WorldWideScience

Sample records for life-support system celss

  1. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Science.gov (United States)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  2. Integration, design, and construction of a CELSS breadboard facility for bioregenerative life support system research

    Science.gov (United States)

    Prince, R.; Knott, W.; Buchanan, Paul

    1987-01-01

    Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.

  3. Nutrition and food technology for a Controlled Ecological Life Support System (CELSS)

    Science.gov (United States)

    Glaser, P. E.; Mabel, J. A.

    1981-01-01

    Food technology requirements and a nutritional strategy for a Controlled Ecological Life Support System (CELSS) to provide adequate food in an acceptable form in future space missions are discussed. The establishment of nutritional requirements, dietary goals, and a food service system to deliver acceptable foods in a safe and healthy form and the development of research goals and priorities were the main objectives of the study.

  4. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    Science.gov (United States)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  5. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS)

    Science.gov (United States)

    Thompson, B. G.

    Lemna minor (common duckweed) and a Wolffia sp. were grown in submerged growth systems. Submerged growth increased the productivity/unit volume (P/UV) of the organisms and may allow these plants to be used in a controlled ecological life support system (CELSS).

  6. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  7. CELSS Antarctic Analog Project (CAAP): A New Paradigm for Polar Life Support and CELSS Research

    Science.gov (United States)

    Bubenheim, David L.; Straight, Christian; Flynn, Michael; Bates, Maynard; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The CELSS Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. Under a Memorandum of Agreement, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate . technology selection, system design and methods development, including human dynamics as required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. The CAAP facility will be highly integrated with the new South Pole Station infrastructure and will be composed of a deployed hardware facility and a research activity. This paper will include a description of CAAP and its functionality, conceptual designs, component selection and sizing for the crop growth chamber, crop production expectations, and a brief report on an initial on-site visit. This paper will also provide a discussion of issues associated with power and energy use and the applicability of CAAP to direct technology transfer to society in general and remote communities in particular.

  8. Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Karel, M.

    1982-01-01

    The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.

  9. Bioregenerative life-support systems

    Science.gov (United States)

    Mitchell, C. A.

    1994-01-01

    Long-duration future habitation of space involving great distances from Earth and/or large crew sizes (eg, lunar outpost, Mars base) will require a controlled ecological life-support system (CELSS) to simultaneously revitalize atmosphere (liberate oxygen and fix carbon dioxide), purify water (via transpiration), and generate human food (for a vegetarian diet). Photosynthetic higher plants and algae will provide the essential functions of biomass productivity in a CELSS, and a combination of physicochemical and bioregenerative processes will be used to regenerate renewable resources from waste materials. Crop selection criteria for a CELSS include nutritional use characteristics as well as horticultural characteristics. Cereals, legumes, and oilseed crops are used to provide the major macronutrients for the CELSS diet. A National Aeronautics and Space Administration (NASA) Specialized Center of Research and Training (NSCORT) was established at Purdue University to establish proof of the concept of the sustainability of a CELSS. The Biosphere 2 project in Arizona is providing a model for predicted and unpredicted situations that arise as a result of closure in a complex natural ecosystem.

  10. Plant diversity to support humans in a CELSS ground based demonstrator

    Science.gov (United States)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  11. CELSS experiment model and design concept of gas recycle system

    Science.gov (United States)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  12. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  13. Controlled ecological life support systems; Proceedings of Workshop II of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    Science.gov (United States)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor)

    1987-01-01

    The present conference on the development status of Controlled Ecological Life Support Systems (CELSSs) discusses food production and gas exchange with the Spirulina blue-green alga, biomass recycling for greater energy efficiency in algal culture CELSSs, algal proteins for food processing in a CELSS, a CELSS with photosynthetic N2-fixing cyanobacteria, the NASA CELSS program, and vapor compression ditillation and membrane technology for water revitalization. Also discussed are a fundamental study of CELSS gas monitoring, the application of catalytic wet oxidation to CELSS, a large-scale perspective on ecosystems, Japanese CELSS research activities, the use of potatoes in bioregenerative life-support, wheat production in controlled environments, and a trickle water and feeding system in plant culture.

  14. Development of the CELSS Emulator at NASA JSC

    Science.gov (United States)

    Cullingford, Hatice S.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Emulator is under development at the NASA Johnson Space Center (JSC) with the purpose to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. This paper describes Version 1.0 of the CELSS Emulator that was initiated in 1988 on the JSC Multi Purpose Applications Console Test Bed as the simulation framework. The run module of the simulation system now contains a CELSS model called BLSS. The CELSS Emulator makes it possible to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  15. Closed Ecological Life Support Systems (CELSS) Test Facility

    Science.gov (United States)

    Macelroy, Robert D.

    1992-01-01

    The CELSS Test Facility (CTF) is being developed for installation on Space Station Freedom (SSF) in August 1999. It is designed to conduct experiments that will determine the effects of microgravity on the productivity of higher (crop) plants. The CTF will occupy two standard SSF racks and will accommodate approximately one square meter of growing area and a canopy height of 80 cm. The growth volume will be isolated from the external environment, allowing stringent control of environmental conditions. Temperature, humidity, oxygen, carbon dioxide, and light levels will all be closely controlled to prescribed set points and monitored. This level of environmental control is needed to prevent stress and allow accurate assessment of microgravity effect (10-3 to 10-6 x g). Photosynthetic rates and respiration rates, calculated through continuous recording of gas concentrations, transpiration, and total and edible biomass produced will be measured. Toxic byproducts will be monitored and scrubbed. Transpiration water will be collected within the chamber and recycled into the nutrient solution. A wide variety of crop plants, e.g., wheat, soy beans, lettuce, potatoes, can be accommodated and various nutrient delivery systems and light delivery systems will be available. In the course of its development, the CTF will exploit fully, and contribute importantly, to the state-of-art in closed system technology and plant physiology.

  16. Development of the CELSS emulator at NASA. Johnson Space Center

    Science.gov (United States)

    Cullingford, Hatice S.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Emulator is under development. It will be used to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. Described here is Version 1.0 of the CELSS Emulator that was initiated in 1988 on the Johnson Space Center (JSC) Multi Purpose Applications Console Test Bed as the simulation framework. The run model of the simulation system now contains a CELSS model called BLSS. The CELSS simulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  17. Controlled Ecological Life Support System Breadboard Project - 1988

    Science.gov (United States)

    Knott, W. M.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989-1993 are listed. The biomass production chamber to be used by the project is described.

  18. Controlled ecological life support system breadboard project, 1988

    Science.gov (United States)

    Knott, W. M.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989 to 1993 are listed. The Biomass Production Chamber (BPC) became operational and tests of wheat as a single crop are nearing completion.

  19. Reproducible analyses of microbial food for advanced life support systems

    Science.gov (United States)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  20. Human life support for advanced space exploration

    Science.gov (United States)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  1. Mathematical modeling of control subsystems for CELSS: Application to diet

    Science.gov (United States)

    Waleh, Ahmad; Nguyen, Thoi K.; Kanevsky, Valery

    1991-01-01

    The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described. The steady state results of the application of the method for representative diets made from wheat, potato, and soybean are presented.

  2. The controlled ecological life support system Antarctic analog project: Analysis of wastewater from the South Pole Station, Antarctica, volume 1

    Science.gov (United States)

    Flynn, Michael T.; Bubenheim, David L.; Straight, Christian L.; Belisle, Warren

    1994-01-01

    The Controlled Ecological Life Support system (CELSS) Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and NASA project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. NASA goals are operational testing of CELSS technologies and the conduct of scientific studies to facilitate technology selection and system design. The NSF goals are that the food production, water purification, and waste treatment capabilities which will be provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. This report presents an analysis of wastewater samples taken from the Amundsen-Scott South Pole Station, Antarctica. The purpose of the work is to develop a quantitative understanding of the characteristics of domestic sewage streams at the South Pole Station. This information will contribute to the design of a proposed plant growth/waste treatment system which is part of the CELSS Antarctic Analog Project (CAAP).

  3. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    Science.gov (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  4. Celss nutrition system utilizing snails

    Science.gov (United States)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  5. Applications of CELSS technology to controlled environment agriculture

    Science.gov (United States)

    Bates, Maynard E.; Bubenheim, David L.

    1991-01-01

    Controlled environment agriculture (CEA) is defined as the use of environmental manipulation for the commercial production of organisms, whether plants or animals. While many of the technologies necessary for aquaculture systems in North America is nevertheless doubling approximately every five years. Economic, cultural, and environmental pressures all favor CEA over field production for many non-commodity agricultural crops. Many countries around the world are already dependent on CEA for much of their fresh food. Controlled ecological life support systems (CELSS), under development at ARC, KSC, and JSC expand the concept of CEA to the extent that all human requirements for food, oxygen, and water will be provided regenerated by processing of waste streams to supply plant inputs. The CELSS will likely contain plants, humans, possibly other animals, microorganisms and physically and chemical processors. In effect, NASA will create engineered ecosystems. In the process of developing the technology for CELSS, NASA will develop information and technology which will be applied to improving the efficiency, reliability, and cost effectiveness for CEA, improving its resources recycling capabilities, and lessening its environmental impact to negligible levels.

  6. Robotics in a controlled, ecological life support system

    Science.gov (United States)

    Miles, Gaines E.; Krom, Kimberly J.

    1993-01-01

    Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.

  7. Effect of radiation on the long term productivity of a plant based CELSS

    International Nuclear Information System (INIS)

    Thompson, B.G.; Lake, B.H.

    1987-01-01

    Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS

  8. Microbial biofilm formation and its consequences for the CELSS program

    Science.gov (United States)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  9. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS

    Science.gov (United States)

    Hao, Zongjie; Li, Dunhai; Li, Yanhui; Wang, Zhicong; Xiao, Yuan; Wang, Gaohong; Liu, Yongding; Hu, Chunxiang; Liu, Qifang

    2011-11-01

    Some phytoplankton can be regarded as possible candidates in the establishment of Controlled Ecological Life Support System (CELSS) for some intrinsic characteristics, the first characteristic is that they should grow rapidly, secondly, they should be able to endure some stress factors and develop some corresponding adaptive strategies; also it is very important that they could provide food rich in nutritious protein and vitamins for the crew; the last but not the least is they can also fulfill the other main functions of CELSS, including supplying oxygen, removing carbon dioxide and recycling the metabolic waste. According to these characteristics, Nostoc sphaeroides, a potential healthy food in China, was selected as the potential producer in CELSS. It was found that the oxygen average evolution rate of this algae is about 150 μmol O 2 mg -1 h -1, and the size of them are ranged from 2 to 20 mm. Also it can be cultured with high population density, which indicated that the potential productivity of Nostoc sphaeroides is higher than other algae in limited volume. We measured the nutrient contents of the cyanobacterium and concluded it was a good food for the crew. Based on above advantages, Nostoc sphaeroides was assumed to a suitable phytoplankton for the establishment of Controlled Ecological Life Support System. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food in future space missions.

  10. Non-methane hydrocarbons in a controlled ecological life support system.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-02-01

    Non-methane hydrocarbons (NMHCs) are vital to people's health and plants' growth, especially inside a controlled ecological life support system (CELSS) built for long-term space explorations. In this study, we measured 54 kinds of NMHCs to study their changing trends in concentration levels during a 4-person-180-day integrated experiment inside a CELSS with four cabins for plants growing and other two cabins for human daily activities and resources management. During the experiment, the total mixing ratio of measured NMHCs was 423 ± 283 ppbv at the first day and it approached 2961 ± 323 ppbv ultimately. Ethane and propane were the most abundant alkanes and their mixing ratios kept growing from 27.5 ± 19.4 and 31.0 ± 33.6 ppbv to 2423 ± 449 ppbv and 290 ± 10 ppbv in the end. For alkenes, ethylene and isoprene presented continuously fluctuating states during the experimental period with average mixing ratios of 30.4 ± 19.3 ppbv, 7.4 ± 5.8 ppbv. For aromatic hydrocarbons, the total mixing ratios of benzene, toluene, ethylbenzene and xylenes declined from 48.0 ± 44 ppbv initially to 3.8 ± 1.1 ppbv ultimately. Biomass burning, sewage treatment, construction materials and plants all contributed to NMHCs inside CELSS. In conclusion, the results demonstrate the changing trends of NMHCs in a long-term closed ecological environment's atmosphere which provides valuable information for both the atmosphere management of CELSS and the exploration of interactions between humans and the total environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Design and testing of a model CELSS chamber robot

    Science.gov (United States)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  12. Evaluation of engineering foods for closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Karel, M.

    1982-01-01

    A nutritionally adequate and acceptable diet was evaluated and developed. A design for a multipurpose food plant is discussed. The types and amounts of foods needed to be regenerated in a partially closed ecological life support system (PCELSS) were proposed. All steps of food processes to be utilized in the multipurpose food plant of PCELSS were also considered. Equipment specifications, simplification of the proposed processes, and food waste treatment were analyzed.

  13. Controlled ecological life support systems: Development of a plant growth module

    Science.gov (United States)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  14. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A.

    1996-01-01

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  15. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A. Z.

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  16. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    Science.gov (United States)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  17. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    Science.gov (United States)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  18. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    Science.gov (United States)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  19. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    Science.gov (United States)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  20. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    Science.gov (United States)

    Volk, Tyler

    1993-01-01

    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.

  1. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    Science.gov (United States)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  2. Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-01-01

    Indoor air quality is vital to the health and comfort of people who live inside a controlled ecological life support system (CELSS) built for long-term space explorations. Here we measured aromatic hydrocarbons to assess their sources and health risks during a 4-person-180-day integrated experiment inside a CELSS with four cabins for growing crops, vegetables and fruits and other two cabins for working, accommodations and resources management. During the experiment, the average concentrations of benzene, ethylbenzene, m,p-xylenes and o-xylene were found to decrease exponentially from 7.91±3.72, 37.2±35.2, 100.8±111.7 and 46.8±44.1μg/m 3 to 0.39±0.34, 1.4±0.5, 2.8±0.7 and 2.1±0.9μg/m 3 , with half-lives of 25.3, 44.8, 44.7 and 69.3days, respectively. Toluene to benzene ratios indicated emission from construction materials or furniture to be a dominant source for toluene, and concentrations of toluene fluctuated during the experiment largely due to the changing sorption by growing plants. The cancer and no-cancer risks based on exposure pattern of the crews were insignificant in the end of the experiment. This study also suggested that using low-emitting materials/furniture, growing plants and purifying air actively would all help to lower hazardous air pollutants inside CELSS. Broadly, the results would benefit not only the development of safe and comfort life support systems for space exploration but also the understanding of interactions between human and the total environment in closed systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  4. Quinoa: An emerging new crop with potential for CELSS

    Science.gov (United States)

    Schlick, Greg; Bubenheim, David L.

    1993-01-01

    Chenopodium quinoa is being considered as a new crop for the Controlled Ecological Life Support System (CELSS) because of its high protein values (12 - 18%) and unique amino acid composition. Lysine, and essential amino acid that is deficient in many grain crops, is found in quinoa approaching Food and Agriculture Organization of the United Nations (FAO) standards set for humans. This 'new' crop, rich in protein and with desirable proportions of important amino acids, may provide greater versatility in meeting the needs of humans on long-term space missions. Initially, the cultivars CO407 x ISLUGA, CO407 Heat Tolerant Population 1, and Real' (a Bolivian variety) were examined. The first cultivar showed the most promise in greenhouse studies. When grown hydroponically in the greenhouse, with no attempt to maximize productivity, this cultivar produced 202 g m(exp -2) with a harvest index of 37%. None of the cultivars were greater than 70 cm in height. Initial results indicate that quinoa could be an excellent crop for CELSS because of the high concentration of protein, ease of use, versatility in preparation, and potential for greatly increased yields in controlled environments.

  5. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system

    Science.gov (United States)

    Nickel, K. P.; Nielsen, S. S.; Smart, D. J.; Mitchell, C. A.; Belury, M. A.

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  6. Research on some functions of Azolla in CELSS system

    Science.gov (United States)

    Liu, Xiaofeng; Min, Chen; Xia-shi, Liu; Chungchu, Liu

    This article detailed the possibility of using Azolla in CELSS system, the characters of Azolla; the experiments on using Azolla as O 2-releasing plant to provide O 2 for human in airtight chamber; using Azolla as an important biological part for urine solution purification was also introduced.

  7. Incineration for resource recovery in a closed ecological life support system

    Science.gov (United States)

    Upadhye, R. S.; Wignarajah, K.; Wydeven, T.

    1993-01-01

    A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.

  8. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  9. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  10. Closed ecological life-support systems and their applications

    Science.gov (United States)

    Gitelson, Josef I.

    The advent of man-made closed ecosystems (CES) is a solution of the fundamental problem-egress of humans beyond the Earth's biosphere, providing biological basis for exploitation of Space and celestial bodies. Yet, before proceeding to these ambitious project elements of closed life-support biotechnologies, there can be found diverse applications on Earth in human settlements providing for high quality of life under extreme environment conditions: high latitudes, deserts, mountains and industrially polluted areas. This presentation considers these variations of terrestrial applications of CELSS technologies. The version of CES under development is based on making direct use of the light energy in plant photosynthesis. In this case life support of one man on the Earth orbit requires solar light collected from 5-10m2. Among terrestrial applications of prime importance is the development of an ecohome designed to provide people with a high quality of life in Arctic and Antarctic territories. The developed technology of cascade employment of energy makes possible (expending 10-15 kw of installed power per a house-3-5 member family) to provide for: permanent supply of fresh vitamin-full vegetables, absorption and processing oaf excreta, purification of water and air in the living quarters, habitual colour and light conditions in the premises in winter making up to sensorial deprivation and, finally, psychological comfort of close contact with the plants during the long polar night. Ecohabitat based on the technology described in realistic today and depends only on the energy available and the resolution and readiness (sagacity) of the decision-makers to be committed with ecohome assigning. The ecological and economical significance of construction of ecohabitats for the northern territories of Canada, Alaska and Russia is apparent. This principle can be used (with considerable economy of energy and construction costs) to maintain normal partial pressure of oxygen inside

  11. [Habitability and life support systems].

    Science.gov (United States)

    Nefedov, Iu G; Adamovich, B A

    1988-01-01

    This paper discusses various aspects of space vehicle habitability and life support systems. It describes variations in the chemical and microbial composition of an enclosed atmosphere during prolonged real and simulated flights. The paper gives a detailed description of life support systems and environmental investigations onboard the Mir station. It also outlines the development of space vehicle habitability and life support systems as related to future flights.

  12. The perspective crops for the bioregenerative human life support systems

    Science.gov (United States)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  13. Introduction to Life Support Systems

    Science.gov (United States)

    Perry, Jay

    2017-01-01

    This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.

  14. Design Rules for Life Support Systems

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.

  15. Plant growth and mineral recycle trade-offs in different scenarios for a CELSS. [Closed Ecological Life Support System

    Science.gov (United States)

    Ballou, E. V.; Wydeven, T.; Spitze, L. A.

    1982-01-01

    Data for hydroponic plant growth in a manned system test is combined with nutritional recommendations to suport trade-off calculations for closed and partially closed life support system scenarios. Published data are used as guidelines for the masses of mineral nutrients needed for higher plant production. The results of calculations based on various scenarios are presented for various combinations of plant growth chamber utilization and fraction of mineral recycle. Estimates are made of the masses of material needed to meet human nutritional requirements in the various scenarios. It appears that food production from a plant growth chamber with mineral recycle is favorable to reduction of the total launch weight in missions exceeding 3 years.

  16. Mathematical Modeling Of Life-Support Systems

    Science.gov (United States)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  17. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  18. Effects of photoperiod on wheat growth, development and yield in CELSS

    Science.gov (United States)

    Yunze, Shen; Shuangsheng, Guo

    2014-12-01

    A Controlled Ecological Life Support System (CELSS) is a sealed system used in spaceflight in order to provide astronauts with food and O2 by plants. It is of great significance to increase the energy-using efficiency because energy is extremely deficient in the space. Therefore, the objective of this research was to increase the energy-using efficiency of wheat by regulating the photoperiod. Sixteen treatments were set in total: four photoperiods before flowering (PBF) combined with four photoperiods after flowering (PAF) of 12 h, 16 h, 20 h and 24 h. The light source was red-blue LED (90% red+10% blue). As a result, the growth period of wheat was largely extended by shorter PBF, particularly the number of days from tillering to jointing and from jointing to heading. The period from flowering to maturity was extended by shorter PAF. Shorter PBF and longer PAF could increase not only the yield but also the energy-using efficiency of wheat. As for the nutritional quality, longer photoperiod (both PBF and PAF) increased starch concentration as well as decreased protein concentration of seeds. The effects of PBF and PAF were interactional. The lighting strategy with PBF of 12 h and PAF of 24 h was proved to be the optimum photoperiod for wheat cultivation in CELSS. The mechanisms of photoperiod effect contain two aspects. Firstly, photoperiod is a signal for many processes in plant growth, particularly the process of ear differentiation. Shorter PBF promoted the ear differentiation of wheat, increasing the spikelet number, floret number and seed number and thus enhancing the yield. Secondly, longer photoperiod leads to more light energy input and longer time of photosynthesis, so that longer PAF provided more photosynthate and increased seed yield.

  19. Developing Sustainable Life Support System Concepts

    Science.gov (United States)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  20. Life Support Systems: Environmental Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Environmental Monitoring (EM) systems task objectives are to develop and demonstrate onboard...

  1. An evaluation of microorganisms for unconventional food regeneration schemes in CELSS - Research recommendations

    Science.gov (United States)

    Stokes, B. O.; Petersen, G. R.

    1982-01-01

    The benefits and deficiencies of various candidates for a controlled ecological life support system (CELSS) for manned spacecraft missions of at least 3-14 yr are discussed. Conventional plants are considered unacceptable due to their inefficient production of foodstuffs and overproduction of stems and leafy matter. The alternate concepts are algae and/or bacteria or chemical synthesis of food. Microorganisms are considered the most promising because of their direct use of CO2 and possible utilization of waste streams. Yeasts are cited as the most viable candidates, since a large data base and experience already exists in the commercial food industry. The addition of hydrogen bactria and solar-grown algae is recommended, together with genetic manipulation experiments to tailor the microorganisms to production of foodstuffs closer to the 70 percent carbohydrate, 20 percent protein, and 10 percent lipid optimal food currently accepted. The yeast strain, Hansenula polymorpha, has been successfully grown in methanol and encouraged to produce a 55 percent carbohydrate content.

  2. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  3. A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is...

  4. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  5. Nostoc sphaeroides Kütz, a candidate producer par excellence for CELSS

    Science.gov (United States)

    Wang, Gaohong; Hao, Zongjie; Liu, Yongding

    A lot of aquatic organisms could be regarded as suitable candidates par excellence in the establishment of CELSS, since they are relatively easy and fast to grow and resistant to changes in environmental condition as well as providing nutritious, protein-and vitamin-rich foods for the crew, which can fulfill the main functions of CELSS, including supplying oxygen, water and food, removing carbon dioxide and making daily life waste reusable. Our labotory has developed mass culture of Nostoc sphaeroides Kütz, which is one of traditional healthy food in China and. The oxygen evolution rate of the cyanobacterium is about 150 molO2.mg-1.h-1, and it usually grows into colony with size between 2-20mm, which is easy to be harvested. It also can be cultured with high density, which show that the productivity of the cyanobacterium in limited volume is higher than other microalgae. We had measured the nutrient content of the cyanobacterium and developed some Chinese Dishes and Soups with Nostoc sphaeroides Kütz, which showed that it was a good food for crew. Using remote sensing technique, we also investigated its growth in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food to crew in future.

  6. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems.

    Science.gov (United States)

    Richter, P R; Liu, Y; An, Y; Li, X; Nasir, A; Strauch, S M; Becker, I; Krüger, J; Schuster, M; Ntefidou, M; Daiker, V; Haag, F W M; Aiach, A; Lebert, M

    2015-01-01

    In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH4+ (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  7. Evaluation of engineered foods for Closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Karel, M.

    1981-01-01

    A system of conversion of locally regenerated raw materials and of resupplied freeze-dried foods and ingredients into acceptable, safe and nutritious engineered foods is proposed. The first phase of the proposed research has the following objectives: (1) evaluation of feasibility of developing acceptable and reliable engineered foods from a limited selection of plants, supplemented by microbially produced nutrients and a minimum of dehydrated nutrient sources (especially those of animal origin); (2) evaluation of research tasks and specifications of research projects to adapt present technology and food science to expected space conditions (in particular, problems arising from unusual gravity conditions, problems of limited size and the isolation of the food production system, and the opportunities of space conditions are considered); (3) development of scenarios of agricultural production of plant and microbial systems, including the specifications of processing wastes to be recycled.

  8. Axiomatic Design of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.

  9. Selection of candidate salad vegetables for controlled ecological life support system

    Science.gov (United States)

    Qin, L.; Guo, S.; Ai, W.; Tang, Y.

    Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol-1) and another which used various light intensities (100, 300, 500 and 700 μmol m-2 s-1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.

  10. Storage stability of screwpress-extracted oils and residual meals from CELSS candidate oilseed crops

    Science.gov (United States)

    Stephens, S. D.; Watkins, B. A.; Nielsen, S. S.

    1997-01-01

    The efficacy of using screwpress extraction for oil was studied with three Controlled Ecological Life-Support System (CELSS) candidate oilseed crops (soybean, peanut, and canola), since use of volatile organic solvents for oil extraction likely would be impractical in a closed system. Low oil yields from initial work indicated that a modification of the process is necessary to increase extraction efficiency. The extracted oil from each crop was tested for stability and sensory characteristics. When stored at 23 degC, canola oil and meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. When stored at 65 degC, soybean oil and canola meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. Sensory evaluation of the extracted oils used in bread and salad dressing indicated that flavor, odor intensity, acceptability, and overall preference may be of concern for screwpress-extracted canola oil when it is used in an unrefined form. Overall results with screwpress-extracted crude oils indicated that soybean oil may be more stable and acceptable than canola or peanut under typical storage conditions.

  11. Need for Cost Optimization of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.; Anderson, Grant

    2017-01-01

    As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.

  12. Generic Modeling of a Life Support System for Process Technology Comparison

    Science.gov (United States)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.

  13. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  14. [Habitability and biological life support systems for man].

    Science.gov (United States)

    Gazenko, O G; Grigor'ev, A I; Meleshko, G I; Shepelev, E Ia

    1990-01-01

    This paper discusses general concepts and specific details of the habitability of space stations and planetary bases completely isolated from the Earth for long periods of time. It emphasizes inadequacy of the present-day knowledge about natural conditions that provide a biologically acceptable environment on the Earth as well as lack of information about life support systems as a source of consumables (oxygen, water, food) and a tool for waste management. The habitability of advanced space vehicles is closely related to closed bioregenerative systems used as life support systems.

  15. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  16. Life Support Systems: Trace Contaminant and Particulate Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Trace Contaminant and Particulate Control task: Work in the area of trace contamination and...

  17. (abstract) Generic Modeling of a Life Support System for Process Technology Comparisons

    Science.gov (United States)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.

  18. Starship Life Support

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    The design and mass cost of a starship and its life support system are investigated. The mission plan for a multi generational interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Only current technology is assumed. Highly reliable life support systems can be provided with reasonably small additional mass, suggesting that they can support long duration missions. Bioregenerative life support, growing crop plants that provide food, water, and oxygen, has been thought to need less mass than providing stored food for long duration missions. The large initial mass of hydroponics systems is paid for over time by saving the mass of stored food. However, the yearly logistics mass required to support a bioregenerative system exceeds the mass of food solids it produces, so that supplying stored dehydrated food always requires less mass than bioregenerative food production. A mixed system that grows about half the food and supplies the other half dehydrated has advantages that allow it to breakeven with stored dehydrated food in about 66 years. However, moderate increases in the hydroponics system mass to achieve high reliability, such as adding spares that double the system mass and replacing the initial system every 100 years, increase the mass cost of bioregenerative life support. In this case, the high reliability half food growing, half food supplying system does not breakeven for 389 years. An even higher reliability half and half system, with three times original system mass and replacing the system every 50 years, never breaks even. Growing food for starship life support requires more mass than providing dehydrated food, even for multigeneration voyages of hundreds of years. The benefits of growing some food may justify the added mass cost. Much more efficient recycling food production is wanted but may not be possible. A single multigenerational interstellar voyage to

  19. study on trace contaminants control assembly for sealed environment chamber

    Science.gov (United States)

    Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.

    The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C

  20. Electrochemical Hydrogen Peroxide Generator for Multiple Applications in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Controlled Ecological Life Support System (CELSS) facilities require the development of reliable systems for the disinfection of microorganisms. There are several...

  1. Educational tool for modeling and simulation of a closed regenerative life support system

    Science.gov (United States)

    Arai, Tatsuya; Fanchiang, Christine; Aoki, Hirofumi; Newman, Dava J.

    For long term missions on the moon and Mars, regenerative life support systems emerge as a promising key technology for sustaining successful explorations with reduced re-supply logistics and cost. The purpose of this study was to create a simple model of a regenerative life support system which allows preliminary investigation of system responses. A simplified regenerative life support system was made with MATLAB Simulink ™. Mass flows in the system were simplified to carbon, water, oxygen and carbon dioxide. The subsystems included crew members, animals, a plant module, and a waste processor, which exchanged mass into and out of mass reservoirs. Preliminary numerical simulations were carried out to observe system responses. The simplified life support system model allowed preliminary investigation of the system response to perturbations such as increased or decreased number of crew members. The model is simple and flexible enough to add new components, and also possible to numerically predict non-linear subsystem functions and responses. Future work includes practical issues such as energy efficiency, air leakage, nutrition, and plant growth modeling. The model functions as an effective teaching tool about how a regenerative advanced life support system works.

  2. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    Science.gov (United States)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  3. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post

  4. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  5. International Space Station Environmental Control and Life Support System Status: 2010 - 2011

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2010 and February 2011 and the continued permanent presence of six crew members on ISS. Work continues on the last of the Phase 3 pressurized elements, commercial cargo resupply vehicles, and extension of the ISS service life from 2015 to 2020 or beyond.

  6. International Space Station Environmental Control and Life Support System Status: 2014-2015

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2014 and February 2015. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  7. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  8. Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.

  9. Preliminary study of the space adaptation of the MELiSSA life support system

    Science.gov (United States)

    Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent

    MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.

  10. Life support systems analysis and technical trades for a lunar outpost

    Science.gov (United States)

    Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.

    1994-01-01

    The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.

  11. International Space Station Environmental Control and Life Support System Status: 2011-2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2011-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1

  12. A simulation based optimization approach to model and design life support systems for manned space missions

    Science.gov (United States)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  13. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  14. Creation of closed life support systems

    Science.gov (United States)

    Gitelson, I.

    The 40-year-long experience in devising ecological systems with a significantly closed material cycling (CES), which are intended for human life support outside the Earth's biosphere, allows us to state that this problem has been largely solved technically. To test the terrestrial prototypes of these systems: Bios in Krasnoyarsk, the Terrestrial Ecological System (TES) in Moscow, and Bioplex in Houston, crews of humans stayed inside them over long periods of time. In Bios-3 humans could be fully (100%) provided with regenerated air and water and with a vegetable part (80%) of their diet. One human requires 4.5 kW of light energy, which is equal to the light energy incident on an 8-m2 surface perpendicular to solar rays in the Earth's orbit. The regeneration of air and water can be alternatively performed by a 17-L2 microalgal cultivator with a light-receiving surface of 8 m at 2 kW of light energy or by a conveyer culture of agricultural plants. To regenerate the vegetable part of2 the diet to the full, the area must increase to 31.5 m per person. Similar values have been obtained in the TES and in Bioplex. It can be concluded that the system is ready to be implemented in the engineering-technical designs of specific versions: for orbital flights, for missions to Mars and other planets, and for stations on the Moon and Mars. To improve the CES further, a number of new key problems should be resolved. The first of them are: to robotize the technological processes and to establish an optimized system of the internal control of the CES by the crew working in it; to develop a hybrid physicochemical-biological technology for returning the dead-end products of biosynthesis into the system's cycling; to solve the fundamental problem of regenerating the human ration completely inside the CES by the autotrophic chemo - and photosynthesis. Once this problem is solved, the energy requirements for life support in space will be significantly reduced. This will also considerably

  15. International Space Station Environmental Control and Life Support System Status: 2008 - 2009

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  16. Novel Composite Membrane for Space Life Supporting System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  17. The Logistics Management Decision Support System (LMDSS) : an effective tool to reduce life cycle support costs of aviation systems

    OpenAIRE

    Moore, Ellen E.; Snyder, Carolynn M.

    1998-01-01

    Approved for public release; distribution is unlimited This thesis assesses the capability of the Logistics Management Decision Support System (LMDSS) to meet the information needs of Naval Air Systems Command (NAVAIR) logistics managers based on surveys of logistics managers and interviews with LMDSS program representatives. The LMDSS is being introduced as a tool to facilitate action by NAVAIR logistics managers to reduce the life cycle support costs of aviation systems while protecting ...

  18. Plant Research

    Science.gov (United States)

    1990-01-01

    The Land's agricultural research team is testing new ways to sustain life in space as a research participant with Kennedy Space Center's Controlled Ecological Life Support System (CELSS). The Land, sponsored by Kraft General Foods, is an entertainment, research, and education facility at EPCOT Center, part of Walt Disney World. The cooperative effort is simultaneously a research and development program, a technology demonstration that provides the public to see high technology at work and an area of potential spinoff: the CELSS work may generate Earth use technology beneficial to the hydroponic (soilless growing) vegetable production industries of the world.

  19. International Space Station Environmental Control and Life Support System Status: 2009 - 2010

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non -regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2009 and February 2010. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence and an increase of the ISS crew size from three to six. Work continues on the last of the Phase 3 pressurized elements.

  20. Advanced Life Support Project Plan

    Science.gov (United States)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  1. Model implementation for dynamic computation of system cost for advanced life support

    Science.gov (United States)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  3. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  4. System Engineering and Integration of Controls for Advanced Life Support

    Science.gov (United States)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  5. Phase Change Permeation Technology For Environmental Control Life Support Systems

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  6. Bioregenerative life support system for a lunar base

    Science.gov (United States)

    Liu, H.; Wang, J.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    We have studied a modular approach to construction of bioregenerative life support system BLSS for a lunar base using soil-like substrate SLS for plant cultivation Calculations of massflow rates in BLSS were based mostly on a vegetarian diet and biological conversion of plant residues in SLS Plant candidate list for lunar BLSS includes the following basic species rice Oryza sativa soy Glycine max sweet potato Ipomoea batatas and wheat Triticum aestivum To reduce the time necessary for transition of the system to steady state we suggest that the first seeding and sprouting could be made on Earth

  7. Life support for aquatic species - past; present; future

    Science.gov (United States)

    Slenzka, K.

    Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.

  8. Utilization of membranes for H2O recycle system

    Science.gov (United States)

    Ohya, H.; Oguchi, M.

    1986-01-01

    Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.

  9. Life Support Filtration System Trade Study for Deep Space Missions

    Science.gov (United States)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  10. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  11. Perspectives of biotechnologies based on dormancy phenomenon for space researches

    Science.gov (United States)

    Alekseev, V.; Sychev, V.; Layus, D.; Levinsky, M.; Novikova, N.; Zakhodnova, T.

    Long term space missions will require a renewable source of food and an efficient method to recycle oxygen Plants especially aquatic micro algae provide an obvious solution to these problems However long duration plant growth and reproduction in space that is necessary for transportation of a control ecological life support system CELSS from Earth to other planets are problematic The introduction of heterotrophs in space CELSS is a more formidable problem as the absence of gravity creates additional difficulties for their life Dormancy phenomenon protected a great many animals and plants in harsh environmental conditions within a special resting phases of life cycle lasting from months up to hundred years This phenomenon can be quite perspective as a tool to overcome difficulties with CELSS transportation in space missions Cryptobiotic stages of microbes fungi unicellular algae and protists can survive in open space conditions that is important for interplanetary quarantine and biological security inside spacecraft Searching for life outside the Earth at such planet like Mars with extremely variable environment should be oriented on dormancy as crucial phases of a life cycle in such organisms Five major research programs aimed on study dormancy phenomenon for exobiology purposes and creation of new biotechnologies are discussed List of species candidate components of CELSS with dormancy in their life cycle used in space experiments at the Russian segment of International Space Station now includes 26 species from bacteria to fish The

  12. Evaluation for membrane components of water recycling system. Mizu saisei junkan system yoso no tokusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Tanemura, T; Otsubo, K; Oguchi, M [National Aerospace Laboratory, Tokyo (Japan); Ashida, A; Hamano, N; Mitani, K [Hitachi, Ltd., Tokyo (Japan)

    1992-04-01

    The configuration of water recycling systems with membrane filters was studied to purify waste water discharged from human beings, animals and plants which is a key subsystem for closed ecological life support systems (CELSS) essential to long-term manned space activity. The filter performance test apparatus with three kinds of filters such as pre-filter, reverse osmosis membrane filter and ultra membrane filter was fabricated to conduct long-term cycling high-concentration tests using artificial urine as original waste water. As a result, since every membrane filter offered their nominal performance incompletely in high-concentration tests, it was necessary to add an NaCl removing apparatus to the system as primary treated water should be used for vegetation. It was also required to test the membrane performance preliminarily because the performance such as membrane life was different between various waste waters. 7 refs., 32 figs., 9 tabs.

  13. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    Science.gov (United States)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  14. Life Support for Deep Space and Mars

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2014-01-01

    How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.

  15. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  16. International Space Station Environmental Control and Life Support System Previous Year Status for 2013 - 2014

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2013 and February 2014. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  17. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  18. Automated Subsystem Control for Life Support System (ASCLSS)

    Science.gov (United States)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support Systems (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of space station subsystems. The automation system features a hierarchical and distributed real-time control architecture which places maximum controls authority at the lowest or process control level which enhances system autonomy. The ASCLSS demonstration system pioneered many automation and control concepts currently being considered in the space station data management system (DMS). Heavy emphasis is placed on controls hardware and software commonality implemented in accepted standards. The approach demonstrates successfully the application of real-time process and accountability with the subsystem or process developer. The ASCLSS system completely automates a space station subsystem (air revitalization group of the ASCLSS) which moves the crew/operator into a role of supervisory control authority. The ASCLSS program developed over 50 lessons learned which will aide future space station developers in the area of automation and controls..

  19. Decision support for life extension of technical systems through virtual age modelling

    International Nuclear Information System (INIS)

    Pérez Ramírez, Pedro A.; Utne, Ingrid Bouwer

    2013-01-01

    This article presents a virtual age model for decision support regarding life extension of ageing repairable systems. The aim of the model is to evaluate different life extension decision alternatives and their impact on the future performance of the system. The model can be applied to systems operated continuously (e.g., process systems) and systems operated on demand (e.g., safety systems). Deterioration and efficiency of imperfect maintenance is assessed when there is limited or no degradation data, and only failure and maintenance data is available. Systems that are in operation can be studied, meaning that the systems may be degraded. The current degradation is represented by a “current virtual age”, which is calculated from recorded maintenance data. The model parameters are estimated with the maximum likelihood method. A case study illustrates the application of the model for life extension of two fire water pumps in an oil and gas facility. The performance of the pump system is assessed with respect to number of failures, safety unavailability and costs during the life extension period. -- Highlights: ► Life extension assessment of technical systems using virtual age model is proposed. ► A virtual age model is generalised for systems in stand-by and continuous operation. ► The concept of current virtual age describes technical condition of the system. ► Different decision alternatives for life extension can be easily analysed. ► The decision process is improved even when only scarce failure data is available

  20. Bioregenerative Life Support System Research as part of the DLR EDEN Initiative

    Science.gov (United States)

    Bamsey, Matthew; Schubert, Daniel; Zabel, Paul; Poulet, Lucie; Zeidler, Conrad

    In 2011, the DLR Institute of Space Systems launched a research initiative called EDEN - Evolution and Design of Environmentally-closed Nutrition-Sources. The research initiative focuses on bioregenerative life support systems, especially greenhouse modules, and technologies for future crewed vehicles. The EDEN initiative comprises several projects with respect to space research, ground testing and spin-offs. In 2014, EDEN’s new laboratory officially opened. This new biological cleanroom laboratory comprises several plant growth chambers incorporating a number of novel controlled environment agriculture technologies. This laboratory will be the nucleus for a variety of plant cultivation experiments within closed environments. The utilized technologies are being advanced using the pull of space technology and include such items as stacked growth systems, PAR-specific LEDs, intracanopy lighting, aeroponic nutrient delivery systems and ion-selective nutrient sensors. The driver of maximizing biomass output per unit volume and energy has much application in future bioregenerative life support systems but can also provide benefit terrestrially. The EDEN laboratory also includes several specially constructed chambers for advancing models addressing the interaction between bioregenerative and physical-chemical life support systems. The EDEN team is presently developing designs for containerized greenhouse modules. One module is planned for deployment to the German Antarctic Station, Neumayer III. The shipping container based system will provide supplementation to the overwintering crew’s diet, provide psychological benefit while at the same time advancing the technology and operational readiness of harsh environment plant production systems. In addition to hardware development, the EDEN team has participated in several early phase designs such as for the ESA Greenhouse Module for Space System and for large-scale vertical farming. These studies often utilize the

  1. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  2. Life Support Baseline Values and Assumptions Document

    Science.gov (United States)

    Anderson, Molly S.; Ewert, Michael K.; Keener, John F.

    2018-01-01

    The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life support researchers with a common set of values and assumptions which can be used as a baseline in their studies. This baseline, in turn, provides a common point of origin from which many studies in the community may depart, making research results easier to compare and providing researchers with reasonable values to assume for areas outside their experience. This document identifies many specific physical quantities that define life support systems, serving as a general reference for spacecraft life support system technology developers.

  3. Advanced Technologies to Improve Closure of Life Support Systems

    Science.gov (United States)

    Barta, Daniel J.

    2016-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  4. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems.

    Science.gov (United States)

    Dubini, Gabriele; Ambrosi, Davide; Bagnoli, Paola; Boschetti, Federica; Caiani, Enrico G; Chiastra, Claudio; Conti, Carlo A; Corsini, Chiara; Costantino, Maria Laura; D'Angelo, Carlo; Formaggia, Luca; Fumero, Roberto; Gastaldi, Dario; Migliavacca, Francesco; Morlacchi, Stefano; Nobile, Fabio; Pennati, Giancarlo; Petrini, Lorenza; Quarteroni, Alfio; Redaelli, Alberto; Stevanella, Marco; Veneziani, Alessandro; Vergara, Christian; Votta, Emiliano; Wu, Wei; Zunino, Paolo

    2011-01-01

    Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.

  5. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.

    Science.gov (United States)

    Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong

    2016-12-01

    To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.

  6. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  7. Environmental control and life support - Partially closed system will save big money

    Science.gov (United States)

    Guy, W. W.

    1983-01-01

    Although the NASA space station has not yet been completely defined, realistic estimates may be made of the environmental control and life support system requirements entailed by a crew of eight, a resupply interval of 90 days, an initial launch which includes expendables for the first resupply interval, 7.86 lb/day of water per person, etc. An appraisal of these requirements is presented which strongly suggests the utility of a partially closed life support system. Such a scheme would give the crew high quality water to drink, and recycle nonpotable water from hand washing, bathing, clothes and dish washing, and urinal flushing. The excess recovery process water is electrolyzed to provide metabolic and leakage oxygen. The crew would drink electrolysis water and atmospheric humidity control moisture-derived water.

  8. Don't Trust a Management Metric, Especially in Life Support

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    Goodhart's law states that metrics do not work. Metrics become distorted when used and they deflect effort away from more important goals. These well-known and unavoidable problems occurred when the closure and system mass metrics were used to manage life support research. The intent of life support research should be to develop flyable, operable, reliable systems, not merely to increase life support system closure or to reduce its total mass. It would be better to design life support systems to meet the anticipated mission requirements and user needs. Substituting the metrics of closure and total mass for these goals seems to have led life support research to solve the wrong problems.

  9. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2011 - 2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J

    2013-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to at least 2028.

  10. Conceptual design of a bioregenerative life support system containing crops and silkworms

    Science.gov (United States)

    Hu, Enzhu; Bartsev, Sergey I.; Liu, Hong

    2010-04-01

    This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments - higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.

  11. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  12. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  13. Achieving Closure for Bioregenerative Life Support Systems: Engineering and Ecological Challenges, Research Opportunities

    Science.gov (United States)

    Dempster, William; Allen, John P.

    Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and

  14. Life Support with Failures and Variable Supply

    Science.gov (United States)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  15. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    Science.gov (United States)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc

  16. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2010-2011

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2012-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2010 and February 2011. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028.

  17. Canadian advanced life support capacities and future directions

    Science.gov (United States)

    Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.

    2009-07-01

    Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity

  18. Lunar Surface Scenarios: Habitation and Life Support Systems for a Pressurized Rover

    Science.gov (United States)

    Anderson, Molly; Hanford, Anthony; Howard, Robert; Toups, Larry

    2006-01-01

    Pressurized rovers will be a critical component of successful lunar exploration to enable safe investigation of sites distant from the outpost location. A pressurized rover is a complex system with the same functions as any other crewed vehicle. Designs for a pressurized rover need to take into account significant constraints, a multitude of tasks to be performed inside and out, and the complexity of life support systems to support the crew. In future studies, pressurized rovers should be given the same level of consideration as any other vehicle occupied by the crew.

  19. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  20. Waste management in space: a NASA symposium. Special issue

    Science.gov (United States)

    Wydeven, T. (Principal Investigator)

    1991-01-01

    This special issue contains papers from the NASA Symposium on Waste Processing for Advanced Life Support, which was held at NASA Ames Research Center on September 11-13, 1990. Specialists in waste management from academia, government, and industry convened to exchange ideas and advise NASA in developing effective methods for waste management in a Controlled Ecological Life Support System (CELSS). Innovative and well-established methods were presented to assist in developing and managing wastes in closed systems for future long-duration space missions, especially missions to Mars.

  1. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    Science.gov (United States)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  2. NextSTEP Hybrid Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — NextSTEP Phase I Hybrid Life Support Systems (HLSS) effort assessed options, performance, and reliability for various mission scenarios using contractor-developed...

  3. Integration of lessons from recent research for "Earth to Mars" life support systems

    Science.gov (United States)

    Nelson, M.; Allen, J. P.; Alling, A.; Dempster, W. F.; Silverstone, S.; van Thillo, M.

    Development of reliable and robust strategies for long-term life support for mbox planetary exploration needs to be built on real-time experimentation to verify and improve system components Also critical is the incorporation of a range of viable options to handle potential short-term life system imbalances This paper revisits some of the conceptual framework for a Mars base prototype previously advanced Mars on Earth in the light of three years of experimentation by the authors in the Laboratory Biosphere further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls For example crops of sweet potatoes exceeded original Mars base prototype projections by 83 ultradwarf Apogee wheat by 27 pinto bean by 240 and cowpeas slightly exceeded anticipated dry bean yield These production levels although they may be increased with further optimization of lighting regimes environmental parameters crop density etc offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research Soil also offers several distinct advantages the capability to be created using in-situ space resources reducing reliance on consumables and imported resources and more easily recycling and

  4. Developing Reliable Life Support for Mars

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and

  5. Mass balances for a biological life support system simulation model

    Science.gov (United States)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  6. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  7. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  8. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    Science.gov (United States)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  9. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  10. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  11. Study of basic-life-support training for college students.

    Science.gov (United States)

    Srivilaithon, Winchana; Amnaumpatanapon, Kumpon; Limjindaporn, Chitlada; Imsuwan, Intanon; Daorattanachai, Kiattichai

    2015-03-01

    To study about attitude and knowledge regarding basic-life-support among college students outside medical system. The cross-sectional study in the emergency department of Thammasat Hospital. The authors included college students at least aged 18 years old and volunteers to be study subjects. The authors collected data about attitudes and knowledge in performing basic-life-support by using set of questionnaires. 250 college students participated in the two hours trainingprogram. Most ofparticipants (42.4%) were second-year college students, of which 50 of 250 participants (20%) had trained in basic-life-support program. Twenty-seven of 250 participants (10.8%) had experience in basic-life-support outside the hospital. Most of participants had good attitude for doing basic-life-support. Participants had a significant improved score following training (mean score 8.66 and 12.34, respectively, pbasic-life-support to cardiac arrest patient. The training program in basic-life-support has significant impact on knowledge after training.

  12. Systems Engineering and Integration for Advanced Life Support System and HST

    Science.gov (United States)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  13. FileNet's BPM life-cycle support

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.

    2006-01-01

    Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis of processes. In the research

  14. IMPROVEMENT OF LIFE SUPPORT SYSTEMS OF PASSENGER ROLLING STOCK: PATENT REVIEW

    Directory of Open Access Journals (Sweden)

    S. R. Kolesnykov

    2018-02-01

    Full Text Available Purpose. Inventors and researchers of the world are focused on improvements of basic life support systems including provision of quality microclimate parameters in a car of the rolling stock. The research is aimed at reviewing and analyzing patents in the field of climate comfort, heating, ventilation and air conditioning (CCHVAC of railway passenger cars (the chronological framework: 2011-2017 from the date of publication. Мethodology. During the study there were reviewed patents (foreign and domestic ones in the field of CCHVAC in passenger vehicles, in particular railway cars, their optimization and ways of managing them. Patent search was carried out according to certain search criteria: keywords, time frames and in various patent systems of the world. An interdisciplinary approach was used. Findings. Based on the search results, 157 patents were found, 21 documents of which were selected for analysis. Patents are systematized into three groups: "New technical and technological solutions in systems and functioning facilities of HVAC ", "New and improved solutions for HVAC system management in a vehicle", "Air ozonation in passenger cars". It is established that all patents have one of the aspects that have solutions to the issues of more environmentally friendly, energy efficient and safe application of CCHVAC systems in railway transport. Originality. It was proved a high level of link penetration in various technical fields, which include patents with CCHVAC. It is established that it is characteristic for them to designate the majority of patent solutions for use not in the purely railway industry, but in transport in general. Practical value. Confirmation of the high level of link penetration in various technical fields will make it possible to reflect technical problems with CCHVAC and technologies for their solution throughout the world. This will contribute to a more intensive technological upgrade in the improvement of life support

  15. Microbiological characterization of a regenerative life support system

    Science.gov (United States)

    Koenig, D. W.; Bruce, R. J.; Mishra, S. K.; Barta, D. J.; Pierson, D. L.

