembrane proteins, which bind selectively agonists or antagonists with important consequences for cellular signaling and function. Comprehension of the molecular details of ligand binding is important for the understanding...

  4. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.

  5. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities

    Science.gov (United States)

    Genheden, Samuel; Ryde, Ulf

    2015-01-01

    Introduction: The molecular mechanics energies combined with the Poisson–Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods are popular approaches to estimate the free energy of the binding of small ligands to biological macromolecules. They are typically based on molecular dynamics simulations of the receptor–ligand complex and are therefore intermediate in both accuracy and computational effort between empirical scoring and strict alchemical perturbation methods. They have been applied to a large number of systems with varying success. Areas covered: The authors review the use of MM/PBSA and MM/GBSA methods to calculate ligand-binding affinities, with an emphasis on calibration, testing and validation, as well as attempts to improve the methods, rather than on specific applications. Expert opinion: MM/PBSA and MM/GBSA are attractive approaches owing to their modular nature and that they do not require calculations on a training set. They have been used successfully to reproduce and rationalize experimental findings and to improve the results of virtual screening and docking. However, they contain several crude and questionable approximations, for example, the lack of conformational entropy and information about the number and free energy of water molecules in the binding site. Moreover, there are many variants of the method and their performance varies strongly with the tested system. Likewise, most attempts to ameliorate the methods with more accurate approaches, for example, quantum-mechanical calculations, polarizable force fields or improved solvation have deteriorated the results. PMID:25835573

  6. The extraordinary specificity of xanthine phosphoribosyltransferase from Bacillus subtilis elucidated by reaction kinetics, ligand binding, and crystallography

    DEFF Research Database (Denmark)

    Arent, Susan; Kadziola, Anders; Larsen, Sine

    2006-01-01

    (X)GPRTases with respect to sequence, PRPP binding motif, and oligomeric structure. They are more related with the PurR repressor of Gram-positive bacteria, the adenine PRTase, and orotate PRTase. The catalytic function and high specificity for xanthine of B. subtilis XPRTase were investigated by ligand binding studies...... related to a few key residues in the active site. Asn27 can in different orientations form hydrogen bonds to an amino group or an oxo group at the 2-position of the purine base, and Lys156 is positioned to make a hydrogen bond with N7. This and the absence of a catalytic carboxylate group near the N7......Xanthine phosphoribosyltransferase (XPRTase) from Bacillus subtilis is a representative of the highly xanthine specific XPRTases found in Gram-positive bacteria. These XPRTases constitute a distinct subclass of 6-oxopurine PRTases, which deviate strongly from the major class of H...

  7. Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene.

    Science.gov (United States)

    McPhaul, M J; Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; Wilson, J D

    1992-11-01

    We have analyzed the nucleotide sequence of the androgen receptor from 22 unrelated subjects with substitution mutations of the hormone-binding domain. Eleven had the phenotype of complete testicular feminization, four had incomplete testicular feminization, and seven had Reifenstein syndrome. The underlying functional defect in cultured skin fibroblasts included individuals with absent, qualitative, or quantitative defects in ligand binding. 19 of the 21 substitution mutations (90%) cluster in two regions that account for approximately 35% of the hormone-binding domain, namely, between amino acids 726 and 772 and between amino acids 826 and 864. The fact that one of these regions is homologous to a region of the human thyroid hormone receptor (hTR-beta) which is a known cluster site for mutations that cause thyroid hormone resistance implies that this localization of mutations is not a coincidence. These regions of the androgen receptor may be of particular importance for the formation and function of the hormone-receptor complex.

  8. Structural and Biochemical Determinants of Ligand Binding by the c-di-GMP Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Lipchock, S; Livingston,; Shanahan, C; Strobel, S

    2010-01-01

    The bacterial second messenger c-di-GMP is used in many species to control essential processes that allow the organism to adapt to its environment. The c-di-GMP riboswitch (GEMM) is an important downstream target in this signaling pathway and alters gene expression in response to changing concentrations of c-di-GMP. The riboswitch selectively recognizes its second messenger ligand primarily through contacts with two critical nucleotides. However, these two nucleotides are not the most highly conserved residues within the riboswitch sequence. Instead, nucleotides that stack with c-di-GMP and that form tertiary RNA contacts are the most invariant. Biochemical and structural evidence reveals that the most common natural variants are able to make alternative pairing interactions with both guanine bases of the ligand. Additionally, a high-resolution (2.3 {angstrom}) crystal structure of the native complex reveals that a single metal coordinates the c-di-GMP backbone. Evidence is also provided that after transcription of the first nucleotide on the 3{prime}-side of the P1 helix, which is predicted to be the molecular switch, the aptamer is functional for ligand binding. Although large energetic effects occur when several residues in the RNA are altered, mutations at the most conserved positions, rather than at positions that base pair with c-di-GMP, have the most detrimental effects on binding. Many mutants retain sufficient c-di-GMP affinity for the RNA to remain biologically relevant, which suggests that this motif is quite resilient to mutation.

  9. Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Francotte, Pierre; Goffin, Eric

    2014-01-01

    ,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven......, and 5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI...

  10. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA.

    Directory of Open Access Journals (Sweden)

    Justina C Wolters

    Full Text Available BACKGROUND: The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC was characterized. PRINCIPAL FINDINGS: The binding of glycine betaine to purified OpuA and OpuAC (K(D = 4-6 microM did not show any salt dependence or cooperative effects, in contrast to the transport activity. OpuAC is highly specific for glycine betaine and the related proline betaine. Other compatible solutes like proline and carnitine bound with affinities that were 3 to 4 orders of magnitude lower. The low affinity substrates were not noticeably transported by membrane-reconstituted OpuA. OpuAC was crystallized in an open (1.9 A and closed-liganded (2.3 A conformation. The binding pocket is formed by three tryptophans (Trp-prism coordinating the quaternary ammonium group of glycine betaine in the closed-liganded structure. Even though the binding site of OpuAC is identical to that of its B. subtilis homolog, the affinity for glycine betaine is 4-fold higher. CONCLUSIONS: Ionic strength did not affect substrate binding to OpuA, indicating that regulation of transport is not at the level of substrate binding, but rather at the level of translocation. The overlap between the crystal structures of OpuAC from L.lactis and B.subtilis, comprising the classical Trp-prism, show that the differences observed in the binding affinities originate from outside of the ligand binding site.

  11. Identification and characterization of two distinct ligand binding regions of cubilin.

    Science.gov (United States)

    Yammani, R R; Seetharam, S; Seetharam, B

    2001-11-30

    Using polymerase chain reaction-amplified fragments of cubilin, an endocytic receptor of molecular mass 460 kDa, we have identified two distinct ligand binding regions. Region 1 of molecular mass 71 kDa, which included the 113-residue N terminus along with the eight epidermal growth factor (EGF)-like repeats and CUB domains 1 and 2, and region 2 of molecular mass 37 kDa consisting of CUB domains 6-8 bound both intrinsic factor-cobalamin (vitamin B(12); Cbl) (IF-Cbl) and albumin. Within these two regions, the binding of both ligands was confined to a 110-115-residue stretch that encompassed either the 113-residue N terminus or CUB domain 7 and 8. Ca(2+) dependence of ligand binding or the ability of cubilin antiserum to inhibit ligand binding to the 113-residue N terminus was 60-65%. However, a combination of CUB domains 7 and 8 or 6-8 was needed to demonstrate significant Ca(2+) dependence or inhibition of ligand binding by cubilin antiserum. Antiserum to EGF inhibited albumin but not IF-Cbl binding to the N-terminal cubilin fragment that included the eight EGF-like repeats. While the presence of excess albumin had no effect on binding to IF-Cbl, IF-Cbl in excess was able to inhibit albumin binding to both regions of cubilin. Reductive alkylation of the 113-residue N terminus or CUB 6-8, CUB 7, or CUB 8 domain resulted in the abolishment of ligand binding. These results indicate that (a) cubilin contains two distinct regions that bind both IF-Cbl and albumin and that (b) binding of both IF-Cbl and albumin to each of these regions can be distinguished and is regulated by the nonassisted formation of local disulfide bonds.

  12. Highly selective ligand binding by Methylophilus methylotrophus cytochrome c''.

    Science.gov (United States)

    Quintas, Pedro O; Catarino, Teresa; Todorovic, Smilja; Turner, David L

    2011-06-28

    Cytochrome c'' (cyt c'') from Methylophilus methylotrophus is unusual insofar as the heme has two axial histidine ligands in the oxidized form but one is detached when the protein is reduced. Despite cyt c'' having an axial site available for binding small ligands, we show here that only NO binds readily to the ferrous cyt c''. Binding of CO, as well as CN(-), on the other hand requires considerable structural reorganization, or reduction of the disulfide bridge close to the heme. Standard free energies for the binding of NO and CO reveal high selectivity of the ferrous cyt c'' for NO, indicating its putative physiological role. In this work, we characterize in detail the kinetics of NO binding and the structural features of the Fe(2+)-NO adduct by stopped-flow and resonance Raman spectroscopy, respectively.

  13. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma.

    Science.gov (United States)

    Liu, Chunqiao; Widen, Sonya A; Williamson, Kathleen A; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P; Strachan, Erin; Manjunath, Souparnika H; Balakrishnan, Archana; Floyd, James A; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P; Lehmann, Ordan J; FitzPatrick, David R; Swaroop, Anand

    2016-04-01

    Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt-Frizzled (FZD) signaling in ocular development and directly implicate WNT-FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma.

  14. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    Science.gov (United States)

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  15. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  16. Analysis of RNA folding and ligand binding by conventional and high-throughput calorimetry.

    Science.gov (United States)

    Sokoloski, Joshua E; Bevilacqua, Philip C

    2012-01-01

    Noncoding RNAs serve myriad functions in the cell, but their biophysical properties are not well understood. Calorimetry offers direct and label-free means for characterizing the ligand-binding and thermostability properties of these RNA. We apply two main types of calorimetry--isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)--to the characterization of these functional RNA molecules. ITC can describe ligand binding in terms of stoichiometry, affinity, and heat (enthalpy), while DSC can provide RNA stability in terms of heat capacity, melting temperature, and folding enthalpy. Here, we offer detailed experimental protocols for studying such RNA systems with commercially available conventional and high-throughput ITC and DSC instruments.

  17. Terahertz underdamped vibrational motion governs protein-ligand binding in solution.

    Science.gov (United States)

    Turton, David A; Senn, Hans Martin; Harwood, Thomas; Lapthorn, Adrian J; Ellis, Elizabeth M; Wynne, Klaas

    2014-06-03

    Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein-molecule interactions, and has wider implications for biochemical reactivity and biological function.

  18. The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release.

    Science.gov (United States)

    Meijsing, Sebastiaan H; Elbi, Cem; Luecke, Hans F; Hager, Gordon L; Yamamoto, Keith R

    2007-04-01

    Ligand binding to the glucocorticoid receptor (GR) results in receptor binding to glucocorticoid response elements (GREs) and the formation of transcriptional regulatory complexes. Equally important, these complexes are continuously disassembled, with active processes driving GR off GREs. We found that co-chaperone p23-dependent disruption of GR-driven transcription depended on the ligand binding domain (LBD). Next, we examined the importance of the LBD and of ligand dissociation in GR-GRE dissociation in living cells. We showed in fluorescence recovery after photobleaching studies that dissociation of GR from GREs is faster in the absence of the LBD. Furthermore, GR interaction with a target promoter revealed ligand-specific exchange rates. However, using covalently binding ligands, we demonstrated that ligand dissociation is not required for receptor dissociation from GREs. Overall, these studies showed that activities impinging on the LBD regulate GR exchange with GREs but that the dissociation of GR from GREs is independent from ligand dissociation.

  19. BIOMARKER QUANTITATION: ANALYTICAL CONSIDERATIONS FOR LIGAND BINDING ASSAY REGRESSION CURVES AND QUALITY CONTROL SAMPLES

    Directory of Open Access Journals (Sweden)

    Mark Dysinger

    2012-01-01

    Full Text Available As biomarkers grow in relevance for both the design and support of therapeutics and the clinical trials associated with them, there is an ever increasing need for accurate quantitation of these biochemical entities in biological matrices. While quantifying many biotherapeutics via ligand binding assay platforms can be fairly straightforward, biomarkers present some unique challenges that must be taken into account during assay development, validation and subsequent sample analysis. These challenges can be especially confounded by the relationship between two ligand binding assay tools: The regression curve and quality control samples. Due diligence must be performed to develop an assay that takes into account matrix vs. buffer effects and endogenous biomarker presence. Lack of diligence in these areas can lead to less than reliable results, thus potentially rendering the intended use of the assay moot.

  20. Method transfer for ligand-binding assays: recommendations for best practice.

    Science.gov (United States)

    DeSimone, Danielle; Shih, Judy Y; Gunn, Han C; Patel, Vimal; Uy, Lennie; Thway, Theingi M

    2011-09-01

    To support clinical trials, bioanalytical methods are often transferred from one laboratory to another. With the rising number of large-molecule therapeutic proteins submitted for US FDA approval, the demand for large-molecule bioanalytical support and, subsequently, method transfer increases. Ligand-binding assays are the methods most commonly used to quantify endogenous and therapeutic proteins for the assessment of biomarkers and pharmacokinetic parameters. The goal of this review is to provide an overview of ligand-binding assay method transfer, essential parameters for partial method validation and to lay out a strategy to increase the chance of success. The recommendations herein are based on a summary of current publications and the authors' specific experiences, to help increase workload efficiency, maintain positive collaborations with partners and meet program timelines.

  1. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A.; Alvarez, Susana; de Lera, Angel R.; Kuraku, Shigehiro; Bourguet, William; Laudet, Vincent

    2016-01-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication–degeneration–complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor–ligand interactions of NRs following WGDs. PMID:27069642

  2. FcRn expression, ligands binding properties and its regulation in human immune cells and hepatocytes

    OpenAIRE

    2007-01-01

    ABSTRACT Expression and diverse functions of MHC class I related neonatal Fc receptor in different tissues is continually reported. To contribute to the understanding of how the receptor functions according to cell type, we investigated the expression and ligands binding properties of FcRn in human immune cells and hepatocytes. Here, we report that heterodimeric FcRn is expressed in these cells as evidenced by RT-PCR, Western immunoblottting and flow cytometry. The receptor expression i...

  3. In vitro expressed GPCR inserted in polymersome membranes for ligand-binding studies.

    Science.gov (United States)

    May, Sylvia; Andreasson-Ochsner, Mirjam; Fu, Zhikang; Low, Ying Xiu; Tan, Darren; de Hoog, Hans-Peter M; Ritz, Sandra; Nallani, Madhavan; Sinner, Eva-Kathrin

    2013-01-07

    The dopamine receptor D2 (DRD2), a G-protein coupled receptor is expressed into PBd(22)-PEO(13) and PMOXA(20)-PDMS(54)-PMOXA(20) block copolymer vesicles. The conformational integrity of the receptor is confirmed by antibody- and ligand-binding assays. Replacement of bound dopamine is demonstrated on surface-immobilized polymersomes, thus making this a promising platform for drug screening.

  4. Investigations of Takeout proteins' ligand binding and release mechanism using molecular dynamics simulation.

    Science.gov (United States)

    Zhang, Huijing; Yu, Hui; Zhao, Xi; Liu, Xiaoguang; Feng, Xianli; Huang, Xuri

    2016-07-29

    Takeout (To) proteins exist in a diverse range of insect species. They are involved in many important processes of insect physiology and behaviors. As the ligand carriers, To proteins can transport the small molecule to the target tissues. However, ligand release mechanism of To proteins is unclear so far. In this contribution, the process and pathway of the ligand binding and release are revealed by conventional molecular dynamics simulation, steered molecular dynamics simulation and umbrella sampling methods. Our results show that the α4-side of the protein is the unique gate for the ligand binding and release. The structural analysis confirms that the internal cavity of the protein has high rigidity, which is in accordance with the recent experimental results. By using the potential of mean force calculations in combination with residue cross correlation calculation, we concluded that the binding between the ligand and To proteins is a process of conformational selection. Furthermore, the conformational changes of To proteins and the hydrophobic interactions both are the key factors for ligand binding and release.

  5. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement

    Directory of Open Access Journals (Sweden)

    Gene A Morrill

    2016-09-01

    Full Text Available ABSTRACT: Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb; neuroglobin (Ngb; myoglobin (Mb; hemoglobin (Hb subunits Hba(α and Hbb(β] contain either a transmembrane (TM helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol-binding (CRAC/CARC domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba and pore-lining region (Hbb. The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, band 3, which contains a large internal cavity and 12 TM helices (5 being pore-lining regions. The Hba TM helix may be the erythrocyte membrane band 3 attachment site. Band 3 contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO movement within the large internal cavities and

  6. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B

    2016-01-01

    Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, "band 3," which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane "band 3" attachment site. "Band 3" contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and channels of the

  7. Mass Spectrometry-Based Monitoring of Millisecond Protein-Ligand Binding Dynamics Using an Automated Microfluidic Platform

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D.; Orton, Daniel J.; Geng, Tao; Baker, Erin Shammel; Kelly, Ryan T.

    2016-03-24

    Characterizing protein-ligand binding dynamics is crucial for understanding protein function and developing new therapeutic agents. We have developed a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and on-chip electrospray ionization to perform label-free, solution-based monitoring of protein-ligand binding dynamics. This platform offers many advantages including automated processing, rapid mixing, and low sample consumption.

  8. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    Science.gov (United States)

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  9. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  10. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(Aa) leucine transporter as a template.

    Science.gov (United States)

    Indarte, Martín; Madura, Jeffry D; Surratt, Christopher K

    2008-02-15

    Pharmacological and behavioral studies indicate that binding of cocaine and the amphetamines by the dopamine transporter (DAT) protein is principally responsible for initiating the euphoria and addiction associated with these drugs. The lack of an X-ray crystal structure for the DAT or any other member of the neurotransmitter:sodium symporter (NSS) family has hindered understanding of psychostimulant recognition at the atomic level; structural information has been obtained largely from mutagenesis and biophysical studies. The recent publication of a crystal structure for the bacterial leucine transporter LeuT(Aa), a distantly related NSS family homolog, provides for the first time a template for three-dimensional comparative modeling of NSS proteins. A novel computational modeling approach using the capabilities of the Molecular Operating Environment program MOE 2005.06 in conjunction with other comparative modeling servers generated the LeuT(Aa)-directed DAT model. Probable dopamine and amphetamine binding sites were identified within the DAT model using multiple docking approaches. Binding sites for the substrate ligands (dopamine and amphetamine) overlapped substantially with the analogous region of the LeuT(Aa) crystal structure for the substrate leucine. The docking predictions implicated DAT side chains known to be critical for high affinity ligand binding and suggest novel mutagenesis targets in elucidating discrete substrate and inhibitor binding sites. The DAT model may guide DAT ligand QSAR studies, and rational design of novel DAT-binding therapeutics.

  11. Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design

    Directory of Open Access Journals (Sweden)

    Bathelt Christine

    2008-03-01

    Full Text Available Abstract Background Protein structure prediction and computational protein design require efficient yet sufficiently accurate descriptions of aqueous solvent. We continue to evaluate the performance of the Coulomb/Accessible Surface Area (CASA implicit solvent model, in combination with the Charmm19 molecular mechanics force field. We test a set of model parameters optimized earlier, and we also carry out a new optimization in this work, using as a target a set of experimental stability changes for single point mutations of various proteins and peptides. The optimization procedure is general, and could be used with other force fields. The computation of stability changes requires a model for the unfolded state of the protein. In our approach, this state is represented by tripeptide structures of the sequence Ala-X-Ala for each amino acid type X. We followed an iterative optimization scheme which, at each cycle, optimizes the solvation parameters and a set of tripeptide structures for the unfolded state. This protocol uses a set of 140 experimental stability mutations and a large set of tripeptide conformations to find the best tripeptide structures and solvation parameters. Results Using the optimized parameters, we obtain a mean unsigned error of 2.28 kcal/mol for the stability mutations. The performance of the CASA model is assessed by two further applications: (i calculation of protein-ligand binding affinities and (ii computational protein design. For these two applications, the previous parameters and the ones optimized here give a similar performance. For ligand binding, we obtain reasonable agreement with a set of 55 experimental mutation data, with a mean unsigned error of 1.76 kcal/mol with the new parameters and 1.47 kcal/mol with the earlier ones. We show that the optimized CASA model is not inferior to the Generalized Born/Surface Area (GB/SA model for the prediction of these binding affinities. Likewise, the new parameters perform

  12. ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.

    Science.gov (United States)

    Konc, Janez; Miller, Benjamin T; Štular, Tanja; Lešnik, Samo; Woodcock, H Lee; Brooks, Bernard R; Janežič, Dušanka

    2015-11-23

    Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.

  13. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding

    Science.gov (United States)

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H.; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  14. Coupling of disulfide bond and distal histidine dissociation in human ferrous cytoglobin regulates ligand binding.

    Science.gov (United States)

    Beckerson, Penny; Reeder, Brandon J; Wilson, Michael T

    2015-02-13

    Earlier kinetics studies on cytoglobin did not assign functional properties to specific structural forms. Here, we used defined monomeric and dimeric forms and cysteine mutants to show that an intramolecular disulfide bond (C38-C83) alters the dissociation rate constant of the intrinsic histidine (H81) (∼1000 fold), thus controlling binding of extrinsic ligands. Through time-resolved spectra we have unequivocally assigned CO binding to hexa- and penta-coordinate forms and have made direct measurement of histidine rebinding following photolysis. We present a model that describes how the cysteine redox state of the monomer controls histidine dissociation rate constants and hence extrinsic ligand binding.

  15. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate.

    Science.gov (United States)

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2016-09-01

    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  16. Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis

    Science.gov (United States)

    Abdullah, Syed Umer; Alexeev, Yuri; Johnson, Philip E.; Rigby, Neil M.; Mackie, Alan R.; Dhaliwal, Balvinder; Mills, E. N. Clare

    2016-07-01

    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.

  17. Heteromerization of ligand binding domains of N-methyl-D-aspartate receptor requires both coagonists, L-glutamate and glycine.

    Science.gov (United States)

    Cheriyan, John; Mezes, Christina; Zhou, Ning; Balsara, Rashna D; Castellino, Francis J

    2015-01-27

    NMDA receptors (NMDAR) are voltage- and glutamate-gated heteromeric ion channels found at excitatory neuronal synapses, the functions of which are to mediate the mechanisms of brain plasticity and, thereby, its higher order functions. In addition to Glu, the activation of these heteromeric receptors requires Gly or d-Ser as a coagonist. However, it is not fully known as to why coagonism is required for the opening of NMDAR ion channels. We show herein that the ligand binding domains (LBD) of the GluN1 and GluN2A subunits of the NMDAR heterodimerize only when both coagonists, Glu and Gly/d-Ser, bind to their respective sites on GluN2 and GluN1. In the agonist-free state, these domains form homomeric interactions, which are disrupted by binding of their respective agonists. Also, in a heteromer formed by the LBDs, GluN2A is more sensitized to bind Glu, while the affinity of Gly for GluN1 remains unchanged. We thus provide direct evidence to show that coagonism is necessary for heteromeric pairing of LBDs, which is an essential step in forming functional ion channels in NMDARs.

  18. Accelerating Regulated Bioanalysis for Biotherapeutics: Case Examples Using a Microfluidic Ligand Binding Assay Platform.

    Science.gov (United States)

    Liu, Rong; Hoffpauir, Brian; Chilewski, Shannon D; Gamberdella, Janice; Kavita, Uma; Duo, Jia; Gleason, Carol; Zhang, Yan; Pillutla, Renuka; DeSilva, Binodh; Hamuro, Lora

    2017-01-01

    The Gyrolab™ xP is a microfluidic platform for conducting ligand binding assays (LBAs) and is recognized for its utility in discovery bioanalysis. However, few reports have focused on the technology for regulated bioanalysis. This technology has the advantage of low reagent consumption, low sample volume, and automated ligand binding methods. To improve bioanalysis testing timelines and increase the speed at which biotherapeutics are delivered to patients, we evaluated the technology for its potential to deliver high-quality data at reduced testing timelines for regulated bioanalysis. Six LBA methods were validated to support bioanalysis for GLP toxicokinetic or clinical pharmacokinetic studies. Validation, sample analysis, and method transfer are described. In total, approximately 4000 samples have been tested for regulated bioanalysis to support 6 GLP toxicology studies and approximately 1000 samples to support 2 clinical studies. Gyrolab™ xP had high run pass rates (≥83%) and high incurred sample reanalysis (ISR) pass rates (>94%). The maximum total error observed across all QC levels for a given assay was labs, paving the way for this platform for use in late-stage clinical development.

  19. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  20. Effects of ligand binding on the mechanical properties of ankyrin repeat protein gankyrin.

    Directory of Open Access Journals (Sweden)

    Giovanni Settanni

    Full Text Available Ankyrin repeat proteins are elastic materials that unfold and refold sequentially, repeat by repeat, under force. Herein we use atomistic molecular dynamics to compare the mechanical properties of the 7-ankyrin-repeat oncoprotein Gankyrin in isolation and in complex with its binding partner S6-C. We show that the bound S6-C greatly increases the resistance of Gankyrin to mechanical stress. The effect is specific to those repeats of Gankyrin directly in contact with S6-C, and the mechanical 'hot spots' of the interaction map to the same repeats as the thermodynamic hot spots. A consequence of stepwise nature of unfolding and the localized nature of ligand binding is that it impacts on all aspects of the protein's mechanical behavior, including the order of repeat unfolding, the diversity of unfolding pathways accessed, the nature of partially unfolded intermediates, the forces required and the work transferred to the system to unfold the whole protein and its parts. Stepwise unfolding thus provides the means to buffer repeat proteins and their binding partners from mechanical stress in the cell. Our results illustrate how ligand binding can control the mechanical response of proteins. The data also point to a cellular mechano-switching mechanism whereby binding between two partner macromolecules is regulated by mechanical stress.

  1. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer.

    Science.gov (United States)

    Duesterberg, Van K; Fischer-Hwang, Irena T; Perez, Christian F; Hogan, Daniel W; Block, Steven M

    2015-12-28

    The thiamine pyrophosphate (TPP) riboswitch is a cis-regulatory element in mRNA that modifies gene expression in response to TPP concentration. Its specificity is dependent upon conformational changes that take place within its aptamer domain. Here, the role of tertiary interactions in ligand binding was studied at the single-molecule level by combined force spectroscopy and Förster resonance energy transfer (smFRET), using an optical trap equipped for simultaneous smFRET. The 'Force-FRET' approach directly probes secondary and tertiary structural changes during folding, including events associated with binding. Concurrent transitions observed in smFRET signals and RNA extension revealed differences in helix-arm orientation between two previously-identified ligand-binding states that had been undetectable by spectroscopy alone. Our results show that the weaker binding state is able to bind to TPP, but is unable to form a tertiary docking interaction that completes the binding process. Long-range tertiary interactions stabilize global riboswitch structure and confer increased ligand specificity.

  2. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.

    Science.gov (United States)

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2015-01-12

    Riboswitch-mediated control of gene expression depends on ligand binding properties (kinetics and affinity) of its aptamer domain. A detailed analysis of interior regions of the aptamer, which affect the ligand binding properties, is important for both understanding natural riboswitch functions and for enabling rational design of tuneable artificial riboswitches. Kinetic analyses of binding reaction between flavin mononucleotide (FMN) and several natural and mutant aptamer domains of FMN-specific riboswitches were performed. The strong dependence of the dissociation rate (52.6-fold) and affinity (100-fold) on the identities of base pairs in the aptamer stem suggested that the stem region, which is conserved in length but variable in base-pair composition and context, is the tuning region of the FMN-specific aptamer. Synthetic riboswitches were constructed based on the same aptamer domain by rationally modifying the tuning regions. The observed 9.31-fold difference in the half-maximal effective concentration (EC50) corresponded to a 11.6-fold difference in the dissociation constant (K(D)) of the aptamer domains and suggested that the gene expression can be controlled by rationally adjusting the tuning regions.

  3. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE).

    Science.gov (United States)

    Syed, Aleem; Zhu, Qiaochu; Smith, Emily A

    2016-12-01

    The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion. Copyright © 2016. Published by Elsevier B.V.

  4. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins.

    Science.gov (United States)

    Pethica, Brian A

    2015-03-01

    Isothermal titration calorimetry (ITC) has given a mass of data on the binding of small molecules to proteins and other biopolymers, with particular interest in drug binding to proteins chosen as therapeutic indicators. Interpretation of the enthalpy data usually follows an unsound protocol that uses thermodynamic relations in circumstances where they do not apply. Errors of interpretation include incomplete definitions of ligand binding and equilibrium constants and neglect of the non-ideality of the solutions under study, leading to unreliable estimates of standard free energies and entropies of binding. The mass of reported thermodynamic functions for ligand binding to proteins estimated from ITC enthalpies alone is consequently of uncertain thermodynamic significance and utility. ITC and related experiments to test the protocol assumptions are indicated. A thermodynamic procedure avoiding equilibrium constants or other reaction models and not requiring protein activities is given. The discussion draws attention to the fundamental but neglected relation between the thermodynamic activity and bioactivity of drugs and to the generally unknown thermodynamic status of ligand solutions, which for drugs relates directly to effective therapeutic dosimetry.

  5. Using thermodynamic integration MD simulation to compute relative protein-ligand binding free energy of a GSK3β kinase inhibitor and its analogs.

    Science.gov (United States)

    Lee, Hsing-Chou; Hsu, Wen-Chi; Liu, An-Lun; Hsu, Chia-Jen; Sun, Ying-Chieh

    2014-06-01

    Thermodynamic integration molecular dynamics simulation was used to investigate how TI-MD simulation preforms in reproducing relative protein-ligand binding free energy of a pair of analogous GSK3β kinase inhibitors of available experimental data (see Fig. 1), and to predict the affinity for other analogs. The computation for the pair gave a ΔΔG of 1.0 kcal/mol, which was in reasonably good agreement with the experimental value of -0.1 kcal/mol. The error bar was estimated at 0.5 kcal/mol. Subsequently, we employed the same protocol to proceed with simulations to find analogous inhibitors with a stronger affinity. Four analogs with a substitution at one site inside the binding pocket were the first to be tried, but no significant enhancement in affinity was found. Subsequent simulations for another 7 analogs was focused on substitutions at the benzene ring of another site, which gave two analogs (analogs 9 and 10) with ΔΔG values of -0.6 and -0.8 kcal/mol, respectively. Both analogs had a OH group at the meta position and another OH group at the ortho position at the other side of the benzene ring, as shown in Table 3. To explore further, another 4 analogs with this characteristic were investigated. Three analogs with ΔΔG values of -2.2, -1.7 and -1.2 kcal/mol, respectively, were found. Hydrogen bond analysis suggested that the additional hydrogen bonds of the added OH groups with Gln185 and/or Asn64, which did not appear in the reference inhibitor or as an analog with one substitution only in the examined cases, were the main contributors to an enhanced affinity. A prediction for better inhibitors should interest experimentalists of enzyme and/or cell assays. Analysis of the interactions between GSK3β kinase and the investigated analogs will be useful in the design of GSK3β kinase inhibitors for compounds of this class. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Cutoff lensing: predicting catalytic sites in enzymes

    Science.gov (United States)

    Aubailly, Simon; Piazza, Francesco

    2015-10-01

    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.

  7. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    Directory of Open Access Journals (Sweden)

    Duygu Gezen Ak

    2005-01-01

    Full Text Available Vitamin D receptor (VDR gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08. Also no association between biochemical data and VDR gene polymorphisms was observed.

