WorldWideScience

Sample records for lift transonic drag

  1. Thermal lift generation and drag reduction in rarefied aerodynamics

    Science.gov (United States)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  2. Integrated lift/drag controller for aircraft

    Science.gov (United States)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  3. Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components

    Energy Technology Data Exchange (ETDEWEB)

    Destarac, D. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Van der Vooren, J. [Senior research scientist, retired, Hoekse Waard (Netherlands)

    2004-09-01

    Drag/thrust analysis of jet-propelled transonic transport aircraft on the basis of calculated viscous flow is discussed. Unique definitions for viscous drag plus wave drag and for induced drag are established. The concept of additive through flow drag is introduced. Drag/thrust bookkeeping is given attention. All drag components can be calculated in the flow region adjacent to the aircraft, where numerical accuracy is expectingly highest. Uniform handling of complex aircraft configurations is brought within reach. Near-field/far-field drag balances are exact. Computational aspects are discussed, in particular the elimination of spurious drag sources. Numerical examples are given for a wing-body and for a wing-body-pylon-nacelle configuration. In either case, the spurious drag sources are eliminated. Acceptable agreement is obtained for the total drag in the first case, and for the installation drag in the second case. Extension of the analysis presented to propeller-driven transport aircraft is straightforward. (author)

  4. 14 CFR 25.697 - Lift and drag devices, controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by an...

  5. Lift and Drag Measurements of Superhydrophobic Hydrofoils

    Science.gov (United States)

    Sur, Samrat; Kim, Jeong-Hyun; Rothstein, Jonathan

    2015-11-01

    For several years, superhydrophobic surfaces which are chemically hydrophobic with micron or nanometer scale surface features have been considered for their ability to reduce drag and produce slip in microfluidic devices. More recently it has been demonstrated that superhydrophobic surfaces reduce friction coefficient in turbulent flows as well. In this talk, we will consider that modifying a hydrofoil's surface to make it superhydrophobic has on the resulting lift and drag measurements over a wide range of angles of attack. Experiments are conducted over the range of Reynolds numbers between 10,000hydrofoil is made superhydrophobic. The hydrofoils are coated Teflon that has been hot embossed with a 325grit stainless steel woven mesh to produce a regular pattern of microposts. In addition to fully superhydrophobic hydrofoils, selectively coated symmetrical hydrofoils will also be examined to study the effect that asymmetries in the surface properties can have on lift and drag. Partially funded by NSF CBET-1334962.

  6. 14 CFR 25.699 - Lift and drag device indicator.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In addition...

  7. Lift and drag of cetacean flippers

    Science.gov (United States)

    Murray, Mark; Weber, Paul; Howle, Laurens; Fish, Frank

    2008-11-01

    Field observation and collection of biological samples has resulted in cetacean (whales, dolphins and porpoises) flipper geometry being known for most species. However, the hydrodynamic properties of cetacean flippers have not been rigorously tested and thus their performance characteristics are unknown. Here, conducting water tunnel testing using scale models of cetacean flippers derived via computed tomography (CT) scans, as well as computational fluid dynamic (CFD) simulations, we present a baseline work to determine the hydrodynamic characteristics of cetacean flippers. We found that flippers of similar planform shape had similar hydrodynamic performance characteristics. Furthermore, one group of flippers of planform shape similar to a modern swept wing was found to have lift coefficient versus angle of attack curves that were biphasic rather than linear in nature, which was caused by the onset of vortex-dominated lift. Drag coefficient versus angle of attack curves were found to be less dependant on planform shape.

  8. Flight-measured lift and drag characteristics of a large, flexible, high supersonic cruise airplane

    Science.gov (United States)

    Arnaiz, H. H.

    1977-01-01

    Flight measurements of lift, drag, and angle of attack were obtained for the XB-70 airplane, a large, flexible, high supersonic cruise airplane. This airplane had a length of over 57 meters, a takeoff gross mass of over 226,800 kilograms, and a design cruise speed of Mach 3 at an altitude of 21,340 meters. The performance measurements were made at Mach numbers from 0.72 to 3.07 and altitudes from approximately 7620 meters to 21,340 meters. The measurements were made to provide data for evaluating the techniques presently being used to design and predict the performance of aircraft in this category. Such performance characteristics as drag polars, lift-curve slopes, and maximum lift-to-drag ratios were derived from the flight data. The base drag of the airplane, changes in airplane drag with changes in engine power setting at transonic speeds, and the magnitude of the drag components of the propulsion system are also discussed.

  9. Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers

    Science.gov (United States)

    Lee-Rausch, E. M.; Frink, N. T.; Mavriplis, D. J.; Rausch, R. D.; Milholen, W. E.

    2004-01-01

    A second international AIAA Drag Prediction Workshop (DPW-II) was organized and held in Orlando Florida on June 21-22, 2003. The primary purpose was to inves- tigate the code-to-code uncertainty. address the sensitivity of the drag prediction to grid size and quantify the uncertainty in predicting nacelle/pylon drag increments at a transonic cruise condition. This paper presents an in-depth analysis of the DPW-II computational results from three state-of-the-art unstructured grid Navier-Stokes flow solvers exercised on similar families of tetrahedral grids. The flow solvers are USM3D - a tetrahedral cell-centered upwind solver. FUN3D - a tetrahedral node-centered upwind solver, and NSU3D - a general element node-centered central-differenced solver. For the wingbody, the total drag predicted for a constant-lift transonic cruise condition showed a decrease in code-to-code variation with grid refinement as expected. For the same flight condition, the wing/body/nacelle/pylon total drag and the nacelle/pylon drag increment predicted showed an increase in code-to-code variation with grid refinement. Although the range in total drag for the wingbody fine grids was only 5 counts, a code-to-code comparison of surface pressures and surface restricted streamlines indicated that the three solvers were not all converging to the same flow solutions- different shock locations and separation patterns were evident. Similarly, the wing/body/nacelle/pylon solutions did not appear to be converging to the same flow solutions. Overall, grid refinement did not consistently improve the correlation with experimental data for either the wingbody or the wing/body/nacelle pylon configuration. Although the absolute values of total drag predicted by two of the solvers for the medium and fine grids did not compare well with the experiment, the incremental drag predictions were within plus or minus 3 counts of the experimental data. The correlation with experimental incremental drag was not

  10. Drag and lift coefficients evolution of a Savonius rotor

    Science.gov (United States)

    Chauvin, A.; Benghrib, D.

    1989-10-01

    The lift and drag coefficients of the rotating Savonius wind machine are determined from the pressure difference measured between the upper plane and the lower plane of a blade. Pressure measurements have been performed for two sets of experiments; the first one for U ∞ = 10 m/s and the second one for U ∞ = 12.5 m/s. In each case it is to be noted that a negative lift effect is present for low values of the tip speed ratio λ. The lift coefficient becomes positive when λ increases. The drag coefficient is of course always negative.

  11. Lift and Drag Performance of Odontocete Cetacean Flippers

    Science.gov (United States)

    2009-01-01

    Cooper et al., 2008). The cross-section of a typical flipper is similar to that of a modern engineered air/ hydrofoil (Fish, 2004; Miklosovic et al., 2004...to modern engineered hydrofoils , which have hydrodynamic properties such as lift coefficient, drag coefficient and associated efficiency. Field...study are differentiated by whether or not their lift curves are linear. An engineered hydrofoil with linear behavior in the non-stall region was also

  12. Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model

    Science.gov (United States)

    Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.

    2017-01-01

    A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.

  13. Lift and drag performance of odontocete cetacean flippers.

    Science.gov (United States)

    Weber, Paul W; Howle, Laurens E; Murray, Mark M; Fish, Frank E

    2009-07-01

    Cetaceans (whales, dolphins and porpoises) have evolved flippers that aid in effective locomotion through their aquatic environments. Differing evolutionary pressures upon cetaceans, including hunting and feeding requirements, and other factors such as animal mass and size have resulted in flippers that are unique among each species. Cetacean flippers may be viewed as being analogous to modern engineered hydrofoils, which have hydrodynamic properties such as lift coefficient, drag coefficient and associated efficiency. Field observations and the collection of biological samples have resulted in flipper geometry being known for most cetacean species. However, the hydrodynamic properties of cetacean flippers have not been rigorously examined and thus their performance properties are unknown. By conducting water tunnel testing using scale models of cetacean flippers derived via computed tomography (CT) scans, as well as computational fluid dynamic (CFD) simulations, we present a baseline work to describe the hydrodynamic properties of several cetacean flippers. We found that flippers of similar planform shape had similar hydrodynamic performance properties. Furthermore, one group of flippers of planform shape similar to modern swept wings was found to have lift coefficients that increased with angle of attack nonlinearly, which was caused by the onset of vortex-dominated lift. Drag coefficient versus angle of attack curves were found to be less dependent on planform shape. Our work represents a step towards the understanding of the association between performance, ecology, morphology and fluid mechanics based on the three-dimensional geometry of cetacean flippers.

  14. A design and analysis approach for drag reduction on aircraft with adaptive lifting surfaces

    Science.gov (United States)

    Cusher, Aaron Anthony

    Adaptive lifting surfaces, which can be tailored for different flight conditions, have been shown to be beneficial for drag reduction when compared with conventional non-adaptive surfaces. Applying multiple trailing-edge flaps along the wing span allows for the redistribution of lift to suit different flight conditions. The current approach uses the trailing-edge flap distribution to reduce both induced- and profile- components of drag with a trim constraint. Induced drag is reduced by optimally redistributing the lift between the lifting surfaces and along the span of each surface. Profile drag is reduced through the use of natural laminar flow airfoils, which maintain distinct low-drag-ranges (drag buckets) surrounding design lift values. The low-drag-ranges can be extended to include off-design values through small flap deflections, similar to cruise flaps. Trim is constrained for a given static margin by considering longitudinal pitching moment contributions from changes in airfoil section due to individual flap deflections, and from the redistribution of fore-and-aft lift due to combination of flap deflections. The approach uses the concept of basic and additional lift to linearlize the problem, which allows for standard constrained-minimization theory to be employed for determining optimal flap-angle solutions. The resulting expressions for optimal flap-angle solutions are presented as simple matrix equations. This work presents a design and analysis approach which is used to produce flap-angle solutions that independently reduce induced, profile, and total drag. Total drag is defined to be the sum of the induced- and profile-components of drag. The general drag reduction approach is adapted for each specific situation to develop specific drag reduction schemes that are applied to single- and multiple-surface configurations. Successful results show that, for the application of the induced drag reduction schemes on a tailless aircraft, near-elliptical lift

  15. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  16. Personnel launch system (PLS) lifting body and low lift-to-drag (L/D)

    Science.gov (United States)

    Erwin, Harry O.

    1990-09-01

    The Personnel Launch System (PLS) is a small transportation system designed to transport people, but no cargo, to and from low-earth orbit. The PLS is being considered as an addition to the manned launch capability of the United States for three main reasons: (1) to assure manned access to space, (2) to achieve a first-stage abort ability, and (3) to reduce operations costs. To those ends, two designs are being considered for the PLS that differ in their lift-to-drag (L/D) ratio. The Lyndon B. Johnson Space Center was assigned the task of examining low L/D capsules with no wings and a parachute landing capability. The Langley Research Center is studying a higher L/D PLS with wings and runway landings. Whichever design is selected, the PLS will act as a complement to the Space Shuttle fleet and will enhance the ability of our Nation to achieve reliable, safe, and cost-effective access to space flight, thus furthering the goals of the U.S. space program and increasing the safety of the human crews manning a future space station.

  17. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.

    Science.gov (United States)

    Jones, S K; Laurenza, R; Hedrick, T L; Griffith, B E; Miller, L A

    2015-11-01

    We used computational fluid dynamics to determine whether lift- or drag-based mechanisms generate the most vertical force in the flight of the smallest insects. These insects fly at Re on the order of 4-60 where viscous effects are significant. Detailed quantitative data on the wing kinematics of the smallest insects is not available, and as a result both drag- and lift-based strategies have been suggested as the mechanisms by which these insects stay aloft. We used the immersed boundary method to solve the fully-coupled fluid-structure interaction problem of a flexible wing immersed in a two-dimensional viscous fluid to compare three idealized hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in the horizontal plane, and a hybrid stroke on a tilted plane. Our results suggest that at higher Re, a lift-based strategy produces more vertical force than a drag-based strategy. At the Re pertinent to small insect hovering, however, there is little difference in performance between the two strategies. A drag-based mechanism of flight could produce more vertical force than a lift-based mechanism for insects at Re<5; however, we are unaware of active fliers at this scale.

  18. Drag and Lift Force Acting on a Rotational Spherical Particle in a Logarithmic Boundary Flow

    Institute of Scientific and Technical Information of China (English)

    XU Wei-jiang; CHE De-fu; XU Tong-mo

    2006-01-01

    The drag and lift forces acting on a rotational spherical particle in a logarithmic boundary flow are numerically studied. The effects of the drag velocity and rotational speed of the sphere on the drag force are examined for the particle Reynolds number from 50 to 300 and for the dimensionless rotational angular speed of 0≤Ω≤1.0. The influence of dimensionless roughness height z0of the wall is also evaluated for z0≤10. The results show that the drag forces on a sphere both in a logarithmic flow and in a uniform unsheared flow increase with the increase of the drag velocity. For 50≤Rep≤300, the drag coefficient (-C)D increases with decreased roughness height z0. The time-averaged drag coefficient is also significantly affected by rotational speed of the sphere and roughness height z0 . The lift coefficient -CL increases with increased rotational speed and decreases with increased roughness height.

  19. Measuring the Effects of Lift and Drag on Projectile Motion

    Science.gov (United States)

    Cross, Rod

    2012-01-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  20. On the development of lift and drag in a rotating and translating cylinder

    Science.gov (United States)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon

    2014-11-01

    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  1. Determination of lift and drag characteristics of Space Shuttle Orbiter using maximum likelihood estimation technique

    Science.gov (United States)

    Trujillo, B. M.

    1986-01-01

    This paper presents the technique and results of maximum likelihood estimation used to determine lift and drag characteristics of the Space Shuttle Orbiter. Maximum likelihood estimation uses measurable parameters to estimate nonmeasurable parameters. The nonmeasurable parameters for this case are elements of a nonlinear, dynamic model of the orbiter. The estimated parameters are used to evaluate a cost function that computes the differences between the measured and estimated longitudinal parameters. The case presented is a dynamic analysis. This places less restriction on pitching motion and can provide additional information about the orbiter such as lift and drag characteristics at conditions other than trim, instrument biases, and pitching moment characteristics. In addition, an output of the analysis is an estimate of the values for the individual components of lift and drag that contribute to the total lift and drag. The results show that maximum likelihood estimation is a useful tool for analysis of Space Shuttle Orbiter performance and is also applicable to parameter analysis of other types of aircraft.

  2. CFD Study of Drag and Lift of Sepak Takraw Ball at Different Face Orientations

    Directory of Open Access Journals (Sweden)

    Abdul Syakir Abdul Mubin

    2015-01-01

    Full Text Available There have been a significant number of researches on computational fluid dynamic (CFD analysis of balls used in sports such as golf balls, tennis balls, and soccer balls. Sepak takraw is a high speed court game predominantly played in Southeast Asia using mainly the legs and head. The sepak takraw ball is unique because it is not enclosed and made of woven plastic. Hence a study of its aerodynamicswould give insight into its behaviour under different conditions of play. In this study the dynamics of the fluid around a static sepak takraw ball was investigated at different wind speeds for three different orientations using CFD. It was found that although the drag did not differ very much, increasing the wind velocity causes an increase in drag. The lift coefficientvaries as the velocity increases and does not show a regular pattern. The drag and lift coefficients are influenced by the orientation of the sepak takraw ball.

  3. Influence of movable test section elements configuration on its drag and flow field uniformity at transonic speeds

    Science.gov (United States)

    Glazkov, S. A.; Gorbushin, A. R.; Osipova, S. L.; Semenov, A. V.

    2016-10-01

    The report describes the results of flow field experimental research in TsAGI T-128 transonic wind tunnel. During the tests Mach number, stagnation pressure, test section wall perforation ratio, angles between the test section panels and mixing chamber flaps varied. Based on the test results one determined corrections to the free-stream Mach number related to the flow speed difference in the model location and in the zone of static pressure measurement on the test section walls, nonuniformity of the longitudinal velocity component in the model location, optimal position of the movable test section elements to provide flow field uniformity in the test section and minimize the test leg drag.

  4. The variation of aerofoil lift and drag coefficients with changes in size and speed

    Science.gov (United States)

    Diehl, Walter S

    1923-01-01

    This report contains the results of an investigation into the effect of changes in size and speed upon aerofoil lift and drag coefficients. Certain empirical limitations to the interchangeability of v and l in the general equation of fluid resistance are pointed out and the existing methods of correcting for scale are criticized. New methods of correcting for scale by means of simple formulae are derived and checked by comparison with test results.

  5. Instability analysis and drag coefficient prediction on a swept RAE2822 wing with constant lift coefficient

    Directory of Open Access Journals (Sweden)

    Zhenrong JING

    2017-06-01

    Full Text Available Swept wing is widely used in civil aircraft, whose airfoil is chosen, designed and optimized to increase the cruise speed and decrease the drag coefficient. The parameters of swept wing, such as sweep angle and angle of attack, are determined according to the cruise lift coefficient requirement, and the drag coefficient is expected to be predicted accurately, which involves the instability characteristics and transition position of the flow. The pressure coefficient of the RAE2822 wing with given constant lift coefficient is obtained by solving the three-dimensional Navier-Stokes equation numerically, and then the mean flow is calculated by solving the boundary layer (BL equation with spectral method. The cross-flow instability characteristic of boundary layer of swept wing in the windward and leeward is analyzed by linear stability theory (LST, and the transition position is predicted by eN method. The drag coefficient is numerically predicted by introducing a laminar/turbulent indicator. A simple approach to calculate the lift coefficient of swept wing is proposed. It is found that there is a quantitative relationship between the angle of attack and sweep angle when the lift coefficient keeps constant; when the angle of attack is small, the flow on the leeward of the wing is stable. when the angle of attack is larger than 3°, the flow becomes unstable quickly; with the increase of sweep angle or angle of attack the disturbance on the windward becomes more unstable, leading to the moving forward of the transition position to the leading edge of the wing; the drag coefficient has two significant jumping growth due to the successive occurrence of transition in the windward and the leeward; the optimal range of sweep angle for civil aircraft is suggested.

  6. Comparison of Blade Element Momentum Theory to Experimental Data Using Experimental Lift, Drag, and Power Data

    Science.gov (United States)

    Nealon, Tara; Miller, Mark; Kiefer, Janik; Hultmark, Marcus

    2016-11-01

    Blade Element Momentum (BEM) codes have often been used to simulate the power output and loads on wind turbine blades without performing CFD. When computing the lift and drag forces on the blades, the coefficients of lift and drag are normally calculated by interpolating values from standard airfoil data based on the angle of attack. However, there are several empirical corrections that are needed. Due to a lack of empirical data to compare against, the accuracy of these corrections and BEM in general is still not well known. For this presentation, results from an in-house written BEM code computed using experimental lift and drag coefficient data for the airfoils of the V27 wind turbine will be presented. The data is gathered in Princeton University's High Reynolds Number Testing Facility (HRTF) at full scale Reynolds numbers and over a large range of angles of attack. The BEM results are compared to experimental data of the same wind turbine, conducted at full scale Reynolds number and TSR, also in the HRTF. Conclusions will be drawn about the accuracy of the BEM code, and the corrections, regarding the usage of standard airfoil data versus the experimental data, as well as future applications to potentially improve large-eddy simulations of wind turbines in a similar manner.

  7. Lift and Drag on Cylinder of Octagonal Cross-Section in a Turbulent Stream

    Directory of Open Access Journals (Sweden)

    Md. Jomir Hossain

    2013-12-01

    Full Text Available An experimental investigation of surface static pressure distributions on octagonal cylinder in uniform and turbulent flows was carried out. The study was performed on both the single cylinder and the group of two cylinders, two cylinders were used, one was at the upstream side, and the other was at the downstream side of the flow. They were placed centrally along the flow direction. The inter-spacing space between the two cylinders was varied at 1D, 2D, 3D, 4D, 5D, 6D, 7D and 8D, where D is the width of the cylinder across the flow direction. The pressure coefficients were calculated from the measured values of the surface static pressure distribution on the cylinder. Then the drag and lift coefficients were obtained from the pressure coefficients by the numerical integration method. It was observed that at various angles of attack, the values of the lift coefficients and drag coefficients were insignificant compared to those for a sharp-edged square cylinder. The strength of the vortex shedding was shown to be reduced as the intensity of the incident turbulence was increased. Measurements of drag at various angles of attack (0° to 40° showed that with increase in turbulence level the minimum drag occurred at smaller values of angle of attack.

  8. Sharp Transition in the Lift Force of a Fluid Flowing Past Nonsymmetrical Obstacles: Evidence for a Lift Crisis in the Drag Crisis Regime

    Science.gov (United States)

    Bot, Patrick; Rabaud, Marc; Thomas, Goulven; Lombardi, Alessandro; Lebret, Charles

    2016-12-01

    Bluff bodies moving in a fluid experience a drag force which usually increases with velocity. However in a particular velocity range a drag crisis is observed, i.e., a sharp and strong decrease of the drag force. This counterintuitive result is well characterized for a sphere or a cylinder. Here we show that, for an object breaking the up-down symmetry, a lift crisis is observed simultaneously to the drag crisis. The term lift crisis refers to the fact that at constant incidence the time-averaged transverse force, which remains small or even negative at low velocity, transitions abruptly to large positive values above a critical flow velocity. This transition is characterized from direct force measurements as well as from change in the velocity field around the obstacle.

  9. Sharp Transition in the Lift Force of a Fluid Flowing Past Nonsymmetrical Obstacles: Evidence for a Lift Crisis in the Drag Crisis Regime.

    Science.gov (United States)

    Bot, Patrick; Rabaud, Marc; Thomas, Goulven; Lombardi, Alessandro; Lebret, Charles

    2016-12-02

    Bluff bodies moving in a fluid experience a drag force which usually increases with velocity. However in a particular velocity range a drag crisis is observed, i.e., a sharp and strong decrease of the drag force. This counterintuitive result is well characterized for a sphere or a cylinder. Here we show that, for an object breaking the up-down symmetry, a lift crisis is observed simultaneously to the drag crisis. The term lift crisis refers to the fact that at constant incidence the time-averaged transverse force, which remains small or even negative at low velocity, transitions abruptly to large positive values above a critical flow velocity. This transition is characterized from direct force measurements as well as from change in the velocity field around the obstacle.

  10. Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel

    Science.gov (United States)

    Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian

    Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  11. In-flight lift and drag measurements on a first generation jet transport equipped with winglets

    Science.gov (United States)

    Lux, D. P.

    1982-01-01

    A KC-135A aircraft equipped with wing tip winglets was flight tested to demonstrate and validate the potential performance gain of the winglet concept as predicted from analytical and wind tunnel data. Flight data were obtained at cruise conditions for Mach numbers of 0.70, 0.75, and 0.80 at a nominal altitude of 36,000 ft. and winglet configurations of 15 deg cant/-4 deg incidence, 0 deg cant/-4 deg incidence, and baseline. For the Mach numbers tested the data show that the addition of winglets did not affect the lifting characteristics of the wing. However, both winglet configurations showed a drag reduction over the baseline configuration, with the best winglet configuration being the 15 deg cant/-4 deg incidence configuration. This drag reduction due to winglets also increased with increasing lift coefficient. It was also shown that a small difference exists between the 15 deg cant/-4 deg incidence flight and wind tunnel predicted data. This difference was attributed to the pillowing of the winglet skins in flight which would decrease the winglet performance.

  12. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    Science.gov (United States)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  13. Observations from varying the lift and drag inputs to a noise prediction method for supersonic helical tip speed propellers

    Science.gov (United States)

    Dittmar, J. H.

    1984-01-01

    Previous comparisons between calculated and measured supersonic helical tip speed propeller noise show them to have different trends of peak blade passing tone versus helical tip Mach number. It was postulated that improvements in this comparison could be made first by including the drag force terms in the prediction and then by reducing the blade lift terms at the tip to allow the drag forces to dominate the noise prediction. Propeller hub to tip lift distributions were varied, but they did not yield sufficient change in the predicted lift noise to improve the comparison. This result indicates that some basic changes in the theory may be needed. In addition, the noise predicted by the drag forces did not exhibit the same curve shape as the measured data. So even if the drag force terms were to dominate, the trends with helical tip Mach number for theory and experiment would still not be the same. The effect of the blade shock wave pressure rise was approxmated by increasing the drag coefficient at the blade tip. Predictions using this shock wdave approximation did have a curve shape similar to the measured data. This result indicates that the shock pressure rise probably controls the noise at supersonic tip speed and that the linear prediction method can give the proper noise trend with Mach number.

  14. Lift, Drag and Flow-field Measurements around a Single-degree-of-freedom Toy Ornithopter

    Science.gov (United States)

    Chavez Alarcon, Ramiro; Balakumar, B. J.; Allen, James

    2010-11-01

    The aerodynamics of a flight-worthy toy ornithopter under laminar inflow conditions are studied using a combination of load cell, flow visualization, high speed camera and PIV experiments. All the experiments were performed in the large wind tunnel facility at New Mexico State University, with the exception of a free flight test of the model. Measurements from a six-axis load cell were used to capture the variation of the lift and drag forces at various angles of attack, flapping frequencies and free-speed velocities. Smoke visualization is used to clearly demonstrate that the momentum flux in the downward direction during downstroke exceeds the upward momentum flux during upstroke due to the flexion of the wing and its angle of attack. This net surplus creates the lift in such ornithopter designs despite the stroke symmetry. PIV measurements are then performed at suitable locations to identify flow structures around the wing at various spanwise locations. A control volume analysis is performed to compare the momentum deficit in the wake to the load cell measurements.

  15. A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    Science.gov (United States)

    Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.; Kinney, David J.; Theisinger, John E.

    2017-01-01

    Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.

  16. Lift and Drag Control on a Lambda Wing Using Leading-Edge Slot Pulsation of Various Wave Forms

    Science.gov (United States)

    Bouras, Constantinos; Nagib, Hassan; Durst, Franz; Heim, Ulrich

    2000-11-01

    Direct force measurements of lift and drag for a three-dimensional wing with a lambda-shaped planform are made in the Fejer Wind Tunnel at IIT using high angles of attack with and without various unsteady forcing conditions through a leading-edge slot. In addition to changing the pulsation frequency in the range of 2--200 Hz, the waveform was varied between sinusoidal, triangular and square shapes. This was made possible by a novel device called Luftikus, designed and manufactured by Dragerwerke GmbH, Lubeck, Germany, and originally tested at the Fluid Mechanics Institute (LSTM), Erlangen University, Germany. Substantial enhancements in the lift and the lift-to-drag ratio are achieved over a wide range of forcing frequencies with an optimum improvement at a particular dimensionless frequency scaling with the freestream speed and a representative chord length. However, the variation of the shape of the waveform does not lead to significant changes.

  17. Theoretical-Numerical Study of Feasibility of Use of Winglets on Low Aspect Ration Wings at Subsonic and Transonic Mach Numbers to Reduce Drag

    Science.gov (United States)

    Kuhlman, John M.; Liaw, Paul; Cerney, Michael J.

    1988-01-01

    A numerical design study was conducted to assess the drag reduction potential of winglets installed on a series of low aspect ratio wings at a design point of M=0.8, C sub L=0.3. Wing-winglet and wing-alone design geometries were obtained for wings of aspect ratios between 1.75 and 2.67, having leading edge sweep angles between 45 and 60 deg. Winglet length was fixed at 15% of wing semispan. To assess the relative performance between wing-winglet and wing-alone configurations, the PPW nonlinear extended small disturbance potential flow code was utilized. This model has proven to yield plausible transonic flow field simulations for the series of low aspect ratio configurations selected. Predicted decreases in pressure drag coefficient for the wing-winglet configurations relative to the corresponding wing-alone planform are about 15% at the design point. Predicted decreases in wing-winglet total drag coefficient are about 12%, relative to the corresponding wing-alone design. Longer winglets (25% of the wing semispan) yielded decreases in the pressure drag of up to 22% and total drag of up to 16.4%. These predicted drag coefficient reductions are comparable to reductions already demonstrated by actual winglet designs installed on higher aspect ratio transport type aircraft.

  18. Lift and drag in three-dimensional steady viscous and compressible flow

    CERN Document Server

    Liu, Luoqin; Kang, Linlin; Wu, Jiezhi

    2016-01-01

    In a recent paper, Liu, Zhu & Wu (2015, J. Fluid Mech. 784: 304; LZW for short) present a far-field theory for the aerodynamic force experienced by a body in a two-dimensional, viscous, compressible and steady flow. In this companion theoretical paper we do the same for three-dimensional flow. By a rigorous fundamental solution method of the linearized Navier-Stokes equations, we not only improve the far-field force formula for incompressible flow originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, but also prove that this final form holds universally true in a wide range of compressible flow, from subsonic to supersonic flows. We call this result the unified force theorem (UF theorem for short) and state it as a theorem, which is exactly the counterpart of the two-dimensional compressible Joukowski-Filon theorem obtained by LZW. Thus, the steady lift and drag are always exactly determined by the values of vector circula...

  19. Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels

    Science.gov (United States)

    Spera, David A.

    2008-01-01

    Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

  20. Computation of drag and lift coefficients for simple two-dimensional objects with Reynolds number Re = 420 000

    Directory of Open Access Journals (Sweden)

    Matas Richard

    2012-04-01

    Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.

  1. Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions

    Science.gov (United States)

    Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.; hide

    2012-01-01

    vehicle stage return, thus making ideas reality. These paradigm shifts include the technology maturation of advanced flexible thermal protection materials onto mid lift-to-drag ratio entry vehicles, the development of integrated supersonic aero-propulsive maneuvering, and the implementation of advanced asymmetric launch shrouds. These paradigms have significant overlap with launch vehicle stage return already being developed by the Air Force and several commercial space efforts. Completing the realization of these combined paradigms holds the key to a high-performing entry vehicle system capability that fully leverages multiple technology benefits to accomplish NASA's Exploration missions to atmospheric planetary destinations.

  2. Free-Flight Zero-Lift Drag Results from a 1/5-Scale Model and Several Small-Scale Equivalent Bodies of Revolution of the Convair F-102 Configuration at Mach Numbers up to 1.34

    Science.gov (United States)

    Wallskog, Harvey A.

    1954-01-01

    A 1/5-scale, rocket-propelled model of the Convair F-102 configuration was tested in free flight to determine zero-lift drag at Mach numbers up to 1.34 and at Reynolds numbers comparable to those of the full-scale airplane. This large-scale model corresponded to the prototype airplane and had air flow through the duct. Additional zero-lift drag tests involved a series of small equivalent bodies of revolution which were launched by means of a helium gun. The several small-scale models tested corresponded to: the basic configuration, the 1/5-scale rocket-propelled model configuration, a 2-foot (full-scale) fuselage-extension configuration, and a 7-foot (full-scale) fuselage-extension configuration. Models designed to correspond to the area distribution at a Mach number of 1.0 were flown for each of these 'shapes and, in addition, models designed to correspond to the area distribution at a Mach number of 1.2 were flown for the 1/5-scale rocket-propelled model and the 7-foot-fuselage-extension configuration. The value of external pressure drag coefficient (including base drag) obtained from the large-scale rocket model was 0.0190 at a Mach number of 1..05 and the corresponding values from the equivalent-body tests varied from 0.0183 for the rocket-propelled model shape to 0.0137 for the 7-foot-fuselage-extension configuration. From the results of tests of equivalent bodies designed to correspond to the area distribution at a Mach number of 1.0, it is evident that the small changes in shape incorporated in the basic and 2-foot-fuselage-extension configurations from that of the rocket-propelled model configuration will provide no significant change in pressure drag. On the other hand, the data from the 7-foot-fuselage-extension model indicate a substantial reduction in pressure drag at transonic speeds.

  3. Survey and analysis of research on supersonic drag-due-to-lift minimization with recommendations for wing design

    Science.gov (United States)

    Carlson, Harry W.; Mann, Michael J.

    1992-01-01

    A survey of research on drag-due-to-lift minimization at supersonic speeds, including a study of the effectiveness of current design and analysis methods was conducted. The results show that a linearized theory analysis with estimated attainable thrust and vortex force effects can predict with reasonable accuracy the lifting efficiency of flat wings. Significantly better wing performance can be achieved through the use of twist and camber. Although linearized theory methods tend to overestimate the amount of twist and camber required for a given application and provide an overly optimistic performance prediction, these deficiencies can be overcome by implementation of recently developed empirical corrections. Numerous examples of the correlation of experiment and theory are presented to demonstrate the applicability and limitations of linearized theory methods with and without empirical corrections. The use of an Euler code for the estimation of aerodynamic characteristics of a twisted and cambered wing and its application to design by iteration are discussed.

  4. Transonic Aerodynamic Characteristics of a Model of a Proposed Six-Engine Hull-Type Seaplane Designed for Supersonic Flight

    Science.gov (United States)

    Wornom, Dewey E.

    1960-01-01

    Force tests of a model of a proposed six-engine hull-type seaplane were performed in the Langley 8-foot transonic pressure tunnel. The results of these tests have indicated that the model had a subsonic zero-lift drag coefficient of 0.0240 with the highest zero-lift drag coefficient slightly greater than twice the subsonic drag level. Pitchup tendencies were noted for subsonic Mach numbers at relatively high lift coefficients. Wing leading-edge droop increased the maximum lift-drag ratio approximately 8 percent at a Mach number of 0.80 but this effect was negligible at a Mach number of 0.90 and above. The configuration exhibited stable lateral characteristics over the test Mach number range.

  5. Active Drag-Reducing Technique Using Bumps on Transonic Wings%跨音速机翼采用鼓包主动减阻技术研究

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Research on shock wave drag-reducing using two dimensional and three dimensional bumps is performed, including comparisons on wings of large aircraft. The mechanism of bump drag-reducing is researched via supercritical airfoil profile, and geometrical shape and location of bump are optimized. The research results show that location, shape and serial distribution of bump have significant effects on drag-reducing for wings. Finally, the drag-reducing technique using bumps is applied to the large aircraft. As a result, the presented technique reduces shock wave drag to a great extent, increases the ratio of lift to drag, and improves aerodynamic efficiency of the aircraft.%对二维、三维鼓包进行激波控制减阻,并在大型客机的机翼上进行了对比研究。在研究鼓包减阻的机理时,采用了超临界翼型,鼓包的几何形状及鼓包位置的优化也进行了研究。研究结果表明,鼓包位置、形状及串列式分布对机翼的减阻影响较大。最后把得到的研究结果应用到大型飞机的激波减阻上,结果表明,该方法能较大程度地减小激波阻力,进而提高飞机的升阻比,提高飞机的气动效率。

  6. Lift, drag and flow-field measurements around a small ornithopter

    Energy Technology Data Exchange (ETDEWEB)

    Balakumar, B J [Los Alamos National Laboratory; Chavez - Alarcon, Ramiro [NMSU; Shu, Fangjun [NMSU

    2011-01-12

    The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in the wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.

  7. A method for calculating the lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Nielsen, Jack N; Kaattari, George E; Anastasio, Robert F

    1953-01-01

    A method is presented for calculating the lift and pitching-moment characteristics of circular cylindrical bodies in combination with triangular, rectangular, or trapezoidal wings or tails through the subsonic, transonic, and supersonic speed ranges. The method covers unbanked wings, sweptback leading edges or sweptforward trailing edges, low angles of attack, and the effects of wing and tail incidence. The wing-body interference is handled by the method presented in NACA RM's A51J04 and A52B06, and the wing-tail interference is treated by assuming one completely rolled-up vortex per wing panel and evaluating the tail load by strip theory. A computing table and set of design charts are presented which reduce the calculations to routine operations. Comparison is made between the estimated and experimental characteristics for a large number of wing-body and wing-body-tail combinations. Generally speaking, the lifts were estimated to within plus-or-minus 10 percent and the centers of pressure were estimated to within plus-or-minus 0.02 of the body length. The effect of wing deflection on wing-tail interference at supersonic speeds was not correctly predicted for triangular wings with supersonic leading edges.