    1994-01-01

    A Variable Pressure Plant Growth Chamber (VPGC), at the Johnson Space Center's (JSC) ground based Regenerative Life Support Systems (RLSS) test bed, was used to produce crops of soil-grown lettuce. The crops and chamber were analyzed for microbiological diversity during lettuce growth and after harvest. Bacterial counts for the rhizosphere, spent nutrient medium, heat exchanger condensate, and atmosphere were approximately 10(exp 11) Colony Forming Units (CFU)/g, 10(exp 5) CFU/ml, 10(exp 5)CFU/ml, and 600 CFU/m sq, repectively. Pseudomonas was the predominant bacterial genus. Numbers of fungi were about 10(exp 5) CFU/g in the rhizosphere, 4-200 CFU/ml in the spent nutient medium, 110 CFU/ml in the heat exchanger condensate, and 3 CFU/cu m in the atmosphere. Fusarium and Trichoderma were the predominant fungal genera.

  16. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  17. Cyrogenic Life Support Technology Development Project

    Science.gov (United States)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  18. Functional Interface Considerations within an Exploration Life Support System Architecture

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  19. Methods for measurement and control of leakage in CELSS and their application and performance in the Biosphere 2 facility.

    Science.gov (United States)

    Dempster, W F

    1994-11-01

    Atmospheric leakage between a CELSS and its surround is driven by the differential pressure between the two. In an earth-based CELSS, both negative and positive differential pressures of atmosphere are created as the resultant of three influences: thermal expansion/contraction, transition of water between liquid and vapor phases, and external barometric pressure variations. The resultant may typically be on the order of 5000 pascals. By providing a flexible expansion chamber, the differential pressure range can be reduced two, or even three, orders of magnitude, which correspondingly reduces the leakage. The expansion chamber itself can also be used to measure the leak rate. Independent confirmation is possible by measurement of the progressive dilution of a trace gas. These methods as employed at the Biosphere 2 facility have resulted in an estimated atmospheric leak rate of less than 10 percent per year.

  20. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems

    Science.gov (United States)

    Steinberg, S. L.; Ming, D. W.; Henderson, K. E.; Carrier, C.; Gruener, J. E.; Barta, D. J.; Henninger, D. L.

    2000-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  1. Rapid Deterioration of Basic Life Support Skills in Dentists With Basic Life Support Healthcare Provider.

    Science.gov (United States)

    Nogami, Kentaro; Taniguchi, Shogo; Ichiyama, Tomoko

    2016-01-01

    The aim of this study was to investigate the correlation between basic life support skills in dentists who had completed the American Heart Association's Basic Life Support (BLS) Healthcare Provider qualification and time since course completion. Thirty-six dentists who had completed the 2005 BLS Healthcare Provider course participated in the study. We asked participants to perform 2 cycles of cardiopulmonary resuscitation on a mannequin and evaluated basic life support skills. Dentists who had previously completed the BLS Healthcare Provider course displayed both prolonged reaction times, and the quality of their basic life support skills deteriorated rapidly. There were no correlations between basic life support skills and time since course completion. Our results suggest that basic life support skills deteriorate rapidly for dentists who have completed the BLS Healthcare Provider. Newer guidelines stressing chest compressions over ventilation may help improve performance over time, allowing better cardiopulmonary resuscitation in dental office emergencies. Moreover, it may be effective to provide a more specialized version of the life support course to train the dentists, stressing issues that may be more likely to occur in the dental office.

  2. Life support and internal thermal control system design for the Space Station Freedom

    Science.gov (United States)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  3. A home away from home. [life support system design for Space Station

    Science.gov (United States)

    Powell, L. E.; Hager, R. W.; Mccown, J. W.

    1985-01-01

    The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.

  4. Technical assessment of Mir-1 life support hardware for the international space station

    Science.gov (United States)

    Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.

    1994-01-01

    NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.

  5. Contribution of Enterprise Asset Management (EAM) systems and CAP programs to support NPP life extension program

    International Nuclear Information System (INIS)

    Luanco, E.

    2007-01-01

    There is no specific IS (Information System) which supports the entire scope of a plant life extension, but there are a number of existing solutions that contributes to support it. Globally there are 2 categories of IS solution in the market: those supporting the Plant Life Improvement (PLIM) side of the life extension program and the others supporting the Plant Life Extension (PLEX) process side of it. The first category involves a large number of applications that span from ageing evaluation criteria programs, to monitoring solution for the critical components and to analysis and decision tools. The second category comprises solutions which support partially or globally the overall business process under a regulatory controlled manner. Both categories require 3 conditions to be satisfied: -) a comprehensive set of data (these data are often produced by various applications and the ability to correlate all the data together with a high degree of integrity is an important success factor); -) a feedback mechanism whose dual aspect is the monitoring of the ageing phenomena and the management of all the actions to be coordinated to ensure that preset objectives will be achieved in due time; and -) good people management to ensure particularly that staff will be well acquainted with new equipment or with new operating processes

  6. Supporting the Support System: How Assessment and Communication Can Help Patients and Their Support Systems.

    Science.gov (United States)

    Harkey, Jane; Young, Jared; Carter, Jolynne Jo; Demoratz, Michael

    The benefits of having a support system, such as social relationships with close friends and family, have been well documented for patients with serious health issues. As scientific evidence has shown, individuals who have the lowest level of involvement in social relationships face a greater mortality risk. Support systems, however, are not infallible. Relationship stress can have a negative impact on people-patient and caregiver alike-behaviorally, psychosocially, and physiologically. The purpose of this article is to encourage case managers who take a patient-centered approach to also consider the existence and extent of the support system, as well as any stresses or tensions that are observable within the support system. Although the case manager is ethically obliged to advocate for the individual receiving case management services, that advocacy can be extended to the support system for the good of all. This discussion applies to numerous case management practices and work settings including (but not limited to) hospital-based case management, home health, geriatrics, catastrophic case management, mental health, palliative care, and end of life/hospice. As part of the assessment phase of the case management process, case managers determine the extent of the patient's support system or social support network such as family and close friends. Although their advocacy is primarily for the patient receiving case management services, case managers also become aware of the needs of the support system members as they face their loved one's serious illness, severe injury, geriatric care demands, or end of life. Case managers can use their communication skills, especially motivational interviewing, with patients and their support systems to identify stresses and issues that can impact the pursuit of health goals. In addition, case managers ensure that individuals and their support systems are kept informed such as about the health condition, stage of disease, plan of

  7. Growing crops for space explorers on the moon, Mars, or in space

    Science.gov (United States)

    Salisbury, F. B.

    1999-01-01

    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars

  8. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  9. Integration of lessons from recent research for “Earth to Mars” life support systems

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced ("Mars on Earth ®") in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally

  10. Precursor life science experiments and closed life support systems on the Moon

    Science.gov (United States)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary

  11. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  12. Determining the potential productivity of food crops in controlled environments

    Science.gov (United States)

    Bugbee, Bruce

    1992-01-01

    The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.

  13. Robust catastrophe-free space agriculture on Mars

    Science.gov (United States)

    Yamashita, Masamichi

    During the early stage of CELSS research, economy was a selling point of the bio-regenerative life support concept. Until system integration was exercised in detail at mission planing for the International Space Station, the turning point from open system to CELSS was estimated 10 years of operation for 10 crew member as a consensus. Initial investment and operational cost for the 10-10 regenerative system was believed to be cheaper than the integrated amount of consumables for running open system. Any drop-out from recycling loop of materials is counted as “penalty”. Under this context, degree of closure was raised as an index to measure “maturity” of CELSS technology. Once it was found quite difficult to achieve 100 % closure perfect, science merit of CELSS study was redefined as a small scaled model of terrestrial biosphere. Natural ecosystem has huge sink and backyard in its materials loop. They provide a basis for keeping member in the ecology without falling into catastrophe. Low productivity at high biological diversity is a common key feature at the climax phase of ecosystem. Artificial ecosystem on ground relies on “unpaid” backyard function of surrounding biosphere together with strong control for realizing high productivity at less degree of bio-diversity. It should be noted that top criteria in engineering manned space system is robustness and survivability of crew. All other item is secondary, and just better to have. Without verification of catastrophe free, space agriculture will never be implemented for space and stay as a fantasy on ground forever. There is a great gap between ecology and this requirement for manned space system. In order to fill this gap, we should remind how gatherer and hunter was civilized after the agricultural revolution about ten thousand years ago. Planting cereal crop was a great second step in agricultural innovation. Cereal grain can be stored more than one year after its harvest. Food processing and

  14. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  15. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  16. Psychiatry: life events and social support in late life depression

    Directory of Open Access Journals (Sweden)

    Clóvis Alexandrino-Silva

    2011-01-01

    Full Text Available OBJECTIVES: To examine the association of life events and social support in the broadly defined category of depression in late life. INTRODUCTION: Negative life events and lack of social support are associated with depression in the elderly. Currently, there are limited studies examining the association between life events, social support and late-life depression in Brazil. METHODS: We estimated the frequency of late-life depression within a household community sample of 367 subjects aged 60 years or greater with associated factors. ''Old age symptomatic depression'' was defined using the Composite International Diagnostic Interview 1.1 tool. This diagnostic category included only late-life symptoms and consisted of the diagnoses of depression and dysthymia as well as a subsyndromal definition of depression, termed ''late subthreshold depression''. Social support and life events were assessed using the Comprehensive Assessment and Referral Evaluation (SHORT-CARE inventory. RESULTS: ''Old age symptomatic depression'' occurred in 18.8% of the patients in the tested sample. In univariate analyses, this condition was associated with female gender, lifetime anxiety disorder and living alone. In multivariate models, ''old age symptomatic depression'' was associated with a perceived lack of social support in men and life events in women. DISCUSSION: Social support and life events were determined to be associated with late-life depression, but it is important to keep in mind the differences between genders. Also, further exploration of the role of lifetime anxiety disorder in late-life depression may be of future importance. CONCLUSIONS: We believe that this study helps to provide insight into the role of psychosocial factors in late-life depression.

  17. Methodological Challenges in Studies Comparing Prehospital Advanced Life Support with Basic Life Support.

    Science.gov (United States)

    Li, Timmy; Jones, Courtney M C; Shah, Manish N; Cushman, Jeremy T; Jusko, Todd A

    2017-08-01

    Determining the most appropriate level of care for patients in the prehospital setting during medical emergencies is essential. A large body of literature suggests that, compared with Basic Life Support (BLS) care, Advanced Life Support (ALS) care is not associated with increased patient survival or decreased mortality. The purpose of this special report is to synthesize the literature to identify common study design and analytic challenges in research studies that examine the effect of ALS, compared to BLS, on patient outcomes. The challenges discussed in this report include: (1) choice of outcome measure; (2) logistic regression modeling of common outcomes; (3) baseline differences between study groups (confounding); (4) inappropriate statistical adjustment; and (5) inclusion of patients who are no longer at risk for the outcome. These challenges may affect the results of studies, and thus, conclusions of studies regarding the effect of level of prehospital care on patient outcomes should require cautious interpretation. Specific alternatives for avoiding these challenges are presented. Li T , Jones CMC , Shah MN , Cushman JT , Jusko TA . Methodological challenges in studies comparing prehospital Advanced Life Support with Basic Life Support. Prehosp Disaster Med. 2017;32(4):444-450.

  18. Implementation Of Conservation Policy Through The Protection Of Life Support System In The Karimunjawa National Park

    Science.gov (United States)

    Ariyani, Nur Anisa Eka; Kismartini

    2018-02-01

    The Karimunjawa National Park as the only one marine protected area in Central Java, managed by zonation system has decreased natural resources in the form of decreasing mangrove forest area, coral cover, sea biota population such as clams and sea cucumbers. Conservation has been done by Karimunjawa National Park Authority through protection of life support system activities in order to protect the area from degradation. The objective of the research is to know the implementation of protection and security activities of Karimunjawa National Park Authority for the period of 2012 - 2016. The research was conducted by qualitative method, processing secondary data from Karimunjawa National Park Authority and interview with key informants. The results showed that protection and security activities in The Karimunjawa National Park were held with three activities: pre-emptive activities, preventive activities and repressive activities. Implementation of conservation policy through protection of life support system is influenced by factors of policy characteristic, resource factor and environmental policy factor. Implementation of conservation policy need support from various parties, not only Karimunjawa National Park Authority as the manager of the area, but also need participation of Jepara Regency, Central Java Provinces, communities, NGOs, researchers, developers and tourism actors to maintain and preserve existing biodiversity. Improving the quality of implementors through education and training activities, the availability of the state budget annually and the support of stakeholders is essential for conservation.

  19. Growing Food for Space and Earth: NASA's Contributions to Vertical Agriculture

    Science.gov (United States)

    Wheeler, Raymond M.

    2015-01-01

    Beginning in the 1980s with NASA's Controlled Ecological Life Support System (CELSS) Program and later the 1990s and early 2000s with the Advanced Life Support Project, NASA conducted extensive testing with crops in controlled environment conditions. One series of tests conducted at Kennedy Space Center used a large chamber with vertically stacked shelves to support hydroponic growing trays, with a bank of electric lamps above each shelf. This is essentially the same approach that has become popular for use in so-called vertical agriculture systems, which attempts to optimize plant production in a fixed volume. Some of the findings and commonalities of NASA's work during this period and how it overlaps with current interests in vertical agriculture will be presented in the talk.

  20. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    Science.gov (United States)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  1. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  2. Insight into the radiotolerance of the life support bacterium Rhodospirillum rubrum S1H by means of phenotypic and transcriptomic methods

    Science.gov (United States)

    Mastroleo, Felice; Monsieurs, Pieter; Leys, Natalie

    this particular aspect of R. rubrum S1H metabolism should be carefully monitored and possibly countermeasure could be taken in order to avoid potential malfunctioning of the continuous culture bioreactor. Hendrickx L., De Wever H., Hermans V., Mastroleo F., Morin N., Wilmotte A., Janssen P. and Mergeay M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Sup-port System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regenera-tion system for long-haul space exploration missions. Res Microbiol 2006;157:77-86. Mergeay M., Verstraete W., Dubertret G., Lefort-Tran M., Chipaux C., Binot R.A. `MELiSSA'—A micro-organisms-based model for `CELSS' development. Proceedings at the 3rd European Symposium on Space Thermal Control Life Support Systems Noordwijk, The Netherlands (1988) pp 65-68. The presented work was financially supported by the European Space Agency (ESA-PRODEX), the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 No 90094) and the SCK•CEN PhD AWM grant of F. Mastroleo. We are grateful to C. Lasseur and C. Paillé, both from ESTEC/ESA, for their constant support and advice.

  3. The culture of Chlorella vulgaris with human urine in multibiological life support system experiments

    Science.gov (United States)

    Li, Ming; Liu, Hong; Tong, Ling; Fu, Yuming; He, Wenting; Hu, Enzhu; Hu, Dawei

    The Integrative Experimental System (IES) was established as a tool to evaluate the rela-tionship of the subsystems in Bioregenerative Life Support System, and Multibiological Life Support System Experiments (MLSSE) have been conducted in the IES. The IES consists of a higher plant chamber, an animal chamber and a plate photo bioreactor (PPB) which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella vulgaris), respectively. In MLSSE, four volunteers took turns breathing the system air through a tube connected with the animal chamber periodically. According to the CO2 concentration in the IES, the automotive control system of the PPB changed the light intensity regulating the photosynthesis of Chlorella vulgaris to make CO2 /O2 in the system maintain at stable levels. Chlorella vulgaris grew with human urine by carrying certain amount of alga liquid out of the bioreactor every day with synthetic urine replenished into the system, and O2 was regenerated, at the same time human urine was purified. Results showed that this IES worked stably and Chlorella vulgaris grew well; The culture of Chlorella vulgaris could be used to keep the balance of CO2 and O2 , and the change of light intensity could control the gas composition in the IES; Microalgae culture could be used in emergency in the system, the culture of Chlorella vulgaris could recover to original state in 5 days; 15.6 ml of condensation water was obtained every day by the culture of Chlorella vulgaris; The removal efficiencies of N, P in human urine could reach to 98.2% and 99.5%.

  4. Decision Support Systems for Research and Management in Advanced Life Support

    Science.gov (United States)

    Rodriquez, Luis F.

    2004-01-01

    Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.

  5. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  6. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  7. Life-sustaining support: ethical, cultural, and spiritual conflicts part I: Family support--a neonatal case study.

    Science.gov (United States)

    Stutts, Amy; Schloemann, Johanna

    2002-04-01

    As medical knowledge and technology continue to increase, so will types of life-sustaining support as well as the public's expectations for use of this support with positive outcomes. Health care professionals will continue to be challenged by the issues surrounding the appropriate use of life-sustaining support and the issues it raises. This is especially apparent in the NICU. When parents' belief systems challenge the health care team's ethical commitment to beneficence and nonmaleficence, a shared decision-making model based on mutual understanding of and respect for different viewpoints can redirect the focus onto the baby's best interest. This article addresses three questions: 1. How do nonmaleficence, beneficence, and concern about quality of life guide the use of life-sustaining support? 2. To what extent should parental autonomy and spirituality influence treatment decisions? 3. What efforts can the health care team make to support the family?

  8. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    Science.gov (United States)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  9. Environmental Control and Life Support Systems technology options for Space Station application

    Science.gov (United States)

    Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.

    1985-01-01

    Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.

  10. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    Science.gov (United States)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  11. Prospective technologies and equipment for sanitary hygienic measures for life support systems

    Science.gov (United States)

    Shumilina, I. V.

    Creation of optimal sanitary hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82 95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary hygienic technologies, equipment, and methods.

  12. NASA Johnson Space Center Life Sciences Data System

    Science.gov (United States)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  13. A new microcomputer-based safety and life support system for solitary-living elderly people.

    Science.gov (United States)

    Miyauchi, Kosuke; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Caldwell, W Morton

    2003-01-01

    A new safety and life support system has been developed to detect emergency situations of solitary-living elderly persons. The system employs a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a personal handy phone. Body movements due to walking, running and posture changes are detected by the dual axis accelerometer and sent to the microcomputer. If the patient is in an inactive state for 5 minutes after falling, or for 64 minutes without previously falling, then the system automatically alarms the emergency situation, via the personal handy phone, to the patient's family, the fire station or the hospital.

  14. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    Science.gov (United States)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  15. The Life Cycle Cost (LCC) of Life Support Recycling and Resupply

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    Brief human space missions supply all the crew's water and oxygen from Earth. The multiyear International Space Station (ISS) program instead uses physicochemical life support systems to recycle water and oxygen. This paper compares the Life Cycle Cost (LCC) of recycling to the LCC of resupply for potential future long duration human space missions. Recycling systems have high initial development costs but relatively low durationdependent support costs. This means that recycling is more cost effective for longer missions. Resupplying all the water and oxygen requires little initial development cost but has a much higher launch mass and launch cost. The cost of resupply increases as the mission duration increases. Resupply is therefore more cost effective than recycling for shorter missions. A recycling system pays for itself when the resupply LCC grows greater over time than the recycling LCC. The time when this occurs is called the recycling breakeven date. Recycling will cost very much less than resupply for long duration missions within the Earth-Moon system, such as a future space station or Moon base. But recycling would cost about the same as resupply for long duration deep space missions, such as a Mars trip. Because it is not possible to provide emergency supplies or quick return options on the way to Mars, more expensive redundant recycling systems will be needed.

  16. Space nuclear power systems for extraterrestrial basing

    International Nuclear Information System (INIS)

    Lance, J.R.; Chi, J.W.H.

    1989-01-01

    Previous studies of nuclear and non-nuclear power systems for lunar bases are compared with recent studies by others. Power levels from tens of kW e for early base operation up to 2000 kW e for a self-sustaining base with a Closed Environment Life Support System (CELSS) are considered. Permanent lunar or Martian bases will require the use of multiple nuclear units connected to loads with a power transmission and distribution system analogous to earth-based electric utility systems. A methodology used for such systems is applied to the lunar base system to examine the effects of adding 100 kW e SP-100 class and/or larger nuclear units when a reliability criterion is imposed. The results show that resource and logistic burdens can be reduced by using 1000 kW e units early in the base growth scenario without compromising system reliability. Therefore, both technologies being developed in two current programs (SP-100 and NERVA Derivative Reactor (NDR) technology for space power) can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are also described. (author)

  17. Development Approach of the Advanced Life Support On-line Project Information System

    Science.gov (United States)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA

  18. The Environmental Control and Life Support System (ECLSS) advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  19. Micropollutants in closed life-support systems: the case of triclosan, a biocide excreted via urine

    Science.gov (United States)

    Mastroleo, Felice; Pycke, Benny; Boon, Nico; de Wever, Heleen; Hendrickx, Larissa; Mastroleo, Felice; Wattiez, Ruddy; Mergeay, Max; Verstraete, Willy

    OBJECTIVES: The impact of triclosan on the growth and physiology of the bacterium Rhodospirillum rubrum was studied in the frame of the regenerative life-support system, Micro- Ecological Life Support System Alternative (MELiSSA). A wide range of compounds, such as steroid hormones, pharmaceuticals and personal care products, might enter the life support system via the excrements that are to be treated and recycled. Triclosan was chosen as the first compound to be tested because MELiSSA is a closed system, which is consequently particularly sensitive to compounds inhibiting the microbial metabolism. Because triclosan is increasingly used as an antimicrobial biocide in hygienic formulations (such as toothpaste, mouthwash, deodorants, etc.) and due to its chemical stability, it is considered an emerging pollutant in terrestrial ecosystems. METHODS: In a first phase, the triclosan concentration expected in the life-support system was estimated, the Minimal Inhibitory Concentration (MIC) was determined via plating, and the effect on growth kinetics was assessed by comparing growth parameters in the Gompertz model. In a second phase, the secondary effects of triclosan on cell physiology and gene expression were studied through flow-cytometry and microarray analyses, respectively. RESULTS: Based on the pharmacokinetic data from literature, the predicted concentration range is estimated to be 6-25µg/L triclosan in the Rhodospirillum rubrum compartment of the MELiSSA. The minimal inhibitory concentration of triclosan was determined to be 71 µg/L after 7 days of exposure on Sistrom medium. Upon exposure to 50-200µg/L triclosan, triclosan-resistant mutants of Rhodospirillum rubrum arose spontaneously at high frequency (3.1 ∗ 10 - 4). Analysis of the growth kinetics of the wild-type revealed that triclosan causes an important elongation of the lag-phase and a decrease in growth rate. At concentrations higher than 75mg/L(LD = 500mg/L), triclosan is bactericidal to wild

  20. Water Walls: Highly Reliable and Massively Redundant Life Support Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — WATER WALLS (WW) takes an approach to providing a life support system, Forward Osmosis (FO), that is biologically and chemically passive, using mechanical systems...

  1. Can basic life support personnel safely determine that advanced life support is not needed?

    Science.gov (United States)

    Cone, D C; Wydro, G C

    2001-01-01

    To determine whether firefighter/emergency medical technicians-basic (FF/EMT-Bs) staffing basic life support (BLS) ambulances in a two-tiered emergency medical services (EMS) system can safely determine when advanced life support (ALS) is not needed. This was a prospective, observational study conducted in two academic emergency departments (EDs) receiving patients from a large urban fire-based EMS system. Runs were studied to which ALS and BLS ambulances were simultaneously dispatched, with the patient transported by the BLS unit. Prospectively established criteria for potential need for ALS were used to determine whether the FF/EMT-B's decision to cancel the ALS unit was safe, and simple outcomes (admission rate, length of stay, mortality) were examined. In the system studied, BLS crews may cancel responding ALS units at their discretion; there are no protocols or medical criteria for cancellation. A convenience sample of 69 cases was collected. In 52 cases (75%), the BLS providers indicated that they cancelled the responding ALS unit because they did not feel ALS was needed. Of these, 40 (77%) met study criteria for ALS: 39 had potentially serious chief complaints, nine had abnormal vital signs, and ten had physical exam findings that warranted ALS. Forty-five (87%) received an intervention immediately upon ED arrival that could have been provided in the field by an ALS unit, and 16 (31%) were admitted, with a median length of stay of 3.3 days (range 1.1-73.4 days). One patient died. Firefighter/EMT-Bs, working without protocols or medical criteria, cannot always safely determine which patients may require ALS intervention.