  8. Rat neuronal nicotinic acetylcholine receptors containing a7 subunit: pharmacological properties of ligand binding and function

    Institute of Scientific and Technical Information of China (English)

    Yingxian XIAO; Galya R ABDRAKHMANOVA; Maryna BAYDYUK; Susan HERNANDEZ; Kenneth J KELLAR

    2009-01-01

    Aim: To compare pharmacological properties of heterologously expressed homomeric a7 nicotinic acetylcholine receptors (a.7 nAChRs) with those of native nAChRs containing a.7 subunit (a.7* nAChRs) in rat hippocampus and cerebral cortex. Methods: We established a stably transfected HEK-293 cell line that expresses homomeric rat a7 nAChRs. We studies ligand binding profiles and functional properties of nAChRs expressed in this cell line and native rat a.7* nAChRs in rat hippocampus and cerebral cortex. We used [125IJ-a-bungarotoxin to compare ligand binding profiles in these cells with those in rat hippocampus and cerebral cortex. The functional properties of the a.7 nAChRs expressed in this cell line were studied using whole-cell current recording.Results: The newly established cell line, KXa7Rl, expresses homomeric a7 nAChRs that bind [125I]-a-bungarotoxin with a Kd value of 0.38±0.06 nmol/L, similar to Kj values of native rat a.7* nAChRs from hippocampus (Kd=0.28±0.03 nmol/L) and cerebral cortex (Kd=0.33±0.05 nmol/L). Using whole-cell current recording, the homomeric a7 nAChRs expressed in the cells were activated by acetylcholine and (-)-nicotine with EC50 values of 280±19 nmol/L and 180±40 nmol/L, respectively. The acetylcholine activated currents were potently blocked by two selective antagonists of a.7 nAChRs, a-bungarotoxin (IC5o=19±2 nmol/L) and methyllycaconitine (IC50=100±10 pmol/L). A comparative study of ligand binding profiles, using 13 nicotinic ligands, showed many similarities between the homomeric a.7 nAChRs and native a.7* receptors in rat brain, but it also revealed several notable differences.Conclusion: This newly established stable cell line should be very useful for studying the properties of homomeric a7 nAChRs and comparing these properties to native a.7* nAChRs.

  9. Predicted metal binding sites for phytoremediation.

    Science.gov (United States)

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  10. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on alpha1 glycine receptors to compare changes mediated by the agonist, glycine......, and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...

  11. Phenolics from Glycyrrhiza glabra roots and their PPAR-gamma ligand-binding activity.

    Science.gov (United States)

    Kuroda, Minpei; Mimaki, Yoshihiro; Honda, Shinichi; Tanaka, Hozumi; Yokota, Shinichi; Mae, Tatsumasa

    2010-01-15

    Bioassay-guided fractionation of the EtOH extract of licorice (Glycyrrhiza glabra roots), using a GAL-4-PPAR-gamma chimera assay method, resulted in the isolation of 39 phenolics, including 10 new compounds (1-10). The structures of the new compounds were determined by analysis of their spectroscopic data. Among the isolated compounds, 5'-formylglabridin (5), (2R,3R)-3,4',7-trihydroxy-3'-prenylflavane (7), echinatin, (3R)-2',3',7-trihydroxy-4'-methoxyisoflavan, kanzonol X, kanzonol W, shinpterocarpin, licoflavanone A, glabrol, shinflavanone, gancaonin L, and glabrone all exhibited significant PPAR-gamma ligand-binding activity. The activity of these compounds at a sample concentration of 10microg/mL was three times more potent than that of 0.5microM troglitazone.

  12. A comparison of myocardial beta-adrenoreceptor density and ligand binding affinity among selected teleost fishes.

    Science.gov (United States)

    Olsson, H I; Yee, N; Shiels, H A; Brauner, C; Farrell, A P

    2000-11-01

    This study quantified the cell surface beta-adrenoreceptor density and ligand binding affinity in the ventricular tissue of seven teleost species; skipjack tuna (Katsowonus pelamis), yellowfin tuna (Thunnus albacares), Pacific mackerel (Scomber japonicus), mahimahi (dolphin fish; Coryphaena hippurus), sockeye salmon (Oncorhynchus nerka), rainbow trout (Oncorhynchus mykiss) and an Antarctic nototheniid (Trematomus bernacchii). Beta-Adrenoreceptor density varied by almost fourfold among these species, being highest for the athletic fish: sockeye salmon among the salmonids and skipjack tuna among the scombrids. Beta-Adrenoreceptor density was lowest for the Antarctic icefish. Beta-Adrenoreceptor binding affinity varied by almost threefold. We conclude that there is a significant species-specific variability in myocardial beta-adrenoreceptor density and binding affinity and these interspecific differences cannot be attributed to temperature even though intraspecifically cold temperature can stimulate an increase in myocardial beta-adrenoreceptor density. Instead, we suggest that interspecifically myocardial beta-adrenoreceptor density is highest in fish that inhabit tropical water.

  13. ISR: background, evolution and implementation, with specific consideration for ligand-binding assays.

    Science.gov (United States)

    Findlay, John W A; Kelley, Marian M

    2014-02-01

    ISR was highlighted as a topic of major interest to the US FDA in 2006, having been previously required, then discontinued, by Canadian regulatory authorities. Following an FDA focus on ISR, this topic has also been emphasized by regulatory agencies in Europe, Asia and Latin America. Extensive discussions on proper implementation of programs have taken place in multiple settings, including pharmaceutical companies, regulatory agencies, professional associations and CROs. These efforts have led to recommendations for ISR conduct that are now included in a final guideline on bioanalytical method validation from the European Medicines Agency, a draft validation guidance from the Ministry of Health, Labor and Welfare in Japan and a revised draft validation guidance from the FDA. In this Review we look at the background, evolution and implementation of ISR for all assays, while including some specific considerations on this topic for ligand-binding assays.

  14. Echinococcus granulosus antigen B: a Hydrophobic Ligand Binding Protein at the host-parasite interface.

    Science.gov (United States)

    Silva-Álvarez, Valeria; Folle, Ana Maite; Ramos, Ana Lía; Zamarreño, Fernando; Costabel, Marcelo D; García-Zepeda, Eduardo; Salinas, Gustavo; Córsico, Betina; Ferreira, Ana María

    2015-02-01

    Lipids are mainly solubilized by various families of lipid binding proteins which participate in their transport between tissues as well as cell compartments. Among these families, Hydrophobic Ligand Binding Proteins (HLBPs) deserve special consideration since they comprise intracellular and extracellular members, are able to bind a variety of fatty acids, retinoids and some sterols, and are present exclusively in cestodes. Since these parasites have lost catabolic and biosynthetic pathways for fatty acids and cholesterol, HLBPs are likely relevant for lipid uptake and transportation between parasite and host cells. Echinococcus granulosus antigen B (EgAgB) is a lipoprotein belonging to the HLBP family, which is very abundant in the larval stage of this parasite. Herein, we review the literature on EgAgB composition, structural organization and biological properties, and propose an integrated scenario in which this parasite HLBP contributes to adaptation to mammalian hosts by meeting both metabolic and immunomodulatory parasite demands.

  15. Ligand binding strategies of human serum albumin: how can the cargo be utilized?

    Science.gov (United States)

    Varshney, Ankita; Sen, Priyankar; Ahmad, Ejaz; Rehan, Mohd; Subbarao, Naidu; Khan, Rizwan Hasan

    2010-01-01

    Human serum albumin (HSA), being the most abundant carrier protein in blood and a modern day clinical tool for drug delivery, attracts high attention among biologists. Hence, its unfolding/refolding strategies and exogenous/endogenous ligand binding preference are of immense use in therapeutics and clinical biochemistry. Among its fellow proteins albumin is known to carry almost every small molecule. Thus, it is a potential contender for being a molecular cargo/or nanovehicle for clinical, biophysical and industrial purposes. Nonetheless, its structure and function are largely regulated by various chemical and physical factors to accommodate HSA to its functional purpose. This multifunctional protein also possesses enzymatic properties which may be used to convert prodrugs to active therapeutics. This review aims to highlight current overview on the binding strategies of protein to various ligands that may be expected to lead to significant clinical applications.

  16. Effect of peripheral trifluoromethyl groups in artificial iron porphycene cofactor on ligand binding properties of myoglobin.

    Science.gov (United States)

    Matsuo, Takashi; Ito, Kazuyuki; Nakashima, Yuji; Hisaeda, Yoshio; Hayashi, Takashi

    2008-02-01

    An iron porphycene, a structural isomer of iron porphyrin, with trifluoromethyl groups at the peripheral position of the framework was incorporated into sperm whale apomyoglobin. The prepared myoglobin shows the higher O(2) affinity than the native protein. However, the oxygen affinity of the reconstituted myoglobin is lower than that of the myoglobin having an iron porphycene without trifluoromethyl groups, which is mainly originated from the enhancement of the O(2) dissociation. The CO affinity of the myoglobin with the trifluoromethylated iron porphycene is similar to that observed for the reference protein having the iron porphycene without trifluoromethyl groups, although their C-O stretching frequencies are significantly different. The relationship between the electronic states of the porphycene ring and the ligand bindings is discussed.

  17. Ligand binding modulates the structural dynamics and compactness of the major birch pollen allergen.

    Science.gov (United States)

    Grutsch, Sarina; Fuchs, Julian E; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R; Tollinger, Martin

    2014-12-16

    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens.

  18. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  19. Solvent fluctuations induce non-Markovian kinetics in hydrophobic pocket-ligand binding

    CERN Document Server

    Weiß, R Gregor; Dzubiella, Joachim

    2016-01-01

    We investigate the impact of water fluctuations on the key-lock association kinetics of a hydrophobic ligand (key) binding to a hydrophobic pocket (lock) by means of a minimalistic stochastic model system. It describes the collective hydration behavior of the pocket by bimodal fluctuations of a water-pocket interface that dynamically couples to the diffusive motion of the approaching ligand via the hydrophobic interaction. This leads to a set of overdamped Langevin equations in 2D-coordinate-space, that is Markovian in each dimension. Numerical simulations demonstrate locally increased friction of the ligand, decelerated binding kinetics, and local non-Markovian (memory) effects in the ligand's reaction coordinate as found previously in explicit-water molecular dynamics studies of model hydrophobic pocket-ligand binding [1,2]. Our minimalistic model elucidates the origin of effectively enhanced friction in the process that can be traced back to long-time decays in the force-autocorrelation function induced by...

  20. Characterisation of Conformational and Ligand Binding Properties of Membrane Proteins Using Synchrotron Radiation Circular Dichroism (SRCD).

    Science.gov (United States)

    Hussain, Rohanah; Siligardi, Giuliano

    Membrane proteins are notoriously difficult to crystallise for use in X-ray crystallographic structural determination, or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour in solution. The advantage of synchrotron radiation circular dichroism (SRCD) measured with synchrotron beamlines compared to the CD from benchtop instruments is the extended spectral far-UV region that increases the accuracy of secondary structure estimations, in particular under high ionic strength conditions. Membrane proteins are often available in small quantities, and for this SRCD measured at the Diamond B23 beamline has successfully facilitated molecular recognition studies. This was done by probing the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells (1-5 cm) of small volume capacity (70 μl-350 μl). In this chapter we describe the use of SRCD to qualitatively and quantitatively screen ligand binding interactions (exemplified by Sbma, Ace1 and FsrC proteins); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by FsrC); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by inositol transporters) as well as the stability of membrane proteins (exemplified by GalP, Ace1). The importance of the in solution characterisation of the conformational behaviour and ligand binding properties of proteins in both far- andnear-UV regions and the use of high-throughput CD (HT-CD) using 96- and 384-well multiplates to study the folding effects in various protein crystallisation buffers are also discussed.

  1. Cloning, expression, and ligand-binding characterization of two neuropeptide Y receptor subtypes in orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Wang, Fei; Chen, Weimin; Lin, Haoran; Li, Wensheng

    2014-12-01

    As one of the most important multifunctional peptides, neuropeptide Y (NPY) performs its physiological functions through different subtype receptors. In this study, full-length cDNAs of two NPY receptors (YRs) in orange-spotted grouper (Epinephelus coioides) were cloned and named npy8br (y8b) and npy2r (y2). Phylogenetic analysis indicated that the Y8b receptor is an ortholog of the teleostean Y8b receptor, which belongs to the Y1 subfamily, and the Y2 receptor is an ortholog of the teleostean Y2 receptor, which belongs to the Y2 subfamily. Both of the YRs have G protein-coupled receptor family profiles. Multiple alignments demonstrate that the extracellular loop regions of YRs have distinctive residues of each species. Expression profile analysis revealed that the grouper Y8b receptor mRNA is primarily expressed in the brain, stomach and intestine, while the grouper Y2 receptor mRNA is primarily expressed in the brain, ovary, liver and heart. Double immunofluorescence analysis determined that the grouper YRs interact with the grouper NPY around the human embryonic kidney 293T cell surface. Furthermore, site-directed mutagenesis in a phage display system revealed that Asp(6.59) might be a common NPY-binding site, while Asp(2.68) of the Y8b receptor and Glu(5.24) of the Y2 receptor could be likely involved in subtype-specific binding. Combining the expression profile and ligand-binding feature, the grouper Y8b receptor could be involved in regulating food intake via the brain-gut axis and the grouper Y2 receptor might play a role in balancing the regulatory activity of the Y8b receptor and participate in metabolism in the liver and ovary.

  2. DR-predictor: incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism.

    Science.gov (United States)

    Huang, Tao-wei; Zaretzki, Jed; Bergeron, Charles; Bennett, Kristin P; Breneman, Curt M

    2013-12-23

    Computational methods that can identify CYP-mediated sites of metabolism (SOMs) of drug-like compounds have become required tools for early stage lead optimization. In recent years, methods that combine CYP binding site features with CYP/ligand binding information have been sought in order to increase the prediction accuracy of such hybrid models over those that use only one representation. Two challenges that any hybrid ligand/structure-based method must overcome are (1) identification of the best binding pose for a specific ligand with a given CYP and (2) appropriately incorporating the results of docking with ligand reactivity. To address these challenges we have created Docking-Regioselectivity-Predictor (DR-Predictor)--a method that incorporates flexible docking-derived information with specialized electronic reactivity and multiple-instance-learning methods to predict CYP-mediated SOMs. In this study, the hybrid ligand-structure-based DR-Predictor method was tested on substrate sets for CYP 1A2 and CYP 2A6. For these data, the DR-Predictor model was found to identify the experimentally observed SOM within the top two predicted rank-positions for 86% of the 261 1A2 substrates and 83% of the 100 2A6 substrates. Given the accuracy and extendibility of the DR-Predictor method, we anticipate that it will further facilitate the prediction of CYP metabolism liabilities and aid in in-silico ADMET assessment of novel structures.

  3. Probabilistic prediction models for aggregate quarry siting

    Science.gov (United States)

    Robinson, G.R.; Larkins, P.M.

    2007-01-01

    Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.

  4. Ligand Binding and Crystal Structures of the Substrate-Binding Domain of the ABC Transporter OpuA

    NARCIS (Netherlands)

    Wolters, Justina C.; Berntsson, Ronnie P-A.; Gul, Nadia; Karasawa, Akira; Thunnissen, Andy-Mark W. H.; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuA

  5. Metal-ligand binding affinity vs reactivity: qualitative studies in Rh(I)-catalyzed asymmetric ring-opening reactions.

    Science.gov (United States)

    Tsui, Gavin Chit; Dougan, Patrick; Lautens, Mark

    2013-06-01

    Rh(I)-catalyzed asymmetric ring opening (ARO) of oxabenzonorbornadiene is used as a model system to qualitatively study reactions involving multiple metal-ligand interactions. The key feature of this approach is the use of product ee as an indicator to quickly gain important information such as the relative ligand binding affinity and relative reactivity of catalysts.

  6. PRELIMINARY EVALUATION OF THE ASTED-XL DIALYSIS SYSTEM TOWARDS ITS APPLICABILITY IN LIGAND-BINDING ASSAYS

    NARCIS (Netherlands)

    HUANG, Z; JANSSEN, MJ; PAULUSSEN, RJA; DEZEEUW, RA; FRANKE, JP; ENSING, FK

    1995-01-01

    In ligand binding assays, the separation of bound and free fraction of the labeled ligand is very important. Dialysis is generally overlooked as separation technique since it requires large volumes and long analysis times. The availability of the ASTED-system (Automated Sequential Trace Enrichment o

  7. Complementary Spectroscopic Assays for Investigating Protein-Ligand Binding Activity: A Project for the Advanced Chemistry Laboratory

    Science.gov (United States)

    Mascotti, David P.; Waner, Mark J.

    2010-01-01

    A protein-ligand binding, guided-inquiry laboratory project with potential application across the advanced undergraduate curriculum is described. At the heart of the project are fluorescence and spectrophotometric assays utilizing biotin-4-fluorescein and streptavidin. The use of the same stock solutions for an assay that may be examined by two…

  8. Positive Modulatory Interactions of NMDA Receptor GluN1/2B Ligand Binding Domains Attenuate Antagonists Activity

    Directory of Open Access Journals (Sweden)

    Douglas Bledsoe

    2017-05-01

    Full Text Available N-methyl D-aspartate receptors (NMDAR play crucial role in normal brain function and pathogenesis of neurodegenerative and psychiatric disorders. Functional tetra-heteromeric NMDAR contains two obligatory GluN1 subunits and two identical or different non-GluN1 subunits that include six different gene products; four GluN2 (A–D and two GluN3 (A–B subunits. The heterogeneity of subunit combination facilities the distinct function of NMDARs. All GluN subunits contain an extracellular N-terminal Domain (NTD and ligand binding domain (LBD, transmembrane domain (TMD and an intracellular C-terminal domain (CTD. Interaction between the GluN1 and co-assembling GluN2/3 subunits through the LBD has been proven crucial for defining receptor deactivation mechanisms that are unique for each combination of NMDAR. Modulating the LBD interactions has great therapeutic potential. In the present work, by amino acid point mutations and electrophysiology techniques, we have studied the role of LBD interactions in determining the effect of well-characterized pharmacological agents including agonists, competitive antagonists, and allosteric modulators. The results reveal that agonists (glycine and glutamate potency was altered based on mutant amino acid sidechain chemistry and/or mutation site. Most antagonists inhibited mutant receptors with higher potency; interestingly, clinically used NMDAR channel blocker memantine was about three-fold more potent on mutated receptors (N521A, N521D, and K531A than wild type receptors. These results provide novel insights on the clinical pharmacology of memantine, which is used for the treatment of mild to moderate Alzheimer's disease. In addition, these findings demonstrate the central role of LBD interactions that can be exploited to develop novel NMDAR based therapeutics.

  9. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients.

    Science.gov (United States)

    Ali, Bassam R; Xu, Huifang; Akawi, Nadia A; John, Anne; Karuvantevida, Noushad S; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit

    2010-06-01

    Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity.

  10. Text Mining Improves Prediction of Protein Functional Sites

    Science.gov (United States)

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  11. Text mining improves prediction of protein functional sites.

    Science.gov (United States)

    Verspoor, Karin M; Cohn, Judith D; Ravikumar, Komandur E; Wall, Michael E

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions.

  12. Text mining improves prediction of protein functional sites.

    Directory of Open Access Journals (Sweden)

    Karin M Verspoor

    Full Text Available We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites. The structure analysis was carried out using Dynamics Perturbation Analysis (DPA, which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions.

  13. The legacies of Langmuir, Ising, and Pauling: ligand binding and the helix-coil transition.

    Science.gov (United States)

    Saroff, H A; Kiefer, J E

    1999-05-01

    Multiple, independent sites or domains behave, on chemical change, in a manner predicted by Langmuir. Distortions of this behavior have been attributed to interactions between the domains, which vary with the progress of the changes occurring at the sites or domains. The two main models for nearest neighbor interactions perturbing the Langmuir prediction for independent domains are those of Ising and Pauling. If we designate the initial site as (-) and the changed site as (+), then the Langmuir requirement for independence of sites yields a set of nearest neighbor interactions such that the (- -), (- +), (+ -), and (+ +) interactions are all identical. This identity is usually characterized as "no interactions." Ising, in dealing with electron pairs, invoked nearest neighbor interactions such that the interactions of the (- -) paris equaled those of the (+ +) pairs, but with the (- +) and (+ -) pairs differing from the reference (- -) pair. Pauling, on the other hand, postulated that only the (- -) and (+ -) pairs interacted differently. A dichotomy has arisen in the application of these two models, with some investigators ignoring or overlooking one of the models. We explore these models, alone and combined, with exact partition functions generated in reasonable computer times for hundreds of sites employing our combinatorial algorithm.

  14. Crystal structures of the ligand-binding region of uPARAP

    DEFF Research Database (Denmark)

    Yuan, Cai; Jürgensen, Henrik J; Engelholm, Lars H

    2016-01-01

    remodelling through interaction with its ligands, including collagens and urokinase plasminogen activator receptor (uPAR). We report the crystal structures of the first four domains of uPARAP (also named the ligand-binding region, LBR) at pH 7.4 in Ca(2+)-bound and Ca(2+)-free forms. The first domain......The proteins of the mannose receptor (MR) family share a common domain organization and have a broad range of biological functions. Urokinase plasminogen activator receptor-associated protein (uPARAP) (or Endo180) is a member of this family and plays an important role in extracellular matrix...... (cysteine-rich or CysR domain) folds into a new and unique conformation different from the β-trefoil fold of typical CysR domains. The so-called long loop regions (LLRs) of the C-type lectin-like domain (CTLD) 1 and 2 (the third and fourth domain) mediate the direct contacts between these domains...

  15. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  16. Insights into ligand binding to a glutathione S-transferase from mango: Structure, thermodynamics and kinetics.

    Science.gov (United States)

    Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A; Arvizu-Flores, Aldo A; Serrano-Posada, Hugo; Lopez-Zavala, Alonso A; García-Orozco, Karina D; Hernandez-Paredes, Javier; Rudiño-Piñera, Enrique; Stojanoff, Vivian; Sotelo-Mundo, Rogerio R; Islas-Osuna, Maria A

    2017-04-01

    We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM min(-1) and 68.49 s(-1) respectively and 0.693 mM, 105.32 mM min(-1) and 89.57 s(-1), for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Ligand Binding Modulates the Structural Dynamics and Compactness of the Major Birch Pollen Allergen

    Science.gov (United States)

    Grutsch, Sarina; Fuchs, Julian E.; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R.; Tollinger, Martin

    2014-01-01

    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens. PMID:25517162

  18. A computational study of ligand binding affinities in iron(III) porphine and protoporphyrin IX complexes.

    Science.gov (United States)

    Durrant, Marcus C

    2014-07-01

    The search for novel anti-malarial drugs that can disrupt biomineralization of ferriprotoporphyrin IX to haemozoin requires an understanding of the fundamental chemistry of the porphyrin's iron(iii) centre at the water-lipid interface. Towards this end, the binding affinities for a diverse set of 31 small ligands with iron(iii) porphine have been calculated using density functional theory, in the gas phase and also with implicit solvent corrections for both water and n-octanol. In addition, the binding of hydroxide, chloride, acetate, methylamine and water to ferriprotoporphyrin IX has been studied, and very similar trends are observed for the smaller and larger models. Anionic ligands generally give stronger binding than neutral ones; the strongest binding is observed for RO(-) and OH(-) ligands, whilst acetate binds relatively weakly among the anions studied. Electron-rich nitrogen donors tend to bind more strongly than electron-deficient ones, and the weakest binding is found for neutral O and S donors such as oxazole and thiophene. In all cases, ligand binding is stronger in n-octanol than in water, and the differences in binding energies for the two solvents are greater for ionic ligands than for neutrals. Finally, dimerization of ferriprotoporphyrin IX by means of iron(iii)-carboxylate bond formation has been modelled. The results are discussed in terms of haemozoin crystal growth and its disruption by known anti-malarial drugs.

  19. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.; (NIH)

    2009-04-07

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  20. Structural Basis of Ligand Binding by a C-di-GMP Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Lipchock, S; Ames, T; Wang, J; Breaker, R; Strobel, S

    2009-01-01

    The second messenger signaling molecule bis-(3{prime}-5{prime})-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 {angstrom} resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structural data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling.

  1. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Zhou Gong

    Full Text Available Riboswitches play roles in transcriptional or translational regulation through specific ligand binding of their aptamer domains. Although a number of ligand-bound aptamer complex structures have been solved, it is important to know ligand-free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, preQ1 riboswitch aptamer domain from Bacillus subtilis is studied by overall 1.5 μs all-atom molecular dynamics simulations We found that the ligand-free aptamer has a stable state with a folded P1-L3 and open binding pocket. The latter forms a cytosine-rich pool in which the nucleotide C19 oscillates between close and open positions, making it a potential conformation for preQ1 entrance. The dynamic picture further suggests that the specific recognition of preQ1 by the aptamer domain is not only facilitated by the key nucleotide C19 but also aided and enhanced by other cytosines around the binding pocket. These results should help to understand the details of preQ1 binding.

  2. Ligand Binding and Conformational Changes in the Purine-Binding Riboswitch Aptamer Domains

    Science.gov (United States)

    Noeske, Jonas; Buck, Janina; Wöhnert, Jens; Schwalbe, Harald

    Riboswitches are highly structured mRNA elements that regulate gene expression upon specific binding of small metabolite molecules. The purine-binding riboswitches bind different purine ligands by forming both canonical Watson—Crick and non-canonical intermolecular base pairs, involving a variety of hydrogen bonds between the riboswitch aptamer domain and the purine ligand. Here, we summarize work on the ligand binding modes of both purine-binding aptamer domains, their con-formational characteristics in the free and ligand-bound forms, and their ligand-induced folding. The adenine- and guanine-binding riboswitch aptamer domains display different conformations in their free forms, despite nearly identical nucleotide loop sequences that form a loop—loop interaction in the ligand-bound forms. Interestingly, the stability of helix II is crucial for the formation of the loop—loop interaction in the free form. A more stable helix II in the guanine riboswitch leads to a preformed loop—loop interaction in its free form. In contrast, a less stable helix II in the adenine riboswitch results in a lack of this loop—loop interaction in the absence of ligand and divalent cations.

  3. Lactoperoxidase: structural insights into the function,ligand binding and inhibition

    Science.gov (United States)

    Sharma, Sujata; Singh, Amit Kumar; Kaushik, Sanket; Sinha, Mau; Singh, Rashmi Prabha; Sharma, Pradeep; Sirohi, Harshverdhan; Kaur, Punit; Singh, Tej P

    2013-01-01

    Lactoperoxidase (LPO) is a member of a large group of mammalian heme peroxidases that include myeloperoxidase (MPO), eosinophil peroxidase (EPO) and thyroid peroxidase (TPO). The LPO is found in exocrine secretions including milk. It is responsible for the inactivation of a wide range of micro-organisms and hence, is an important component of defense mechanism in the body. With the help of hydrogen peroxide, it catalyzes the oxidation of halides, pseudohalides and organic aromatic molecules. Historically, LPO was isolated in 1943, nearly seventy years ago but its three-dimensional crystal structure has been elucidated only recently. This review provides various details of this protein from its discovery to understanding its structure, function and applications. In order to highlight species dependent variations in the structure and function of LPO, a detailed comparison of sequence, structure and function of LPO from various species have been made. The structural basis of ligand binding and distinctions in the modes of binding of substrates and inhibitors have been analyzed extensively. PMID:24049667

  4. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-02

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation.

  5. The extracellular loop 2 (ECL2 of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Directory of Open Access Journals (Sweden)

    David Wifling

    Full Text Available In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R shows extraordinarily high constitutive activity. In the extracellular loop (ECL, replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.

  6. The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Science.gov (United States)

    Wifling, David; Bernhardt, Günther; Dove, Stefan; Buschauer, Armin

    2015-01-01

    In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.

  7. A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis

    Science.gov (United States)

    Mumford, Andrew D.; Dawood, Ban B.; Daly, Martina E.; Murden, Sherina L.; Williams, Michael D.; Protty, Majd B.; Spalton, Jennifer C.; Wheatley, Mark; Mundell, Stuart J.; Watson, Steve P.

    2015-01-01

    We investigated the cause of mild mucocutaneous bleeding in a 14-year-old male patient (P1). Platelet aggregation and ATP secretion induced by arachidonic acid and the thromboxane A2 receptor (TxA2R) agonist U46619 were reduced in P1 compared with controls, whereas the responses to other platelet agonists were retained. P1 was heterozygous for a transversion within the TBXA2R gene predictive of a D304N substitution in the TxA2R. In Chinese hamster ovary-K1 cells expressing the variant D304N TxA2R, U46619 did not increase cytosolic free Ca2+ concentration, indicating loss of receptor function. The TxA2R antagonist [3H]-SQ29548 showed an approximate 50% decrease in binding to platelets from P1 but absent binding to Chinese hamster ovary-K1 cells expressing variant D304N TxA2R. This is the second naturally occurring TxA2R variant to be associated with platelet dysfunction and the first in which loss of receptor function is associated with reduced ligand binding. D304 lies within a conserved NPXXY motif in transmembrane domain 7 of the TxA2R that is a key structural element in family A G protein-coupled receptors. Our demonstration that the D304N substitution causes clinically significant platelet dysfunction by reducing ligand binding establishes the importance of the NPXXY motif for TxA2R function in vivo. PMID:19828703

  8. Evolution of off-lattice model proteins under ligand binding constraints

    Science.gov (United States)

    Nelson, Erik D.; Grishin, Nick V.

    2016-08-01

    We investigate protein evolution using an off-lattice polymer model evolved to imitate the behavior of small enzymes. Model proteins evolve through mutations to nucleotide sequences (including insertions and deletions) and are selected to fold and maintain a specific binding site compatible with a model ligand. We show that this requirement is, in itself, sufficient to maintain an ordered folding domain, and we compare it to the requirement of folding an ordered (but otherwise unrestricted) domain. We measure rates of amino acid change as a function of local environment properties such as solvent exposure, packing density, and distance from the active site, as well as overall rates of sequence and structure change, both along and among model lineages in star phylogenies. The model recapitulates essentially all of the behavior found in protein phylogenetic analyses, and predicts that amino acid substitution rates vary linearly with distance from the binding site.

  9. Base ionization and ligand binding: how small ribozymes and riboswitches gain a foothold in a protein world.

    Science.gov (United States)

    Liberman, Joseph A; Wedekind, Joseph E

    2011-06-01

    Genome sequencing has produced thousands of nonprotein coding (nc)RNA sequences including new ribozymes and riboswitches. Such RNAs are notable for their extraordinary functionality, which entails exquisite folding that culminates in biocatalytic or ligand-binding capabilities. Here we discuss advances in relating ncRNA form to function with an emphasis on base pK(a) shifting by the hairpin and hepatitis delta virus ribozymes. We then describe ligand binding by the two smallest riboswitches, which target preQ(1) and S-adenosyl-(l)-homocysteine, followed by an analysis of a second-messenger riboswitch that binds cyclic-di-GMP. Each riboswitch is then compared to a protein that binds the same ligand to contrast binding properties. The results showcase the breadth of functionality attainable from ncRNAs, as well as molecular features notable for antibacterial design.

  10. Conserved residues in RF-NH₂ receptor models identify predicted contact sites in ligand-receptor binding.

    Science.gov (United States)

    Bass, C; Katanski, C; Maynard, B; Zurro, I; Mariane, E; Matta, M; Loi, M; Melis, V; Capponi, V; Muroni, P; Setzu, M; Nichols, R

    2014-03-01

    Peptides in the RF-NH2 family are grouped together based on an amidated dipeptide C terminus and signal through G-protein coupled receptors (GPCRs) to influence diverse physiological functions. By determining the mechanisms underlying RF-NH2 signaling targets can be identified to modulate physiological activity; yet, how RF-NH2 peptides interact with GPCRs is relatively unexplored. We predicted conserved residues played a role in Drosophila melanogaster RF-NH2 ligand-receptor interactions. In this study D. melanogaster rhodopsin-like family A peptide GPCRs alignments identified eight conserved residues unique to RF-NH2 receptors. Three of these residues were in extra-cellular loops of modeled RF-NH2 receptors and four in transmembrane helices oriented into a ligand binding pocket to allow contact with a peptide. The eighth residue was unavailable for interaction; yet its conservation suggested it played another role. A novel hydrophobic region representative of RF-NH2 receptors was also discovered. The presence of rhodopsin-like family A GPCR structural motifs including a toggle switch indicated RF-NH2s signal classically; however, some features of the DMS receptors were distinct from other RF-NH2 GPCRs. Additionally, differences in RF-NH2 receptor structures which bind the same peptide explained ligand specificity. Our novel results predicted conserved residues as RF-NH2 ligand-receptor contact sites and identified unique and classic structural features. These discoveries will aid antagonist design to modulate RF-NH2 signaling. Copyright © 2013. Published by Elsevier Inc.

  11. Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP

    DEFF Research Database (Denmark)

    Nielsen, Bettina B; Pickering, Darryl S; Greenwood, Jeremy R;

    2005-01-01

    The X-ray structure of the ionotropic GluR2 ligand-binding core (GluR2-S1S2J) in complex with the bicyclical AMPA analogue (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]-4-isoxazolyl)propionic acid [(S)-4-AHCP] has been determined, as well as the binding pharmacology of this construct...