  8. Experimental study of the lift and drag characteristics of a cascade of flat plates in a configuration of interest for tidal energy converters

    Science.gov (United States)

    Fedoul, Faical; Parras, Luis; Del Pino, Carlos; Fernandez-Feria, Ramon

    2012-11-01

    Wind tunnel experiments are conducted for the flow around both a single flat plate and a cascade of three parallel flat plates at different angles of incidence to compare their lift and drag coefficients in a range of Reynolds number about 105, and for two values of the aspect ratio of the flat plates. The selected cascade configuration is of interest for a particular type of tidal energy converter. The lift and drag characteristics of the central plate in the cascade are compared to those of the isolated plate, finding that there exist an angle of incidence, which depends on the Reynolds number and the aspect ratio, above which the effective lift of the plate in the cascade becomes larger than that of an isolated plate. These experimental results, which are also analyzed in the light of theoretical predictions, are used as a guide for the design of the optimum configuration of the cascade which extracts the maximum power from a tidal current for a given value of the Reynolds number. Supported by the Ministerio de Ciencia e Innovacion (Spain) Grant no. ENE2010-16851.

  9. TRO-2D - A code for rational transonic aerodynamic optimization

    Science.gov (United States)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  10. A Method for Longitudinal and Lateral Range Control for a High-Drag Low-Lift Vehicle Entering the Atmosphere of a Rotating Earth

    Science.gov (United States)

    Young, John W.

    1961-01-01

    A study has been made of a method for controlling the trajectory of a high-drag low-lift entry vehicle to a desired longitude and latitude on the surface of a rotating earth. By use of this control technique the vehicle can be guided to the desired point when the present position and heading of the vehicle are known and the desired longitude and latitude are specified. The present study makes use of a single reference trajectory and an estimate of the lift and side-force capabilities of the vehicle. This information is stored in a control-logic system and used with linear control equations to guide the vehicle to the desired destination. Results are presented of a number of trajectory studies which describe the operation of the control system and illustrate its ability to control the vehicle trajectory to the desired landing area.

  11. A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings

    Science.gov (United States)

    Yates, John E.

    1991-01-01

    A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.

  12. DLR-F6复杂组合体跨声速阻力计算研究%Study of transonic drag computation on the DLR-F6 complex configurations

    Institute of Scientific and Technical Information of China (English)

    张宏; 颜洪

    2013-01-01

    The accuracy of the drag prediction was investigated by simulating the transonic flow fields around the DLR-F6 wing-body (WB) and wing-body-nacelle-pylon (WBNP) configurations. The computations were performed using fully turbulence boundary-layer and fixed position transition boundary-layer respectively. Multiple sets of grids with different densities were then employed. The drag, drag increments by adding the nacelle and the pylon and the effects of grid and transition were also estimated. The results show that grid refinement leads to convergent results for two configurations, and the predicted surface pressure distributions on the wing and nacelle are in agreement with the experimental data. When comparing the experiment data, the predicted incremental drag was over estimated by about 3 drag counts, 0.000 3, but better than the results obtained by using other software. The computed results show that grid refinement had little effect on the wall surface pressure distributions, but obvious effect on drag, especially the pressure drag. Relative to the whole turbulence model, transition had obvious effect on drag, particularly on friction drag, but almost no effect on nacelle/pylon induced incremental drag.%为了考察阻力预测的准确性,评估挂架/吊舱引起的阻力增量,分析网格和转捩对阻力及阻力增量的影响,采用不同密度网格,对DLR-F6翼/身和翼/身/挂/舱组合体跨声速流场进行了全湍流和固定转捩2种方式的数值模拟.翼/身和翼/身/挂/舱组合体均得到了网格收敛性结果,机翼表面和吊舱表面压力分布与实验数据吻合良好.预测的阻力增量高出实验数据0.0003,优于其他软件的结果.网格细分对壁面压力分布影响较小,对阻力尤其是压差阻力影响较大;相对于全湍流,转捩对阻力尤其是摩擦阻力影响较大,对挂架/吊舱引起的阻力增量几乎没有影响.

  13. Experimental Investigation of the Effects of Various Plasma Actuator Configurations on Lift and Drag Coefficients of a Circular Cylinder Including the Effects of Electrodes

    Institute of Scientific and Technical Information of China (English)

    Siavash TABATABAEIAN; Masoud MIRZAEI; Asghar SADIGHZADEH; Vahid DAMIDEH; Abdollah SHADARAM

    2012-01-01

    In this paper,the effects of the existence of plasma actuator electrodes and also various configurations of the actuator for controlling the flow field around a circular cylinder are experimentally investigated.The cylinder is made of PVC (Polyvinyl Chloride) and considered as a dielectric barrier.Two electrodes are flush-mounted on the surface of the cylinder and are connected to a DC high voltage power supply for generation of electrical discharge.Pressure distribution results show that the existence of the electrodes and also the plasma are able to change the pressure distribution around the cylinder and consequently the lift and drag coefficients.It is found that the effect of the existence of the electrodes is comparable with the effect of plasma actuator in controlling the flow field around the cylinder and this effect is not reported by other researchers.Eventually it is concluded that the existence of the electrodes or any extra objects on the cylinder and also the existence of the plasma are capable of changing the flow field structure around the cylinder so that the behavior of the lift and drag coefficients of the cylinder will be changed significantly.

  14. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; Morrison, Joseph H.; Mavriplis, Dimitri J.; Murayama, Mitcuhiro

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  15. Stochastic Modeling of Lift and Drag Dynamics to Obtain Aerodynamic Forces with Local Dynamics on Rotor Blade under Unsteady Wind Inflow

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan Luhur

    2014-01-01

    Full Text Available This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes

  16. Computing the sensitivity of drag and lift in flow past a circular cylinder: Time-stepping versus self-consistent analysis

    Science.gov (United States)

    Meliga, Philippe

    2017-07-01

    which relevant information can be gained from a hybrid modeling computing self-consistent sensitivities from the postprocessing of DNS data. Application to alternative control objectives such as increasing the lift and alleviating the fluctuating drag and lift is also discussed.

  17. Change in the Aerodynamic Characteristics of an Aerofoil as a Result of the One-Sided Force Action of its Surface Segment on the Transonic Flow Around it

    Science.gov (United States)

    Zamuraev, V. P.; Kalinina, A. P.

    2017-05-01

    Mathematical simulation of the forced vibrations of a surface segment on one side of an aerofoil on the shock wave formed in the transonic flow around it has been performed. The influence of the vibrations of this segment in a wide frequency range on the quantitative and qualitative characteristics of the wave drag and lift of the aerofoil were investigated for the case of maximum amplitude of oscillations of the velocity of movement of the vibrating segment of the aerofoil, close to the velocity of the incident flow. It is shown that an additional lifting force arises in this case.

  18. Flight and wind-tunnel measurements showing base drag reduction provided by a trailing disk for high Reynolds number turbulent flow for subsonic and transonic Mach numbers

    Science.gov (United States)

    Powers, Sheryll Goecke; Huffman, Jarrett K.; Fox, Charles H., Jr.

    1986-01-01

    The effectiveness of a trailing disk, or trapped vortex concept, in reducing the base drag of a large body of revolution was studied from measurements made both in flight and in a wind tunnel. Pressure data obtained for the flight experiment, and both pressure and force balance data were obtained for the wind tunnel experiment. The flight test also included data obtained from a hemispherical base. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93 and to Reynolds numbers up to 80 times greater than for earlier studies. For the trailing disk data from the flight experiment, the maximum decrease in base drag ranged form 0.08 to 0.07 as Mach number increased from 0.70 to 0.93. Aircraft angles of attack ranged from 3.9 to 6.6 deg for the flight data. For the trailing disk data from the wind tunnel experiment, the maximum decrease in base and total drag ranged from 0.08 to 0.05 for the approximately 0 deg angle of attack data as Mach number increased from 0.30 to 0.82.

  19. Transonic flow of moist air around an NACA 0012 airfoil with non-equilibrium condensation

    Institute of Scientific and Technical Information of China (English)

    LI Liang; SUN Xiuling; FENG Zhenping; LI Guojun

    2005-01-01

    The classical condensation model of water vapor is coupled with the Euler equations to calculate transonic flows of moist air with non-equilibrium condensation. By means of this model, numerical computations are implemented to investigate the aerodynamic characteristics of an NACA 0012 airfoil in transonic flows of moist air at various angles of attack and relative humidities, and the results are compared with those in dry air flows. For different angles of attack considered at 50 % relative humidity, the lift decreases 30 % -40 %.The pressure drag increases when the angle of attack is smaller than 1.4° and decreases when higher than 1.4°. At zero angle of attack,with the relative humidity rising from zero to 90 %, the pressure drag increases exponentially. At 90 % relative humidity, the pressure drag increases 160 %, and self-oscillation takes place periodically and alternately over the upper and lower surfaces of the airfoil. The oscillation is caused by the interactions of local supersonic flow and heat release in the condensation process.

  20. Impacts Study of Joined Wing Aircraft Main Conifguration Parameter on Lift-drag Characteristic%联结翼飞机主要布局参数对全机升阻特性影响研究

    Institute of Scientific and Technical Information of China (English)

    尹钧; 曹义华; 许正宇

    2015-01-01

    Advantages claimed for the joined wing aircraft include: light weight, high stiffness, low induced drag, and so on. This paper adopted the vortex lattice method to research and compare the impact of some geometric parameter changes which include the sweep angle of the front wing, the joined location of the front wing and the rear wing, the height difference of the front wing and rear wing on lift coefifcient, drag coefifcient and the maximum lift-to-drag ratio. The results obtained can be used as a guidance for the aerodynamic parameters design of the joined wing aircraft.%联结翼飞机具有重量轻、刚度大、诱导阻力低等优势。采用涡格法,研究联结翼主要布局参数(前翼后掠角、前后翼展向连接点位置、前后翼垂直方向高度差)的变化对升力系数、阻力系数和最大升阻比的影响。所得计算结果对联结翼飞机气动布局参数的确定具有参考价值。

  1. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 3: Cost estimates and work breakdown structure/dictionary, phase 1 and 2

    Science.gov (United States)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.

  2. Drag and lift induced by the flow of viscoelastic fluids past a minute cylinder near a wall; Hekimen kinbo no bisho enchu wo sugiru nendansei ryutai no nagare ni yoru koryoku to yoryoku

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H.; Hasegawa, T.; Narumi, T. [Niigata University, Niigata (Japan). Faculty of Engineering; Tamano, K. [Mitsubishi Electric Corp., Tokyo (Japan)

    1995-02-25

    In detergent engineering and polymer processing, it is important to study the force exerted on an obstacle placed near a wall. In the present study, we numerically analyze the flow of viscoelastic fluids past a minute cylinder which is set at or near an inside wall of a two-dimensional channel. The upper convected Maxwell model and the finite-element method are used as the constitutive equation and the numerical method, respectively. Drag and lift of the cylinder are calculated for low Reynolds numbers (Re) and various Weissenberg numbers (Wi) of positive and negative values. Drag coefficient (C{sub D}) slightly changes with Wi. Lift coefficient (C{sub L}) monotonously decreases with increasing Wi irrespective of the sign of Wi. C{sub L} is greatly changed with Wi and is more sensitive to the elasticity of the fluid than C{sub D}. C{sub D} and C{sub L} decrease as the cylinder is separated from the wall. 11 refs., 12 figs.

  3. A study of transonic aerodynamic analysis methods for use with a hypersonic aircraft synthesis code

    Science.gov (United States)

    Sandlin, Doral R.; Davis, Paul Christopher

    1992-01-01

    A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport.

  4. Refined AFC-Enabled High-Lift System Integration Study

    Science.gov (United States)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed

  5. Transonic flow theory of airfoils and wings

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, P R

    1976-01-01

    Supercritical wing technology is expected to have a significant influence on the next generation of commercial aircraft. Computational fluid dynamics is playing a central role in the development of new supercritical wing sections. One of the principal tools is a fast and reliable code that simulates two-dimensional wind tunnel data for transonic flow at high Reynolds numbers. This is used widely by industry to assess drag creep and drag rise. Codes for the design of shockless airfoils by the hodograph method have not been so well received because they usually require a lot of trial and error. However, a more advanced mathematical approach makes it possible to assign the pressure as a function of the arc length and then obtain a shockless airfoil that nearly achieves the given distribution of pressure. This tool should enable engineers to design families of transonic airfoils more easily both for airplane wings and for compressor blades in cascade.

  6. Breast lift

    Science.gov (United States)

    Mastopexy; Breast lift with reduction; Breast lift with augmentation ... enlargement with implants) when they have a breast lift. ... it for medical reasons. Women usually have breast lifts to lift sagging, loose breasts. Pregnancy, breastfeeding, and ...

  7. The role of drag in insect hovering.

    Science.gov (United States)

    Wang, Z Jane

    2004-11-01

    Studies of insect flight have focused on aerodynamic lift, both in quasi-steady and unsteady regimes. This is partly influenced by the choice of hovering motions along a horizontal stroke plane, where aerodynamic drag makes no contribution to the vertical force. In contrast, some of the best hoverers--dragonflies and hoverflies--employ inclined stroke planes, where the drag in the down- and upstrokes does not cancel each other. Here, computation of an idealized dragonfly wing motion shows that a dragonfly uses drag to support about three quarters of its weight. This can explain an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be small. To investigate force generation and energy cost of hovering flight using different combination of lift and drag, I study a family of wing motion parameterized by the inclined angle of the stroke plane. The lift-to-drag ratio is no longer a measure of efficiency, except in the case of horizontal stroke plane. In addition, because the flow is highly stalled, lift and drag are of comparable magnitude, and the aerodynamic efficiency is roughly the same up to an inclined angle about 60 degrees , which curiously agrees with the angle observed in dragonfly flight. Finally, the lessons from this special family of wing motion suggests a strategy for improving efficiency of normal hovering, and a unifying view of different wing motions employed by insects.

  8. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  9. Analysis of a theoretically optimized transonic airfoil

    Science.gov (United States)

    Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.

    1978-01-01

    Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.

  10. 升阻互补型垂直轴风轮的结构动态分析%Structural dynamic analysis of lift-drag complementary vertical axis wind wheel

    Institute of Scientific and Technical Information of China (English)

    顾圣东; 葛海明; 王小龙

    2012-01-01

    In order to avoid the system damage and noise pollution caused by resonance of the wind turbine system, and to improve the durability and economy of wind turbine blades, the finite element method was used to obtain the dynamic characteristics and mechanical properties of the lift-drag complementary vertical axis wind turbine through analysis 6f the dynamic characteristics of the system. The results show that the beams are easily damaged and require high structural strength and fatigue resistance. Replacement of materials and dimensions for six beams increased the maximum allowable stress, improved the safety factor of the wind turbine, and enabled the avoidance of the rotating blade at a low frequency ranging between the first-and second-order natural frequency. The lift-type blade was affected by the alternating load of the approximate sine function. The blade surface was mainly affected by tensile stress and was prone to fatigue failure. In terms of blade overlay, an increase of 0 ° of the fiber layer thickness could enable the blade to withstand a larger tensile stress.%为了避免风力发电机系统的共振而导致的系统损坏和噪音污染,并提高风力发电机叶片的耐用性与经济性,借助有限元计算方法,通过系统动态特性分析,得到了升阻互补型垂直轴风轮的动态特性及叶片的受力特性.结果显示,横梁是叶片支撑上容易出现危险的区域,其结构强度和抗疲劳度要求较高.在更换6根横梁的材料和尺寸之后,增加了其最大许用应力值,提高了风力发电机的安全系数,避免了风轮叶片支撑在低速旋转时频率游走于风轮第1,2阶固有频率之间的问题.升力型叶片受到近似于正弦函数的交变荷载,叶片表面主要受到拉应力的作用并且容易产生疲劳破坏.叶片在铺层时,增加0 °纤维层的厚度可以使叶片抵抗更大的拉应力.

  11. Tornado lift

    CERN Document Server

    Ivanchin, Alexander

    2010-01-01

    It is shown that one of the causes for tornado is Tornado Lift. At increasing vortex diameter its kinetic energy decreases to keep the moment of momentum constant. A kinetic energy gradient of such vortex is Tornado Lift. Evaluation shows that contribution of Tornado Lift in air lifting in a tornado is comparable to buoyancy according to the order of magnitude.

  12. Lifting operations and lifting equipment

    NARCIS (Netherlands)

    Douwes, M.

    2013-01-01

    Lifting operations are inherent to many occupations in the construction industry. They can be performed manually or using lifting equipment. Both manual lifting and mechanical lifting operations can put construction workers at great risk of injury or health symptoms causing sick leave or disability.

  13. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  14. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  15. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  16. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  17. Investigations of transonic buffet control on civil aircraft wing with the use of tangential jet blowing

    Science.gov (United States)

    Abramova, K. A.; Petrov, A. V.; Potapchick, A. V.; Soudakov, V. G.

    2016-10-01

    Numerical and experimental investigations of transonic buffet control by tangential jet blowing are presented. To suppress the shock-induced boundary layer separation and the buffet at transonic speeds, compressed air jet is blown through a small slot nozzle tangentially to the upper surface of the supercritical airfoil. Numerical simulations were carried out on the basis of the unsteady Reynolds averaged Navier-Stokes (URANS) equations. Experimental studies of the tangential jet blowing were performed in the transonic wind tunnel T-112 of TsAGI. Results show that the jet moves the shock downstream, increases lift, suppresses flow separation under shock foot and delays buffet onset.

  18. Buttock Lift

    Science.gov (United States)

    Tests and Procedures Buttock lift By Mayo Clinic Staff A buttock lift is a cosmetic surgical procedure to improve the appearance of the buttocks. It's ... part of a belt lipectomy or lower body lift to contour the buttocks, groin, thighs and abdomen. ...

  19. Gastronomiske drags

    DEFF Research Database (Denmark)

    Leer, Jonatan

    2013-01-01

    with Jennifer Parson and Clarissa Dickson Wright (1996-1999). I will argue that the two self-declared fat women can be read as “gastronomic drags” by their transgression of a “recognizable” feminine way of “doing food”. The article is theoretically informed by the reflections on drag as subversive practice...... of appearing either too radical or not radical enough. The article concludes with some reflections on the development of the cooking show as a site for gendered negotiation from the 90’s and today....

  20. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2014-06-01

    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  1. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    Science.gov (United States)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  2. CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration

    Science.gov (United States)

    Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino

    2016-01-01

    A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.

  3. Afterbody Drag. Volume 3. Literature Survey.

    Science.gov (United States)

    1980-06-01

    34 AGARD, Otta- wa, June 1955. 34. Faru, I., "Experimental Determination of Base Pressures at Supersonic Velocities." Bumblebee Report 106, Johns ...Taylor Model Basin Aero Report 857, January 1954. 68. Pietrangeli, G.J., "The Determination of Afterbody Drag at Transonic Speeds." Johns Hopkins...34 NASATND-7095, 1972. Coltrane , L.C., "Investigation of Two Bluff Shapes in Axial Free Flight Over a Mach Number Range from 0.35 to 2.15." NACARM L58A16

  4. Induce Drag Reduction of an Airplane Wing

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available This work describes the aerodynamic characteristics for aircraft wing model with and without slotted winglet. When an aircraft moves forward with a high speed then a small circulatory motion of air is created at the wingtip due to the pressure difference between the upper and lower surface of the wing is called vortices. This circulatory fluid tends to leak from lower to upper surface of wing which causes downward motion is called “downwash” and generates a component of the local lift force in the direction of the free stream called induced drag. Downwash causes reduction of lift and contribute induced drag to the total drag. Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption, larger operational range, greater endurance and higher achievable speeds. An experimental study is conducted to examine the potentiality of slotted winglet for the reduction of induced drag, and for the improvement of lift coefficient without increasing the span of aircraft wing. The model composed of a swept wing built from NACA 0012 airfoil. The test conducted in subsonic wind tunnel of 1m×1m rectangular test section at flow speed 25m/s placing the wing without winglet, wing with winglet at 30° inclination, wing with winglet at 60° inclination, and wing with winglet at 70° inclination at angle of attack ranging from 0 to 16 degree. The test result shows 20- 25% reduction in drag coefficient and 10-20% increase in lift coefficient by using slotted winglet.

  5. Constraining the Drag Coefficients of Meteors in Dark Flight

    Science.gov (United States)

    Carter, R. T.; Jandir, P. S.; Kress, M. E.

    2011-01-01

    Based on data in the aeronautics literature, we have derived functions for the drag coefficients of spheres and cubes as a function of Mach number. Experiments have shown that spheres and cubes exhibit an abrupt factor-of-two decrease in the drag coefficient as the object slows through the transonic regime. Irregularly shaped objects such as meteorites likely exhibit a similar trend. These functions are implemented in an otherwise simple projectile motion model, which is applicable to the non-ablative dark flight of meteors (speeds less than .+3 km/s). We demonstrate how these functions may be used as upper and lower limits on the drag coefficient of meteors whose shape is unknown. A Mach-dependent drag coefficient is potentially important in other planetary and astrophysical situations, for instance, in the core accretion scenario for giant planet formation.

  6. Transonic Stability Test of Variable Drag Ballute Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ballutes, or inflatable decelerators, offer significant advantages over rigid shells for aerocapture of planetary spacecraft and for earth reentry of cargo by...

  7. Transonic Stability Test of Variable Drag Ballute Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low cost, reliable atmospheric entry technology is needed to support NASA cargo recovery from the ISS, earth return of small payloads, planetary aerocapture, and...

  8. On the Minimum Induced Drag of Wings

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  9. Transonic swirling nozzle flow

    Science.gov (United States)

    Keith, Theo G., Jr.; Pawlas, Gary E.

    1991-06-01

    A numerical model of viscous transonic swirling flow in axisymmetric nozzles is developed. MacCormack's implicit Gauss-Seidel method is applied to the thin-layer Navier-Stokes equations in transformed coordinates. Numerical results are compared with experimental data to validate the method. The effect of swirl and viscosity on nozzle performance are demonstrated by examining wall pressures, Mach contours, and integral parameters.

  10. Eyelid lift

    Science.gov (United States)

    Eyelid lift surgery is done to repair sagging or drooping upper eyelids ( ptosis ). The surgery is called blepharoplasty. Sagging or drooping eyelids occur with increasing age. Some people are born with ...

  11. Development of a Marine Propeller With Nonplanar Lifting Surfaces

    DEFF Research Database (Denmark)

    Andersen, Poul; Friesch, Jürgen; Kappel, Jens J.

    2005-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or winglet at the wingtip has been developed for aircraft, the application of the nonplanar principle to marine propellers, dealt...

  12. A finite-difference method for transonic airfoil design.

    Science.gov (United States)

    Steger, J. L.; Klineberg, J. M.

    1972-01-01

    This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.

  13. Leading-Edge Vortex lifts swifts

    NARCIS (Netherlands)

    Videler, JJ; Stamhuis, EJ; Povel, GDE

    2004-01-01

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Inter

  14. Measuring Lift with the Wright Airfoils

    Science.gov (United States)

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  15. Numerical Study of Transition of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-09-01

    Full Text Available The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can eliminate the oscillations. The characteristics of momentum drag of the single-stage fans in transition are similar to that of the two-stage fans, but with the peak of drag lowered from 0.63 to 0.4 of the aircraft weight. The strategy to start transition from a negative angle of attack −21° further reduces the peak of drag to 0.29 of the weight. The strategy also reduces the peak of pitching torque, which needs upward extra thrusts of 0.39 of the weight to eliminate. The peak of rolling moment in transition needs differential upward thrusts of 0.04 of the weight to eliminate. The requirements for extra thrusts in transition lead to a total thrust–weight ratio of 0.7, which makes the aircraft more efficient for high speed cruise flight (higher than 0.7 Ma.

  16. Hydrofoils: optimum lift-off speed for sailboats.

    Science.gov (United States)

    Baker, R M

    1968-12-13

    For a hydrofoil sailboat there is a unique optimum lift-off speed. Before this speed is reached, if there are no parasitic vertical hydrofoil appendages, the submerged or partially submerged hydrofoils increase drag and degrade performance. As soon as this speed is reached and the hydrofoils are fully and promptly deployed, the performance of a hydrofoil-borne craft is significantly improved. At speeds exceeding optimum lift-off speed, partially submerged hydrofoils impair performance if there is no significant effect of loading on the hydrofoil lift-to-drag ratio.

  17. Airfoil design: Finding the balance between design lift and structural stiffness

    DEFF Research Database (Denmark)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup......, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared...... to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were...

  18. Lift estimation of Half-Rotating Wing in hovering flight

    Science.gov (United States)

    Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.

    2016-11-01

    Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.

  19. Transonic unsteady airloads on an energy efficient transport wing with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.; Cunningham, H. J.

    1980-01-01

    An aspect ratio 10.8 supercritical wing with oscillating control surfaces is described. The wing is instrumental with 252 static orifices and 164 in situ dynamic pressure transducers for studying the effects of control surface deflection on steady and unsteady pressures at transonic speeds. Results from initial wind tunnel tests conducted in the Langley Transonic Dynamics Tunnel are discussed. Unsteady pressure results are presented for two trailing edge control surfaces oscillating separately at the design Mach number of 0.78. Some experimental results are compared with analytical results obtained by using linear lifting surface theory.

  20. VTOL to Transonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and...

  1. Evaluation of 3 numerical methods for propulsion integration studies on transonic transport configurations

    Science.gov (United States)

    Yaros, S. F.; Carlson, J. R.; Chandrasekaran, B.

    1986-01-01

    An effort has been undertaken at the NASA Langley Research Center to assess the capabilities of available computational methods for use in propulsion integration design studies of transonic transport aircraft, particularly of pylon/nacelle combinations which exhibit essentially no interference drag. The three computer codes selected represent state-of-the-art computational methods for analyzing complex configurations at subsonic and transonic flight conditions. These are: EULER, a finitie volume solution of the Euler equation; VSAERO, a panel solution of the Laplace equation; and PPW, a finite difference solution of the small disturbance transonic equations. In general, all three codes have certain capabilities that allow them to be of some value in predicting the flows about transport configurations, but all have limitations. Until more accurate methods are available, careful application and interpretation of the results of these codes are needed.

  2. Evaluation of three numerical methods for propulsion integration studies on transonic transport configurations

    Science.gov (United States)

    Yaros, Steven F.; Carlson, John R.; Chandrasekaran, Balasubramanyan

    1986-01-01

    An effort has been undertaken at the NASA Langley Research Center to assess the capabilities of available computational methods for use in propulsion integration design studies of transonic transport aircraft, particularly of pylon/nacelle combinations which exhibit essentially no interference drag. The three computer codes selected represent state-of-the-art computational methods for analyzing complex configurations at subsonic and transonic flight conditions. These are: EULER, a finite volume solution of the Euler equation; VSAERO, a panel solution of the Laplace equation; and PPW, a finite difference solution of the small disturbance transonic equations. In general, all three codes have certain capabilities that allow them to be of some value in predicting the flows about transport configurations, but all have limitations. Until more accurate methods are available, careful application and interpretation of the results of these codes are needed.

  3. Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; Murayama, Mitsuhiro

    2008-01-01

    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.

  4. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Double Delta Wing Model at Subsonic and Transonic Speeds

    Science.gov (United States)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2006-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to study the effect of wing fillets on the global vortex induced surface static pressure field about a sharp leading-edge 76 deg./40 deg. double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M(sub infinity) = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an insitu method featuring the simultaneous acquisition of electronically scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M(sub infinity) = 0.50 to 0.85 but increased to several percent at M(sub infinity) =0.95 and 1.20. The PSP pressure distributions and pseudo-colored, planform-view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having parabolic or diamond planforms situated at the strake-wing intersection were respectively designed to manipulate the vortical flows by removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  5. Transonic Semispan Aerodynamic Testing of the Hybrid Wing Body with Over Wing Nacelles in the National Transonic Facility

    Science.gov (United States)

    Chan, David T.; Hooker, John R.; Wick, Andrew; Plumley, Ryan W.; Zeune, Cale H.; Ol, Michael V.; DeMoss, Joshua A.

    2017-01-01

    A wind tunnel investigation of a 0.04-scale model of the Lockheed Martin Hybrid Wing Body (HWB) with Over Wing Nacelles (OWN) air mobility transport configuration was conducted in the National Transonic Facility at the NASA Langley Research Center under a collaborative partnership between NASA, the Air Force Research Laboratory, and Lockheed Martin Aeronautics Company. The wind tunnel test sought to validate the transonic aerodynamic performance of the HWB and to validate the efficiency benefits of the OWN installation as compared to the traditional under-wing installation. The semispan HWB model was tested in a clean wing configuration and also tested with two different nacelles representative of a modern turbofan engine and a future advanced high bypass ratio engine. The nacelles were installed in three different locations with two over-wing positions and one under-wing position. Five-component force and moment data, surface static pressure data, and aeroelastic deformation data were acquired. For the cruise configuration, the model was tested in an angle-of-attack range between -2 and 10 degrees at free-stream Mach numbers from 0.3 to 0.9 and at unit Reynolds numbers between 8 and 39 million per foot, achieving a maximum of 80% of flight Reynolds numbers across the Mach number range. The test results validated pretest computational fluid dynamic (CFD) simulations of the HWB performance including the OWN benefit and the results also exhibited excellent transonic drag data repeatability to within +/-1 drag count. This paper details the experimental setup and model overview, presents some sample data results, and describes the facility improvements that led to the success of the test.

  6. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  7. Experimental determination of baseball spin and lift.

    Science.gov (United States)

    Alaways, L W; Hubbard, M

    2001-05-01

    The aim of this study was to develop a new method for the determination of lift on spinning baseballs. Inertial trajectories of (a) ball surface markers during the first metre of flight and (b) the centre of mass trajectory near home-plate were measured in a pitch using high-speed video. A theoretical model was developed, incorporating aerodynamic Magnus-Robins lift, drag and cross forces, which predicts the centre of mass and marker trajectories. Parameters including initial conditions and aerodynamic coefficients were estimated iteratively by minimizing the error between predicted and measured trajectories. We compare the resulting lift coefficients and spin parameter values with those of previous studies. Lift on four-seam pitches can be as much as three times that of two-seam pitches, although this disparity is reduced for spin parameters greater than 0.4.

  8. Jump conditions in transonic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Guazzotto, L.; Betti, R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2013-04-15

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.

  9. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  10. Lift-enhancing surfaces on several advanced V/STOL fighter/attack aircraft concepts

    Science.gov (United States)

    Durston, D. A.; Smith, S. C.

    1981-01-01

    An analysis of the relative influences of forward lift-enhancing surfaces on the overall lift and drag characteristics of three wind-tunnel models representative of V/STOL fighter/attack aircraft is presented. Two of the models are canard-wing configurations and one has a wing leading-edge extension (LEX) as the forward lifting surface. Data are taken from wind-tunnel tests of each model covering Mach numbers from 0.4 to 1.4. Overall lift and drag characteristics of these models and the generally favorable interactions of the forward surfaces with the wings are highlighted. Results indicate that larger LEX's and canards generally give greater lift and drag improvements than ones that are smaller relative to the wings.

  11. Lift Enhancing Surfaces on Several Advanced V/STOL Fighter/Attack Aircraft Concepts

    Science.gov (United States)

    Durston, Donald A.; Smith, Stephen C.

    1981-01-01

    An analysis of the relative influences of for-ward lift-enhancing surfaces on the overall lift and drag characteristics of three wind-tunnel models representative of V/STOL fighter/attack aircraft is presented. Two of the models are canard-wing configurations and one has a wing leading-edge extension (LEX) as the forward lifting surface. Data are taken from wind-tunnel tests of each model covering Mach numbers from 0.4 to 1.4. Overall lift and drag characteristics of these models and the generally favorable interactions of the forward surfaces with the wings are highlighted. Results indicate surface that larger LFX's and canards generally give greater lift and drag improvements than ones that are smaller relative to the wings.

  12. Lift-enhancing surfaces on several advanced V/STOL fighter/attack aircraft concepts

    Science.gov (United States)

    Durston, D. A.; Smith, S. C.

    1981-01-01

    An analysis of the relative influences of forward lift-enhancing surfaces on the overall lift and drag characteristics of three wind-tunnel models representative of V/STOL fighter/attack aircraft is presented. Two of the models are canard-wing configurations and one has a wing leading-edge extension (LEX) as the forward lifting surface. Data are taken from wind-tunnel tests of each model covering Mach numbers from 0.4 to 1.4. Overall lift and drag characteristics of these models and the generally favorable interactions of the forward surfaces with the wings are highlighted. Results indicate that larger LEX's and canards generally give greater lift and drag improvements than ones that are smaller relative to the wings.

  13. Drag on Sessile Drops

    Science.gov (United States)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  14. Application of numerical optimization to the design of supercritical airfoils without drag-creep

    Science.gov (United States)

    Hicks, R. M.; Vanderplaats, G. N.

    1977-01-01

    Recent applications of numerical optimization to the design of advanced airfoils for transonic aircraft have shown that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while the drag at the design Mach number is the objective function. Such a procedure doubles the computation time over that for single design-point problems, but the final result is worth the increased cost of computation. The ability to treat such multiple design-point problems by numerical optimization has been enhanced by the development of improved airfoil shape functions. Such functions permit a considerable increase in the range of profiles attainable during the optimization process.

  15. Face-Lift

    Science.gov (United States)

    Tests and Procedures Face-lift By Mayo Clinic Staff A face-lift (rhytidectomy) is a cosmetic surgical procedure to improve the look of your face and neck. During a face-lift, facial soft tissues are lifted, excess skin is ...

  16. Transonic Investigation of Two-Dimensional Nozzles Designed for Supersonic Cruise

    Science.gov (United States)

    Capone, Francis J.; Deere, Karen A.

    2015-01-01

    An experimental and computational investigation has been conducted to determine the off-design uninstalled drag characteristics of a two-dimensional convergent-divergent nozzle designed for a supersonic cruise civil transport. The overall objectives were to: (1) determine the effects of nozzle external flap curvature and sidewall boattail variations on boattail drag; (2) develop an experimental data base for 2D nozzles with long divergent flaps and small boattail angles and (3) provide data for correlating computational fluid dynamic predictions of nozzle boattail drag. The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.80 to 1.20 at nozzle pressure ratios up to 9. Three-dimensional simulations of nozzle performance were obtained with the computational fluid dynamics code PAB3D using turbulence closure and nonlinear Reynolds stress modeling. The results of this investigation indicate that excellent correlation between experimental and predicted results was obtained for the nozzle with a moderate amount of boattail curvature. The nozzle with an external flap having a sharp shoulder (no curvature) had the lowest nozzle pressure drag. At a Mach number of 1.2, sidewall pressure drag doubled as sidewall boattail angle was increased from 4deg to 8deg. Reducing the height of the sidewall caused large decreases in both the sidewall and flap pressure drags. Summary

  17. Semidirect computations for transonic flow

    Science.gov (United States)

    Swisshelm, J. M.; Adamczyk, J. J.

    1983-01-01

    A semidirect method, driven by a Poisson solver, was developed for inviscid transonic flow computations. It is an extension of a recently introduced algorithm for solving subsonic rotational flows. Shocks are captured by implementing a form of artificial compressibility. Nonisentropic cases are computed using a shock tracking procedure coupled with the Rankine-Hugoniot relationships. Results are presented for both subsonic and transonic flows. For the test geometry, an unstaggered cascade of 20 percent thick circular arc airfoils at zero angle of attack, shocks are crisply resolved in supercritical situations and the algorithm converges rapidly. In addition, the convergence rate appears to be nearly independent of the entropy and vorticity production at the shock.

  18. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul

    2002-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or "winglet" at the wingtip has been developed for aircraft, the application of the non-planar principle to marine propellers, dealt...

  19. Unsteady transonic flow in cascades

    Science.gov (United States)

    Surampudi, S. P.; Adamczyk, J. J.

    1984-01-01

    There is a need for methods to predict the unsteady air loads associated with flutter of turbomachinery blading at transonic speeds. The results of such an analysis in which the steady relative flow approaching a cascade of thin airfoils is assumed to be transonic, irrotational, and isentropic is presented. The blades in the cascade are allowed to undergo a small amplitude harmonic oscillation which generates a small unsteady flow superimposed on the existing steady flow. The blades are assumed to oscillate with a prescribed motion of constant amplitude and interblade phase angle. The equations of motion are obtained by linearizing about a uniform flow the inviscid nonheat conducting continuity and momentum equations. The resulting equations are solved by employing the Weiner Hopf technique. The solution yields the unsteady aerodynamic forces acting on the cascade at Mach number equal to 1. Making use of an unsteady transonic similarity law, these results are compared with the results obtained from linear unsteady subsonic and supersonic cascade theories. A parametric study is conducted to find the effects of reduced frequency, solidity, stagger angle, and position of pitching axis on the flutter.