  2. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds

    Science.gov (United States)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  3. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  4. The possibility of aromorphosis in further development of closed human life support systems using genetically modified organisms

    Science.gov (United States)

    Gitelson, Josef

    Creation of closed systems that would be able to support human life outside the biosphere for extended periods of time (CES) was started after humans went into outer space. The last fifty years have seen the construction of experimental variants of the CES in Russia, USA, and Japan. The "MELISSA" project of the European Space Agency is being prepared to be launched. Much success has been achieved in closing material loops in the CES. An obstacle to constructing a fully closed ecosystem is significant imbalance in material exchange between the producing components and the decomposing ones in the CES. The spectrum of metabolites released by humans does not fully correspond to the requirements of the main producer of the CES -plants. However, this imbalance can be corrected by rather simple physicochemical processes that can be used in the CES without unclosing the system. The major disagreement that prevents further improvement of human life support systems (LSS) is that the spectrum of products of photosynthesis in the CES does not correspond to human food requirements qual-itatively, quantitatively, or in terms of diversity. In the normal, physiologically sound, human diet, this discrepancy is resolved by adding animal products. However, there are technical, technological, and hygienic obstacles to including animals in the closed human life support systems, and if higher animals are considered, there are also ethical arguments. If between the photoautotrophic link, plants, and the heterotrophic link, the human, there were one more heterotrophic link, farm animals, the energy requirements of the system would be increased by nearly an order of magnitude, decreasing its efficiency and making it heavier and bulkier. Is there another way to close loops in human life support systems? In biology, such "findings" of evolution, which open up new perspectives and offer ample opportunities for possible adapta-tions, are termed aromorphoses (Schmalhausen, 1948). In further

  5. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    Science.gov (United States)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  6. The Physical/Chemical Closed-Loop Life Support Research Project

    Science.gov (United States)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  7. Automated subsystems control development. [for life support systems of space station

    Science.gov (United States)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  8. Life Course Stage and Social Support Mobilization for End-of-Life Caregivers.

    Science.gov (United States)

    LaValley, Susan A; Gage-Bouchard, Elizabeth A

    2018-04-01

    Caregivers of terminally ill patients are at risk for anxiety, depression, and social isolation. Social support from friends, family members, neighbors, and health care professionals can potentially prevent or mitigate caregiver strain. While previous research documents the importance of social support in helping end-of-life caregivers cope with caregiving demands, little is known about differences in social support experiences among caregivers at different life course stages. Using life course theory, this study analyzes data from in-depth interviews with 50 caregivers of patients enrolled in hospice services to compare barriers to mobilizing social support among caregivers at two life course stages: midlife caregivers caring for parents and older adult caregivers caring for spouses/partners. Older adult caregivers reported different barriers to mobilizing social support compared with midlife caregivers. Findings enhance the understanding of how caregivers' life course stage affects their barriers to mobilization of social support resources.

  9. Portable Life Support System 2.5 Fan Design and Development

    Science.gov (United States)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2016-01-01

    NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.

  10. IT logistics support life cycle of products in air engine

    Directory of Open Access Journals (Sweden)

    М.С. Кулик

    2009-02-01

    Full Text Available  Questions of increase of efficiency of a supply with information of creation and support in operation of modern aviation engines are considered. The revealed most perspective directions of development of complex systems of support of life cycle aviation technics.

  11. Power system for production, construction, life support and operations in space

    International Nuclear Information System (INIS)

    Sovie, R.J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed

  12. Development of the electrochemically regenerable carbon dioxide absorber for portable life support system application

    Science.gov (United States)

    Woods, R. R.; Heppner, D. B.; Marshall, R. D.; Quattrone, P. D.

    1979-01-01

    As the length of manned space missions increase, more ambitious extravehicular activities (EVAs) are required. For the projected longer mission the use of expendables in the portable life support system (PLSS) will become prohibited due to high launch weight and volume requirements. Therefore, the development of a regenerable CO2 absorber for the PLSS application is highly desirable. The paper discusses the concept, regeneration mechanism, performance, system design, and absorption/regeneration cycle testing of a most promising concept known as ERCA (Electrochemically Regenerable CO2 Absorber). This concept is based on absorbing CO2 into an alkaline absorbent similar to LiOH. The absorbent is an aqueous solution supported in a porous matrix which can be electrochemically regenerated on board the primary space vehicle. With the metabolic CO2 recovery the ERCA concept results in a totally regenerable CO2 scrubber. The ERCA test hardware has passed 200 absorption/regeneration cycles without performance degradation.

  13. [Knowledge about basic life support in European students].

    Science.gov (United States)

    Marton, József; Pandúr, Attila; Pék, Emese; Deutsch, Krisztina; Bánfai, Bálint; Radnai, Balázs; Betlehem, József

    2014-05-25

    Better knowledge and skills of basic life support can save millions of lives each year in Europe. The aim of this study was to measure the knowledge about basic life support in European students. From 13 European countries 1527 volunteer participated in the survey. The questionnaire consisted of socio-demographic questions and knowledge regarding basic life support. The maximum possible score was 18. Those participants who had basic life support training earned 11.91 points, while those who had not participated in lifesaving education had 9.6 points (pbasic life support between students from different European countries. Western European youth, and those who were trained had better performance.

  14. Positive and problematic support, stress and quality of life in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Mazzoni, Davide; Cicognani, Elvira

    2016-09-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Previous studies showed that perceived social support has an important role in enhancing patient's quality of life (QOL). However, the precise mechanisms through which social support exerts such an effect are not completely understood. The aim of this paper is to test two alternative models explaining the relationship between social support (positive and problematic) and two dimensions of QOL: Health-Related (HR-QOL) and Non-Health-Related (NHR-QOL). Model A (mediation) hypothesized that positive support would reduce stress while problematic support would increase stress), and that this in turn would reduce QOL. Model B (moderation) hypothesized that the effect of support on QOL would be moderated by the experience of stress in that more stressed individuals would show stronger effects. Three hundred and forty-four Italian patients with SLE completed an online questionnaire. Stress partially mediated the relationship between support and QOL dimensions (either HR-QOL and NHR-QOL) thus supporting Model B. As hypothesized, positive support reduced stress, while problematic support increased stress. These findings help to explain the complex relationship between social support, stress and QOL in patients with SLE.

  15. Reliability Growth in Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.

  16. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  17. Characterization of commercial off-the shelf regenerable sorbent to scrub carbon dioxide in a portable life support system

    Science.gov (United States)

    Arai, Tatsuya; Fricker, John

    2018-06-01

    A resin bead Mitsubishi DIAION™ CR20 was identified and characterized as a first commercial off-the shelf regenerable carbon dioxide (CO2) sorbent candidate for space life support system applications at room temperature. The CO2 adsorption rates and capacities of CR20 at varying CO2 partial pressures were obtained. The data were used to numerically simulate CO2 adsorption by a swingbed, a pair of two sorbent beds that alternately adsorb and desorb CO2 in a space suit portable life support system (PLSS). The result demonstrated that a reasonable volume of CR20 would be able to continuously adsorb CO2 with bed-swing interval of 4 min at 300-W metabolic rate, and that commercial off-the shelf CR20 would have similar performance of CO2 adsorption to the proprietary swingbed sorbent SA9T for PLSS applications.

  18. Life Support and Habitation and Planetary Protection Workshop

    Science.gov (United States)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  19. Home care for life-supported persons: the French system of quality control, technology assessment, and cost containment.

    OpenAIRE

    Goldberg, A I

    1989-01-01

    Home care for persons who require the prolonged use of life-supportive medical technology is a reality in several nations. France has had more than a quarter of a century of experience with providing home care for patients with chronic respiratory insufficiency and with a system to evaluate the patients' outcomes. The French approach features decentralized regional organizations which offer grassroots involvement by the beneficiaries who participate directly in the system. Since June 1981, a ...

  20. Human life support during interplanetary travel and domicile. III - Mars expedition system trade study

    Science.gov (United States)

    Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1991-01-01

    Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.

  1. Regenerable Sorbent for Combined CO2, Water, and Trace-Contaminant Capture in the Primary Life Support System (PLSS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  2. Regenerable Sorbent for Combined CO2, Water, and Trace-Contaminant Capture in the Primary Life Support System (PLSS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  3. Developing Ultra Reliable Life Support for the Moon and Mars

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  4. Recycling of Na in advanced life support: strategies based on crop production systems.

    Science.gov (United States)

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  5. Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2012-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and cbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.

  6. Development of a Mars Environmental Control and Life Support System (ECLSS).

    Science.gov (United States)

    Henninger, Donald L.

    2016-01-01

    ECLS systems for very long-duration human missions to Mars will be designed to operate reliably for many years and will never be returned to Earth. The need for high reliability is driven by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. Simply put, the goal of an ECLSS is to duplicate the functions the Earth provides in terms of human living and working on our home planet but without the benefit of the Earth's large buffers - the atmospheres, the oceans and land masses. With small buffers a space-based ECLSS must operate as a true dynamic system rather than independent processors taking things from tanks, processing them, and then returning them to product tanks. Key is a development process that allows for a logical sequence of validating successful development (maturation) in a stepwise manner with key performance parameters (KPPs) at each step; especially KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This paper will explore the implications of such an approach to ECLSS development and the roles of ground and space-based testing necessary to develop a highly reliable life support system for long duration human exploration missions. Historical development and testing of ECLS systems from Mercury to the International Space Station (ISS) will be reviewed. Current work as well as recommendations for future work will be described.

  7. NASA Engineering Design Challenges: Environmental Control and Life Support Systems. Water Filtration Challenge. EG-2008-09-134-MSFC

    Science.gov (United States)

    Schneider, Twila, Ed.

    2010-01-01

    This educator guide is organized into seven chapters: (1) Overview; (2) The Design Challenge; (3) Connections to National Curriculum Standards; (4) Preparing to Teach; (5) Classroom Sessions; (6) Opportunities for Extension; and (7) Teacher Resources. Chapter 1 provides information about Environmental Control and Life Support Systems used on NASA…

  8. Methodologies for processing plant material into acceptable food on a small scale

    Science.gov (United States)

    Parks, Thomas R.; Bindon, John N.; Bowles, Anthony J. G.; Golbitz, Peter; Lampi, Rauno A.; Marquardt, Robert F.

    1994-01-01

    Based on the Controlled Environment Life Support System (CELSS) production of only four crops, wheat, white potatoes, soybeans, and sweet potatoes; a crew size of twelve; a daily planting/harvesting regimen; and zero-gravity conditions, estimates were made on the quantity of food that would need to be grown to provide adequate nutrition; and the corresponding amount of biomass that would result. Projections were made of the various types of products that could be made from these crops, the unit operations that would be involved, and what menu capability these products could provide. Equipment requirements to perform these unit operations were screened to identify commercially available units capable of operating (or being modified to operate) under CELSS/zero-gravity conditions. Concept designs were developed for those equipment needs for which no suitable units were commercially available. Prototypes of selected concept designs were constructed and tested on a laboratory scale, as were selected commercially available units. This report discusses the practical considerations taken into account in the various design alternatives, some of the many product/process factors that relate to equipment development, and automation alternatives. Recommendations are made on both general and specific areas in which it was felt additional investigation would benefit CELSS missions.

  9. Ultra Reliable Closed Loop Life Support for Long Space Missions

    Science.gov (United States)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  10. Efficacy of oxygen-supplying capacity of Azolla in a controlled life support system

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquan; Huang, Yibing; Liu, Chongchu

    2012-02-01

    Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805-0.0831 L kg-1 h-1 and the level of CO2 emission was 0.0705-0.0736 L kg-1 h-1; O2 consumption by the two trial volunteers was 19.71 L h-1 and the volume of respiration-released CO2 was 18.90 L h-1. Under 7000-8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.

  11. Hospital Costs Of Extracorporeal Life Support Therapy

    NARCIS (Netherlands)

    Oude Lansink-Hartgring, Annemieke; van den Hengel, Berber; van der Bij, Wim; Erasmus, Michiel E.; Mariani, Massimo A.; Rienstra, Michiel; Cernak, Vladimir; Vermeulen, Karin M.; van den Bergh, Walter M.

    Objectives: To conduct an exploration of the hospital costs of extracorporeal life support therapy. Extracorporeal life support seems an efficient therapy for acute, potentially reversible cardiac or respiratory failure, when conventional therapy has been inadequate, or as bridge to transplant, but

  12. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  13. Advanced Life Support Research and Technology Transfer at the University of Guelph

    Directory of Open Access Journals (Sweden)

    Dixon M.

    2017-02-01

    Full Text Available Research and technology developments surrounding Advanced Life-Support (ALS began at the University of Guelph in 1992 as the Space and Advanced Life Support Agriculture (SALSA program, which now represents Canada’s primary contribution to ALS research. The early focus was on recycling hydroponic nutrient solutions, atmospheric gas analysis and carbon balance, sensor research and development, inner/intra-canopy lighting and biological filtration of air in closed systems. With funding from federal, provincial and industry partners, a new generation of technology emerged to address the challenges of deploying biological systems as fundamental components of life-support infrastructure for long-duration human space exploration. Accompanying these advances were a wide range of technology transfer opportunities in the agri-food and health sectors, including air and water remediation, plant and environment sensors, disinfection technologies, recyclable growth substrates and advanced light emitting diode (LED lighting systems. This report traces the evolution of the SALSA program and catalogues the benefits of ALS research for terrestrial and non-terrestrial applications.

  14. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  15. Evaluation of Aquaponics Techniques for Enhancing Productivity and Degree of Closure of Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Highfield, Eric

    A number of researchers in space bioregenerative life support systems (BLSS) have advocated the inclusion of fish-rearing. Fish have relatively high feed to production ratios and can utilize some waste products from other system components. In recent years, there has been much advance in an approach to combining fish-culture with hydroponically-grown crops called “aquaponics”. Aquaponics systems vary but generally include: fish-rearing unit, settling basin, biofilter, hydroponic plant unit and sump where water is pumped back and the cycle continues. Aquaponics research and application has grown since these systems have the potential to increase overall productivity of both crops and fish. Since the fish waste is used as the growth medium of the food plants, there are environmental benefits in reduced discharge of nutrient-rich wastewater which has been one of the drawbacks of conventional aquaculture. In addition, since water use is reduced 95+% over field agriculture, since water from the hydroponic tanks is fed back to the fish tanks and water is recycled apart from evapotranspiration losses, conservation of water resources and applications in water-limited arid regions are other benefits fueling the spread of aquaponics around the world. These considerations also make utilization of aquaponic approaches desirable in BLSS for space application. This paper will examine some recent research results with aquaponics and explore how it might be utilized for food production and reduction of consumables in space life support. In addition, a review and comparison with other fish-culture options previously advanced will evaluate whether aquaponics can improve production efficiency, reduce inputs and better recycle critical resources. Finally, we will explore whether for the space environment, even more advanced aquaponics systems are possible where consumables such as fish-food can be partially or completely supplied from other subsystems of the BLSS and ET water

  16. Growth of potatoes for CELSS

    Science.gov (United States)

    Tibbitts, T. W.; Cao, W.; Wheeler, R. M.

    1994-01-01

    This report summarizes research on the utilization of white potatoes (Solanum tuberosum L.) for space life support systems at the University of Wisconsin-Madison over the period of 1984 to 1993. At full maturity the tuber productivity was 37.5 gm(exp -2) d(exp -1), equating to a growing area requirement for one human (2800 kcal d(exp -1)) of 10.1 m(exp -2). A recirculating nutrient system using slanted trays produced best potato growth and tuber yields when a 2-3 cm layer of gravel or arcillite media was utilized. Potato production was close to maximum under lighting levels of 400 micromol m(exp -2) s(exp -1) of photosynthetic photo flux (PPF) for 24 hours or 800 micromol m(exp -2) s(exp -1) for 12 hours, alternating diurnal temperatures of 22 C and 14 C, relative humidity of 85 percent, and a carbon dioxide level of 1000 micromol m(exp -1). The range of effective concentrations of each separate nutrient is reported. The extensive studies with potatoes in this project have demonstrated that this crop has high productivity of nutritous tubers with a high harvest index in controlled environments, and can fulfill a significant portion of the energy and protein requirements for humans in space.

  17. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    Science.gov (United States)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  18. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  19. Phytoremediation of Indoor Air: NASA, Bill Wolverton, and the Development of an Industry

    Science.gov (United States)

    Stutte, Gary W.

    2012-01-01

    It was during this period of the early 1970's and 1980's when the issues associated with Sick Building Syndrome were gaining attention that the United States National Aeronautics and Space Administration (NASA) became an unlikely leader in identifying biological solutions to the problem of poor indoor air quality. NASA had been supporting work using biological systems for atmospheric regeneration since the 1950's, with the emphasis on using photosynthetic systems for the removal of carbon dioxide and regeneration of oxygen as part of a life support system. The then Soviet Union was conducting tests using algae systems in the BIO-1 program (1964-1968) to regenerate the air at the Siberian Branch of the Soviet Academy of Sciences in Krasnoyarsk (Later renamed the Institute of Biophysics). These tests were expanded to include the use of higher plants in the BIOS-2 testing in the 1970's, and humans during BIO-3 in the 1980'SI3. Within NASA, large scale testing of bioregenerative life support systems was conducted in the Biomass Production Chamber (BPC) at Kennedy Space Center, Florida as part of the Controlled Ecological Life Support Systems (CELSS) Breadboard project.

  20. Religiousness and Spiritual Support Among Advanced Cancer Patients and Associations With End-of-Life Treatment Preferences and Quality of Life

    Science.gov (United States)

    Balboni, Tracy A.; Vanderwerker, Lauren C.; Block, Susan D.; Paulk, M. Elizabeth; Lathan, Christopher S.; Peteet, John R.; Prigerson, Holly G.

    2008-01-01

    Purpose Religion and spirituality play a role in coping with illness for many cancer patients. This study examined religiousness and spiritual support in advanced cancer patients of diverse racial/ethnic backgrounds and associations with quality of life (QOL), treatment preferences, and advance care planning. Methods The Coping With Cancer study is a federally funded, multi-institutional investigation examining factors associated with advanced cancer patient and caregiver well-being. Patients with an advanced cancer diagnosis and failure of first-line chemotherapy were interviewed at baseline regarding religiousness, spiritual support, QOL, treatment preferences, and advance care planning. Results Most (88%) of the study population (N = 230) considered religion to be at least somewhat important. Nearly half (47%) reported that their spiritual needs were minimally or not at all supported by a religious community, and 72% reported that their spiritual needs were supported minimally or not at all by the medical system. Spiritual support by religious communities or the medical system was significantly associated with patient QOL (P = .0003). Religiousness was significantly associated with wanting all measures to extend life (odds ratio, 1.96; 95% CI, 1.08 to 3.57). Conclusion Many advanced cancer patients' spiritual needs are not supported by religious communities or the medical system, and spiritual support is associated with better QOL. Religious individuals more frequently want aggressive measures to extend life. PMID:17290065

  1. Evolution of the Pediatric Advanced Life Support course: enhanced learning with a new debriefing tool and Web-based module for Pediatric Advanced Life Support instructors.

    Science.gov (United States)

    Cheng, Adam; Rodgers, David L; van der Jagt, Élise; Eppich, Walter; O'Donnell, John

    2012-09-01

    To describe the history of the Pediatric Advanced Life Support course and outline the new developments in instructor training that will impact the way debriefing is conducted during Pediatric Advanced Life Support courses. The Pediatric Advanced Life Support course, first released by the American Heart Association in 1988, has seen substantial growth and change over the past few decades. Over that time, Pediatric Advanced Life Support has become the standard for resuscitation training for pediatric healthcare providers in North America. The incorporation of high-fidelity simulation-based learning into the most recent version of Pediatric Advanced Life Support has helped to enhance the realism of scenarios and cases, but has also placed more emphasis on the importance of post scenario debriefing. We developed two new resources: an online debriefing module designed to introduce a new model of debriefing and a debriefing tool for real-time use during Pediatric Advanced Life Support courses, to enhance and standardize the quality of debriefing by Pediatric Advanced Life Support instructors. In this article, we review the history of Pediatric Advanced Life Support and Pediatric Advanced Life Support instructor training and discuss the development and implementation of the new debriefing module and debriefing tool for Pediatric Advanced Life Support instructors. The incorporation of the debriefing module and debriefing tool into the 2011 Pediatric Advanced Life Support instructor materials will help both new and existing Pediatric Advanced Life Support instructors develop and enhance their debriefing skills with the intention of improving the acquisition of knowledge and skills for Pediatric Advanced Life Support students.

  2. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  3. Pediatric advanced life support and sedation of pediatric dental patients

    OpenAIRE

    Kim, Jongbin

    2016-01-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency ...

  4. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  5. Reversible Ammonia Sorption for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Jennings, Mallory A.

    2012-01-01

    Results are presented on the development of regenerable trace-contaminant (TC) sorbent for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). Since ammonia is the most important TC to be captured, data presented in this paper are limited to ammonia sorption, with results relevant to other TCs to be reported at a later time. The currently available TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal. The sorbent is non-regenerable, and its use is associated with appreciable pressure drop, i.e. power consumption. The objective of this work is to demonstrate the feasibility of using vacuum-regenerable sorbents for PLSS application. In this study, several carbon sorbent monoliths were fabricated and tested. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, as well as carbon surface conditioning that enhances ammonia sorption without impairing sorbent regeneration. Depending on sorbent monolith geometry, the reduction in pressure drop with respect to granular sorbent was found to be between 50% and two orders of magnitude. Resistive heating of the carbon sorbent monolith was demonstrated by applying voltage to the opposite ends of the monolith.

  6. 3. A Closed Aquatic System for Space and Earth Application

    Science.gov (United States)

    Slenzka, K.; Duenne, M.; Jastorff, B.; Ranke, J.; Schirmer, M.

    Increased durations in space travel as well as living in extreme environments are requiring reliable life support systems in general and bioregenerative ones in detail. Waste water management, air revitalization and food production are obviously center goals in this research, however, in addition a potential influence by chemicals, drugs etc. released to the closed environment must be considered. On this basis ecotoxicological data become more and more important for CELSS (Closed Ecological Life Support System) development and performance. The experiences gained during the last years in our research group lead to the development of an aquatic habitat, called AquaHab (formerly CBRU), which is a closed, self-sustaining system with a total water volume of 9 liters. In the frame program of a R&D project funded by the state of Bremen and OHB System, AquaHab is under adaptation to become an ecotoxicological research unit containing for example Japanese Medaka or Zebra Fish, amphipods, water snails and water plants. Test runs were standardized and analytical methods were developed. Beside general biological and water chemical parameters, activity measurements of biotransforming enzymes (G6PDH, CytP450-Oxidase, Peroxidase) and cell viability tests as well as residual analysis of the applied substance and respective metabolites were selected as evaluation criteria. In a first series of tests low doses effects of TBT (Tributyltin, 0.1 to 20 μgTBT/l nominal concentration) were analyzed. The AquaHab and data obtained for applied environmental risk assessment will be presented at the assembly.

  7. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  8. Project Orion, Environmental Control and Life Support System Integrated Studies

    Science.gov (United States)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  9. Social support systems as determinants of self-management and quality of life of people with diabetes across Europe: study protocol for an observational study.

    Science.gov (United States)

    Koetsenruijter, Jan; van Lieshout, Jan; Vassilev, Ivaylo; Portillo, Mari Carmen; Serrano, Manuel; Knutsen, Ingrid; Roukova, Poli; Lionis, Christos; Todorova, Elka; Foss, Christina; Rogers, Anne; Wensing, Michel

    2014-03-04

    Long-term conditions pose major challenges for healthcare systems. Optimizing self-management of people with long-term conditions is an important strategy to improve quality of life, health outcomes, patient experiences in healthcare, and the sustainability of healthcare systems. Much research on self-management focuses on individual competencies, while the social systems of support that facilitate self-management are underexplored. The presented study aims to explore the role of social systems of support for self-management and quality of life, focusing on the social networks of people with diabetes and community organisations that serve them. The protocol concerns a cross-sectional study in 18 geographic areas in six European countries, involving a total of 1800 individuals with diabetes and 900 representatives of community organisations. In each country, we include a deprived rural area, a deprived urban area, and an affluent urban area. Individuals are recruited through healthcare practices in the targeted areas. A patient questionnaire comprises measures for quality of life, self-management behaviours, social network and social support, as well as individual characteristics. A community organisations' survey maps out interconnections between community and voluntary organisations that support patients with chronic illness and documents the scope of work of the different types of organisations. We first explore the structure of social networks of individuals and of community organisations. Then linkages between these social networks, self-management and quality of life will be examined, taking deprivation and other factors into account. This study will provide insight into determinants of self-management and quality of life in individuals with diabetes, focusing on the role of social networks and community organisations.