  12. Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene.

    OpenAIRE

    McPhaul, M J; Marcelli, M; Zoppi, S; Wilson, C. M.; Griffin, J E; Wilson, J. D.

    1992-01-01

    We have analyzed the nucleotide sequence of the androgen receptor from 22 unrelated subjects with substitution mutations of the hormone-binding domain. Eleven had the phenotype of complete testicular feminization, four had incomplete testicular feminization, and seven had Reifenstein syndrome. The underlying functional defect in cultured skin fibroblasts included individuals with absent, qualitative, or quantitative defects in ligand binding. 19 of the 21 substitution mutations (90%) cluster ...

  13. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    Science.gov (United States)

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  14. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.

    Science.gov (United States)

    Wang, Changhao; Nguyen, Peter H; Pham, Kevin; Huynh, Danielle; Le, Thanh-Binh Nancy; Wang, Hongli; Ren, Pengyu; Luo, Ray

    2016-10-15

    Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) methods have become widely adopted in estimating protein-ligand binding affinities due to their efficiency and high correlation with experiment. Here different computational alternatives were investigated to assess their impact to the agreement of MMPBSA calculations with experiment. Seven receptor families with both high-quality crystal structures and binding affinities were selected. First the performance of nonpolar solvation models was studied and it was found that the modern approach that separately models hydrophobic and dispersion interactions dramatically reduces RMSD's of computed relative binding affinities. The numerical setup of the Poisson-Boltzmann methods was analyzed next. The data shows that the impact of grid spacing to the quality of MMPBSA calculations is small: the numerical error at the grid spacing of 0.5 Å is already small enough to be negligible. The impact of different atomic radius sets and different molecular surface definitions was further analyzed and weak influences were found on the agreement with experiment. The influence of solute dielectric constant was also analyzed: a higher dielectric constant generally improves the overall agreement with experiment, especially for highly charged binding pockets. The data also showed that the converged simulations caused slight reduction in the agreement with experiment. Finally the direction of estimating absolute binding free energies was briefly explored. Upon correction of the binding-induced rearrangement free energy and the binding entropy lost, the errors in absolute binding affinities were also reduced dramatically when the modern nonpolar solvent model was used, although further developments were apparently necessary to further improve the MMPBSA methods. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ

    Science.gov (United States)

    Amal, Ismail; Lutzing, Régis; Stote, Roland H.; Rochette-Egly, Cécile; Rochel, Natacha; Dejaegere, Annick

    2017-01-01

    Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity. PMID:28125680

  16. Specific interactions between lactose repressor protein and DNA affected by ligand binding: ab initio molecular orbital calculations.

    Science.gov (United States)

    Ohyama, Tatsuya; Hayakawa, Masato; Nishikawa, Shin; Kurita, Noriyuki

    2011-06-01

    Transcription mechanisms of gene information from DNA to mRNA are essentially controlled by regulatory proteins such as a lactose repressor (LacR) protein and ligand molecules. Biochemical experiments elucidated that a ligand binding to LacR drastically changes the mechanism controlled by LacR, although the effect of ligand binding has not been clarified at atomic and electronic levels. We here investigated the effect of ligand binding on the specific interactions between LacR and operator DNA by the molecular simulations combined with classical molecular mechanics and ab initio fragment molecular orbital methods. The results indicate that the binding of anti-inducer ligand strengthens the interaction between LacR and DNA, which is consistent with the fact that the binding of anti-inducer enhances the repression of gene transcription by LacR. It was also elucidated that hydrating water molecules existing between LacR and DNA contribute to the specific interactions between LacR and DNA. Copyright © 2011 Wiley Periodicals, Inc.

  17. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  18. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor γ (PPARγ activation function 1 (AF1 domain.

    Directory of Open Access Journals (Sweden)

    Rolf Diezko

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1 domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.

  19. Predicting active site residue annotations in the Pfam database

    Directory of Open Access Journals (Sweden)

    Finn Robert D

    2007-08-01

    Full Text Available Abstract Background Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families ( Description We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives. Conclusion We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.

  20. Crystal structures and ligand binding of PurM proteins from Thermus thermophilus and Geobacillus kaustophilus.

    Science.gov (United States)

    Kanagawa, Mayumi; Baba, Seiki; Watanabe, Yuzo; Nakagawa, Noriko; Ebihara, Akio; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Sampei, Gen-Ichi; Kawai, Gota

    2016-03-01

    Crystal structures of 5-aminoimidazole ribonucleotide (AIR) synthetase, also known as PurM, from Thermus thermophilus (Tt) and Geobacillus kaustophilus (Gk) were determined. For TtPurM, the maximum resolution was 2.2 Å and the space group was P21212 with four dimers in an asymmetric unit. For GkPurM, the maximum resolution was 2.2 Å and the space group was P21212 with one monomer in asymmetric unit. The biological unit is dimer for both TtPurM and GkPurM and the dimer structures were similar to previously determined structures of PurM in general. For TtPurM, ∼50 residues at the amino terminal were disordered in the crystal structure whereas, for GkPurM, the corresponding region covered the ATP-binding site forming an α helix in part, suggesting that the N-terminal region of PurM changes its conformation upon binding of ligands. FGAM binding site was predicted by the docking simulation followed by the MD simulation based on the SO4 (2-) binding site found in the crystal structure of TtPurM.

  1. Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3 of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Hossinur Rahman

    2014-01-01

    Full Text Available Campylobacter jejuni is the leading cause of human gastroenteritis worldwide with over 500 million cases annually. Chemotaxis and motility have been identified as important virulence factors associated with C. jejuni colonisation. Group A transducer-like proteins (Tlps are responsible for sensing the external environment for bacterial movement to or away from a chemical gradient or stimulus. In this study, we have demonstrated Cj1564 (Tlp3 to be a multi-ligand binding chemoreceptor and report direct evidence supporting the involvement of Cj1564 (Tlp3 in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR as well as chemotaxis assays of wild type and isogenic mutant strains. A modified nutrient depleted chemotaxis assay was further used to determine positive or negative chemotaxis with specific ligands. Here we demonstrate the ability of Cj1564 to interact with the chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. An isogenic mutant of cj1564 was shown to have altered phenotypic characteristics of C. jejuni, including loss of curvature in bacterial cell shape, reduced chemotactic motility and an increase in both autoagglutination and biofilm formation. We demonstrate Cj1564 to have a role in invasion as in in vitro assays the tlp3 isogenic mutant has a reduced ability to adhere and invade a cultured epithelial cell line; interestingly however, colonisation ability of avian caeca appears to be unaltered. Additionally, protein-protein interaction studies revealed signal transduction initiation through the scaffolding proteins CheV and CheW in the chemotaxis sensory pathway. This is the first report characterising Cj1564 as a multi-ligand receptor for C. jejuni, we therefore, propose to name this receptor CcmL, Campylobacter chemoreceptor for multiple ligands. In conclusion, this study

  2. SVM-based prediction of caspase substrate cleavage sites

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2006-12-01

    Full Text Available Abstract Background Caspases belong to a class of cysteine proteases which function as critical effectors in apoptosis and inflammation by cleaving substrates immediately after unique sites. Prediction of such cleavage sites will complement structural and functional studies on substrates cleavage as well as discovery of new substrates. Recently, different computational methods have been developed to predict the cleavage sites of caspase substrates with varying degrees of success. As the support vector machines (SVM algorithm has been shown to be useful in several biological classification problems, we have implemented an SVM-based method to investigate its applicability to this domain. Results A set of unique caspase substrates cleavage sites were obtained from literature and used for evaluating the SVM method. Datasets containing (i the tetrapeptide cleavage sites, (ii the tetrapeptide cleavage sites, augmented by two adjacent residues, P1' and P2' amino acids and (iii the tetrapeptide cleavage sites with ten additional upstream and downstream flanking sequences (where available were tested. The SVM method achieved an accuracy ranging from 81.25% to 97.92% on independent test sets. The SVM method successfully predicted the cleavage of a novel caspase substrate and its mutants. Conclusion This study presents an SVM approach for predicting caspase substrate cleavage sites based on the cleavage sites and the downstream and upstream flanking sequences. The method shows an improvement over existing methods and may be useful for predicting hitherto undiscovered cleavage sites.

  3. Positive-Unlabeled Learning for Pupylation Sites Prediction

    Directory of Open Access Journals (Sweden)

    Ming Jiang

    2016-01-01

    Full Text Available Pupylation plays a key role in regulating various protein functions as a crucial posttranslational modification of prokaryotes. In order to understand the molecular mechanism of pupylation, it is important to identify pupylation substrates and sites accurately. Several computational methods have been developed to identify pupylation sites because the traditional experimental methods are time-consuming and labor-sensitive. With the existing computational methods, the experimentally annotated pupylation sites are used as the positive training set and the remaining nonannotated lysine residues as the negative training set to build classifiers to predict new pupylation sites from the unknown proteins. However, the remaining nonannotated lysine residues may contain pupylation sites which have not been experimentally validated yet. Unlike previous methods, in this study, the experimentally annotated pupylation sites were used as the positive training set whereas the remaining nonannotated lysine residues were used as the unlabeled training set. A novel method named PUL-PUP was proposed to predict pupylation sites by using positive-unlabeled learning technique. Our experimental results indicated that PUL-PUP outperforms the other methods significantly for the prediction of pupylation sites. As an application, PUL-PUP was also used to predict the most likely pupylation sites in nonannotated lysine sites.

  4. CLiBE: a database of computed ligand binding energy for ligand-receptor complexes.

    Science.gov (United States)

    Chen, X; Ji, Z L; Zhi, D G; Chen, Y Z

    2002-11-01

    Consideration of binding competitiveness of a drug candidate against natural ligands and other drugs that bind to the same receptor site may facilitate the rational development of a candidate into a potent drug. A strategy that can be applied to computer-aided drug design is to evaluate ligand-receptor interaction energy or other scoring functions of a designed drug with that of the relevant ligands known to bind to the same binding site. As a tool to facilitate such a strategy, a database of ligand-receptor interaction energy is developed from known ligand-receptor 3D structural entries in the Protein Databank (PDB). The Energy is computed based on a molecular mechanics force field that has been used in the prediction of therapeutic and toxicity targets of drugs. This database also contains information about ligand function and other properties and it can be accessed at http://xin.cz3.nus.edu.sg/group/CLiBE.asp. The computed energy components may facilitate the probing of the mode of action and other profiles of binding. A number of computed energies of some PDB ligand-receptor complexes in this database are studied and compared to experimental binding affinity. A certain degree of correlation between the computed energy and experimental binding affinity is found, which suggests that the computed energy may be useful in facilitating a qualitative analysis of drug binding competitiveness.

  5. Discovery of pyrrolidine-based β-secretase inhibitors: lead advancement through conformational design for maintenance of ligand binding efficiency.

    Science.gov (United States)

    Stachel, Shawn J; Steele, Thomas G; Petrocchi, Alessia; Haugabook, Sharie J; McGaughey, Georgia; Katharine Holloway, M; Allison, Timothy; Munshi, Sanjeev; Zuck, Paul; Colussi, Dennis; Tugasheva, Katherine; Wolfe, Abigail; Graham, Samuel L; Vacca, Joseph P

    2012-01-01

    We have developed a novel series of pyrrolidine derived BACE-1 inhibitors. The potency of the weak initial lead structure was enhanced using library-based SAR methods. The series was then further advanced by rational design while maintaining a minimal ligand binding efficiency threshold. Ultimately, the co-crystal structure was obtained revealing that these inhibitors interacted with the enzyme in a unique fashion. In all, the potency of the series was enhanced by 4 orders of magnitude from the HTS lead with concomitant increases in physical properties needed for series advancement. The progression of these developments in a systematic fashion is described.

  6. A grammar inference approach for predicting kinase specific phosphorylation sites.

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  7. Characterization of two forms of mouse salivary androgen-binding protein (ABP): implications for evolutionary relationships and ligand-binding function.

    Science.gov (United States)

    Karn, Robert C; Laukaitis, Christina M

    2003-06-17

    Mouse salivary androgen-binding protein (ABP) is a member of the secretoglobin family produced in the submaxillary glands of house mice (Mus musculus). We report the cDNA sequences and amino acid sequences of the beta and gamma subunits of ABP from a mouse cDNA library, identifying the two subunits by their pIs and molecular weights. An anomalously high molecular weight of the alpha subunit is likely due to glycosylation at a single site. A phylogenetic comparison of the three subunits of ABP with the chains of other mammalian secretoglobins shows that ABP is most closely related to mouse lachrymal protein and to the major cat allergen Fel dI. An evaluation of the most conserved residues in ABP and the other secretoglobins, in light of structural data reported by others [Callebaut, I., Poupon, A., Bally, R., Demaret, J.-P., Housset, D., Delettre, J., Hossenlopp, P., and Mornon, J.-P. (2000) Ann. N.Y. Acad. Sci. 923, 90-112; Pattabiraman, N., Matthews, J., Ward, K., Mantile-Selvaggi, G., Miele, L., and Mukherjee, A. (2000) Ann. N.Y. Acad. Sci. 923, 113-127], allows us to draw conclusions about the critical residues important in ligand binding by the two different ABP dimers and to assess the importance of ligand binding in the function of the molecule. In addition to the cDNAs, which represent those of the musculus subspecies of Mus musculus, we also report the coding regions of the beta and gamma subunit cDNAs from two other mouse inbred strains which represent the other two subspecies: M. musculus domesticus and M. musculus castaneus. The high nonsynonymous/synonymous substitution rate ratios (K(a)/K(s)) for both the beta and gamma subunits suggest that these two proteins are evolving under strong directional selection, as has been reported for the alpha subunit [Hwang, J., Hofstetter, J., Bonhomme, F., and Karn, R. (1997) J. Hered. 88, 93-97; Karn, R., and Clements, M. (1999) Biochem. Genet. 37, 187-199].

  8. Flood Predictions Combining Regional and Single Site Hydrometric Information

    Directory of Open Access Journals (Sweden)

    Campos–Aranda

    2010-07-01

    Full Text Available Initially, the statistic benefit of flood predictions obtained by combining reliable regional and scarce site hydrometric data is pointed out. Then the mathematical equations for combining mean and standard deviation logarithms of regional and site data are exposed, as well as the necessary expressions for desired predictions, based on Student's t distribution. Later two numerical applications are described, the first one based in Carrizal hydrometric station located in Santiago River in Nayarit and the second one which makes use of five water gauging stations in Tempoal River in Veracruz. Finally, a conclusion is formulated pointing out the simplicity of that method and the accuracy of its predictions.

  9. Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, Jan; Sim, Adelene Y.L.; Herschlag, Daniel; Doniach, Sebastian (Stanford)

    2010-09-17

    Riboswitches are gene-regulating RNAs that are usually found in the 5{prime}-untranslated regions of messenger RNA. As the sugar-phosphate backbone of RNA is highly negatively charged, the folding and ligand-binding interactions of riboswitches are strongly dependent on the presence of cations. Using small angle X-ray scattering (SAXS) and hydroxyl radical footprinting, we examined the cation dependence of the different folding stages of the glycine-binding riboswitch from Vibrio cholerae. We found that the partial folding of the tandem aptamer of this riboswitch in the absence of glycine is supported by all tested mono- and divalent ions, suggesting that this transition is mediated by nonspecific electrostatic screening. Poisson-Boltzmann calculations using SAXS-derived low-resolution structural models allowed us to perform an energetic dissection of this process. The results showed that a model with a constant favorable contribution to folding that is opposed by an unfavorable electrostatic term that varies with ion concentration and valency provides a reasonable quantitative description of the observed folding behavior. Glycine binding, on the other hand, requires specific divalent ions binding based on the observation that Mg{sup 2+}, Ca{sup 2+}, and Mn{sup 2+} facilitated glycine binding, whereas other divalent cations did not. The results provide a case study of how ion-dependent electrostatic relaxation, specific ion binding, and ligand binding can be coupled to shape the energetic landscape of a riboswitch and can begin to be quantitatively dissected.

  10. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng; Liu, Xiao-qin; Li, He; Liang, Kai-ni [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Miner, Jeffrey N.; Hong, Mei; Kallel, E. Adam; Oeveren, Arjan van; Zhi, Lin [Discovery Research, Ligand Pharmaceuticals Inc., 10275 Science Center Drive, San Diego, California 92121 (United States); Jiang, Tao, E-mail: x-ray@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2006-11-01

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents.

  11. Conformational change upon ligand binding and dynamics of the PDZ domain from leukemia-associated Rho guanine nucleotide exchange factor.

    Science.gov (United States)

    Liu, Jiangxin; Zhang, Jiahai; Yang, Yinshan; Huang, Hongda; Shen, Weiqun; Hu, Qi; Wang, Xingsheng; Wu, Jihui; Shi, Yunyu

    2008-06-01

    Leukemia-associated Rho guanine nucleotide exchange factor (LARG) is a RhoA-specific guanine nucleotide exchange factor (GEF) that can activate RhoA. The PDZ (PSD-95/Disc-large/ZO-1 homology) domain of LARG interacts with membrane receptors, which can relay extracellular signals to RhoA signal transduction pathways. Until now there is no structural and dynamic information about these interactions. Here we report the NMR structures of the LARG PDZ in the apo form and in complex with the plexin-B1 C-terminal octapeptide. Unobservable resonances of the residues in betaB/betaC and betaE/alphaB loops in apo state were observed in the complex state. A distinct region of the binding groove in the LARG PDZ was found to undergo conformational change compared with other PDZs. Analysis of the (15)N relaxation data using reduced spectral density mapping shows that the apo LARG PDZ (especially its ligand-binding groove) is flexible and exhibits internal motions on both picosecond to nanosecond and microsecond to millisecond timescales. Mutagenesis and thermodynamic studies indicate that the conformation of the betaB/betaC and betaE/alphaB loops affects the PDZ-peptide interaction. It is suggested that the conformational flexibility could facilitate the change of structures upon ligand binding.

  12. Variable context Markov chains for HIV protease cleavage site prediction.

    Science.gov (United States)

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  13. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  14. Selective prediction of interaction sites in protein structures with THEMATICS

    Directory of Open Access Journals (Sweden)

    Murga Leonel F

    2007-04-01

    Full Text Available Abstract Background Methods are now available for the prediction of interaction sites in protein 3D structures. While many of these methods report high success rates for site prediction, often these predictions are not very selective and have low precision. Precision in site prediction is addressed using Theoretical Microscopic Titration Curves (THEMATICS, a simple computational method for the identification of active sites in enzymes. Recall and precision are measured and compared with other methods for the prediction of catalytic sites. Results Using a test set of 169 enzymes from the original Catalytic Residue Dataset (CatRes it is shown that THEMATICS can deliver precise, localised site predictions. Furthermore, adjustment of the cut-off criteria can improve the recall rates for catalytic residues with only a small sacrifice in precision. Recall rates for CatRes/CSA annotated catalytic residues are 41.1%, 50.4%, and 54.2% for Z score cut-off values of 1.00, 0.99, and 0.98, respectively. The corresponding precision rates are 19.4%, 17.9%, and 16.4%. The success rate for catalytic sites is higher, with correct or partially correct predictions for 77.5%, 85.8%, and 88.2% of the enzymes in the test set, corresponding to the same respective Z score cut-offs, if only the CatRes annotations are used as the reference set. Incorporation of additional literature annotations into the reference set gives total success rates of 89.9%, 92.9%, and 94.1%, again for corresponding cut-off values of 1.00, 0.99, and 0.98. False positive rates for a 75-protein test set are 1.95%, 2.60%, and 3.12% for Z score cut-offs of 1.00, 0.99, and 0.98, respectively. Conclusion With a preferred cut-off value of 0.99, THEMATICS achieves a high success rate of interaction site prediction, about 86% correct or partially correct using CatRes/CSA annotations only and about 93% with an expanded reference set. Success rates for catalytic residue prediction are similar to those of

  15. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    Full Text Available BACKGROUND: The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates. METHODOLOGY/PRINCIPAL FINDINGS: We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data. CONCLUSIONS/SIGNIFICANCE: Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct

  16. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.

    Science.gov (United States)

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2014-12-01

    We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.

  17. Predicting web site audience demographics for web advertising targeting using multi-web site clickstream data

    OpenAIRE

    Bock, K W; D. VAN DEN POEL; Manigart, S.

    2009-01-01

    Several recent studies have explored the virtues of behavioral targeting and personalization for online advertising. In this paper, we add to this literature by proposing a cost-effective methodology for the prediction of demographic web site visitor profiles that can be used for web advertising targeting purposes. The methodology involves the transformation of web site visitors’ clickstream patterns to a set of features and the training of Random Forest classifiers that generate predictions ...

  18. Ligand binding study of human PEBP1/RKIP: interaction with nucleotides and Raf-1 peptides evidenced by NMR and mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Laurette Tavel

    Full Text Available BACKGROUND: Human Phosphatidylethanolamine binding protein 1 (hPEBP1 also known as Raf kinase inhibitory protein (RKIP, affects various cellular processes, and is implicated in metastasis formation and Alzheimer's disease. Human PEBP1 has also been shown to inhibit the Raf/MEK/ERK pathway. Numerous reports concern various mammalian PEBP1 binding ligands. However, since PEBP1 proteins from many different species were investigated, drawing general conclusions regarding human PEBP1 binding properties is rather difficult. Moreover, the binding site of Raf-1 on hPEBP1 is still unknown. METHODS/FINDINGS: In the present study, we investigated human PEBP1 by NMR to determine the binding site of four different ligands: GTP, FMN, and one Raf-1 peptide in tri-phosphorylated and non-phosphorylated forms. The study was carried out by NMR in near physiological conditions, allowing for the identification of the binding site and the determination of the affinity constants K(D for different ligands. Native mass spectrometry was used as an alternative method for measuring K(D values. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates and/or confirms the binding of hPEBP1 to the four studied ligands. All of them bind to the same region centered on the conserved ligand-binding pocket of hPEBP1. Although the affinities for GTP and FMN decrease as pH, salt concentration and temperature increase from pH 6.5/NaCl 0 mM/20°C to pH 7.5/NaCl 100 mM/30°C, both ligands clearly do bind under conditions similar to what is found in cells regarding pH, salt concentration and temperature. In addition, our work confirms that residues in the vicinity of the pocket rather than those within the pocket seem to be required for interaction with Raf-1.

  19. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.

    Directory of Open Access Journals (Sweden)

    Vibha Gupta

    Full Text Available Mycobacterium tuberculosis (Mtb, a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC, an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA. The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of approximately 3.5 A in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In

  20. Expert System for Minefield Site Prediction. Phase 1.

    Science.gov (United States)

    1988-02-01

    2.2111- .25 Jlill 1 MICROCOPY RESOLUTION TLST CHART % %R( % % % % % ko , %% % - Af-A -:A.ZA .A r. ETL-0492 Expert system for minefield site...1. TITLE (Include Security Gassfication) EXPERT SYSTEM FOR MINEFIELD SITE PREDICTION FIRST YEAR REPORT r.. Z. PERSONAL AUTHOR(S) Dillencourt, Michael...identify by block number)FIELD GROUP L SUB-GROUP I Expert System ’ LMinefield,8ite ,rediction - * Quadtree,CTeraiin--nalysis,.t 19, ABSTRACT (Continue on

  1. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase.

  2. A GIS approach for predicting prehistoric site locations.

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J. A.; Wescott, K. L.

    1999-08-04

    Use of geographic information system (GIS)-based predictive mapping to locate areas of high potential for prehistoric archaeological sites is becoming increasingly popular among archaeologists. Knowledge of the environmental variables influencing activities of original inhabitants is used to produce GIS layers representing the spatial distribution of those variables. The GIS layers are then analyzed to identify locations where combinations of environmental variables match patterns observed at known prehistoric sites. Presented are the results of a study to locate high-potential areas for prehistoric sites in a largely unsurveyed area of 39,000 acres in the Upper Chesapeake Bay region, including details of the analysis process. The project used environmental data from over 500 known sites in other parts of the region and the results corresponded well with known sites in the study area.

  3. Sequence- and structure-based prediction of eukaryotic proteinphosphorylation sites

    DEFF Research Database (Denmark)

    Blom, Nikolaj; Gammeltoft, Steen; Brunak, Søren

    1999-01-01

    in independent sequences with a sensitivity in the range from69 % to 96 %. As an example, we predict novel phosphorylation sites in the p300/CBP protein that may regulateinteraction with transcription factors and histone acetyltransferase activity. In addition, serine and threonine residues inp300/CBP that can...

  4. Functional and catalytic active sites prediction and docking analysis ...

    African Journals Online (AJOL)

    Bioinformatics

    2015-07-01

    Jul 1, 2015 ... industrially important azo dyes such as the molecular weight, molecular ... et al., 2010). The software possesses structure-based method to predict active sites in proteins based on a Difference of Gaussian (DoG) approach ...

  5. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Arakawa Kazuharu

    2011-01-01

    Full Text Available Abstract Background During the replication process of bacteria with circular chromosomes, an odd number of homologous recombination events results in concatenated dimer chromosomes that cannot be partitioned into daughter cells. However, many bacteria harbor a conserved dimer resolution machinery consisting of one or two tyrosine recombinases, XerC and XerD, and their 28-bp target site, dif. Results To study the evolution of the dif/XerCD system and its relationship with replication termination, we report the comprehensive prediction of dif sequences in silico using a phylogenetic prediction approach based on iterated hidden Markov modeling. Using this method, dif sites were identified in 641 organisms among 16 phyla, with a 97.64% identification rate for single-chromosome strains. The dif sequence positions were shown to be strongly correlated with the GC skew shift-point that is induced by replicational mutation/selection pressures, but the difference in the positions of the predicted dif sites and the GC skew shift-points did not correlate with the degree of replicational mutation/selection pressures. Conclusions The sequence of dif sites is widely conserved among many bacterial phyla, and they can be computationally identified using our method. The lack of correlation between dif position and the degree of GC skew suggests that replication termination does not occur strictly at dif sites.

  6. Coordination properties of warfarin towards Pr(III) predicted from DFT and FT-IR studies

    Energy Technology Data Exchange (ETDEWEB)

    Mihaylov, Tz., E-mail: tzmihay@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Trendafilova, N.; Georgieva, I. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kostova, I., E-mail: irenakostova@yahoo.com [Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia (Bulgaria)

    2010-08-23

    Graphical abstract: The coordination behavior of warfarin towards Pr(III) in Pr(L){sub 3}.5H{sub 2}O complex (L - warfarin) is investigated through molecular modeling at B3LYP/6-31G(d,p) level and consequent exhaustive comparative vibrational analysis of the ligand and the complex. The calculations predicted that the ligand binds to the metal through the deprotonated enol group and the keto C=O group in pseudo-octahedral polyhedron. The simulated vibrational spectrum of the model complex proposed is in excellent agreement with the experimental one. - Abstract: The coordination behavior of warfarin towards Pr(III) in Pr(L){sub 3}.5H{sub 2}O complex (L - warfarin) is investigated through molecular modeling at B3LYP/6-31G(d,p) level and consequent exhaustive comparative vibrational analysis of the ligand and the complex. The calculated NPA charges, Fukui functions and MEP values of the anionic ligand in solution pointed out that the oxygen atoms of the deprotonated hydroxyl and the coumarin carbonyl groups are the most probable reactive sites upon coordination. The metal-ligand binding mode of warfarin is predicted through molecular modeling and energy estimation of different Pr(III)-warfarin structures. In the most stable model structure, the ligand-metal binding is realized through the oxygen of the deprotonated OH group and the oxygen of the keto C=O group in pseudo-octahedral polyhedron. The suggested metal-ligand binding mode is confirmed by comparative vibrational analysis of the free ligand and various model structures with different metal-ligand binding modes.

  7. Ligand Binding in the Extracellular Vestibule of the Neurotransmitter Transporter Homologue LeuT.

    Science.gov (United States)

    Grouleff, Julie; Koldsø, Heidi; Miao, Yinglong; Schiøtt, Birgit

    2017-03-15

    The human monoamine transporters (MATs) facilitate the reuptake of monoamine neurotransmitters from the synaptic cleft. MATs are linked to a number of neurological diseases and are the targets of both therapeutic and illicit drugs. Until recently, no high-resolution structures of the human MATs existed, and therefore, studies of this transporter family have relied on investigations of the homologues bacterial transporters such as the leucine transporter LeuT, which has been crystallized in several conformational states. A two-substrate transport mechanism has been suggested for this transporter family, which entails that high-affinity binding of a second substrate in an extracellular site is necessary for the substrate in the central binding site to be transported. Compelling evidence for this mechanism has been presented, however, a number of equally compelling accounts suggest that the transporters function through a mechanism involving only a single substrate and a single high-affinity site. To shed light on this apparent contradiction, we have performed extensive molecular dynamics simulations of LeuT in the outward-occluded conformation with either one or two substrates bound to the transporter. We have also calculated the substrate binding affinity in each of the two proposed binding sites through rigorous free energy simulations. Results show that substrate binding is unstable in the extracellular vestibule and the substrate binding affinity within the suggested extracellular site is very low (0.2 and 3.3 M for the two dominant binding modes) compared to the central substrate binding site (14 nM). This suggests that for LeuT in the outward-occluded conformation only a single high-affinity substrate binding site exists.

  8. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...

  9. Oxygen equilibria and ligand binding kinetics of erythrocruorins from two burrowing polychaetes of different modes of life, Marphysa sanguinea and Diopatra cuprea

    DEFF Research Database (Denmark)

    Weber, Roy E.; Bonaventura, J.; Sullivan, B.;

    1978-01-01

    Oxygen equilibria, ligand-binding kinetics and some other physicochemical properties are reported for erythrocruorins of two intertidal polychaetes:Marphysa sanguinea, which inhabits simple, relatively stagnant burrows, andDiopatra cuprea, which inhabits impermeable, parchment-like tubes that are...

  10. Computational study of pH-dependent oligomerization and ligand binding in Alt a 1, a highly allergenic protein with a unique fold

    Science.gov (United States)

    Garrido-Arandia, María; Bretones, Jorge; Gómez-Casado, Cristina; Cubells, Nuria; Díaz-Perales, Araceli; Pacios, Luis F.

    2016-05-01

    Alt a 1 is a highly allergenic protein from Alternaria fungi responsible for several respiratory diseases. Its crystal structure revealed a unique β-barrel fold that defines a new family exclusive to fungi and forms a symmetrical dimer in a butterfly-like shape as well as tetramers. Its biological function is as yet unknown but its localization in cell wall of Alternaria spores and its interactions in the onset of allergy reactions point to a function to transport ligands. However, at odds with binding features in β-barrel proteins, monomeric Alt a 1 seems unable to harbor ligands because the barrel is too narrow. Tetrameric Alt a 1 is able to bind the flavonoid quercetin, yet the stability of the aggregate and the own ligand binding are pH-dependent. At pH 6.5, which Alt a 1 would meet when secreted by spores in bronchial epithelium, tetramer-quercetin complex is stable. At pH 5.5, which Alt a 1 would meet in apoplast when infecting plants, the complex breaks down. By means of a combined computational study that includes docking calculations, empirical p Ka estimates, Poisson-Boltzmann electrostatic potentials, and Molecular Dynamics simulations, we identified a putative binding site at the dimeric interface between subunits in tetramer. We propose an explanation on the pH-dependence of both oligomerization states and protein-ligand affinity of Alt a 1 in terms of electrostatic variations associated to distinct protonation states at different pHs. The uniqueness of this singular protein can thus be tracked in the combination of all these features.

  11. Conserved aromatic residues in the transmembrane region VI of the V1a vasopressin receptor differentiate agonist vs. antagonist ligand binding.