  20. Thrust Removal Scheme for the FAST-MAC Circulation Control Model Tested in the National Transonic Facility

    Science.gov (United States)

    Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.

    2014-01-01

    A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.

  1. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    Science.gov (United States)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  2. Lift truck safety review

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  3. Relaxation techniques for three-dimensional transonic flow about wings.

    Science.gov (United States)

    Bailey, F. R.; Steger, J. L.

    1972-01-01

    A relaxation procedure has been developed to treat the three-dimensional, transonic small perturbation equations about finite lifting wings. A combination of two schemes is employed. For flow forward of the wing trailing edge the equations are written in terms of a velocity potential in order to minimize computer algebra and storage. For the remaining flow field the equations are written in terms of the velocity components in order to simplify the enforcement of the Kutta condition. Difference equations and relaxation procedures are described for both schemes. The computational method automatically captures the imbedded shock wave in the three-dimensional flow field. Computed results are given and compared to experiment and other inviscid methods.

  4. Realizability of stationary spherically symmetric transonic accretion

    CERN Document Server

    Ray, A K; Ray, Arnab K.

    2002-01-01

    The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.

  5. Forehead lift - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100020.htm Forehead lift - series—Indications To use the sharing features on ... to slide 3 out of 3 Overview Forehead lifts are most commonly done for people in their ...

  6. Breast lift (mastopexy) - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100188.htm Breast lift (mastopexy) - series—Incisions To use the sharing features ... to slide 3 out of 3 Overview Breast lift (mastopexy) is usually performed for drooping breasts, which ...

  7. Inexpensive Dramatic Pneumatic Lift

    Science.gov (United States)

    Morse, Robert A.

    2017-09-01

    Various experiments and demonstrations relate air pressure and air pressure difference to force and area. Carpenter and Minnix describe a large-scale pneumatic lift in which a person sitting on a board atop a plastic garbage bag is lifted when the bag is connected to the exhaustport of a vacuum cleaner, which easily lifts the person. This article describes the construction and use of an inexpensive hand-held pneumatic lift to demonstrate the same principle.

  8. Inexpensive Dramatic Pneumatic Lift

    Science.gov (United States)

    Morse, Robert A.

    Various experiments and demonstrations relate air pressure and air pressure difference to force and area. Carpenter and Minnix describe a large-scale pneumatic lift in which a person sitting on a board atop a plastic garbage bag is lifted when the bag is connected to the exhaustport of a vacuum cleaner, which easily lifts the person. This article…

  9. Breast Lift (Mastopexy)

    Science.gov (United States)

    Tests and Procedures Breast lift By Mayo Clinic Staff A breast lift — also known as mastopexy — is a surgical procedure to change the shape of your breasts. During a breast lift, excess skin is removed and breast tissue is ...

  10. Effects of Winglets on the Drag of a Low-Aspect-Ratio Configuration

    Science.gov (United States)

    Smith, Leigh Ann; Campbell, Richard L.

    1996-01-01

    A wind-tunnel investigation has been performed to determine the effect of winglets on the induced drag of a low-aspect-ratio wing configuration at Mach numbers between 0.30 and 0.85 and a nominal angle-of-attack range from -2 deg to 20 deg. Results of the tests at the cruise lift coefficient showed significant increases in lift-drag ratio for the winglet configuration relative to a wing-alone configuration designed for the same lift coefficient and Mach number. Further, even larger increases in lift-drag ratio were observed at lift coefficients above the design value at all Mach numbers tested. The addition of these winglets had a negligible effect on the static lateral-directional stability characteristics of the configuration. No tests were made to determine the effect of these winglets at supersonic Mach numbers, where increases in drag caused by winglets might be more significant. Computational analyses were also performed for the two configurations studied. Linear and small-disturbance formulations were used. The codes were found to give reasonable performance estimates sufficient for predicting changes of this magnitude.

  11. Enhancements to the FAST-MAC Circulation Control Model and Recent High-Reynolds Number Testing in the National Transonic Facility

    Science.gov (United States)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.; Anders, Scott G.; Melton, Latunia P.; Carter, Melissa B.; Allan, Brian G.; Capone, Francis J.

    2013-01-01

    A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements.

  12. AEROX: Computer program for transonic aircraft aerodynamics to high angles of attack. Volume 1: Aerodynamic methods and program users' guide

    Science.gov (United States)

    Axelson, J. A.

    1977-01-01

    The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.

  13. Sphere Drag and Heat Transfer.

    Science.gov (United States)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  14. Summary of Data from the First AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.

    2002-01-01

    The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.

  15. Computer program calculates transonic velocities in turbomachines

    Science.gov (United States)

    Katsanis, T.

    1971-01-01

    Computer program, TSONIC, combines velocity gradient and finite difference methods to obtain numerical solution for ideal, transonic, compressible flow for axial, radial, or mixed flow cascade of turbomachinery blades.

  16. Hot-wire anemometry in transonic flow

    Science.gov (United States)

    Horstman, C. C.; Rose, W. C.

    1977-01-01

    The use of hot-wire anemometry for obtaining fluctuating data in transonic flows has been evaluated. From hot-wire heat loss correlations based on previous transonic data, the sensitivity coefficients for velocity, density, and total temperature fluctuations have been calculated for a wide range of test conditions and sensor parameters. For sensor Reynolds number greater than 20 and high sensor overheat ratios, the velocity sensitivity remains independent of Mach number and equal to the density sensitivity. These conditions were verified by comparisons of predicted sensitivities with those from recent direct calibrations in transonic flows. Based on these results, techniques are presented to obtain meaningful measurements of fluctuating velocity, density, and Reynolds shear stress using hot-wire and hot-film anemometers. Example of these measurements are presented for two transonic boundary layers.

  17. Hot wire anemometry in transonic flow

    Science.gov (United States)

    Horstman, C. C.; Rose, W. C.

    1975-01-01

    The use of hot-wire anemometry for obtaining fluctuating data in transonic flows has been evaluated. From hot-wire heat loss correlations based on previous transonic data, the sensitivity coefficients for velocity, density, and total temperature fluctuations have been calculated for a wide range of test conditions and sensor parameters. For sensor Reynolds numbers greater than 20 and high sensor overheat ratios, the velocity sensitivity remains independent of Mach number and equal to the density sensitivity. These conclusions were verified by comparisons of predicted sensitivities with those from recent direct calibrations in transonic flows. Based on these results, techniques are presented to obtain meaningful measurements of fluctuating velocity, density, and Reynolds shear stress using hot-wire and hot-film anemometers. Examples of these measurements are presented for two transonic boundary layers.

  18. A model for transonic plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Guazzotto, Luca, E-mail: luca.guazzotto@rochester.edu [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hameiri, Eliezer, E-mail: hameiri@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2014-02-15

    A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.

  19. Effects of Porous Throat on Transonic Diffuser

    OpenAIRE

    屋我, 実; 永井, 實; 富田, 教夫; 芳賀, 剛; 宮良, 透; Yaga, Minoru; Nagai, Minoru; Tomita, Norio; Haga, Tsuyoshi; Miyara, Tooru

    1995-01-01

    The effects of the porous throat on a transonic diffuser were investigated experimentally by wall static pressure measurements and by schlieren optical observations. The porous throat consists of a wall with 126 holes and a cavity underneath it so that the flow around the shock wave can circulate through the porous wall. The results show that no shock wave was observed at 80% of the porous region from the throat and that the pressure fluctuations in the transonic diffuser were greatly reduced...

  20. Uncertainty Quantification and Sensitivity Analysis of Transonic Aerodynamics with Geometric Uncertainty

    Directory of Open Access Journals (Sweden)

    Xiaojing Wu

    2017-01-01

    Full Text Available Airfoil geometric uncertainty can generate aerodynamic characteristics fluctuations. Uncertainty quantification is applied to compute its impact on the aerodynamic characteristics. In addition, the contribution of each uncertainty variable to aerodynamic characteristics should be computed by the uncertainty sensitivity analysis. In the paper, Sobol’s analysis is used for uncertainty sensitivity analysis and a nonintrusive polynomial chaos method is used for uncertainty quantification and Sobol’s analysis. It is difficult to describe geometric uncertainty because it needs a lot of input parameters. In order to alleviate the contradiction between the variable dimension and computational cost, a principal component analysis is introduced to describe geometric uncertainty of airfoil. Through this technique, the number of input uncertainty variables can be reduced and typical global deformation modes can be obtained. By uncertainty quantification, we can learn that the flow characteristics of shock wave and boundary layer separation are sensitive to the geometric uncertainty in transonic region, which is the main reason that transonic drag is sensitive to the geometric uncertainty. The sensitivity analysis shows that the model can be simplified by eliminating unimportant geometric modes. Moreover, which are the most important geometric modes to transonic aerodynamics can be learnt. This is very helpful for airfoil design.

  1. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    Science.gov (United States)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  2. Prediction of forces and moments on finned bodies at high angle of attack in transonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W. L.

    1981-04-01

    This report describes a theoretical method for the prediction of fin forces and moments on bodies at high angle of attack in subsonic and transonic flow. The body is assumed to be a circular cylinder with cruciform fins (or wings) of arbitrary planform. The body can have an arbitrary roll (or bank) angle, and each fin can have individual control deflection. The method combines a body vortex flow model and lifting surface theory to predict the normal force distribution over each fin surface. Extensive comparisons are made between theory and experiment for various planform fins. A description of the use of the computer program that implements the method is given.

  3. Lifting endomorphisms to automorphisms

    OpenAIRE

    Arveson, William; Courtney, Dennis

    2007-01-01

    Normal endomorphisms of von Neumann algebras need not be extendable to automorphisms of a larger von Neumann algebra, but they always have asymptotic lifts. We describe the structure of endomorphisms and their asymptotic lifts in some detail, and apply those results to complete the identification of asymptotic lifts of unital completely positive linear maps on von Neumann algebras in terms of their minimal dilations to endomorphisms.

  4. Applications of a direct/iterative design method to complex transonic configurations

    Science.gov (United States)

    Smith, Leigh Ann; Campbell, Richard L.

    1992-01-01

    The current study explores the use of an automated direct/iterative design method for the reduction of drag in transport configurations, including configurations with engine nacelles. The method requires the user to choose a proper target-pressure distribution and then develops a corresponding airfoil section. The method can be applied to two-dimensional airfoil sections or to three-dimensional wings. The three cases that are presented show successful application of the method for reducing drag from various sources. The first two cases demonstrate the use of the method to reduce induced drag by designing to an elliptic span-load distribution and to reduce wave drag by decreasing the shock strength for a given lift. In the second case, a body-mounted nacelle is added and the method is successfully used to eliminate increases in wing drag associated with the nacelle addition by designing to an arbitrary pressure distribution as a result of the redesigning of a wing in combination with a given underwing nacelle to clean-wing, target-pressure distributions. These cases illustrate several possible uses of the method for reducing different types of drag. The magnitude of the obtainable drag reduction varies with the constraints of the problem and the configuration to be modified.

  5. Coulomb drag in quantum circuits

    OpenAIRE

    Levchenko, Alex; Kamenev, Alex

    2008-01-01

    We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the non-linear regime the drag current is proportional to the shot noise of the driving circuit,...

  6. Steady and unsteady transonic flow

    Science.gov (United States)

    Seegmiller, H. L.; Marvin, J. G.; Levy, L. L., Jr.

    1978-01-01

    An investigation of the transonic flow over a circular arc airfoil was conducted to obtain basic information for turbulence modeling of shock-induced separated flows and to verify numerical computer codes which are being developed to simulate such flows. The investigation included the employment of a laser velocimeter to obtain data concerning the mean velocity, the shear stress, and the turbulent kinetic energy profiles in the flowfield downstream of the airfoil midchord where the flow features are more complex. Depending on the free-stream Mach number, the flowfield developed was either steady with shock-wave-induced separation extending from the foot of the shock wave to beyond the trailing edge or unsteady with a periodic motion also undergoing shock-induced separation. The experimental data were compared with the results of numerical simulations in which a computer code was employed that solved the time-dependent Reynolds' averaged compressible Navier-Stokes equations.

  7. Transonic analysis of canted winglets

    Science.gov (United States)

    Rosen, B. S.

    1984-01-01

    A computational method developed to provide a transonic analysis for upper/lower surface wing-tip mounted winglets is described. Winglets with arbitrary planform, cant and toe angle, and airfoil section can be modeled. The embedded grid approach provides high flow field resolution and the required geometric flexibility. In particular, coupled Cartesian/cylindrical grid systems are used to model the complex geometry presented by canted upper/lower surface winglets. A new rotated difference scheme is introduced in order to maintain the stability of the small-disturbance formulation in the presence of large spanwise velocities. Wing and winglet viscous effects are modeled using a two-dimensional 'strip' boundary layer analysis. Correlations with wind tunnel and flight test data for three transport configurations are included.

  8. Gravity Tunnel Drag

    CERN Document Server

    Concannon, Thomas

    2016-01-01

    The time it takes to fall down a tunnel through the center of the Earth to the other side takes approximately 42 minutes, but only when given several simplifying assumptions: a uniform density Earth; a gravitational field that varies linearly with radial position; a non-rotating Earth; a tunnel evacuated of air; and zero friction along the sides of the tunnel. Though several papers have singularly relaxed the first three assumptions, in this paper we relax the final two assumptions and analyze the motion of a body experiencing these types of drag forces in the tunnel. Under such drag forces, we calculate the motion of a transport vehicle through a tunnel of the Earth under uniform density, under constant gravitational acceleration, and finally under the more realistic Preliminary Reference Earth Model (PREM) density data. We find the density profile corresponding to a constant gravitational acceleration better models the motion through the tunnel compared to the PREM density profile, and the uniform density m...

  9. Effect of cavity on shock oscillation in transonic flow over RAE2822 supercritical airfoil

    Science.gov (United States)

    Rahman, M. Rizwanur; Labib, Md. Itmam; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Setoguchi, T.

    2016-07-01

    Transonic flow past a supercritical airfoil is strongly influenced by the interaction of shock wave with boundary layer. This interaction induces unsteady self-sustaining shock wave oscillation, flow instability, drag rise and buffet onset which limit the flight envelop. In the present study, a computational analysis has been carried out to investigate the flow past a supercritical RAE2822 airfoil in transonic speeds. To control the shock wave oscillation, a cavity is introduced on the airfoil surface where shock wave oscillates. Different geometric configurations have been investigated for finding optimum cavity geometry and dimension. Unsteady Reynolds averaged Navier-Stokes equations (RANS) are computed at Mach 0.729 with an angle of attack of 5°. Computed results are well validated with the available experimental data in case of baseline airfoil. However, in case of airfoil with control cavity; it has been observed that the introduction of cavity completely suppresses the unsteady shock wave oscillation. Further, significant drag reduction and successive improvement of aerodynamic performance have been observed in airfoil with shock control cavity.

  10. COMPRESSIBILITY EFFECTS ON DISTRIBUTIONS OF PRESSURE AND LIFT COEFFICIENTS

    Directory of Open Access Journals (Sweden)

    AZZEDINE NAHOUI

    2015-06-01

    Full Text Available Reduce energy consumption of airplanes, or enhance the aerodynamic performance of compressors and turbines by reducing drag, or increasing lift is a major challenge for many institutions specializing in aerodynamics [1, 2]. One way to achievethis, isconsidered the study of compressible potential flow compared to incompressible potential flow [3], Outside the boundary layer, to study the effects of compressibility and the control parameters. And the pressure coefficient and lift distributions around the NACA 0012 profile, NACA 0015 and NACA 0018 were studied and presented in terms of the Mach number, angle of attack and the relative thickness of the profiles.

  11. Numerical derivation of the drag force coefficient in bubble swarms using a Front Tracking model

    NARCIS (Netherlands)

    Dijkhuizen, W.; Roghair, I.; van Sint Annaland, M.; Kuipers, J.A.M.

    2008-01-01

    Dispersed gas-liquid flows are often encountered in the chemical process industry. Large scale models which describe the overall behavior of these flows use closure relations to account for the interactions between the phases, such as the drag, lift and virtual mass forces. The closure relations for

  12. Understanding Wing Lift

    Science.gov (United States)

    Silva, J.; Soares, A. A.

    2010-01-01

    The conventional explanation of aerodynamic lift based on Bernoulli's equation is one of the most common mistakes in presentations to school students and is found in children's science books. The fallacies in this explanation together with an alternative explanation for aerofoil lift have already been presented in an excellent article by Babinsky…

  13. Numerical Prediction of Induced Pressure and Lift of the Planing Surfaces

    Institute of Scientific and Technical Information of China (English)

    Hassan GHASSEMI; Ahmad Reza KOHANSAL; Mahmoud GHIASSI

    2009-01-01

    This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method.The numerical method for computation of the induced pressure and lift is potential-based boundary element method.Special technique is identified to present upwash geometry and to determine the spray drag.Numerical results of a planing flat plate and planing craft model 4666 are presented.It is shown that the method is robust and efficient and the results agree well with the experimental measurements with various Froude humors.

  14. Dubai gas lift automation

    Energy Technology Data Exchange (ETDEWEB)

    Coltharp, E.D.; Khokhar, M.

    1984-09-01

    Dubai Petroleum Company has recently installed a computer gas lift surveillance and gas lift gas injection control system in the Fateh and S.W. Fateh Fields located in the southern part of the Arabian Gulf. This system is the fourth generation of the computer control system installed in California in 1971 by Conoco, Inc. This paper describes the advantages and problems in this system to monitor and control the gas lift operation of 116 wells through 30 intelligent remote terminal units (RTU). In addition, this system monitors the condition of critical operational

  15. Drag reduction by wing tip slots in a gliding Harris' hawk, Parabuteo unicinctus

    Science.gov (United States)

    Tucker

    1995-01-01

    The anterior-most primary feathers of many birds that soar over land bend upwards and separate vertically to form slotted wing tips during flight. The slots are thought to reduce aerodynamic drag, although drag reduction has never been demonstrated in living birds. Wing theory explains how the feathers that form the tip slots can reduce induced drag by spreading vorticity horizontally along the wing and by acting as winglets, which are used on aircraft to make wings non-planar and to spread vorticity vertically. This study uses the induced drag factor to measure the induced drag of a wing relative to that of a standard planar wing with the same span, lift and speed. An induced drag factor of less than 1 indicates that the wing is non-planar. The minimum drag of a Harris' hawk gliding freely in a wind tunnel was measured before and after removing the slots by clipping the tip feathers. The unclipped hawk had 70­90 % of the drag of the clipped hawk at speeds between 7.3 and 15.0 m s-1. At a wing span of 0.8 m, the unclipped hawk had a mean induced drag factor of 0.56, compared with the value of 1.10 assumed for the clipped hawk. A Monte Carlo simulation of error propagation and a sensitivity analysis to possible errors in measured and assumed values showed that the true mean value of the induced drag factor for the unclipped hawk was unlikely to be more than 0.93. These results for a living bird support the conclusions from a previous study of a feathered tip on a model wing in a wind tunnel: the feathers that form the slotted tips reduce induced drag by acting as winglets that make the wings non-planar and spread vorticity both horizontally and vertically.

  16. Some Remarks on CFD Drag Prediction of an Aircraft Model

    Science.gov (United States)

    Peng, S. H.; Eliasson, P.

    Observed in CFD drag predictions for the DLR-F6 aircraft model with various configurations, some issues are addressed. The emphasis is placed on the effect of turbulence modeling and grid resolution. With several different turbulence models, the predicted flow feature around the aircraft is highlighted. It is shown that the prediction of the separation bubble in the wing-body junction is closely related to the inherent modeling mechanism of turbulence production. For the configuration with an additional fairing, which has effectively removed the separation bubble, it is illustrated that the drag prediction may be altered even for attached turbulent boundary layer when different turbulence models are used. Grid sensitivity studies are performed with two groups of subsequently refined grids. It is observed that, in contrast to the lift, the drag prediction is rather sensitive to the grid refinement, as well as to the artificial diffusion added for solving the turbulence transport equation. It is demonstrated that an effective grid refinement should drive the predicted drag components monotonically and linearly converged to a finite value.

  17. A coating of passively oscillating flexible cilia to reduce drag

    Science.gov (United States)

    Revell, Alistair; Harwood, Adrian; O'Connor, Joseph; Sanchez, Jonathan; Favier, Julien

    2016-11-01

    We present results related to the reduction of wake drag by the coordinated action of a layer of passively oscillating flexible cilia. Inspired by the pop-up of bird feathers, this configuration is shown to self-adapt to the surrounding flow, leading to a stabilization of the wake, a reduction of the mean drag and of lift oscillations. The study is performed using Lattice Boltzmann method, coupled to a recent version of the immersed boundary method. We will present the physical analysis of the coupling between multiple beating cilia and an incoming fluid flow. The modal behaviour of the cilia dynamics will be discussed, as well as their effect on an archetype of unsteady separated boundary layer (first the oscillating channel flow and then the circular cylinder). In the latter case results demonstrate an optimal drag occurs for a particular stiffness, compared to the control case where the same cilia are fixed. It appears that the optimal results are due to a reconfiguration of the elastic coating according to the local vorticity of the flow, and a frequency lock-in, which leads to more stable wake and reduced drag. The structural parameters of the layer will be varied. Results from the PEL-SKIN project: funded by EU Grant #334954.

  18. Data base for the prediction of inlet external drag

    Science.gov (United States)

    Mcmillan, O. J.; Perkins, E. W.; Perkins, S. C., Jr.

    1980-01-01

    Results are presented from a study to define and evaluate the data base for predicting an airframe/propulsion system interference effect shown to be of considerable importance, inlet external drag. The study is focused on supersonic tactical aircraft with highly integrated jet propulsion systems, although some information is included for supersonic strategic aircraft and for transport aircraft designed for high subsonic or low supersonic cruise. The data base for inlet external drag is considered to consist of the theoretical and empirical prediction methods as well as the experimental data identified in an extensive literature search. The state of the art in the subsonic and transonic speed regimes is evaluated. The experimental data base is organized and presented in a series of tables in which the test article, the quantities measured and the ranges of test conditions covered are described for each set of data; in this way, the breadth of coverage and gaps in the existing experimental data are evident. Prediction methods are categorized by method of solution, type of inlet and speed range to which they apply, major features are given, and their accuracy is assessed by means of comparison to experimental data.

  19. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight.

    Directory of Open Access Journals (Sweden)

    Mostafa R A Nabawy

    Full Text Available A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values.

  20. When superfluids are a drag

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David C [Los Alamos National Laboratory

    2008-01-01

    The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.

  1. FREIGHT CONTAINER LIFTING STANDARD

    Energy Technology Data Exchange (ETDEWEB)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  2. Wind tower service lift

    Science.gov (United States)

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  3. Unsteady transonic flow over cascade blades

    Science.gov (United States)

    Surampudi, S. P.; Adamczyk, J. J.

    1986-01-01

    An attempt is made to develop an efficient staggered cascade blade unsteady aerodynamics model for the neighborhood of March 1, representing the blade row by a rectilinear two-dimensional cascade of thin, flat plate airfoils. The equations of motion are derived on the basis of linearized transonic small perturbation theory, and an analytical solution is obtained by means of the Wiener-Hopf procedure. Making use of the transonic similarity law, the results obtained are compared with those of other linearized cascade analyses. A parametric study is conducted to find the effects of reduced frequency, stagger angle, solidity, and the location of the pitching axis on cascade stability.

  4. Designs and Technology Requirements for Civil Heavy Lift Rotorcraft

    Science.gov (United States)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2006-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  5. Mid-L/D Lifting Body Entry Demise Analysis

    Science.gov (United States)

    Ling, Lisa

    2017-01-01

    The mid-lift-to-drag ratio (mid-L/D) lifting body is a fully autonomous spacecraft under design at NASA for enabling a rapid return of scientific payloads from the International Space Station (ISS). For contingency planning and risk assessment for the Earth-return trajectory, an entry demise analysis was performed to examine three potential failure scenarios: (1) nominal entry interface conditions with loss of control, (2) controlled entry at maximum flight path angle, and (3) controlled entry at minimum flight path angle. The objectives of the analysis were to predict the spacecraft breakup sequence and timeline, determine debris survival, and calculate the debris dispersion footprint. Sensitivity analysis was also performed to determine the effect of the initial pitch rate on the spacecraft stability and breakup during the entry. This report describes the mid-L/D lifting body and presents the results of the entry demise and sensitivity analyses.

  6. ANALYSIS OF TRANSONIC FLOW PAST CUSPED AIRFOILS

    Directory of Open Access Journals (Sweden)

    Jiří Stodůlka

    2015-06-01

    Full Text Available Transonic flow past two cusped airfoils is numerically solved and achieved results are analyzed by means of flow behavior and oblique shocks formation.Regions around sharp trailing edges are studied in detail and parameters of shock waves are solved and compared using classical shock polar approach and verified by reduction parameters for symmetric configurations.

  7. On the Minimum Induced Drag of Wings -or- Thinking Outside the Box

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  8. Investigation of drag reduction through a flapping mechanism on circular cylinder

    Science.gov (United States)

    Asif, Md. Asafuddoula; Gupta, Avijit Das; Rana, M. D. Juwel; Ahmed, Dewan Hasan

    2016-07-01

    During flapping wing, a bird develops sufficient lift force as well as counteracts drag and increases its speed through different orientations of feathers on the flapping wings. Differently oriented feathers play a significant role in drag reduction during flying of a bird. With an objective to investigate the effect of installation of such flapping mechanism as a mean of drag reduction in case of flow over circular cylinder, this concept has been implemented through installation of continuous and mini flaps, made of MS sheet metal, where flaps are oriented at different angles as like feathers of flapping wings. The experiments are carried out in a subsonic wind tunnel. After validation and comparison with conventional result of drag analysis of a single cylinder, effects of flapping with Reynolds number variation, implementation of different orientations of mini flaps and variation of different interspacing distance between mini flaps are studied to find the most effective angle of attack of drag reduction on the body of circular cylinder. This research show that, installation of continuous flap reduces value of drag co-efficient, CD up to 66%, where as mini flaps are found more effective by reducing it up to 73%. Mini flaps of L/s=6.25, all angled at 30O, at the 30O angular position on the body of circular cylinder has been found the most effective angle of attack for drag reduction in case of flow over circular cylinder.

  9. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  10. Regional changes in spine posture at lift onset with changes in lift distance and lift style.

    Science.gov (United States)

    Gill, K Peter; Bennett, Simon J; Savelsbergh, Geert J P; van Dieën, Jaap H

    2007-07-01

    Repeated measures experiment. To determine the effect of changes in horizontal lift distance on the amount of flexion, at lift onset, in different spine regions when using different lift styles. By approximating spine bending during lifting as a pure rotation about a single revolute joint, the differential effects of task constraints and instructions on motions of different spine levels will be obscured. Eight participants lifted a 10-kg crate from the floor, 10 times at each of five distances. Participants were instructed to use freestyle (a participant's preferred lift style), squat, or stoop lift styles. Kinematic data were collected from the mid thoracic spine, lower thoracic/upper lumbar spine, mid lumbar spine, and the lower lumbar spine at lift onset. A whole spine angle was also calculated. Flexion of the lower lumbar spine was not affected by lift distance and style. Differences between lift styles occurred mainly in the mid thoracic and the lower thoracic/upper lumbar regions. With increasing horizontal distance, changes in lift style occurred in the upper three spine regions. These results suggest that the tensile strain on tissues in the lower lumbar spine, which can be a cause of injury in lifting, was not affected by lift style or horizontal lift distance when lifting from floor level.

  11. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    Directory of Open Access Journals (Sweden)

    John J. Lees

    2016-10-01

    Full Text Available The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids. The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes, which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  12. Reliable Force Predictions for a Flapping-wing Micro Air Vehicle : A "Vortex-lift" Approach

    NARCIS (Netherlands)

    Thielicke, W.; Kesel, A. B.; Stamhuis, Eize

    2011-01-01

    Vertical and horizontal force of a flapping-wing micro air vehicle (MAV) has been measured in slow-speed forward flight using a force balance. Detailed information on kinematics was used to estimate forces using a blade-element analysis. Input variables for this analysis are lift and drag coefficien

  13. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    Science.gov (United States)

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  14. Development of high-lift laminar wing using steady active flow control

    Science.gov (United States)

    Clayton, Patrick J.

    Fuel costs represent a large fraction of aircraft operating costs. Increased aircraft fuel efficiency is thus desirable. Laminar airfoils have the advantage of reduced cruise drag and increased fuel efficiency. Unfortunately, they cannot perform adequately during high-lift situations (i.e. takeoff and landing) due to low stall angles and low maximum lift caused by flow separation. Active flow control has shown the ability to prevent or mitigate separation effects, and increase maximum lift. This fact makes AFC technology a fitting solution for improving high-lift systems and reducing the need for slats and flap elements. This study focused on experimentally investigating the effects of steady active flow control from three slots, located at 1%, 10%, and 80% chord, respectively, over a laminar airfoil with 45 degree deflected flap. A 30-inch-span airfoil model was designed, fabricated, and then tested in the Bill James 2.5'x3' Wind Tunnel at Iowa State University. Pressure data were collected along the mid-span of the airfoil, and lift and drag were calculated. Five test cases with varying injection locations and varying Cμ were chosen: baseline, blown flap, leading edge blowing, equal blowing, and unequal blowing. Of these cases, unequal blowing achieved the greatest lift enhancement over the baseline. All cases were able to increase lift; however, gains were less than anticipated.

  15. [Endoscopy and face-lift].

    Science.gov (United States)

    Dardour, J C; Abbou, R

    2017-08-02

    For many years, the face-lift has not been the only intervention for facial rejuvenation. It is necessary today to specify the type of face-lift, cervico-facial lifting, frontal lifting or facelift. We will consider in this article the frontal lift and centro-facial lift and its possible execution assisted by endoscopy with therefore minimal scars, hidden in the scalp. We will consider successively its technique, its indications and its results highlighting a very long hold over time. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. A fast-response aspirating probe for measurements of total temperature and pressure in transonic cryogenic wind tunnel

    Science.gov (United States)

    Ng, W.-F.; Rosson, J. C.

    1986-01-01

    A newly developed, 3-mm-diam, dual hot-wire aspirating probe was used to measure the time-resolved stagnation temperature and pressure in a transonic cryogenic wind tunnel. The probe consists of two coplanar constant temperature hot wires at different overheat ratios operating in a 1.5-mm-diam channel with a choked exit. Thus, the constant Mach number flow by the wires is influenced only by free-stream stagnation temperature and pressure. Diffusion of the free-stream Mach number to a lower value in the channel reduces the dynamic drag on the hot-wire. Frequency response of the present design is dc to 20 kHz. The probe was used to measure the unsteady wake shed from an oscillating airfoil tested in the 0.3-m Transonic Cryogenic Tunnel at NASA-Langley Research Center. The hot-wire lasted for more than ten hours before breaking, proving the ruggedness of the probe and the usefulness of the technique in a high dynamic pressure, transonic cryogenic wind tunnel. Typical data obtained from the experiment are presented after reduction to stagnation pressure and temperature.

  17. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  18. Arm Lift (Brachioplasty)

    Science.gov (United States)

    ... sagging. An arm lift might also boost your body image. As you get older, the skin on your upper arms changes — sagging and becoming loose. Significant weight loss also can cause the undersides of your upper arms to droop. While exercise can strengthen and improve muscle tone in the ...

  19. Lifting as You Climb

    Science.gov (United States)

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  20. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-03-21

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E{sub 8} factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3)xSU(2)xU(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

  1. High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil

    Science.gov (United States)

    Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  2. Complex configuration analysis at transonic speeds

    Science.gov (United States)

    Boppe, C. W.; Aidala, P. V.

    1980-01-01

    Advanced performance requirements of new combat and transport aircraft together with design time constraints intensify the development and application of three dimensional computational analyses. A computational method which was developed for the specific purpose of providing an engineering analysis of complex aircraft configurations at transonic speeds. Particular attention is given to the recently incorporated wing viscous interaction and canard capabilities. The treatment of fuselage fairings, nacelles, and pylons is reviewed. The means for keeping computing resources at reasonable levels are identified. Three configurations were selected for correlations with experimental data. Taken together, the comparisons illustrate the full extent of current analysis capabilities. The configurations include: (1) a wing fuselage canard fighter; (2) a transport with fuselage fairings, four nacelles, four pylons; and (3) a space vehicle which includes an external fuel tank and rocket boosters (transonic launch configuration).

  3. On classical and quantum liftings

    CERN Document Server

    Accardi, L; Kossakowski, A; Matsuoka, T; Ohya, M

    2011-01-01

    We analyze the procedure of lifting in classical stochastic and quantum systems. It enables one to `lift' a state of a system into a state of `system+reservoir'. This procedure is important both in quantum information theory and the theory of open systems. We illustrate the general theory of liftings by a particular class related to so called circulant states.

  4. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  5. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  6. Transonic Cascade Measurements to Support Analytical Modeling

    Science.gov (United States)

    2007-11-02

    RECEIVED JUL 0 12005 FINAL REPORT FOR: AFOSR GRANT F49260-02-1-0284 TRANSONIC CASCADE MEASUREMENTS TO SUPPORT ANALYTICAL MODELING Paul A. Durbin ...PAD); 650-723-1971 (JKE) durbin @vk.stanford.edu; eaton@vk.stanford.edu submitted to: Attn: Dr. John Schmisseur Air Force Office of Scientific Research...both spline and control points for subsequent wall shape definitions. An algebraic grid generator was used to generate the grid for the blade-wall

  7. Magnus effects on spinning transonic missiles

    Science.gov (United States)

    Seginer, A.; Rosenwasser, I.

    1983-01-01

    Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.

  8. Aerodynamic Drag and Gyroscopic Stability

    CERN Document Server

    Courtney, Elya R

    2013-01-01

    This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by the experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The experiments reported here also demonstrate a decrease in aerodynamic drag near Sg = 1.23 +/- 0.02. It is hypothesized that this decrease in drag over a narrow band of Sg values is due to a rapid damping of coning motions (precession and nutation). Observation of this drag decrease at a consistent value of Sg demonstrates the relati...

  9. 50 years of transonic aircraft design

    Science.gov (United States)

    Jameson, Antony; Ou, Kui

    2011-07-01

    This article traces the evolution of long range jet transport aircraft over the 50 years since Kuechemann founded the journal Progress in Aerospace Sciences. The article is particularly focused on transonic aerodynamics. During Kuechemann's life time a good qualitative understanding had been achieved of transonic flow and swept wing design, but transonic flow remained intractable to quantitative prediction. During the last 50 years this situation has been completely transformed by the introduction of sophisticated numerical algorithms and an astonishing increase in the available computational power, with the consequence that aerodynamic design is now carried out largely by computer simulation. Moreover developments in aerodynamic shape optimization based on control theory enable a competitive swept wing to be designed in just two simulations, as illustrated in the article. While the external appearance of long range jet aircraft has not changed much, advances in information technology have actually transformed the entire design and manufacturing process through parallel advances in computer aided design (CAD), computational structural mechanics (CSM) and multidisciplinary optimization (MDO). They have also transformed aircraft operations through the adoption of digital fly-by-wire and advanced navigational techniques.

  10. Lift performance and lumbar loading in standing and seated lifts.

    Science.gov (United States)

    Middleton, Kane J; Carstairs, Greg L; Ham, Daniel J

    2016-09-01

    This study investigated the effect of posture on lifting performance. Twenty-three male soldiers lifted a loaded box onto a platform in standing and seated postures to determine their maximum lift capacity and maximum acceptable lift. Lift performance, trunk kinematics, lumbar loads, anthropometric and strength data were recorded. There was a significant main effect for lift effort but not for posture or the interaction. Effect sizes showed that lumbar compression forces did not differ between postures at lift initiation (Standing 5566.2 ± 627.8 N; Seated 5584.0 ± 16.0) but were higher in the standing posture (4045.7 ± 408.3 N) when compared with the seated posture (3655.8 ± 225.7 N) at lift completion. Anterior shear forces were higher in the standing posture at both lift initiation (Standing 519.4 ± 104.4 N; Seated 224.2 ± 9.4 N) and completion (Standing 183.3 ± 62.5 N; Seated 71.0 ± 24.2 N) and may have been a result of increased trunk flexion and a larger horizontal distance of the mass from the L5-S1 joint. Practitioner Summary: Differences between lift performance and lumbar forces in standing and seated lifts are unclear. Using a with-in subjects repeated measures design, we found no difference in lifted mass or lumbar compression force at lift initiation between standing and seated lifts.