  10. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    Science.gov (United States)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  11. Studying the Effect of Ionization Radiation of 60Co on the Spirulina

    Science.gov (United States)

    Ai, Weidang; Guo, Shuang-Sheng; Ai, Weidang; Dong, Wen-Ping; Qin, Li-Feng; Tang, Yong-Kang

    It studied the effect of ionization radiation on the Spirulina plastensis(No.6) by using the γ-rays of 60 Co. In the experiment, Spirulina were irradiated, and the dose of the ionization radiation covered 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0kGy. After irradiating, these Spirulina were cultured under the same conditions. During the course of the experiment, the growth rate, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the results, low dose of γ-rays (less than 1.5kGy) could improve the content of phycobilin and protein of Spirulina. Only small changes in the morphology of algae filament were found at dose less than 1.0kGy. But with the increase of the dose of γ-rays (more than 1.5kGy), the filaments would break up or even disintegrate. Spirulina had stronger ionization radiation proof and self-rehabilitation capacity, but the growth of Spirulina was stagnated. The LD50 (i.e. the dose resulted in 50% death of the Spirulina) of the colony was 2.0kGy. Considering the capacity of being resistant to γ-rays irradiation, Spirulina can be considered as one of the key biological components in the Controlled Ecological Life Support System (CELSS) for future long-term space missions. Keywords: Controlled Ecological Life Support System (CELSS); Spirulina; ionization radiation; biological component

  12. Exergy Based Analysis for the Environmental Control and Life Support Systems of the International Space Station

    Science.gov (United States)

    Clem, Kirk A.; Nelson, George J.; Mesmer, Bryan L.; Watson, Michael D.; Perry, Jay L.

    2016-01-01

    When optimizing the performance of complex systems, a logical area for concern is improving the efficiency of useful energy. The energy available for a system to perform work is defined as a system's energy content. Interactions between a system's subsystems and the surrounding environment can be accounted for by understanding various subsystem energy efficiencies. Energy balance of reactants and products, and enthalpies and entropies, can be used to represent a chemical process. Heat transfer energy represents heat loads, and flow energy represents system flows and filters. These elements allow for a system level energy balance. The energy balance equations are developed for the subsystems of the Environmental Control and Life Support (ECLS) system aboard the International Space Station (ISS). The use of these equations with system information would allow for the calculation of the energy efficiency of the system, enabling comparisons of the ISS ECLS system to other systems as well as allows for an integrated systems analysis for system optimization.

  13. Lessons Learned from the Crew Health Care System (CHeCS) Rack 1 Environmental Control and Life Support (ECLS) Design

    Science.gov (United States)

    Williams, David E.

    2006-01-01

    This paper will provide an overview of the International Space Station (ISS) Environmental Control and Life Support (ECLS) design of the Crew Health Care System (CHeCS) Rack 1 and it will document some of the lessons that have been learned to date for the ECLS equipment in this rack.

  14. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    Science.gov (United States)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  15. Advanced Cardiac Life Support.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  16. Studies on Using Azolla for O2-Supplementation and Its Test

    Science.gov (United States)

    Liu, C.-C.; Liu, X.-S.; Chen, M.; Bian, Z.-L.

    Establishment of Controlling Ecological Life Safety System (CELSS) is a key technical part in the study on manned station. In order to meet the requirement of long-term out-earth man-carrying flight, it is necessary to build plant-based O2-supplying CELSS. It also possesses the possibility to contribute the realization of mankind dream to live in out-earth planets. Using the physiological reaction of organisms, this system settled the problem in food supply, O2 and water recycle, the regeneration and utilization of CO2 and life residues, thus guarantee the spacemen the health, safety and efficient work when they are far from earth and arrived the space where human is difficult to life in. Azolla as a plant that possesses high growing speed, short growing cycle, high photosynthesis and O2-releasing capacity, and can be artificially grow in multi-layer facilities, it is hopeful to be an important biological part in CELSS for it's the function in O2 production and to be a part of fresh vegetable as well as CO2 absorption. This paper described the study in Azolla as a plant for supplementary O2 supply in future space station flight. The "Azolla-dog" controlling tight system was firstly established in order to determine the regulation of O2-CO2 variation and balance using different weights of dogs with different Azolla growing areas. The further studies included the development of air-tight cabinets where "Azolla-human" airtight experiments were conducted, and the relationship between Azolla-growing area and O2 requirement by human was analyzed. Based on these works, the further experiment on supplementary O2-supply of Azolla-human system was conducted in demonstration cabin for environmental controlling and life security. The O2-supplying amount of Azolla was further gained, and it will provide the experimental basis to probe optimum condition to grow Azolla in space and human-machine combining experiment, also to lay a basis for Azolla as a biological part to enter

  17. Life Support and Environmental Monitoring International System Maturation Team Considerations

    Science.gov (United States)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies

  18. NASA's Interests in Bioregenerative Life Support

    Science.gov (United States)

    Wheeler, Raymond M.

    2018-01-01

    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  19. Study on O2-supplying characteristics of Azolla in Controlled Ecological Life Support System

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquang; Huang, Yibing; Liu, Zhongzhu

    Azolla has high growth and propagation rate, strong photosynthetic O2-releasing ability and rich nutrient value. It is able to be used as salad-type vegetable, and can also be cultured on wet bed in multi-layer condition. Hence, it possesses a potential functioning as providing O2, fresh vegetable and absorbing CO2 for Controlled Ecological Life Support System in space. In this study, we try to make clear the O2-providing characteristics of Azolla in controlled close chamber under manned condition in order to lay a foundation for Azolla as a biological component in the next ground simulated experiment and space application. A closed test cham-ber of Controlled Ecological Life Support System and Azolla wet-culturing devices were built to measure the changes of atmospheric O2-CO2 concentration inside chamber under "Azolla-fish -men" coexisting condition. The results showed that, the amount of O2 consumption is 80.49 83.07 ml/h per kilogram fish, the amount of CO2 emissions is 70.49 73.56 ml/(kg • h); O2 consumption of trial volunteers is 19.71 L/h, the volume of respiration release CO2 18.90 L/h .Artificial light intensity of Azolla wet culture under 70009000 Lx, people respiration and Azolla photosynthesis complemented each other, the atmospheric O2-CO2 concentration inside chamber maintained equilibration. Elevated atmospheric CO2 concentrations in close chamber have obvious effects on enhancing Azolla net photosynthesis efficiency. This shows that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2-CO2 concentration inside chamber in favor of human survival, and then verifies the prospect of Azolla in space application.

  20. Nutrient composition and respiration characteristics of silkworms in the Bioregenerative Life Support System

    Science.gov (United States)

    Tong, Ling; Yu, Xiaohui; Liu, Hong

    As the appropriate space animal candidate, silkworm(Bombyx Mori L.) can supply animal food for taikonauts and consume inedible parts of plants in Bioregenerative Life Support Sys-tem(BLSS). Due to the features of BLSS, the silkworm breeding method in the system differ-ent from the conventional one is feeding the silkworm in the first three developing stages with mulberry leaves and with lettuce leaves in the latter two developing stages. Therefore, it is nec-essary to investigate the biochemical components and respiration characteristics of silkworms raised with this method to supply data bases for the inclusion of silkworms in the system to conduct system experiments. The nutrient compositions of silkworm powder (SP) which are the grinded and freeze-dried silkworm on the 3rd day in the fifth developing stage containing protein, fat, vitamins, minerals and fatty acids were determined with international standard analyzing methods in this study. The results showed that SP was rich in protein and amino acids. There were twelve kinds of essential vitamins, nine kinds of minerals and twelve kinds of fatty acids in SP. In contrast, SP had much better nutrient components than snail, fish, chicken, beef and pork as animal food for crew members. Moreover, 359 kCal can be generated per 100g of SP (dry weight). The respirations of silkworm during its whole growing process under two main physiological statuses which were eating and non-eating leaves were studied. According to the results measured by the animal respiration measuring system, there were much difference among the respirations of silkworms under the two main physiological statuses. The amounts of O2 inhaled and CO2 exhaled by the silkworms when they were eating leaves were more than those under the non-eating status. Even under the same status, the respiration characteristics of silkworms in five different developing stages were also different from one an-other. The respiratory quotients of silkworms under two

  1. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  2. Maintenance, reliability and policies for orbital space station life support systems

    International Nuclear Information System (INIS)

    Russell, James F.; Klaus, David M.

    2007-01-01

    The performance of productive work on space missions is critical to sustaining a human presence on orbital space stations (OSS), the Moon, or Mars. Available time for productive work has potentially been impacted on past OSS missions by underestimating the crew time needed to maintain systems, such as the Environmental Control and Life Support System (ECLSS). To determine the cause of this apparent disconnect between the design and operation of an OSS, documented crew time for maintenance was collected from the three Skylab missions and Increments 4-8 on the International Space Station (ISS), and the data was contrasted to terrestrial facility maintenance norms. The results of the ISS analysis showed that for four operational and seven functional categories, the largest deviation of 60.4% over the design time was caused by three of the four operational categories not being quantitatively included in the design documents. In a cross category analysis, 35.3% of the crew time was found to have been used to repair air and waste handling systems. The air system required additional crew time for maintenance due to a greater than expected failure rate and resultant increased time needed for repairs. Therefore, it appears that the disconnect between the design time and actual operations for ECLSS maintenance on ISS was caused by excluding non-repair activities from the estimates and experiencing greater than expected technology maintenance requirements. Based on these ISS and Skylab analyses, future OSS designs (and possibly lunar and Martian missions as well) should consider 3.0-3.3 h/day for crews of 2 to 3 as a baseline of crew time needed for ECLSS maintenance

  3. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    Science.gov (United States)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  4. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  5. Plasma-Assisted Life and Ecological Operating System (PALEOS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Practical implementation of long-duration, human space missions will require robust, reliable, advanced life support systems. Such systems have been the subject of...

  6. Social support moderates caregiver life satisfaction following traumatic brain injury.

    Science.gov (United States)

    Ergh, Tanya C; Hanks, Robin A; Rapport, Lisa J; Coleman, Renee D

    2003-12-01

    Social support is an important determinant of adjustment following traumatic brain injury (TBI) sustained by a family member. The present study examined the extent to which social support moderates the influence of characteristics of the person with injury on caregiver subjective well-being. Sixty pairs of individuals who had sustained a moderate to severe TBI and their caregivers (N=120) participated. Years postinjury ranged from 0.3 to 9.9 ( M=4.8, SD=2.6). Cognitive, functional, and neurobehavioral functioning of participants with TBI were assessed using neuropsychological tests and rating scales. Caregiver life satisfaction and perceived social support were assessed using self-report questionnaires. Results indicated that time since injury was unrelated to life satisfaction. Neurobehavioral disturbances showed an inverse relation with life satisfaction. Social support emerged as an important moderator of life satisfaction. Only among caregivers with low social support was cognitive dysfunction adversely related to life satisfaction. Similarly, a trend suggested that patient unawareness of deficit was associated with caregiver life dissatisfaction only among caregivers with low social support. In contrast, these characteristics were unrelated to life satisfaction among caregivers with adequate social support.

  7. Supporting the full BPM life-cycle using process mining and intelligent redesign

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.; Siau, K.

    2007-01-01

    Abstract. Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis by the FileNet P8

  8. Environmental control and life support system requirements and technology needs for advanced manned space missions

    Science.gov (United States)

    Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin

    1987-01-01

    NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.

  9. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  10. Proposed minimum requirements for the operational characteristics and testing of closed circuit life support system control electronics.

    Science.gov (United States)

    Kirk, J C

    1998-01-01

    The popularization and transformation of scuba diving into a broadly practiced sport has served to ignite the interest of technically oriented divers into ever more demanding areas. This, along with the gradual release of military data, equipment, and techniques of closed circuit underwater breathing apparatus, has resulted in a virtual explosion of semiclosed and closed circuit systems for divers. Although many of these systems have been carefully thought out by capable designers, the impulse to rush to market with equipment that has not been fully developed and carefully tested is irresistible to marketers. In addition, the presence of systems developed by well-intentioned and otherwise competent designers who are, nonetheless, inexperienced in the field of life support can result in the sale of failure-prone equipment to divers who lack the knowledge and skills to identify deficiencies before disaster occurs. For this reason, a set of industry standards establishing minimum requirements and testing is needed to guide the designers of this equipment, and to protect the user community from incomplete or inadequate design. Many different technologies go into the development of closed circuit scuba. One key area is the design of electronics to monitor and maintain the critical gas mixtures of the closed circuit loop. Much of the system reliability and inherent danger is resident in the design of the circuitry and the software (if any) that runs it. This article will present a set of proposed minimum requirements, with the goal of establishing a dialog for the creation of guidelines for the classification, rating, design, and testing of embedded electronics for life support systems used in closed circuit applications. These guidelines will serve as the foundation for the later creation of a set of industry specifications.

  11. Development of a support system to make economic and technical assessments for the issues relating to plant life extension

    International Nuclear Information System (INIS)

    Takao, T.; Soneda, N.; Sakai, T.

    1994-01-01

    To realize the life extension of nuclear power plants, overall evaluation for the plant is required, which covers technology, economy such as cost of repair or/and replacement of components, and regal regulations for licensing. A prototype of integrated assessment support system for life extension ''INPLEX'' have developed in order to evaluate the technical and economic issues relating to the plant life extension and to make a life extension scenario. Analysis procedure of INPLEX is as follows. A comparison of the cost between the life extension and the reconstruction is made to see whether the life extension is cost effective or not. Next, components required detailed assessments are selected, and the residual life assessment of these components are made. After those procedures life extension measures are selected and the implementation time schedule is set on the basis of the formulas for predicting the degradation of the components and the component reliability data. Finally the implementation time schedule is optimized from the viewpoint of economy, and the life extension scenario is proposed. INPLEX also has the data base ''PRINS'', in which information and data related to life extension are registered, such as component degradation experiences, degradation management methodologies, degradation mitigation measures, and so on. PRINS can be referred at any time during the operation of INPLEX

  12. Epidemiology of Pediatric Prehospital Basic Life Support Care in the United States.

    Science.gov (United States)

    Diggs, Leigh Ann; Sheth-Chandra, Manasi; De Leo, Gianluca

    2016-01-01

    Children have unique medical needs compared to adults. Emergency medical services personnel need proper equipment and training to care for children. The purpose of this study is to characterize emergency medical services pediatric basic life support to help better understand the needs of children transported by ambulance. Pediatric basic life support patients were identified in this retrospective descriptive study. Descriptive statistics were used to examine incident location, possible injury, cardiac arrest, resuscitation attempted, chief complaint, primary symptom, provider's primary impression, cause of injury, and procedures performed during pediatric basic life support calls using the largest aggregate of emergency medical services data available, the 2013 National Emergency Medical Services Information System (NEMSIS) Public Release Research Data Set. Pediatric calls represented 7.4% of emergency medical services activations. Most pediatric patients were male (49.8%), White (40.0%), and of non-Hispanic origin (56.5%). Most incidents occurred in the home. Injury, cardiac arrest, and resuscitation attempts were highest in the 15 to 19 year old age group. Global complaints (37.1%) predominated by anatomic location and musculoskeletal complaints (26.9%) by organ system. The most common primary symptom was pain (30.3%) followed by mental/psychiatric (13.4%). Provider's top primary impression was traumatic injury (35.7%). The most common cause of injury was motor vehicle accident (32.3%). The most common procedure performed was patient assessment (27.4%). Median EMS system response time was 7 minutes (IQR: 5-12). Median EMS scene time was 12 minutes (IQR: 8-19). Median transport time was 14 minutes (IQR: 8-24). Median EMS total call time was 51 minutes (IQR: 33-77). The epidemiology of pediatric basic life support can help to guide efforts in both emergency medical services operations and training.

  13. An estimate of the second law thermodynamic efficiency of the various units comprising an Environmental Control and Life Support System (ECLSS)

    Science.gov (United States)

    Chatterjee, Sharmista; Seagrave, Richard C.

    1993-01-01

    The objective of this paper is to present an estimate of the second law thermodynamic efficiency of the various units comprising an Environmental Control and Life Support System (ECLSS). The technique adopted here is based on an evaluation of the 'lost work' within each functional unit of the subsystem. Pertinent information for our analysis is obtained from a user interactive integrated model of an ECLSS. The model was developed using ASPEN. A potential benefit of this analysis is the identification of subsystems with high entropy generation as the most likely candidates for engineering improvements. This work has been motivated by the fact that the design objective for a long term mission should be the evaluation of existing ECLSS technologies not only the basis of the quantity of work needed for or obtained from each subsystem but also on the quality of work. In a previous study Brandhorst showed that the power consumption for partially closed and completely closed regenerable life support systems was estimated as 3.5 kw/individual and 10-12 kw/individual respectively. With the increasing cost and scarcity of energy resources, our attention is drawn to evaluate the existing ECLSS technologies on the basis of their energy efficiency. In general the first law efficiency of a system is usually greater than 50 percent. From literature, the second law efficiency is usually about 10 percent. The estimation of second law efficiency of the system indicates the percentage of energy degraded as irreversibilities within the process. This estimate offers more room for improvement in the design of equipment. From another perspective, our objective is to keep the total entropy production of a life support system as low as possible and still ensure a positive entropy gradient between the system and the surroundings. The reason for doing so is as the entropy production of the system increases, the entropy gradient between the system and the surroundings decreases, and the

  14. Some ways of plants wastes utilization in bioregenerative life support systems

    Science.gov (United States)

    Kovaleva, N. P.; Tikhomirov, A. A.; Tirranen, L. S.; Ushakova, S. A.; Zolotukhin, I. G.; Anischenko, O. V.

    In works on experimental modeling of bioregenerative life support systems BLSS carried out at Institute of Biophysics Russian Academy of Science Siberian Branch SB RAS the possibility of increase of a system closure degree under the condition of inedible plant biomass return into the organic matter turnover was demonstrated At the same time when radish inedible biomass was subjected to biological oxidation in soil-like substrate SLS after its drying then wheat straw was subjected to stepwise processing including mushrooms growing stage Mushrooms cultivation facilitated to lignin destruction and quicker straw decomposition On the other hand mushrooms growing required additional technological procedures leading to complication of a technological chain of straw processing The purpose of this work is to study the possibility of exclusion of mushrooms growing stage under straw pretreatment for its further use as an equivalent of radish edible biomass grown on SLS To solve the problem put by the radish cenosis in a conveyer regime was grown The conveyer included radish four ages with the conveyer step equal to 7 days The experiment consisted of two successive stages On the first stage radish was grown without straw addition into SLS control To return mineral elements into SLS the biomass grown was restored in SLS On the second stage inedible radish biomass and wheat straw were returned into SLS in the quantity equivalent to edible biomass The possibility of the method described was estimated according to plant productivity microbiological

  15. Biological life support systems for martian missions: some problems and prospects

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lasseur, C.

    Taking into account the experience of scientific researches obtained during experiments in the BIOS - 3 of the Institute of Biophysics of Siberian Branch of Russian Academy of Science (IBP SB RAS) and the MELISSA program (ESA), approaches in creation biological life support systems for a flight period and a fixed-site base of Martian mission are considered. Various alternate variants of designing of elements of BLSS based on use of Chlorella and/or Spirulina, and also greenhouses with higher plants for the flight period of Martian mission are analyzed. For this purpose construction of BLSS ensuring full closure of matter turnover according to gas exchange and water and partial closure on the human's exometabolites is supposed. For the fixed site Martian station BLSS based on use of higher plants with a various degree of closure of internal mass exchange are suggested. Various versions of BLSS configuration and degree of closure of mass exchange depending on duration of Martian mission, the diet type of a crew and some other conditions are considered. Special attention is given to problems of reliability and tolerance of matter turnover processes in BLSS which maintenance is connected, in particular, with additional oxygen reproduction inside a system. Technologies for realization of BLSS of various configurations are offered and justified. The auxiliary role of the physicochemical methods in BLSS functioning both for the flight period and for the crew stay on Mars is justified.

  16. Perceived social support and life satisfaction in persons with somatization disorder

    Directory of Open Access Journals (Sweden)

    Arif Ali

    2010-01-01

    Full Text Available Background: Life satisfaction and perceived social support been shown to improve the well-being of a person and also affect the outcome of treatment in somatization disorder. The phenomenon of somatization was explored in relation to the perceived social support and life satisfaction. Aim: This study aimed at investigating perceived social support and life satisfaction in people with somatization disorder. Materials and Methods: The study was conducted on persons having somatization disorder attending the outpatient unit of LGB Regional Institute of Mental Health, Tezpur, Assam. Satisfaction with life scale and multidimensional scale of perceived social support were used to assess life satisfaction and perceived social support respectively. Results: Women reported more somatic symptoms than men. Family perceived social support was high in the patient in comparison to significant others′ perceived social support and friends′ perceived social support. Perceived social support showed that a significant positive correlation was found with life satisfaction. Conclusion: Poor social support and low life satisfaction might be a stress response with regard to increased distress severity and psychosocial stressors rather than a cultural response to express psychological problems in somatic terms.

  17. Biological life support systems for a Mars mission planetary base: Problems and prospects

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lamaze, B.; Lobo, M.; Lasseur, Ch.

    The study develops approaches to designing biological life support systems for the Mars mission - for the flight conditions and for a planetary base - using experience of the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences (IBP SB RAS) with the Bios-3 system and ESA's experience with the MELISSA program. Variants of a BLSS based on using Chlorella and/or Spirulina and higher plants for the flight period of the Mars mission are analyzed. It is proposed constructing a BLSS with a closed-loop material cycle for gas and water and for part of human waste. A higher-plant-based BLSS with the mass exchange loop closed to various degrees is proposed for a Mars planetary base. Various versions of BLSS configuration and degree of closure of mass exchange are considered, depending on the duration of the Mars mission, the diet of the crew, and some other conditions. Special consideration is given to problems of reliability and sustainability of material cycling in BLSS, which are related to production of additional oxygen inside the system. Technologies of constructing BLSS of various configurations are proposed and substantiated. Reasons are given for using physicochemical methods in BLSS as secondary tools both during the flight and the stay on Mars.

  18. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  19. Pediatric advanced life support and sedation of pediatric dental patients.

    Science.gov (United States)

    Kim, Jongbin

    2016-03-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency situations, basic life support is most important. However, emergencies in young children mostly involve breathing. Therefore, physicians who treat pediatric dental patients should learn PALS. It is necessary for the physician to regularly renew training every two years to be able to immediately implement professional skills in emergency situations. In order to manage emergency situations in the pediatric dental clinic, respiratory support is most important. Therefore, mastering professional PALS, which includes respiratory care and core cases, particularly upper airway obstruction and respiratory depression caused by a respiratory control problem, would be highly desirable for a physician who treats pediatric dental patients. Regular training and renewal training every two years is absolutely necessary to be able to immediately implement professional skills in emergency situations.

  20. Improving basic life support training for medical students

    OpenAIRE

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Mariam Lami, Pooja Nair, Karishma GadhviFaculty of Medicine, Imperial College, London, London, UKAbstract: Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.Keywords: medical education, basic life support

  1. Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems

    Science.gov (United States)

    Brown, Igor

    The European Micro-Ecological Life Support System Alternative (MELiSSA) is an advanced idea for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). Despite the hostility of both lunar and Martian environments to unprotected life, it seems possible to cultivate photosynthetic bacteria using closed bioreactors illuminated and heated by solar energy. Such reactors might be employed in critical processes, e.g. air revitalization, foodcaloric and protein source, as well as an immunomodulators production. The MELiSSA team suggested cyanobacterium Spirulina as most appropriate agent to revitalize air and produce a simple "fast" food. This is right suggestion because Spirulina was recently shown to be an oxygenic organism with the highest level of O2 production per unit mass (Ananyev et al., 2005). Chemical composition of Spirulina includes proteins (55Aiming to make Spirulina cultivation in life support systems like MELiSSA more efficient, we selected Spirulina mutant strains with increased fraction of methionine in the biomass of this cyanobacterium and compared the effect of parental wild strain of Spirulina and its mutants on the tendency of such experimental illnesses as radiationinduced lesions and hemolythic anemia. Results: It was found that mutant strains 198B and 27G contain higher quantities of total protein, essential amino acids, c-phycocyanin, allophycocyanin and chlorophyll a than parental wild strain of S. platensis. The strain 198B is also characterized with increased content of carotenoids. Revealed biochemical peculiarities of mutant strains suggest that these strains can serve as an additional source of essential amino acids as well as phycobiliproteins and carotenoids for the astronauts. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in deficient dehydrogenase activity and energy-rich phosphate levels

  2. Daily life support for older adults evaluated by commissioned welfare volunteers

    OpenAIRE

    Onishi, Joji

    2016-01-01

    Japan has a unique system of commissioned welfare volunteers who are familiar with neighborhoods and can identify the households requiring assistance and connect them to public support. In the present study, an anonymous self-rated questionnaire was delivered to commissioned welfare volunteers to clarify the daily life supports provided for elderly households requiring assistance, and 2270 data were collected. The questionnaires included information about elderly households requiring assistan...

  3. A Review: Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2013-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing. and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and carbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes.