    Science.gov (United States)

    Cotte, N; Balestre, M N; Aumelas, A; Mahé, E; Phalipou, S; Morin, D; Hibert, M; Manning, M; Durroux, T; Barberis, C; Mouillac, B

    2000-07-01

    Despite their opposite effects on signal transduction, the nonapeptide hormone arginine-vasopressin (AVP) and its V1a receptor-selective cyclic peptide antagonist d(CH2)5[Tyr(Me)2]AVP display homologous primary structures, differing only at residues 1 and 2. These structural similarities led us to hypothesize that both ligands could interact with the same binding pocket in the V1a receptor. To determine receptor residues responsible for discriminating binding of agonist and antagonist ligands, we performed site-directed mutagenesis of conserved aromatic and hydrophilic residues as well as nonconserved residues, all located in the transmembrane binding pocket of the V1a receptor. Mutation of aromatic residues of transmembrane region VI (W304, F307, F308) reduced affinity for the d(CH2)5[Tyr(Me)2]AVP and markedly decreased affinity for the unrelated strongly hydrophobic V1a-selective nonpeptide antagonist SR 49059. Replacement of these aromatic residues had no effect on AVP binding, but increased AVP-induced coupling efficacy of the receptor for its G protein. Mutating hydrophilic residues Q108, K128 and Q185 in transmembrane regions II, III and IV, respectively, led to a decrease in affinity for both agonists and antagonists. Finally, the nonconserved residues T333 and A334 in transmembrane region VII, controlled the V1a/V2 binding selectivity for both nonpeptide and cyclic peptide antagonists. Thus, because conserved aromatic residues of the V1a receptor binding pocket seem essential for antagonists and do not contribute at all to the binding of agonists, we propose that these residues differentiate agonist vs. antagonist ligand binding.

  12. Polyadenylation site prediction using PolyA-iEP method.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tzanis, George; Vlahavas, Ioannis

    2014-01-01

    This chapter presents a method called PolyA-iEP that has been developed for the prediction of polyadenylation sites. More precisely, PolyA-iEP is a method that recognizes mRNA 3'ends which contain polyadenylation sites. It is a modular system which consists of two main components. The first exploits the advantages of emerging patterns and the second is a distance-based scoring method. The outputs of the two components are finally combined by a classifier. The final results reach very high scores of sensitivity and specificity.

  13. Ligand- and subunit-specific conformational changes in the ligand-binding domain and the TM2-TM3 linker of {alpha}1 {beta}2 {gamma}2 GABAA receptors

    DEFF Research Database (Denmark)

    Wang, Qian; Pless, Stephan Alexander; Lynch, Joseph W

    2010-01-01

    changes are essential for gating. Here we used voltage clamp fluorometry to investigate the roles of loops C and F in gating the α1 β2 γ2 GABA(A) receptor. Voltage clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements......Cys-loop receptor ligand binding sites are located at subunit interfaces where they are lined by loops A-C from one subunit and loops D-F from the adjacent subunit. Agonist binding induces large conformational changes in loops C and F. However, it is controversial as to whether these conformational...... from ligand-induced fluorescence changes. Previous attempts to define the roles of loops C and F using this technique have focused on homomeric Cys-loop receptors. However, the problem with studying homomeric receptors is that it is difficult to eliminate the possibility of bound ligands interacting...

  14. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  15. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    Science.gov (United States)

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  16. Distortion of Flavin Geometry Is Linked to Ligand Binding in Cholesterol Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimov, A.Y.; Heard, K.; Tang, H.; Sampson, N.S.; Vrielink, A.

    2009-06-03

    Two high-resolution structures of a double mutant of bacterial cholesterol oxidase in the presence or absence of a ligand, glycerol, are presented, showing the trajectory of glycerol as it binds in a Michaelis complex-like position in the active site. A group of three aromatic residues forces the oxidized isoalloxazine moiety to bend along the N5-N10 axis as a response to the binding of glycerol in the active site. Movement of these aromatic residues is only observed in the glycerol-bound structure, indicating that some tuning of the FAD redox potential is caused by the formation of the Michaelis complex during regular catalysis. This structural study suggests a possible mechanism of substrate-assisted flavin activation, improves our understanding of the interplay between the enzyme, its flavin cofactor and its substrate, and is of use to the future design of effective cholesterol oxidase inhibitors.

  17. Differential dimerization of variants linked to enhanced S-cone sensitivity syndrome (ESCS) located in the NR2E3 ligand-binding domain.

    Science.gov (United States)

    von Alpen, Désirée; Tran, Hoai Viet; Guex, Nicolas; Venturini, Giulia; Munier, Francis L; Schorderet, Daniel F; Haider, Neena B; Escher, Pascal

    2015-06-01

    NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.

  18. Glutamate-containing dipeptides do not modulate ligand binding at excitatory amino acid receptors.

    Science.gov (United States)

    Baud, J; Fagg, G E

    1986-10-08

    Dipeptides of the structure X-Glu (e.g. X = Phe, Leu) have been proposed as allosteric modulators of excitatory amino acid receptors in rat brain membranes. Here we report that these dipeptides reduce the binding of L-[3H]Glu (predominantly N-methyl-D-aspartate-sensitive sites) and of [3H]kainate to postsynaptic density preparations isolated from rat brain. However, several observations indicate that the effects of these dipeptides are mediated not by allosteric modulation, but by free L-Glu liberated by the actions of a membrane-associated aminopeptidase. The absolute and relative potencies of the dipeptides are similar at all acidic amino acid binding sites examined to date, suggesting the involvement of a factor with similar activity at each site (e.g. L-Glu). N-Acetyl-Met-Glu is a weak inhibitor of L-Glu and kainate binding, and N-blocked peptides are known to be poor substrates of aminopeptidases. Bestatin, an inhibitor of aminopeptidases, decreases or abolishes the effects of substrate dipeptides on L-Glu and kainate receptor binding, while having no effect itself.

  19. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction.

    Science.gov (United States)

    Tsaousis, Georgios N; Bagos, Pantelis G; Hamodrakas, Stavros J

    2014-02-01

    During the last two decades a large number of computational methods have been developed for predicting transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals. However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. We examine the combination of phosphorylation and glycosylation site prediction with transmembrane protein topology prediction. We report the development of a Hidden Markov Model based method, capable of predicting the topology of transmembrane proteins and the existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence. Our method integrates a novel feature in transmembrane protein topology prediction, which results in improved performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites. The method is freely available at http://bioinformatics.biol.uoa.gr/HMMpTM.

  20. Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations

    Science.gov (United States)

    Selwa, Edithe; Elisée, Eddy; Zavala, Agustin; Iorga, Bogdan I.

    2017-09-01

    Our participation to the D3R Grand Challenge 2 involved a protocol in two steps, with an initial analysis of the available structural data from the PDB allowing the selection of the most appropriate combination of docking software and scoring function. Subsequent docking calculations showed that the pose prediction can be carried out with a certain precision, but this is dependent on the specific nature of the ligands. The correct ranking of docking poses is still a problem and cannot be successful in the absence of good pose predictions. Our free energy calculations on two different subsets provided contrasted results, which might have the origin in non-optimal force field parameters associated with the sulfonamide chemical moiety.

  1. Evaluation of ligand-binding affinity using polynomial empirical scoring functions.

    Science.gov (United States)

    de Azevedo, Walter Filgueira; Dias, Raquel

    2008-10-15

    Assessing protein-ligand interaction is of great importance for virtual screening initiatives in order to discover new drugs. The present work describes a set of empirical scoring functions to assess the binding affinity, involving terms for intermolecular hydrogen bonds and contact surface. The results show that our methodology works better to predict protein-ligand affinity when compared with XSCORE, a popular empirical scoring function.

  2. Differential ligand binding affinities of human estrogen receptor-α isoforms

    OpenAIRE

    Amanda H.Y. Lin; Li, Rachel W. S.; Ho, Eva Y. W.; George P H Leung; Susan W S Leung; Paul M Vanhoutte; Man, Ricky Y K

    2013-01-01

    Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66) and the truncated isoforms, estrogen receptor-α46 (ER46) and estrogen receptor-α36 (ER36). However, the binding affinities of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected cel...

  3. Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy

    Directory of Open Access Journals (Sweden)

    Yang Zheng

    2009-10-01

    Full Text Available Abstract Background Tyrosine sulfation is one of the most important posttranslational modifications. Due to its relevance to various disease developments, tyrosine sulfation has become the target for drug design. In order to facilitate efficient drug design, accurate prediction of sulfotyrosine sites is desirable. A predictor published seven years ago has been very successful with claimed prediction accuracy of 98%. However, it has a particularly low sensitivity when predicting sulfotyrosine sites in some newly sequenced proteins. Results A new approach has been developed for predicting sulfotyrosine sites using the random forest algorithm after a careful evaluation of seven machine learning algorithms. Peptides are formed by consecutive residues symmetrically flanking tyrosine sites. They are then encoded using an amino acid hydrophobicity scale. This new approach has increased the sensitivity by 22%, the specificity by 3%, and the total prediction accuracy by 10% compared with the previous predictor using the same blind data. Meanwhile, both negative and positive predictive powers have been increased by 9%. In addition, the random forest model has an excellent feature for ranking the residues flanking tyrosine sites, hence providing more information for further investigating the tyrosine sulfation mechanism. A web tool has been implemented at http://ecsb.ex.ac.uk/sulfotyrosine for public use. Conclusion The random forest algorithm is able to deliver a better model compared with the Hidden Markov Model, the support vector machine, artificial neural networks, and others for predicting sulfotyrosine sites. The success shows that the random forest algorithm together with an amino acid hydrophobicity scale encoding can be a good candidate for peptide classification.

  4. Gene and translation initiation site prediction in metagenomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, Philip Douglas [ORNL; LoCascio, Philip F [ORNL; Hauser, Loren John [ORNL; Uberbacher, Edward C [ORNL

    2012-01-01

    Gene prediction in metagenomic sequences remains a difficult problem. Current sequencing technologies do not achieve sufficient coverage to assemble the individual genomes in a typical sample; consequently, sequencing runs produce a large number of short sequences whose exact origin is unknown. Since these sequences are usually smaller than the average length of a gene, algorithms must make predictions based on very little data. We present MetaProdigal, a metagenomic version of the gene prediction program Prodigal, that can identify genes in short, anonymous coding sequences with a high degree of accuracy. The novel value of the method consists of enhanced translation initiation site identification, ability to identify sequences that use alternate genetic codes and confidence values for each gene call. We compare the results of MetaProdigal with other methods and conclude with a discussion of future improvements.

  5. Studies on the Detection, Expression, Glycosylation, Dimerization, and Ligand Binding Properties of Mouse Siglec-E.

    Science.gov (United States)

    Siddiqui, Shoib; Schwarz, Flavio; Springer, Stevan; Khedri, Zahra; Yu, Hai; Deng, Lingquan; Verhagen, Andrea; Naito-Matsui, Yuko; Jiang, Weiping; Kim, Daniel; Zhou, Jie; Ding, Beibei; Chen, Xi; Varki, Nissi; Varki, Ajit

    2017-01-20

    CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer.

  6. Structural model of a putrescine-cadaverine permease from Trypanosoma cruzi predicts residues vital for transport and ligand binding

    NARCIS (Netherlands)

    Soysa, R.; Venselaar, H.; Poston, J.; Ullman, B.; Hasne, M.P.

    2013-01-01

    The TcPOT1.1 gene from Trypanosoma cruzi encodes a high affinity putrescine-cadaverine transporter belonging to the APC (amino acid/polyamine/organocation) transporter superfamily. No experimental three-dimensional structure exists for any eukaryotic member of the APC family, and thus the structural

  7. How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1' Pocket of Thermolysin.

    Science.gov (United States)

    Krimmer, Stefan G; Cramer, Jonathan; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard

    2017-08-02

    We investigated the hydration state of the deep, well-accessible hydrophobic S1' specificity pocket of the metalloprotease thermolysin with purposefully designed ligands using high-resolution crystallography and isothermal titration calorimetry. The S1' pocket is known to recognize selectively a very stringent set of aliphatic side chains such as valine, leucine, and isoleucine of putative substrates. We engineered a weak-binding ligand covering the active site of the protease without addressing the S1' pocket, thus transforming it into an enclosed cavity. Its sustained accessibility could be proved by accommodating noble gas atoms into the pocket in the crystalline state. The topology and electron content of the enclosed pocket with a volume of 141 Å(3) were analyzed using an experimental MAD-phased electron density map that was calibrated to an absolute electron number scale, enabling access to the total electron content within the cavity. Our analysis indicates that the S1' pocket is virtually vacated, thus free of any water molecules. The thermodynamic signature of the reduction of the void within the pocket by growing aliphatic P1' substituents (H, Me, iPr, iBu) reveals a dramatic, enthalpy-dominated gain in free energy of binding resulting in a factor of 41 000 in Kd for the H-to-iBu transformation. Substituents placing polar decoy groups into the pocket to capture putatively present water molecules could not collect any evidence for a bound solvent molecule.

  8. Structure of the Taz2 domain of p300: insights into ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Maria, E-mail: mariami@mail.nih.gov [Protein Structure Section, Macromolecular Crystallography Laboratory, NCI-Frederick, Frederick, Maryland 21702-1201 (United States); Dauter, Zbigniew [Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439 (United States); Cherry, Scott; Tropea, Joseph E. [Protein Purification Core, Macromolecular Crystallography Laboratory, NCI-Frederick, Frederick, Maryland 21702-1201 (United States); Wlodawer, Alexander [Protein Structure Section, Macromolecular Crystallography Laboratory, NCI-Frederick, Frederick, Maryland 21702-1201 (United States)

    2009-12-01

    The crystal structure of the Taz2 zinc-finger domain of the human p300 transcriptional coactivator was determined using the anomalous diffraction signal of the bound Zn ions. Crystal contacts suggested a possible novel mode of Taz2–peptide ligand interactions. CBP and its paralog p300 are histone acetyl transferases that regulate gene expression by interacting with multiple transcription factors via specialized domains. The structure of a segment of human p300 protein (residues 1723–1836) corresponding to the extended zinc-binding Taz2 domain has been investigated. The crystal structure was solved by the SAD approach utilizing the anomalous diffraction signal of the bound Zn ions. The structure comprises an atypical helical bundle stabilized by three Zn ions and closely resembles the solution structures determined previously for shorter peptides. Residues 1813–1834 from the current construct form a helical extension of the C-terminal helix and make extensive crystal-contact interactions with the peptide-binding site of Taz2, providing additional insights into the mechanism of the recognition of diverse transactivation domains (TADs) by Taz2. On the basis of these results and molecular modeling, a hypothetical model of the binding of phosphorylated p53 TAD1 to Taz2 has been proposed.

  9. Structure of the Taz2 domain of p300: insights into ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Maria; Dauter, Zbigniew; Cherry, Scott; Tropea, Joseph E.; Wlodawer, Alexander; (NCI)

    2010-01-12

    CBP and its paralog p300 are histone acetyl transferases that regulate gene expression by interacting with multiple transcription factors via specialized domains. The structure of a segment of human p300 protein (residues 1723-1836) corresponding to the extended zinc-binding Taz2 domain has been investigated. The crystal structure was solved by the SAD approach utilizing the anomalous diffraction signal of the bound Zn ions. The structure comprises an atypical helical bundle stabilized by three Zn ions and closely resembles the solution structures determined previously for shorter peptides. Residues 1813-1834 from the current construct form a helical extension of the C-terminal helix and make extensive crystal-contact interactions with the peptide-binding site of Taz2, providing additional insights into the mechanism of the recognition of diverse transactivation domains (TADs) by Taz2. On the basis of these results and molecular modeling, a hypothetical model of the binding of phosphorylated p53 TAD1 to Taz2 has been proposed.

  10. Functional group based Ligand binding affinity scoring function at atomic environmental level

    Science.gov (United States)

    Varadwaj, Pritish Kumar; Lahiri, Tapobrata

    2009-01-01

    Use of knowledge based scoring function (KBSF) for virtual screening and molecular docking has become an established method for drug discovery. Lack of a precise and reliable free energy function that describes several interactions including water-mediated atomic interaction between amino-acid residues and ligand makes distance based statistical measure as the only alternative. Till now all the distance based scoring functions in KBSF arena use atom singularity concept, which neglects the environmental effect of the atom under consideration. We have developed a novel knowledge-based statistical energy function for protein-ligand complexes which takes atomic environment in to account hence functional group as a singular entity. The proposed knowledge based scoring function is fast, simple to construct, easy to use and moreover it tackle the existing problem of handling molecular orientation in active site pocket. We have designed and used Functional group based Ligand retrieval (FBLR) system which can identify and detect the orientation of functional groups in ligand. This decoy searching was used to build the above KBSF to quantify the activity and affinity of high resolution protein-ligand complexes. We have proposed the probable use of these decoys in molecular build-up as a de-novo drug designing approach. We have also discussed the possible use of the said KSBF in pharmacophore fragment detection and pseudo center based fragment alignment procedure. PMID:19255647

  11. Assessment of Mars Exploration Rover Landing Site Predictions

    Science.gov (United States)

    Golombek, M. P.

    2005-05-01

    Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The

  12. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Directory of Open Access Journals (Sweden)

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  13. Predicting N-terminal myristoylation sites in plant proteins

    Directory of Open Access Journals (Sweden)

    Podell Sheila

    2004-06-01

    Full Text Available Abstract Background N-terminal myristoylation plays a vital role in membrane targeting and signal transduction in plant responses to environmental stress. Although N-myristoyltransferase enzymatic function is conserved across plant, animal, and fungal kingdoms, exact substrate specificities vary, making it difficult to predict protein myristoylation accurately within specific taxonomic groups. Results A new method for predicting N-terminal myristoylation sites specifically in plants has been developed and statistically tested for sensitivity, specificity, and robustness. Compared to previously available methods, the new model is both more sensitive in detecting known positives, and more selective in avoiding false positives. Scores of myristoylated and non-myristoylated proteins are more widely separated than with other methods, greatly reducing ambiguity and the number of sequences giving intermediate, uninformative results. The prediction model is available at http://plantsp.sdsc.edu/myrist.html. Conclusion Superior performance of the new model is due to the selection of a plant-specific training set, covering 266 unique sequence examples from 40 different species, the use of a probability-based hidden Markov model to obtain predictive scores, and a threshold cutoff value chosen to provide maximum positive-negative discrimination. The new model has been used to predict 589 plant proteins likely to contain N-terminal myristoylation signals, and to analyze the functional families in which these proteins occur.

  14. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smooth particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.

    2015-12-01

    We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  15. Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding.

    Science.gov (United States)

    Adrian, Michael; Winnerdy, Fernaldo Richtia; Heddi, Brahim; Phan, Anh Tuân

    2017-08-22

    Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch.

    Science.gov (United States)

    Stoddard, Colby D; Widmann, Jeremy; Trausch, Jeremiah J; Marcano-Velázquez, Joan G; Knight, Rob; Batey, Robert T

    2013-05-27

    Direct sensing of intracellular metabolite concentrations by riboswitch RNAs provides an economical and rapid means to maintain metabolic homeostasis. Since many organisms employ the same class of riboswitch to control different genes or transcription units, it is likely that functional variation exists in riboswitches such that activity is tuned to meet cellular needs. Using a bioinformatic approach, we have identified a region of the purine riboswitch aptamer domain that displays conservation patterns linked to riboswitch activity. Aptamer domain compositions within this region can be divided into nine classes that display a spectrum of activities. Naturally occurring compositions in this region favor rapid association rate constants and slow dissociation rate constants for ligand binding. Using X-ray crystallography and chemical probing, we demonstrate that both the free and bound states are influenced by the composition of this region and that modest sequence alterations have a dramatic impact on activity. The introduction of non-natural compositions result in the inability to regulate gene expression in vivo, suggesting that aptamer domain activity is highly plastic and thus readily tunable to meet cellular needs.

  17. The Dipole Potential Modifies the Clustering and Ligand Binding Affinity of ErbB Proteins and Their Signaling Efficiency

    Science.gov (United States)

    Kovács, Tamás; Batta, Gyula; Hajdu, Tímea; Szabó, Ágnes; Váradi, Tímea; Zákány, Florina; Csomós, István; Szöllősi, János; Nagy, Peter

    2016-01-01

    Although activation of the ErbB family of receptor tyrosine kinases (ErbB1-4) is driven by oligomerization mediated by intermolecular interactions between the extracellular, the kinase and the transmembrane domains, the transmembrane domain has been largely neglected in this regard. The largest contributor to the intramembrane electric field, the dipole potential, alters the conformation of transmembrane peptides, but its effect on ErbB proteins is unknown. Here, we show by Förster resonance energy transfer (FRET) and number and brightness (N&B) experiments that the epidermal growth factor (EGF)-induced increase in the homoassociation of ErbB1 and ErbB2 and their heteroassociation are augmented by increasing the dipole potential. These effects were even more pronounced for ErbB2 harboring an activating Val → Glu mutation in the transmembrane domain (NeuT). The signaling capacity of ErbB1 and ErbB2 was also correlated with the dipole potential. Since the dipole potential decreased the affinity of EGF to ErbB1, the augmented growth factor-induced effects at an elevated dipole potential were actually induced at lower receptor occupancy. We conclude that the dipole potential plays a permissive role in the clustering of ErbB receptors and that the effects of lipid rafts on ligand binding and receptor signaling can be partially attributed to the dipole potential. PMID:27775011

  18. Comparison of competitive ligand-binding assay and bioassay formats for the measurement of neutralizing antibodies to protein therapeutics.

    Science.gov (United States)

    Finco, Deborah; Baltrukonis, Daniel; Clements-Egan, Adrienne; Delaria, Kathy; Gunn, George R; Lowe, John; Maia, Mauricio; Wong, Teresa

    2011-01-25

    Administration of biological therapeutic proteins can lead to unwanted immunogenicity in recipients of these products. The assessment and characterization of such immune reactions can be helpful to better understand their clinical relevance and how they relate to patient safety and therefore, have become an integral part of a product development program for biological therapeutics. Testing for anti-drug antibodies (ADA) to biological/biotechnology-derived therapeutic proteins generally follows a tiered approach. Samples are initially screened for binding antibodies; presumptive positives are then confirmed in a confirmatory assay; subsequently, confirmed-positive samples may be further characterized by titration and with a neutralizing antibody (NAb) assay. Regulatory guidances on immunogenicity state that assessing the neutralizing capacity of antibodies should preferably be done using functional bioassays, while recognizing that competitive ligand-binding (CLB) assays may be substituted when neutralizing bioassays are inadequate or not feasible. This manuscript describes case studies from four companies in which CLB assays and functional bioassays were compared for their ability to detect neutralizing ADA against a variety of biotechnology-derived therapeutic proteins. Our findings indicate that CLB assays are comparable to bioassays for the detection of NAbs, in some cases offering better detection sensitivity, lower variability, and less matrix interference.

  19. ARTD1-induced poly-ADP-ribose formation enhances PPARγ ligand binding and co-factor exchange.

    Science.gov (United States)

    Lehmann, Mareike; Pirinen, Eija; Mirsaidi, Ali; Kunze, Friedrich A; Richards, Peter J; Auwerx, Johan; Hottiger, Michael O

    2015-01-01

    PPARγ-dependent gene expression during adipogenesis is facilitated by ADP-ribosyltransferase D-type 1 (ARTD1; PARP1)-catalyzed poly-ADP-ribose (PAR) formation. Adipogenesis is accompanied by a dynamic modulation of the chromatin landscape at PPARγ target genes by ligand-dependent co-factor exchange. However, how endogenous PPARγ ligands, which have a low affinity for the receptor and are present at low levels in the cell, can induce sufficient co-factor exchange is unknown. Moreover, the significance of PAR formation in PPARγ-regulated adipose tissue function is also unknown. Here, we show that inhibition of PAR formation in mice on a high-fat diet reduces weight gain and cell size of adipocytes, as well as PPARγ target gene expression in white adipose tissue. Mechanistically, topoisomerase II activity induces ARTD1 recruitment to PPARγ target genes, and ARTD1 automodification enhances ligand binding to PPARγ, thus promoting sufficient transcriptional co-factor exchange in adipocytes. Thus, ARTD1-mediated PAR formation during adipogenesis is necessary to adequately convey the low signal of endogenous PPARγ ligand to effective gene expression. These results uncover a new regulatory mechanism of ARTD1-induced ADP-ribosylation and highlight its importance for nuclear factor-regulated gene expression. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations

    Science.gov (United States)

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-02-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  1. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  2. MetWAMer: eukaryotic translation initiation site prediction

    Directory of Open Access Journals (Sweden)

    Brendel Volker

    2008-09-01

    Full Text Available Abstract Background Translation initiation site (TIS identification is an important aspect of the gene annotation process, requisite for the accurate delineation of protein sequences from transcript data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-processing gene structure annotations generated by external computational programs and/or pipelines, or directly integrated into gene structure prediction software implementations. Results MetWAMer currently implements five distinct methods for TIS prediction, the most accurate of which is a routine that combines weighted, signal-based translation initiation site scores and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our program implements clustering capabilities through use of the k-medoids algorithm, thereby enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based indexing method for parameter set lookup can be used with good results in data sets exhibiting moderate levels of 5'-complete coverage. Conclusion We demonstrate that improvements in statistically-based models for TIS prediction can be achieved by taking the class of each potential start-methionine into account pending certain testing conditions, and that our perceptron-based model is suitable for the TIS identification task. MetWAMer represents a well-documented, extensible, and freely available software system that can be readily re-trained for differing target applications and/or extended with existing and novel TIS prediction methods, to support further research efforts in this area.

  3. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  4. Thermodynamic analysis of small ligand binding to the Escherichia coli repressor of biotin biosynthesis.

    Science.gov (United States)

    Xu, Y; Johnson, C R; Beckett, D

    1996-04-30

    BirA is the transcriptional repressor of biotin biosynthesis and a biotin holoenzyme synthetase. It catalyzes synthesis of biotinyl-5'-AMP from the substrates biotin and ATP. The adenylate is the activated intermediate in the biotin transfer reaction as well as the positive allosteric effector for site-specific DNA binding. The affinity of BirA for the adenylate is considerably greater than its affinity for biotin, and both binding reactions are coupled to changes in the conformation of the protein. The temperature dependencies of the two binding interactions have been determined using kinetic techniques. Van't Hoff analysis of the equilibrium dissociation constants derived from the kinetic data indicate that while the two binding processes are characterized by large negative enthalpies, the entropic contributions are small for both. Binding enthalpies have also been determined by isothermal titration calorimetry. Consistent with the results of the van't Hoff analyses, the calorimetric enthalpies are large and negative. The greater precision of the calorimetric measurements allowed more accurate estimation of the entropic contributions to the binding processes, which are of opposite sign for the two ligands. In addition, the heat capacity changes associated with the two binding reactions are small. The measured thermodynamic parameters for binding of biotin and bio-5'-AMP to BirA have been utilized to dissect out structural contributions to the binding energetics. Results of these calculations indicate equivalent contributions of burial of polar and apolar surface area to both binding processes. The total loss of solvent accessible surface area is, however, greater for biotin binding. The analysis indicates furthermore that although both binding reactions are coupled to losses in configurational entropy, the magnitude of the conformational change is significantly larger for biotin binding.

  5. Tryptic digestion of the human erythrocyte glucose transporter: effects on ligand binding and tryptophan fluorescence.

    Science.gov (United States)

    May, J M; Qu, Z C; Beechem, J M

    1993-09-21

    The conformation of the human erythrocyte glucose transport protein has been shown to determine its susceptibility to enzymatic cleavage on a large cytoplasmic loop. We took the converse approach and investigated the effects of tryptic digestion on the conformational structure of this protein. Exhaustive tryptic digestion of protein-depleted erythrocyte ghosts decreased the affinity of the residual transporter for cytochalasin B by 3-fold but did not affect the total number of binding sites. Tryptic digestion also increased the affinity of the residual transporter for D-glucose and inward-binding sugar phenyl beta-D-glucopyranoside but decreased that for the outward-binding 4,6-O-ethylidene glucose. These results suggest that tryptic cleavage stabilized the remaining transporter in an inward-facing conformation, but one with decreased affinity for cytochalasin B. The steady-state fluorescence emission scan of the purified reconstituted glucose transport protein was unaffected by tryptic digestion. Addition of increasing concentrations of potassium iodide resulted in linear Stern-Volmer plots, which were also unaffected by prior tryptic digestion. The tryptophan oxidant N-bromosuccinimide was investigated to provide a more sensitive measure of tryptophan environment. This agent irreversibly inhibited 3-O-methylglucose transport in intact erythrocytes and cytochalasin B binding in protein-depleted ghosts, with a half-maximal effect observed for each activity at about 0.3-0.4 nM. Treatment of purified glucose transport protein with N-bromosuccinimide resulted in a time-dependent quench of tryptophan fluorescence, which was resolved into two components by nonlinear regression using global analysis. Tryptic digestion retarded the rate of oxidation of the more slowly reacting class of tryptophans. (ABSTRACT TRUNCATED AT 250 WORDS)

  6. Application of the quantum mechanical IEF/PCM-MST hydrophobic descriptors to selectivity in ligand binding.

    Science.gov (United States)

    Ginex, Tiziana; Muñoz-Muriedas, Jordi; Herrero, Enric; Gibert, Enric; Cozzini, Pietro; Luque, F Javier

    2016-06-01

    We have recently reported the development and validation of quantum mechanical (QM)-based hydrophobic descriptors derived from the parametrized IEF/PCM-MST continuum solvation model for 3D-QSAR studies within the framework of the Hydrophobic Pharmacophore (HyPhar) method. In this study we explore the applicability of these descriptors to the analysis of selectivity fields. To this end, we have examined a series of 88 compounds with inhibitory activities against thrombin, trypsin and factor Xa, and the HyPhar results have been compared with 3D-QSAR models reported in the literature. The quantitative models obtained by combining the electrostatic and non-electrostatic components of the octanol/water partition coefficient yield results that compare well with the predictive potential of standard CoMFA and CoMSIA techniques. The results also highlight the potential of HyPhar descriptors to discriminate the selectivity of the compounds against thrombin, trypsin, and factor Xa. Moreover, the graphical representation of the hydrophobic maps provides a direct linkage with the pattern of interactions found in crystallographic structures. Overall, the results support the usefulness of the QM/MST-based hydrophobic descriptors as a complementary approach for disclosing structure-activity relationships in drug design and for gaining insight into the molecular determinants of ligand selectivity. Graphical Abstract Quantum Mechanical continuum solvation calculations performed with the IEF/PCM-MST method are used to derived atomic hydrophobic descriptors, which are then used to discriminate the selectivity of ligands against thrombin, trypsin and factor Xa. The descriptors provide complementary view to standard 3D-QSAR analysis, leading to a more comprehensive understanding of ligand recognition.

  7. ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives.

    Science.gov (United States)

    Wang, Jyun-Rong; Huang, Wen-Lin; Tsai, Ming-Ju; Hsu, Kai-Ti; Huang, Hui-Ling; Ho, Shinn-Ying

    2017-03-01

    Numerous ubiquitination sites remain undiscovered because of the limitations of mass spectrometry-based methods. Existing prediction methods use randomly selected non-validated sites as non-ubiquitination sites to train ubiquitination site prediction models. We propose an evolutionary screening algorithm (ESA) to select effective negatives among non-validated sites and an ESA-based prediction method, ESA-UbiSite, to identify human ubiquitination sites. The ESA selects non-validated sites least likely to be ubiquitination sites as training negatives. Moreover, the ESA and ESA-UbiSite use a set of well-selected physicochemical properties together with a support vector machine for accurate prediction. Experimental results show that ESA-UbiSite with effective negatives achieved 0.92 test accuracy and a Matthews's correlation coefficient of 0.48, better than existing prediction methods. The ESA increased ESA-UbiSite's test accuracy from 0.75 to 0.92 and can improve other post-translational modification site prediction methods. An ESA-UbiSite-based web server has been established at http://iclab.life.nctu.edu.tw/iclab_webtools/ESAUbiSite/ . syho@mail.nctu.edu.tw. Supplementary data are available at Bioinformatics online.

  8. Differential ligand binding affinities of human estrogen receptor-α isoforms.

    Directory of Open Access Journals (Sweden)

    Amanda H Y Lin

    Full Text Available Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66 and the truncated isoforms, estrogen receptor-α46 (ER46 and estrogen receptor-α36 (ER36. However, the binding affinities of the membrane estrogen receptors (mERs remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [³H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.