  11. Drag Reduction of Bacterial Cellulose Suspensions

    Directory of Open Access Journals (Sweden)

    Satoshi Ogata

    2011-01-01

    Full Text Available Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear.

  12. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  13. Active disturbance rejection control for drag tracking in mars entry guidance

    Science.gov (United States)

    Xia, Yuanqing; Chen, Rongfang; Pu, Fan; Dai, Li

    2014-03-01

    Future Mars missions will require precision landing capability, which motivates the need for entry closed-loop guidance schemes. A new tracking law - active disturbance rejection control (ADRC) - is presented in this paper. The ability of the ADRC tracking law to handle the atmospheric models and the vehicle’s aerodynamic errors is investigated. Monte Carlo simulations with dispersions in entry state variables, drag and lift coefficients, and atmospheric density show effectiveness of the proposed algorithm.

  14. Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight

    Science.gov (United States)

    Hanson, Curtis E.; Ryan, Jack

    2012-01-01

    A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.

  15. Transformable Heavy Lift Ship

    Science.gov (United States)

    2007-08-01

    the 500 group include climate control, freshwater/seawater systems, mechanical handling, and special purpose systems. Due to the large troop...compliment carried on the JHSS, large amounts of climate control and ventilation were required. The transformable heavy lift ship has only a single... Treeline Connector Innovation Cell Naval Research Enterprise Intern Program Final Report, NSWCCD-20-TR-2005/05 August 2005 "Saturn." Nijhuis

  16. High Lift Common Research Model for Wind Tunnel Testing: An Active Flow Control Perspective

    Science.gov (United States)

    Lin, John C.; Melton, Latunia P.; Viken, Sally A.; Andino, Marlyn Y.; Koklu, Mehti; Hannon, Judith A.; Vatsa, Veer N.

    2017-01-01

    This paper provides an overview of a research and development effort sponsored by the NASA Advanced Air Transport Technology Project to achieve the required high-lift performance using active flow control (AFC) on simple hinged flaps while reducing the cruise drag associated with the external mechanisms on slotted flaps of a generic modern transport aircraft. The removal of the external fairings for the Fowler flap mechanism could help to reduce drag by 3.3 counts. The main challenge is to develop an AFC system that can provide the necessary lift recovery on a simple hinged flap high-lift system while using the limited pneumatic power available on the aircraft. Innovative low-power AFC concepts will be investigated in the flap shoulder region. The AFC concepts being explored include steady blowing and unsteady blowing operating in the spatial and/or temporal domain. Both conventional and AFC-enabled high-lift configurations were designed for the current effort. The high-lift configurations share the cruise geometry that is based on the NASA Common Research Model, and therefore, are also open geometries. A 10%-scale High Lift Common Research Model (HL-CRM) is being designed for testing at the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel during fiscal year 2018. The overall project plan, status, HL-CRM configurations, and AFC objectives for the wind tunnel test are described.

  17. Analytical calculation of the drag force near drag crisis of a falling sphere

    CERN Document Server

    Assis, Armando V D B; Branco, N S

    2010-01-01

    We obtain analitically the $v^2$ dependence of the drag force on a falling sphere close to the drag crisis, as well as the drag coefficient at the drag crisis, with excellent agreement with experiment. We take into account the effects of viscosity in creating a turbulent boundary layer and perform the calculations using the Navier-Stokes equation.

  18. Heterotic Weight Lifting

    CERN Document Server

    Gato-Rivera, B

    2009-01-01

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E_8 factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3) x SU(2) x U(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with ...

  19. Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade

    Directory of Open Access Journals (Sweden)

    J. Lepicovsky

    2004-01-01

    velocity.To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the by-product of an endwall restricted linear cascade.

  20. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    , such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  1. Vapor layers reduce drag without the crisis

    Science.gov (United States)

    Vakarelski, Ivan; Berry, Joseph; Chan, Derek; Thoroddsen, Sigurdur

    2016-11-01

    The drag of a solid sphere moving in fluid is known to be only a function of the Reynolds number, Re and diminishes rapidly at the drag crisis around Re 3 ×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect, can occur over a wide range of Re, from as low as 600. The Navier slip model with a viscosity dependent slip length captures the observed drag reduction and wake shape.

  2. Lifting speed preferences and their effects on the maximal lifting capacity.

    Science.gov (United States)

    Lin, Chiuhsiang Joe; Cheng, Chih-Feng

    2017-02-07

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (plifting height (plifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants' preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity.

  3. Turbulent drag reduction by polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Daniel [Van der Waals-Zeeman Instituut, University of Amsterdam, Valckenierstraat 65 1018, XE Amsterdam (Netherlands); Amarouchene, Yacine [CPMOH, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence cedex (France); Wagner, Christian [Institut fuer Experimentalphysik, Universitaet des Saarlandes, Saarbruecken (Germany); Douady, Stephane [Laboratoire de Physique Statistique de l' ENS, 24 rue Lhomond, 75231 Paris cedex 05 (France); Cadot, Olivier [ENSTA, Chemin de la Huniere, 91761 Palaiseau cedex (France)

    2005-04-13

    The reduction of turbulent energy dissipation by addition of polymers is studied experimentally. We first address the question of where the action of the polymers is taking place. Subsequently, we show that there is a direct correlation of drag reduction with the elongational viscosity of the polymers. For this, the reduction of turbulent energy dissipation by addition of the biopolymer DNA is studied. These results open the way for a direct visualization study of the polymer conformation in a turbulent boundary layer.

  4. Drag Effects in Charm Photoproduction

    CERN Document Server

    Norrbin, E

    1999-01-01

    We have refined a model for charm fragmentation at hadron colliders. This model can also be applied to the photoproduction of charm. We investigate the effect of fragmentation on the distribution of produced charm quarks. The drag effect is seen to produce charm hadrons that are shifted in rapidity in the direction of the beam remnant. We also study the importance of different production mechanisms such as charm in the photon and from parton showers.

  5. Effect of Drag-Reducing Polymer Injection on the Lift and Drag of a Two- Dimensional Hydrofoil

    Science.gov (United States)

    1974-09-01

    34 Johc I.. Huffma, Report 62-13, March 1962, 50 p. 21. "Technical Studies in Cargo Handling-Vili, Re-emination of Automated Ships," Raymond L. Erler and...Fleet Requirements, Raymond Erler , Report 63-8, February 1963, 23 p. 24. "Cargo Handling Research, A Ten-Year Progress Report," Staff, Report 63-4

  6. Flight test evaluation of predicted light aircraft drag, performance, and stability

    Science.gov (United States)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.

  7. Knees Lifted High

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Knees Lifted High gives children fun ideas for active outdoor play.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  8. Lift application development cookbook

    CERN Document Server

    Garcia, Gilberto T

    2013-01-01

    Lift Application Development Cookbook contains practical recipes on everything you will need to create secure web applications using this amazing framework.The book first teaches you basic topics such as starting a new application and gradually moves on to teach you advanced topics to achieve a certain task. Then, it explains every step in detail so that you can build your knowledge about how things work.This book is for developers who have at least some basic knowledge about Scala and who are looking for a functional, secure, and modern web framework. Prior experience with HTML and JavaScript

  9. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    Science.gov (United States)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  10. Experimental Investigation of Two Low-Drag Supercavitating Hydrofoils at Speeds up to 200 Feet per Second

    Science.gov (United States)

    Christopher, Kenneth W.; Johnson, Virgil E., Jr.

    1960-01-01

    An experimental investigation has been made in the Langley highspeed hydrodynamics facility to determine the force and moment characteristics of two hydrofoils (one having an aspect ratio of 1 and the other having an aspect ratio of 3) designed to have improved lift-drag ratios when operating under either supercavitating or ventilated conditions. Measurements were made of lift, drag, and pitching moment over a range of angles of attack from 40 to 200 for depths of submersion varying from 0 to approximately 1 chord. The range of speed for the investigation was from 110 to 200 feet per second. When the upper surface of the hydrofoils was completely unwetted, the experimental values of lift and drag forces were in good agreement with the theoretical values obtained from the zero-cavitation-number theory. The theoretical values for minimum angle of attack for operation with the upper surface of the hydrofoil unwetted define the lower limits of angle of attack for which the experimental values of lift coefficient are either in agreement with or slightly greater than those predicted by theory.

  11. Transonic properties of the accretion disk around compact objects

    CERN Document Server

    Mukhopadhyay, Banibrata

    2008-01-01

    An accretion flow is necessarily transonic around a black hole. However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic points vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.

  12. Usability of the Selig S1223 Profile Airfoil as a High Lift Hydrofoil for Hydrokinetic Application

    Directory of Open Access Journals (Sweden)

    Sergio Oller

    2016-01-01

    Full Text Available This work presents a numerical analysis of the ability of the high lift airfoil profile Selig S1223 for working as hydrofoil under water conditions. The geometry of the hydrofoil blade is designed through a suitable airfoil profile and then studied carefully by means of Computational Fluid Dynamics (CFD in order to check its hydrodynamic behavior, i.e., including lift and drag analysis, and determinations of streamlines velocities and pressures fields. Finally conclusions on the use of this profile in a possible application for hydrokinetic turbine blades are detailed.

  13. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  14. by Lifting Line Method

    Directory of Open Access Journals (Sweden)

    Horia Dumitrescu

    1998-01-01

    Full Text Available The vortex model of propellers is modified and applied to the high-speed horizontal axis turbines. The turbine blades are replaced by lifting lines and trailing vortices which shed along the blade span. The model is not a free wake model, but it is still a nonlinear one which should be solved iteratively. In addition to the regular case where the trailing vortices are constrained to distribute along a helical surface, another version, where each trailing vortex sheding from the blade grows as a free helical vortex line, is also included. Performance parameters are calculated by application of the Biot-Savart law along with the Kutta-Joukowski theorem. Predictions are, shown to compare favorably with existing numerical data from more involved free wake methods, but require less computational effort. Thereby, the present method may be a very useful tool for calculating the aerodynamic loads on horizontal-axis wind turbine blades.

  15. What is a safe lift?

    Science.gov (United States)

    Espinoza, Kathy

    2013-09-01

    In a perfect world, a "safe" lift would be 51 pounds if the object is within 7 inches from the front of the body, if it is at waist height, if it is directly in front of the person, if there is a handle on the object, and if the load inside the box/bucket doesn't shift once lifted. If the load to be lifted does not meet all of these criteria, then it is an unsafe lift, and modifications must be made. Modifications would include lightening the load, getting help, or using a mechanical lifting device. There is always a way to turn an unsafe lift into a safer lift. An excellent resource for anyone interested in eliminating some of the hazards associated with lifting is the "Easy Ergonomics" publication from Cal/OSHA. This booklet offers practical advice on how to improve the workplace using engineering and administrative controls, problem-solving strategies and solutions, and a vast amount of ergonomics information and resources. "Easy Ergonomics" can be obtained by calling Cal/OSHA's education and training unit in Sacramento at 800-963-9424. A free copy can be obtained via www.dir.ca.gov/dosh/puborder.asp.

  16. Project LIFT: Year Two Report

    Science.gov (United States)

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) has completed its second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  17. Project LIFT: Year 1 Report

    Science.gov (United States)

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  18. Blade loading of transonic circular cascade diffuser. Sen prime onsoku enkei yokuretsu diffuser no tsubasa fuka

    Energy Technology Data Exchange (ETDEWEB)

    Hayami, H.; Kawaguchi, N. (Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study); Sawae, M. (Nippon Mining Co. Ltd., Tokyo (Japan)); Nakamura, T. (Toshiba Corp., Tokyo (Japan))

    1992-06-25

    In this study, a low-solidity circular cascade, conformally transformed from a high-stagger linear cascade of double-circular-arc vanes with solidity of 0.69, was examined as a part of the diffuser system of a transonic centrifugal compressor. The blade loading of the cascade was also investigated by means of pressure measurement around the vane. Experiments were conducted by the testing apparatus of closed loop type compressor using fleon 12 under the condition of four rotating speeds between 15,000 and 19,000 r.p.m. Cascades with stagger angles of 69{degree} and 72{degree} were used. Consequently, it was found that the experimental data for the lift-coefficient of the vane were almost on a single straight line when plotted against angle-of-attack for a wide range of Mach numbers and flow angles. The maximum lift-coefficient of about 1.5 was recorded. It was also found that the vane functioned well even near the surge condition of the compressor. 6 refs., 6 figs.

  19. Transformance: reading the gospel in drag.

    Science.gov (United States)

    McCune, Jeffrey Q

    2004-01-01

    Despite the large body of scholarship on drag and its performance of misogyny, mimicry, and masculinity, little attention has been paid to the role of musical genres in Black drag performance and its reception. This essay explores drag performances of gospel music and its relationship with the spectator at the Biology Bar, a Black gay drag site in Chicago. By examining the shift from the club "space" to the church "place," this research locates several possibilities for queer gospel performances. Through the introduction of a theory of transformance, this essay highlights the contradictions, complications, and complexities of the relationship between the Black church and the Black gay community.

  20. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  1. Extensibility enables locomotion under isotropic drag

    CERN Document Server

    Pak, On Shun

    2011-01-01

    Anisotropic viscous drag is usually believed to be a requirement for the low Reynolds number locomotion of slender bodies such as flagella and cilia. Here we show that locomotion under isotropic drag is possible for extensible slender bodies. After general considerations, a two-ring swimmer and a model dinoflagellate flagellum are studied analytically to illustrate how extensibility can be exploited for self-propulsion without drag anisotropy. This new degree of freedom could be useful for some complex swimmer geometries and locomotion in complex fluid environments where drag anisotropy is weak or even absent.

  2. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  3. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2012-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge of li...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection.......The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...

  4. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2009-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge of li...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection.......The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...

  5. Wavelets and the Lifting Scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge of li...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection.......The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...

  6. Improvements of evaporation drag model

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; XU Ji-Jun

    2004-01-01

    A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water.

  7. Two-Dimensional High-Lift Aerodynamic Optimization Using Neural Networks

    Science.gov (United States)

    Greenman, Roxana M.

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. The 'pressure difference rule,' which states that the maximum lift condition corresponds to a certain pressure difference between the peak suction pressure and the pressure at the trailing edge of the element, was applied and verified with experimental observations for this configuration. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 44% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  8. Transonic Wing Shape Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  9. Design and Test of a Transonic Axial Splittered Rotor

    Science.gov (United States)

    2015-06-15

    AXIAL SPLITTERED ROTOR A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and ANSYS-CFX) for the...TRANSONIC AXIAL SPLITTERED ROTOR Report Title A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and...that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and ANSYS-CFX) for the geometric rendering and analysis of a transonic axial

  10. Lift Recovery for AFC-Enabled High Lift System

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Gissen, Abraham N.; Whalen, Edward A.

    2017-01-01

    This project is a continuation of the NASA AFC-Enabled Simplified High-Lift System Integration Study contract (NNL10AA05B) performed by Boeing under the Fixed Wing Project. This task is motivated by the simplified high-lift system, which is advantageous due to the simpler mechanical system, reduced actuation power and lower maintenance costs. Additionally, the removal of the flap track fairings associated with conventional high-lift systems renders a more efficient aerodynamic configuration. Potentially, these benefits translate to a approx. 2.25% net reduction in fuel burn for a twin-engine, long-range airplane.

  11. Efficiency of lift production in flapping and gliding flight of swifts.

    Science.gov (United States)

    Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J

    2014-01-01

    Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.

  12. Efficiency of lift production in flapping and gliding flight of swifts.

    Directory of Open Access Journals (Sweden)

    Per Henningsson

    Full Text Available Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord and/or twist from root to tip (reducing local angle of attack. We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.

  13. Demonstration of PIV in a Transonic Compressor

    Science.gov (United States)

    Wernet, Mark P.

    1998-01-01

    Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Many of the same issues encountered in the application of LDV techniques to rotating machinery apply in the application of PIV. Preliminary results from the successful application of the standard 2-D PIV technique to a transonic axial compressor are presented. The lessons learned from the application of the 2-D PIV technique will serve as the basis for applying 3-component PIV techniques to turbomachinery.

  14. National transonic facility Mach number system

    Science.gov (United States)

    Kern, F. A.; Knight, C. W.; Zasimowich, R. F.

    1985-01-01

    The Mach number system for the Langley Research Center's National Transonic Facility was designed to measure pressures to determine Mach number to within + or - 0.002. Nine calibration laboratory type fused quartz gages, four different range gages for the total pressure measurement, and five different range gages for the static pressure measurement were used to satisfy the accuracy requirement over the 103,000-890,000 Pa total pressure range of the tunnel. The system which has been in operation for over 1 year is controlled by a programmable data process controller to select, through the operation of solenoid valves, the proper range fused quartz gage to maximize the measurement accuracy. The pressure gage's analog outputs are digitized by the process controller and transmitted to the main computer for Mach number computation. An automatic two-point on-line calibration of the nine quartz gages is provided using a high accuracy mercury manometer.

  15. Numerical simulation of transonic flows in diffusers

    Science.gov (United States)

    Liou, M.-S.; Coakley, T. J.; Bergmann, M. Y.

    1981-01-01

    Numerical simulations were made of two-dimensional transonic flows in diffusers, including flow separation induced by a shock or adverse pressure gradient. The mass-averaged, time-dependent, compressible Navier-Stokes equations, simplified by the thin-layer approximation, were solved using MacCormack's hybrid method. The eddy-viscosity formulation was described by the Wilcox-Rubesin's two-equation, k-omega model. Detailed comparison of the computed results with measurements showed good agreement in all cases, including one with massive separation induced by a strong shock. The computation correctly predicted the details of a distinct lambda shock pattern, closely duplicating the configuration observed experimentally in spark-schlieren photographs.

  16. Subsonic Transonic Applied Refinements By Using Key Strategies - STARBUKS In the NASA Langley Research Center National Transonic Facility

    Science.gov (United States)

    Paryz, Roman W.

    2014-01-01

    Several upgrade projects have been completed at the NASA Langley Research Center National Transonic Facility over the last 1.5 years in an effort defined as STARBUKS - Subsonic Transonic Applied Refinements By Using Key Strategies. This multi-year effort was undertaken to improve NTF's overall capabilities by addressing Accuracy and Validation, Productivity, and Reliability areas at the NTF. This presentation will give a brief synopsis of each of these efforts.

  17. Drag Coefficient of Thin Flexible Cylinder

    Science.gov (United States)

    Subramanian, Chelakara; Gurram, Harika

    2015-11-01

    Measurements of drag coefficients of thin flexible cylindrical wires are described for the Reynolds number range between 250 - 1000. Results indicate that the coefficient values are about 20 to 30 percent lower than the reported laminar flow values for rigid cylinders. Possible fluid dynamics mechanism causing the reduction in drag will be discussed.

  18. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable ...

  19. Polymer flexibility and turbulent drag reduction

    NARCIS (Netherlands)

    Gillissen, J.J.J.

    2008-01-01

    Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag redu

  20. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2009-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  1. DRAG ON SUBMICRON NANOPARTICLE AGGREGATES

    Institute of Scientific and Technical Information of China (English)

    F.; Einar; Kruis

    2005-01-01

    A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.

  2. Ultrafast photon drag detector for intersubband spectroscopy

    Science.gov (United States)

    Sigg, Hans; Graf, Stephan; Kwakernaak, Martin H.; Margotte, Bernd; Erni, Daniel; Van Son, Peter; Köhler, Klaus

    1996-03-01

    The photon drag effect of a 2D electron gas is measured using the ps infrared pulses of the wavelength-tunable free electron laser source FELIX. The pulsed photon drag response is found to depend critically on the coupling characteristics of the electrical circuit. We therefore developed an impedance and velocity matched photon drag detector. It consists of a GaAs/AlGaAs multi quantum well sample which forms an integral part of a microstrip line. A Ge-prism enables incoupling at the critical total reflection angle. This novel transmission line integrated photon drag detector (TIP-detector) generates signal transients below 10 ps rise and fall times. Its continuous spectral response through the intersubband resonance is investigated at room temperature and at T=100 K. An analysis of the spectral lineshape of the photon drag current response yields information about the momentum relaxation times of the electrons in the ground and excited subbands.

  3. Turbulent drag in a rotating frame

    CERN Document Server

    Campagne, Antoine; Gallet, Basile; Cortet, Pierre-Philippe; Moisy, Frédéric

    2016-01-01

    What is the turbulent drag force experienced by an object moving in a rotating fluid? This open and fundamental question can be addressed by measuring the torque needed to drive an impeller at constant angular velocity $\\omega$ in a water tank mounted on a platform rotating at a rate $\\Omega$. We report a dramatic reduction in drag as $\\Omega$ increases, down to values as low as $12$\\% of the non-rotating drag. At small Rossby number $Ro = \\omega/\\Omega$, the decrease in drag coefficient $K$ follows the approximate scaling law $K \\sim Ro$, which is predicted in the framework of nonlinear inertial wave interactions and weak-turbulence theory. However, stereoscopic particle image velocimetry measurements indicate that this drag reduction rather originates from a weakening of the turbulence intensity in line with the two-dimensionalization of the large-scale flow.

  4. Drag Reduction by Microvortexes in Transverse Microgrooves

    Directory of Open Access Journals (Sweden)

    Bao Wang

    2014-07-01

    Full Text Available A transverse microgrooved surface was employed here to reduce the surface drag force by creating a slippage in bottom layer in turbulent boundary layer. A detailed simulation and experimental investigation on drag reduction by transverse microgrooves were given. The computational fluid dynamics simulation, using RNG k-ε turbulent model, showed that the vortexes were formed in the grooves and they were a main reason for the drag reduction. On the upside of the vortex, the revolving direction was consistent with the main flow, which decreased the flow shear stress by declining the velocity gradient. The experiments were carried out in a high-speed water tunnel with flow velocity varying from 17 to 19 m/s. The experimental results showed that the drag reduction was about 13%. Therefore, the computational and experimental results were cross-checked and consistent with each other to prove that the presented approach achieved effective drag reduction underwater.

  5. Lifting strength in two-person teamwork.

    Science.gov (United States)

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  6. LIFT FORCE ON ROTATING SPHERE AT LOW REYNOLDS NUMBERS AND HIGH ROTATIONAL SPEEDS

    Institute of Scientific and Technical Information of China (English)

    由长福; 祁海鹰; 徐旭常

    2003-01-01

    The lift force on an isolated rotating sphere in a uniform flow was investigated by means of a three-dimensional numerical simulation for low Reynolds numbers (based on the sphere diameter) (Re < 68.4) and high dimensionless rotational speeds (Γ< 5). The Navier-Stokes equations in Cartesian coordinate system were solved using a finite volume formulation based on SIMPLE procedure. The accuracy of the numerical simulation was tested through a comparison with available theoretical, numerical and experimental results at low Reynolds numbers, and it was found that they were in close agreement under the above mentioned ranges of the Reynolds number and rotational speed. From a detailed computation of the flow field around a rotational sphere in extended ranges of the Reynolds number and rotational speed, the results show that, with increasing the rotational speed or decreasing the Reynolds number, the lift coefficient increases. An empirical equation more accurate than those obtained by previous studies was obtained to describe both effects of the rotational speed and Reynolds number on the lift force on a sphere. It was found in calculations that the drag coefficient is not significantly affected by the rotation of the sphere. The ratio of the lift force to the drag force, both of which act on a sphere in a uniform flow at the same time, was investigated. For a small spherical particle such as one of about 100μm in diameter, even if the rotational speed reaches about 106 revolutions per minute, the lift force can be neglected as compared with the drag force.

  7. On the generalized lifting problem

    Directory of Open Access Journals (Sweden)

    Giorgio Bolondi

    1993-05-01

    Full Text Available We construct curves for which the generalized lifting property does not hold, with high degree. We discuss the behaviour of the Hilbert function of the general plane section of these curves.

  8. Parametric Study of Afterbody/nozzle Drag on Twin Two-dimensional Convergent-divergent Nozzles at Mach Numbers from 0.60 to 1.20

    Science.gov (United States)

    Pendergraft, Odis C., Jr.; Burley, James R., II; Bare, E. Ann

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle drag of nonaxisymmetric two-dimensional convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine, fighter-aircraft model. Tests were conducted over a Mach number range from 0.60 to 1.20 and over an angle-of-attack range from -5 to 9 deg. Nozzle pressure ratio was varied from jet off (1.0) to approximately 10.0, depending on Mach number.

  9. Effects of Boattail Area Contouring and Simulated Turbojet Exhaust on the Loading and Fuselage-tail Component Drag of a Twin-engine Fighter-type Airplane Model

    Science.gov (United States)

    Foss, Willard E , Jr; Runckel, Jack F; Lee, Edwin E , Jr

    1958-01-01

    An investigation of a twin-engine fighter-type airplane model has been conducted in the Langley 16-foot transonic tunnel to determine the effect on drag of a fuselage volume addition incorporating streamline contouring and more extensive boattailing of the engine shrouds. The effect of hot exhausts from the turbojet engines was simulated with hydrogen peroxide gas generators using scaled nonafterburning engine nozzles. Afterbody pressure distributions, base drag coefficients, and forces on the fuselage-tail configurations are presented at Mach numbers from 0.80 to 1.05 angles of attack of 0 degree and 4 degrees for jet pressure ratios from 1 to 7. The effect of jet operation on both the basic and modified models was generally to decrease base pressures but to increase most other afterbody pressures and, therefore, to result in an overall decrease in fuselage-tail component drag. The addition of volume to the basic model reduced the base drag coefficient by 0.0010 with the jets off and 0.0018 at a typical cruise operating condition of a jet pressure ratio of 3, a Mach number of 0.85, and an angle of attack of 4 degrees. The overall jet-off reduction in fuselage-tail component drag due to the volume addition was a maximum of 0.0040 at a Mach number of 0.90 for an angle of attack of 4 degrees.

  10. Nordic noir and lifted localities

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    What I do here is to draw attention to a particular visual quality of recent Nordic noir and to relate the visuality of TV-drama to what I – with a term borrowed from Roland Robertson – dub lifted localites.......What I do here is to draw attention to a particular visual quality of recent Nordic noir and to relate the visuality of TV-drama to what I – with a term borrowed from Roland Robertson – dub lifted localites....

  11. FLPP IXV Re-entry Vehicle, Transonic Characterisation Based on FOI T1500 Wind Tunnel Tests and CFD

    Science.gov (United States)

    Torngren, L.; Chiarelli, C.; Mareschi, V.; Tribot, J.-P.; Binetti, P.; Walloschek, T.

    2009-01-01

    The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues, while supporting the future generation launchers and to improve in general European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re-entry system, integrating the critical re-entry technologies at the system level. The current IXV vehicle is a slender body type exhibiting rounded shape, thick body controlled by means of two control surfaces. The current mission is to perform an atmospheric re- entry ended by a safe recovery in supersonic regime. A potential extension of the flight domain down to the transonic regime was proposed to be analyzed. The objectives were to study the capability of the IXV for flying autonomously enabling a recovery of the vehicle by means of a subsonic parachute based DRS. The vehicle designed for the hypersonic speeds integrating a large base with only two control surfaces located close to the plane of symmetry is definitively not tuned for transonic ones. CFD done by Thales Alenia Space and wind tunnel activities involving FOI T1500 facility contributed to built up an Aerodynamic Data Base (AEDB) to be used as inputs for flying qualities analysis and re-entry simulations. The paper presents the main objectives of the transonic activities with emphasis on CFD and WTT including a description of the different prediction tools and discussing the main outcomes of the current data comparisons.

  12. Geared-elevator flutter study. [wind tunnel tests of transonic flutter effects on control surfaces of supersonic transport tail assemblies, conducted in a NASA-Langley transonic wind tunnel

    Science.gov (United States)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    An experimental and analytical study was made of the transonic flutter characteristics of a supersonic transport tail assembly model having an all-movable, horizontal tail with a geared elevator. Two model configurations, namely, one with a gear-elevator (2.8 to 1.0 gear ratio) and one with locked-elevator (1.0 to 1.0 gear ratio), were flutter tested in the Langley transonic dynamics tunnel with an empennage cantilever-mounted on a sting. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter dynamic pressure boundaries for both configurations were nearly flat over a Mach number range from 0.9 to 1.1. Flutter calculations (mathematical models) were made for the geared-elevator configuration using three subsonic lifting-surface methods. In one method, the elevator was treated as a discrete surface, and in the other two methods, the stabilizer and elevator were treated as a single warped-surface with the primary difference between these two methods being in the mathematical implementation used. A comparison of the experimental and analytical results shows that the discrete-elevator method predicted best the experimental flutter dynamic pressure level. However, the single warped-surface methods predicts more closely the experimental flutter frequencies and Mach number trends.

  13. Giant Frictional Drag in Double Bilayer Graphene Heterostructures

    Science.gov (United States)

    Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel

    2016-07-01

    We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.

  14. Blowing jets as a circulation flow control to enhancement the lift of wing or generated power of wind turbine

    Directory of Open Access Journals (Sweden)

    Alexandru DUMITRACHE

    2014-06-01

    Full Text Available The goal of this paper is to provide a numerical flow analysis based on RANS equations in two directions: the study of augmented high-lift system for a cross-section airfoil of a wing up to transonic regime and the circulation control implemented by tangentially blowing jet over a highly curved surface due to Coanda effect on a rotor blade for a wind turbine. This study were analyzed the performance, sensitivities and limitations of the circulation control method based on blowing jet for a fixed wing as well as for a rotating wing. Directions of future research are identified and discussed.

  15. Coulomb drag between helical Luttinger liquids

    Science.gov (United States)

    Kainaris, N.; Gornyi, I. V.; Levchenko, A.; Polyakov, D. G.

    2017-01-01

    We theoretically study Coulomb drag between two helical edges with broken spin-rotational symmetry, such as would occur in two capacitively coupled quantum spin Hall insulators. For the helical edges, Coulomb drag is particularly interesting because it specifically probes the inelastic interactions that break the conductance quantization for a single edge. Using the kinetic equation formalism, supplemented by bosonization, we find that the drag resistivity ρD exhibits a nonmonotonic dependence on the temperature T . In the limit of low T ,ρD vanishes with decreasing T as a power law if intraedge interactions are not too strong. This is in stark contrast to Coulomb drag in conventional quantum wires, where ρD diverges at T →0 irrespective of the strength of repulsive interactions. Another unusual property of Coulomb drag between the helical edges concerns higher T for which, unlike in the Luttinger liquid model, drag is mediated by plasmons. The special type of plasmon-mediated drag can be viewed as a distinguishing feature of the helical liquid—because it requires peculiar umklapp scattering only available in the presence of a Dirac point in the electron spectrum.

  16. Orographic drag uncertainties impact forecast skill

    Science.gov (United States)

    Sandu, Irina; Zadra, Ayrton; Wedi, Nils; Bacmeister, Julio

    2017-04-01

    Despite their importance for the large-scale circulation, to date the representation of drag processes remains a major source of uncertainty in global models. Among the different drag processes the representation of orographic drag is particularly challenging. This has been recently highlighted by the WMO Working Group on Numerical Experimentation (WGNE) 'Drag project' which demonstrated that the main NWP and climate models differ significantly in representation of the total parameterized surface stress and in the partitioning of surface stress among various physical processes, particularly in regions with orography. Here we discuss how uncertain is the representation of orographic drag in models, and we illustrate how this uncertainty affects the skill of medium range weather forecasts. Namely we show how different is the representation of the resolved orography even in models with similar headline horizontal resolution. We also use the results of the WGNE 'Drag project' to illustrate how much models differ in terms of the total parameterized surface stress and its partition among various processes. Finally, we use the Integrated Forecasting System of ECMWF to demonstrate how much these intermodel differences either in the resolved orography or the representation subgrid drag affect the forecast skill.

  17. Observations on CFD Verification and Validation from the AIAA Drag Prediction Workshops

    Science.gov (United States)

    Morrison, Joseph H.; Kleb, Bil; Vassberg, John C.

    2014-01-01

    The authors provide observations from the AIAA Drag Prediction Workshops that have spanned over a decade and from a recent validation experiment at NASA Langley. These workshops provide an assessment of the predictive capability of forces and moments, focused on drag, for transonic transports. It is very difficult to manage the consistency of results in a workshop setting to perform verification and validation at the scientific level, but it may be sufficient to assess it at the level of practice. Observations thus far: 1) due to simplifications in the workshop test cases, wind tunnel data are not necessarily the “correct” results that CFD should match, 2) an average of core CFD data are not necessarily a better estimate of the true solution as it is merely an average of other solutions and has many coupled sources of variation, 3) outlier solutions should be investigated and understood, and 4) the DPW series does not have the systematic build up and definition on both the computational and experimental side that is required for detailed verification and validation. Several observations regarding the importance of the grid, effects of physical modeling, benefits of open forums, and guidance for validation experiments are discussed. The increased variation in results when predicting regions of flow separation and increased variation due to interaction effects, e.g., fuselage and horizontal tail, point out the need for validation data sets for these important flow phenomena. Experiences with a recent validation experiment at NASA Langley are included to provide guidance on validation experiments.

  18. Aero-thermal analysis of lifting body configurations in hypersonic flow

    Science.gov (United States)

    Kumar, Sachin; Mahulikar, Shripad P.

    2016-09-01

    The aero-thermal analysis of a hypersonic vehicle is of fundamental interest for designing its thermal protection system. The aero-thermal environment predictions over several critical regions of the hypothesized lifting body vehicle, including the stagnation region of the nose-cap, cylindrically swept leading edges, fuselage-upper, and fuselage-lower surfaces, are discussed. The drag (Λ=70°) and temperature (Λ=80°) minimized sweepback angles are considered in the configuration design of the two hypothesized lifting body shape hypersonic vehicles. The main aim of the present study is to analyze and compare the aero-thermal characteristics of these two lifting body configurations at same heat capacity. Accordingly, a Computational Fluid Dynamics simulation has been carried out at Mach number (M∞=7), H=35 km altitude with zero Angle of Attack. Finally, the material selection for thermal protection system based on these predictions and current methodology is described.

  19. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  20. Drag Reduction by Leidenfrost Vapor Layers

    Science.gov (United States)

    Vakarelski, Ivan U.; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2011-05-01

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  1. Frame-Dragging from Charged Rotating Body

    CERN Document Server

    Dubey, Anuj Kumar

    2016-01-01

    In the present paper, we have considered the three parameters: mass, charge and rotation to discuss their combined effect on frame dragging for a charged rotating body. If we consider the ray of light which is emitted radially outward from a rotating body then the frame dragging shows a periodic nature with respect to coordinate $\\phi$ (azimuthal angle). It has been found that the value of frame dragging obtains a maximum at, $ \\phi =\\frac{\\pi}{2}$ and a minimum at $ \\phi =\\frac{3 \\pi}{2}$.

  2. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  3. Drag bias feedback for the analytic drag control entry guidance system. [for the space shuttle orbiter

    Science.gov (United States)

    Kyle, H. C.

    1976-01-01

    The Analytic Drag Control (ADC) entry guidance has been developed and baselined for the space shuttle orbiter entry. A method is presented which corrects the orbiter entry guidance commanded bank angle for biases between navigated drag and guidance computed reference drag. This is accomplished by an integral feedback technique, which uses the drag bias information to adjust the difference between navigated and reference altitude rate used by the ADC guidance. The method improves the capability of the ADC guidance system by compensating for any error source which causes a bias between the navigated drag and reference drag profile. These errors include navigated altitude rate errors, atmosphere dispersions, and roll attitude deadband effects. A discussion of the method and results of digital computer entry simulations is presented.

  4. A wind loading correlation for an isolated square heliostat, part 1: lift and drag forces

    CSIR Research Space (South Africa)

    Roos, TH

    2012-05-01

    Full Text Available A design requirement of a heliostat is the ability to withstand storm loads in the stow position and operational wind loads in any position. To design a heliostat, therefore, one must be able to predict the wind loading on the heliostat for all...

  5. Use of Leading Edge Waves to Increase Lift/Drag Ratio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the goals of NASA's Fundamental Aeronautics "Subsonic Fixed Wing" project is to reduce fuel burn by 25% 5% by 2018. This corresponds approximately to an...