  4. Ethylene production by plants in a closed environment

    Science.gov (United States)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    Ethylene production by 20-m^2 stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml m^-2 day^-1 during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 nl g^-1 fresh weight h^-1 Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  5. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  6. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS

    Science.gov (United States)

    Gale, J.; Smernoff, D. T.; Macler, B. A.; Macelroy, R. D.

    1989-01-01

    The photosynthesis and productivity of Lemna gibba is analyzed for CELSS based plant growth. Net photosynthesis of Lemna gibba is determined as a function of incident photosynthetic photon flux (PPF), with the light coming from above, below, or from both directions. Light from below is about 75 percent as effective as from above when the stand is sparse, but much less so with dense stands. High rates of photosynthesis are measured at 750 micromol / sq m per sec PPF and 1500 micromol/ mol CO2 at densities up to 660 g fresh weight (FW)/ sq m with young cultures. The analysis includes diagrams illustrating the net photosynthesis response to bilateral lighting of a sparse stand of low assimilate Lemna gibba; the effect of stand density on the net photosynthesis response to bilateral lighting of high assimilate Lemna gibba; the net photosynthesis response to ambient CO2 of sparse stands of Lemna gibba; and the time course of net photosynthesis and respiration per unit chamber and per unit dry weight of Lemna gibba.

  7. Individuals' quality of life linked to major life events, perceived social support, and personality traits.

    Science.gov (United States)

    Pocnet, Cornelia; Antonietti, Jean-Philippe; Strippoli, Marie-Pierre F; Glaus, Jennifer; Preisig, Martin; Rossier, Jérôme

    2016-11-01

    The aim of this study was to investigate the relationship between major recent life events that occurred during the last 5 years, social and personal resources, and subjective quality of life (QoL). A total of 1801 participants from the general population (CoLaus/PsyCoLaus study) completed the Life Events Questionnaire, the Social Support Questionnaire, the NEO Five-Factor Inventory Revised, and the Manchester Short Assessment of Quality of Life. Major life events were modestly associated with the QoL (about 5 % of the explained variance). However, QoL was significantly related to perceived social support and personality traits (about 37 % of the explained variance). Particularly, perceived social support, extraversion and conscientiousness personality dimensions were positively linked to life satisfaction, whereas a high level of neuroticism was negatively associated with QoL. This study highlights the negative but temporary association between critical events and QoL. However, a combination of high conscientiousness and extraversion, and positive social support may explain better variances for a high-perceived QoL.

  8. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  9. Potential applications of the white rot fungus Pleurotus in bioregenerative life support systems

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Yu, Ch.; Gurevich, Yu. L.; Liu, H.

    Earlier we demonstrated the possibility of using soil-like substrate SLS for plant cultivation in bioregenerative life support systems BLSS We suggest dividing the process of SLS bioregeneration at BLSS conditions into two stages At the first stage plant residues should be used for growing of white rot fungus Pleurotus ostreatus Pleurotus florida etc The fruit bodies could be used as food Spent mushroom compost is carried in SLS and treated by microorganisms and worms at the second stage The possibility of extension of human food ration is only one of the reasons for realization of the suggested two-stage SLS regeneration scheme people s daily consumption of mushrooms is limited to 200 -250 g of wet weight or 20 -25 g of dry weight Multiple tests showed what is more important is that inclusion of mushrooms into the system cycle scheme contributes through various mechanisms to the more stable functioning of vegetative cenosis in general Taking into account the given experimental data we determined the scheme of mushroom module material balance The technological peculiarities of mushroom cultivation at BLSS conditions are being discussed

  10. Environmental modification of yield and food composition of cowpea and leaf lettuce

    Science.gov (United States)

    Mitchell, Cary A.; Nielsen, Suzanne S.; Bubenheim, David L.

    1990-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) and leaf lettuce (Lactuca sativa L.) are candidate species to provide ligume protein and starch or serve as a salad base for a nutritionally balanced and psychologically satisfying vegetarian diet in the Controlled Ecology Life Support System (CELSS). Various nutritional parameters are reported. Hydroponic leaf lettuce grew best under CO2 enrichment and photosynthetic photon flux (PPF) enhancement. Leaf protein content reached 36 percent with NH4(+) + NO3 nutrition; starch and free sugar content was as high as 7 or 8.4 percent of DW, respectively, for high PPF/CO2 enriched environments.

  11. Challenges to plant growing in space

    Science.gov (United States)

    Langhans, R. W.; Dreesen, D. R.

    1988-01-01

    Picture yourself a million miles from earth; it's lunch time. What will you eat: meat, fish, bread, fresh vegetables (cooked or uncooked), or food from a tube? What will happen to the waste products from the processed food or even from yourself? What will you breathe? These and hundreds of detailed questions must be answered. At present, we have little knowledge about a totally closed environment life support system (CELSS). We have developed in this paper a list of references that are pertinent to the problem. It is divided into subject areas and listed chronologically, rather than alphabetically.

  12. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Atmosphere Control and Supply Subsystem

    Science.gov (United States)

    Williams, David E.

    2009-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.

  13. Breastfeeding Support in the Workplace: The Relationships Among Breastfeeding Support, Work-Life Balance, and Job Satisfaction.

    Science.gov (United States)

    Jantzer, Amanda M; Anderson, Jenn; Kuehl, Rebecca A

    2018-05-01

    Women are increasingly faced with decisions about how to combine breastfeeding with work, but few researchers have directly measured how breastfeeding relates to the work-life interface. Research aim: The authors examined how perceptions of work enhancement of personal life and work interference with personal life were influenced by workplace breastfeeding support, including organizational, manager, and coworker support, as well as adequate time to express human milk. Then, we examined how workplace breastfeeding support predicted work-life variables and job satisfaction. Using a self-report, survey design, the authors analyzed online surveys from 87 women in a rural, community sample who indicated that they had pumped at work or anticipated needing to pump in the future. According to regression results, provision of workplace breastfeeding support, particularly providing adequate time for human milk expression, predicted work enhancement of personal life. Conversely, we found that as workplace support diminished, employees perceived greater work interference with personal life. Results of path analysis further suggested that providing time for expressing milk improved job satisfaction via a partially mediated relationship where work enhancement of personal life acted as a mediator. These results suggest that employers can enhance the lives of their breastfeeding employees both at work and at home by providing workplace breastfeeding support, especially through providing time for expressing human milk in the workplace.

  14. Life-sustaining support: ethical, cultural, and spiritual conflicts. Part II: Staff support--a neonatal case study.

    Science.gov (United States)

    Stutts, Amy; Schloemann, Johanna

    2002-06-01

    As medical knowledge and technology continue to increase, so will the ability to provide life-sustaining support to patients who otherwise would not survive. Along with these advances comes the responsibility of not only meeting the clinical needs of our patients, but also of understanding how the family's culture and spirituality will affect their perception of the situation and their decision-making process. As the U.S. continues to become a more culturally diverse society, health care professionals will need to make changes in their practice to meet the psychosocial needs of their patients and respect their treatment decisions. Part I of this series (April 2002) discussed how the cultural and spiritual belief systems of Baby S's family affected their decision-making processes and also their ability to cope with the impending death of their infant. The development of a culturally competent health care team can help bridge the gap between culturally diverse individuals. This article addresses the following questions: 1. What legal alternatives are available to the staff to protect the patient from suffering associated with the continuation of futile life-sustaining support? 2. What conflicts might the staff experience as a result of the continuation of futile life-sustaining support? 3. What efforts can be made to support members of the staff? 4. What can be done to prepare others in the health care professions to deal more effectively with ethical/cultural issues?

  15. LOGIC SIMULATION OF LIFE SUPPORT SYSTEM COMPONENT IN REAL TIME

    Directory of Open Access Journals (Sweden)

    A. S. Marchenko

    2016-01-01

    Full Text Available Abstract. The article proposed the use of simulation methods for evaluating the effectiveness of a stepped fan engine speed control while maintaining the air flow volume in the set boundaries of the «fan-filter» system. A detailed algorithm of the program made on the basis of an Any Logic software package. Is analyzed the possibility of using the proposed method in the design of ventilation systems.The proposed method allows at the design stage to determine the maximum replacement intervals of the systems filter elements, as well as to predict the time to switch the fan motor speeds. Using of the technique allows to refuse the complex air flow systems and maximize the life of the filter elements set.Methods of logical processes modeling allows to reduce construction costs and improve energy efficiency of buildings. 

  16. [Organization of anesthesia management and advanced life support at military medical evacuation levels].

    Science.gov (United States)

    Shchegolev, A V; Petrakov, V A; Savchenko, I F

    2014-07-01

    Anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels in armed conflict (local war) is time-consuming and resource-requiring task. One of the mathematical modeling methods was used to evaluate capabilities of anesthesia and intensive care units at tactical level. Obtained result allows us to tell that there is a need to make several system changes of the existing system of anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels. In addition to increasing number of staff of anesthesiology-critical care during the given period of time another solution should be the creation of an early evacuation to a specialized medical care level by special means while conducting intensive monitoring and treatment.

  17. On the use of Space Station Freedom in support of the SEI - Life science research

    Science.gov (United States)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  18. Material balance and diet in bioregenerative life support systems: Connection with coefficient of closure

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.; Gurevich, Yu. L.; Sadovsky, M. G.

    Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive.

  19. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  20. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD) Recommendations for Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Sala, Serenella; Pant, Rana; Hauschild, Michael Zwicky

    2012-01-01

    Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from "cradle to grave" have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental...... sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA) of products, in recent years, several methodologies have been developed for Life Cycle Impact...... Assessment (LCIA). The Joint Research Center of the European Commission (EC-JRC) led a "science to decision support" process which resulted in the International Reference Life Cycle Data System (ILCD) Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook...

  1. Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Wheeler, R. M.; Lowery, W.; Sager, J. C.

    1990-01-01

    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area.

  2. Life support approaches for Mars missions

    Science.gov (United States)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.

  3. Adaptability and Life Satisfaction: The Moderating Role of Social Support.

    Science.gov (United States)

    Zhou, Mi; Lin, Weipeng

    2016-01-01

    The purpose of this study was to investigate the moderating role of social support in the relationship between adaptability and life satisfaction. Data were collected from 99 undergraduate freshmen in a Chinese university using a lagged design with a 1-month interval. Results demonstrated that social support moderated the relation between adaptability and life satisfaction, such that the positive relation between adaptability and life satisfaction was stronger for individuals with higher levels of social support than for individuals with lower levels of social support. The theoretical and practical implications of this result are discussed.

  4. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    Science.gov (United States)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  5. Light, plants, and power for life support on Mars

    Science.gov (United States)

    Salisbury, F. B.; Dempster, W. F.; Allen, J. P.; Alling, A.; Bubenheim, D.; Nelson, M.; Silverstone, S.

    2002-01-01

    Regardless of how well other growing conditions are optimized, crop yields will be limited by the available light up to saturation irradiances. Considering the various factors of clouds on Earth, dust storms on Mars, thickness of atmosphere, and relative orbits, there is roughly 2/3 as much light averaged annually on Mars as on Earth. On Mars, however, crops must be grown under controlled conditions (greenhouse or growth rooms). Because there presently exists no material that can safely be pressurized, insulated, and resist hazards of puncture and deterioration to create life support systems on Mars while allowing for sufficient natural light penetration as well, artificial light will have to be supplied. If high irradiance is provided for long daily photoperiods, the growing area can be reduced by a factor of 3-4 relative to the most efficient irradiance for cereal crops such as wheat and rice, and perhaps for some other crops. Only a small penalty in required energy will be incurred by such optimization. To obtain maximum yields, crops must be chosen that can utilize high irradiances. Factors that increase ability to convert high light into increased productivity include canopy architecture, high-yield index (harvest index), and long-day or day-neutral flowering and tuberization responses. Prototype life support systems such as Bios-3 in Siberia or the Mars on Earth Project need to be undertaken to test and further refine systems and parameters.

  6. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    Science.gov (United States)

    Callini, Gianluca

    2016-01-01

    With a brand new fire set ablaze by a serendipitous convergence of events ranging from a science fiction novel and movie ("The Martian"), to ground-breaking recent discoveries of flowing water on its surface, the drive for the journey to Mars seems to be in a higher gear than ever before. We are developing new spacecraft and support systems to take humans to the Red Planet, while scientists on Earth continue using the International Space Station as a laboratory to evaluate the effects of long duration space flight on the human body. Written from the perspective of a facility test director rather than a researcher, and using past and current life support systems tests as examples, this paper seeks to provide an overview on how facility teams approach testing, the kind of information they need to ensure efficient collaborations and successful tests, and how, together with researchers and principal investigators, we can collectively apply what we learn to execute future tests.

  7. Adaptability and Life Satisfaction: The Moderating Role of Social Support

    Science.gov (United States)

    Zhou, Mi; Lin, Weipeng

    2016-01-01

    The purpose of this study was to investigate the moderating role of social support in the relationship between adaptability and life satisfaction. Data were collected from 99 undergraduate freshmen in a Chinese university using a lagged design with a 1-month interval. Results demonstrated that social support moderated the relation between adaptability and life satisfaction, such that the positive relation between adaptability and life satisfaction was stronger for individuals with higher levels of social support than for individuals with lower levels of social support. The theoretical and practical implications of this result are discussed. PMID:27516753

  8. Carbon balance in bioregenerative life support systems: Some effects of system closure, waste management, and crop harvest index

    Science.gov (United States)

    Wheeler, Raymond M.

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance.

  9. [Redesign of the Spacesuit Long Life Battery and the Personal Life Support System Battery

    Science.gov (United States)

    Scharf, Stephanie

    2015-01-01

    This fall I was working on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the department. The purpose of this document is to create a standard process and ensure that the data in the same way no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own all while taking notes on the procedure. These notes were used to write the final work instruction that will become is the department standard. My second project continued the work of the summer co-op before me. I was testing aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks were designed by the summer intern but there was not much time for testing before he left. We ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (energy systems test area) and are providing very promising results that safe, high performing (greater than 180 Wh/kg) designs are possible. My main project was a redesign of the LLB battery. Another summer intern did some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the current design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density and the rest of the design was up to me. First, I created new heat sink banks in Creo using the information gathered in the metal heat sink tests from the summer intern. After this, I made

  10. Integrated Bio-ISRU and Life Support Systems at the Lunar Outpost: Concept and Preliminary Results

    Science.gov (United States)

    Brown, I. I.; Garrison, D. H.; Allen, C. C.; Pickering, K.; Sarkisova, S. A.; Galindo, C., Jr.; Pan, D.; Foraker, E.; Mckay, D. S.

    2009-01-01

    We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.

  11. IT for advanced Life Support in English

    DEFF Research Database (Denmark)

    Sejerø Pedersen, Birgitte; Jeberg, Kirsten Ann; Koerner, Christian

    2009-01-01

    In this study we analyzed how IT support can be established for the treatment and documentation of advanced life support (ALS) in a hospital. In close collaboration with clinical researchers, a running prototype of an IT solution to support the clinical decisions in ALS was developed and tried out...... in a full scale simulation environment. We have named this IT solution the CardioData Prototype....

  12. Enterprise and system of systems capability development life-cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While the approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.

  13. What influences parents' decisions to limit or withdraw life support?

    Science.gov (United States)

    Sharman, Mahesh; Meert, Kathleen L; Sarnaik, Ashok P

    2005-09-01

    Decisions to forgo life support from critically ill children are commonly faced by parents and physicians. Previous research regarding parents' perspectives on the decision-making process has been limited by retrospective methods and the use of closed-ended questionnaires. We prospectively identified and described parents' self-reported influences on decisions to forgo life support from their children. Deeper understanding of parents' views will allow physicians to focus end-of-life discussions on factors important to parents and help resolve conflicts. Prospective, qualitative pilot study. Pediatric intensive care unit of a university-affiliated children's hospital. A total of 14 parents of ten children whose pediatric intensive care unit physician had made a recommendation to limit or withdraw life support. : In-depth, semistructured interviews were conducted with parents during their decision-making process. Factors influencing the parents in this study in their decision to forgo life support included their previous experience with death and end-of-life decision making for others, their personal observations of their child's suffering, their perceptions of their child's will to survive, their need to protect and advocate for their child, and the family's financial resources and concerns regarding life-long care. Parents in this study expressed the desire to do what is best for their child but struggled with feelings of selfishness, guilt, and the need to avoid agony and sorrow. Physician recommendations, review of options, and joint formulation of a plan helped parents gain a sense of control over their situation. Parents of eight children agreed to forgo life support and parents of two did not. Prospective interviews with open-ended questions identified factors influencing parents' decision making not previously described in the critical care literature such as parents' past experiences with end-of-life decisions and their anticipated emotional adjustments and

  14. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    Science.gov (United States)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  15. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  16. Monitoring and life-support devices

    International Nuclear Information System (INIS)

    Noback, C.R.; Murphy, C.H.

    1987-01-01

    The radiographic and physical principles involved in interpreting films, and some of the altered anatomy and pathology that may be seen on such films, are discussed. This chapter considers the radiographic appearances of monitoring and life-support devices. Appropriate positioning and function are shown, as are some of the complications associated with their placement and/or function

  17. Effect of channel size on sweet potato storage root enlargement in the Tuskegee University hydroponic nutrient film system

    Science.gov (United States)

    Morris, Carlton E.; Martinez, Edwin; Bonsi, C. K.; Mortley, Desmond G.; Hill, Walter A.; Ogbuehi, Cyriacus R.; Loretan, Phil A.

    1989-01-01

    The potential of the sweet potato as a food source for future long term manned space missions is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Sweet potatoes have been successfully grown in a specially designed Tuskegee University nutrient film technique (TU NFT) system. This hydroponic system yielded storage roots as high as 1790 g/plant fresh weight. In order to determine the effect of channel size on the yield of sweet potatoes, the width and depth of the growing channels were varied in two separate experiments. Widths were studied using the rectangular TU NFT channels with widths of 15 cm (6 in), 30 cm (12 in) and 45 cm (18 in). Channel depths of 5 cm (2 in), 10 cm (4 in), and 15 cm (6 in) were studied using a standard NASA fan shaped Biomass Production Chamber (BPC) channel. A comparison of preliminary results indicated that, except for storage root number, the growth and yield of sweet potatoes were not affected by channel width. Storage root yield was affected by channel depth although storage root number and foliage growth were not. Both experiments are being repeated.

  18. First-Generation Undergraduate Students' Social Support, Depression, and Life Satisfaction

    Science.gov (United States)

    Jenkins, Sharon Rae; Belanger, Aimee; Connally, Melissa Londono; Boals, Adriel; Duron, Kelly M.

    2013-01-01

    First-generation undergraduate students face challenging cross-socioeconomic cultural transitions into college life. The authors compared first- and non-first-generation undergraduate students' social support, posttraumatic stress, depression symptoms, and life satisfaction. First-generation participants reported less social support from family…

  19. The Effect of Providing Life Support on Nurses' Decision Making Regarding Life Support for Themselves and Family Members in Japan.

    Science.gov (United States)

    Shaku, Fumio; Tsutsumi, Madoka

    2016-12-01

    Decision making in terminal illness has recently received increased attention. In Japan, patients and their families typically make decisions without understanding either the severity of illness or the efficacy of life-supporting treatments at the end of life. Japanese culture traditionally directs the family to make decisions for the patient. This descriptive study examined the influence of the experiences of 391 Japanese nurses caring for dying patients and family members and how that experience changed their decision making for themselves and their family members. The results were mixed but generally supported the idea that the more experience nurses have in caring for the dying, the less likely they would choose to institute lifesupport measures for themselves and family members. The results have implications for discussions on end-of-life care. © The Author(s) 2016.

  20. Mission simulation as an approach to develop requirements for automation in Advanced Life Support Systems

    Science.gov (United States)

    Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.

  1. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  2. Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission

    OpenAIRE

    Caraccio, A.; Poulet, Lucie; Hintze, P.; Miles, J.D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on ...

  3. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  4. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    Science.gov (United States)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  5. Application of duckweed for human urine treatment in Bioregenerative Life Support System

    Science.gov (United States)

    Manukovsky, Nickolay; Kovalev, Vladimir

    The object of the study was the common duckweed Lemna minor L. Thanks to the ability to assimilate mineral and organic substances, duckweed is used to purify water in sewage lagoons. In addition, duckweed biomass is known to be a potential high-protein feed resource for domestic animals and fish. The aim of the study was to estimate an application of duckweed in a two-stage treatment of human urine in Bioregenerative Life Support System (BLSS). At the first stage, the urine’s organic matter is oxidized by hydrogen peroxide. Diluted solution of oxidized urine is used for cultivation of duckweed. The appointment of duckweed is the assimilation of mineralized substances of urine. Part of the duckweed biomass yield directly or after composting could be embedded in the soil-like substrate as organic fertilizer to compensate the carry-over in consequence of plant growing. The rest duckweed biomass could be used as a feed for animals in BLSS. Then, the residual culture liquid is concentrated and used as a source of dietary salt. It takes 10-15 m2 of duckweed culture per crewmember to treat oxidized urine. The BLSS configuration including two-component subsystem of urine treatment is presented.

  6. STUDENT ACADEMIC SUPPORT AS A PREDICTOR OF LIFE SATISFACTION IN UNIVERSITY STUDENTS

    OpenAIRE

    Ahmet Akýn; Serhat Arslan; Eyüp Çelik; Çýnar Kaya; Nihan Arslan

    2015-01-01

    The purpose of this study is to examine the relationship between Academic Support and Life Satisfaction. Participants were 458 university students who voluntarily filled out a package of self-report instruments. Student Academic Support Scale and Satisfaction with Life Scale were used as measures. The relationships between student academic support and life satisfaction were examined using correlation analysis and stepwise regression analysis. Life satisfaction was predicted positively by info...

  7. Advanced anaerobic bioconversion of lignocellulosic waste for the melissa life support system

    Science.gov (United States)

    Lissens, G.; Verstraete, W.; Albrecht, T.; Brunner, G.; Creuly, C.; Dussap, G.; Kube, J.; Maerkl, H.; Lasseur, C.

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of the MELiSSA loop (Micro-Ecological Life Support System Alternative). The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g-1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ˜ 310-350C, p ˜ 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis offers interesting features for (nearly) the MELiSSA system. The described additional technologies show that complete and hygienic carbon and energy recovery from human waste within MELiSSA is technically feasible, provided that the extra energy needed for the thermal treatment is guaranteed.

  8. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  9. Termination of life support after major trauma.

    Science.gov (United States)

    Sullivan, D J; Hansen-Flaschen, J

    2000-06-01

    As the population continues to age, greater numbers and more severely injured elderly patients require care in ICUs. With the attendant increase in the medical complexity of such patients, investigators anticipate that trauma and critical care resources will become increasingly stretched. Because of economic and societal forces, it will become increasingly important for trauma surgeons to appropriately counsel patients and their families regarding the outcome from their injuries and to become comfortable approaching families about withdrawal of support when medical futility is recognized. The authors propose the following guidelines for discussing limitation or termination of life support with patients and their families. Physicians should (1) discuss the patient's wishes regarding life support on admission or early in the hospital course; (2) at the initial discussion, establish who the decision maker will be if the patient is or becomes incapacitated; (3) maintain regular communication and continuity of care; and (4) inevitably, when conflict occurs, involve consultants and a hospital ethics committee for assistance in its resolution.

  10. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    Science.gov (United States)

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned

  11. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  12. Training and certification program of the operating staff for a 90-day test of a regenerative life support system

    Science.gov (United States)

    1972-01-01

    Prior to beginning a 90-day test of a regenerative life support system, a need was identified for a training and certification program to qualify an operating staff for conducting the test. The staff was responsible for operating and maintaining the test facility, monitoring and ensuring crew safety, and implementing procedures to ensure effective mission performance with good data collection and analysis. The training program was designed to ensure that each operating staff member was capable of performing his assigned function and was sufficiently cross-trained to serve at certain other positions on a contingency basis. Complicating the training program were budget and schedule limitations, and the high level of sophistication of test systems.

  13. Overview of Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the late 1980's, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in the design of a closed loop life support system.

  14. Perceived psychosocial needs, social support and quality of life in ...

    African Journals Online (AJOL)

    Subjects with late-stage HIV infection reported a lower social adjustment to the disease, a lower quality of life and more severe lifestyle changes. Satisfaction with social support correlated significantly with quality of life and social adjustment. It is therefore concluded that the higher the level of satisfaction with social support, ...

  15. Quality of life and depression following childbirth: impact of social support.

    Science.gov (United States)

    Webster, Joan; Nicholas, Catherine; Velacott, Catherine; Cridland, Noelle; Fawcett, Lisa

    2011-10-01

    to evaluate the impact of social support on postnatal depression and health-related quality of life. prospective cohort study. Data were collected at baseline and at six weeks post discharge using a postal survey. between August and December 2008, 320 women from a large tertiary hospital were recruited following the birth of their infant. Edinburgh Postnatal Depression Scale (EPDS), Maternity Social Support Scale and World Health Organization Quality of Life assessment questionnaire. of the 320 women recruited, 222 (69.4%) returned their six-week questionnaire. Women with low social support had significantly higher scores on the EPDS than women who reported adequate support (p = 0.007). There was also a significant effect of social support on health-related quality of life. Women with low family or partner support scored lower in all domains, with the greatest mean difference in the social health domain (p = 0.000). Of those scoring >10 on the EPDS, 75.5% had sought professional help. women with low social support are more likely to report postnatal depression and lower quality of life than well-supported women. Careful assessment of a woman's level of support following the birth, particularly from her partner and family, may provide useful information for possible interventions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Future directions for resuscitation research. V. Ultra-advanced life support.