  9. Fluorescence spectroscopic studies of tyrosine environment and ligand binding of plant calmodulin

    Science.gov (United States)

    Sanyal, Gautam; Thompson, Faith; Puett, David

    1990-05-01

    Recent studies in our laboratories have focused on using tyrosine (Tyr) fluorescence of calmodulin (CaM) and tryptophan (Trp) fluorescence of CaM-bound peptdies as intrinsic probes of structure and interactions of this Ca2+ regulatory protein. Plant CaM contains a single Tyr (Tyr.-l38) and vertebrate CaM contains two (Tyr-99 and Tyr-.l38). Neither protein contains Trp. The fluorescence properties of Tyr-138 of wheat-germ CaM is sensitive to conformational changes induced by perturbations such as Ca2+ ligation or depletion, and pH changes. Effects of these perturbations on quantum yield, lifetime and dynamic quenching of Tyr-l38 fluorescence are reported. We have also studied binding of amphiphilic peptides to wheat-germ CaM. A comparison of wheat CaM induced changes in the fluorescence properties of a single Trp of these peptides with those induced by bovine testes CaM indicate general similarities of the peptide binding surfaces of plant and mammalian CaMs. Frequency domain measurements of decay of intensity and anisotropy have suggested some orientational freedom and local motion of the Trp residue of CaM-bound peptide, independent of the overall protein motion, even when the Trp is expected to be buried in the doubly apolar protein-peptide interface. Calmodulin (CaM) is a ubiquitous calcium binding protein which is believed to regulate several different enzymes in diverse cells (Klee et al., 1982). Much of the structural work to date has been carried out on mammalian CaM. However, CaM has also been isolated from plant and invertebrate sources, and a high degree of sequence homology with vertebrate CaM has been found. The amino acid sequence of wheat germ CaM shows eleven substitutions, two insertions and one deletion compared with the 148.-residue bovine brain CaM (Toda et al., 1985). Specific differences with mammalian CaM at two sites make plant CaM attractive for fluorescence spectroscopic studies. These are: (1) The presence of a single tyrosine residue (Tyr

  10. Regulation of ryanodine receptor RyR2 by protein-protein interactions: prediction of a PKA binding site on the N-terminal domain of RyR2 and its relation to disease causing mutations [v1; ref status: indexed, http://f1000r.es/4tw

    Directory of Open Access Journals (Sweden)

    Belinda Nazan Walpoth

    2015-01-01

    Full Text Available Protein-protein interactions are the key processes responsible for signaling and function in complex networks. Determining the correct binding partners and predicting the ligand binding sites in the absence of experimental data require predictive models. Hybrid models that combine quantitative atomistic calculations with statistical thermodynamics formulations are valuable tools for bioinformatics predictions. We present a hybrid prediction and analysis model for determining putative binding partners and interpreting the resulting correlations in the yet functionally uncharacterized interactions of the ryanodine RyR2 N-terminal domain. Using extensive docking calculations and libraries of hexameric peptides generated from regulator proteins of the RyR2 channel, we show that the residues 318-323 of protein kinase A, PKA, have a very high affinity for the N-terminal of RyR2. Using a coarse grained Elastic Net Model, we show that the binding site lies at the end of a pathway of evolutionarily conserved residues in RyR2. The two disease causing mutations are also on this path. The program for the prediction of the energetically responsive residues by the Elastic Net Model is freely available on request from the corresponding author.

  11. Method of predicting Splice Sites based on signal interactions

    Directory of Open Access Journals (Sweden)

    Deogun Jitender S

    2006-04-01

    Full Text Available Abstract Background Predicting and proper ranking of canonical splice sites (SSs is a challenging problem in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to better understanding of splicing mechanism. We introduce several new approaches of combining a priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor information using Naive Bayesian Network, as implemented in our new tool SpliceScan. Results According to our tests, the Bayesian sensor outperforms the contemporary Maximum Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE and Intronic (ISE Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments indicates, that detected elements are on average more conserved as compared to other oligos, which supports our assumption of their functional importance. The tool has been shown to outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on the set of 5' UTR gene fragments. Conclusion Designed methods have many attractive properties, compared to existing approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our web site. Reviewers This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand.

  12. Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding.

    Directory of Open Access Journals (Sweden)

    Swati Kaushik

    Full Text Available Prolyl oligopeptidase (POP is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana. Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases.

  13. Display of aggregation-prone ligand binding domain of human PPAR gamma on surface of bacteriophage lambda

    Institute of Scientific and Technical Information of China (English)

    Bo KONG; Wei-jun MA

    2006-01-01

    Aim: To display the aggregation-prone ligand binding domain (LBD) of the human peroxisome proliferator-activated receptor gamma (PPARγ) on the surface of bacteriophages to establish an easy screening assay for the identification of PPARγ ligands. Methods: Plasmids were constructed for the expression of the PPARγ LBD as a fusion to the N-terminus of the g3p protein of filamentous phage or the C-terminus of the capsid protein D (pD) of phage lambda. The fusion proteins were expressed in E coli and solubility characteristics were compared. Polyclonal antibodies against the LBD as well as the pD protein were prepared for Western blot analysis and phage capture assay. Results: The pD-LBD fusion protein was partially soluble, whereas the LBD-g3p fusion protein was detected only in the insoluble fraction. The pD-LBD fusion protein was efficiently incorporated in phage particles. Furthermore, the LBD was shown to be displayed on the surface of bacteriophage lambda. On average, the pD-LBD fusion protein accounted for 28% of the total pD protein in the lambda head capsid. Conclusion: The hydrophobic PPARγLBD was expressed as a soluble form of fusionprotein in E coli and displayed on the surface of bacteriophage lambda when it was fused to the lambda pD protein. The lambda pD fusion system could be used for improving the solubility of proteins that tend to form inclusion bodies when expressed in E coli. The lambda phage particles displaying the LBD of PPARγ may be of great value for the identification of novel PPARγ ligands.

  14. Characterization of hydrophobic-ligand-binding proteins of Taenia solium that are expressed specifically in the adult stage.

    Science.gov (United States)

    Rahman, M; Lee, E-G; Kim, S-H; Bae, Y-A; Wang, H; Yang, Y; Kong, Y

    2012-09-01

    Taenia solium, a causative agent of taeniasis and cysticercosis, has evolved a repertoire of lipid uptake mechanisms. Proteome analysis of T. solium excretory-secretory products (TsESP) identified 10 kDa proteins displaying significant sequence identity with cestode hydrophobic-ligand-binding-proteins (HLBPs). Two distinct 362- and 352-bp-long cDNAs encoding 264- and 258-bp-long open reading frames (87 and 85 amino acid polypeptides) were isolated by mining the T. solium expressed sequence tags and a cDNA library screening (TsHLBP1 and TsHLBP2; 94% sequence identity). They clustered into the same clade with those found in Moniezia expansa and Hymenolepis diminuta. Genomic structure analysis revealed that these genes might have originated from a common ancestor. Both the crude TsESP and bacterially expressed recombinant proteins exhibited binding activity toward 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS), which was competitively inhibited by oleic acid. The proteins also bound to cis-parinaric acid (cPnA) and 16-(9-anthroyloxy) palmitic acid (16-AP), but showed no binding activity against 11-[(5-dimethylaminonaphthalene-1-sulfonyl) amino] undecanoic acid (DAUDA) and dansyl-DL-α-aminocaprylic acid (DACA). Unsaturated fatty acids (FAs) showed greater affinity than saturated FAs. The proteins were specifically expressed in adult worms throughout the strobila. The TsHLBPs might be involved in uptake and/or sequestration of hydrophobic molecules provided by their hosts, thus contributing to host-parasite interface interrelationships.

  15. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    Science.gov (United States)

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking.

  16. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions.

    Science.gov (United States)

    Deng, Zhan; Chuaqui, Claudio; Singh, Juswinder

    2004-01-15

    Representing and understanding the three-dimensional (3D) structural information of protein-ligand complexes is a critical step in the rational drug discovery process. Traditional analysis methods are proving inadequate and inefficient in dealing with the massive amount of structural information being generated from X-ray crystallography, NMR, and in silico approaches such as structure-based docking experiments. Here, we present SIFt (structural interaction fingerprint), a novel method for representing and analyzing 3D protein-ligand binding interactions. Key to this approach is the generation of an interaction fingerprint that translates 3D structural binding information from a protein-ligand complex into a one-dimensional binary string. Each fingerprint represents the "structural interaction profile" of the complex that can be used to organize, analyze, and visualize the rich amount of information encoded in ligand-receptor complexes and also to assist database mining. We have applied SIFt to tackle three common tasks in structure-based drug design. The first involved the analysis and organization of a typical set of results generated from a docking study. Using SIFt, docking poses with similar binding modes were identified, clustered, and subsequently compared with conventional scoring function information. A second application of SIFt was to analyze approximately 90 known X-ray crystal structures of protein kinase-inhibitor complexes obtained from the Protein Databank. Using SIFt, we were able to organize the structures and reveal striking similarities and diversity between their small molecule binding interactions. Finally, we have shown how SIFt can be used as an effective molecular filter during the virtual chemical library screening process to select molecules with desirable binding mode(s) and/or desirable interaction patterns with the protein target. In summary, SIFt shows promise to fully leverage the wealth of information being generated in rational

  17. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain

    Directory of Open Access Journals (Sweden)

    Arden Perkins

    2014-10-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3ylethyl-9-isopropyl-2- (5-methylpyridin-3-yl-9H-purin-6-amine (GNF351. As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS to search for novel ligands. Here, we have developed an “agonist-optimized” homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307–329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand.

  18. Cloning,expression and purification of the ligand-binding region of human IL-6R in E.coli and its preliminary functional identification

    Institute of Scientific and Technical Information of China (English)

    段聚宝; 王嘉玺; 韩家淮; 彭善云; 邹民吉; 苗继红; 赵春文; 马贤凯

    1995-01-01

    The ligand-binding region of human IL-6R is taken as the target gene fragment to be clonedand expressed.With pET-3b as expressing vector,two recombinants pET-6R(B)and pET-6R(B)4 have beenconstructed encoding the ligand-binding region(28 kD)of hIL-6R and its dimmer(53 kD),respectively.Afterinduction with IPTG,they produced two proteins rIL6R-28 of 28 kD and rIL6R-53 of 53 kD amounting to 50%and 30% of total bacteria proteins,respectively.The expressed products were mainly recovered as inclusionbodies.After purification and renaturation,both of them were capable of augmenting the growth-stimulatingeffect of IL-6 on 7TD1 cells,an IL-6 dependent cell line.The result of ELISA also revealed that bothrIL6R-28 and rIL6R-53 had the obvious ligand-binding activity.

  19. Structure and dynamics of Type III periplasmic proteins VcFhuD and VcHutB reveal molecular basis of their distinctive ligand binding properties

    Science.gov (United States)

    Agarwal, Shubhangi; Dey, Sanjay; Ghosh, Biplab; Biswas, Maitree; Dasgupta, Jhimli

    2017-02-01

    Molecular mechanisms of xenosiderophore and heme acquisitions using periplasmic binding protein (PBP) dependent ATP-binding cassette transporters to scavenge the essential nutrient iron are elusive yet in Vibrio cholerae. Our current study delineates the structures, dynamics and ligand binding properties of two Type III PBPs of V. cholerae, VcFhuD and VcHutB. Through crystal structures and fluorescence quenching studies we demonstrate unique features of VcFhuD to bind both hydroxamate and catecholate type xenosiderophores. Like E. coli FhuD, VcFhuD binds ferrichrome and ferri-desferal using conserved Tryptophans and R102. However, unlike EcFhuD, slightly basic ligand binding pocket of VcFhuD could favour ferri-enterobactin binding with plausible participation of R203, along with R102, like it happens in catecholate binding PBPs. Structural studies coupled with spectrophotometric and native PAGE analysis indicated parallel binding of two heme molecules to VcHutB in a pH dependent manner, while mutational analysis established the relative importance of Y65 and H164 in heme binding. MD simulation studies exhibited an unforeseen inter-lobe swinging motion in Type III PBPs, magnitude of which is inversely related to the packing of the linker helix with its neighboring helices. Small inter-lobe movement in VcFhuD or dramatic twisting in VcHutB is found to influence ligand binding.

  20. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy.

    Science.gov (United States)

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R

    1994-09-09

    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  1. The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209

    DEFF Research Database (Denmark)

    Kasper, Christina; Pickering, Darryl S; Mirza, Osman;

    2006-01-01

    ] in one protomer and the endogenous ligand (S)-glutamate in the other. (S)-NS1209 stabilises an even more open conformation of the D1 and D2 domains of the ligand-binding core than that of the apo structure due to steric hindrance. This is the first time ligand-induced hyperextension of the binding...... domains has been observed. (S)-NS1209 adopts a novel binding mode, including hydrogen bonding to Tyr450 and Gly451 of D1. Parts of (S)-NS1209 occupy new areas of the GluR2 ligand-binding cleft, and bind near residues that are not conserved among receptor subtypes. The affinities of (RS)-NS1209 at the Glu....... The thermodynamics of binding of the antagonists (S)-NS1209, DNQX and (S)-ATPO to the GluR2 ligand-binding core have been determined by displacement isothermal titration calorimetry. The displacement of (S)-glutamate by all antagonists was shown to be driven by enthalpy....

  2. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain.

    Science.gov (United States)

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna; Kaern, Anne M; Gajhede, Michael; Pickering, Darryl S; Kastrup, Jette S

    2014-05-01

    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu-supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low-affinity ligands, because L-Glu is difficult to displace, despite extensive dialysis. Here, we show that L-Asp binds to full-length GluA2 with low affinity (Ki = 0.63 mM) and to the GluA2 LBD with even lower affinity (Ki = 2.6 mM), and we use differential scanning fluorimetry to show that L-Asp is able to stabilize the isolated GluA2 LBD. We also show that L-Asp can replace L-Glu during purification, providing both equal yields and purity of the resulting protein sample. Furthermore, we solved three structures of the GluA2 LBD in the presence of 7.5, 50 and 250 mM L-Asp. Surprisingly, with 7.5 mM L-Asp, the GluA2 LBD crystallized as a mixed dimer, with L-Glu being present in one subunit, and neither L-Asp nor L-Glu being present in the other subunit. Thus, residual L-Glu is retained from the expression medium. On the other hand, only L-Asp was found at the binding site when 50 or 250 mM L-Asp was used for crystallization. The binding mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taking our findings together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low-affinity ligands for lead optimization in structure-based drug design. Structural data are available in the Protein Data Bank under accession numbers 4O3B (7.5 mM L-Asp), 4O3C (50 mM L-Asp), and 4O3A (250 mM L-Asp). © 2014 FEBS.

  3. A combination of mutational and computational scanning guides the design of an artificial ligand-binding controlled lipase

    Science.gov (United States)

    Kaschner, Marco; Schillinger, Oliver; Fettweiss, Timo; Nutschel, Christina; Krause, Frank; Fulton, Alexander; Strodel, Birgit; Stadler, Andreas; Jaeger, Karl-Erich; Krauss, Ulrich

    2017-01-01

    Allostery, i.e. the control of enzyme activity by a small molecule at a location distant from the enzyme’s active site, represents a mechanism essential for sustaining life. The rational design of allostery is a non-trivial task but can be achieved by fusion of a sensory domain, which responds to environmental stimuli with a change in its structure. Hereby, the site of domain fusion is difficult to predict. We here explore the possibility to rationally engineer allostery into the naturally not allosterically regulated Bacillus subtilis lipase A, by fusion of the citrate-binding sensor-domain of the CitA sensory-kinase of Klebsiella pneumoniae. The site of domain fusion was rationally determined based on whole-protein site-saturation mutagenesis data, complemented by computational evolutionary-coupling analyses. Functional assays, combined with biochemical and biophysical studies suggest a mechanism for control, similar but distinct to the one of the parent CitA protein, with citrate acting as an indirect modulator of Triton-X100 inhibition of the fusion protein. Our study demonstrates that the introduction of ligand-dependent regulatory control by domain fusion is surprisingly facile, suggesting that the catalytic mechanism of some enzymes may be evolutionary optimized in a way that it can easily be perturbed by small conformational changes. PMID:28218303

  4. A substitution in the ligand binding domain of the porcine glucocorticoid receptor affects activity of the adrenal gland.

    Directory of Open Access Journals (Sweden)

    Eduard Murani

    Full Text Available Glucocorticoids produced in the adrenal cortex under the control of the hypothalamic-pituitary axis play a vital role in the maintenance of basal and stress-related homeostasis and influence health and well-being. To identify loci affecting regulation of the hypothalamic-pituitary-adrenal (HPA axis in the pig we performed a genome-wide association study for two parameters of acute and long-term adrenal activity: plasma cortisol level and adrenal weight. We detected a major quantitative trait locus at the position of the glucocorticoid receptor gene (NR3C1 - a key regulator of HPA axis activity. To determine the causal variant(s, we resequenced the coding region of NR3C1 and found three missense single nucleotide polymorphisms (SNPs. SNP c.1829C>T, leading to a p.Ala610Val substitution in the ligand binding domain, showed large (about 0.6× and 1.2× phenotypic standard deviations for cortisol level and adrenal weight, respectively, and highly significant (2.1E-39≤log10(1/p≤1.7E+0 negative effects on both traits. We were able to replicate the association in three commercial pig populations with different breed origins. We analyzed effects of the p.Ala610Val substitution on glucocorticoid-induced transcriptional activity of porcine glucocorticoid receptor (GR in vitro and determined that the substitution introduced by SNP c.1829C>T increased sensitivity of GR by about two-fold. Finally, we found that non-coding polymorphisms in linkage disequilibrium with SNP c.1829C>T have only a minor effect on the expression of NR3C1 in tissues related to the HPA axis. Our findings provide compelling evidence that SNP c.1829C>T in porcine NR3C1 is a gain-of-function mutation with a major effect on the activity of the adrenal gland. Pigs carrying this SNP could provide a new animal model to study neurobiological and physiological consequences of genetically based GR hypersensitivity and adrenal hypofunction.

  5. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites

    DEFF Research Database (Denmark)

    Julenius, Karin; Mølgaard, Anne; Gupta, Ramneek

    2005-01-01

    than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network...... approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines...... predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites...

  6. Improving prediction of surgical site infection risk with multilevel modeling.

    Directory of Open Access Journals (Sweden)

    Lauren Saunders

    Full Text Available BACKGROUND: Surgical site infection (SSI surveillance is a key factor in the elaboration of strategies to reduce SSI occurrence and in providing surgeons with appropriate data feedback (risk indicators, clinical prediction rule. AIM: To improve the predictive performance of an individual-based SSI risk model by considering a multilevel hierarchical structure. PATIENTS AND METHODS: Data were collected anonymously by the French SSI active surveillance system in 2011. An SSI diagnosis was made by the surgical teams and infection control practitioners following standardized criteria. A random 20% sample comprising 151 hospitals, 502 wards and 62280 patients was used. Three-level (patient, ward, hospital hierarchical logistic regression models were initially performed. Parameters were estimated using the simulation-based Markov Chain Monte Carlo procedure. RESULTS: A total of 623 SSI were diagnosed (1%. The hospital level was discarded from the analysis as it did not contribute to variability of SSI occurrence (p  = 0.32. Established individual risk factors (patient history, surgical procedure and hospitalization characteristics were identified. A significant heterogeneity in SSI occurrence between wards was found (median odds ratio [MOR] 3.59, 95% credibility interval [CI] 3.03 to 4.33 after adjusting for patient-level variables. The effects of the follow-up duration varied between wards (p<10-9, with an increased heterogeneity when follow-up was <15 days (MOR 6.92, 95% CI 5.31 to 9.07]. The final two-level model significantly improved the discriminative accuracy compared to the single level reference model (p<10-9, with an area under the ROC curve of 0.84. CONCLUSION: This study sheds new light on the respective contribution of patient-, ward- and hospital-levels to SSI occurrence and demonstrates the significant impact of the ward level over and above risk factors present at patient level (i.e., independently from patient case-mix.

  7. Three-dimensional structure of the ligand-binding core of GluR2 in complex with the agonist (S)-ATPA: implications for receptor subunit selectivity.

    Science.gov (United States)

    Lunn, Marie-Louise; Hogner, Anders; Stensbøl, Tine B; Gouaux, Eric; Egebjerg, Jan; Kastrup, Jette S

    2003-02-27

    Two X-ray structures of the GluR2 ligand-binding core in complex with (S)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid ((S)-ATPA) have been determined with and without Zn(2+) ions. (S)-ATPA induces a domain closure of ca. 21 degrees compared to the apo form. The tert-butyl moiety of (S)-ATPA is buried in a partially hydrophobic pocket and forces the ligand into the glutamate-like binding mode. The structures provide new insight into the molecular basis of agonist selectivity between AMPA and kainate receptors.

  8. Apo and InsP[subscript 3]-bound crystal structures of the ligand-binding domain of an InsP[subscript 3] receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Chi; Baek, Kyuwon; Lu, Zhe (UPENN)

    2012-05-08

    We report the crystal structures of the ligand-binding domain (LBD) of a rat inositol 1,4,5-trisphosphate receptor (InsP{sub 3}R) in its apo and InsP{sub 3}-bound conformations. Comparison of these two conformations reveals that LBD's first {beta}-trefoil fold ({beta}-TF1) and armadillo repeat fold (ARF) move together as a unit relative to its second {beta}-trefoil fold ({beta}-TF2). Whereas apo LBD may spontaneously transition between gating conformations, InsP{sub 3} binding shifts this equilibrium toward the active state.

  9. Snow multivariable data assimilation for hydrological predictions in Alpine sites

    Science.gov (United States)

    Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè

    2017-04-01

    Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity

  10. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  11. Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design.

    Science.gov (United States)

    Ehrt, Christiane; Brinkjost, Tobias; Koch, Oliver

    2016-05-12

    Modern rational drug design not only deals with the search for ligands binding to interesting and promising validated targets but also aims to identify the function and ligands of yet uncharacterized proteins having impact on different diseases. Additionally, it contributes to the design of inhibitors with distinct selectivity patterns and the prediction of possible off-target effects. The identification of similarities between binding sites of various proteins is a useful approach to cope with those challenges. The main scope of this perspective is to describe applications of different protein binding site comparison approaches to outline their applicability and impact on molecular design. The article deals with various substantial application domains and provides some outstanding examples to show how various binding site comparison methods can be applied to promote in silico drug design workflows. In addition, we will also briefly introduce the fundamental principles of different protein binding site comparison methods.

  12. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.

    Science.gov (United States)

    Jain, Tarun; Jayaram, B

    2007-06-01

    Zinc is one of the most important metal ions found in proteins performing specific functions associated with life processes. Coordination geometry of the zinc ion in the active site of the metalloprotein-ligand complexes poses a challenge in determining ligand binding affinities accurately in structure-based drug design. We report here an all atom force field based computational protocol for estimating rapidly the binding affinities of zinc containing metalloprotein-ligand complexes, considering electrostatics, van der Waals, hydrophobicity, and loss in conformational entropy of protein side chains upon ligand binding along with a nonbonded approach to model the interactions of the zinc ion with all the other atoms of the complex. We examined the sensitivity of the binding affinity predictions to the choice of Lennard-Jones parameters, partial atomic charges, and dielectric treatments adopted for system preparation and scoring. The highest correlation obtained was R2 = 0.77 (r = 0.88) for the predicted binding affinity against the experiment on a heterogenous dataset of 90 zinc containing metalloprotein-ligand complexes consisting of five unique protein targets. Model validation and parameter analysis studies underscore the robustness and predictive ability of the scoring function. The high correlation obtained suggests the potential applicability of the methodology in designing novel ligands for zinc-metalloproteins. The scoring function has been web enabled for free access at www.scfbio-iitd.res.in/software/drugdesign/bapplz.jsp as BAPPL-Z server (Binding Affinity Prediction of Protein-Ligand complexes containing Zinc metal ions).

  13. Apo, Zn2+-bound and Mn2+-bound structures reveal ligand-binding properties of SitA from the pathogen Staphylococcus pseudintermedius.

    Science.gov (United States)

    Abate, Francesca; Malito, Enrico; Cozzi, Roberta; Lo Surdo, Paola; Maione, Domenico; Bottomley, Matthew J

    2014-11-24

    The Gram-positive bacterium Staphylococcus pseudintermedius is a leading cause of canine bacterial pyoderma, resulting in worldwide morbidity in dogs. S. pseudintermedius also causes life-threatening human infections. Furthermore, methicillin-resistant S. pseudintermedius is emerging, resembling the human health threat of methicillin-resistant Staphylococcus aureus. Therefore it is increasingly important to characterize targets for intervention strategies to counteract S. pseudintermedius infections. Here we used biophysical methods, mutagenesis, and X-ray crystallography, to define the ligand-binding properties and structure of SitA, an S. pseudintermedius surface lipoprotein. SitA was strongly and specifically stabilized by Mn2+ and Zn2+ ions. Crystal structures of SitA complexed with Mn2+ and Zn2+ revealed a canonical class III solute-binding protein with the metal cation bound in a cavity between N- and C-terminal lobes. Unexpectedly, one crystal contained both apo- and holo-forms of SitA, revealing a large side-chain reorientation of His64, and associated structural differences accompanying ligand binding. Such conformational changes may regulate fruitful engagement of the cognate ABC (ATP-binding cassette) transporter system (SitBC) required for metal uptake. These results provide the first detailed characterization and mechanistic insights for a potential therapeutic target of the major canine pathogen S. pseudintermedius, and also shed light on homologous structures in related staphylococcal pathogens afflicting humans.

  14. NMR structure of a concatemer of the first and second ligand-binding modules of the human low-density lipoprotein receptor.

    Science.gov (United States)

    Kurniawan, N D; Atkins, A R; Bieri, S; Brown, C J; Brereton, I M; Kroon, P A; Smith, R

    2000-07-01

    The ligand-binding domain of the human low-density lipoprotein receptor consists of seven modules, each of 40-45 residues. In the presence of calcium, these modules adopt a common polypeptide fold with three conserved disulfide bonds. A concatemer of the first and second modules (LB(1-2)) folds efficiently in the presence of calcium ions, forming the same disulfide connectivities as in the isolated modules. The three-dimensional structure of LB(1-2) has now been solved using two-dimensional 1H NMR spectroscopy and restrained molecular dynamics calculations. No intermodule nuclear Overhauser effects were observed, indicating the absence of persistent interaction between them. The near random-coil NH and H alpha chemical shifts and the low phi and psi angle order parameters of the four-residue linker suggest that it has considerable flexibility. The family of LB(1-2) structures superimposed well over LB1 or LB2, but not over both modules simultaneously. LB1 and LB2 have a similar pattern of calcium ligands, but the orientations of the indole rings of the tryptophan residues W23 and W66 differ, with the latter limiting solvent access to the calcium ion. From these studies, it appears that although most of the modules in the ligand-binding region of the receptor are joined by short segments, these linkers may impart considerable flexibility on this region.

  15. Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Hyuck; Park, Soo Jeong; Rho, Seong-Hwan; Im, Young Jun; Kim, Mun-Kyoung; Kang, Gil Bu; Eom, Soo Hyun, E-mail: eom@gist.ac.kr [Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2005-11-01

    The GluR0 ligand-binding core from N. punctiforme was expressed, purified and crystallized in the presence of l-glutamate. A diffraction data set was collected to a resolution of 2.1 Å. GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor. The ligand-binding core of NpGluR0 was crystallized at 294 K using the hanging-drop vapour-diffusion method. The l-glutamate-complexed crystal belongs to space group C222{sub 1}, with unit-cell parameters a = 78.0, b = 145.1, c = 132.1 Å. The crystals contain three subunits in the asymmetric unit, with a V{sub M} value of 2.49 Å{sup 3} Da{sup −1}. The diffraction limit of the l-glutamate complex data set was 2.1 Å using synchrotron X-ray radiation at beamline BL-4A of the Pohang Accelerator Laboratory (Pohang, Korea)

  16. Radiometric ligand binding assay for C-reactive protein. Complexed C-reactive protein is not detectable in acute phase serum.

    Science.gov (United States)

    De Beer, F C; Shine, B; Pepys, M B

    1982-10-01

    A radiometric ligand binding assay for human C-reactive protein (CRP) was established using pneumococcal C polysaccharide (CPS) coupled to magnetizable cellulose particles as the solid phase ligand. Competition for binding to the solid phase between 125I-CRP and unlabelled CRP permitted detection of 30 micrograms/l of CRP and the precise assay of concentrations up to 3000 micrograms/l. Identical results were obtained when the assay was used to quantitate isolated pure CRP and pure CRP added to normal human serum. However in vitro addition of known ligands for CRP to acute phase serum resulted in lowering of the apparent CRP concentration in this assay and addition of as little as 1 microgram/l of free CPS or 1 mg/l of lecithin was demonstrable in this way. A combination of the ligand binding assay and the standard electroimmunoassay for CRP was therefore used to test acute phase sera for the presence of CRP complexed in vitro. No evidence of complexed CRP was detected among sera containing between 1-319 mg/l of CRP from patients with Hodgkin's disease (10), rheumatoid arthritis (10), Crohn's disease (19) and various microbial infections (11), including six with subacute bacterial endocarditis. Since it is likely that CRP does form complexes with its ligands in the plasma these results suggest that complexed CRP is rapidly cleared from the circulation.

  17. Factors predicting surgical site infection after posterior lumbar surgery

    Science.gov (United States)

    Wang, Tao; Wang, Hui; Yang, Da-Long; Jiang, Li-Qiang; Zhang, Li-Jun; Ding, Wen-Yuan

    2017-01-01

    Abstract This is a retrospective study. The purpose of this study is to explore incidence and risk factors for surgical site infection (SSI) after posterior lumbar surgery. SSI is a common complication after posterior lumbar surgery, bringing mental and physical pain and prolonging hospital stay. However, predisposing factors, as reported less, remain controversial. Patients who underwent posterior lumbar surgery at 3 centers between 2006 and 2016 were included. The possible factors include 3 aspects: demographic variables-age, sex, body mass index (BMI), waist-to-hip radio (WHR), hypertension, diabetes, heart disease, smoking, drinking, steroidal injection, surgical time between June and September, preoperative shower; blood test variables-white blood cell (WBC), neutrophil, red blood cell (RBC), hemoglobin (Hb), total protein (TP), albumin, albumin/globulin (A/G), C-reactive protein (CRP), procalcitonin (PCT), erythrocyte sedimentation rate (ESR) and surgical related variables-operation time, blood loss, operative level, instrumentation, incision length. Factors related with SSI were also performed by multivariate analysis. The prevalence of SSI was 3.00% (267 cases of 8879) had a postoperative wound infection. There were significant difference in WHR (0.92 vs 0.83), WBC (4.31 vs 6.69), TP (58.7 vs 65.2), albumin (36.9 vs 43.2), CRP (2.01 vs 0.57), PCT (0.097 vs 0.067), operation time (217.9 vs 195.7), blood loss (997.1 vs 915.3) and operative level (3.05 vs 2.45) and incision length (24.1 vs 20.0) between SSI group and non-SSI group. >60 years old, female, BMI 30.0, diabetes, male smoking, preoperative steroidal injection, surgical time between June and September, no preoperative shower, instrumentation surgery were risk factors for SSI after posterior lumbar surgery. Many factors, >60 years old, female, BMI, WHR, diabetes, male smoking, preoperative steroidal injection, surgical time between June and September, preoperative shower, WBC, TP, albumin, CRP, PCT

  18. Protein Structure and Function Prediction Using I-TASSER.

    Science.gov (United States)

    Yang, Jianyi; Zhang, Yang

    2015-12-17

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets.

  19. SSFinder: High Throughput CRISPR-Cas Target Sites Prediction Tool

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Upadhyay

    2014-01-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated protein (Cas system facilitates targeted genome editing in organisms. Despite high demand of this system, finding a reliable tool for the determination of specific target sites in large genomic data remained challenging. Here, we report SSFinder, a python script to perform high throughput detection of specific target sites in large nucleotide datasets. The SSFinder is a user-friendly tool, compatible with Windows, Mac OS, and Linux operating systems, and freely available online.

  20. MONTE CARLO ANALYSIS FOR PREDICTION OF NOISE FROM A CONSTRUCTION SITE

    Directory of Open Access Journals (Sweden)

    Zaiton Haron

    2009-06-01

    Full Text Available The large number of operations involving noisy machinery associated with construction site activities result in considerable variation in the noise levels experienced at receiver locations. This paper suggests an approach to predict noise levels generated from a site by using a Monte Carlo approach. This approach enables the determination of details regarding the statistical uncertainties associated with noise level predictions or temporal distributions. This technique could provide the basis for a generalised prediction technique and a simple noise management tool.