  6. Diagnosis of Wing Icing Through Lift and Drag Coefficient Change Detection for Small Unmanned Aircraft

    DEFF Research Database (Denmark)

    Sørensen, Kim Lynge; Blanke, Mogens; Johansen, Tor Arne

    2015-01-01

    This paper address the issue of structural change, caused by ice accretion, on UAVs by utilising a Neyman Pearson (NP) based statistical change detection approach, for the identification of structural changes of fixed wing UAV airfoils. A structural analysis is performed on the nonlinear aircraft...... system and residuals are generated, where a generalised likelihood ratio test is applied to detect faults. Numerical simulations demonstrate a robust detection with adequate balance between false alarm rate and sensitivity....

  7. Diagnosis of Wing Icing Through Lift and Drag Coefficient Change Detection for Small Unmanned Aircraft

    DEFF Research Database (Denmark)

    Sørensen, Kim Lynge; Blanke, Mogens; Johansen, Tor Arne

    2015-01-01

    This paper address the issue of structural change, caused by ice accretion, on UAVs by utilising a Neyman Pearson (NP) based statistical change detection approach, for the identification of structural changes of fixed wing UAV airfoils. A structural analysis is performed on the nonlinear aircraft...

  8. Bubble Drag Reduction Requires Large Bubbles

    Science.gov (United States)

    Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  9. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef

    2016-01-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  10. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  11. Methods of reducing vehicle aerodynamic drag

    Energy Technology Data Exchange (ETDEWEB)

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  12. Drag sails for space debris mitigation

    Science.gov (United States)

    Visagie, Lourens; Lappas, Vaios; Erb, Sven

    2015-04-01

    The prudence for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Drag augmentation is a potentially passive method for de-orbiting in LEO but its collision risk mitigation efficiency is sometimes underestimated by not taking all the relevant factors into account. This paper shows that using drag augmentation from a deployable drag-sail to de-orbit a satellite in LEO will lead to a reduction in collision risk. In order to support this finding, the models that are needed in order to evaluate the collision risk of a decaying object under drag conditions are presented. A comparison is performed between the simpler Area-Time-Product (ATP) and more precise collision risk analysis, and the effects that are overlooked in the simple ATP calculation are explained.

  13. Mist lift analysis summary report

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, R.L.

    1980-09-01

    The mist flow open-cycle OTEC concept proposed by S.L. Ridgway has much promise, but the fluid mechanics of the mist flow are not well understood. The creation of the mist and the possibility of droplet growth leading to rainout (when the vapor can no longer support the mist) are particularly troublesome. This report summarizes preliminary results of a numerical analysis initiated at SERI in FY79 to study the mist-lift process. The analysis emphasizes the mass transfer and fluid mechanics of the steady-state mist flow and is based on one-dimensional models of the mist flow developed for SERI by Graham Wallis. One of Wallis's models describes a mist composed of a single size of drops and another considers several drop sizes. The latter model, further developed at SERI, considers a changing spectrum of discrete drop sizes and incorporates the mathematics describing collisions and growth of the droplets by coalescence. The analysis results show that under conditions leading to maximum lift in the single-drop-size model, the multigroup model predicts significantly reduced lift because of the growth of droplets by coalescence. The predicted lift height is sensitive to variations in the mass flow rate and inlet pressure. Inclusion of a coasting section, in which the drops would rise ballistically without change in temperature, may lead to increased lift within the existing range of operation.

  14. CERN lifting equipment use authorisation

    CERN Multimedia

    2004-01-01

    Updated procedures to obtain authorisation to use lifting equipment at CERN have been put in place. As a general rule, lifting equipment at CERN may be operated only by qualified staff, i.e. those who have had intensive training in and adequate experience of using such equipment. However, for straightforward recurrent lifting operations, the Organization issues authorisations to operate lifting equipment at CERN to people who have followed a suitable course of training. The authorisation to use lifting equipment is valid for five years. More information about the procedures will be found at the following addresses: CERN Staff: http://sc-gs.web.cern.ch/sc-gs/gs_ms/ms/freq%20topics/te_mc_FT_staff.htm Associated members of the personnel (users, ...) : http://sc-gs.web.cern.ch/sc-gs/gs_ms/ms/freq%20topics/te_mc_FT_users.htm Contractors personnel : http://sc-gs.web.cern.ch/sc-gs/gs_ms/ms/freq%20topics/te_mc_FT_peoplefromext.htm In case of questions, please send a message to: securite...

  15. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  16. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  17. FLEET Velocimetry Measurements on a Transonic Airfoil

    Science.gov (United States)

    Burns, Ross A.; Danehy, Paul M.

    2017-01-01

    Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.

  18. Applications of a transonic wing design method

    Science.gov (United States)

    Campbell, Richard L.; Smith, Leigh A.

    1989-01-01

    A method for designing wings and airfoils at transonic speeds using a predictor/corrector approach was developed. The procedure iterates between an aerodynamic code, which predicts the flow about a given geometry, and the design module, which compares the calculated and target pressure distributions and modifies the geometry using an algorithm that relates differences in pressure to a change in surface curvature. The modular nature of the design method makes it relatively simple to couple it to any analysis method. The iterative approach allows the design process and aerodynamic analysis to converge in parallel, significantly reducing the time required to reach a final design. Viscous and static aeroelastic effects can also be accounted for during the design or as a post-design correction. Results from several pilot design codes indicated that the method accurately reproduced pressure distributions as well as the coordinates of a given airfoil or wing by modifying an initial contour. The codes were applied to supercritical as well as conventional airfoils, forward- and aft-swept transport wings, and moderate-to-highly swept fighter wings. The design method was found to be robust and efficient, even for cases having fairly strong shocks.

  19. Evolution of transonicity in an accretion disc

    CERN Document Server

    Ray, A K; Ray, Arnab K.; Bhattacharjee, Jayanta K.

    2007-01-01

    For inviscid, rotational accretion flows driven by a general pseudo-Newtonian potential on to a Schwarzschild black hole, the only possible fixed points are saddle points and centre-type points. For the specific choice of the Newtonian potential, the flow has only two critical points, of which the outer one is a saddle point while the inner one is a centre-type point. A restrictive upper bound is imposed on the admissible range of values of the angular momentum of sub-Keplerian flows through a saddle point. These flows are very unstable to any deviation from a necessarily precise boundary condition. The difficulties against the physical realisability of a solution passing through the saddle point have been addressed through a temporal evolution of the flow, which gives a non-perturbative mechanism for selecting a transonic solution passing through the saddle point. An equation of motion for a real-time perturbation about the stationary flows reveals a very close correspondence with the metric of an acoustic b...

  20. Flow Control in a Transonic Diffuser

    Science.gov (United States)

    Gartner, Jeremy; Amitay, Michael

    2014-11-01

    In some airplanes such as fighter jets and UAV, short inlet ducts replace the more conventional ducts due to their shorter length. However, these ducts are associated with low length-to-diameter ratio and low aspect ratio and, thus, experience massive separation and the presence of secondary flow structures. These flow phenomena are undesirable as they lead to pressure losses and distortion at the Aerodynamic Interface Plane (AIP), where the engine face is located. It causes the engine to perform with a lower efficiency as it would with a straight duct diffuser. Different flow control techniques were studied on the short inlet duct, with the goal to reattach the flow and minimize the distortions at the AIP. Due to the complex interaction between the separation and the secondary flow structures, the necessity to understand the flow mechanisms, and how to control them at a more fundamental level, a new transonic diffuser with an upper ramp and a straight floor was designed and built. The objective of this project is to explore the effectiveness of different flow control techniques in a high subsonic (up to Mach 0.8) diffuser, so that the quasi two-dimensional separation and the formation of secondary flow structure can be isolated using a canonical flow field. Supported by Northrop Grumman.

  1. Finite elements and finite differences for transonic flow calculations

    Science.gov (United States)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  2. Artificial viscosity in the transonic stream function formulation

    Institute of Scientific and Technical Information of China (English)

    徐建中; 杜建一; 沈浩; 刘海涛

    1995-01-01

    The artificial density method which has been applied widely in the transonic potential calculation and the current transonic stream function calculation is investigated theoretically. The analysis shows that in the stream function formulation the artificial density is not equivalent to the artificial viscosity and cannot be used, and a correct expression of the artificial viscosity in the stream function method is then derived. The principal equation of the stream function, the density equation converted from one of the momentum equations and the present artificial viscosity scheme constitute the complete transonic stream function formulation. The numerical practice demonstrates that the range of Mach number computed by this approach is extended and the shock location is close to the experimental result.

  3. Static and dynamic aspects of transonicity in Bondi accretion

    CERN Document Server

    Ray, A K; Ray, Arnab K.; Bhattacharjee, Jayanta K.

    2006-01-01

    Transonicity in a spherically symmetric accreting system has been considered in both the stationary and the dynamic regimes. The stationary flow, set up as a dynamical system, has been shown to be greatly unstable to even the minutest possible deviation in the boundary condition for transonicity. With the help of a simple analytical model, and some numerical modelling, it has then been argued that the flow indeed becomes transonic and stable, when the evolution of the flow is followed through time. The time-dependent approach also shows that there is a remarkable closeness between an equation of motion for a perturbation in the flow, and the metric of an analog acoustic black hole.

  4. Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles

    Science.gov (United States)

    Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua

    2017-02-01

    A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.

  5. Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles

    Science.gov (United States)

    Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua

    2016-05-01

    A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.

  6. Bioinspired surfaces for turbulent drag reduction.

    Science.gov (United States)

    Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish

    2016-08-06

    In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  7. Assessment of NASA and RAE viscous-inviscid interaction methods for predicting transonic flow over nozzle afterbodies

    Science.gov (United States)

    Putnam, L. E.; Hodges, J.

    1983-01-01

    The Langley Research Center of the National Aeronautics and Space Administration and the Royal Aircraft Establishment have undertaken a cooperative program to conduct an assessment of their patched viscous-inviscid interaction methods for predicting the transonic flow over nozzle afterbodies. The assessment was made by comparing the predictions of the two methods with experimental pressure distributions and boattail pressure drag for several convergent circular-arc nozzle configurations. Comparisons of the predictions of the two methods with the experimental data showed that both methods provided good predictions of the flow characteristics of nozzles with attached boundary layer flow. The RAE method also provided reasonable predictions of the pressure distributions and drag for the nozzles investigated that had separated boundary layers. The NASA method provided good predictions of the pressure distribution on separated flow nozzles that had relatively thin boundary layers. However, the NASA method was in poor agreement with experiment for separated nozzles with thick boundary layers due primarily to deficiencies in the method used to predict the separation location.

  8. Numerical studies of transverse curvature effects on transonic flow stability

    Science.gov (United States)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  9. Endoscopic brow lifts uber alles.

    Science.gov (United States)

    Patel, Bhupendra C K

    2006-12-01

    Innumerable approaches to the ptotic brow and forehead have been described in the past. Over the last twenty-five years, we have used all these techniques in cosmetic and reconstructive patients. We have used the endoscopic brow lift technique since 1995. While no one technique is applicable to all patients, the endoscopic brow lift, with appropriate modifications for individual patients, can be used effectively for most patients with brow ptosis. We present the nuances of this technique and show several different fixation methods we have found useful.

  10. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    Science.gov (United States)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  11. A bio-inspired device for drag reduction on a three-dimensional model vehicle.

    Science.gov (United States)

    Kim, Dongri; Lee, Hoon; Yi, Wook; Choi, Haecheon

    2016-03-10

    In this paper, we introduce a bio-mimetic device for the reduction of the drag force on a three-dimensional model vehicle, the Ahmed body (Ahmed et al 1984 SAE Technical Paper 840300). The device, called automatic moving deflector (AMD), is designed inspired by the movement of secondary feathers on bird's wing suction surface: i.e., secondary feathers pop up when massive separation occurs on bird's wing suction surface at high angles of attack, which increases the lift force at landing. The AMD is applied to the rear slanted surface of the Ahmed body to control the flow separation there. The angle of the slanted surface considered is 25° at which the drag coefficient on the Ahmed body is highest. The wind tunnel experiment is conducted at Re H  = 1.0 × 10(5)-3.8 × 10(5), based on the height of the Ahmed body (H) and the free-stream velocity (U ∞). Several AMDs of different sizes and materials are tested by measuring the drag force on the Ahmed body, and showed drag reductions up to 19%. The velocity and surface-pressure measurements show that AMD starts to pop up when the pressure in the thin gap between the slanted surface and AMD is much larger than that on the upper surface of AMD. We also derive an empirical formula that predicts the critical free-stream velocity at which AMD starts to operate. Finally, it is shown that the drag reduction by AMD is mainly attributed to a pressure recovery on the slanted surface by delaying the flow separation and suppressing the strength of the longitudinal vortices emanating from the lateral edges of the slanted surface.

  12. Computational Fluid Dynamic Analyses for the High-Lift Common Research Model Using the USM3D and FUN3D Flow Solvers

    Science.gov (United States)

    Rivers, Melissa; Hunter, Craig; Vatsa, Veer

    2017-01-01

    Two Navier-Stokes codes were used to compute flow over the High-Lift Common Research Model (HL-CRM) in preparation for a wind tunnel test to be performed at the NASA Langley Research Center 14-by-22-Foot Subsonic Tunnel in fiscal year 2018. Both flight and wind tunnel conditions were simulated by the two codes at set Mach numbers and Reynolds numbers over a full angle-of-attack range for three configurations: cruise, landing and takeoff. Force curves, drag polars and surface pressure contour comparisons are shown for the two codes. The lift and drag curves compare well for the cruise configuration up to 10deg angle of attack but not as well for the other two configurations. The drag polars compare reasonably well for all three configurations. The surface pressure contours compare well for some of the conditions modeled but not as well for others.

  13. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  14. Prosthetic Hand Lifts Heavy Loads

    Science.gov (United States)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  15. The calculation of steady non-linear transonic flow over finite wings with linear theory aerodynamics

    Science.gov (United States)

    Cunningham, A. M., Jr.

    1976-01-01

    The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.

  16. Numerical calculation of the transonic flow past a swept wing. [FLO 22

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, A; Caughey, D A

    1977-06-01

    A numerical method is presented for analyzing the transonic potential flow past a lifting, swept wing. A finite-difference approximation to the full potential equation is solved in a coordinate system which is nearly conformally mapped from the physical space in planes parallel to the symmetry plane, and reduces the wing surface to a portion of one boundary of the computational grid. A coordinate invariant, rotated difference scheme is used, and the difference equations are solved by relaxation. The method is capable of treating wings of arbitrary planform and dihedral, although approximations in treating the tips and vortex sheet make its accuracy suspect for wings of small aspect ratio. Comparisons of calculated results with experimental data are shown for examples of both conventional and supercritical transport wings. Agreement is quite good for both types, but it was found necessary to account for the displacement effect of the boundary layer for the supercritical wing, presumably because of its greater sensitivity to changes in effective geometry.

  17. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection

    Science.gov (United States)

    Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan

    2017-03-01

    To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.

  18. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2014-09-06

    A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing-wake interaction also contribute significantly to the lift asymmetry. Though the wing-wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing-wing interaction and wing-body interaction are small.

  19. Solute drag on perfect and extended dislocations

    Science.gov (United States)

    Sills, R. B.; Cai, W.

    2016-04-01

    The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.

  20. Drag Coefficient and Foam in Hurricane Conditions.

    Science.gov (United States)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  1. Analysis of some interference effects in a transonic wind tunnel

    CSIR Research Space (South Africa)

    Lombardi, G

    1995-05-01

    Full Text Available The effects of the walls of a test section on a model in transonic flow were investigated by using the AGARD Calibration Model B. Tests were carried out in a closed-circuit pressurized tunnel, with a confined square test section of 1.5 m width...

  2. Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade

    Science.gov (United States)

    Lepicovsky, J.; McFarland, E. R.; Chima, R. V.; Capece, V. R.; Hayden, J.

    2002-01-01

    A study was conducted in the NASA Glenn Research Center linear cascade on the intermittent flow on the suction surface of an airfoil section from the tip region of a modern low aspect ratio fan blade. Experimental results revealed that, at a large incidence angle, a range of transonic inlet Mach numbers exist where the leading-edge shock-wave pattern was unstable. Flush mounted high frequency response pressure transducers indicated large local jumps in the pressure in the leading edge area, which generates large intermittent loading on the blade leading edge. These measurements suggest that for an inlet Mach number between 0.9 and 1.0 the flow is bi-stable, randomly switching between subsonic and supersonic flows. Hence, it appears that the change in overall flow conditions in the transonic region is based on the frequency of switching between two stable flow states rather than on the continuous increase of the flow velocity. To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the byproduct of an endwall restricted linear cascade.

  3. Transonic Pressure-- Sensing Studies Using Drop Test Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, W.B., Jr. [Organization 5141

    1954-05-01

    Free-flight drop vehicle tests have been made to investigate devices for measuring ambient pressure in the vicinity of a high-fineness-ratio weapon shape throughout the transonic speed range. Various types of nose probes and trailing probes were tested.

  4. 49 CFR 37.203 - Lift maintenance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Lift maintenance. 37.203 Section 37.203... DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish a system of regular and frequent maintenance checks of lifts sufficient to determine if they are...

  5. 30 CFR 57.16016 - Lift trucks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lift trucks. 57.16016 Section 57.16016 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... § 57.16016 Lift trucks. Fork and other similar types of lift trucks shall be operated with the: (a...

  6. 30 CFR 56.16016 - Lift trucks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lift trucks. 56.16016 Section 56.16016 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....16016 Lift trucks. Fork and other similar types of lift trucks shall be operated with the— (a) Upright...

  7. Protect Your Back: Guidelines for Safer Lifting.

    Science.gov (United States)

    Cantu, Carolyn O.

    2002-01-01

    Examines back injury in teachers and child care providers; includes statistics, common causes of back pain (improper alignment, improper posture, improper lifting, and carrying), and types of back pain (acute and chronic). Focuses on preventing back injury, body mechanics for lifting and carrying, and proper lifting and carrying of children. (SD)

  8. LIFT AND POWER REQUIREMENTS OF HOVERING INSECT FLIGHT

    Institute of Scientific and Technical Information of China (English)

    孙茂; 杜刚

    2003-01-01

    Lift and power requirements for hovering flight of eight species of insects are studied by solving the Navier-Stokes equation numerically. The solution provides velocity and pressure fields,from which unsteady aerodynamic forces and moments are obtained. The inertial torque of wing mass are computed analytically. The wing length of the insects ranges from 2 mm (fruit fly) to 52 mm (hawkmoth); Reynolds numbers Re (based on mean flapping speed and mean chord length) ranges from 75 to 3 850. The primary findings are shown in the following: (1) Either small (R = 2 mm, Re = 75),medium (R ≈ 10 mm, Re ≈ 500) or large (R ≈ 50 mm, Re ≈ 4 000) insects mainly employ the same high-lift mechanism, delayed stall, to produce lift in hovering flight. The midstroke angle of attack needed to produce a mean lift equal to the insect weight is approximately in the range of 25° to 45°,which is approximately in agreement with observation. (2) For the small insect (fruit fly) and for the medium and large insects with relatively small wingbeat frequency (cranefly, ladybird and hawkmoth),the specific power ranges from 18 to 39W.kg-1 , the major part of the power is due to aerodynamic force, and the elastic storage of negative work does not change the specific power greatly. However for medium and large insects with relatively large wingbeat frequency (hoverfly, dronefly, honey bee and bumble bee), the specific power ranges from 39 to 61W.kg-1 , the major part of the power is due to wing inertia, and the elastic storage of negative work can decrease the specific power by approximately 33%. (3) For the case of power being mainly contributed by aerodynamic force (fruit fly, cranefly,ladybird and hawkmoth), the specific power is proportional to the product of the wingbeat frequency,the stroke amplitude, the wing length and the drag-to-lift ratio. For the case of power being mainly contributed by wing inertia (hoverfly, dronefly, honey bee and bumble bee), the specific power (without

  9. Balancing acts: drag queens, gender and faith.

    Science.gov (United States)

    Sullivan-Blum, Constance R

    2004-01-01

    While engaged in research on the same-sex marriage debate in mainline denominations, I interviewed 23 LGBT Christians, four of whom were drag queens. While it is not possible to generalize from such a small sample, the drag queens in this study insist on maintaining their identity as Christians despite the hegemonic discourse that renders faith and LGBT identities mutually exclusive. They developed innovative approaches to reconciling their gender and sexual identities with their spirituality. Their innovations are potentially liberating not just for them personally, but for LGBT people generally because they challenge Christianity's rigid dichotomies of gender and sexuality.

  10. New drag laws for flapping flight

    Science.gov (United States)

    Agre, Natalie; Zhang, Jun; Ristroph, Leif

    2014-11-01

    Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.

  11. Vorticity Confinement Applied to Turbulent Wing Tip Vortices for Wake-Integral Drag Prediction

    Science.gov (United States)

    Pierson, Kristopher; Povitsky, Alex

    2013-11-01

    In the current study the vorticity confinement (VC) approach was applied to tip vortices shed by edges of stationary wings in order to predict induced drag by far-field integration in Trefftz plane. The VC parameter was evaluated first by application to convection of vortices in 2-D uniform flow and then to tip vortices shed in 3-D simulation of finite-aspect ratio rectangular wing in subsonic flight. Dependence of VC parameter on the flight Mach number and the angle of attack was evaluated. The aerodynamic drag results with application of VC to prevent numerical diffusion are much closer to analytic lifting line theory compared to integration over surface of wing while the viscous profile drag is more accurately evaluated by surface integration. To apply VC to viscous and turbulent flows, it is shown that VC does not affect the physical rate of dissipation of vortices in viscous/turbulent flows at time scales corresponding to convection of vortices from the wing to Trefftz plane of integration. To account for turbulent effects on tip vortices, VC was applied in combination with Spalart-Allmaras, k- ɛ, and six Reynolds stresses models of turbulence. The results are compared to experiments to validate the physical dissipation of tip vortex. This research was supported by The Dayton Area Graduate Studies Institute (DAGSI) and US Air Force Research Laboratory (AFRL) grants in 2009-2013, US Army Research Office (ARO) in 2012-2013 and ASEE/AFRL summer faculty grant.

  12. Numerical investigation of the effect of sphere dimples on the drag crisis and the Magnus effect

    Science.gov (United States)

    Li, Jing; Tsubokura, Makoto; Tsunoda, Masaya

    2015-11-01

    The present study investigates the flow over a golf ball and a smooth sphere around the critical Reynolds numbers under both stationary and self-spinning conditions by conducting Large-eddy simulations (LES) based on high resolution unstructured grids. For the stationary cases, the present calculation results validate the promotion of the drag crisis at a relatively lower Reynolds number due to the golf ball dimples. It also shows that the golf ball dimples have a limited effect on the time-dependent lateral force development in the subcritical regime, whereas the dimples are beneficial in suppressing the lateral force oscillations in the supercritical regimes. With spin parameter Γ = 0.1, the drag coefficients for the spinning smooth sphere increase slightly in all Reynolds number regimes when compared to the stationary cases, whereas for the spinning golf ball, the drag force decreases in the critical regime and increases in the supercritical regime. For both spinning models, the inverse Magnus effect was reproduced in the critical regime, whereas in the supercritical regime the ordinary Magnus force was generated. Relatively weaker lift forces were also observed in the cases of the spinning golf balls when compared to the spinning smooth spheres.

  13. The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

    Directory of Open Access Journals (Sweden)

    Kasey O. Greenland

    2013-06-01

    Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

  14. First-Order Twistor Lifts

    Directory of Open Access Journals (Sweden)

    Simões BrunoAscenso

    2010-01-01

    Full Text Available The use of twistor methods in the study of Jacobi fields has proved quite fruitful, leading to a series of results. L. Lemaire and J. C. Wood proved several properties of Jacobi fields along harmonic maps from the two-sphere to the complex projective plane and to the three- and four-dimensional spheres, by carefully relating the infinitesimal deformations of the harmonic maps to those of the holomorphic data describing them. In order to advance this programme, we prove a series of relations between infinitesimal properties of the map and those of its twistor lift. Namely, we prove that isotropy and harmonicity to first order of the map correspond to holomorphicity to first order of its lift into the twistor space, relatively to the standard almost complex structures and . This is done by obtaining first-order analogues of classical twistorial constructions.

  15. Lifting quasianalytic mappings over invariants

    CERN Document Server

    Rainer, Armin

    2010-01-01

    Let $\\rho : G \\to \\operatorname{GL}(V)$ be a rational finite dimensional complex representation of a reductive linear algebraic group $G$, and let $\\sigma_1,\\ldots,\\sigma_n$ be a system of generators of the algebra of invariant polynomials $\\mathbb{C}[V]^G$. We study the problem of lifting mappings $f : \\mathbb{R}^q \\supseteq U \\to \\sigma(V) \\subseteq \\mathbb{C}^n$ over the mapping of invariants $\\sigma=(\\sigma_1,\\ldots,\\sigma_n) : V \\to \\sigma(V)$. Note that $\\sigma(V)$ can be identified with the categorical quotient $V /\\!\\!/ G$ and its points correspond bijectively to the closed orbits in $V$. We prove that, if $f$ belongs to a quasianalytic subclass $\\mathcal{C} \\subseteq C^\\infty$ satisfying some mild closedness properties which guarantee resolution of singularities in $\\mathcal{C}$ (e.g.\\ the real analytic class), then $f$ admits a lift of the same class $\\mathcal{C}$ after desingularization by local blow-ups and local power substitutions. As a consequence we show that $f$ itself allows for a lift which...

  16. Generalised Eisenhart lift of the Toda chain

    Energy Technology Data Exchange (ETDEWEB)

    Cariglia, Marco, E-mail: marco@iceb.ufop.br [DEFIS, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG (Brazil); Gibbons, Gary, E-mail: g.w.gibbons@damtp.cam.ac.uk [DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2014-02-15

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

  17. Generalised Eisenhart lift of the Toda chain

    CERN Document Server

    Cariglia, Marco

    2013-01-01

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem, that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

  18. Lift enhancement by bats' dynamically changing wingspan

    Science.gov (United States)

    Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu

    2015-01-01

    This paper elucidates the aerodynamic role of the dynamically changing wingspan in bat flight. Based on direct numerical simulations of the flow over a slow-flying bat, it is found that the dynamically changing wingspan can significantly enhance the lift. Further, an analysis of flow structures and lift decomposition reveal that the elevated vortex lift associated with the leading-edge vortices intensified by the dynamically changing wingspan considerably contributed to enhancement of the time-averaged lift. The nonlinear interaction between the dynamically changing wing and the vortical structures plays an important role in the lift enhancement of a flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle. In addition, the dynamically changing wingspan leads to the higher efficiency in terms of generating lift for a given amount of the mechanical energy consumed in flight. PMID:26701882

  19. Serpentine Diffuser Performance with Emphasis on Future Introduction to a Transonic Fan (Postprint)

    Science.gov (United States)

    2013-01-01

    AFRL-RQ-WP-TP-2014-0168 SERPENTINE DIFFUSER PERFORMANCE WITH EMPHASIS ON FUTURE INTRODUCTION TO A TRANSONIC FAN (POSTPRINT) Chase A...June 2012 – 01 December 2012 4. TITLE AND SUBTITLE SERPENTINE DIFFUSER PERFORMANCE WITH EMPHASIS ON FUTURE INTRODUCTION TO A TRANSONIC FAN...resulting in an overall recovery factor of 0.983. Distortion descriptors are presented and discussed. 15. SUBJECT TERMS diffuser , transonic fan

  20. Judicial civil procedure dragging out in Kosovo

    Directory of Open Access Journals (Sweden)

    Rrustem Qehaja

    2016-03-01

    Full Text Available This article tends to deal with one of the most worrying issues in the judicial system of Kosovo the problem of judicial civil procedure dragging out. The article analyses the reasons of these dragging outs of the judicial civil procedure focusing on the context of one of the basic procedural principles in civil procedure-the principle of economy or efficiency in the courts. Dragging out of civil procedure in Kosovo has put in question not only the basic principles of civil procedure, but it also challenges the general principles related to human rights and freedoms sanctioned not only by the highest legal act of the country, but also with international treaties. The article tends to give a reflection to the most important reasons that effect and influence in these dragging outs of civil procedure, as well as, at the same time aims to give the necessary alternatives to pass through them by identifying dilemmas within the judicial practice. As a result, the motives of this scientific paper are exactly focused at the same time on identifying the dilemmas, as well as presenting ideas, to overstep them, including the judicial practice of the European Court of Human Rights on Article 6 of the European Convention on Human Rights, by which it is given the possibility to offering people efficient and within a reasonable time legal protection of their rights before national courts. For these reasons, the paper elaborates this issue based on both, the legal theory and judicial practice.

  1. ABM Drag_Pass Report Generator

    Science.gov (United States)

    Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.

  2. Turbulent drag reduction in dilute polymer solutions

    Science.gov (United States)

    Sreenivasan, K. R.; White, Christopher M.

    1998-11-01

    It is well known that the addition of small amounts of flexible polymers reduces drag in turbulent pipe flows. However, the underlying physics is still poorly understood. This paper will consider two aspects: The dependence of the onset of drag reduction on polymer concentration, and the so-called maximum drag reduction asymptote. The latter defines the maximum drag reduction possible for any polymer at a given Reynolds number, independent of the polymer concentration and detailed polymeric structure [1]. It is shown tentatively that a modest reworking of de Gennes' theory [2] is compatible with available experimental data. The principal element of the theory is that the polymers do not get stretched fully, but that the partially extended polymers store elastic energy and interfere with cascade mechanisms in turbulence. A conclusive understanding requires experiments in which the polymer properties that go into the theory are directly measured. [1] P.S. Virk, AIChE J., 21, 625 (1975) [2] P.G. de Gennes, Introduction to Polymer Dynamics, University of Cambridge (1990)

  3. Wind speed scaling and the drag coefficient

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Wind speed scaling in similarity law in wind-generated waves and the drag coefficient are studied. In analyzing the data in the wind wave channel, it is found that the u. scaling greatly reduces the scatter in the U10 scaling. The u. scaling has much less scatter than the scaling using other wind speeds. The friction velocity seems to play a distinctive role in wave growth. The result is important in the applications of the similarity law and in wave modeling. In theory it gives an insight into the mechanism of wind wave interaction. It is found that wave steepness is important in influencing the drag coefficient. The variability of the coefficients in the currently widely used drag form can be explained by the differences in wave steepness in the observations. A drag coefficient model with wind speed and wave steepness as parameters is proposed. An explanation for Kahma' s result that the u. scaling does not reduce the scatter in the U10 scaling is given.

  4. Drag reduction using slippery liquid infused surfaces

    Science.gov (United States)

    Hultmark, Marcus; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang

    2013-11-01

    A new method for passive drag reduction is introduced. A surface treatment inspired by the Nepenthes pitcher plant, previously developed by Wong et al. (2011), is utilized and its design parameters are studied for increased drag reduction and durability. Nano- and micro-structured surfaces infused with a lubricant allow for mobility within the lubricant itself when the surface is exposed to flow. The mobility causes slip at the fluid-fluid interface, which drastically reduces the viscous friction. These new surfaces are fundamentally different from the more conventional superhydrophobic surfaces previously used in drag reduction studies, which rely on a gas-liquid interface. The main advantage of the liquid infused surfaces over the conventional surfaces is that the lubricant adheres more strongly to the surface, decreasing the risk of failure when exposed to turbulence and other high-shear flows. We have shown that these surfaces can reduce viscous drag up to 20% in both Taylor-Couette flow and in a parallel plate rheometer. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  5. Abdominal lift for laparoscopic cholecystectomy.

    Science.gov (United States)

    Gurusamy, Kurinchi Selvan; Koti, Rahul; Davidson, Brian R

    2013-08-31

    Laparoscopic cholecystectomy (key-hole removal of the gallbladder) is now the most often used method for treatment of symptomatic gallstones. Several cardiopulmonary changes (decreased cardiac output, pulmonary compliance, and increased peak airway pressure) occur during pneumoperitoneum, which is now introduced to allow laparoscopic cholecystectomy. These cardiopulmonary changes may not be tolerated in individuals with poor cardiopulmonary reserve. To assess the benefits and harms of abdominal wall lift compared to pneumoperitoneum in patients undergoing laparoscopic cholecystectomy. We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, and Science Citation Index Expanded until February 2013. We included all randomised clinical trials comparing abdominal wall lift (with or without pneumoperitoneum) versus pneumoperitoneum. We calculated the risk ratio (RR), rate ratio (RaR), or mean difference (MD) with 95% confidence intervals (CI) based on intention-to-treat analysis with both the fixed-effect and the random-effects models using the Review Manager (RevMan) software. For abdominal wall lift with pneumoperitoneum versus pneumoperitoneum, a total of 130 participants (all with low anaesthetic risk) scheduled for elective laparoscopic cholecystectomy were randomised in five trials to abdominal wall lift with pneumoperitoneum (n = 53) versus pneumoperitoneum only (n = 52). One trial which included 25 people did not state the number of participants in each group. All five trials had a high risk of bias. There was no mortality or conversion to open cholecystectomy in any of the participants in the trials that reported these outcomes. There was no significant difference in the rate of serious adverse events between the two groups (two trials; 2/29 events (0.069 events per person) versus 2/29 events (0.069 events per person); rate ratio 1.00; 95% CI 0

  6. Research and development on transonic compressor of high pressure ratio turbocharger for vehicle internal combustion engines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pressure ratio required for a turbocharger centrifugal compressor increases with internal combustion engine power density. High pressure ratio causes a transonic flow field at the impeller inducer. Transonic flow narrows the stable flow range and de-teriorates stage efficiency. In this work, an advanced high pressure ratio transonic compressor was designed. The experimental results show that the maximum pressure ratio of this turbocharger is about 4.2, the maximum efficiency is above 80% and the stable flow range at the designed rotating speed is up to 34%. A turbocharger with this transonic compressor has been applied to some vehicle research actually, and improved power density by 40%.

  7. Computational aspects of the prediction of multidimensional transonic flows in turbomachinery

    Science.gov (United States)

    Oliver, D. A.; Sparis, P.

    1975-01-01

    The analytical prediction and description of transonic flow in turbomachinery is complicated by three fundamental effects: (1) the fluid equations describing the transonic regime are inherently nonlinear, (2) shock waves may be present in the flow, and (3) turbomachine blading is geometrically complex, possessing large amounts of curvature, stagger, and twist. A three-dimensional computation procedure for the study of transonic turbomachine fluid mechanics is described. The fluid differential equations and corresponding difference operators are presented, the boundary conditions for complex blade shapes are described, and the computational implementation and mapping procedures are developed. Illustrative results of a typical unthrottled transonic rotor are also presented.

  8. Evaluation of transonic wall interference assessment and correction for semi-span wing data

    Science.gov (United States)

    Garriz, Javier A.; Newman, Perry A.; Vatsa, Veer N.; Haigler, Kara J.; Burdges, Kenneth P.

    1990-01-01

    A newly developed transonic wall interference assessment and correction (WIAC) code is applied to transonic semispan wing data taken in the Lockheed-Georgia Compressible Flow Wind Tunnel (CFWT), in order to evaluate previous WIAC results and corrections. A current state-of-the-art Navier-Stokes free-air code is used as an independent check. Results are presented for Wing C at the transonic edge of its test data matrix in the CFWT. The results demonstrate the effects of wall porosity, Mach number, and angle-of-attack on the transonic wall interference correction.

  9. Significance of relative velocity in drag force or drag power estimation for a tethered float

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sastry, J.S.

    There is difference in opinion regarding the use of relative velocity instead of particle velocity alone in the estimation of drag force or power. In the present study, a tethered spherical float which undergoes oscillatory motion in regular waves...

  10. Nacelle drag reduction: An analytically-guided experimental program

    Science.gov (United States)

    Smetana, F. O.

    1975-01-01

    Modifications are proposed to standard estimating procedures, as well as the BODY computer program, which predict that the drag of two nacelles will equal the drag of the fuselage. A preliminary computer analysis that considers increased dimensions for the nacelle forebody so that the noise is relatively less blunt indicates a reduction in form drag much greater than the increase in skin friction drag attributable to increased surface area.

  11. Navier slip model of drag reduction by Leidenfrost vapour layers

    OpenAIRE

    Berry, Joseph D; Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2016-01-01

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapour layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number shows substantial deviation from the characteristic drag crisis behavior at high Reynolds numbers. Results obtained with liqiuds of different viscosities show that onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. The key feature o...