    Science.gov (United States)

    Tisherman, S A; Vandevelde, K; Safar, P; Morioka, T; Obrist, W; Corne, L; Buckman, R F; Rubertsson, S; Stephenson, H E; Grenvik, A; White, R J

    1997-06-01

    Standard external cardiopulmonary resuscitation (SECPR) frequently produces very low perfusion pressures, which are inadequate to achieve restoration of spontaneous circulation (ROSC) and intact survival, particularly when the heart is diseased. Ultra-advanced life support (UALS) techniques may allow support of vital organ systems until either the heart recovers or cardiac repair or replacement is performed. Closed-chest emergency cardiopulmonary bypass (CPB) provides control of blood flow, pressure, composition and temperature, but has so far been applied relatively late. This additional low-flow time may preclude conscious survival. An easy, quick method for vessel access and a small preprimed system that could be taken into the field are needed. Open-chest CPR (OCCPR) is physiologically superior to SECPR, but has also been initiated too late in prior studies. Its application in the field has recently proven feasible. Variations of OCCPR, which deserve clinical trials inside and outside hospitals, include 'minimally invasive direct cardiac massage' (MIDCM), using a pocket-size plunger-like device inserted via a small incision and 'direct mechanical ventricular actuation' (DMVA), using a machine that pneumatically drives a cup placed around the heart. Other novel UALS approaches for further research include the use of an aortic balloon catheter to improve coronary and cerebral blood flow during SECPR, aortic flush techniques and a double-balloon aortic catheter that could allow separate perfusion (and cooling) of the heart, brain and viscera for optimal resuscitation of each. Decision-making, initiation of UALS methods and diagnostic evaluations must be rapid to maximize the potential for ROSC and facilitate decision-making regarding long-term circulatory support versus withdrawal of life support for hopeless cases. Research and development of UALS techniques needs to be coordinated with cerebral resuscitation research.

  17. Architecture and Functionality of the Advanced Life Support On-Line Project Information System

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriguez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects. Using OPIS, ALS managers and element leads will be able to carry out informed R&TD investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, Controls and Systems Analysis). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  18. Virtual Habitat -a dynamic simulation of closed life support systems -human model status

    Science.gov (United States)

    Markus Czupalla, M. Sc.; Zhukov, Anton; Hwang, Su-Au; Schnaitmann, Jonas

    In order to optimize Life Support Systems on a system level, stability questions must be in-vestigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. V-HAB shall provide the possibility to conduct dynamic simulations of entire mission scenarios for any given LSS configuration. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation The core module of the simulation is the dynamic and environment sensitive human module. Introduced in its basic version in 2008, the human module has been significantly updated since, increasing its capabilities and maturity significantly. In this paper three newly added human model subsystems (thermal regulation, digestion and schedule controller) are introduced touching also on the human stress subsystem which is cur-rently under development. Upon the introduction of these new subsystems, the integration of these into the overall V-HAB human model is discussed, highlighting the impact on the most important I/F. The overall human model capabilities shall further be summarized and presented based on meaningful test cases. In addition to the presentation of the results, the correlation strategy for the Virtual Habitat human model shall be introduced assessing the models current confidence level and giving an outlook on the future correlation strategy. Last but not least, the remaining V-HAB mod-ules shall be introduced shortly showing how the human model is integrated into the overall simulation.

  19. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  20. Disclosure strategies, social support, and quality of life in infertile women.

    Science.gov (United States)

    Steuber, Keli R; High, Andrew

    2015-07-01

    Do the strategies women use to disclose information about their infertility to social network members impact the quality of the support they receive and their quality of life? The data showed that women who disclosed infertility-related information in direct ways, rather than in indirect ways (e.g. by incremental disclosures or through third parties), to social network members perceived higher quality support and reported greater quality of life related to their infertility experience. Social support has been shown to buffer stress associated with various health issues including infertility. The way people disclose information about stressors has been associated with the quality of the support they receive. Disclosing information in a way that most effectively elicits support is beneficial because women with infertility who have lower levels of stress are more likely to seek and remain in treatment. This cross-sectional study of 301 infertile women was conducted in the USA. To determine the variation in length of infertility and treatment decisions, we conducted an online survey of 301 American women coping with infertility. We investigated the strategies women used to disclose infertility-related information with social network members, their perceptions of support from friends and family, and their quality of life both in general (overall quality of life) and related to the experience of infertility (fertility quality of life). Direct disclosure of experiences related to infertility was positively and significantly associated with the perceived quality of social support received (P women's fertility quality of life (95% CI: 0.18, 1.05) and overall quality of life (95% CI: 0.10, 0.30). This effect is particularly noteworthy for the model predicting fertility quality of life, which exhibited a non-significant main effect with direct disclosures. The non-significant main effect combined with the significant indirect effect suggests that perceived support quality

  1. Customer Decision Support Systems: Resources for Student Decision Making

    Directory of Open Access Journals (Sweden)

    Cara Okleshen Peters, Ph.D.

    2005-07-01

    Full Text Available This paper highlights the potential of customer decision support systems (CDSS to assist students in education-related decision making. Faculty can use these resources to more effectively advise students on various elements of college life, while students can employ them to more actively participate in their own learning and improve their academic experience. This conceptual paper summarizes consumer decision support systems (CDSS concepts and presents exemplar websites students could utilize to support their education-related decision making. Finally, the authors discuss the potential benefits and drawbacks such resources engender from a student perspective and conclude with directions for future research.

  2. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    Science.gov (United States)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  3. BIOREGENERATIVE LIFE SUPPORT SYSTEMS IN THE SPACE (BLSS: THE EFFECTS OF RADIATION ON PLANTS

    Directory of Open Access Journals (Sweden)

    Carmen Arena

    2012-06-01

    Full Text Available The growth of plants in Space is a fundamental issue for Space exploration. Plants play an important role in the Bioregenerative Life Support Systems (BLSS to sustain human permanence in extraterrestrial environments. Under this perspective, plants are basic elements for oxygen and fresh food production as well as air regeneration and psychological support to the crew. The potentiality of plant survival and reproduction in space is limited by the same factors that act on the earth (e.g. light, temperature and relative humidity and by additional factors such as altered gravity and ionizing radiation. This paper analyzes plant responses to space radiation which is recognized as a powerful mutagen for photosynthetic organisms thus being responsible for morpho-structural, physiological and genetic alterations. Until now, many studies have evidenced how the response to ionizing radiation is influenced by several factors associated both to plant characteristics (e.g. cultivar, species, developmental stage, tissue structure and/or radiation features (e.g. dose, quality and exposure time. The photosynthetic machinery is particularly sensitive to ionizing radiation. The severity of the damages induced by ionizing radiation on plant cell and tissues may depend on the capability of plants to adopt protection mechanisms and/or repair strategies. In this paper a selection of results from studies on the effect of ionizing radiations on plants at anatomical and eco-physiological level is reported and some aspects related to radioresistance are explored.

  4. The relationship between family social support and quality of life in diabetic female patients

    Directory of Open Access Journals (Sweden)

    Ali Mousavi

    2017-06-01

    Full Text Available Life quality of diabetic patients is always affected by psychosocial problems, physical disorders, and life style changes. It seems that the perceived social support could intervene in improving the life quality of these patients. The present study was carried out aiming to examine the relation between family social support and life quality of female patients with diabetes. This was a cross-sectional study. The statistical population included 173 diabetic females who were randomly selected from patients referred to Kermanshah diabetes research center. Data were collected using life quality questionnaire (Short Form-36 as well as perceived social support scale. The data analysis indicated that there is a significant correlation between family support and life quality of patients. Furthermore, concerning the components of life quality, there is a significant correlation between family social support and physical performance, physical limitation, tiredness, emotional health, social performance, pain, and general health of patients. However, no significant relation was found between family support and limitation of patients. Results showed that there is a direct relation between family support and the life quality in females with diabetes. Hence, it can be concluded that giving the family support to the female diabetic patients can increase their quality of life.

  5. The study of residential life support environment system to initiate policy on sustainable simple housing

    Science.gov (United States)

    Siahaan, N. M.; Harahap, A. S.; Nababan, E.; Siahaan, E.

    2018-02-01

    This study aims to initiate sustainable simple housing system based on low CO2 emissions at Griya Martubung I Housing Medan, Indonesia. Since it was built in 1995, between 2007 until 2016 approximately 89 percent of houses have been doing various home renewal such as restoration, renovation, or reconstruction. Qualitative research conducted in order to obtain insights into the behavior of complex relationship between various components of residential life support environment that relates to CO2 emissions. Each component is studied by conducting in-depth interviews, observation of the 128 residents. The study used Likert Scale to measure residents’ perception about components. The study concludes with a synthesis describing principles for a sustainable simple housing standard that recognizes the whole characteristics of components. This study offers a means for initiating the practice of sustainable simple housing developments and efforts to manage growth and preserve the environment without violating social, economics, and ecology.

  6. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  7. Case Studies in Crewed Spacecraft Environmental Control and Life Support System Process Compatibility and Cabin Environmental Impact

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.

  8. Influences on Employee Perceptions of Organizational Work-Life Support: Signals and Resources

    Science.gov (United States)

    Valcour, Monique; Ollier-Malaterre, Ariane; Matz-Costa, Christina; Pitt-Catsouphes, Marcie; Brown, Melissa

    2011-01-01

    This study examined predictors of employee perceptions of organizational work-life support. Using organizational support theory and conservation of resources theory, we reasoned that workplace demands and resources shape employees' perceptions of work-life support through two mechanisms: signaling that the organization cares about their work-life…

  9. Effective work-life balance support for various household structures

    NARCIS (Netherlands)

    Brummelhuis, L.L. ten; Lippe, T. van der

    2010-01-01

    Today’s workforce encompasses a wide variety of employees with specifi c needs and resources when it comes to balancing work and life roles. Our study explores whether various types of work-life balance support measures improve employee helping behavior and performance among single employees,

  10. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration.

    Science.gov (United States)

    Colon, G; Sager, J C

    2001-01-01

    The CELSS resource recovery system, which is a waste-processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass, by means of culture of rumen bacteria, generates organic compounds such as volatile fatty acids (VFA) (acetic, propionic, butyric) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure-driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments was carried out using a 10,000 molecular weight cutoff (MWCO) tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as: the permeate flux, VFA and nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicated that the permeate flux, VFA, and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 and 1.0 m/s, applied pressure when these are lower than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 and 34,880 mg/L. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrane surface. It was also found that the

  11. Gender Differences in Perceived Social Support and Stressful Life Events in Depressed Patients.

    Science.gov (United States)

    Soman, S; Bhat, S M; Latha, K S; Praharaj, S K

    2016-03-01

    To study the gender differences in perceived social support and life events in patients with depression. A total of 118 patients aged 18 to 60 years, with depressive disorder according to the DSM-IV-TR, were evaluated using the Multidimensional Scale of Perceived Social Support and Presumptive Stressful Life Events Scale. The perceived social support score was significantly higher in males than females (p friends than females (p life events as well as specific type of life events in males that became apparent after controlling for education (p life event in both males and females. Work-related problems were more commonly reported by males, whereas family and marital conflict were more frequently reported by females. Perceived social support and stressful life events were higher in males with depression than females.

  12. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  13. System, structure, and component evaluation for life-cycle management

    International Nuclear Information System (INIS)

    Hanley, N.E.; Banerjee, A.K.; Woods, P.B.; Perrin, J.S.; Marian, F.A.

    1992-01-01

    In recent years, many nuclear organizations and utilities have studied the possibility of extending the service life of nuclear power plants beyond the original license period. From these studies, recommendations have resulted for maintaining the option of future decisions concerning operating license renewal. Several of the recommendations are considered beneficial to the management and operation of nuclear plants in meeting many of their near-term goals. In 1986, Public Service Electric and Gas (PSE and G) concluded that a full-scale nuclear plant license renewal program for their Salem 1 and 2 and Hope Creek nuclear stations was not cost-effective at that time. Rather, it would be better served if the nuclear plant life extension (PLEX) option were maintained for future consideration. To help plan for the life extension option, a strategic 5-yr life cycle management (LCM) program was begun. In support of the LCM program, evaluations for the following Salem structures and components were performed: (1) intake structures, (2) reactor vessel support, (3) containment liner, and (4) containment structure (below grade). This paper discusses the systems, structures, and components (SSC) evaluation methodology and, as an example, discusses the evaluation performed for reactor vessel support

  14. Termination of Resuscitation Rules to Predict Neurological Outcomes in Out-of-Hospital Cardiac Arrest for an Intermediate Life Support Prehospital System.

    Science.gov (United States)

    Cheong, Randy Wang Long; Li, Huihua; Doctor, Nausheen Edwin; Ng, Yih Yng; Goh, E Shaun; Leong, Benjamin Sieu-Hon; Gan, Han Nee; Foo, David; Tham, Lai Peng; Charles, Rabind; Ong, Marcus Eng Hock

    2016-01-01

    Futile resuscitation can lead to unnecessary transports for out-of-hospital cardiac arrest (OHCA). The Basic Life Support (BLS) and Advanced Life Support (ALS) termination of resuscitation (TOR) guidelines have been validated with good results in North America. This study aims to evaluate the performance of these two rules in predicting neurological outcomes of OHCA patients in Singapore, which has an intermediate life support Emergency Medical Services (EMS) system. A retrospective cohort study was carried out on Singapore OHCA data collected from April 2010 to May 2012 for the Pan-Asian Resuscitation Outcomes Study (PAROS). The outcomes of each rule were compared to the actual neurological outcomes of the patients. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and predicted transport rates of each test were evaluated. A total of 2,193 patients had cardiac arrest of presumed cardiac etiology. TOR was recommended for 1,411 patients with the BLS-TOR rule, with a specificity of 100% (91.9, 100.0) for predicting poor neurological outcomes, PPV 100% (99.7, 100.0), sensitivity 65.7% (63.6, 67.7), NPV 5.6% (4.1, 7.5), and transportation rate 35.6%. Using the ALS-TOR rule, TOR was recommended for 587 patients, specificity 100% (91.9, 100.0) for predicting poor neurological outcomes, PPV 100% (99.4, 100.0), sensitivity 27.3% (25.4, 29.3), NPV 2.7% (2.0, 3.7), and transportation rate 73.2%. BLS-TOR predicted survival (any neurological outcome) with specificity 93.4% (95% CI 85.3, 97.8) versus ALS-TOR 98.7% (95% CI 92.9, 99.8). Both the BLS and ALS-TOR rules had high specificities and PPV values in predicting neurological outcomes, the BLS-TOR rule had a lower predicted transport rate while the ALS-TOR rule was more accurate in predicting futility of resuscitation. Further research into unique local cultural issues would be useful to evaluate the feasibility of any system-wide implementation of TOR.

  15. Quality of life and social support in patients with multiple sclerosis.

    Science.gov (United States)

    Rosiak, Katarzyna; Zagożdżon, Paweł

    2017-10-29

    Quality of life and needforsocial support in persons diagnosed with multiple sclerosis (MS) are to a large extent determined by the degree of their disability. The aim of the study was to analyze an association between specific forms of MS, subjectively perceived quality of life and social support. The study included subjects with established diagnosis of MS, treated at rehabilitation centers, hospitals and in a home setting, as well as the members of patient organizations. After being informed about objectives of the study, type of included tasks and way to complete them, each participant was handed out a set of questionnaires: Berlin Social Support Scales (Łuszczyńska, Kowalska, Schwarzer, Schulz), Quality of Life Questionnaire (WHOQOLBREF), as well as a survey developed specifically for the purposes of this project. The results were subjected to statistical analysis with STATA 12 package. The study included a total of 110 persons (67 women and 43 men). Quality of life overall, as well in physical, psychological, social relationships and environmental health domains, turned out to be particularly important in patients with primary-progressive MS. Irrespective of MS type, social support overall did not play a significant role on univariate analysis. However, subgroup analysis according to sex demonstrated that men with MS received social support four times less often than women. Quality of life in individuals with primary-progressive MS is significantly lower than in patients presenting with other types of this disease. Men with MS are more likely to present with worse scores for social support overall. They are less likely both to acknowledge the need for support and to realize the availability of support they actually need.

  16. Testing soil-like substrate for growing plants in bioregenerative life support systems

    Science.gov (United States)

    Gros, J. B.; Lasseur, Ch.; Tikhomirov, A. A.; Manukovsky, N. S.; Kovalev, V. S.; Ushakova, S. A.; Zolotukhin, I. G.; Tirranen, L. S.; Karnachuk, R. A.; Dorofeev, V. Yu.

    We studied soil-like substrate (SLS) as a potential candidate for plant cultivation in bioregenerative life support systems (BLSS). The SLS was obtained by successive conversion of wheat straw by oyster mushrooms and worms. Mature SLS contained 9.5% humic acids and 4.9% fulvic acids. First, it was shown that wheat, bean and cucumber yields as well as radish yields when cultivated on mature SLS were comparable to yields obtained on a neutral substrate (expanded clay aggregate) under hydroponics. Second, the possibility of increasing wheat and radish yields on the SLS was assessed at three levels of light intensity: 690, 920 and 1150 μmol m -2 s -1 of photosynthetically active radiation (PAR). The highest wheat yield was obtained at 920 μmol m -2 s -1, while radish yield increased steadily with increasing light intensity. Third, long-term SLS fertility was tested in a BLSS model with mineral and organic matter recycling. Eight cycles of wheat and 13 cycles of radish cultivation were carried out on the SLS in the experimental system. Correlation coefficients between SLS nitrogen content and total wheat biomass and grain yield were 0.92 and 0.97, respectively, and correlation coefficients between nitrogen content and total radish biomass and edible root yield were 0.88 and 0.87, respectively. Changes in hormone content (auxins, gibberellins, cytokinins and abscisic acid) in the SLS during matter recycling did not reduce plant productivity. Quantitative and species compositions of the SLS and irrigation water microflora were also investigated. Microbial community analysis of the SLS showed bacteria from Bacillus, Pseudomonas, Proteus, Nocardia, Mycobacterium, Arthrobacter and Enterobacter genera, and fungi from Trichoderma, Penicillium, Fusarium, Aspergillus, Mucor, Botrytis, and Cladosporium genera.

  17. Is advanced life support better than basic life support in prehospital care? A systematic review

    Directory of Open Access Journals (Sweden)

    Ryynänen Olli-Pekka

    2010-11-01

    Full Text Available Abstract Background - Prehospital care is classified into ALS- (advanced life support and BLS- (basic life support levels according to the methods used. ALS-level prehospital care uses invasive methods, such as intravenous fluids, medications and intubation. However, the effectiveness of ALS care compared to BLS has been questionable. Aim - The aim of this systematic review is to compare the effectiveness of ALS- and BLS-level prehospital care. Material and methods - In a systematic review, articles where ALS-level prehospital care was compared to BLS-level or any other treatment were included. The outcome variables were mortality or patient's health-related quality of life or patient's capacity to perform daily activities. Results - We identified 46 articles, mostly retrospective observational studies. The results on the effectiveness of ALS in unselected patient cohorts are contradictory. In cardiac arrest, early cardiopulmonary resuscitation and defibrillation are essential for survival, but prehospital ALS interventions have not improved survival. Prehospital thrombolytic treatment reduces mortality in patients having a myocardial infarction. The majority of research into trauma favours BLS in the case of penetrating trauma and also in cases of short distance to a hospital. In patients with severe head injuries, ALS provided by paramedics and intubation without anaesthesia can even be harmful. If the prehospital care is provided by an experienced physician and by a HEMS organisation (Helicopter Emergency Medical Service, ALS interventions may be beneficial for patients with multiple injuries and severe brain injuries. However, the results are contradictory. Conclusions - ALS seems to improve survival in patients with myocardial infarction and BLS seems to be the proper level of care for patients with penetrating injuries. Some studies indicate a beneficial effect of ALS among patients with blunt head injuries or multiple injuries. There is

  18. Effect of chest compressions only during experimental basic life support on alveolar collapse and recruitment.

    Science.gov (United States)

    Markstaller, Klaus; Rudolph, Annette; Karmrodt, Jens; Gervais, Hendrik W; Goetz, Rolf; Becher, Anja; David, Matthias; Kempski, Oliver S; Kauczor, Hans-Ulrich; Dick, Wolfgang F; Eberle, Balthasar

    2008-10-01

    The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. Twelve anaesthetized pigs (26+/-1 kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a pbasic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.

  19. [The development of a portable life support device for transporting pre-hospital critically ill patients].

    Science.gov (United States)

    Song, Zhen-xing; Wu, Tai-hu; Meng, Xing-ju; Lu, Heng-zhi; Zheng, Jie-wen; Wang, Hai-tao

    2012-06-01

    To describe a portable life support device for transportation of pre-hospital patients with critical illness. The characteristics and requirements for urgent management during transportation of critically ill patients to a hospital were analyzed. With adoption of the original equipment, with the aid of staple of the art soft ware, the overall structure, its installation, fixation, freedom from interference, operational function were studied, and the whole system of life support and resuscitation was designed. The system was composed by different modules, including mechanical ventilation, transfusion, aspiration, critical care, oxygen supply and power supply parts. The system could be fastened quickly to a stretcher to form portable intensive care unit (ICU), and it could be carried by different size vehicles to provide nonstop treatment by using power supply of the vehicle, thus raising the efficiency of urgent care. With characteristics of its small size, lightweight and portable, the device is particularly suitable for narrow space and extreme environment.

  20. Work-Life Issues and Participation in Education and Training: Support Document

    Science.gov (United States)

    Skinner, Natalie

    2009-01-01

    This document serves as a support paper to the "Work-Life Issues and Participation in Education and Training" report. This support document contains tables that show: (1) participation in education and training; (2) participation in education and training and work-life interaction; (3) future participation in education or training; (4) perceptions…

  1. Subjective Quality of Life and Perceived Adequacy of Social Support ...

    African Journals Online (AJOL)

    One such major concern pertains to the very general experiences of life of the elderly and associated factors. The purpose of this study was then to specifically assess the subjective quality of life and perceived adequacy of social support and the possible socio-demographic factors making differences in quality of life.

  2. Services and Supports, Partnership, and Family Quality of Life: Focus on Deaf-Blindness

    Science.gov (United States)

    Kyzar, Kathleen B.; Brady, Sara E.; Summers, Jean Ann; Haines, Shana J.; Turnbull, Ann P.

    2016-01-01

    In this study, the authors examined the moderating effects of partnership on the relationship between services and supports adequacy and family quality of life (FQOL) for families of children with deaf-blindness ages birth to 21. A social-ecological approach enabled examining the impact of disability on the family system. A survey, consisting of…

  3. Instrumentation and control activities at the Electric Power Research Institute to support operator support systems

    International Nuclear Information System (INIS)

    Naser, J.

    1995-01-01

    Most nuclear power plants in the United States continue to operate with analog instrumentation and control (I and C) technology designed 20 to 40 years ago. This equipment is approaching or exceeding its life expectancy, resulting in increasing maintenance efforts to sustain system performance. Decreasing availability of replacement parts and the accelerating deterioration of the infrastructure of manufacturers that support analog technology exacerbate obsolescence problems and resultant operation and maintenance (O and M) cost increases. Modern digital technology holds a significant potential to improve the safety, cost-effectiveness, productivity, and, therefore, competitiveness of nuclear power plants. Operator support systems provide the tools to help achieve this potential. Reliable, integrated information is a critical element for protecting the utility's capital investment and increasing availability, reliability, and productivity. Integrated operator support systems with integrated information can perform more effectively to increase productivity, to enhance safety, and to reduce O and M costs. The plant communications and computing architecture is the infrastructure needed to allow the implementation of I and C systems and associated operator support systems in an integrated manner. Current technology for distributed digital systems, plant process computers, and plant communications and computing networks support the integration of systems and information. (author). 16 refs

  4. Arab Youth in Canada: Acculturation, Enculturation, Social Support, and Life Satisfaction

    Science.gov (United States)

    Paterson, Ashley D.; Hakim-Larson, Julie

    2012-01-01

    Results from 98 Arab youth in Canada showed that having a positive Arab culture orientation was related to greater family life satisfaction with family social support as a mediator. A positive European Canadian orientation was related to greater school life satisfaction, but this relation was not mediated by friend social support. Implications for…

  5. FY 1997 survey report on information sharing product life-cycle systems. 2; 1997 nendo joho kyoyugata product life cycle system ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Highly value-added products considering a total life-cycle of products by integrating both production and consumption activities are much in demand, and each information corresponding to each product should be realized by concept integrating both information and product as common element. Survey was made on what a social system integrating production and consumption should be, a product information model, and technology integrating both information and product for raw material, industrial machine and household appliance as examples. An information model shared by the whole production and consumption activities was first prepared. Based on this model, data storage, update, retrieval and dispatch technologies were surveyed and developed for life-cycle systems. Degradation and life sensing technology was surveyed for maintenance, repair and disposal activities using proper unstable information of each product. A support system for use of shared information was developed to promote a new highly value-added function. Total evaluation was made on information sharing product life-cycle systems. 10 refs., 23 figs., 7 tabs.