  1. Predicting enzymatic function from global binding site descriptors.

    Science.gov (United States)

    Volkamer, Andrea; Kuhn, Daniel; Rippmann, Friedrich; Rarey, Matthias

    2013-03-01

    Due to the rising number of solved protein structures, computer-based techniques for automatic protein functional annotation and classification into families are of high scientific interest. DoGSiteScorer automatically calculates global descriptors for self-predicted pockets based on the 3D structure of a protein. Protein function predictors on three levels with increasing granularity are built by use of a support vector machine (SVM), based on descriptors of 26632 pockets from enzymes with known structure and enzyme classification. The SVM models represent a generalization of the available descriptor space for each enzyme class, subclass, and substrate-specific sub-subclass. Cross-validation studies show accuracies of 68.2% for predicting the correct main class and accuracies between 62.8% and 80.9% for the six subclasses. Substrate-specific recall rates for a kinase subset are 53.8%. Furthermore, application studies show the ability of the method for predicting the function of unknown proteins and gaining valuable information for the function prediction field. Copyright © 2012 Wiley Periodicals, Inc.

  2. Crystallographic Analysis of Murine Constitutive Androstane Receptor Ligand-Binding Domain Complexed with 5[alpha]-androst-16-en-3[alpha]-ol

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, J.; Shan, L.; Fan, M.; Brunzelle, J.S.; Forman, B.M.; Fernandez, E.J. (Tennessee-K); (NWU); (CHNMC)

    2010-03-08

    The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily. In contrast to classical nuclear receptors, which possess small-molecule ligand-inducible activity, CAR exhibits constitutive transcriptional activity in the apparent absence of ligand. CAR is among the most important transcription factors; it coordinately regulates the expression of microsomal cytochrome P450 genes and other drug-metabolizing enzymes. The murine CAR ligand-binding domain (LBD) was coexpressed with the steroid receptor coactivator protein (SRC-1) receptor-interacting domain (RID) in Escherichia coli. The mCAR LBD subunit was purified away from SRC-1 by affinity, anion-exchange and size-exclusion chromatography, crystallized with androstenol and the structure of the complex determined by molecular replacement.

  3. High-throughput calculation of protein-ligand binding affinities: modification and adaptation of the MM-PBSA protocol to enterprise grid computing.

    Science.gov (United States)

    Brown, Scott P; Muchmore, Steven W

    2006-01-01

    We have developed a system for performing computations on an enterprise grid using a freely available package for grid computing that allows us to harvest unused CPU cycles off of employee desktop computers. By modifying the traditional formulation of Molecular Mechanics with Poisson-Boltzmann Surface Area (MM-PBSA) methodology, in combination with a coarse-grain parallelized implementation suitable for deployment onto our enterprise grid, we show that it is possible to produce rapid physics-based estimates of protein-ligand binding affinities that have good correlation to experimental data. This is demonstrated by examining the correlation of our calculated binding affinities to experimental data and also by comparison to the correlation obtained from the binding-affinity calculations using traditional MM-PBSA that are reported in the literature.

  4. Crystal structure of the functional region of Uro-adherence factor A from Staphylococcus saprophyticus reveals participation of the B domain in ligand binding.

    Science.gov (United States)

    Matsuoka, Eriko; Tanaka, Yoshikazu; Kuroda, Makoto; Shouji, Yuko; Ohta, Toshiko; Tanaka, Isao; Yao, Min

    2011-02-01

    Staphylococci use cell wall-anchored proteins as adhesins to attach to host tissues. Staphylococcus saprophyticus, a uropathogenic species, has a unique cell wall-anchored protein, uro-adherence factor A (UafA), which shows erythrocyte binding activity. To investigate the mechanism of adhesion by UafA, we determined the crystal structure of the functional region of UafA at 1.5 Å resolution. The structure was composed of three domains, designated as the N2, N3, and B domains, arranged in a triangular relative configuration. Hemagglutination inhibition assay with domain-truncated mutants indicated that both N and B domains were necessary for erythrocyte binding. Based on these results, a novel manner of ligand binding in which the B domain acts as a functional domain was proposed as the adhesion mechanism of S. saprophyticus.

  5. Prediction of protein hydration sites from sequence by modular neural networks

    DEFF Research Database (Denmark)

    Ehrlich, L.; Reczko, M.; Bohr, Henrik;

    1998-01-01

    The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with t...... provide insight into the mutual interdependencies between the location of ordered water sites and the structural and chemical characteristics of the protein residues.......The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with two...... structure and solvent accessibility and, using actual values of these properties, redidue hydration can be predicted to 77% accuracy with a Metthews coefficient of 0.43. However, predicted property data with an accuracy of 60-70% result in less than half the improvement in predictive performance observed...

  6. Ligand-binding mass spectrometry to study biotransformation of fusion protein drugs and guide immunoassay development: strategic approach and application to peptibodies targeting the thrombopoietin receptor.

    Science.gov (United States)

    Hall, Michael P; Gegg, Colin; Walker, Kenneth; Spahr, Christopher; Ortiz, Robert; Patel, Vimal; Yu, Steven; Zhang, Liana; Lu, Hsieng; DeSilva, Binodh; Lee, Jean W

    2010-12-01

    The knowledge of in vivo biotransformation (e.g., proteolysis) of protein therapeutic candidates reveals structural liabilities that impact stability. This information aids the development and confirmation of ligand-binding assays with the required specificity for bioactive moieties (including intact molecule and metabolites) for appropriate PK profiling. Furthermore, the information can be used for re-engineering of constructs to remove in vivo liabilities in order to design the most stable candidates. We have developed a strategic approach of ligand-binding mass spectrometry (LBMS) to study biotransformation of fusion proteins of peptides fused to human Fc ("peptibodies") using anti-human Fc immunoaffinity capture followed by tiered mass spectrometric interrogation. LBMS offers the combined power of selectivity of ligand capture with the specificity and detailed molecular-level information of mass spectrometry. In this paper, we demonstrate the preclinical application of LBMS to three peptibodies, AMG531 (romiplostim), AMG195(linear), and AMG195(loop), that target the thrombopoietin receptor. The data show that ligand capture offers excellent sample cleanup and concentration of intact peptibodies and metabolites for subsequent query by matrix-assisted laser desorption ionization time-of-flight mass spectrometry for identification of in vivo proteolytic points. Additional higher-resolution analysis by nanoscale liquid chromatography interfaced with electrospray ionization mass spectrometry is required for identification of heterogeneous metabolites. Five proteolytic points are accurately identified for AMG531 and two for AMG195(linear), while AMG195(loop) is the most stable construct in rats. We recommend the use of LBMS to assess biotransformation and in vivo stability during early preclinical phase development for all novel fusion proteins.

  7. Prediction of PK-specific phosphorylation site based on information entropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Phosphorylation is a crucial way to control the activity of proteins in many eukaryotic organisms in vivo. Experimental methods to determine phosphorylation sites in substrates are usually restricted by the in vitro condition of enzymes and very intensive in time and labor. Although some in silico methods and web servers have been introduced for automatic detection of phosphorylation sites, sophisticated methods are still in urgent demand to further improve prediction performances. Protein primary se-quences can help predict phosphorylation sites catalyzed by different protein kinase and most com-putational approaches use a short local peptide to make prediction. However, the useful information may be lost if only the conservative residues that are not close to the phosphorylation site are consid-ered in prediction, which would hamper the prediction results. A novel prediction method named IEPP (Information-Entropy based Phosphorylation Prediction) is presented in this paper for automatic de-tection of potential phosphorylation sites. In prediction, the sites around the phosphorylation sites are selected or excluded by their entropy values. The algorithm was compared with other methods such as GSP and PPSP on the ABL, MAPK and PKA PK families. The superior prediction accuracies were ob-tained in various measurements such as sensitivity (Sn) and specificity (Sp). Furthermore, compared with some online prediction web servers on the new discovered phosphorylation sites, IEPP also yielded the best performance. IEPP is another useful computational resource for identification of PK-specific phosphorylation sites and it also has the advantages of simpleness, efficiency and con-venience.

  8. POLYAR, a new computer program for prediction of poly(A sites in human sequences

    Directory of Open Access Journals (Sweden)

    Qamar Raheel

    2010-11-01

    Full Text Available Abstract Background mRNA polyadenylation is an essential step of pre-mRNA processing in eukaryotes. Accurate prediction of the pre-mRNA 3'-end cleavage/polyadenylation sites is important for defining the gene boundaries and understanding gene expression mechanisms. Results 28761 human mapped poly(A sites have been classified into three classes containing different known forms of polyadenylation signal (PAS or none of them (PAS-strong, PAS-weak and PAS-less, respectively and a new computer program POLYAR for the prediction of poly(A sites of each class was developed. In comparison with polya_svm (till date the most accurate computer program for prediction of poly(A sites while searching for PAS-strong poly(A sites in human sequences, POLYAR had a significantly higher prediction sensitivity (80.8% versus 65.7% and specificity (66.4% versus 51.7% However, when a similar sort of search was conducted for PAS-weak and PAS-less poly(A sites, both programs had a very low prediction accuracy, which indicates that our knowledge about factors involved in the determination of the poly(A sites is not sufficient to identify such polyadenylation regions. Conclusions We present a new classification of polyadenylation sites into three classes and a novel computer program POLYAR for prediction of poly(A sites/regions of each of the class. In tests, POLYAR shows high accuracy of prediction of the PAS-strong poly(A sites, though this program's efficiency in searching for PAS-weak and PAS-less poly(A sites is not very high but is comparable to other available programs. These findings suggest that additional characteristics of such poly(A sites remain to be elucidated. POLYAR program with a stand-alone version for downloading is available at http://cub.comsats.edu.pk/polyapredict.htm.

  9. Predicting proteasomal cleavage sites: a comparison of available methods

    DEFF Research Database (Denmark)

    Saxova, P.; Buus, S.; Brunak, Søren

    2003-01-01

    The proteasome plays an essential role in the immune responses of vertebrates. By degrading intercellular proteins from self and non-self, the proteasome produces the majority of the peptides that are presented to cytotoxic T cells (CTL). There is accumulating evidence that the C......-terminal, in particular, of CTL epitopes is cleaved precisely by the proteasome, whereas the N-terminal is produced with an extension, and later trimmed by peptidases in the cytoplasm and in the endoplasmic reticulum. Recently, three publicly available methods have been developed for prediction of the specificity...... of the proteasome. Here, we compare the performance of these methods on a large set of CTL epitopes. The best method, NetChop at www.cbs.dtu.dk/Services/NetChop, can capture similar to70% of the C-termini correctly. This result suggests that the predictions can still be improved, particularly if more quantitative...

  10. Can one predict DNA Transcription Start Sites by studying bubbles?

    CERN Document Server

    Van Erp, T S; Hagmann, J G; Peyrard, M

    2005-01-01

    It has been speculated that bubble formation of several base-pairs due to thermal fluctuations is indicatory for biological active sites. Recent evidence, based on experiments and molecular dynamics (MD) simulations using the Peyrard-Bishop-Dauxois model, seems to point in this direction. However, sufficiently large bubbles appear only seldom which makes an accurate calculation difficult even for minimal models. In this letter, we introduce a new method that is orders of magnitude faster than MD. Using this method we are able to show that the present evidence is unsubstantiated.

  11. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    CERN Document Server

    Amor, Benjamin R C; Yaliraki, Sophia N; Barahona, Mauricio

    2016-01-01

    Allosteric regulation is central to many biochemical processes. Allosteric sites provide a target to fine-tune protein activity, yet we lack computational methods to predict them. Here, we present an efficient graph-theoretical approach for identifying allosteric sites and the mediating interactions that connect them to the active site. Using an atomistic graph with edges weighted by covalent and non-covalent bond energies, we obtain a bond-to-bond propensity that quantifies the effect of instantaneous bond fluctuations propagating through the protein. We use this propensity to detect the sites and communication pathways most strongly linked to the active site, assessing their significance through quantile regression and comparison against a reference set of 100 generic proteins. We exemplify our method in detail with three well-studied allosteric proteins: caspase-1, CheY, and h-Ras, correctly predicting the location of the allosteric site and identifying key allosteric interactions. Consistent prediction of...

  12. Kinase-specific prediction of protein phosphorylation sites

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Blom, Nikolaj

    2009-01-01

    -substrate specificity. Here, we briefly describe the available resources for predicting kinase-specific phosphorylation from sequence properties. We address the strengths and weaknesses of these resources, which are based on methods ranging from simple consensus patterns to more advanced machine-learning algorithms....... Furthermore, a protocol for the use of the artificial neural network based predictors, NetPhos and NetPhosK, is provided. Finally, we point to possible developments with the intention of providing the community with improved and additional phosphorylation predictors for large-scale modeling of cellular...... signaling networks....

  13. Study of V2 vasopressin receptor hormone binding site using in silico methods.

    Science.gov (United States)

    Sebti, Yeganeh; Sardari, Soroush; Sadeghi, Hamid Mir Mohammad; Ghahremani, Mohammad Hossein; Innamorati, Giulio

    2015-01-01

    The antidiuretic effect of arginine vasopressin (AVP) is mediated by the vasopressin V2 receptor. The docking study of AVP as a ligand to V2 receptor helps in identifying important amino acid residues that might be involved in AVP binding for predicting the lowest free energy state of the protein complex. Whereas previous researchers were not able to detect the exact site of the ligand-receptor binding, we designed the current study to identify the vasopressin V2 receptor hormone binding site using bioinformatic methods. The 3D structure of nonapeptide hormone vasopressin was extracted from Protein Data Bank. Since no suitable template resembling V2 receptor was found, an ab initio approach was chosen to model the protein receptor. Using protein docking methods such as Hex protein-protein docking, the model of V2 receptor was docked to the peptide ligand AVP to identify possible binding sites. The residues that involved in binding site are W293, W296, D297, A300, and P301. The lowest free energy state of the protein complex was predicted after mutation in the above residues. The amount of gained energies permits us to compare the mutant forms with native forms and help to asses critical changes such as positive and negative mutations followed by ranking the best mutations. Based on the mutation/docking predictions, we found some mutants such as W293D and A300E possess positively inducing effect in ligand binding and some of them such as A300R present negatively inducing effect in ligand binding.

  14. A predictive model of intein insertion site for use in the engineering of molecular switches.

    Directory of Open Access Journals (Sweden)

    James Apgar

    Full Text Available Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54. In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch.

  15. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites

    DEFF Research Database (Denmark)

    Julenius, Karin; Mølgaard, Anne; Gupta, Ramneek;

    2004-01-01

    than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network...... could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc....

  16. Recent Progress in Predicting Posttranslational Modification Sites in Proteins.

    Science.gov (United States)

    Xu, Yan; Chou, Kuo-Chen

    2016-01-01

    The posttranslational modification or PTM is a later but subtle step in protein biosynthesis via which to change the properties of a protein by adding a modified group to its one or more amino acid residues. PTMs are responsible for many significant biological processes, and meanwhile for many major diseases as well, such as cancer. Facing the avalanche of biological sequences generated in the post-genomic age, it is important for both basic research and drug development to timely identify the PTM sites in proteins. This Review is devoted to summarize the recent progresses in this area, with a focus on those predictors, which were developed based on the pseudo amino acid composition or PseAAC approach, and for which a publicly accessible web-server has been established. Meanwhile, the future challenge in this area has also been briefly addressed.

  17. Structural descriptor database: a new tool for sequence-based functional site prediction

    Directory of Open Access Journals (Sweden)

    Vasconcelos Ana

    2008-11-01

    Full Text Available Abstract Background The Structural Descriptor Database (SDDB is a web-based tool that predicts the function of proteins and functional site positions based on the structural properties of related protein families. Structural alignments and functional residues of a known protein set (defined as the training set are used to build special Hidden Markov Models (HMM called HMM descriptors. SDDB uses previously calculated and stored HMM descriptors for predicting active sites, binding residues, and protein function. The database integrates biologically relevant data filtered from several databases such as PDB, PDBSUM, CSA and SCOP. It accepts queries in fasta format and predicts functional residue positions, protein-ligand interactions, and protein function, based on the SCOP database. Results To assess the SDDB performance, we used different data sets. The Trypsion-like Serine protease data set assessed how well SDDB predicts functional sites when curated data is available. The SCOP family data set was used to analyze SDDB performance by using training data extracted from PDBSUM (binding sites and from CSA (active sites. The ATP-binding experiment was used to compare our approach with the most current method. For all evaluations, significant improvements were obtained with SDDB. Conclusion SDDB performed better when trusty training data was available. SDDB worked better in predicting active sites rather than binding sites because the former are more conserved than the latter. Nevertheless, by using our prediction method we obtained results with precision above 70%.

  18. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  19. Predicting DNA-binding sites of proteins based on sequential and 3D structural information.

    Science.gov (United States)

    Li, Bi-Qing; Feng, Kai-Yan; Ding, Juan; Cai, Yu-Dong

    2014-06-01

    Protein-DNA interactions play important roles in many biological processes. To understand the molecular mechanisms of protein-DNA interaction, it is necessary to identify the DNA-binding sites in DNA-binding proteins. In the last decade, computational approaches have been developed to predict protein-DNA-binding sites based solely on protein sequences. In this study, we developed a novel predictor based on support vector machine algorithm coupled with the maximum relevance minimum redundancy method followed by incremental feature selection. We incorporated not only features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure, solvent accessibility, but also five three-dimensional (3D) structural features calculated from PDB data to predict the protein-DNA interaction sites. Feature analysis showed that 3D structural features indeed contributed to the prediction of DNA-binding site and it was demonstrated that the prediction performance was better with 3D structural features than without them. It was also shown via analysis of features from each site that the features of DNA-binding site itself contribute the most to the prediction. Our prediction method may become a useful tool for identifying the DNA-binding sites and the feature analysis described in this paper may provide useful insights for in-depth investigations into the mechanisms of protein-DNA interaction.

  20. 金黄色葡萄球菌FnBP配体结合区基因的克隆及其原核表达%Cloning and Prokaryotic Expression of FnBP Ligand Binding Gene of Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    尹荣兰; 杨正涛; 张艳晶; 刘辉; 刘珊; 杨琦; 曹永国; 张乃生

    2008-01-01

    [Objective] The study aimed to clone the FnBP ligand binding gene of Staphylococcus aureus and run prokaryotic expression by constructing a prokaryotic expression vector. [Method] The gene encoding FnBP ligand binding gene was amplified from S.aureus chromosomal DNA by PCR technique. After T-A cloning, plasmid pMD18- FnBP was constructed. pMD18- FnBP and pET28a(+)were digested by BamH Ⅰ and EcoR Ⅰ double enzymes, then the purified FnBP ligand binding gene was subcloned into the expression vector pET28a(+), and the prokaryotic expression vector pET28a-FnBP was thus constructed. The constructed plasmid pET28a-FnBP was transformed into Escherichia coli BL21(DE3) competent cells. The bacterium was induced by IPTG and the expressed products were analyzed by SDS-PAGE and Western blot. [Result] The gene fragment with the length of 370 bp was amplified by PCR approach. One approximately 30 kD exogenous protein was observed in SDS-PAGE analysis. Western blot analysis indicates the protein has antigenicity of S.aureus. [Conclusion] The FnBP ligand binding gene of S.aureus was successfully cloned and expressed in prokaryotic cells.

  1. Single-channel analysis of a point mutation of a conserved serine residue in the S2 ligand-binding domain of the NR2A NMDA receptor subunit.

    Science.gov (United States)

    Wyllie, David J A; Johnston, Alexander R; Lipscombe, Diane; Chen, Philip E

    2006-07-15

    We have examined the function of a conserved serine residue (Ser670) in the S2 ligand-binding region of the NR2A N-methyl-d-aspartate (NMDA) receptor subunit, using recombinant NR1/NR2A receptors expressed in Xenopus laevis oocytes. Mutation of Ser670 to glycine (S670G) in NR2A reduced the potency of glutamate by 124-fold. Single-channel conductance and the duration of apparent open periods of NR2A(S670G) receptor mutants were, however, indistinguishable from wild-type NMDA receptors. NR1/NR2A(S670G) shut-time distributions were best described by a mixture of six exponential components, and the four shortest shut intervals of each distribution were considered to occur within a channel activation (burst). Bursts of single-channel openings were fitted with a mixture of four exponential components. The longest two components carried the majority of the charge transfer and had mean durations of 9.6 +/- 0.5 and 29.6 +/- 1.5 ms. The overall channel open probability during a burst was high (mean, 0.83 +/- 0.06). Consistent with a shortening of NMDA receptor-channel burst lengths was the observation of an increased deactivation rate of macroscopic currents evoked by brief applications of glutamate to outside-out membrane patches. Correlations between shut times and adjacent open times were observed in all data records. Noticeably, shorter than average openings tended to occur next to long closed periods, whereas longer than average openings tended to occur next to short closings. Our single-channel data, together with modelling using a kinetic scheme to describe channel activations, support our hypothesis that the S670G point mutation reduces the dwell time of glutamate in its binding site.

  2. ESR1 gene status correlates with estrogen receptor protein levels measured by ligand binding assay and immunohistochemistry

    DEFF Research Database (Denmark)

    Laenkholm, Anne-Vibeke; Knoop, Ann; Ejlertsen, Bent Laursen;

    2012-01-01

    The Estrogen Receptor (ER) is an established predictive marker for the selection of adjuvant endocrine treatment in early breast cancer. During the 1990s Immunohistochemistry (IHC) replaced cytosol based assays for determination of ER status. This study examined the association between ER protein...

  3. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs

    OpenAIRE

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and avail...

  4. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs.

    OpenAIRE

    Zhichao Miao; Eric Westhof

    2015-01-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and avail...

  5. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Directory of Open Access Journals (Sweden)

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  6. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  7. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast-an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation s...

  8. Genome-wide prediction, display and refinement of binding sites with information theory-based models

    Directory of Open Access Journals (Sweden)

    Leeder J Steven

    2003-09-01

    Full Text Available Abstract Background We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. Results Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4–6 hours for transcription factor binding sites and 10–19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths

  9. Prediction of protein hydration sites from sequence by modular neural networks

    DEFF Research Database (Denmark)

    Ehrlich, L.; Reczko, M.; Bohr, Henrik

    1998-01-01

    The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with t...

  10. Ensemble approach combining multiple methods improves human transcription start site prediction.

    LENUS (Irish Health Repository)

    Dineen, David G

    2010-01-01

    The computational prediction of transcription start sites is an important unsolved problem. Some recent progress has been made, but many promoters, particularly those not associated with CpG islands, are still difficult to locate using current methods. These methods use different features and training sets, along with a variety of machine learning techniques and result in different prediction sets.

  11. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca(2+) -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  12. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles.

    Science.gov (United States)

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-10-09

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level.

  13. Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis.

    Directory of Open Access Journals (Sweden)

    Sonia Fieulaine

    2011-05-01

    Full Text Available For several decades, molecular recognition has been considered one of the most fundamental processes in biochemistry. For enzymes, substrate binding is often coupled to conformational changes that alter the local environment of the active site to align the reactive groups for efficient catalysis and to reach the transition state. Adaptive substrate recognition is a well-known concept; however, it has been poorly characterized at a structural level because of its dynamic nature. Here, we provide a detailed mechanism for an induced-fit process at atomic resolution. We take advantage of a slow, tight binding inhibitor-enzyme system, actinonin-peptide deformylase. Crystal structures of the initial open state and final closed state were solved, as well as those of several intermediate mimics captured during the process. Ligand-induced reshaping of a hydrophobic pocket drives closure of the active site, which is finally "zipped up" by additional binding interactions. Together with biochemical analyses, these data allow a coherent reconstruction of the sequence of events leading from the encounter complex to the key-lock binding state of the enzyme. A "movie" that reconstructs this entire process can be further extrapolated to catalysis.

  14. Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case.

    Science.gov (United States)

    Di Pizio, Antonella; Kruetzfeldt, Louisa-Marie; Cheled-Shoval, Shira; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2017-08-15

    Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.

  15. Determining PPARγ-ligand binding affinity using fluorescent assay with cis-parinaric acid as a probe

    Institute of Scientific and Technical Information of China (English)

    GAO Zhenting; LUO Haibin; CHEN Lili; SHEN Jianhua; CHEN Kaixian; JIANG Hualiang; SHEN Xu

    2005-01-01

    Upon the study of small-molecules binding to proteins, the traditional methods for calculating dissociation constants (Kd and Ki) have shortcomings in dealing with the single binding site models. In this paper, two equations have been derived to solve this problem. These two equations are independent of the total concentration or initial degree of saturation of receptor and the activity of the competitive molecule. Through nonlinear fitting against these two equations, Kd value of a probe can be obtained by binding assay, and Ki value of a ligand can be obtained by competitive assay. Moreover, only the total concentrations of receptor([R]t), ligand([L]t) and probe([P]t) are required for the data fitting. In this work, Ki values of some typical ligands of PPARγ were successfully determined by use of our equations, among which the Ki value of PPARγ-LY171883 was reported for the first time.

  16. Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding

    Science.gov (United States)

    Blancato, Víctor S.; Pagliai, Fernando A.; Magni, Christian; Gonzalez, Claudio F.; Lorca, Graciela L.

    2016-01-01

    The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (KD = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation. PMID:26903980

  17. Functional analysis of the citrate activator CitO from Enterococcus faecalis implicates a divalent metal in ligand binding

    Directory of Open Access Journals (Sweden)

    Victor S. Blancato

    2016-02-01

    Full Text Available The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC, indicated that CitO has a high affinity for citrate (KD= 1.2±0.2 µM, while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation.

  18. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR.

    Science.gov (United States)

    Latek, Dorota; Kolinski, Michal; Ghoshdastider, Umesh; Debinski, Aleksander; Bombolewski, Rafal; Plazinska, Anita; Jozwiak, Krzysztof; Filipek, Slawomir

    2011-09-01

    Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) G protein coupled receptors. Docking of agonists and antagonists to CB(1) and CB(2) cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch and its possible participation in the mechanism of agonist/antagonist recognition. The switch is composed of two residues, F3.36 and W6.48, located on opposite transmembrane helices TM3 and TM6 in the central part of the membranous domain of cannabinoid receptors. The CB(1) and CB(2) receptor models were constructed based on the adenosine A(2A) receptor template. The two best scored conformations of each receptor were used for the docking procedure. In all poses (ligand-receptor conformations) characterized by the lowest ligand-receptor intermolecular energy and free energy of binding the ligand type matched the state of the rotamer toggle switch: antagonists maintained an inactive state of the switch, whereas agonists changed it. In case of agonists of β(2)AR, the (R,R) and (S,S) stereoisomers of fenoterol, the molecular dynamics simulations provided evidence of different binding modes while preserving the same average position of ligands in the binding site. The (S,S) isomer was much more labile in the binding site and only one stable hydrogen bond was created. Such dynamical binding modes may also be valid for ligands of cannabinoid receptors because of the hydrophobic nature of their ligand-receptor interactions. However, only very long molecular dynamics simulations could verify the validity of such binding modes and how they affect the process of activation.

  19. Demonstration of. cap alpha. -adrenoceptors in the rabbit bladder base and urethra with /sup 3/H-dihydroergocryptine ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, B. (Department of Clinical Pharmacology, University Hospital of Lund, Sweden)

    1983-01-01

    The purpose of this work was to demonstrate the presence of ..cap alpha..-adrenoceptors in a crude membrane preparation made from rabbit bladder base and urethra. This was achieved by radioligand binding studies, using /sup 3/H-dihydro-..cap alpha..-ergocryptine (/sup 3/H-DHE) as the radioligand. The specific binding, i.e. the binding that could be inhibited by 10/sup -5/ M phentolamine, was saturable with 73 fmol /sup 3/H-DHE bound per mg membrane protein. Binding was at steady state after 60 min., and reversible. Rate constants for association and dissocation were 3x10/sup 7/ M/sup -1/ min./sup -1/, and 2x10/sup -2/ min./sup -1/, respectively. A number of compounds were tested for their abilities to compete with /sup 3/H-DHE for the binding sites. The relative affinity of some adrenoceptor agonists was (-)-adrenaline>(-)-noradrenaline much larger than (+-)-isoprenaline. Steroselectivity was shown, since (-)-noradrenaline had 42 times higher affinity than (+)-noradrenaline. Adrenoceptor antagonists inhibited /sup 3/H-DHE binding in the following order of potency: DHE>phentolamine much larger than (+-)-propranolol. The dissociation constant, Ksub(D), for DHE to the binding sites was estimated in three different ways. The constants were derived from saturation, competition, and kinetic studies, and gave Ksub(D) values of 1.1,1.4 and 0.7 nM, respectively. The results suggest that ..cap alpha..-adrenoceptors were labelled by /sup 3/H-DHE in the tissue homogenates.

  20. Using site-specific soil samples as a substitution for improved hydrological and nonpoint source predictions.

    Science.gov (United States)

    Chen, Lei; Wang, Guobo; Zhong, Yucen; Zhao, Xin; Shen, Zhenyao

    2016-08-01

    Soil databases are one of the most important inputs for watershed models, and the quality of soil properties affects how well a model performs. The objectives of this study were to (1) quantify the sensitivity of model outputs to soil properties and to (2) use site-specific soil properties as a substitution for more accurate hydrological and nonpoint source (H/NPS) predictions. Soil samples were collected from a typical mountainous watershed in China, and the impacts of soil sample parameters on H/NPS predictions were quantified using the Soil and Water Assessment Tool (SWAT). The most sensitive parameters related to predicting flow, sediment, and total phosphorus (TP) mainly were the soil hydrological, the channel erosion processes, and the initial soil chemical environment, respectively. When the site-specific soil properties were used, the uncertainties (coefficient of variation) related to predicting the hydrology, sediment and TP decreased by 75∼80 %, 75∼84 %, and 46∼61 %, respectively. Based on changes in the Nash-Sutcliff coefficient, the model performance improved by 4.9 and 19.45 % for the hydrological and sediment model, accordingly. However, site-specific soil properties did not contribute to better TP predictions because of the high spatial variability of the soil P concentrations across the large watershed. Thus, although site-specific soil samples can be used to obtain more accurate H/NPS predictions, more sampling sites are required to apply this method in large watersheds.

  1. Insights to ligand binding to the monoamine transporters – from homology modeling to LeuBAT and dDAT

    Directory of Open Access Journals (Sweden)

    Heidi eKoldsø

    2015-09-01

    Full Text Available Understanding of drug binding to the human biogenic amine transporters is essential to explain the mechanism of action of these pharmaceuticals but more importantly to be able to develop new and improved compounds to be used in the treatment of depression or drug addiction. Until recently no high resolution structure was available of the biogenic amine transporters and homology modeling was a necessity. Various studies have revealed experimentally validated binding modes of numerous ligands to the biogenic amine transporters using homology modeling. Here we examine and discuss the similarities between the binding models of substrates, antidepressants, psychostimulants and anti-abuse drugs in homology models of the human biogenic amine transporters and the recently published crystal structures of the drosophila dopamine transporter and the engineered protein, LeuBAT. The comparison reveals that careful computational modeling combined with experimental data can be utilized to predict binding of molecules to proteins that agree very well with crystal structures.

  2. Insights to ligand binding to the monoamine transporters—from homology modeling to LeuBAT and dDAT

    Science.gov (United States)

    Koldsø, Heidi; Grouleff, Julie; Schiøtt, Birgit

    2015-01-01

    Understanding of drug binding to the human biogenic amine transporters (BATs) is essential to explain the mechanism of action of these pharmaceuticals but more importantly to be able to develop new and improved compounds to be used in the treatment of depression or drug addiction. Until recently no high resolution structure was available of the BATs and homology modeling was a necessity. Various studies have revealed experimentally validated binding modes of numerous ligands to the BATs using homology modeling. Here we examine and discuss the similarities between the binding models of substrates, antidepressants, psychostimulants, and mazindol in homology models of the human BATs and the recently published crystal structures of the Drosophila dopamine transporter and the engineered protein, LeuBAT. The comparison reveals that careful computational modeling combined with experimental data can be utilized to predict binding of molecules to proteins that agree very well with crystal structures. PMID:26441663

  3. Prediction of post-translational modification sites using multiple kernel support vector machine

    Directory of Open Access Journals (Sweden)

    BingHua Wang

    2017-04-01

    Full Text Available Protein post-translational modification (PTM is an important mechanism that is involved in the regulation of protein function. Considering the high-cost and labor-intensive of experimental identification, many computational prediction methods are currently available for the prediction of PTM sites by using protein local sequence information in the context of conserved motif. Here we proposed a novel computational method by using the combination of multiple kernel support vector machines (SVM for predicting PTM sites including phosphorylation, O-linked glycosylation, acetylation, sulfation and nitration. To largely make use of local sequence information and site-modification relationships, we developed a local sequence kernel and Gaussian interaction profile kernel, respectively. Multiple kernels were further combined to train SVM for efficiently leveraging kernel information to boost predictive performance. We compared the proposed method with existing PTM prediction methods. The experimental results revealed that the proposed method performed comparable or better performance than the existing prediction methods, suggesting the feasibility of the developed kernels and the usefulness of the proposed method in PTM sites prediction.