  12. Investigation into the Mechanism of Polymer Thread Drag Reduction

    Science.gov (United States)

    1990-01-01

    drag reducers than polyacrylamides of equal molecular weight. The drag reduction increases as the Re or Cm increases. The concentrations of polymer...wall region, 10 < y’ < 100, for drag reduction to occur. The normalized distance from the wall is defined as y* = yut/v; u, is the friction velocity...AP 30, a polyacrylamide solution, with a 5000 ppm concentration on the centerline of a water flow in a glass tube, they achieved drag reduction up to

  13. Flow Control and High-Lift Performance for Flying-Wing Unmanned Combat Air Vehicle Configurations by inserting slots

    Directory of Open Access Journals (Sweden)

    U Ali

    2016-06-01

    Full Text Available The objectives of the present study on Unmanned Combat Air Vehicles (UCAVs are two-fold: first to control the flow by inserting leading-edge and cross-flow slots and analysing the viscous flow development over the outer panels of a flying-wing configuration to maximise the performance of the elevons control surfaces; second to predict high-lift performance particularly the maximum-lift characteristics. This is demonstrated using a variety of inviscid Vortex Lattice Method (VLM and Euler, and viscous CFD Reynolds Averaged Navier-Stokes (RANS methods. The computational results are validated against experiment measured in a wind tunnel. Two flying-wing planforms are considered based around a generic 40˚ edge-aligned configuration. The VLM predicts a linear variation of lift and pitching moment with incidence angle, and substantially under-predicts the induced drag. Results obtained from RANS and Euler agree well with experiment.

  14. A review of hot wire anemometry in transonic flows

    Science.gov (United States)

    Stainback, P. C.

    1985-01-01

    The present paper provides a review of hot wire anemometry for compressible flows, giving particular attention to the transonic flow problem. It is pointed out that the first and most important definitive work in hot wire anemometry for compressible flows was reported by Kovasznay (1953). The existence of three independent fluctuating modes in compressible flows for small perturbations was found, taking into account the vorticity mode, the entropy mode, and the sound-wave mode. A review of Kovasznays' method for supersonic flows is also presented, and advances reported by Markovin (1956) are examined. Attention is given to experiments conducted by Horstman and Rose (1977), a general solution to the hot wire problem at transonic conditions sought by Stainback et al. (1983), and some apparent problems.

  15. Geared-elevator flutter study. [transonic flutter characteristics of empennage

    Science.gov (United States)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    The paper describes an experimental and analytical study of the transonic flutter characteristics of an empennage flutter model having an all-movable horizontal tail with a geared elevator. Two configurations were flutter tested: one with a geared elevator and one with a locked elevator with the model cantilever-mounted on a sting in the wind tunnel. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter boundary was nearly flat at transonic speeds for both configurations. It was found that an analysis which treated the elevator as a discrete surface predicted flutter dynamic pressure levels better than analyses which treated the stabilizer and elevator as a warped surface. Warped-surface methods, however, predicted more closely the experimental flutter frequencies and Mach number trends.

  16. Basic numerical methods. [of unsteady and transonic flow

    Science.gov (United States)

    Steger, Joseph L.; Van Dalsem, William R.

    1989-01-01

    Some of the basic finite-difference schemes that can be used to solve the nonlinear equations that describe unsteady inviscid and viscous transonic flow are reviewed. Numerical schemes for solving the unsteady Euler and Navier-Stokes, boundary-layer, and nonlinear potential equations are described. Emphasis is given to the elementary ideas used in constructing various numerical procedures, not specific details of any one procedure.

  17. Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components

    OpenAIRE

    Davis Roger; Yao Jixian; Clark John; Stetson Gary; Alonso Juan; Jameson Antony; Haldeman Charles; Dunn Michael

    2004-01-01

    Results from a numerical simulation of the unsteady flow through one quarter of the circumference of a transonic high-pressure turbine stage, transition duct, and low-pressure turbine first vane are presented and compared with experimental data. Analysis of the unsteady pressure field resulting from the simulation shows the effects of not only the rotor/stator interaction of the high-pressure turbine stage but also new details of the interaction between the blade and the downstream transition...

  18. Transonic analysis of complex configurations using TRANAIR program

    Science.gov (United States)

    Saaris, G. R.; Gilkey, R. D.; Smit, K. L.; Tinoco, E. N.

    1989-01-01

    The application of a three-dimensional transonic flow analysis method, TRANAIR, is explored from the point of view of a user. Detailed features of the program are outlined to give a better understanding of capability. Numerous results are presented to show some of the complex configurations which have been analyzed. In particular, examples are provided which show the application to turbofan engine installation on transport aircraft.

  19. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  20. Krajewski diagrams and spin lifts

    CERN Document Server

    Schücker, T

    2005-01-01

    A classification of irreducible, dynamically non-degenerate, almost commutative spectral triples is refined. It is extended to include centrally extended spin lifts. Simultaneously it is reduced by imposing three constraints: (i) the condition of vanishing Yang-Mills and mixed gravitational anomalies, (ii) the condition that the fermion representation be complex under the little group, while (iii) massless fermions are to remain neutral under the little group. These constraints single out the standard model with one generation of leptons and quarks and with an arbitrary number of colours.

  1. Innovative Flow Control Concepts for Drag Reduction

    Science.gov (United States)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs

  2. Lift Enhancement and Oscillatory Suppression of Vortex-induced Vibration in Shear Flow by Loentz Force

    Institute of Scientific and Technical Information of China (English)

    张辉; 范宝春; 李鸿志

    2012-01-01

    The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cyl- inder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re = 150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Loreutz force increases the lift.

  3. Fourier time spectral method for subsonic and transonic flows

    Institute of Scientific and Technical Information of China (English)

    Lei Zhan; Feng Liu; Dimitri Papamoschou

    2016-01-01

    The time accuracy of the exponentially accu-rate Fourier time spectral method (TSM) is examined and compared with a conventional 2nd-order backward differ-ence formula (BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical com-putations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth sub-sonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the predic-tion of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higher-order harmonic contents to the local pressure fluctuations, a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method. The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.

  4. Generation of vertical gusts in a transonic wind tunnel

    Science.gov (United States)

    Brion, V.; Lepage, A.; Amosse, Y.; Soulevant, D.; Senecat, P.; Abart, J. C.; Paillart, P.

    2015-07-01

    This article reports on the qualification of a gust generator device in a transonic wind tunnel. A vanning apparatus has been installed in the contraction of the S3Ch transonic wind tunnel at the ONERA Meudon center in order to generate up and down air movements in the test section. The apparatus has been tested in a range of Strouhal number based on frequency and vane chord up to 0.15 and in a range of Mach number between 0.3 and 0.73. The amplitude of the gusts has been characterized by a fast-response two-hole pressure probe and phase-averaged PIV. The system delivers vertical velocity amplitude of 0.5 % of the freestream velocity at transonic speeds. For a constant vane oscillation angle, the gust strength is found to increase with the Strouhal and the Mach numbers. The gust exhibit a satisfying uniformity and a quasi-sinusoidal waveform. A simple dynamic point vortex model of the oscillating vanes and of the downstream wake has been developed in order to (1) compare the experimental results and (2) enrich the description of the flow induced by the gusts. In particular, the model is used to analyze the detrimental effect of the upper and lower walls. This simple unsteady model gives a valuable prediction of the amplitude of the gust obtained in the tunnel and the workable frequency range permitted by the present apparatus.

  5. Training for lifting; an unresolved ergonomic issue?

    Science.gov (United States)

    Sedgwick, A W; Gormley, J T

    1998-10-01

    The paper describes a nine year project on lifting training which included nine trans-Australia consensus conferences attended by more than 900 health professionals. Major outcomes were: (1) The essence of lifting work is the need for the performer to cope with variability in task, environment, and self, and the essence of lifting skill is therefore adaptability; (2) the semi-squat approach provides the safest and most effective basis for lifting training; (3) for lifting training to be effective, the basic principles of skill learning must be systematically applied, with adaptability as a specific goal; (4) physical work capacity (aerobic power, strength, endurance, joint mobility) is a decisive ingredient of safe and effective lifting and, in addition to skill learning, should be incorporated in the training of people engaging regularly in heavy manual work; (5) if effective compliance with recommended skilled behaviour is to be achieved, then training must apply the principles and methods appropriate to adult learning and behaviour modification.

  6. Research on Drag Torque Prediction Model for the Wet Clutches

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reasonable and it performs well for predicting the drag torque peak.

  7. The other optimal Stokes drag profile

    CERN Document Server

    Montenegro-Johnson, Thomas D

    2014-01-01

    The lowest drag shape of fixed volume in Stokes flow has been known for some 40 years. It is front-back symmetric and similar to an American football with ends tangent to a cone of 60 degrees. The analogous convex axisymmetric shape of fixed surface area, which may be of interest for particle design in chemistry and colloidal science, is characterized in this paper. This "other" optimal shape has a surface vorticity proportional to the mean surface curvature, which is used with a local analysis of the flow near the tip to show that the front and rear ends are tangent to a cone of angle 30.8 degrees. Using the boundary element method, we numerically represent the shape by expanding its tangent angle in terms decaying odd Legendre modes, and show that it has 11.3% lower drag than a sphere of equal surface area, significantly more pronounced than for the fixed-volume optimal.

  8. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  9. Drag Reduction by Polymeric and Nonpolymeric Additives

    Science.gov (United States)

    White, Christopher; Sreenivasan, K. R.

    1997-11-01

    To investigate the ``self-healing'' property of drag reducing surfactant micelles we have conducted a comparative study between high polymers and surfactants in six turbulent pipe flows (Reynolds numbers between 2000 and 90,000) with varying intensities o f secondary flow. Friction factor values are measured in a straight pipe of 185 diameters; three pipes, each turning through four 90 degree elbows, of lengths 1085 diameters, 875 diameters, and 600 diameters; and a twice-turned coiled pipe, radius of curv ature of 24 diameters and length of 290 diameters. All the flows are gravity driven to prevent degradation effects caused by pump impellers. The large stresses set up by the secondary flows degrade the fragile polymers, thus reducing their effectivness as a drag reducer. The ``self-healing'' of the micelles enables the surfactant to maintain its effectivness. We will present the ``self-healing'' characteristics of the surfactant micelles using the polymer data as the datum.

  10. Investigation on Drag Reduction of Trucks

    Institute of Scientific and Technical Information of China (English)

    QI Xiao-ni; LIU Zhen-yan

    2008-01-01

    A study of the mechanism of fences was given to reduce drag by means of theoretical analysis, numerical simulation and experimental research. A 3D mathematical model has been developed based on computational fluid dynamics software Phoenics that was capable of handling steady state, 3D flow to simulate the flow field around the truck. The experiment made in a low speed wind tunnel is used as references for validation. By analyzing the results of calculation and experiment, the flowing mechanism of the flow field around the container truck and the drag-reducing mechanism of #-shaped fences on the truck are unveiled, which provides theoretical guidance to the aerodynamic formation designing and amelioration.

  11. Constraint Processing in Lifted Probabilistic Inference

    CERN Document Server

    Kisynski, Jacek

    2012-01-01

    First-order probabilistic models combine representational power of first-order logic with graphical models. There is an ongoing effort to design lifted inference algorithms for first-order probabilistic models. We analyze lifted inference from the perspective of constraint processing and, through this viewpoint, we analyze and compare existing approaches and expose their advantages and limitations. Our theoretical results show that the wrong choice of constraint processing method can lead to exponential increase in computational complexity. Our empirical tests confirm the importance of constraint processing in lifted inference. This is the first theoretical and empirical study of constraint processing in lifted inference.

  12. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  13. Yoshida lifts and Selmer groups

    CERN Document Server

    Böcherer, Siegfried; Schulze-Pillot, Rainer

    2010-01-01

    Let $f$ and $g$, of weights $k'>k\\geq 2$, be normalised newforms for $\\Gamma_0(N)$, for square-free $N>1$, such that, for each Atkin-Lehner involution, the eigenvalues of $f$ and $g$ are equal. Let $\\lambda\\mid\\ell$ be a large prime divisor of the algebraic part of the near-central critical value $L(f\\otimes g,\\frac{k+k'-2}{2})$. Under certain hypotheses, we prove that $\\lambda$ is the modulus of a congruence between the Hecke eigenvalues of a genus-two Yoshida lift of (Jacquet-Langlands correspondents of) $f$ and $g$ (vector-valued in general), and a non-endoscopic genus-two cusp form. In pursuit of this we also give a precise pullback formula for a genus-four Eisenstein series, and a general formula for the Petersson norm of a Yoshida lift. Given such a congruence, using the $4$-dimensional $\\lambda$-adic Galois representation attached to a genus-two cusp form, we produce, in an appropriate Selmer group, an element of order $\\lambda$, as required by the Bloch-Kato conjecture on values of $L$-functions. (Her...

  14. A Note on Disk Drag Dynamics

    CERN Document Server

    Gunther, Neil J

    2012-01-01

    The electrical power consumed by typical magnetic hard disk drives (HDD) not only increases linearly with the number of spindles but, more significantly, it increases as very fast power-laws of speed (RPM) and diameter. Since the theoretical basis for this relationship is neither well-known nor readily accessible in the literature, we show how these exponents arise from aerodynamic disk drag and discuss their import for green storage capacity planning.

  15. Satellite Formation Control Using Atmospheric Drag

    Science.gov (United States)

    2007-03-01

    all cases tested, and the eccentricity-minimizing control law was able to maintain the position within 4.17 feet. More recently, Wedekind considered...three different formations, in-plane, in-track, and circular, was considered. Wedekind achieved favorable results for these three formations when the...and Kluwer Academic Publishers, 2004. 23. Wedekind , James T. Characterizing and Controlling the Effects of Differential Drag on Satellite Formations

  16. Drag Reduction, from Bending to Pruning

    CERN Document Server

    Lopez, Diego; Michelin, Sébastien; de Langre, Emmanuel

    2013-01-01

    Most plants and benthic organisms have evolved efficient reconfiguration mechanisms to resist flow-induced loads. These mechanisms can be divided into bending, in which plants reduce their sail area through elastic deformation, and pruning, in which the loads are decreased through partial breakage of the structure. In this work, we show by using idealized models that these two mechanisms or, in fact, any combination of the two, are equally efficient to reduce the drag experienced by terrestrial and aquatic vegetation.

  17. Satellite Attitude Control Using Atmospheric Drag

    Science.gov (United States)

    2007-03-01

    Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In...yaw axes and provide magnetic damping on both the pitch and yaw axes. The satellite resem- bles a shuttlecock used in badminton (see Figure 2.2). The...Control Using Atmospheric Drag Guettler, David B., Captain, USAF Air Force Institute of Technology Graduate School of Engineering and Management (AFIT

  18. Phonon-drag effects on thermoelectric power

    OpenAIRE

    Wu, M. W.; Horing, N. J. M.; Cui, H. L.

    1995-01-01

    We carry out a calculation of the phonon-drag contribution $S_g$ to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at hi...

  19. Stokes’ and Lamb's viscous drag laws

    Science.gov (United States)

    Eames, I.; Klettner, C. A.

    2017-03-01

    Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8-106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem.

  20. Hybrid Airships for Lift: A New Lift Paradigm and a Pragmatic Assessment of the Vehicle’s Key Operational Challenges

    Science.gov (United States)

    2011-12-01

    required lift for flight, Hybrid Airships use a combination of buoyant lift (provided by a gas such as Helium), aerodynamic lift (generated by airflow...AIR FORCE FELLOWS AIR UNIVERSITY HYBRID AIRSHIPS FOR LIFT: A NEW LIFT PARADIGM AND A PRAGMATIC ASSESSMENT OF THE...00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Hybrid Airships for Lift: A New Lift Paradigm And A Pragmatic Assessment Of The Vehicle’s Key

  1. Space Age Swimsuit Reduces Drag, Breaks Records

    Science.gov (United States)

    2008-01-01

    A space shuttle and a competitive swimmer have a lot more in common than people might realize: Among other forces, both have to contend with the slowing influence of drag. NASA s Aeronautics Research Mission Directorate focuses primarily on improving flight efficiency and generally on fluid dynamics, especially the forces of pressure and viscous drag, which are the same for bodies moving through air as for bodies moving through water. Viscous drag is the force of friction that slows down a moving object through a substance, like air or water. NASA uses wind tunnels for fluid dynamics research, studying the forces of friction in gasses and liquids. Pressure forces, according to Langley Research Center s Stephen Wilkinson, dictate the optimal shape and performance of an airplane or other aero/hydro-dynamic body. In both high-speed flight and swimming, says Wilkinson, a thin boundary layer of reduced velocity fluid surrounds the moving body; this layer is about 2 centimeters thick for a swimmer.

  2. Modelling LARES temperature distribution and thermal drag

    CERN Document Server

    Nguyen, Phuc H

    2015-01-01

    The LARES satellite, a laser-ranged space experiment to contribute to geophysics observation, and to measure the general relatistic Lense-Thirring effect, has been observed to undergo an anomalous along-track orbital acceleration of -$0.4\\ pm/s^2$ (pm := picometer). This "drag" is not surprising; along track drag has previously been observed with the related LAGEOS satellites (-$3.4\\ pm/s^2$). It is hypothesized that the drag is due to anisotropic thermal radiation from the satellite's exterior. We report the results of numerical computations of the along-track orbital decay of the LARES satellite during the first 105 days after launch. The results depend to a significant degree on the visual and IR absorbance $\\alpha$ and emissivity $\\epsilon$ of the fused silica cube-cornered laser retroreflectors (CCRs). We present results for two values of $\\alpha_{IR}$ = $\\epsilon_{IR}$: 0.82, a standard number for "clean" fused silica; and 0.60, a possible value for silica with slight surface contamination subjected to ...

  3. Picosecond response of a photon drag detector

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, M.F. [Univ. of Essex (United Kingdom)

    1995-12-31

    The primary use of photon drag detectors has been with CO{sub 2} lasers at 10{mu}m. Cornmercially-available devices are limited to response times of < 0.5-1ns and voltage responsivities of <0.5{mu}V W{sup -1}. This poster paper will describe the first photon drag detector specifically designed for very fast response. Using the free-election laser FELIX at the FOM Institute in the Netherlands, a rise time of <50ps has been demonstrated, using a 5mm{sup 2} area detector with a responsivity of >1{mu}V W{sup -1} over the wavelength range 10-25{mu}m. The figure shows the clear resolution of the micropulse structure of the laser. The actual width of each pulse is a few picosecoods, with a micropulse spacing of Ins. The advantages or photon drag detectors are room-temperature operation, linear response to intensifies greater than 10{sup 6}MW cm{sup -2} and very high damage threshold. These detectors are cheap to manufacture and, using different semiconductors, can be designed for any wavelength from 1 {mu}m-5mm.

  4. Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed

    DEFF Research Database (Denmark)

    Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo

    2002-01-01

    The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...

  5. Isolated neck-lifting procedure: isolated stork lift.

    Science.gov (United States)

    Barbarino, Sheila C; Wu, Allan Y; Morrow, David M

    2013-04-01

    Many patients desire cosmetic improvement of neck laxity when consulting with a plastic surgeon about their face. Neck laxity and loss of the cervicomental angle can be due to multiple components of aging such as skin quality/elasticity, loss of platysma muscle tone, and submental fat accumulation. Traditionally, the procedure of choice for patients with an aging lower face and neck is a cervicofacial rhytidectomy. However, occasionally, a patient wishes to have no other facial surgery than an improvement of their excessive skin of the anterior, lateral, and/or posterior neck. In other instances, a patient may present with having had a face/neck-lifting procedure that left objectionable vertical/diagonal lines at the lateral neck. In both these instances, a surgeon should consider an isolated stork lift (ISL) procedure. An ISL procedure avoids and/or corrects problematic vertical/diagonal lateral neck folds by "walking" the excess skin flaps around the posterior inferior occipital hairline bilaterally, bringing the flaps together at the lateral and posterior neck, which sometimes involves a midline posterior dart excision of the dog ear. A patient presenting with excessive skin of the neck (anterior, lateral, and/or posterior) and/or residual vertical/diagonal skin folds is an excellent candidate for the ISL. The ISL procedure was performed on 273 patients over a 2-year period at The Morrow Institute. Patients were included if they had excessive skin of the anterior, lateral, and/or posterior neck and/or diagonal/vertical lateral bands and did not desire a full face-lifting procedure. Patients were excluded from this study if they would not accept having longer hair in order to cover the scar along the posterior inferior occipital hairline or a midline T-flap skin closure scar at the base of the posterior midline neck. Under a combination of local anesthesia and IV sedation, a postauricular face-lift incision was made that was extended in a circumoccipital fashion

  6. Effects of Polymer Parameters on Drag Reduction.

    Science.gov (United States)

    Safieddine, Abbas Mohammad

    The effects of polymer parameters on fluid drag reduction using polyethylene oxide (PEO), polyacrylamide (PAM), guar gum (GG) and hydroxyethyl cellulose (HEC) were investigated. Due to the unavailability of high molecular weight (MW) water-soluble polymers having narrow molecular weight distribution (MWD), an aqueous preparative size exclusion chromatography (SEC) system capable of fractionating over wide MW ranges was constructed. An online low shear viscometer, coupled to the SEC, measured the instantaneous intrinsic viscosity of the eluting polymer solution and, therefore, served as a MW detector since Mark-Houwink "K" and "a" values for all four polymers were known. With the aid of the viscometer, the SEC system was calibrated. The preparative nature of the chromatography system allowed the collection of large volumes of nearly monodisperse fractions (MWD SEC approach allowed drag reduction (DR) experiments using well-characterized, narrowly dispersed polymer solutions under controlled tube flow conditions. Correlations of drag reduction performance with primary polymer parameters (i.e., concentration, intrinsic viscosity ((eta)), volume fraction (c(eta)), number of chain links (N), and combinations thereof) were used to test the validity of several theoretical DR models. Walsh's energy model, as well as the Deborah argument, did not completely account for drag reduction behavior under all experimental conditions. Within each of the flexible or rigid polymer groups, the extensional viscosity model was successful in correlating c(eta) N with DR under all turbulent conditions. However, it failed to account for the differences in chemical structure between the two polymer groups. However, when the cellulosic repeat unit was used instead of the carbon-carbon bond as the chain link for the rigid polymers (GG and HEC), all DR versus c (eta) N curves under all turbulent conditions collapsed into a single function. This has been predicted by the recent "yo-yo" model of

  7. 33 CFR 118.85 - Lights on vertical lift bridges.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  8. CNOOC Lifts 2011 Production Target

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ China National Offshore Oil Corporation (CNOOC), China's top offshore oil and gas producer, has lifted its 2011 production target by up to 11 percent as new projects at home and overseas come on stream.The offshore oil giant, with a market capitalization of about US$105 billion, said in a statement released in late January 2011 that it aimed to produce between 355 and 365 million barrels of oil equivalent (BOE).Oil prices climbed 15 percent in 2010 on the back of expectations that a global economic recovery will drive the demand.Analysts are similarly bullish for 2011, predicting crude prices to trade at around US$100 for the year.CNOOC, the smallest of China's triumvirate of energy companies that also includes CNPC and Sinopee, said it targeted US$8.8 billion in capital expenditure for 2011.

  9. Heavy-lift airship dynamics

    Science.gov (United States)

    Tischler, M. B.; Ringland, R. F.; Jex, H. R.

    1983-01-01

    The basic aerodynamic and dynamic properties of an example heavy-lift airship (HLA) configuration are analyzed using a nonlinear, multibody, 6-degrees-of-freedom digital simulation. The slung-payload model is described, and a preliminary analysis of the coupled vehicle-payload dynamics is presented. Trim calculations show the importance of control mixing selection and suggest performance deficiencies in crosswind stationkeeping for the unloaded example HLA. Numerically linearized dynamics of the unloaded vehicle exhibit a divergent yaw mode and an oscillatory pitch mode whose stability characteristic is sensitive to flight speed. An analysis of the vehicle-payload dynamics shows significant coupling of the payload dynamics with those of the basic HLA. It is shown that significant improvement in the vehicle's dynamic behavior can be achieved with the incorporation of a simple flight controller having proportional, rate, and integral-error feedbacks.

  10. Lip Lifting: Unveiling Dental Beauty.

    Science.gov (United States)

    Stanley, Kyle; Caligiuri, Matthew; Schlichting, Luís Henrique; Bazos, Panaghiotis K; Magne, Michel

    2017-01-01

    The focus for the achievement of complete success in the esthetic zone has traditionally been on addressing deficiencies of intraoral hard and soft tissue. Often, these deficiencies are accompanied by esthetic concerns regarding the lips that are routinely neglected by the dental team. A predictable plastic surgery technique - the lip lift - has been used for decades to enhance lip esthetics by shortening the senile upper lip to achieve a more youthful appearance. Over the years, this technique has been refined and used in many different ways, allowing its routine incorporation into full facial esthetic planning. Through restoration of the upper lip to its optimal position, the artistry of the dentist and dental technician can truly be appreciated in the rejuvenated smile. By the introduction of this minimally invasive surgical technique to the dental community, patients stand to benefit from a comprehensive orofacial approach to anterior dental esthetic planning.

  11. How to Lift a Heavy Object?

    Institute of Scientific and Technical Information of China (English)

    丁凤丽

    2007-01-01

    <正>Many people hurt their backs when they try to lift heavy things from the floor. It is easy to hurt your back muscles when you pick up a heavy object. However, there is a correct way to lift things from the floor. If you pick up big or heavy objects correctly, you probably will not hurt your back.

  12. Improving Grading Consistency through Grade Lift Reporting

    Science.gov (United States)

    Millet, Ido

    2010-01-01

    We define Grade Lift as the difference between average class grade and average cumulative class GPA. This metric provides an assessment of how lenient the grading was for a given course. In 2006, we started providing faculty members individualized Grade Lift reports reflecting their position relative to an anonymously plotted school-wide…

  13. Experimental Results of Winglets on First, Second, and Third Generation Jet Transports. [to reduce drag coefficient

    Science.gov (United States)

    Flechner, S. G.; Jacobs, P. F.

    1978-01-01

    Results of wind tunnel investigations of four jet transport configurations representing both narrow and wide-body configurations and also a future advanced aerodynamic configuration are presented including performance and wing root bending moment data. The effects of winglets on the aerodynamic characteristics throughout the flight envelope were studied. The results indicate that winglets improved the cruise lift to drag ratio between 4 and 8 percent, depending on the transport configuration. The data also indicate that ratios of relative aerodynamic gain to relative structural weight penalty for winglets are 1.5 to 2.5 times those for wing-tip extensions. Over the complete range of flight conditions, winglets produce no adverse effects on buffet onset, lateral-directional stability, and aileron control effectiveness.

  14. Occupational lifting and pelvic pain during pregnancy:

    DEFF Research Database (Denmark)

    Larsen, Pernille Stemann; Strandberg-Larsen, Katrine; Juhl, Mette;

    2013-01-01

    OBJECTIVES: Pelvic pain during pregnancy is a common ailment, and the disease is a major cause of sickness absence during pregnancy. It is plausible that occupational lifting may be a risk factor of pelvic pain during pregnancy, but no previous studies have examined this specific exposure. The aim...... of this study was to examine the association between occupational lifting and pelvic pain during pregnancy. METHODS: The study comprised 50 143 pregnant women, enrolled in the Danish National Birth Cohort in the period from 1996-2002. During pregnancy, the women provided information on occupational lifting...... (weight load and daily frequency), and six months post partum on pelvic pain. Adjusted odds ratios for pelvic pain during pregnancy according to occupational lifting were calculated by logistic regression. RESULTS: Any self-reported occupational lifting (>1 time/day and loads weighing >10 kg...

  15. Lift conference | 5-7 February

    CERN Multimedia

    2014-01-01

    Since 2006, Lift Events explore the business and social implications of new technologies through the organisation of international event series and open innovation programs in Europe, Asia and America. The next conference will be held on 5-7 February in Geneva.   (Image: © Lift Conference) The Lift Conference is one of the leading conferences on innovation in Europe and a key annual meeting for individuals and organizations wishing to understand and anticipate trends and innovation. Held every year in February in Geneva (5-7 February 2014), the Lift Conference is a three-day event consisting of talks, interactive workshops, exhibitions, and discussions bringing together over 1’000 participants from all society’s sectors and industries in a dynamic and informal environment with the aim to learn, connect, share and leverage innovation opportunities.   Extraordinary speakers will take to the stage at Lift14: Porter Erisman, former VP of Alibaba.com turned...

  16. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  17. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2004-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  18. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2003-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  19. Lambda-lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, O.; Schultz, U.P.

    2004-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  20. Lifting index of the niosh lifting equation and low back pain

    Directory of Open Access Journals (Sweden)

    Eliana Remor Teixeira

    2011-09-01

    Full Text Available The purpose of this study is to assess the relationship of the Lifting Index obtained through the application of the NIOSH Lifting Equation and the incidence of low back pain among forty-eight workers involved in manual lifting tasks. It was applied the equation in eleven tasks and the workers were interviewed. The most unfavorable conditions presented themselves in the lifting destination. The variables that most contributed to the inadequate values of the Lifting Index were: the horizontal location, the lifting frequency and the vertical distance, beyond the high weight of the load. The incidence of low back pain in the last twelve months was 19%, whereas the incidence of work-related low back pain in the same period was 10%. In 72.7% of the tasks evaluated the Composite Lifting Index was more than three, which are considered as high ergonomic risk.

  1. Transonic galactic outflows in a dark matter halo with a central black hole and its application to the Sombrero galaxy

    CERN Document Server

    Igarashi, Asuka; Nitta, Shin-ya

    2014-01-01

    We have classified possible transonic solutions of galactic outflows in the gravitational potential of the dark matter halo (DMH) and super massive black hole (SMBH) under the assumptions of isothermal, spherically symmetric and steady state. It is clarified that the gravity of SMBH adds a new branch of transonic solutions with the transonic point in very close proximity to the centre in addition to the outer transonic point generated by the gravity of DMH. Because these two transonic solutions have substantially different mass fluxes and starting points, these solutions may have different influences on the evolution of galaxies and the release of metals into intergalactic space. We have applied our model to the Sombrero galaxy and obtained a new type of galactic outflow: a slowly accelerated transonic outflow through the transonic point at very distant region ($\\simeq 126$\\ kpc). In this galaxy, previous works reported a discrepancy that although the trace of the galactic outflow is observed by X-ray, the ga...

  2. Occupational lifting of heavy loads and preterm birth:

    DEFF Research Database (Denmark)

    Runge, Stine Bjerrum; Pedersen, Jacob Krabbe; Svendsen, Susanne Wulff

    2013-01-01

    To examine the association between occupational lifting during pregnancy and preterm birth. The risk of preterm birth was estimated for total burden lifted per day and number of medium and heavy loads lifted per day.......To examine the association between occupational lifting during pregnancy and preterm birth. The risk of preterm birth was estimated for total burden lifted per day and number of medium and heavy loads lifted per day....

  3. Coulombic dragging of molecular assemblies on nanotubes

    Science.gov (United States)

    Kral, Petr; Sint, Kyaw; Wang, Boyang

    2009-03-01

    We show by molecular dynamics simulations that polar molecules, ions and their assemblies could be Coulombically dragged on the surfaces of single-wall carbon and boron-nitride nanotubes by ionic solutions or individual ions moving inside the nanotubes [1,2]. We also briefly discuss highly selective ionic sieves based on graphene monolayers with nanopores [3]. These phenomena could be applied in molecular delivery, separation and desalination.[3pt] [1] Boyang Wang and Petr Kral, JACS 128, 15984 (2006). [0pt] [2] Boyang Wang and Petr Kral, Phys. Rev. Lett. 101, 046103 (2008). [0pt] [3] Kyaw Sint, Boyang Wang and Petr Kral, JACS, ASAP (2008).

  4. Gravitational Capture of Asteroids by Gas Drag

    Directory of Open Access Journals (Sweden)

    E. Vieira Neto

    2009-01-01

    captured by the planet got its velocity reduced and could been trapped as an irregular satellite. It is well known that, depending on the time scale of the gas envelope, an asteroid will spiral and collide with the planet. So, we simulate the passage of the asteroid in the gas envelope with its density decreasing along the time. Using this approach, we found effective captures, and have a better understanding of the whole process. Finally, we conclude that the origin of the irregular satellites cannot be attributed to the gas drag capture mechanism alone.

  5. Drag phenomena from holographic massive gravity

    Science.gov (United States)

    Baggioli, Matteo; Brattan, Daniel K.

    2017-01-01

    We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally, we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.

  6. Drag phenomena from holographic massive gravity

    CERN Document Server

    Baggioli, Matteo

    2015-01-01

    We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.

  7. On Nature of Plasmonic Drag Effect

    CERN Document Server

    Durach, Maxim

    2016-01-01

    Light-matter momentum transfer in plasmonic materials is theoretically discussed in context of the modified plasmonic pressure mechanism, taking into account electron thermalization process. We show that our approach explains the observed in experiments relationship between the photoinduced electromotive force and absorption, emphasizes the quantum nature of plasmon-electron interaction, and allows one to correctly calculate the magnitude of the plasmon drag emf in flat metal films for the first time. We extend our theory on the films with modulated profiles and show that simple relationship between plasmonic energy and momentum transfer holds for the case of laminar electron drift and relatively small amplitudes of height modulation.

  8. Evaluation of nacelle drag using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Luis Gustavo Trapp

    2010-08-01

    Full Text Available Thrust and drag components must be defined and properly accounted in order to estimate aircraft performance, and this hard task is particularty essential for propulsion system where drag components are functions of engine operating conditions. The present work describes a numerical method used to calculate the drag in different nacelles, long and short ducted. Two- and three-dimensional calculations were performed, solving the Reynolds Averaged Navier-Stokes (RANS equations with a commercial Computational Fluid Dynamics (CFD code. It is then possible to obtain four drag components: wave, induced, viscous and spurious drag using a far-field formulation. An expression in terms of entropy variations was shown and drag for different nacelle geometries was estimated.

  9. Optimum Transonic Airfoils Based on the Euler Equations

    Science.gov (United States)

    Iollo, Angelo; Salas, Manuel, D.

    1996-01-01

    We solve the problem of determining airfoils that approximate, in a least square sense, given surface pressure distributions in transonic flight regimes. The flow is modeled by means of the Euler equations and the solution procedure is an adjoint- based minimization algorithm that makes use of the inverse Theodorsen transform in order to parameterize the airfoil. Fast convergence to the optimal solution is obtained by means of the pseudo-time method. Results are obtained using three different pressure distributions for several free stream conditions. The airfoils obtained have given a trailing edge angle.

  10. A Bibliography of Transonic Dynamics Tunnel (TDT) Publications

    Science.gov (United States)

    Doggett, Robert V.

    2016-01-01

    The Transonic Dynamics Tunnel (TDT) at the National Aeronautics and Space Administration's (NASA) Langley Research Center began research operations in early 1960. Since that time, over 600 tests have been conducted, primarily in the discipline of aeroelasticity. This paper presents a bibliography of the publications that contain data from these tests along with other reports that describe the facility, its capabilities, testing techniques, and associated research equipment. The bibliography is divided by subject matter into a number of categories. An index by author's last name is provided.

  11. An inverse method with regularity condition for transonic airfoil design

    Science.gov (United States)

    Zhu, Ziqiang; Xia, Zhixun; Wu, Liyi

    1991-01-01

    It is known from Lighthill's exact solution of the incompressible inverse problem that in the inverse design problem, the surface pressure distribution and the free stream speed cannot both be prescribed independently. This implies the existence of a constraint on the prescribed pressure distribution. The same constraint exists at compressible speeds. Presented here is an inverse design method for transonic airfoils. In this method, the target pressure distribution contains a free parameter that is adjusted during the computation to satisfy the regularity condition. Some design results are presented in order to demonstrate the capabilities of the method.

  12. Aerodynamic Optimum Design of Transonic Turbine Cascades Using Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler Solver and the boundary-layer calculation.The Genetic Algorithms control the evolution of a population of cascades towards an optimum design.The fitness value of each string is evaluated using the flow solver.The design procedure has been developed and the behavior of the genetic algorithms has been tested.The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.

  13. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    Science.gov (United States)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  14. Simulated transonic flows for aircraft with nacelles, pylons, and winglets

    Science.gov (United States)

    Boppe, C. W.; Stern, M. A.

    1980-01-01

    A computational method which simulates transonic flow about wing-fuselage configurations has been extended to include the treatment of multiple body and non-planar wing surfaces. The finite difference relaxation scheme is characterized by a modified small disturbance flow equation and multiple embedded grid system. Wing-body combinations with as many as four nacelles/pods, four pylons, and wing-tip-mounted winglets can be analyzed. A scheme for modeling inlet spillage and engine exhaust interference effects has been included. Computed results are correlated with experimental data for three transport configurations.