  4. Real-time seismic intensity prediction using frequency-dependent site amplification factors

    Science.gov (United States)

    Ogiso, Masashi; Aoki, Shigeki; Hoshiba, Mitsuyuki

    2016-05-01

    A promising approach for the next generation of earthquake early warning system is based on predicting ground motion directly from observed ground motion, without any information of hypocenter. In this study, we predicted seismic intensity at the target stations from the observed ground motion at adjacent stations, employing two different methods of correction for site amplification factors. The first method was frequency-dependent correction prediction, in which we used a digital causal filter to correct the site amplification for the observed waveform in the time domain. The second method was scalar correction, in which we used average differences in seismic intensity between two stations for the site amplification correction. Results from thousands of station pairs that covered almost all of Japan showed that seismic intensity prediction with frequency-dependent correction prediction was more accurate than prediction with scalar correction. Frequency-dependent correction for site amplification in the time domain may lead to more accurate prediction of ground motion in real time.

  5. Crystal Structure of the Ligand Binding Suppressor Domain of Type 1 Inositol 1,4,5-Trisphosphate Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bosanac, Ivan; Yamazaki, Haruka; Matsu-ura, Toru; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Ikura, Mitsuhiko (U. of Texas-SMED)

    2010-11-10

    Binding of inositol 1,4,5-trisphosphate (IP{sub 3}) to the amino-terminal region of IP{sub 3} receptor promotes Ca{sup 2+} release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP{sub 3} binding core domain play a key role in IP{sub 3} binding suppression and regulatory protein interaction. Here we present a crystal structure of the suppressor domain of the mouse type 1 IP{sub 3} receptor at 1.8 {angstrom}. Displaying a shape akin to a hammer, the suppressor region contains a Head subdomain forming the {beta}-trefoil fold and an Arm subdomain possessing a helix-turn-helix structure. The conserved region on the Head subdomain appeared to interact with the IP{sub 3} binding core domain and is in close proximity to the previously proposed binding sites of Homer, RACK1, calmodulin, and CaBP1. The present study sheds light onto the mechanism underlying the receptor's sensitivity to the ligand and its communication with cellular signaling proteins.

  6. The interrelationship between ligand binding and thermal unfolding of the folate binding protein. The role of self-association and pH

    DEFF Research Database (Denmark)

    Holm, Jan; Babol, Linnea N.; Markova, Natalia

    2014-01-01

    The present study utilized a combination of DLS (dynamic light scattering) and DSC (differential scanning calorimetry) to address thermostability of high-affinity folate binding protein (FBP), a transport protein and cellular receptor for the vitamin folate. At pH7.4 (pI=7-8) ligand binding......-wise rise in temperature to 78°C≈Tm. Stable holo-FBP multimers may protect naturally occurring labile folates against decomposition or bacterial utilization. DSC established an interrelationship between diminished folate binding at pH5, especially in NaCl-free buffers, and low thermostability. Positively...... charged apo-FBP was almost completely unfolded and aggregated at pH5 (Tm 38°C) and holo-FBP, albeit more thermostable, was labile with aggregation tendency. Addition of 0.15M NaCl increased thermostability of apo-FBP drastically, and even more so that of holo-FBP. Electrostatic forces thus seem...

  7. Differential enzyme-linked immunosorbent assay and ligand-binding mass spectrometry for analysis of biotransformation of protein therapeutics: application to various FGF21 modalities.

    Science.gov (United States)

    Hager, Todd; Spahr, Chris; Xu, Jing; Salimi-Moosavi, Hossein; Hall, Michael

    2013-03-05

    Novel protein therapeutics have become increasingly important modalities for treating diseases. Such therapeutics include recombinant fusions of pharmacoactive polypeptides to half-life extenders such as monoclonal antibodies, fragments of antibodies, and albumin. Half-life extension can also be achieved via chemical attachment to polymers such as polyethylene glycol. Any of these therapeutics may be susceptible to biotransformation, most notably in vivo proteolytic truncation, and it is vital to understand this phenomenon during early drug development to ensure correct pharmacokinetic profiling and optimize the in vivo stability through re-engineering. In this paper, we describe an integrated approach that combines differential enzyme-linked immunosorbent assay (ELISA) with ligand-binding-mass spectrometry (LB-MS) to provide a thorough understanding of the biotransformation of novel protein therapeutics. Differential ELISA allows for a fast, high-throughput means to reveal gross in vivo proteolytic liabilities. Ensuing LB-MS analysis provides higher resolution details such as specific vulnerable loci to allow design refinement of the molecule. In this work, the power of the approach is elucidated by application to the optimization of a promising drug candidate, FGF21.

  8. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna;

    2014-01-01

    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low affinity ligands because L-Glu is difficult to displace...... despite extensive dialysis. Here, we show that L-Asp binds to full-length GluA2 with low affinity (Ki = 0.63 mM) and to GluA2 LBD with even lower affinity (Ki = 2.6 mM), and we use differential scanning differential scanning fluorimetry to show that L-Asp is able to stabilize the isolated GluA2 LBD. We...... mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taken together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low affinity ligands for lead...

  9. Predicting Polymerase Ⅱ Core Promoters by Cooperating Transcription Factor Binding Sites in Eukaryotic Genes

    Institute of Scientific and Technical Information of China (English)

    Xiao-Tu MA; Min-Ping QIAN; Hai-Xu TANG

    2004-01-01

    Several discriminate functions for predicting core promoters that based on the potential cooperation between transcription factor binding sites (TFBSs) are discussed. It is demonstrated that the promoter predicting accuracy is improved when the cooperation among TFBSs is taken into consideration.The core promoter region of a newly discovered gene CKLFSF1 is predicted to locate more than 1.5 kb far away from the 5′ end of the transcript and in the last intron of its upstream gene, which is experimentally confirmed later. The core promoters of 3402 human RefSeq sequences, obtained by extending the mRNAs in human genome sequences, are predicted by our algorithm, and there are about 60% of the predicted core promoters locating within the ± 500 bp region relative to the annotated transcription start site.

  10. Cross-prediction of the groundwater chemistry at the SKB sites in Sweden. Pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Skaarman, C.; Laaksoharju, M. [Intera KB (Sweden)

    1997-08-01

    The possibility to perform a large scale prediction throughout Sweden was tested. The aim of the work was: to collect data and create a groundwater database for current and future use; to see if there is any correlation between data at different sites; to perform a modelling where the groundwater composition at different regions in Sweden is predicted. The outcome of the predictions were compared with the measured data at different sites. The results show that it is possible but more work needs to be done to improve the prediction models. More measurements at depth are needed to enable the use of 3D models. It is also important to include hydrogeological parameters in the groundwater chemical prediction models that are used. 8 refs, 115 figs.

  11. Long-Range Conformational Response of a PDZ Domain to Ligand Binding and Release: A Molecular Dynamics Study.

    Science.gov (United States)

    Lu, Cheng; Knecht, Volker; Stock, Gerhard

    2016-02-09

    The binding of a ligand to a protein may induce long-range structural or dynamical changes in the biomacromolecule even at sites physically well separated from the binding pocket. A system for which such behavior has been widely discussed is the PDZ2 domain of human tyrosine phosphatase 1E. Here, we present results from equilibrium trajectories of the PDZ2 domain in the free and ligand-bound state, as well as nonequilibrium simulations of the relaxation of PDZ2 after removal of its peptide ligand. The study reveals changes in inter-residue contacts, backbone dihedral angles, and C(α) positions upon ligand release. Our findings show a long-range conformational response of the PDZ2 domain to ligand release in the form of a collective shift of the secondary structure elements α2, β2, β3, α1-β4, and the C terminal loop relative to the rest of the protein away from the N-terminus, and a shift of the loops β2-β3 and β1-β2 in the opposite direction. The shifts lead to conformational changes in the backbone, especially in the β2-β3 loop but also in the β5-α2 and the α2-β6 loop, and are accompanied by changes of inter-residue contacts mainly within the β2-β3 loop as well as between the α2 helix and other segments. The residues showing substantial changes of inter-residue contacts, backbone conformations, or C(α) positions are considered "key residues" for the long-range conformational response of PDZ2. By comparing these residues with various sets of residues highlighted by previous studies of PDZ2, we investigate the statistical correlation of the various approaches. Interestingly, we find a considerable correlation of our findings with several works considering structural changes but no significant correlations with approaches considering energy flow or networks based on inter-residue energies.

  12. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.

    Science.gov (United States)

    Jiang, Wei; Roux, Benoît

    2010-07-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  13. Ligand binding to the FA3-FA4 cleft inhibits the esterase-like activity of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Paolo Ascenzi

    Full Text Available The hydrolysis of 4-nitrophenyl esters of hexanoate (NphOHe and decanoate (NphODe by human serum albumin (HSA at Tyr411, located at the FA3-FA4 site, has been investigated between pH 5.8 and 9.5, at 22.0°C. Values of Ks, k+2, and k+2/Ks obtained at [HSA] ≥ 5×[NphOXx] and [NphOXx] ≥ 5×[HSA] (Xx is NphOHe or NphODe match very well each other; moreover, the deacylation step turns out to be the rate limiting step in catalysis (i.e., k+3 a-shift appears to be correlated to the length of the fatty acid tail of the substrate. The inhibition of the HSA-Tyr411-catalyzed hydrolysis of NphOHe, NphODe, and 4-nitrophenyl myristate (NphOMy by five inhibitors (i.e., diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol has been investigated at pH 7.5 and 22.0°C, resulting competitive. The affinity of diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol for HSA reflects the selectivity of the FA3-FA4 cleft. Under conditions where Tyr411 is not acylated, the molar fraction of diazepam, diflunisal, ibuprofen, and 3-indoxyl-sulfate bound to HSA is higher than 0.9 whereas the molar fraction of propofol bound to HSA is ca. 0.5.

  14. Identification of the bile salt binding site on ipad from Shigella flexneri and the influence of ligand binding on IpaD structure

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E.; Patil, Mrinalini; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D. (UMKC); (OKLU)

    2012-10-25

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  15. Identification of the bile salt binding site on IpaD from Shigella flexneri and the influence of ligand binding on IpaD structure.

    Science.gov (United States)

    Barta, Michael L; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E; Patil, Mrinalini; Geisbrecht, Brian V; Picking, Wendy L; Picking, William D

    2012-03-01

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nanomachine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices α3 and α7, with concomitant movement in the orientation of helix α7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  16. Theoretical model of interactions between ligand-binding sites in a dimeric protein and its application for the analysis of thiamine diphosphate binding to yeast transketolase.

    Science.gov (United States)

    Ospanov, Ruslan; Kochetov, German; Kurganov, Boris

    2006-11-20

    The binding of thiamin diphosphate (ThDP) to yeast dimeric apotransketolase (apoTK) is accompanied by the appearance of a band in the absorption spectrum with maximum at 320 nm. The saturation function has been analyzed using a scheme that involves binding of ThDP to each subunit followed by the conformational transition of this subunit. It is assumed that the binding of ThDP to one subunit may affect the conformational transition of the other subunit. Rigorous mathematical expressions describing the dependence of the optical absorption on the total concentration of ThDP are first developed. Equilibrium constants and corresponding rate constants for the binding of ThDP to apoTK have been estimated. The negative cooperativity in the ThDP binding has been characterized by the function reflecting the dependence of the conformational change on the saturation of apoTK by ThDP.

  17. A molecular modelling approach to understand the effect of co-evolutionary mutations (V344M, I354L) identified in the PB2 subunit of influenza A 2009 pandemic H1N1 virus on m7GTP ligand binding.

    Science.gov (United States)

    Bhoye, Dipali; Behera, Abhisek Kumar; Cherian, Sarah S

    2016-08-01

    The cap binding domain of the polymerase basic 2 (PB2) subunit of influenza polymerases plays a critical role in mediating the 'cap-snatching' mechanism by binding the 5' cap of host pre-mRNAs during viral mRNA transcription. Monitoring variations in the PB2 protein is thus vital for evaluating the pathogenic potential of the virus. Based on selection pressure analysis of PB2 gene sequences of the pandemic H1N1 (pH1N1) viruses of the period 2009-2014, we identified a site, 344V/M, in the vicinity of the cap binding pocket showing evidence of adaptive evolution and another co-evolving residue, 354I/L, in close vicinity. Modelling of the three-dimensional structure of the pH1N1 PB2 cap binding domain, docking of the pre-mRNA cap analogue m7GTP and molecular dynamics simulation studies of the docked complexes performed for four PB2 variants observed showed that the complex possessing V344M with I354L possessed better ligand binding affinity due to additional hydrogen bond contacts between m7GTP and the key residues His432 and Arg355 that was attributed to a displacement of the 424 loop and a flip of the side chain of Arg355, respectively. The co-evolutionary mutations identified (V344M, I354L) were found to be established in the PB2 gene of the pH1N1 viral population over the period 2010-2014. The study demonstrates the molecular basis for the enhanced m7GTP ligand binding affinity with the 344M-354L synergistic combination in PB2. Furthermore, the insight gained into understanding the molecular mechanism of cap binding in pH1N1 viruses may be useful for designing novel drugs targeting the PB2 cap binding domain.

  18. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation.

    Science.gov (United States)

    Reif, Maria M; Oostenbrink, Chris

    2014-01-30

    The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker-Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved.

  19. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets

    Science.gov (United States)

    Bandyopadhyay, Sanghamitra; Ghosh, Dip; Mitra, Ramkrishna; Zhao, Zhongming

    2015-01-01

    MicroRNA (miRNA) regulates gene expression by binding to specific sites in the 3'untranslated regions of its target genes. Machine learning based miRNA target prediction algorithms first extract a set of features from potential binding sites (PBSs) in the mRNA and then train a classifier to distinguish targets from non-targets. However, they do not consider whether the PBSs are functional or not, and consequently result in high false positive rates. This substantially affects the follow up functional validation by experiments. We present a novel machine learning based approach, MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets), for accurate prediction of true or functional miRNA binding sites. Multiple instance learning framework is adopted to handle the lack of information about the actual binding sites in the target mRNAs. Biologically validated 9531 interacting and 973 non-interacting miRNA-mRNA pairs are identified from Tarbase 6.0 and confirmed with PAR-CLIP dataset. It is found that MBSTAR achieves the highest number of binding sites overlapping with PAR-CLIP with maximum F-Score of 0.337. Compared to the other methods, MBSTAR also predicts target mRNAs with highest accuracy. The tool and genome wide predictions are available at http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm.

  20. Ligand binding and functional characterization of muscarinic acetylcholine receptors on the TE671/RD human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Bencherif, M.; Lukas, R.J. (Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (USA))

    1991-06-01

    Cells of the TE671/RD human clonal line express a finite number ((Bmax) of about 350 fmol/mg of membrane protein) of apparently noninteracting, high-affinity binding sites (KD of 0.07 nM and a Hill coefficient close to unity, nH = 0.94) for the muscarinic acetylcholine receptor (mAChR) radio antagonist, tritium-labeled quinuclidinyl benzilate ({sup 3}H-QNB). The rank order potency of selective antagonists that inhibit specific {sup 3}HQNB binding is: atropine greater than 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) greater than pirenzepine greater than methoctramine greater than AFDx-116 (11-2(2-((diethylamino)methyl)-1-(piperidinyl) acetyl)-5,11-dihydro-6H-pyrido(2,3-b)(1,4)benzodiazepin-6-one). Functional studies indicate that phosphoinositide (PIns) hydrolysis in TE671/RD cells is increased by carbachol (EC50 of 10 microM), but not by nicotine (to concentrations as high as 1 mM). Agonist-stimulated PIns metabolism is inhibited by antagonists with the same rank order potency as for inhibition of {sup 3}HQNB binding. Functional responses are augmented in the presence of a nonhydrolyzable GTP analog, are strongly inhibited after 24-hr exposure to cholera toxin, but are only slightly inhibited after long-term exposure to pertussis toxin or forskolin. These studies identify a pharmacologically-defined M3-subtype of mAChR strongly coupled via a cholera toxin-sensitive mechanism to PIns hydrolysis in these cells. Within 1 hr of treatment of TE671/RD cells with 1 mM dibutyryl cyclic AMP or with 10 microM phorbol-12-myristate-13-acetate (PMA), there is a 30 to 50% decrease in carbachol-stimulated PIns responsiveness that recovers to control values after 5 days of continued drug treatment. However, a comparable and more persistent inhibition of mAChR function is observed on cell treatment with 20 nM PMA.

  1. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks.

    Science.gov (United States)

    Pettie, Kade P; Dresch, Jacqueline M; Drewell, Robert A

    2016-08-01

    In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments. In this study, ChIP/chip datasets are analyzed using the corresponding PWMs for the well-studied TFs; CAUDAL, HUNCHBACK, KNIRPS and KRUPPEL, to determine the distribution of predicted binding sites. All four TFs are critical regulators of gene expression along the anterio-posterior axis in early Drosophila development. For all four TFs, the ChIP peaks contain multiple binding sites that are broadly distributed across the genomic region represented by the peak, regardless of the prediction stringency criteria used. This result suggests that ChIP peak trimming may exclude functional binding sites from subsequent analyses.

  2. Better estimation of protein-DNA interaction parameters improve prediction of functional sites

    Directory of Open Access Journals (Sweden)

    O'Flanagan Ruadhan A

    2008-12-01

    Full Text Available Abstract Background Characterizing transcription factor binding motifs is a common bioinformatics task. For transcription factors with variable binding sites, we need to get many suboptimal binding sites in our training dataset to get accurate estimates of free energy penalties for deviating from the consensus DNA sequence. One procedure to do that involves a modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment method designed to produce many such sequences. Results We analyzed low stringency SELEX data for E. coli Catabolic Activator Protein (CAP, and we show here that appropriate quantitative analysis improves our ability to predict in vitro affinity. To obtain large number of sequences required for this analysis we used a SELEX SAGE protocol developed by Roulet et al. The sequences obtained from here were subjected to bioinformatic analysis. The resulting bioinformatic model characterizes the sequence specificity of the protein more accurately than those sequence specificities predicted from previous analysis just by using a few known binding sites available in the literature. The consequences of this increase in accuracy for prediction of in vivo binding sites (and especially functional ones in the E. coli genome are also discussed. We measured the dissociation constants of several putative CAP binding sites by EMSA (Electrophoretic Mobility Shift Assay and compared the affinities to the bioinformatics scores provided by methods like the weight matrix method and QPMEME (Quadratic Programming Method of Energy Matrix Estimation trained on known binding sites as well as on the new sites from SELEX SAGE data. We also checked predicted genome sites for conservation in the related species S. typhimurium. We found that bioinformatics scores based on SELEX SAGE data does better in terms of prediction of physical binding energies as well as in detecting functional sites. Conclusion We think that training binding site detection

  3. Predicting evolutionary site variability from structure in viral proteins: buriedness, flexibility, and design

    CERN Document Server

    Shahmoradi, Amir; Spielman, Stephanie J; Jackson, Eleisha L; Dawson, Eric T; Meyer, Austin G; Wilke, Claus O

    2014-01-01

    Several recent works have shown that protein structure can predict site-specific evolutionary sequence variation. In particular, sites that are buried and/or have many contacts with other sites in a structure have been shown to evolve more slowly, on average, than surface sites with few contacts. Here, we present a comprehensive study of the extent to which numerous structural properties can predict sequence variation. The structural properties we considered include buriedness (relative solvent accessibility and contact number), structural flexibility (B factors, root-mean-square fluctuations, and variation in dihedral angles), and variability in designed structures. We obtained structural flexibility measures both from molecular dynamics simulations performed on 9 non-homologous viral protein structures and from variation in homologous variants of those proteins, where available. We obtained measures of variability in designed structures from flexible-backbone design in the Rosetta software. We found that mo...

  4. LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains.

    Directory of Open Access Journals (Sweden)

    Laura Helft

    Full Text Available Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM, a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP receptors, EF-TU RECEPTOR (EFR and FLAGELLIN-SENSING 2 (FLS2. In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area, Consurf, and PAML (positive selection analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains.

  5. Computational predictions provide insights into the biology of TAL effector target sites.

    Science.gov (United States)

    Grau, Jan; Wolf, Annett; Reschke, Maik; Bonas, Ulla; Posch, Stefan; Boch, Jens

    2013-01-01

    Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library

  6. Computational predictions provide insights into the biology of TAL effector target sites.

    Directory of Open Access Journals (Sweden)

    Jan Grau

    Full Text Available Transcription activator-like (TAL effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open

  7. Prediction of protein binding sites in protein structures using hidden Markov support vector machine

    Directory of Open Access Journals (Sweden)

    Lin Lei

    2009-11-01

    Full Text Available Abstract Background Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. Recent research on protein binding site prediction has been mainly based on widely known machine learning techniques, such as artificial neural networks, support vector machines, conditional random field, etc. However, the prediction performance is still too low to be used in practice. It is necessary to explore new algorithms, theories and features to further improve the performance. Results In this study, we introduce a novel machine learning model hidden Markov support vector machine for protein binding site prediction. The model treats the protein binding site prediction as a sequential labelling task based on the maximum margin criterion. Common features derived from protein sequences and structures, including protein sequence profile and residue accessible surface area, are used to train hidden Markov support vector machine. When tested on six data sets, the method based on hidden Markov support vector machine shows better performance than some state-of-the-art methods, including artificial neural networks, support vector machines and conditional random field. Furthermore, its running time is several orders of magnitude shorter than that of the compared methods. Conclusion The improved prediction performance and computational efficiency of the method based on hidden Markov support vector machine can be attributed to the following three factors. Firstly, the relation between labels of neighbouring residues is useful for protein binding site prediction. Secondly, the kernel trick is very advantageous to this field. Thirdly, the complexity of the training step for hidden Markov support vector machine is linear with the number of training samples by using the cutting-plane algorithm.

  8. [Spatial distribution prediction of surface soil Pb in a battery contaminated site].

    Science.gov (United States)

    Liu, Geng; Niu, Jun-Jie; Zhang, Chao; Zhao, Xin; Guo, Guan-Lin

    2014-12-01

    In order to enhance the reliability of risk estimation and to improve the accuracy of pollution scope determination in a battery contaminated site with the soil characteristic pollutant Pb, four spatial interpolation models, including Combination Prediction Model (OK(LG) + TIN), kriging model (OK(BC)), Inverse Distance Weighting model (IDW), and Spline model were employed to compare their effects on the spatial distribution and pollution assessment of soil Pb. The results showed that Pb concentration varied significantly and the data was severely skewed. The variation coefficient of the site was higher in the local region. OK(LG) + TIN was found to be more accurate than the other three models in predicting the actual pollution situations of the contaminated site. The prediction accuracy of other models was lower, due to the effect of the principle of different models and datum feature. The interpolation results of OK(BC), IDW and Spline could not reflect the detailed characteristics of seriously contaminated areas, and were not suitable for mapping and spatial distribution prediction of soil Pb in this site. This study gives great contributions and provides useful references for defining the remediation boundary and making remediation decision of contaminated sites.

  9. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm.

    Directory of Open Access Journals (Sweden)

    Yu Xue

    Full Text Available As one of the most important and ubiquitous post-translational modifications (PTMs of proteins, S-nitrosylation plays important roles in a variety of biological processes, including the regulation of cellular dynamics and plasticity. Identification of S-nitrosylated substrates with their exact sites is crucial for understanding the molecular mechanisms of S-nitrosylation. In contrast with labor-intensive and time-consuming experimental approaches, prediction of S-nitrosylation sites using computational methods could provide convenience and increased speed. In this work, we developed a novel software of GPS-SNO 1.0 for the prediction of S-nitrosylation sites. We greatly improved our previously developed algorithm and released the GPS 3.0 algorithm for GPS-SNO. By comparison, the prediction performance of GPS 3.0 algorithm was better than other methods, with an accuracy of 75.80%, a sensitivity of 53.57% and a specificity of 80.14%. As an application of GPS-SNO 1.0, we predicted putative S-nitrosylation sites for hundreds of potentially S-nitrosylated substrates for which the exact S-nitrosylation sites had not been experimentally determined. In this regard, GPS-SNO 1.0 should prove to be a useful tool for experimentalists. The online service and local packages of GPS-SNO were implemented in JAVA and are freely available at: http://sno.biocuckoo.org/.

  10. DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins.

    Science.gov (United States)

    Tan, Kuan Pern; Varadarajan, Raghavan; Madhusudhan, M S

    2011-07-01

    Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein-protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight structures. Users have the option of tuning several parameters to detect cavities of different sizes, for example, geometrically flat binding sites. The input to the server is a protein 3D structure in PDB format. The users have the option of tuning the values of four parameters associated with the computation of residue depth and the prediction of binding cavities. The computed depths, SASA and binding cavity predictions are displayed in 2D plots and mapped onto 3D representations of the protein structure using Jmol. Links are provided to download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery.

  11. Prediction of Signal Peptide Cleavage Sites with Subsite-Coupled and Template Matching Fusion Algorithm.

    Science.gov (United States)

    Zhang, Shao-Wu; Zhang, Ting-He; Zhang, Jun-Nan; Huang, Yufei

    2014-03-01

    Fast and effective prediction of signal peptides (SP) and their cleavage sites is of great importance in computational biology. The approaches developed to predict signal peptide can be roughly divided into machine learning based, and sliding windows based. In order to further increase the prediction accuracy and coverage of organism for SP cleavage sites, we propose a novel method for predicting SP cleavage sites called Signal-CTF that utilizes machine learning and sliding windows, and is designed for N-termial secretory proteins in a large variety of organisms including human, animal, plant, virus, bacteria, fungi and archaea. Signal-CTF consists of three distinct elements: (1) a subsite-coupled and regularization function with a scaled window of fixed width that selects a set of candidates of possible secretion-cleavable segment for a query secretory protein; (2) a sum fusion system that integrates the outcomes from aligning the cleavage site template sequence with each of the aforementioned candidates in a scaled window of fixed width to determine the best candidate cleavage sites for the query secretory protein; (3) a voting system that identifies the ultimate signal peptide cleavage site among all possible results derived from using scaled windows of different width. When compared with Signal-3L and SignalP 4.0 predictors, the prediction accuracy of Signal-CTF is 4-12 %, 10-25 % higher than that of Signal-3L for human, animal and eukaryote, and SignalP 4.0 for eukaryota, Gram-positive bacteria and Gram-negative bacteria, respectively. Comparing with PRED-SIGNAL and SignalP 4.0 predictors on the 32 archaea secretory proteins of used in Bagos's paper, the prediction accuracy of Signal-CTF is 12.5 %, 25 % higher than that of PRED-SIGNAL and SignalP 4.0, respectively. The predicting results of several long signal peptides show that the Signal-CTF can better predict cleavage sites for long signal peptides than SignalP, Phobius, Philius, SPOCTOPUS, Signal

  12. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Lash, L Leanne; Naur, Peter

    2009-01-01

    The prevailing structural model for ligand activation of ionotropic glutamate receptors posits that agonist efficacy arises from the stability and magnitude of induced domain closure in the ligand-binding core structure. Here we describe an exception to the correlation between ligand efficacy...... and domain closure. A weakly efficacious partial agonist of very low potency for homomeric iGluR5 kainate receptors, 8,9-dideoxy-neodysiherbaine (MSVIII-19), induced a fully closed iGluR5 ligand-binding core. The degree of relative domain closure, ~30 degrees , was similar to that we resolved...... to inter-domain hydrogen bonds residues Glu441 and Ser721 in the iGluR5-S1S2 structure. The weaker interactions of MSVIII-19 with iGluR5 compared to DH, together with altered stability of the inter-domain interaction, may be responsible for the apparent uncoupling of domain closure and channel opening...

  13. Mutations at positions 547-553 of rat glucocorticoid receptors reveal that hsp90 binding requires the presence, but not defined composition, of a seven-amino acid sequence at the amino terminus of the ligand binding domain.

    Science.gov (United States)

    Kaul, Sunil; Murphy, Patrick J M; Chen, Jun; Brown, Lloyd; Pratt, William B; Simons, S Stoney

    2002-09-27

    Glucocorticoid receptors (GRs) must heterocomplex with hsp90 to have an open steroid binding cleft that can be accessed by steroid. We reported that a seven-amino acid sequence (547-553 of rat GR) overlapping the amino-terminal end of the ligand binding domain is required for hsp90 binding to GR. We have now conducted saturation mutagenesis of this sequence, which appears to be part of the surface where the ligand binding cleft merges with the surface of the ligand binding domain. No single point mutation causes significant changes in any of a variety of biochemical and biological properties in addition to hsp90 binding. A triple mutation (P548A/T549A/V551A) increases by >100-fold the steroid concentration required for half-maximal induction without affecting the level of maximal induction or coactivator response. Interestingly, this triple mutant displays reduced binding of steroid and hsp90 in whole cells, but it possesses wild type affinity for steroid and normal hsp90 binding capacity under cell-free conditions. This phenotype of a dramatic shift in the dose response for transactivation would be expected from an increase in the rate of disassembly of the triple mutant GR.hsp90 heterocomplex in the cell. Mutation of the entire seven-amino acid region to CAAAAAC maintains the presence of a critical alpha-helical structure and heterocomplex formation with hsp90 but eliminates steroid binding and transcriptional activation, thus disconnecting hsp90 binding from opening of the ligand binding cleft and steroid binding.

  14. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients.

    Science.gov (United States)

    Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya

    2017-08-30

    Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  15. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins......, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well...

  16. Ligand binding by PDZ domains

    OpenAIRE

    Celestine N. Chi; Bach, Anders; Stromgaard, Kristian; Gianni, Stefano; Jemth, Per

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common proteinprotein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, s...

  17. Analysis and prediction of gene splice sites in four Aspergillus genomes

    DEFF Research Database (Denmark)

    Wang, Kai; Ussery, David; Brunak, Søren

    2009-01-01

    , splice site prediction program called NetAspGene, for the genus Aspergillus. Gene sequences from Aspergillus fumigatus, the most common mould pathogen, were used to build and test our model. Compared to many animals and plants, Aspergillus contains smaller introns; thus we have applied a larger window...

  18. Ensemble approach combining multiple methods improves human transcription start site prediction

    LENUS (Irish Health Repository)

    Dineen, David G

    2010-11-30

    Abstract Background The computational prediction of transcription start sites is an important unsolved problem. Some recent progress has been made, but many promoters, particularly those not associated with CpG islands, are still difficult to locate using current methods. These methods use different features and training sets, along with a variety of machine learning techniques and result in different prediction sets. Results We demonstrate the heterogeneity of current prediction sets, and take advantage of this heterogeneity to construct a two-level classifier (\\'Profisi Ensemble\\') using predictions from 7 programs, along with 2 other data sources. Support vector machines using \\'full\\' and \\'reduced\\' data sets are combined in an either\\/or approach. We achieve a 14% increase in performance over the current state-of-the-art, as benchmarked by a third-party tool. Conclusions Supervised learning methods are a useful way to combine predictions from diverse sources.

  19. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.

    Science.gov (United States)

    Li, Liqi; Luo, Qifa; Xiao, Weidong; Li, Jinhui; Zhou, Shiwen; Li, Yongsheng; Zheng, Xiaoqi; Yang, Hua

    2017-02-01

    Palmitoylation is the covalent attachment of lipids to amino acid residues in proteins. As an important form of protein posttranslational modification, it increases the hydrophobicity of proteins, which contributes to the protein transportation, organelle localization, and functions, therefore plays an important role in a variety of cell biological processes. Identification of palmitoylation sites is necessary for understanding protein-protein interaction, protein stability, and activity. Since conventional experimental techniques to determine palmitoylation sites in proteins are both labor intensive and costly, a fast and accurate computational approach to predict palmitoylation sites from protein sequences is in urgent need. In this study, a support vector machine (SVM)-based method was proposed through integrating PSI-BLAST profile, physicochemical properties, [Formula: see text]-mer amino acid compositions (AACs), and [Formula: see text]-mer pseudo AACs into the principal feature vector. A recursive feature selection scheme was subsequently implemented to single out the most discriminative features. Finally, an SVM method was implemented to predict palmitoylation sites in proteins based on the optimal features. The proposed method achieved an accuracy of 99.41% and Matthews Correlation Coefficient of 0.9773 for a benchmark dataset. The result indicates the efficiency and accuracy of our method in prediction of palmitoylation sites based on protein sequences.

  20. Influence of a threonine residue in the S2 ligand binding domain in determining agonist potency and deactivation rate of recombinant NR1a/NR2D NMDA receptors.

    Science.gov (United States)

    Chen, Philip E; Johnston, Alexander R; Mok, M H Selina; Schoepfer, Ralf; Wyllie, David J A

    2004-07-01

    NR1/NR2D NMDA receptors display unusually slow deactivation kinetics which may be critical for their role as extrasynaptic receptors. A threonine to alanine point mutation has been inserted at amino acid position 692 of the NR2D subunit (T692A). Recombinant NR1a/NR2D(T692A) NMDA receptors have been expressed in Xenopus laevis oocytes and their pharmacological and single-channel properties examined using two-electrode voltage-clamp and patch-clamp recording techniques. Glutamate dose-response curves from NR1a/NR2D(T692A) receptor channels produced an approximately 1600-fold reduction in glutamate potency compared to wild-type NR1a/NR2D receptors. There was no change in Hill slopes or gross reduction in mean maximal currents recorded in oocytes expressing either wild-type or mutant receptors. The mutation did not affect the potency of the co-agonist glycine. The shifts in potency produced by NR2D(T692A) containing receptors when activated by other glutamate-site agonists such as aspartate or NMDA were 30- to 60-fold compared to wild-type. Single-channel conductance levels of NR1a/NR2D(T692A) mutant receptors were indistinguishable from wild-type NR2D-containing channels. Additionally NR1a/NR2D(T692A) receptors showed the transitional asymmetry that is characteristic of NR2D-containing NMDA receptors. Rapid applications of glutamate on outside-out patches containing NR1a/NR2D(T692A) receptors produced macroscopic current deactivations that were about 60-fold faster than wild-type NR1a/NR2D receptors. Our results suggest that this conserved threonine residue plays a crucial role in ligand binding to NMDA NR2 receptor subunits and supports the idea that the slow decay kinetics associated with NR1a/NR2D NMDA receptors can be explained by the slow dissociation of glutamate from this NMDA receptor subtype.

  1. Probabilistic Assessment of Above Zone Pressure Predictions at a Geologic Carbon Storage Site

    Science.gov (United States)

    Namhata, Argha; Oladyshkin, Sergey; Dilmore, Robert M.; Zhang, Liwei; Nakles, David V.

    2016-12-01

    Carbon dioxide (CO2) storage into geological formations is regarded as an important mitigation strategy for anthropogenic CO2 emissions to the atmosphere. This study first simulates the leakage of CO2 and brine from a storage reservoir through the caprock. Then, we estimate the resulting pressure changes at the zone overlying the caprock also known as Above Zone Monitoring Interval (AZMI). A data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is then used to quantify the uncertainty in the above zone pressure prediction based on the uncertainties in different geologic parameters. Finally, a global sensitivity analysis is performed with Sobol indices based on the aPC technique to determine the relative importance of different parameters on pressure prediction. The results indicate that there can be uncertainty in pressure prediction locally around the leakage zones. The degree of such uncertainty in prediction depends on the quality of site specific information available for analysis. The scientific results from this study provide substantial insight that there is a need for site-specific data for efficient predictions of risks associated with storage activities. The presented approach can provide a basis of optimized pressure based monitoring network design at carbon storage sites.

  2. Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams

    Directory of Open Access Journals (Sweden)

    Fernandez-Fuentes Narcis

    2011-08-01

    Full Text Available Abstract Background Protein binding site prediction by computational means can yield valuable information that complements and guides experimental approaches to determine the structure of protein complexes. Predictions become even more relevant and timely given the current resolution of protein interaction maps, where there is a very large and still expanding gap between the available information on: (i which proteins interact and (ii how proteins interact. Proteins interact through exposed residues that present differential physicochemical properties, and these can be exploited to identify protein interfaces. Results Here we present VORFFIP, a novel method for protein binding site prediction. The method makes use of broad set of heterogeneous data and defined of residue environment, by means of Voronoi Diagrams that are integrated by a two-steps Random Forest ensemble classifier. Four sets of residue features (structural, energy terms, sequence conservation, and crystallographic B-factors used in different combinations together with three definitions of residue environment (Voronoi Diagrams, sequence sliding window, and Euclidian distance have been analyzed in order to maximize the performance of the method. Conclusions The integration of different forms information such as structural features, energy term, evolutionary conservation and crystallographic B-factors, improves the performance of binding site prediction. Including the information of neighbouring residues also improves the prediction of protein interfaces. Among the different approaches that can be used to define the environment of exposed residues, Voronoi Diagrams provide the most accurate description. Finally, VORFFIP compares favourably to other methods reported in the recent literature.

  3. Site of metabolism prediction based on ab initio derived atom representations.

    Science.gov (United States)

    Finkelmann, Arndt R; Göller, Andreas H; Schneider, Gisbert

    2017-03-21

    Machine learning models for site of metabolism (SoM) prediction offer the ability to identify metabolic soft spots in low molecular weight drug molecules at low computational cost and enable data-based reactivity prediction. SoM prediction is an atom classification problem. Successful construction of machine learning models requires atom representations that capture the reactivity-determining features of a potential reaction site. We have developed a descriptor scheme that characterizes an atom's steric and electronic environment and its relative location in the molecular structure. The partial charge distributions were obtained from fast quantum mechanical calculations. We successfully trained machine learning classifiers on curated cytochrome p450 metabolism data. The models based on the new atom descriptors showed sustained accuracy for retrospective analyses of metabolism optimization campaigns and lead optimization projects from Bayer Pharmaceuticals. The results obtained demonstrate the practicality of quantum-chemistry-supported machine learning models for hit-to-lead optimization.

  4. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier

    Directory of Open Access Journals (Sweden)

    Haijiang Geng

    2015-01-01

    Full Text Available Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input to the Naive Bayes Classifier- (NBC- based method to predict interaction sites in protein-protein complexes interaction. The prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein sequence features as input vectors performed well.

  5. Ten problems and solutions when predicting individual outcome from lesion site after stroke.

    Science.gov (United States)

    Price, Cathy J; Hope, Thomas M; Seghier, Mohamed L

    2017-01-15

    In this paper, we consider solutions to ten of the challenges faced when trying to predict an individual's functional outcome after stroke on the basis of lesion site. A primary goal is to find lesion-outcome associations that are consistently observed in large populations of stroke patients because consistent associations maximise confidence in future individualised predictions. To understand and control multiple sources of inter-patient variability, we need to systematically investigate each contributing factor and how each factor depends on other factors. This requires very large cohorts of patients, who differ from one another in typical and measurable ways, including lesion site, lesion size, functional outcome and time post stroke (weeks to decades). These multivariate investigations are complex, particularly when the contributions of different variables interact with one another. Machine learning algorithms can help to identify the most influential variables and indicate dependencies between different factors. Multivariate lesion analyses are needed to understand how the effect of damage to one brain region depends on damage or preservation in other brain regions. Such data-led investigations can reveal predictive relationships between lesion site and outcome. However, to understand and improve the predictions we need explanatory models of the neural networks and degenerate pathways that support functions of interest. This will entail integrating the results of lesion analyses with those from functional imaging (fMRI, MEG), transcranial magnetic stimulation (TMS) and diffusor tensor imaging (DTI) studies of healthy participants and patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. STarMir Tools for Prediction of microRNA binding sites

    Science.gov (United States)

    Kanoria, Shaveta; Rennie, William; Liu, Chaochun; Carmack, C. Steven; Lu, Jun; Ding, Ye

    2017-01-01

    MicroRNAs (miRNAs) are a class of endogenous short non-coding RNAs that regulate gene expression by targeting messenger RNAs (mRNAs), which results in translational repression and/or mRNA degradation. As regulatory molecules, miRNAs are involved in many mammalian biological processes and also in the manifestation of certain human diseases. As miRNAs play central role in the regulation of gene expression, understanding miRNA-binding patterns is essential to gain an insight of miRNA mediated gene regulation and also holds promise for therapeutic applications. Computational prediction of miRNA binding sites on target mRNAs facilitates experimental investigation of miRNA functions. This chapter provides protocols for using the STarMir web server for improved predictions of miRNA binding sites on a target mRNA. As an application module of the Sfold RNA package, the current version of STarMir is an implementation of logistic prediction models developed with high throughput miRNA binding data from crosslinking immuno-precipitation (CLIP) studies. The models incorporated comprehensive thermodynamic, structural and sequence features, and were found to make improved predictions of both seed and seedless sites, in comparison to the established algorithms [1]. Their broad applicability was indicated by their good performance in cross-species validation. STarMir is freely available at http://sfold.wadsworth.org/starmir.html PMID:27665594

  7. Spatial characterization and prediction of Neanderthal sites based on environmental information and stochastic modelling

    Science.gov (United States)

    Maerker, Michael; Bolus, Michael

    2014-05-01

    We present a unique spatial dataset of Neanderthal sites in Europe that was used to train a set of stochastic models to reveal the correlations between the site locations and environmental indices. In order to assess the relations between the Neanderthal sites and environmental variables as described above we applied a boosted regression tree approach (TREENET) a statistical mechanics approach (MAXENT) and support vector machines. The stochastic models employ a learning algorithm to identify a model that best fits the relationship between the attribute set (predictor variables (environmental variables) and the classified response variable which is in this case the types of Neanderthal sites. A quantitative evaluation of model performance was done by determining the suitability of the model for the geo-archaeological applications and by helping to identify those aspects of the methodology that need improvements. The models' predictive performances were assessed by constructing the Receiver Operating Characteristics (ROC) curves for each Neanderthal class, both for training and test data. In a ROC curve the Sensitivity is plotted over the False Positive Rate (1-Specificity) for all possible cut-off points. The quality of a ROC curve is quantified by the measure of the parameter area under the ROC curve. The dependent variable or target variable in this study are the locations of Neanderthal sites described by latitude and longitude. The information on the site location was collected from literature and own research. All sites were checked for site accuracy using high resolution maps and google earth. The study illustrates that the models show a distinct ranking in model performance with TREENET outperforming the other approaches. Moreover Pre-Neanderthals, Early Neanderthals and Classic Neanderthals show a specific spatial distribution. However, all models show a wide correspondence in the selection of the most important predictor variables generally showing less

  8. Identification of ligands that target the HCV-E2 binding site on CD81

    Science.gov (United States)

    Olaby, Reem Al; Azzazy, Hassan M.; Harris, Rodney; Chromy, Brett; Vielmetter, Jost; Balhorn, Rod

    2013-04-01

    Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

  9. Identification of ligands that target the HCV-E2 binding site on CD81.

    Science.gov (United States)

    Olaby, Reem Al; Azzazy, Hassan M; Harris, Rodney; Chromy, Brett; Vielmetter, Jost; Balhorn, Rod

    2013-04-01

    Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

  10. Ground Motion Prediction for the Vicinity by Using the Microtremor Site-effect Correction

    Science.gov (United States)

    Lin, C. M.; Wen, K. L.; Kuo, C. H.

    2015-12-01

    This study develops a method analyzing the seismograms of a strong-motion station and the microtremor site effects (H/V ratios) around it to predict the ground motion of its vicinity. The Hsinchu Science Park (HSP) in Taiwan was chosen as our study site. The horizontal S-wave seismograms of the TCU017 strong-motion station, which locates at the center of the HSP, were convoluted by the difference of the microtremor H/V ratio between various sites to synthesize the seismograms of several strong-motion stations around the HSP. The comparisons between synthetic and observed seismograms show that this method of ground motion prediction for the vicinity is feasible for far-field earthquakes. However, the seismic source and attenuation effects make this method ineffectual for near-field earthquakes. Because the microtremor H/V ratios at about 200 sites, which are densely distributed in the HSP, were conducted, the seismic ground motion distributions of some historical earthquakes were synthesized by this study. The synthetic ground motion distributions ignore the seismic source and attenuation effects but still show notable variations in the HSP because of the seismic site effects.

  11. Improving N(6)-methyladenosine site prediction with heuristic selection of nucleotide physical-chemical properties.

    Science.gov (United States)

    Zhang, Ming; Sun, Jia-Wei; Liu, Zi; Ren, Ming-Wu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-09-01

    N(6)-methyladenosine (m(6)A) is one of the most common and abundant post-transcriptional RNA modifications found in viruses and most eukaryotes. m(6)A plays an essential role in many vital biological processes to regulate gene expression. Because of its widespread distribution across the genomes, the identification of m(6)A sites from RNA sequences is of significant importance for better understanding the regulatory mechanism of m(6)A. Although progress has been achieved in m(6)A site prediction, challenges remain. This article aims to further improve the performance of m(6)A site prediction by introducing a new heuristic nucleotide physical-chemical property selection (HPCS) algorithm. The proposed HPCS algorithm can effectively extract an optimized subset of nucleotide physical-chemical properties under the prescribed feature representation for encoding an RNA sequence into a feature vector. We demonstrate the efficacy of the proposed HPCS algorithm under different feature representations, including pseudo dinucleotide composition (PseDNC), auto-covariance (AC), and cross-covariance (CC). Based on the proposed HPCS algorithm, we implemented an m(6)A site predictor, called M6A-HPCS, which is freely available at http://csbio.njust.edu.cn/bioinf/M6A-HPCS. Experimental results over rigorous jackknife tests on benchmark datasets demonstrated that the proposed M6A-HPCS achieves higher success rates and outperforms existing state-of-the-art sequence-based m(6)A site predictors.

  12. High-resolution structures of mutants of residues that affect access to the ligand-binding cavity of human lipocalin-type prostaglandin D synthase.

    Science.gov (United States)

    Perduca, Massimiliano; Bovi, Michele; Bertinelli, Mattia; Bertini, Edoardo; Destefanis, Laura; Carrizo, Maria E; Capaldi, Stefano; Monaco, Hugo L

    2014-08-01

    Lipocalin-type prostaglandin D synthase (L-PGDS) catalyzes the isomerization of the 9,11-endoperoxide group of PGH2 (prostaglandin H2) to produce PGD2 (prostaglandin D2) with 9-hydroxy and 11-keto groups. The product of the reaction, PGD2, is the precursor of several metabolites involved in many regulatory events. L-PGDS, the first member of the important lipocalin family to be recognized as an enzyme, is also able to bind and transport small hydrophobic molecules and was formerly known as β-trace protein, the second most abundant protein in human cerebrospinal fluid. Previous structural work on the mouse and human proteins has focused on the identification of the amino acids responsible and the proposal of a mechanism for catalysis. In this paper, the X-ray structures of the apo and holo forms (bound to PEG) of the C65A mutant of human L-PGDS at 1.40 Å resolution and of the double mutant C65A/K59A at 1.60 Å resolution are reported. The apo forms of the double mutants C65A/W54F and C65A/W112F and the triple mutant C65A/W54F/W112F have also been studied. Mutation of the lysine residue does not seem to affect the binding of PEG to the ligand-binding cavity, and mutation of a single or both tryptophans appears to have the same effect on the position of these two aromatic residues at the entrance to the cavity. A solvent molecule has also been identified in an invariant position in the cavity of virtually all of the molecules present in the nine asymmetric units of the crystals that have been examined. Taken together, these observations indicate that the residues that have been mutated indeed appear to play a role in the entrance-exit process of the substrate and/or other ligands into/out of the binding cavity of the lipocalin.

  13. Sensing Conformational Changes in DNA upon Ligand Binding Using QCM-D. Polyamine Condensation and Rad51 Extension of DNA Layers

    KAUST Repository

    Sun, Lu

    2014-10-16

    © 2014 American Chemical Society. Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions. Here, we investigate if conformational changes induced in surface-attached DNA molecules upon ligand binding can be monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. DNA duplexes containing 59-184 base pairs were formed on QCM-D crystals by stepwise assembly of synthetic oligonucleotides of designed base sequences. The DNA films were exposed to the cationic polyamines spermidine and spermine, known to condense DNA molecules in bulk experiments, or to the recombination protein Rad51, known to extend the DNA helix. The binding and dissociation of the ligands to the DNA films were monitored in real time by measurements of the shifts in resonance frequency (Δf) and in dissipation (ΔD). The QCM-D data were analyzed using a Voigt-based model for the viscoelastic properties of polymer films in order to evaluate how the ligands affect thickness and shear viscosity of the DNA layer. Binding of spermine shrinks all DNA layers and increases their viscosity in a reversible fashion, and so does spermidine, but to a smaller extent, in agreement with its lower positive charge. SPR was used to measure the amount of bound polyamines, and when combined with QCM-D, the data indicate that the layer condensation leads to a small release of water from the highly hydrated DNA films. The binding of Rad51 increases the effective layer thickness of a 59bp film, more than expected from the know 50% DNA helix extension. The combined results provide guidelines for a QCM-D biosensor based on ligand-induced structural changes in DNA films. The QCM-D approach provides high discrimination between ligands affecting the thickness and the structural properties of the DNA layer differently. The reversibility of the film

  14. SPE-5 Ground-Motion Prediction at Far-Field Geophone and Accelerometer Array Sites and SPE-5 Moment and Corner-Frequency Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patton, Howard John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-25

    This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.

  15. SPE-5 Ground-Motion Prediction at Far-Field Geophone and Accelerometer Array Sites and SPE-5 Moment and Corner-Frequency Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patton, Howard John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-25

    This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.

  16. A Python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites

    Directory of Open Access Journals (Sweden)

    Bruce Southey

    2008-12-01

    Full Text Available Neuropeptides and hormones are signaling molecules that support cell-cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html, a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides.

  17. A python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites.

    Science.gov (United States)

    Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2008-01-01

    Neuropeptides and hormones are signaling molecules that support cell-cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides.

  18. Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope mapping.

    Science.gov (United States)

    Scarabelli, Guido; Morra, Giulia; Colombo, Giorgio

    2010-05-19

    An increasing number of functional studies of proteins have shown that sequence and structural similarities alone may not be sufficient for reliable prediction of their interaction properties. This is particularly true for proteins recognizing specific antibodies, where the prediction of antibody-binding sites, called epitopes, has proven challenging. The antibody-binding properties of an antigen depend on its structure and related dynamics. Aiming to predict the antibody-binding regions of a protein, we investigate a new approach based on the integrated analysis of the dynamical and energetic properties of antigens, to identify nonoptimized, low-intensity energetic interaction networks in the protein structure isolated in solution. The method is based on the idea that recognition sites may correspond to localized regions with low-intensity energetic couplings with the rest of the protein, which allows them to undergo conformational changes, to be recognized by a binding partner, and to tolerate mutations with minimal energetic expense. Upon analyzing the results on isolated proteins and benchmarking against antibody complexes, it is found that the method successfully identifies binding sites located on the protein surface that are accessible to putative binding partners. The combination of dynamics and energetics can thus discriminate between epitopes and other substructures based only on physical properties. We discuss implications for vaccine design.

  19. Towards Coleoptera-specific high-throughput screening systems for compounds with ecdysone activity: development of EcR reporter assays using weevil (Anthonomus grandis)-derived cell lines and in silico analysis of ligand binding to A. grandis EcR ligand-binding pocket.

    Science.gov (United States)

    Soin, Thomas; Iga, Masatoshi; Swevers, Luc; Rougé, Pierre; Janssen, Colin R; Smagghe, Guy

    2009-08-01

    Molting in insects is regulated by ecdysteroids and juvenile hormones. Several synthetic non-steroidal ecdysone agonists are on the market as insecticides. These ecdysone agonists are dibenzoylhydrazine (DBH) analogue compounds that manifest their toxicity via interaction with the ecdysone receptor (EcR). Of the four commercial available ecdysone agonists, three (tebufenozide, methoxyfenozide and chromafenozide) are highly lepidopteran specific, one (halofenozide) is used to control coleopteran and lepidopteran insects in turf and ornamentals. However, compared to the very high binding affinity of these DBH analogues to lepidopteran EcRs, halofenozide has a low binding affinity for coleopteran EcRs. For the discovery of ecdysone agonists that target non-lepidopteran insect groups, efficient screening systems that are based on the activation of the EcR are needed. We report here the development and evaluation of two coleopteran-specific reporter-based screening systems to discover and evaluate ecdysone agonists. The screening systems are based on the cell lines BRL-AG-3A and BRL-AG-3C that are derived from the weevil Anthonomus grandis, which can be efficiently transduced with an EcR reporter cassette for evaluation of induction of reporter activity by ecdysone agonists. We also cloned the almost full length coding sequence of EcR expressed in the cell line BRL-AG-3C and used it to make an initial in silico 3D-model of its ligand-binding pocket docked with ponasterone A and tebufenozide.

  20. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    Science.gov (United States)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; Ichii, Kazuhito; Camps-Valls, Gustau; Ráduly, Botond; Reichstein, Markus; Altaf Arain, M.; Cescatti, Alessandro; Kiely, Gerard; Merbold, Lutz; Serrano-Ortiz, Penelope; Sickert, Sven; Wolf, Sebastian; Papale, Dario

    2016-07-01

    Spatio-temporal fields of land-atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data and (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange (R2 0.6), gross primary production (R2> 0.7), latent heat (R2 > 0.7), sensible heat (R2 > 0.7), and net radiation (R2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well (R2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted (R2 Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). The evaluated large ensemble of ML-based models will be the basis of new global flux products.

  1. On splice site prediction using weight array models: a comparison of smoothing techniques

    Science.gov (United States)

    Taher, Leila; Meinicke, Peter; Morgenstern, Burkhard

    2007-11-01

    In most eukaryotic genes, protein-coding exons are separated by non-coding introns which are removed from the primary transcript by a process called "splicing". The positions where introns are cut and exons are spliced together are called "splice sites". Thus, computational prediction of splice sites is crucial for gene finding in eukaryotes. Weight array models are a powerful probabilistic approach to splice site detection. Parameters for these models are usually derived from m-tuple frequencies in trusted training data and subsequently smoothed to avoid zero probabilities. In this study we compare three different ways of parameter estimation for m-tuple frequencies, namely (a) non-smoothed probability estimation, (b) standard pseudo counts and (c) a Gaussian smoothing procedure that we recently developed.

  2. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    Science.gov (United States)

    Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.

    2016-08-01

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.

  3. SPEER-SERVER: a web server for prediction of protein specificity determining sites

    Science.gov (United States)

    Chakraborty, Abhijit; Mandloi, Sapan; Lanczycki, Christopher J.; Panchenko, Anna R.; Chakrabarti, Saikat

    2012-01-01

    Sites that show specific conservation patterns within subsets of proteins in a protein family are likely to be involved in the development of functional specificity. These sites, generally termed specificity determining sites (SDS), might play a crucial role in binding to a specific substrate or proteins. Identification of SDS through experimental techniques is a slow, difficult and tedious job. Hence, it is very important to develop efficient computational methods that can more expediently identify SDS. Herein, we present Specificity prediction using amino acids’ Properties, Entropy and Evolution Rate (SPEER)-SERVER, a web server that predicts SDS by analyzing quantitative measures of the conservation patterns of protein sites based on their physico-chemical properties and the heterogeneity of evolutionary changes between and within the protein subfamilies. This web server provides an improved representation of results, adds useful input and output options and integrates a wide range of analysis and data visualization tools when compared with the original standalone version of the SPEER algorithm. Extensive benchmarking finds that SPEER-SERVER exhibits sensitivity and precision performance that, on average, meets or exceeds that of other currently available methods. SPEER-SERVER is available at http://www.hpppi.iicb.res.in/ss/. PMID:22689646

  4. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses.

    Science.gov (United States)

    Sun, Shisheng; Wang, Qinzhe; Zhao, Fei; Chen, Wentian; Li, Zheng

    2012-01-01

    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.

  5. Snoring Sounds Predict Obstruction Sites and Surgical Response in Patients with Obstructive Sleep Apnea Hypopnea Syndrome

    Science.gov (United States)

    Lee, Li-Ang; Lo, Yu-Lun; Yu, Jen-Fang; Lee, Gui-She; Ni, Yung-Lun; Chen, Ning-Hung; Fang, Tuan-Jen; Huang, Chung-Guei; Cheng, Wen-Nuan; Li, Hsueh-Yu

    2016-01-01

    Snoring sounds generated by different vibrators of the upper airway may be useful indicators of obstruction sites in patients with obstructive sleep apnea hypopnea syndrome (OSAHS). This study aimed to investigate associations between snoring sounds, obstruction sites, and surgical responses (≥50% reduction in the apnea-hypopnea index [AHI] and DISE), and relocation pharyngoplasty. All patients received follow-up polysomnography after 6 months. Fifteen (42%) patients with at least two complete obstruction sites defined by DISE were significantly, positively associated with maximal snoring sound intensity (40–300 Hz; odds ratio [OR], 1.25, 95% confidence interval [CI] 1.05–1.49) and body mass index (OR, 1.48, 95% CI 1.02–2.15) after logistic regression analysis. Tonsil obstruction was significantly, inversely correlated with mean snoring sound intensity (301–850 Hz; OR, 0.84, 95% CI 0.74–0.96). Moreover, baseline tonsil obstruction detected by either DISE or mean snoring sound intensity (301–850 Hz), and AHI could significantly predict the surgical response. Our findings suggest that snoring sound detection may be helpful in determining obstruction sites and predict surgical responses. PMID:27471038

  6. Position-specific prediction of methylation sites from sequence conservation based on information theory.

    Science.gov (United States)

    Shi, Yinan; Guo, Yanzhi; Hu, Yayun; Li, Menglong

    2015-07-23

    Protein methylation plays vital roles in many biological processes and has been implicated in various human diseases. To fully understand the mechanisms underlying methylation for use in drug design and work in methylation-related diseases, an initial but crucial step is to identify methylation sites. The use of high-throughput bioinformatics methods has become imperative to predict methylation sites. In this study, we developed a novel method that is based only on sequence conservation to predict protein methylation sites. Conservation difference profiles between methylated and non-methylated peptides were constructed by the information entropy (IE) in a wider neighbor interval around the methylation sites that fully incorporated all of the environmental information. Then, the distinctive neighbor residues were identified by the importance scores of information gain (IG). The most representative model was constructed by support vector machine (SVM) for Arginine and Lysine methylation, respectively. This model yielded a promising result on both the benchmark dataset and independent test set. The model was used to screen the entire human proteome, and many unknown substrates were identified. These results indicate that our method can serve as a useful supplement to elucidate the mechanism of protein methylation and facilitate hypothesis-driven experimental design and validation.

  7. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.

    Science.gov (United States)

    Xu, Yan; Wang, Xiaobo; Wang, Yongcui; Tian, Yingjie; Shao, Xiaojian; Wu, Ling-Yun; Deng, Naiyang

    2014-03-07

    Post-translational modification (PTM) is the chemical modification of a protein after its translation and one of the later steps in protein biosynthesis for many proteins. It plays an important role which modifies the end product of gene expression and contributes to biological processes and diseased conditions. However, the experimental methods for identifying PTM sites are both costly and time-consuming. Hence computational methods are highly desired. In this work, a novel encoding method PSPM (position-specific propensity matrices) is developed. Then a support vector machine (SVM) with the kernel matrix computed by PSPM is applied to predict the PTM sites. The experimental results indicate that the performance of new method is better or comparable with the existing methods. Therefore, the new method is a useful computational resource for the identification of PTM sites. A unified standalone software PTMPred is developed. It can be used to predict all types of PTM sites if the user provides the training datasets. The software can be freely downloaded from http://www.aporc.org/doc/wiki/PTMPred.

  8. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  9. High DNA melting temperature predicts transcription start site location in human and mouse.

    LENUS (Irish Health Repository)

    Dineen, David G

    2009-12-01

    The accurate computational prediction of transcription start sites (TSS) in vertebrate genomes is a difficult problem. The physicochemical properties of DNA can be computed in various ways and a many combinations of DNA features have been tested in the past for use as predictors of transcription. We looked in detail at melting temperature, which measures the temperature, at which two strands of DNA separate, considering the cooperative nature of this process. We find that peaks in melting temperature correspond closely to experimentally determined transcription start sites in human and mouse chromosomes. Using melting temperature alone, and with simple thresholding, we can predict TSS with accuracy that is competitive with the most accurate state-of-the-art TSS prediction methods. Accuracy is measured using both experimentally and manually determined TSS. The method works especially well with CpG island containing promoters, but also works when CpG islands are absent. This result is clear evidence of the important role of the physical properties of DNA in the process of transcription. It also points to the importance for TSS prediction methods to include melting temperature as prior information.

  10. NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm.

    Science.gov (United States)

    Xue, Yu; Chen, Hu; Jin, Changjiang; Sun, Zhirong; Yao, Xuebiao

    2006-10-17

    Protein palmitoylation, an essential and reversible post-translational modification (PTM), has been implicated in cellular dynamics and plasticity. Although numerous experimental studies have been performed to explore the molecular mechanisms underlying palmitoylation processes, the intrinsic feature of substrate specificity has remained elusive. Thus, computational approaches for palmitoylation prediction are much desirable for further experimental design. In this work, we present NBA-Palm, a novel computational method based on Naïve Bayes algorithm for prediction of palmitoylation site. The training data is curated from scientific literature (PubMed) and includes 245 palmitoylated sites from 105 distinct proteins after redundancy elimination. The proper window length for a potential palmitoylated peptide is optimized as six. To evaluate the prediction performance of NBA-Palm, 3-fold cross-validation, 8-fold cross-validation and Jack-Knife validation have been carried out. Prediction accuracies reach 85.79% for 3-fold cross-validation, 86.72% for 8-fold cross-validation and 86.74% for Jack-Knife validation. Two more algorithms, RBF network and support vector machine (SVM), also have been employed and compared with NBA-Palm. Taken together, our analyses demonstrate that NBA-Palm is a useful computational program that provides insights for further experimentation. The accuracy of NBA-Palm is comparable with our previously described tool CSS-Palm. The NBA-Palm is freely accessible from: http://www.bioinfo.tsinghua.edu.cn/NBA-Palm.

  11. NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm

    Directory of Open Access Journals (Sweden)

    Jin Changjiang

    2006-10-01

    Full Text Available Abstract Background Protein palmitoylation, an essential and reversible post-translational modification (PTM, has been implicated in cellular dynamics and plasticity. Although numerous experimental studies have been performed to explore the molecular mechanisms underlying palmitoylation processes, the intrinsic feature of substrate specificity has remained elusive. Thus, computational approaches for palmitoylation prediction are much desirable for further experimental design. Results In this work, we present NBA-Palm, a novel computational method based on Naïve Bayes algorithm for prediction of palmitoylation site. The training data is curated from scientific literature (PubMed and includes 245 palmitoylated sites from 105 distinct proteins after redundancy elimination. The proper window length for a potential palmitoylated peptide is optimized as six. To evaluate the prediction performance of NBA-Palm, 3-fold cross-validation, 8-fold cross-validation and Jack-Knife validation have been carried out. Prediction accuracies reach 85.79% for 3-fold cross-validation, 86.72% for 8-fold cross-validation and 86.74% for Jack-Knife validation. Two more algorithms, RBF network and support vector machine (SVM, also have been employed and compared with NBA-Palm. Conclusion Taken together, our analyses demonstrate that NBA-Palm is a useful computational program that provides insights for further experimentation. The accuracy of NBA-Palm is comparable with our previously described tool CSS-Palm. The NBA-Palm is freely accessible from: http://www.bioinfo.tsinghua.edu.cn/NBA-Palm.

  12. Neural Network Prediction of Translation Initiation Sites in Eukaryotes: Perspectives for EST and Genome analysis

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Nielsen, Henrik

    1997-01-01

    Translation in eukaryotes does not always start at the first AUG in an mRNA, implying that context information also plays a role.This makes prediction of translation initiation sites a non-trivial task, especially when analysing EST and genome data where the entire mature mRNA sequence is not known...... and global sequence information. Furthermore, analysis of false predictions shows that AUGs in frame with the actual start codon are more frequently selected than out-of-frame AUGs, suggesting that our nteworks use reading frame detection. A number of conflicts between neural network predictions and database...... annotations are analysed in detail, leading to identification of possible database errors....

  13. Social Networking Site Use Predicts Changes in Young Adults’ Psychological Adjustment