  15. Numerical evaluation of tandem rotor for highly loaded transonic fan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bin; LIU Bao-jie

    2011-01-01

    Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-dimensional (3-D) numerical simulation. The aft blade solidity and its impact on total loading level were studied in depth. The result indicates that tandem rotor has potential to achieve higher loading level and attain favorable aerodynamic performance in a wide range of loading coefficient 0. 55 ~ 0.68, comparing with the conventional rotor which produced a total pressure ratio of 2.0 and loading coefficient of 0. 42.

  16. Wind-US Unstructured Flow Solutions for a Transonic Diffuser

    Science.gov (United States)

    Mohler, Stanley R., Jr.

    2005-01-01

    The Wind-US Computational Fluid Dynamics flow solver computed flow solutions for a transonic diffusing duct. The calculations used an unstructured (hexahedral) grid. The Spalart-Allmaras turbulence model was used. Static pressures along the upper and lower wall agreed well with experiment, as did velocity profiles. The effect of the smoothing input parameters on convergence and solution accuracy was investigated. The meaning and proper use of these parameters are discussed for the benefit of Wind-US users. Finally, the unstructured solver is compared to the structured solver in terms of run times and solution accuracy.

  17. Rotating systems, universal features in dragging and anti-dragging effects, and bounds onto angular momentum

    CERN Document Server

    Karkowski, Janusz; Malec, Edward; Pirog, Michal; Xie, Naqing

    2016-01-01

    We consider stationary, axially symmetric toroids rotating around spinless black holes, assuming the general-relativistic Keplerian rotation law, in the first post-Newtonian approximation. Numerical investigation shows that the angular momentum accumulates almost exclusively within toroids. It appears that various types of dragging (anti-dragging) effects are positively correlated with the ratio $M_\\mathrm{D}/m$ ($M_\\mathrm{D}$ is the mass of a toroid and $m$ is the mass of the black hole) - moreover, their maxima are proportional to $M_\\mathrm{D}/m$. The horizontal sizes of investigated toroids range from c. 50 to c. 450 of Schwarzschild radii $R_\\mathrm{S}$ of the central black hole; their mass $M_\\mathrm{D} \\in (10^{-4}m, 40m)$ and the radial size of the system is c. 500 $R_\\mathrm{S}$. We found that the relative strength of various dragging (anti-dragging) effects does not change with the mass ratio, but it depends on the size of toroids. Several isoperimetric inequalities involving angular momentum are s...

  18. Drag prediction method of powered-on civil aircraft based on thrust drag bookkeeping

    Directory of Open Access Journals (Sweden)

    Zhang Yufei

    2015-08-01

    Full Text Available A drag prediction method based on thrust drag bookkeeping (TDB is introduced for civil jet propulsion/airframe integration performance analysis. The method is derived from the control volume theory of a powered-on nacelle. Key problem of the TDB is identified to be accurate prediction of velocity coefficient of the powered-on nacelle. Accuracy of CFD solver is validated by test cases of the first AIAA Propulsion Aerodynamics Workshop. Then the TDB method is applied to thrust and drag decomposing of a realistic aircraft. A linear relation between the computations assumed free stream Mach number and the velocity coefficient result is revealed. The thrust losses caused by nozzle internal drag and pylon scrubbing are obtained by the isolated nacelle and mapped on to the in-flight whole configuration analysis. Effects of the powered-on condition are investigated by comparing through-flow configuration with powered-on configuration. The variance on aerodynamic coefficients and pressure distribution is numerically studied.

  19. Drag reduction in oil flows; Reducao da perda de carga durante o escoamento de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Nelson de Oliveira; Carvalho, Carlos Henrique M. de; Ziglio, Claudio Marcos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Noronha, Francisco de Assis; Silva, Aldo Manoel Borburema da [PETROBRAS S.A., Natal, RN (Brazil). Unidade de Negocio RN/CE; Santos, Anderson Oliveira; Rizzo, Rodrigo Gouveia de O.; Sanatana, Marcos Antonio de Oliveira [PETROBRAS S.A., Aracaju, SE (Brazil). Unidade de Negocio SE/AL

    2008-07-01

    The strong world demand for petroleum has increased interest in optimizing the production from mature fields. To do this, it is necessary to use recovery methods that are associated with others that generally use water and/or steam injection, aimed at increasing the production. In parallel with the increase in water production from mature fields, it is evident that there is an increase in viscosity of the liquid phase. This is due to the formation of an emulsion during the lift and flow processes, principally caused by the agitation and shearing, which in turn provoke less oil mobility and high pressure in the production systems. For this reason the oil flow has become a challenge to the production and this is highlighted in the technological innovation scenario in the petroleum industry. Different situations are observed in the production scenario where the following are found: oil production with high BSW, low BSW and /or stable emulsions. The study of the phenomenon to reduce the drag during the turbulent flow, through the injection of polymeric type chemical additives with high molecular weight has been the subject of various surveys over the past few years. The employment of chemical additives containing a drag-reducing agent known as DRA (Drag-Reducing Agents), in turbulent flows, allows for a lower pressure to maintain or to even increase the production capacity. In this study, a mathematic equation of the problem will be presented and the operational methods employed. The performance of different multi functional chemical additives are shown, which are capable of maintaining the flow, either by breaking the emulsion, or by modifying the flow regime, culminating in the reduction of the loss of load during the production flow. (author)

  20. Development of predictive equations for lifting strengths.

    Science.gov (United States)

    Kumar, S

    1995-10-01

    The purpose of the study was to determine relationship between lifting strengths of male and female subjects and body posture, type of lift (stoop or squat) and velocity of lift. Thirty normal young adults (18 males and 12 females) volunteered for the study. All subjects were required to perform a total of 56 tasks. Of these, 28 were stoop lifts and 28 were squat lifts. In each of the categories of stoop and squat lifts, the strengths were tested in standard posture, isokinetic (linear velocity of 500 mm/s), and isometric modes at half, three-quarters and full horizontal individual reach distances in sagittal, 30 degrees lateral and 60 degrees lateral planes. The strengths were measured using a static dynamic strength tester with a load cell and an IBM microcomputer with an A/D card. The peak and average strength values were extracted and statistically compared across conditions and gender (ANOVA). Finally a multiple regression analysis was carried out to predict strength as a function of reach, posture and velocity of lift. The ANOVA revealed a highly significant effect of gender, reach, plane and velocity (p capabilities for industrial application based on simple anthropometric and strength characteristics.

  1. Drag kings in the new wave: gender performance and participation.

    Science.gov (United States)

    Surkan, Kim

    2002-01-01

    In an examination of Midwestern drag king performers and communities that have emerged since the study by Volcano and Halberstam of king cultures in London, New York, and San Francisco, this article considers traditional and alternative ways of "doing drag," both performative and participatory, as a means of interrogating the proximity of a "new wave" of king culture to academic theory. Tracing the evolution of drag king performance in the Twin Cities from the 1996 workshop by Diane Torr to the formation of two distinct king troupes in the late 1990s demonstrates a particular trajectory in kinging that reflects a new consciousness and enactment of gender theory through artistic praxis. Participation plays a key role in breaking down the distance between spectator and performer in venues such as the First International Drag King Extravaganza in Columbus, Ohio, and Melinda Hubman's art installation "Performing Masculinities: Take a Chance on Gender" in Minneapolis. By engaging the "audience" in drag, the Extravaganza "Science Fair" successfully referenced drag kings' shared history with early American freak shows in a clever and critical way. Moving beyond the contest framework of early king shows, new drag king troupes like Minneapolis' Dykes Do Drag are "mixing it up" in an attempt to complicate notions of butch/femme gender roles, sexuality, and drag stereotypes.

  2. An Analytical Method for Positioning Drag Anchors in Seabed Soils

    Institute of Scientific and Technical Information of China (English)

    张炜; 刘海笑; 李新仲; 李清平; 曹静

    2015-01-01

    Positioning drag anchors in seabed soils are strongly influenced not only by the properties of the anchor and soil, but also by the characteristics of the installation line. The investigation on the previous prediction methods related to anchor positioning demonstrates that the prediction of the anchor position during dragging has inevitably introduced some key and unsubstantiated hypotheses and the applicability of these methods is limited. In the present study, the interactional system between the drag anchor and installation line is firstly introduced for the analysis of anchor positioning. Based on the two mechanical models for embedded lines and drag anchors, the positioning equations for drag anchors have been derived both for cohesive and noncohesive soils. Since the drag angle at the shackle is the most important parameter in the positioning equations, a novel analytical method that can predict both the variation and the exact value of the drag angle at the shackle is proposed. The analytical method for positioning drag anchors which combines the interactional system between the drag anchor and the installation line has provided a reasonable theoretic approach to investigate the anchor behaviors in soils. By comparing with the model flume experiments, the sensitivity, effectiveness and veracity of the positioning method are well verified.

  3. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling....... Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments...

  4. Bionic Research on Bird Feather for Drag Reduction

    Directory of Open Access Journals (Sweden)

    Beibei Feng

    2015-02-01

    Full Text Available To reduce friction drag with bionic method in a more feasible way, the surface microstructure of bird feather was analyzed attempting to reveal the biologic features responding to skin friction drag reduction. Then comparative bionic surface mimicking bird feather was fabricated through hot-rolling technology for drag reduction. The microriblet film was formed on a PVC substrate through a self-developed hot-rolling equipment. The bionic surface with micron-scale riblets formed spontaneously due to the elastic-plastic deformation of PVC in high temperature and high pressure environment. Comparative experiments between micro-structured bionic surface and smooth surface were performed in a wind tunnel to evaluate the effect of bionic surface on drag reduction, and significant drag reduction efficiency was obtained. Numerical simulation results show that microvortex induced in the solid-gas interface of bionic surface has the effect of shear stress reduction and the small level of an additional pressure drag resulting from pressure distribution deviation on bird feather like surface, hence reducing the skin friction drag significantly. Therefore, with remarkable drag reduction performance and simple fabrication technology, the proposed drag reduction technique shows the promise for practical applications.

  5. 螺旋式翼梢小翼减阻技术研究%The Study on the Spiroid Winglets Drag-reduction Technic

    Institute of Scientific and Technical Information of China (English)

    吕飞; 陈迎春; 张彬乾; 李亚林; 王元元

    2012-01-01

    In this paper,taking DLR-F4 wing as a base wing,two types of spiroid winglets have been designed to decrease the induced drag.The drag-reduction capability and flow mechanism of spiroid winglets has been simulated by CFD method which is based on N-S equations.The results show that the spiroid winglets have much potential in the aspect of reducing induced drag and enhancing lift.The spiroid winglets can raise the lift coefficient by 12% and the span efficiency factor by 37.5% comparing with the initial geometry without winglets.The spiroid winglets reduce the induced drag by preventing the concentrated wingtip vortex from bringing effectively,it is a promising wingtip drag-reduction technic,which is worthy of further study.%以减小诱导阻力为目标,以DLR-F4机翼为基本机翼,自行设计了两种外形的螺旋式翼梢小翼,采用CFD方法研究螺旋式翼梢小翼减阻的能力和流动机理。研究结果表明:螺旋式翼梢小翼具有显著的减阻增升能力,升力系数最大增量可达到12%以上,诱导阻力效率因子提高了37.5%。螺旋式翼梢小翼通过有效阻止翼梢集中涡的形成,减小诱导阻力,是一种很有发展前景的翼梢减阻技术。

  6. Drag reduction properties of superhydrophobic mesh pipes

    Science.gov (United States)

    Geraldi, Nicasio R.; Dodd, Linzi E.; Xu, Ben B.; Wells, Gary G.; Wood, David; Newton, Michael I.; McHale, Glen

    2017-09-01

    Even with the recent extensive study into superhydrophobic surfaces, the fabrication of such surfaces on the inside walls of a pipe remains challenging. In this work we report a convenient bi-layered pipe design using a thin superhydrophobic metallic mesh formed into a tube, supported inside another pipe. A flow system was constructed to test the fabricated bi-layer pipeline, which allowed for different constant flow rates of water to be passed through the pipe, whilst the differential pressure was measured, from which the drag coefficient (ƒ) and Reynolds numbers (Re) were calculated. Expected values of ƒ were found for smooth glass pipes for the Reynolds number (Re) range 750-10 000, in both the laminar and part of the turbulent regimes. Flow through plain meshes without the superhydrophobic coating were also measured over a similar range (750  superhydrophobic coating, ƒ was found for 4000  superhydrophobic mesh can support a plastron and provide a drag reduction compared to a plain mesh, however, the plastron is progressively destroyed with use and in particular at higher flow rates.

  7. The drag force during the transient regime

    CERN Document Server

    Souza, P V S; de Oliveira, P M C

    2015-01-01

    In this paper, we analyze the drag force acting on a cylinder in a wind tunnel. The inspiration comes from an experimental result: a small, light ball falls on air; its speed increases, reaches a maximum, decreases and finally stabilizes. This surprising breaking behavior is due to the gradual formation of the so-called von K\\'arm\\'an street of air vortices behind the ball: while it is not completely formed, the transient drag force is smaller than the known steady state value and the ball can reach speeds higher than its final value. To show it, we treat the similar problem of a cylinder inside a wind tunnel suddenly switched on, by solving the Navier-Stokes dynamic equation. We use a finite difference method with successive relaxations on a grid. We also treat the case of a rotating cylinder, leading to the Magnus force. The novelty is the method we use to calculate these forces, which avoids the traditional surface integration of velocity gradients; the latter demands a very precise determination of the ve...

  8. Drag Force Anemometer Used in Supersonic Flow

    Science.gov (United States)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  9. Improvement of aerodynamic characteristics of a thick airfoil with a vortex cell in sub- and transonic flow

    Science.gov (United States)

    Isaev, Sergey; Baranov, Paul; Popov, Igor; Sudakov, Alexander; Usachov, Alexander

    2017-03-01

    The modified SST model (2005) is verified using Rodi- Leschziner-Isaev's approach and the multiblock computational technologies are validated in the VP2/3 code on different-structure overlapping grids by comparing the numerical predictions with the experimental data on transonic flow around an NACA0012 airfoil at an angle of attack of 4o for M=0.7 and Re=4×106. It is proved that the aerodynamic characteristics of a thick (20% of the chord) MQ airfoil mounted at an angle of attack of 2o for Re=107 and over the Mach number range 0.3-0.55 are significantly improved because an almost circular small-size (0.12) vortex cell with a defined volumetric flow rate coefficient of 0.007 during slot suction has been located on the upper airfoil section and an intense trapped vortex has been formed in it. A detailed analysis of buffeting within the self-oscillatory regime of flow around the MQ airfoil with a vortex cell has demonstrated the periodic changes in local and integral characteristics; the lift and the aerodynamic efficiency remain quite high, but inferior to the similar characteristics at M=0.55. It is found that the vortex cell at M=0.7 is inactive, and the aerodynamic characteristics of the MQ airfoil with a vortex cell are close to those of a smooth airfoil without a cell.

  10. Cost Benefit Analysis of Boat Lifts

    Science.gov (United States)

    2014-09-01

    to avoid the potential of mishaps due to jumping across open water to reach both sides of the lift. With the life expectancy of a boat ramp...to jumping across open water to reach both sides of the lift. Cost Benefit Analysis of Boat Lifts 11 UNCLAS//Public | CG-926 R&DC | B. Fike...equipment from boats and craft that have been corrosion problems in the past. such as wire rope and non-stainless steel hardware. Corrosion is a function

  11. Database queries and constraints via lifting problems

    CERN Document Server

    Spivak, David I

    2012-01-01

    Previous work has shown a tight relationship between databases and categories. In the present paper we extend that connection to show that certain queries and constraints correspond to the algebro-topological notion of lifting problems. In our formulation, each so-called SPARQL graph pattern query corresponds to a lifting problem, and each solution to the query corresponds to a lift. We interpret constraints within the same formalism and then investigate some formal properties of queries and constraints, e.g. their behavior under data migration functors.

  12. Quasi-normal acoustic oscillations in the transonic Bondi flow

    CERN Document Server

    Chaverra, Eliana

    2015-01-01

    In recent work, we analyzed the dynamics of spherical and nonspherical acoustic perturbations of the Michel flow, describing the steady radial accretion of a relativistic perfect fluid into a nonrotating black hole. We showed that such perturbations undergo quasi-normal oscillations and computed the corresponding complex frequencies as a function of the black hole mass M and the radius r_c of the sonic horizon. It was found that when r_c is much larger than the Schwarzschild radius r_H = 2GM/c^2 of the black hole, these frequencies scale like the surface gravity of the analogue black hole associated with the acoustic metric. In this work, we analyze the Newtonian limit of the Michel solution and its acoustic perturbations. In this limit, the flow outside the sonic horizon reduces to the transonic Bondi flow, and the acoustic metric reduces to the one introduced by Unruh in the context of experimental black hole evaporation. We show that for the transonic Bondi flow, Unruh's acoustic metric describes an analog...

  13. Two-Fluid Equilibrium for Transonic Poloidal Flows

    Science.gov (United States)

    Guazzotto, Luca; Betti, Riccardo

    2012-03-01

    Much analytical and numerical work has been done in the past on ideal MHD equilibrium in the presence of macroscopic flow. In recent years, several authors have worked on equilibrium formulations for a two-fluid system, in which inertial ions and massless electrons are treated as distinct fluids. In this work, we present our approach to the formulation of the two-fluid equilibrium problem. Particular attention is given to the relation between the two-fluid equations and the equilibrium equations for the single-fluid ideal MHD system. Our purpose is to reconsider the results of one-fluid calculation with the more accurate two-fluid model, referring in particular to the so-called transonic discontinuities, which occur when the poloidal velocity spans a range crossing the poloidal sound speed (i.e., the sound speed reduced by a factor Bp/B). It is expected that the one-fluid discontinuity will be resolved into a sharp gradient region by the two-fluid model. Also, contrary to the ideal MHD case, in the two-fluid model the equations governing the equilibrium are elliptic in the whole range of interest for transonic equilibria. The numerical solution of the two-fluid system of equations is going to be based on a code built on the structure of the existing ideal-MHD code FLOW.

  14. Optimal smoothing length scale for actuator line models of lifting surfaces

    CERN Document Server

    Martinez-Tossas, Luis A

    2015-01-01

    The actuator line model (ALM) is a commonly used method to represent lifting surfaces such as wind turbine blades within Large-Eddy Simulations (LES). In ALM the lift and drag forces are replaced by an imposed body force which is typically smoothed over several grid points using a Gaussian kernel with some prescribed smoothing width $\\epsilon$. To date, the choice of $\\epsilon$ has most often been based on numerical considerations mostly related to the grid spacing used in LES. However, especially for finely resolved LES with grid spacings on the order or smaller than the chord-length of the blade, the best choice of $\\epsilon$ is not known. Focusing first on the lift force, here we find $\\epsilon$ and the force center location that minimize the square difference between the velocity fields obtained from solving 2D potential flow over Joukowski airfoils and solving the Euler equations including the imposed body force. The latter solution is found for the linearized problem, and is valid for small angles of at...

  15. Design and Performance of Lift-Offset Rotorcraft for Short-Haul Missions

    Science.gov (United States)

    Johnson, Wayne; Moodie, Alex M.; Yeo, Hyeonsoo

    2012-01-01

    The design and performance of compound helicopters utilizing lift-offset rotors are examined, in the context of short-haul, medium-size civil and military missions. The analysis tools used are the comprehensive analysis CAMRAD II and the sizing code NDARC. Following correlation of the comprehensive analysis with existing lift-offset aircraft flight test data, the rotor performance model for the sizing code was developed, and an initial estimate was made of the rotor size and key hover and cruise flight conditions. The rotor planform and twist were optimized for those conditions, and the sizing code rotor performance model updated. Two models for estimating the blade and hub weight of lift-offset rotors are discussed. The civil and military missions are described, along with the aircraft design assumptions. The aircraft are sized for 30 passengers or 6600 lb payload, with a range of 300 nm. Civil and military aircraft designs are described for each of the rotor weight models. Disk loading and blade loading were varied to optimize the designs, based on gross weight and fuel burn. The influence of technology is shown, in terms of rotor hub drag and rotor weight.

  16. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation used in compilers and in partial evaluators and that operates in cubic time. In this article, we show how to reduce this complexity to quadratic time. Lambda-lifting transforms a block-structured program into a set of recursive equations, one for each...... local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters that yields the cubic factor in the traditional formulation of lambda-lifting, which...... is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity of lambda-lifting from O(n 3 log n)toO(n2 log n), where n is the size of the program. Since a lambda-lifter can output...

  17. Lower complexity bounds for lifted inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2015-01-01

    instances of the model. Numerous approaches for such “lifted inference” techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show...... the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established earlier in Jaeger (2000; Jaeger, M. 2000. On the complexity of inference about...... that under the assumption that NETIME≠ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier-, and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference and for knowledge bases not containing...

  18. Spherical projections and liftings in geometric tomography

    DEFF Research Database (Denmark)

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....

  19. Lifting scheme of symmetric tight wavelets frames

    Institute of Scientific and Technical Information of China (English)

    ZHUANG BoJin; YUAN WeiTao; PENG LiZhong

    2008-01-01

    This paper proposes a method to realize the lifting scheme of tight frame wavelet filters. As for 4-channel tight frame wavelet filter, the tight frame transforms' ma-trix is 2×4, but the lifting scheme transforms' matrix must be 4×4. And in the case of 3-channel tight frame wavelet filter, the transforms' matrix is 2×3, but the lifting scheme transforms' matrix must be 3×3. In order to solve this problem, we intro-duce two concepts: transferred polyphase matrix for 4-channel filters and trans-ferred unitary matrix for 3-channel filters. The transferred polyphase matrix is sym-metric/antisymmetric. Thus, we use this advantage to realize the lifting scheme.

  20. Design of heavy lift cargo aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  1. Plunger lift analysis, troubleshooting and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rowlan, O.L.; McCoy, J.N. [Echometer Co., Wichita Falls, TX (United States); Podio, A.L. [Texas Univ. at Austin, Austin, TX (United States)

    2007-07-01

    Plunger lifting is used to lift liquids such as condensates, water and oil from liquid loaded gas wells. This paper described a portable system designed to monitor gas plunger lift. The system digitized, stored and processed acoustic pulse signals generated by the plunger as it fell through each tubing collar recess when the well was shut in. Data were used to determine depth; fall velocity; the amount of appropriate cycle times for optimum operation; and the volume and rate of gas flowing into the well. The stored signals were then used to determine plunger position, plunger fall velocity, and plunger arrival at the liquid level in the tubing. Analysis of the data were used to optimize and troubleshoot the operation of plunger lifted wells. Examples of various operational problems encountered during the operation of the plunger lift system were also provided. It was concluded that the monitoring system increases the safety of plunger lift operations by allowing operators to know the exact placement of the plunger. 5 refs., 1 tab., 17 figs.

  2. Covariance analysis of differential drag-based satellite cluster flight

    Science.gov (United States)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  3. Simplified Models for the Drag Coefficient of a Pitched Baseball

    Science.gov (United States)

    Kagan, David; Nathan, Alan M.

    2014-01-01

    The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!

  4. Drag reduction through self-texturing compliant bionic materials

    Science.gov (United States)

    Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji

    2017-01-01

    Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.

  5. Bionic Research on Fish Scales for Drag Reduction

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Dou; Jiadao Wang; Darong Chen

    2012-01-01

    To reduce friction drag with bionic method in a more feasible way,the surface microstructure of fish scales was analyzed attempting to reveal the biologic features responding to skin friction drag reduction.Then comparable bionic surface mimicking fish scales was fabricated through coating technology for drag reduction.The paint mixture was coated on a substrate through a self-developed spray-painting apparatus.The bionic surface with micron-scale caves formed spontaneously due to the interfacial convection and deformation driven by interfacial tension gradient in the presence of solvent evaporation.Comparative experiments between bionic surface and smooth surface were performed in a water tunnel to evaluate the effect of bionic surface on drag reduction,and visible drag reduction efficiency was obtained.Numerical simulation results show that gas phase develops in solid-liquid interface of bionic surface with the effect of surface topography and partially replaces the solid-liquid shear force with gas-liquid shear force,hence reducing the skin friction drag effectively.Therefore,with remarkable drag reduction performance and simple fabrication technology,the proposed drag reduction technique shows the promise for practical applications.

  6. Drag reduction in turbulent MHD pipe flows

    Science.gov (United States)

    Orlandi, P.

    1996-01-01

    This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.

  7. Dancing droplets: Contact angle, drag, and confinement

    Science.gov (United States)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  8. Analytical Ballistic Trajectories with Approximately Linear Drag

    Directory of Open Access Journals (Sweden)

    Giliam J. P. de Carpentier

    2014-01-01

    Full Text Available This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories. Although the trajectories are only approximate, they still capture many of the characteristics of a real projectile in free fall under the influence of an invariant wind, gravitational pull, and terminal velocity, while the required math for these trajectories and planners is still simple enough to efficiently run on almost all modern hardware devices. Together, these properties make the proposed approach particularly useful for real-time applications where accuracy and performance need to be carefully balanced, such as in computer games.

  9. Air Flows in Gravity Sewers - Determination of Wastewater Drag Coefficient

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Østertoft, Kristian; Vollertsen, Jes

    2016-01-01

    of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water......Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results...... surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient...

  10. Collisional Effects on Nonlinear Ion Drag Force for Small Grains

    CERN Document Server

    Hutchinson, I H

    2013-01-01

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  11. Methods for Accurate Free Flight Measurement of Drag Coefficients

    CERN Document Server

    Courtney, Elya; Courtney, Michael

    2015-01-01

    This paper describes experimental methods for free flight measurement of drag coefficients to an accuracy of approximately 1%. There are two main methods of determining free flight drag coefficients, or equivalent ballistic coefficients: 1) measuring near and far velocities over a known distance and 2) measuring a near velocity and time of flight over a known distance. Atmospheric conditions must also be known and nearly constant over the flight path. A number of tradeoffs are important when designing experiments to accurately determine drag coefficients. The flight distance must be large enough so that the projectile's loss of velocity is significant compared with its initial velocity and much larger than the uncertainty in the near and/or far velocity measurements. On the other hand, since drag coefficients and ballistic coefficients both depend on velocity, the change in velocity over the flight path should be small enough that the average drag coefficient over the path (which is what is really determined)...

  12. Effects of stator bending on pressure field and loss of transonic turbine stage

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; ZHOU Xun; WANG Zhong-qi

    2009-01-01

    To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed in this paper. And then numerical calculations were carried out. The effects on downstream flow field were studied and analyzed in detail. Results show that, at the middle of stator blades, although the increasing Mach number causes the increase of shock-wave strength and friction, the middle flow field of downstream rotors is improved obviously. It is an important change in transonic condition. This causes the loss of the rotor's middie part decreased greatly. Correspondingly, efficiency of the whole transonic stage can be increased.

  13. A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight

    Science.gov (United States)

    2014-07-01

    motions of the projectile about the trajectory due to the angular motion of the projectile . For a stable projectile , these motions are typically small...A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight by Paul Weinacht ARL-TR-6998 July 2014...Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight Paul Weinacht Weapons and Materials Research Directorate, ARL

  14. Computational Fluid Dynamic Model of Steam Ingestion into a Transonic Compressor

    Science.gov (United States)

    2009-06-01

    DYNAMIC MODEL OF STEAM INGESTION INTO A TRANSONIC COMPRESSOR by Collin R. Hedges June 2009 Thesis Advisor: Anthony J. Gannon Second...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Computational Fluid Dynamic Model of Steam Ingestion into a Transonic Compressor 6...flight deck. When ingested into jet engines, this steam may increase the engines’ susceptibility to stall. The serpentine air inlet ducts and single

  15. 77 FR 20558 - Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift...

    Science.gov (United States)

    2012-04-05

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AJ93 Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift Installations in Motor Vehicles AGENCY: National.... SUMMARY: This document adopts amendments to the Federal motor vehicle safety standards on platform...

  16. AERODYNAMIC OPTIMIZATION DESIGN OF LOW ASPECT RATIO TRANSONIC TURBINE STAGE

    Institute of Scientific and Technical Information of China (English)

    SONG Liming; LI Jun; FENG Zhenping

    2006-01-01

    The advanced optimization method named as adaptive range differential evolution (ARDE)is developed. The optimization performance of ARDE is demonstrated using a typical mathematical test and compared with the standard genetic algorithm and differential evolution. Combined with parallel ARDE, surface modeling method and Navier-Stokes solution, a new automatic aerodynamic optimization method is presented. A low aspect ratio transonic turbine stage is optimized for the maximization of the isentropic efficiency with forty-one design variables in total. The coarse-grained parallel strategy is applied to accelerate the design process using 15 CPUs. The isentropic efficiency of the optimum design is 1.6% higher than that of the reference design. The aerodynamic performance of the optimal design is much better than that of the reference design.

  17. Investigating the Transonic Flutter Boundary of the Benchmark Supercritical Wing

    Science.gov (United States)

    Heeg, Jennifer; Chwalowski, Pawel

    2017-01-01

    This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results focus on understanding the dip in the transonic flutter boundary at a single Mach number (0.74), exploring an angle of attack range of ??1 to 8 and dynamic pressures from wind off to beyond flutter onset. The rigid analysis results are examined for insights into the behavior of the aeroelastic system. Both static and dynamic aeroelastic simulation results are also examined.

  18. The efficient solution of transonic wing flow fields

    Science.gov (United States)

    Holst, T. L.; Subramanian, N. R.; Thomas, S. D.

    1983-01-01

    An evaluation of the transonic-wing-analysis computer code TWING is presented. TWING utilizes a fully implicit, approximate-factorization iteration scheme to solve the full-potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations have been analyzed, and comparisons of computed results have been made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative, full-potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations, including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.

  19. Recent applications of the transonic wing analysis computer code, TWING

    Science.gov (United States)

    Subramanian, N. R.; Holst, T. L.; Thomas, S. D.

    1982-01-01

    An evaluation of the transonic-wing-analysis computer code TWING is given. TWING utilizes a fully implicit approximate factorization iteration scheme to solve the full potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations were analyzed, and the limits of applicability of this code was evaluated. Comparisons of computed results were made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative full potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.

  20. Recent Productivity Improvements to the National Transonic Facility

    Science.gov (United States)

    Popernack, Thomas G., Jr.; Sydnor, George H.

    1998-01-01

    Productivity gains have recently been made at the National Transonic Facility wind tunnel at NASA Langley Research Center. A team was assigned to assess and set productivity goals to achieve the desired operating cost and output of the facility. Simulations have been developed to show the sensitivity of selected process productivity improvements in critical areas to reduce overall test cycle times. The improvements consist of an expanded liquid nitrogen storage system, a new fan drive, a new tunnel vent stack heater, replacement of programmable logic controllers, an increased data communications speed, automated test sequencing, and a faster model changeout system. Where possible, quantifiable results of these improvements are presented. Results show that in most cases, improvements meet the productivity gains predicted by the simulations.

  1. Formation of multiple shocklets in a transonic diffuser flow

    Science.gov (United States)

    Handa, T.; Miyazato, Y.; Masuda, M.; Matsuo, K.

    Multiple shocklets are frequently generated in transonic diffuser flows. The present paper investigates the formation of these shocklets with a high-speed CCD camera combined with the schlieren method. It is observed that compression waves steepen while propagating upstream, and eventually become new shock waves. The ordinary shock wave is found to move upstream beyond the nozzle throat or to disappear while moving downstream depending on the pressure ratio across the nozzle. This phenomenon is also analyzed with the one-dimensional Euler equations by assuming a pressure disturbance given by the sine function at the channel exit. The calculated results are found to reproduce quite well the experimental behavior of the shocklets. The effect of the frequency of disturbance is also studied numerically, and it is shown that the multiple shocklet pattern appears when the amplitude of disturbance is not large and the diverging part of the channel downstream of the ordinary shock wave is long.

  2. Transonic Tones and Excess Broadband Noise in Overexpanded Supersonic Jets

    Science.gov (United States)

    Zaman, Khairul B. M. Q.

    2009-01-01

    Noise characteristics of convergent-divergent (C-D) nozzles in the overexpanded regime are the focus of this paper. The flow regime is encountered during takeoff and landing of certain airplanes and also with rocket nozzles in launch-pad environment. Experimental results from laboratory-scale single nozzles are discussed. The flow often undergoes a resonance accompanied by emission of tones (referred to as transonic tones). The phenomenon is different from the well-known screech tones. Unlike screech, the frequency increases with increasing supply pressure. There is a staging behavior odd harmonic stages occur at lower pressures while the fundamental occurs in a range of relatively higher pressures. A striking feature is that tripping of the nozzle s internal boundary layer tends to suppress the resonance. However, even in the absence of tones the broadband levels are found to be high. That is, relative to a convergent case and at same pressure ratio, the C-D nozzles are found to be noisier, often by more than 10dB. This excess broadband noise (referred to as EBBN) is further explored. Its characteristics are found to be different from the well-known broadband shockassociated noise ( BBSN ). For example, while the frequency of the BBSN peak varies with observation angle no such variation is noted with EBBN. The mechanisms of the transonic tone and the EBBN are not completely understood yet. They appear to be due to unsteady shock motion inside the nozzle. The shock drives the flow downstream like a vibrating diaphragm, and resonance takes place similarly as with acoustic resonance of a conical section having one end closed and the other end open. When the boundary layer is tripped, apparently a breakdown of azimuthal coherence suppresses the resonance. However, there is still unsteady shock motion albeit with superimposed randomness. Such random motion of the internal shock and its interaction with the separated boundary layer produces the EBBN.

  3. Win a lift to the future!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The Communication Group is organising a competition offering people at CERN the chance to submit their ideas and win a ticket to the Lift10 Conference, which will be held in Geneva from 5 to7 May.   Lift is a community of technology "pioneers", created in 2006. It now involves more than 4,000 people from over 60 countries, who meet regularly in Europe and in Asia to explore the social implications of new technologies and the major shifts ahead. CERN is one of the academic partners of the next Lift conference, whose theme is "Connected people”. For this occasion, 10 free tickets to the conference will be awarded to the "CERNois" who come up with the best answers to the question: “How would you contribute to Lift10?” Those taking part in the competition can choose from among the following categories: - run workshop(s); - cover the conference on a blog; - coordinate a discussion during the breaks; - organize a lift@home ...

  4. Lift and wakes of flying snakes

    CERN Document Server

    Krishnan, Anush; Vlachos, Pavlos P; Barba, L A

    2013-01-01

    Flying snakes use a unique method of aerial locomotion: they jump from tree branches, flatten their bodies and undulate through the air to produce a glide. The shape of their body cross-section during the glide plays an important role in generating lift. This paper presents a computational investigation of the aerodynamics of the cross-sectional shape. We performed two-dimensional simulations of incompressible flow past the anatomically correct cross-section of the species Chrysopelea paradisi, showing that a significant enhancement in lift appears at an angle of attack of 35 degrees, above Reynolds numbers 2000. Previous experiments on physical models also obtained an increased lift, at the same angle of attack. The flow is inherently three-dimensional in physical experiments, due to fluid instabilities, and it is thus intriguing that the enhanced lift appears also in the two-dimensional simulations. The simulations point to the lift enhancement arising from the early separation of the boundary layer on the ...

  5. Precision markedly attenuates repetitive lift capacity.

    Science.gov (United States)

    Collier, Brooke R; Holland, Laura; McGhee, Deirdre; Sampson, John A; Bell, Alison; Stapley, Paul J; Groeller, Herbert

    2014-01-01

    This study investigated the effect of precision on time to task failure in a repetitive whole-body manual handling task. Twelve participants were required to repetitively lift a box weighing 65% of their single repetition maximum to shoulder height using either precise or unconstrained box placement. Muscle activity, forces exerted at the ground, 2D body kinematics, box acceleration and psychophysical measures of performance were recorded until task failure was reached. With precision, time to task failure for repetitive lifting was reduced by 72%, whereas the duration taken to complete a single lift and anterior deltoid muscle activation increased by 39% and 25%, respectively. Yet, no significant difference was observed in ratings of perceived exertion or heart rate at task failure. In conclusion, our results suggest that when accuracy is a characteristic of a repetitive manual handling task, physical work capacity will decline markedly. The capacity to lift repetitively to shoulder height was reduced by 72% when increased accuracy was required to place a box upon a shelf. Lifting strategy and muscle activity were also modified, confirming practitioners should take into consideration movement precision when evaluating the demands of repetitive manual handling tasks.

  6. Facial thread lifting with suture suspension.

    Science.gov (United States)

    Tavares, Joana de Pinho; Oliveira, Carlos Augusto Costa Pires; Torres, Rodolfo Prado; Bahmad, Fayez

    2017-05-09

    The increased interest in minimally-invasive treatments, such as the thread lifting, with lower risk of complications, minimum length of time away from work and effectiveness in correcting ptosis and aging characteristics has led many specialists to adopt this technique, but many doubts about its safety and effectiveness still limit its overall use. To analyze data published in the literature on the durability of results, their effectiveness, safety, and risk of serious adverse events associated with procedures using several types of threading sutures. Literature review using the key words "thread lift", "barbed suture", "suture suspension" and "APTOS". Due to the scarcity of literature, recent reports of facial lifting using threads were also selected, complemented with bibliographical references. The first outcomes of facial lifting with barbed sutures remain inconclusive. Adverse events may occur, although they are mostly minor, self-limiting, and short-lived. The data on the maximum effect of the correction, the durability of results, and the consequences of the long-term suture stay are yet to be clarified. Interest in thread lifting is currently high, but this review suggests that it should not yet be adopted as an alternative to rhytidectomy. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Lift mechanics of downhill skiing and snowboarding

    Science.gov (United States)

    Wu, Qianhong; Igci, Yesim; Andreopoulos, Yiannis

    2005-11-01

    A simplified mathematical model is derived to describe the lift mechanics of downhill skiing and snowboarding, where the lift contributions due to both the transiently trapped air and the compressed snow crystals are determined for the first time. Using Shimizu's empirical relation to predict the local variation in snow permeability, we employ force and moment analysis to predict the angle of attack of the planing surface, the penetration depth at the leading edge and the shift in the center of pressure for two typical snow types, fresh and wind-packed snow. We present numerical solutions for snowboarding and asymptotic analytic solutions for skiing for the case where there are no edging or turning maneuvers, which shows that approximately 50% of the total lift force is generated by the trapped air in the case of wind-packed snow for snowboarding and 40% for skiing. For highly permeable fresh powder snow the lift contribution from the pore air pressure drops to < 20%. This new theory is an extension of the series of studies on lift generation in highly compressible porous media.

  8. CERN takes off at Lift11

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    CERN was especially featured at the Lift11 conference, held in Geneva early this month. Tara Shears delivered a keynote speech at the event, while Paul Oortman Gerlings (DGS-SEE) and Erik van der Bij (BE-CO) – winners of the Bulletin’s Lift11 competition – organised the CERN workshop.   Paul Oortman Gerlings takes questions at CERN's Lift11 workshop. Lift11 was an opportunity for CERN to reach today’s innovators and developers. “The event was filled with people eager to learn new ideas, who were not afraid to ask questions,” says Tara Shears, physicist from the LHCb Collaboration who presented an update on the status of the LHC. “People were amazed by what goes on inside CERN, by our science, our facilities – even by the way we carry out our day-to-day work. It is a branch of fundamental research that really seems to inspire everyone.” A small Lift11 group had the chance to take a tour of CERN, ...

  9. Experimental investigation of drag coefficients of gobi surfaces

    Institute of Scientific and Technical Information of China (English)

    董治宝; 屈建军; 刘小平; 张伟民; 王训明

    2002-01-01

    The response of gobi surfaces to the near-surface air flow can be characterized quantitatively by drag coefficients. By using wind tunnel tests, an attempt is made to define the relationship between the drag coefficients of gobi surfaces and gravel size and coverage. It is concluded that the drag coefficients of gobi surfaces tend to be constants when gravel coverage is over 40%-50%. Consequently, we think that the gobi deflation planes expanding vastly in the arid Northwestern China are aerodynamically stable, at least not the supplying sources of current dust storms, and therefore the emphasis on dust storm control should be paid on the so-called "earth gobi" that has low gravel coverage. The prediction model for drag coefficients of gobi surfaces has been developed by regressing drag coefficients on gravel size and coverage, the predicted results are in reasonably good agreement with wind tunnel results (R 2 = 0.94). The change of drag coefficients with gravel friction Reynolds number implies that the development extent of drag effect increases with gravel size and coverage.

  10. Variability of Bed Drag on Cohesive Beds under Wave Action

    Directory of Open Access Journals (Sweden)

    Ilgar Safak

    2016-04-01

    Full Text Available Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law, a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 - 4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  11. Variability of bed drag on cohesive beds under wave action

    Science.gov (United States)

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  12. Drag reduction in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Daniello, Robert J.; Waterhouse, Nicholas E.; Rothstein, Jonathan P.

    2009-08-01

    In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.

  13. Characterization of aerodynamic drag force on single particles: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  14. Low-drag events in transitional wall-bounded turbulence

    Science.gov (United States)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  15. Does Polishing a Rifle Bore Reduce Bullet Drag?

    Science.gov (United States)

    2012-01-17

    thus lower drag. A Remington 700 5R Mil-Spec chambered in 300 Winchester Magnum was used. The bullets used were a 155.5 grain Berger Fullbore Boat...drag on the bullets. 15. SUBJECT TERMS Ballistic coefficient, aerodynamic drag, rifle bore, bore polishing, Remington 700 5R 16. SECURITY...A Remington 700 5R Mil-Spec chambered in 300 Winchester Magnum was used. The bullets used were a 155.5 grain Berger Fullbore Boat Tail and a 125

  16. Passive Separation Control on a Body at Transonic Speed

    Science.gov (United States)

    Layukallo, Thombi; Hayashi, Daisuke; Nakamura, Yoshiaki

    The present paper proposes a new approach to control flow separation around a body. Flow separation is controlled by inserting simple tabs inside the separated region to suppress the reverse flow action. This is expected to increase the pressure in the base region of the body, thus reducing drag. Moreover, flow instability is also expected to decrease because of change in the wake profile. The cases considered in the present investigation are flows around a circular cylinder at M=0.6 and 0.73. Tabs having lengths of 10% and 20% of the cylinder diameter were used. The results show that the base pressure of the cylinder can be increased when these tabs are inserted inside the separated region. The smallest drag on the cylinder/tab body was achieved when the two pairs of tabs were installed on both sides of the cylinder at angles of ±120° and ±140°, measured from the front stagnation point of the cylinder. Compared to the plain cylinder, drag was reduced by 32% at M=0.6 and by 18% at M=0.73. Schlieren photography reveals that the vortex formation length is increased when the tabs are installed. Moreover, the tabs greatly suppress the level of pressure fluctuations on the cylinder surface. This can be attributed to change in the wake profile that is associated with drag reduction. Furthermore, the frequency of the Karman vortex street is also increased. The analysis of the results was assisted by numerical calculations based on Large Eddy Simulation (LES). From these results, five significant effects of the tabs were identified: restriction of the reverse flow action, trapping of vorticity in the region upstream of the tabs, suppression of the shear layers’ movement, more rapid vortex roll-up downstream of the body, and reduced strength of the downstream vortices.

  17. Coriolis effects enhance lift on revolving wings.

    Science.gov (United States)

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  18. Lifted Inference for Relational Continuous Models

    CERN Document Server

    Choi, Jaesik; Hill, David J

    2012-01-01

    Relational Continuous Models (RCMs) represent joint probability densities over attributes of objects, when the attributes have continuous domains. With relational representations, they can model joint probability distributions over large numbers of variables compactly in a natural way. This paper presents a new exact lifted inference algorithm for RCMs, thus it scales up to large models of real world applications. The algorithm applies to Relational Pairwise Models which are (relational) products of potentials of arity 2. Our algorithm is unique in two ways. First, it substantially improves the efficiency of lifted inference with variables of continuous domains. When a relational model has Gaussian potentials, it takes only linear-time compared to cubic time of previous methods. Second, it is the first exact inference algorithm which handles RCMs in a lifted way. The algorithm is illustrated over an example from econometrics. Experimental results show that our algorithm outperforms both a groundlevel inferenc...

  19. Fuel Cell Hydroge Manifold for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    Reducing CO2 emissions are getting more attention because of global warming. The transport sector which is responsible for a significant amount of emissions is going to reduce them due to new and upcoming regulations. Using fuel cells may be one way to help to reduce the emissions from this sector....... Battery driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need long time to recharge and may be out of work for a long time. Fuel cell driven lift trucks diminish this problem and are therefore getting more attention....... The most common type of fuel cell used for automotive applications is PEM fuel cell. They are known for their high efficiency, low emissions and high reliability. However, lack of a hydrogen infrastructure, cost and durability of the stack is considered the biggest obstacles to the introduction of fuel...

  20. Hydraulic Lifting Mechanisms for the Erection Equipment

    Directory of Open Access Journals (Sweden)

    B. M. Novozhilov

    2016-01-01

    Full Text Available In erection equipment of space launch complexes the hydraulic lifting mechanisms (HLM are solely and exclusively used to accomplish changing the space-mission vehicle (SMV position from horizontal to the vertical one. Existing designs of lifting mechanisms are diverse, but all of them basically contain a basic mechanism comprising one hydro-cylinder. With increasing SMV size and weight a task to design the more complicated lifting mechanisms, comprising more kinematic links and using several hydro-cylinders becomes urgent.The article conducts a detailed analysis of the basic HLM schemes and defines the features of their arrangement in erection equipment. Gives basic calculation relationships, allowing us to determine design parameters of mechanisms for stationary and transport units. Via examples of available erection equipment shows the embodiment of lifting mechanisms using basic schemes.The ways for development of HLM schemes to erect a SMV of the large size and weight are shown. Two options of the double-cylinder HLM are described. Both schemes are based on dividing a lift cycle into two parts, in each of which only one of the cylinders is in operation. The first option contains an additional, intermediate boom, with respect to which the main boom is erected. In such a mechanism the cylinders start running sequentially: at first, one of the cylinders erects the intermediate boom, then the other cylinder does the main one. The second HLM embodiment comprises a single carrier boom with the swing arm, which allows to swing the boom at a certain angle of less than 90 ° using one of the cylinders, also sequentially operating. The second cylinder allows the boom to fall into vertical position. Such schemes can reduce a stroke length of used hydraulic cylinders, which are the most expensive devices of the lifting mechanism.The analysis results are of interest to designers of erection equipment for the space launch complexes.

  1. The Digital Drag and Drop Pillbox

    Science.gov (United States)

    Granger, Bradi B.; Locke, Susan C.; Bowers, Margaret; Sawyer, Tenita; Shang, Howard; Abernethy, Amy P.; Bloomfield, Richard A.; Gilliss, Catherine L.

    2017-01-01

    Objective: We present the design and feasibility testing for the “Digital Drag and Drop Pillbox” (D-3 Pillbox), a skill-based educational approach that engages patients and providers, measures performance, and generates reports of medication management skills. Methods: A single-cohort convenience sample of patients hospitalized with heart failure was taught pill management skills using a tablet-based D-3 Pillbox. Medication reconciliation was conducted, and aptitude, performance (% completed), accuracy (% correct), and feasibility were measured. Results: The mean age of the sample (n = 25) was 59 (36–89) years, 50% were women, 62% were black, 46% were uninsured, 46% had seventh-grade education or lower, and 31% scored very low for health literacy. However, most reported that the D-3 Pillbox was easy to read (78%), easy to repeat-demonstrate (78%), and comfortable to use (tablet weight) (75%). Accurate medication recognition was achieved by discharge in 98%, but only 25% reported having a “good understanding of my responsibilities.” Conclusions: The D-3 Pillbox is a feasible approach for teaching medication management skills and can be used across clinical settings to reinforce skills and medication list accuracy. PMID:28282304

  2. Turbulent drag reduction through oscillating discs

    CERN Document Server

    Wise, Daniel J

    2014-01-01

    The changes of a turbulent channel flow subjected to oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations. The Reynolds number is $R_\\tau$=$180$, based on the friction velocity of the stationary-wall case and the half channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20%. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim to identify the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6%. The Rosenblat viscous pump flow is used to predict the power spent for disc motion in the turbulent channel flow and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The...

  3. Asymmetric Gepner Models II. Heterotic Weight Lifting

    CERN Document Server

    Gato-Rivera, B

    2010-01-01

    A systematic study of "lifted" Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the $E_8$ factor by a modular isomorphic $N=0$ model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  4. Fuel Cell Hydroge Manifold for Lift Trucks

    OpenAIRE

    Hosseinzadeh, Elham; Rokni, Masoud; Elmegaard, Brian

    2012-01-01

    Reducing CO2 emissions are getting more attention because of global warming. The transport sector which is responsible for a significant amount of emissions is going to reduce them due to new and upcoming regulations. Using fuel cells may be one way to help to reduce the emissions from this sector. Battery driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need long time to recharge and may be out of work for a...

  5. Asymmetric Gepner models II. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2011-05-21

    A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E{sub 8} factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  6. The 'W' prawn-trawl with emphasised drag-force transfer to its centre line to reduce overall system drag.

    Directory of Open Access Journals (Sweden)

    Cheslav Balash

    Full Text Available For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow.

  7. Electromagnetically-Induced Frame-Dragging around Astrophysical Objects

    CERN Document Server

    Ruiz, Andrés F Gutiérrez

    2015-01-01

    Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects. However, it can also be generated by electromagnetic fields if electric and magnetic fields are simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component. Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars may posses independent electric dipole and neutron stars independent electric quadrupole moments that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover, recent observations have shown that in stars with strong electromagnetic fields, the magnetic quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt to characterized and quantify the effect of electromagnetic frame-dragging in this kind of astrophysical objects, an analytic soluti...

  8. Rotating cylinder drag balance with application to riblets

    Science.gov (United States)

    Hall, T.; Joseph, D.

    2000-12-01

    Experimental results are reported and discussed for a rotating cylinder drag balance designed to predict drag reduction by surfaces like riblets. The apparatus functions by measuring the torque applied to the inner cylinder by a fluid, such as water, that is set in motion by the controlled rotation of the outer cylinder. The instrument was validated by calibration for laminar flow and comparison of turbulent flow results to the those of G. I. Taylor. The ability to predict drag reduction was demonstrated by testing 114 m symmetric sawtooth riblets, which gave a maximum reduction of about 5% and an overall drag reduction range of 5

  9. Jet Lag a Drag on Pro Baseball Players

    Science.gov (United States)

    ... 163187.html Jet Lag a Drag on Pro Baseball Players Study found traveling across time zones linked ... might be more than just tiring for pro baseball players: The resulting jet lag may actually harm ...

  10. Experimental study of drag reduction in flumes and spillway tunnels

    Institute of Scientific and Technical Information of China (English)

    Ying-kui WANG; Chun-bo JIANG

    2010-01-01

    Experiments in an open flume model and spillway tunnel model were carried out using drag reduction techniques.Two drag reduction techniques were adopted in the experiments:polymer addition and coating.The drag reduction effect of a polyacrylamide(PAM)solution and dimethyl silicone oil coating were studied in the flume model experiments,and the results were analyzed.Experiments were then carried out with a model of the Xiluodu Hydropower Station,the second largest dam in China.In order to reduce the resistance,the spillway tunnels were internally coated with dimethyl silicone oil.This is the first time that these drag reduction techniques have been applied to so large a hydraulic model.The experimental results show that the coating technique can effectively increase flood discharge.The outlet velocity and the jet trajectory distance are also increased,which enhances the energy dissipation of the spillway tunnel.

  11. Shell selection of hermit crabs is influenced by fluid drag

    Science.gov (United States)

    Casillas, Barbara; Ledesma, Rene; Alcaraz, Guillermina; Zenit, Roberto

    2010-11-01

    The flow around gastropod shells used by hermit crabs (Calcinus californiensis) was visualized experimentally. These crabs choose their shells according to many factors; we found that the choice of shell (shape and weight) is directly related to the drag caused over them by the exposure to wave action. Tests were conducted in a wind tunnel to investigate flow differences for shells of various shapes. A particle image velocimetry (PIV) system was used to visualize the flow field. The images above show the flow field around two types of shells (Thais speciosa and Nerita scabircosta) for Reynolds numbers of O(10^5). Using a control volume analysis, the drag coefficient was inferred. Several shell geometries, orientations and mean flow velocities were tested. In this talk, the flow and drag force will be shown for the different arrangements. A discussion of the relation between drag and shape will be presented.

  12. Development of Drag Reducing Polymer of FDR-SPC

    Science.gov (United States)

    Lee, Inwon; Park, Hyun; Chun, Ho Hwan

    2015-11-01

    In this study, a novel FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer) is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The release mechanism of drag reducing radical is accounted for the hydrolysis reaction between the FDR-SPC and seawater. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. A significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface for PRD3-1.

  13. Collecting responses through Web page drag and drop.

    Science.gov (United States)

    Britt, M Anne; Gabrys, Gareth

    2004-02-01

    This article describes how to collect responses from experimental participants using drag and drop on a Web page. In particular, we describe how drag and drop can be used in a text search task in which participants read a text and then locate and categorize certain elements of the text (e.g., to identify the main claim of a persuasive paragraph). Using this technique, participants respond by clicking on a text segment and dragging it to a screen field or icon. We have successfully used this technique in both the argument element identification experiment that we describe here and a tutoring system that we created to teach students to identify source characteristics while reading historical texts (Britt, Perfetti, Van Dyke, & Gabrys, 2000). The implementation described here exploits the capability of recent versions of Microsoft's Internet Explorer Web browser to handle embedded XML documents and drag and drop events.

  14. Separability of drag and thrust in undulatory animals and machines

    National Research Council Canada - National Science Library

    Bale, Rahul; Shirgaonkar, Anup A; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-01-01

    .... Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust...

  15. 跨声速面积律的近场机理研究%Research on mechanism of transonic area rule in near field

    Institute of Scientific and Technical Information of China (English)

    王钢林; 郑遂

    2016-01-01

    The qualitative descriptions of the area rule bring some confusion and problems to the actual aircraft design work.The linear perturbation assumption in conventional theoretical derivations does not suit the development for more and more refined aerodynamic design in the future.For AGARD-B standard model which has typical shape characteristics of high speed air-craft,we combined the CFD with optimization methods to probe the body modification form for optimal drag reduction.From that,a better drag reduction result and more detailed modification principles of drag reduction are obtained compared to those obtained from the traditional area rule method.Based on the present principles,through the analysis of drag force felt by each compo-nent and comparison of the drag forces on the body surface before and after modification,it is found that the essence of area rule drag reduction is the advantageous interference produced among the adj acent components of the aircraft configuration.Finally,the drag reduction effects of fuselage shrinkage cross-sectional shape are studied and verified.The comparison among different lift coefficient conditions validates that the drag reduction effect of area rule is the same under various lift coefficients and angles of attack condition.%面积律过于定性的描述给实际的飞机设计工作带来了一定的困惑和问题,其理论推导采用的小扰动线化假设也不适应未来空气动力学设计越来越精细化的发展方向。针对具有典型高速飞行器外形特征的 AGARD-B标模,结合CFD和优化方法,探讨了实现最优减阻效果的机身修形形式,得出了较经典跨声速面积律减阻效果更好的结果,给出了比经典面积律更为细致的减阻修形原则。以此为基础,通过对各部件的减阻贡献情况的分析,通过修形前后机体表面阻力、压强及等压线分布的对比,发现面积律减阻的实质是飞行器外形所造成的相邻部件

  16. Automated design of minimum drag light aircraft fuselages and nacelles

    Science.gov (United States)

    Smetana, F. O.; Fox, S. R.; Karlin, B. E.

    1982-01-01

    The constrained minimization algorithm of Vanderplaats is applied to the problem of designing minimum drag faired bodies such as fuselages and nacelles. Body drag is computed by a variation of the Hess-Smith code. This variation includes a boundary layer computation. The encased payload provides arbitrary geometric constraints, specified a priori by the designer, below which the fairing cannot shrink. The optimization may include engine cooling air flows entering and exhausting through specific port locations on the body.

  17. Drag force in a charged N = 4 SYM plasma

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico); Gueijosa, Alberto [Departamento de Fisica de Altas Energias, Instituto de Ciencias Nucleares, Universidad Autonoma de Mexico, Apdo. Postal 70-543, D.F. 04510 (Mexico)

    2006-11-15

    Following recent developments, we employ the AdS/CFT correspondence to determine the drag force exerted on an external quark that moves through an N = 4 super-Yang-Mills plasma with a non-zero R-charge density (or, equivalently, a non-zero chemical potential). We find that the drag force is larger than in the case where the plasma is neutral, but the dependence on the charge is non-monotonic.

  18. Separability of drag and thrust in undulatory animals and machines

    OpenAIRE

    Bale, R; Shirgaonkar, AA; Neveln, ID; Bhalla, APS; MacIver, MA; Patankar, NA

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers...

  19. TURBULENCE TRANSPORT OF SURFACTANT SOLUTION FLOW DURING DRAG REDUCTION DEGENERATION

    Institute of Scientific and Technical Information of China (English)

    GU Wei-guo; WANG De-zhong

    2012-01-01

    Turbulence transport of surfactant solution flow during drag reduction degeneration is investigated experimentally in a two-dimensional channel.Particle Image Velocimetry (P1V) system is used to take two-dimensional velocity frames in the streamwise and wall-normal plane.The additive of surfactant is cetyltrimethyl ammonium chloride (CTAC) with the mass concentration of 25 ppm.Drag reduction degeneration happens in the CTAC solution flow,exhibiting the maximal drag reduction at Re =25000and losing drag reduction completely at Re =40 000.The velocity frames are statistically analyzed in four quadrants which are divided by the u -axis and v-axis.It is found that the phenomenon of“Zero Reynolds shear stress” is caused by the decrease of wallnormal fluctuations and its symmetrical distribution in quadrants.The increase of Reynolds number leads to the enhancement of turbulence burst phenomenon.During thc drag reduction degeneration,the CTAC solution flow contains both high turbulence intensity and drag reduction states.

  20. CME propagation: Where does the solar wind drag take over?

    CERN Document Server

    Sachdeva, Nishtha; Colaninno, Robin; Vourlidas, Angelos

    2015-01-01

    We investigate the Sun-Earth dynamics of a set of eight well observed solar coronal mass ejections (CMEs) using data from the STEREO spacecraft. We seek to quantify the extent to which momentum coupling between these CMEs and the ambient solar wind (i.e., the aerodynamic drag) influences their dynamics. To this end, we use results from a 3D flux rope model fit to the CME data. We find that solar wind aerodynamic drag adequately accounts for the dynamics of the fastest CME in our sample. For the relatively slower CMEs, we find that drag-based models initiated below heliocentric distances ranging from 15 to 50 $R_{\\odot}$ cannot account for the observed CME trajectories. This is at variance with the general perception that the dynamics of slow CMEs are influenced primarily by solar wind drag from a few $R_{\\odot}$ onwards. Several slow CMEs propagate at roughly constant speeds above 15--50 $R_{\\odot}$. Drag-based models initiated above these heights therefore require negligible aerodynamic drag to explain their...

  1. Drag Torque Prediction Model for the Wet Clutches

    Institute of Scientific and Technical Information of China (English)

    HU Jibin; PENG Zengxiong; YUAN Shihua

    2009-01-01

    Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.

  2. Complications of lower blepharoplasty and midface lifting.

    Science.gov (United States)

    Schwarcz, Robert M; Kotlus, Brett

    2015-01-01

    Lower eyelid blepharoplasty and midface lifting share a complex anatomy, which should be mastered before attempting these types of surgeries. In recent years, there have been significant contributions to rejuvenating this area. A thorough understanding of the rejuvenative approaches and their outcomes is imperative. Thus, the problem must be preoperatively evaluated to offer the appropriate technique and minimize complications.

  3. Lifts of projective congruence groups, II

    DEFF Research Database (Denmark)

    Kiming, Ian

    2014-01-01

    We continue and complete our previous paper ``Lifts of projective congruence groups'' concerning the question of whether there exist noncongruence subgroups of  that are projectively equivalent to one of the groups  or . A complete answer to this question is obtained: In case of  such noncongruence...

  4. Redheffer representations and relaxed commutant lifting

    NARCIS (Netherlands)

    ter Horst, S.

    2011-01-01

    It is well known that the solutions of a (relaxed) commutant lifting problem can be described via a linear fractional representation of the Redheffer type. The coefficients of such Redheffer representations are analytic operator-valued functions defined on the unit disc D of the complex plane. In th

  5. Image Compression using Space Adaptive Lifting Scheme

    Directory of Open Access Journals (Sweden)

    Ramu Satyabama

    2011-01-01

    Full Text Available Problem statement: Digital images play an important role both in daily life applications as well as in areas of research and technology. Due to the increasing traffic caused by multimedia information and digitized form of representation of images; image compression has become a necessity. Approach: Wavelet transform has demonstrated excellent image compression performance. New algorithms based on Lifting style implementation of wavelet transforms have been presented in this study. Adaptively is introduced in lifting by choosing the prediction operator based on the local properties of the image. The prediction filters are chosen based on the edge detection and the relative local variance. In regions where the image is locally smooth, we use higher order predictors and near edges we reduce the order and thus the length of the predictor. Results: We have applied the adaptive prediction algorithms to test images. The original image is transformed using adaptive lifting based wavelet transform and it is compressed using Set Partitioning In Hierarchical Tree algorithm (SPIHT and the performance is compared with the popular 9/7 wavelet transform. The performance metric Peak Signal to Noise Ratio (PSNR for the reconstructed image is computed. Conclusion: The proposed adaptive algorithms give better performance than 9/7 wavelet, the most popular wavelet transforms. Lifting allows us to incorporate adaptivity and nonlinear operators into the transform. The proposed methods efficiently represent the edges and appear promising for image compression. The proposed adaptive methods reduce edge artifacts and ringing and give improved PSNR for edge dominated images.

  6. NASA HL-20 PLS Lifting Body (Mockup)

    Science.gov (United States)

    1991-01-01

    NASA HL-20 PLS Lifting Body (Mockup): The HL-20 came into use at Langley in October 1990 and is a full-scale non-flying mockup. This mockup was used for engineering studies of maintainability of the vehicle, as testing crew positions, pilot visibility and other human factors considerations.

  7. Soft sensing for gas-lift wells

    NARCIS (Netherlands)

    Bloemen, H.H.J.; Belfroid, S.P.C.; Sturm, W.L.; Verhelst, F.J.P.C.M.G.

    2006-01-01

    This paper considers the use of extended Kalman filtering as a soft-sensing technique for gas lift wells. This technique is deployed for the estimation of dynamic variables that are not directly measured. Possible applications are the estimation of flow rates from surface and downhole pressure measu

  8. Innovative Alternatives to Lifting Overturned Military Vehicles

    Science.gov (United States)

    2014-04-25

    objects. For instance, Mine -Resistant Ambush Protected (MRAP) vehicles, which can weigh up to 55,000 lbs, have in the past overturned, trapping people...through long, small wires, and gives the user great control over the lift. The motors are powered by high performance 6.0 amp-hour lithium

  9. Unsteady transonic aerodynamics and aeroelastic calculations at low-supersonic freestreams

    Science.gov (United States)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1988-01-01

    A computational procedure is presented to simulate transonic unsteady flows and corresponding aeroelasticity of wings at low-supersonic freestreams. The flow is modeled by using the transonic small-perturbation theory. The structural equations of motions are modeled using modal equations of motion directly coupled with aerodynamics. Supersonic freestreams are simulated by properly accounting for the boundary conditions based on pressure waves along the flow characteristics in streamwise planes. The flow equations are solved using the time-accurate, alternating-direction implicit finite-difference scheme. The coupled aeroelastic equations of motion are solved by an integration procedure based on the time-accurate, linear-acceleration method. The flow modeling is verified by comparing calculations with experiments for both steady and unsteady flows at supersonic freestreams. The unsteady computations are made for oscillating wings. Comparisons of computed results with experiments show good agreement. Aeroelastic responses are computed for a rectangular wing at Mach numbers ranging from subtransonic to upper-transonic (supersonic) freestreams. The extension of the transonic dip into the upper transonic regime is illustrated.

  10. Hybrid Aircraft for Heavy Lift / High Speed Strategic Mobility

    Science.gov (United States)

    2011-04-01

    engines only need to move the airship , not lift it. AU/ACSC/KRISTOF/AY11 12 Figure 6: Aerodynamic Lift (Source: Wikipedia.org at http...4 Early Modern Military Airship Operations ................................................................................. 4 A...10 II: Airship Basics

  11. Experimental investigation of drag force, Magnus force and drag torque acting on rough sphere moving in calm water

    OpenAIRE

    Lukerchenko, N. (Nikolay); Keita, I. (Ibrahima); Chára, Z. (Zdeněk); Vlasák, P. (Pavel)

    2010-01-01

    The paper describes the results of experiments with a rotating golf ball moving quasi-steadily in calm water. The motion of the ball was recorded on a digital video camera. The dimensionless drag force, Magnus force, and drag torque coefficients were determined from the comparison of the calculated translational and angular velocities and trajectory with experimental ones for the rough particle. The proper value of the correction coefficients were established from condition of the best fittin...

  12. Experimental evaluation of the drag torque, drag force and Magnus force acting on a rotating prolate spheroid

    OpenAIRE

    Lukerchenko, N. (Nikolay); Keita, I. (Ibrahima); Kvurt, Y.; Miles, J.

    2010-01-01

    The drag torque, drag force and Magnus force acting on a spheroid rotating around its axis of symmetry and moving perpendicularly to this axis in initially quiescent water were studied using experimental data and numerical simulation. The prolate spheroid with ratio of the axes 4/3 was speeded up in special device, which ensured the required rotational and translational velocity in the given plane. A video system was used to record the spheroid motion in water. Using the video records the sph...

  13. Summary of Data from the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5

    Science.gov (United States)

    Tinoco, Edward N.; Brodersen, Olaf P.; Keye, Stefan; Laflin, Kelly R.; Feltrop, Edward; Vassberg, John C.; Mani, Mori; Rider, Ben; Wahls, Richard A.; Morrison, Joseph H.; hide

    2017-01-01

    Results from the Sixth AIAA CFD Drag Prediction Workshop Common Research Model Cases 2 to 5 are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. Cases 2 to 5 focused on force/moment and pressure predictions for the NASA Common Research Model wing-body and wing-body-nacelle-pylon configurations, including Case 2 - a grid refinement study and nacelle-pylon drag increment prediction study; Case 3 - an angle-of-attack buffet study; Case 4 - an optional wing-body grid adaption study; and Case 5 - an optional wing-body coupled aero-structural simulation. The Common Research Model geometry differed from previous workshops in that it was deformed to the appropriate static aeroelastic twist and deflection at each specified angle-of-attack. The grid refinement study used a common set of overset and unstructured grids, as well as user created Multiblock structured, unstructured, and Cartesian based grids. For the supplied common grids, six levels of refinement were created resulting in grids ranging from 7x10(exp 6) to 208x10(exp 6) cells. This study (Case 2) showed further reduced scatter from previous workshops, and very good prediction of the nacelle-pylon drag increment. Case 3 studied buffet onset at M=0.85 using the Medium grid (20 to 40x10(exp 6) nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Although the use of the prescribed aeroelastic twist and deflection at each angle-of-attack greatly improved the wing pressure distribution agreement with test data, many solutions still exhibited premature flow separation. The remaining solutions exhibited a significant spread of lift and pitching moment at each angle-of-attack, much of which can be attributed to excessive aft pressure loading and shock location variation. Four Case 4 grid adaption solutions were submitted. Starting

  14. The Design of Wheelchair Lifting Mechanism and Control System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cong; WANG Zheng-xing; JIANG Shi-hong; ZHANG Li; LIU Zheng-yu

    2014-01-01

    In order to achieve a wheelchair lift function, this paper designs a tri-scissors mechanism. Through the so-called H-type transmission and L-type swing rod, the three scissors mechanisms lift in the same rate with only one liner motor while ensuring the stability of the lift. Finite element analysis in ANSYS is performed to verify the material strength. The control system with Sunplus SCM achieves the voice control of wheelchair walking and lifting.

  15. Clinical application of palatal lift appliance in velopharyngeal incompetence

    Directory of Open Access Journals (Sweden)

    S Premkumar

    2011-01-01

    Full Text Available The presence of nasal air leak in cleft palate patients with velopharyngeal incompetence leads to characteristic nasal snort. The efficacy of the palatal lift appliance in patients with adequate velopharyngeal tissue with incompetence was tested. Speech quality improved after the wearing of palatal lift appliance. Palatal lift appliances are simple and efficient in reducing the nasal air leak. Ongoing speech therapy is necessary and advised for patients receiving palatal lift.

  16. Effects of box size, frequency of lifting, and height of lift on maximum acceptable weight of lift and heart rate for male university students in Iran.

    Science.gov (United States)

    Abadi, Ali Salehi Sahl; Mazlomi, Adel; Saraji, Gebraeil Nasl; Zeraati, Hojjat; Hadian, Mohammad Reza; Jafari, Amir Homayoun

    2015-10-01

    In spite of the widespread use of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The emphasis on ergonomics in MMH tasks is due to the potential risks of workplace accidents and injuries. This study aimed to assess the effect of box size, frequency of lift, and height of lift on maximum acceptable weight of lift (MAWL) on the heart rates of male university students in Iran. This experimental study was conducted in 2015 with 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks that involved three lifting frequencies (1lift/min, 4.3 lifts/min and 6.67 lifts/min), three lifting heights (floor to knuckle, knuckle to shoulder, and shoulder to arm reach), and two box sizes. Each set of experiments was conducted during the 20 min work period using the free-style lifting technique. The working heart rates (WHR) were recorded for the entire duration. In this study, we used SPSS version 18 software and descriptive statistical methods, analysis of variance (ANOVA), and the t-test for data analysis. The results of the ANOVA showed that there was a significant difference between the mean of MAWL in terms of frequencies of lifts (p = 0.02). Tukey's post hoc test indicated that there was a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0. 01). There was a significant difference between the mean heart rates in terms of frequencies of lifts (p = 0.006), and Tukey's post hoc test indicated a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0.004). But, there was no significant difference between the mean of MAWL and the mean heart rate in terms of lifting heights (p > 0.05). The results of the t-test showed that there was a significant difference between the mean of MAWL and the mean heart rate in terms of the sizes of the two boxes (p = 0.000). Based on the results of

  17. The personal lift-assist device and lifting technique: a principal component analysis.

    Science.gov (United States)

    Sadler, Erin M; Graham, Ryan B; Stevenson, Joan M

    2011-04-01

    The personal lift-assist device (PLAD) is a non-motorised, on-body device that acts as an external force generator using the concept of stored elastic energy. In this study, the effect of the PLAD on the lifting kinematics of male and female lifters was investigated using principal component analysis. Joint kinematic data of 15 males and 15 females were collected using an opto-electronic system during a freestyle, symmetrical-lifting protocol with and without wearing the PLAD. Of the 31 Principal Components (PCs) retained in the models, eight scores were significantly different between the PLAD and no-PLAD conditions. There were no main effects for gender and no significant interactions. Results indicated that the PLAD similarly affected the lifting kinematics of males and females; demonstrating significantly less lumbar and thoracic flexion and significantly greater hip and ankle flexion when wearing the PLAD. These findings add to the body of work that suggest the PLAD may be a safe and effective ergonomic aid. STATEMENT OF RELEVANCE: The PLAD is an ergonomic aid that has been shown to be effective at reducing low back demands during manual materials handling tasks. This body of work establishes that the PLAD encourages safe lifting practices without adversely affecting lifting technique.

  18. 49 CFR 178.975 - Top lift test.

    Science.gov (United States)

    2010-10-01

    ... opposite lifting devices, so that the hoisting forces are applied vertically for a period of five minutes; and (ii) Lifted by each pair of diagonally opposite lifting devices so that the hoisting forces are... which it is designed until clear of the floor and maintained in that position for a period of...

  19. On lifting line analysis of horizontal axis windturbines

    Science.gov (United States)

    Politis, G. K.; Loukakis, T. A.

    A convergent iteration scheme for lifting line performance analysis of horizontal axis windturbines is presented. Lifting line correction factors are introduced and compared with those of Prandtl and Goldstein. Lifting line and strip theory formulations are applied for the calculation of performance for two windturbines. Differences of engineering importance are shown to exist in the prediction of the Power coefficient.

  20. 14 CFR 23.345 - High lift devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High lift devices. 23.345 Section 23.345 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... lift devices. (a) If flaps or similar high lift devices are to be used for takeoff, approach or landing...