  6. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  7. Material balance and diets in biological life support systems: a relationship with a coefficient of closure

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.

    Biological life support systems (BLSS) of various coefficients of closure were considered The basic coefficient of closure was accepted equal to 66%. With increase in coefficient of closure food requirements for the greater degree should be satisfied due to the manufacture of food inside the BLSS. In this connection food values were estimated both in the basic variant, and in those with increased coefficients of closure. Metabolic massflow rates were estimated at the input and output of the BLSS as well as inside it. Human massflow rates were submitted on the basis of characteristics of the 'reference man'. Stoichiometric synthesis - degradation equations of organic substances in the BLSS were obtained. A problem of nitrogen imbalance was shown to occur under an incomplete BLSS closure. To compensate losses of nitrogen with urine and feces, food and nitrogen-containing additives should be introduced into the BLSS.

  8. Social support mediates the association between benefit finding and quality of life in caregivers.

    Science.gov (United States)

    Brand, Charles; Barry, Lorna; Gallagher, Stephen

    2016-06-01

    The psychosocial pathways underlying associations between benefit finding and quality of life are poorly understood. Here, we examined associations between benefit finding, social support, optimism and quality of life in a sample of 84 caregivers. Results revealed that quality of life was predicted by benefit finding, optimism and social support. Moreover, the association between benefit finding and quality of life was explained by social support, but not optimism; caregivers who reported greater benefit finding perceived their social support be higher and this, in turn, had a positive effect on their overall quality of life. These results underscore the importance of harnessing benefit finding to enhance caregiver quality of life. © The Author(s) 2014.

  9. Students' satisfaction to hybrid problem-based learning format for basic life support/advanced cardiac life support teaching.

    Science.gov (United States)

    Chilkoti, Geetanjali; Mohta, Medha; Wadhwa, Rachna; Saxena, Ashok Kumar; Sharma, Chhavi Sarabpreet; Shankar, Neelima

    2016-11-01

    Students are exposed to basic life support (BLS) and advanced cardiac life support (ACLS) training in the first semester in some medical colleges. The aim of this study was to compare students' satisfaction between lecture-based traditional method and hybrid problem-based learning (PBL) in BLS/ACLS teaching to undergraduate medical students. We conducted a questionnaire-based, cross-sectional survey among 118 1 st -year medical students from a university medical college in the city of New Delhi, India. We aimed to assess the students' satisfaction between lecture-based and hybrid-PBL method in BLS/ACLS teaching. Likert 5-point scale was used to assess students' satisfaction levels between the two teaching methods. Data were collected and scores regarding the students' satisfaction levels between these two teaching methods were analysed using a two-sided paired t -test. Most students preferred hybrid-PBL format over traditional lecture-based method in the following four aspects; learning and understanding, interest and motivation, training of personal abilities and being confident and satisfied with the teaching method ( P < 0.05). Implementation of hybrid-PBL format along with the lecture-based method in BLS/ACLS teaching provided high satisfaction among undergraduate medical students.

  10. Life History Responses and Feeding Behavior of Microcrustacea in Altered Gravity - Applicability in Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Fischer, Jessica; Schoppmann, Kathrin; Laforsch, Christian

    2017-06-01

    Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μ g) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper- g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper- g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids' unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μ g. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.

  11. Advanced intelligent computational technologies and decision support systems

    CERN Document Server

    Kountchev, Roumen

    2014-01-01

    This book offers a state of the art collection covering themes related to Advanced Intelligent Computational Technologies and Decision Support Systems which can be applied to fields like healthcare assisting the humans in solving problems. The book brings forward a wealth of ideas, algorithms and case studies in themes like: intelligent predictive diagnosis; intelligent analyzing of medical images; new format for coding of single and sequences of medical images; Medical Decision Support Systems; diagnosis of Down’s syndrome; computational perspectives for electronic fetal monitoring; efficient compression of CT Images; adaptive interpolation and halftoning for medical images; applications of artificial neural networks for real-life problems solving; present and perspectives for Electronic Healthcare Record Systems; adaptive approaches for noise reduction in sequences of CT images etc.

  12. Learner-oriented distance education supporting service system model and applied research

    Directory of Open Access Journals (Sweden)

    Chen Liyong

    2016-01-01

    Full Text Available Distance education is a product of social progress and an emerging way of life-long learning as well. This paper describes the construction of the distance education supporting service system and establishes the distance education supporting service system from the perspective of distance education learners. Under the premise of considering to provide six influencing factors--learning facilities, learning coaching and counseling, learning resources, education and teaching information, assessment of student learning situation and organization of practical teaching activities, this paper assesses the distance education supporting service system of Beijing, Shanghai and Shenzhen by using AHP.

  13. Ionic Liquids Enabling Revolutionary Closed-Loop Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is to utilize ionic liquids with the Bosch process to achieve closed-loop life support. Specific tasks are to: 1) Advance the technology readiness of...

  14. Nonlinear Dynamic Models in Advanced Life Support

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  15. Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system: Initial results from biosphere 2

    Science.gov (United States)

    Nelson, M.; Dempster, W.; Alvarez-Romo, N.; MacCallum, T.

    1994-11-01

    Biosphere 2 is the first man-made, soil-based, bioregenerative life support system to be developed and tested. The utilization and amendment of local space resources, e.g. martian soil or lunar regolith, for agricultural and other purposes will be necesary if we are to minimize the requirement for Earth materials in the creation of long-term off-planet bases and habitations. Several of the roles soil plays in Biosphere 2 are 1) for air purification 2) as a key component in created wetland systems to recycle human and animal wastes and 3) as nutrient base for a sustainable agricultural cropping program. Initial results from the Biosphere 2 closure experiment are presented. These include the accelerated cycling rates due to small reservoir sizes, strong diurnal and seasonal fluxes in atmospheric CO2, an unexpected and continuing decline in atmospheric oxygen, overall maintenance of low levels of trace gases, recycling of waste waters through biological regeneration systems, and operation of an agriculture designed to provide diverse and nutritionally adequate diets for the crew members.

  16. Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system: initial results from Biosphere 2.

    Science.gov (United States)

    Nelson, M; Dempster, W; Alvarez-Romo, N; MacCallum, T

    1994-11-01

    Biosphere 2 is the first man-made, soil-based, bioregenerative life support system to be developed and tested. The utilization and amendment of local space resources, e.g. martian soil or lunar regolith, for agricultural and other purposes will be necessary if we are to minimize the requirement for Earth materials in the creation of long-term off-planet bases and habitations. Several of the roles soil plays in Biosphere 2 are 1) for air purification 2) as a key component in created wetland systems to recycle human and animal wastes and 3) as nutrient base for a sustainable agricultural cropping program. Initial results from the Biosphere 2 closure experiment are presented. These include the accelerated cycling rates due to small reservoir sizes, strong diurnal and seasonal fluxes in atmospheric CO2, an unexpected and continuing decline in atmospheric oxygen, overall maintenance of low levels of trace gases, recycling of waste waters through biological regeneration systems, and operation of an agriculture designed to provide diverse and nutritionally adequate diets for the crew members.

  17. Emergency Neurological Life Support: Intracerebral Hemorrhage.

    Science.gov (United States)

    Jauch, Edward C; Pineda, Jose A; Hemphill, J Claude

    2015-12-01

    Intracerebral hemorrhage (ICH) is a subset of stroke due to bleeding within the parenchyma of the brain. It is potentially lethal, and survival depends on ensuring an adequate airway, reversal of coagulopathy, and proper diagnosis. ICH was chosen as an Emergency Neurological Life Support protocol because intervention within the first critical hour may improve outcome, and it is critical to have site-specific protocols to drive care quickly and efficiently.

  18. Improving basic life support training for medical students.

    Science.gov (United States)

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.

  19. MELiSSA celebrates 25 years of research into life support

    International Nuclear Information System (INIS)

    2015-01-01

    MELiSSA (Micro-Ecological Life Support System Alternative) is a collaborative project with the European Space Agency ESA and various other scientific partners. The objective of MELiSSA is to develop a system that is able to provide manned space missions with food, drinking water and oxygen autonomously in space. Drinkable water and oxygen are currently being made in the international space station ISS by filtering waste water and by electrolysing water. However, such physiochemical technologies do not offer a solution for food. The MELiSSA project intends to reuse waste products, which include CO2, water, stools and urine from the astronauts, and even the perspiration moisture in the cabin and to transfer these into food through the use of micro-organisms.

  20. Grandmothers Raising Grandchildren with Disabilities: Sources of Support and Family Quality of Life

    Science.gov (United States)

    Kresak, Karen E.; Gallagher, Peggy A.; Kelley, Susan J.

    2014-01-01

    Sources of support and quality of life of 50 grandmother-headed families raising grandchildren with and without disabilities were examined. Comparative analyses revealed significant differences between grandmothers raising grandchildren with and without disabilities in regard to sources of support and family quality of life. Informal support was…

  1. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  2. Status of Perceived Social Support and Quality of Life among Hearing-Impaired Adolescents

    Directory of Open Access Journals (Sweden)

    Tayebeh Reyhani

    2016-02-01

    Full Text Available Background Annual four to five thousand babies are born with hearing loss in the Iran. Hearing impairment is a disability that affects the quality of life of people with this problem. These individuals need to support from family and friends because of their specific conditions that this received support has impact on their quality of life. This study was conducted to assess the status of perceived social support and quality of life of hearing-impaired adolescent. Material and Methods A cross-correlation study was performed with cluster and multi stage random sampling method on 83 students with hearing impairment who met the inclusion criteria of the study in Mashhad. The data collection tools included Pediatric quality of life inventory (adolescent form and perceived social support inventory (from family and friends.The data obtained from the questionnaires were analyzed through SPSS software version 16. Results The results showed that the majority of the most of adolescents with hearing impairment were reported moderate total quality of life (%51.8. But the majority of them reported perceived social support from family was moderate (%61.5 and from friends was week (%45.8. Also there was a significant relationship between category of total quality of life of adolescent viewpoint with perceived social support from family (P=0.056. Conclusion Based on the obtained results, the majority of the most of adolescents with hearing impairment were reported moderate total quality of life. Disability and condition of these persons affects quality of life of them, so need for adequate support from family, friends and society. Nurses play an important role in identifying and introduce these needs and condition and how to deal with them.

  3. Modeling snail breeding in Bioregenerative Life Support System

    Science.gov (United States)

    Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..

    It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally

  4. Integration of Social Aspects in Decision Support, Based on Life Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Pere Fullana-i-Palmer

    2011-03-01

    Full Text Available Recently increasing attention has been paid to complementing environmental Life Cycle Assessment (LCA with social aspects. The paper discusses the selection of social impacts and indicators from existing frameworks like Social Life Cycle Assessment (SLCA and Social Impact Assessment (SIA. Two ongoing case studies, addressing sustainability assessment within decision support, were considered: (1 Integrated Water Resources Management (IWRM in Indonesia; and (2 Integrated Packaging Waste Management in Spain and Portugal (FENIX. The focus was put on social impacts occurring due to decisions within these systems, such as choice of technologies, practices or suppliers. Thus, decision makers—here understood as intended users of the studies’ results—are not consumers that buy (or do not buy a product, such as in recent SLCA case-studies, but mainly institutions that decide about the design of the water or packaging waste management system. Therefore, in the FENIX project, a list of social impacts identified from literature was sent to the intended users to be ranked according to their priorities. Finally, the paper discusses to what extent the entire life cycle is reflected in SLCA impact categories and indicators, and explains how both life-cycle and on-site-related social impacts were chosen to be assessed. However, not all indicators in the two projects will assess all stages of the life cycle, because of their varying relevance in the different stages, data availability and practical interest of decision makers.

  5. Aligning everyday life priorities with people's self-management support networks: an exploration of the work and implementation of a needs-led telephone support system.

    Science.gov (United States)

    Blickem, Christian; Kennedy, Anne; Jariwala, Praksha; Morris, Rebecca; Bowen, Robert; Vassilev, Ivaylo; Brooks, Helen; Blakeman, Tom; Rogers, Anne

    2014-06-17

    Recent initiatives to target the personal, social and clinical needs of people with long-term health conditions have had limited impact within primary care. Evidence of the importance of social networks to support people with long-term conditions points to the need for self-management approaches which align personal circumstances with valued activities. The Patient-Led Assessment for Network Support (PLANS) intervention is a needs-led assessment for patients to prioritise their health and social needs and provide access to local community services and activities. Exploring the work and practices of patients and telephone workers are important for understanding and evaluating the workability and implementation of new interventions. Qualitative methods (interviews, focus group, observations) were used to explore the experience of PLANS from the perspectives of participants and the telephone support workers who delivered it (as part of an RCT) and the reasons why the intervention worked or not. Normalisation Process Theory (NPT) was used as a sensitising tool to evaluate: the relevance of PLANS to patients (coherence); the processes of engagement (cognitive participation); the work done for PLANS to happen (collective action); the perceived benefits and costs of PLANS (reflexive monitoring). 20 patients in the intervention arm of a clinical trial were interviewed and their telephone support calls were recorded and a focus group with 3 telephone support workers was conducted. Analysis of the interviews, support calls and focus group identified three themes in relation to the delivery and experience of PLANS. These are: formulation of 'health' in the context of everyday life; trajectories and tipping points: disrupting everyday routines; precarious trust in networks. The relevance of these themes are considered using NPT constructs in terms of the work that is entailed in engaging with PLANS, taking action, and who is implicated this process. PLANS gives scope to align

  6. Relationships among the perceived health status, family support and life satisfaction of older Korean adults.

    Science.gov (United States)

    Kim, Sook-Young; Sok, Sohyune R

    2012-08-01

    The objective of this study was to examine the perceived health status, family support and life satisfaction of older Korean adults and the relationships among them. This study was designed to be a descriptive correlation study using questionnaire. Subjects were 246 older people who were over 65 years of age in Seoul and Daegu metropolitan city, Korea. Measures were the Cornell Medical Index-Simple Korean Form to measure the perceived health status, the Family Support Instrument to measure the family support and the Standard Life Satisfaction Instrument for Korean people to measure the life satisfaction. Perceived health state was worse as average 3.3, family support was good as average 3.4 and life satisfaction was low as average 3.1. There were statistically significant positive correlations among perceived health state, family support and life satisfaction and between family support and life satisfaction. The predictors of life satisfaction in elderly were family support, age, monthly allowance and perceived health state. These factors explained 37.5% of the total variance. The major influencing factor was family support. This cross-sectional study provides preliminary evidence that to develop nursing strategy to increase family support of older Korean adults is needed. © 2012 Blackwell Publishing Asia Pty Ltd.

  7. Nile tilapia Oreochromis niloticus as a food source in advanced life support systems: Initial considerations

    Science.gov (United States)

    Gonzales, John M.; Brown, Paul B.

    2006-01-01

    Maintenance of crew health is of paramount importance for long duration space missions. Weight loss, bone and calcium loss, increased exposure to radiation and oxidative stress are critical concerns that need to be alleviated. Tilapia are currently under evaluation as a source of food and their contribution to reducing waste in advanced life support systems (ALSS). The nutritional composition of tilapia whole bodies, fillet, and carcass residues were quantitatively determined. Carbon and nitrogen free-extract percentages were similar among whole body (53.76% and 6.96%, respectively), fillets (47.06% and 6.75%, respectively), and carcass (56.36% and 7.04%, respectively) whereas percentages of N, S, and protein were highest in fillet (13.34, 1.34, and 83.37%, respectively) than whole body (9.27, 0.62, and 57.97%, respectively) and carcass (7.70, 0.39, and 48.15%, respectively). Whole body and fillet meet and/or exceeded current nutritional recommendations for protein, vitamin D, ascorbic acid, and selenium for international space station missions. Whole body appears to be a better source of lipids and n-3 fatty acids, calcium, and phosphorous than fillet. Consuming whole fish appears to optimize equivalent system mass compared to consumption of fillets. Additional research is needed to determine nutritional composition of tilapia whole body, fillet, and carcass when fed waste residues possibly encountered in an ALSS.

  8. FACTORS AFFECTING QUALITY OF LIFE AND LEVEL OF SOCIAL SUPPORT IN CANCER PATIENTS

    Directory of Open Access Journals (Sweden)

    Ayse Berivan Bakan

    2017-04-01

    Full Text Available Background: When people face health problems, their life satisfaction levels and social relations could be ruined. When it comes to an eerie, deadly and chronic disease like cancer, the individual is much more likely to be affected by it. Objective: This descriptive study aims to identify quality of life and level of social support and the affecting factors in cancer patients. Methods: The sample included 170 patients who applied to Internal Diseases, Radiation Oncology, Thorax diseases clinics and Chemotherapy polyclinic in a university hospital in Turkey between March and August, 2005, who met the research criteria, and who volunteered to participate in the study. The sample represented 20 % of the target population. Data were collected through SF-36 Quality of Life Scale and Multidimensional Scale of Perceived Social Support. Results: The patients’ Global Quality of Life mean score was found 38.67 ± 13.64, and mean score for the Perceived Social Support was found 59.19 ± 17.5. Global Quality of Life score was higher in those who underwent an operation and who received ambulatory health care. Although Global Quality of Life was not influenced by the gender variable, male patients’ level of well-being was found to be higher. Perceived Social Support total score was found to be higher in those who knew about their disease. Family support was found to be higher in those who were married and who lived in town; it was found to be low in those who had low socio-economic level and who received inpatient treatment. Friend support was found to be high in those who knew about their disease. Conclusion: There was a linear relationship between Perceived Social Support and Quality of Life. It is recommended that more studies with wider groups of participants would shed more light to the issue of identifying quality of life, social support level and the relationships between them in cancer patients.

  9. Student Academic Support as a Predictor of Life Satisfaction in University Students

    Science.gov (United States)

    Akin, Ahmet; Arslan, Serhat; Çelik, Eyüp; Kaya, Çinar; Arslan, Nihan

    2015-01-01

    The purpose of this study is to examine the relationship between Academic Support and Life Satisfaction. Participants were 458 university students who voluntarily filled out a package of self-report instruments. Student Academic Support Scale and Satisfaction with Life Scale were used as measures. The relationships between student academic support…

  10. Social Support and Optimism as Predictors of Life Satisfaction of College Students

    Science.gov (United States)

    Yalcin, Ilhan

    2011-01-01

    The purpose of this study was to investigate the predictive value of optimism, perceived support from family and perceived support from faculty in determining life satisfaction of college students in Turkey. One hundred and thirty three students completed the Satisfaction with Life Scale (Diener et al., Journal of Personality Assessment…

  11. Methodology and Supporting Toolset Advancing Embedded Systems Quality

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Soler, José; Brewka, Lukasz Jerzy

    2013-01-01

    Software quality is of primary importance in the development of embedded systems that are often used in safety-critical applications. Moreover, as the life cycle of embedded products becomes increasingly tighter, productivity and quality are simultaneously required and closely interrelated towards...... delivering competitive products. In this context, the MODUS (Methodology and supporting toolset advancing embedded systems quality) project aims to provide a pragmatic and viable solution that will allow SMEs to substantially improve their positioning in the embedded-systems development market. This paper...... will describe the MODUS project with focus on the technical methodologies that will be developed advancing embedded system quality....

  12. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  13. Architecture and Functionality of the Advanced Life Support On-Line Project Information System (OPIS)

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriquez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Amcs Research Center (ARC) tu develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL(Trademark) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an R&TD status information hub that can potentially serve as the primary annual reporting mechanism. Using OPIS, ALS managers and element leads will be able to carry out informed research and technology development investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, and Control). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  14. Design of an Instructional Module on Basic Life Support for Homeschooled Children

    Science.gov (United States)

    Awang, Sakinah; Ahmad, Shamsuria; Alias, Norlidah; DeWitt, Dorothy

    2016-01-01

    Basic Life Support (BLS) can increase a victim's chances of survival when administered promptly and correctly. Cardiac and respiratory arrests occur more frequently when the victim is at home far from clinical support. Hence, prompt action by family members trained in BLS can save the victim's life. In this study, the requirements for the design…

  15. Canadians' support for radical life extension resulting from advances in regenerative medicine.

    Science.gov (United States)

    Dragojlovic, Nick

    2013-04-01

    This paper explores Canadian public perceptions of a hypothetical scenario in which a radical increase in life expectancy results from advances in regenerative medicine. A national sample of 1231 adults completed an online questionnaire on stem cell research and regenerative medicine, including three items relating to the possibility of Canadians' average life expectancy increasing to 120 years by 2050. Overall, Canadians are strongly supportive of the prospect of extended lifespans, with 59% of the sample indicating a desire to live to 120 if scientific advances made it possible, and 47% of respondents agreeing that such increases in life expectancy are possible by 2050. The strongest predictors of support for radical life extension are individuals' general orientation towards science and technology and their evaluation of its plausibility. These results contrast with previous research, which has suggested public ambivalence for biomedical life extension, and point to the need for more research in this area. They suggest, moreover, that efforts to increase public awareness about anti-aging research are likely to increase support for the life-extending consequences of that research program. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  17. Strategy for determining life expectancy in mechanical components in an overall system

    International Nuclear Information System (INIS)

    Tenckhoff, E.; Erve, M.

    1990-01-01

    The safety standard at a nuclear power station achieved at the time of commissioning on the basis of the state of the art during the design and construction stage has to be maintained over the entire working life of the unit. Original design life expectancy is under review in the light of new safety experience and developments. The results of such analysis can serve not only preventive maintenance purposes but also as the basis for supporting and extending the planned or approved working life; they help increase availability. A comprehensive analysis strategy to establish the actual condition and residual life expectancy of components, systems and complete units has been developed by Siemens/KWU. The results of this analysis can lead to action to extend the life expectancy of components and systems and improvements in systems and subsystems. This report quotes a number of examples. 6 figs

  18. Human factor observations of the Biosphere 2, 1991-1993, closed life support human experiment and its application to a long-term manned mission to Mars.

    Science.gov (United States)

    Alling, Abigail; Nelson, Mark; Silverstone, Sally; Van Thillo, Mark

    2002-01-01

    Human factors are a key component to the success of long-term space missions such as those necessitated by the human exploration of Mars and the development of bioregenerative and eventually self-sufficient life support systems for permanent space outposts. Observations by participants living inside the 1991-1993 Biosphere 2 closed system experiment provide the following insights. (1) Crew members should be involved in the design and construction of their life support systems to gain maximum knowledge about the systems. (2) Individuals living in closed life support systems should expect a process of physiological and psychological adaptation to their new environment. (3) Far from simply being a workplace, the participants in such extended missions will discover the importance of creating a cohesive and satisfying life style. (4) The crew will be dependent on the use of varied crops to create satisfying cuisine, a social life with sufficient outlets of expression such as art and music, and to have down-time from purely task-driven work. (5) The success of the Biosphere 2 first 2-year mission suggests that crews with high cultural diversity, high commitment to task, and work democracy principles for individual responsibility may increase the probability of both mission success and personal satisfaction. (6) Remaining challenges are many, including the need for far more comprehensive real-time modeling and information systems (a "cybersphere") operating to provide real-time data necessary for decision-making in a complex life support system. (7) And, the aim will be to create a noosphere, or sphere of intelligence, where the people and their living systems are in sustainable balance.

  19. Withholding and withdrawing of life support from patients with severe head injury.

    Science.gov (United States)

    O'Callahan, J G; Fink, C; Pitts, L H; Luce, J M

    1995-09-01

    To characterize the withholding or withdrawing of life support from patients with severe head injury. San Francisco General Hospital, a city and county hospital with a Level I trauma center. A standardized questionnaire was used to collect data on demographics and functional outcome of severely head-injured (Glasgow Coma Score of family members. Forty-seven patients who were admitted to a medical-surgical intensive care unit over a 1-yr period. Twenty-four patients had life support withheld or withdrawn, and 23 patients did not. Physician and family separately assessed patient's probable functional outcome, degree of communication between them, reasons important in recommending or deciding on discontinuation of life support, and the result of action taken. Six months later, the families reviewed the process of their decision, how well physician(s) had communicated, and what might have improved communication. Of 24 patients with life support discontinued, 22 died; two were discharged from the hospital. Twenty-three of the 24 patients had a poor prognosis on admission. Of the 23 patients who were continued on life support for the duration of their hospitalization, ten had a poor (p Family's assessment of prognosis agreed with physician's assessment in 22 of the 24 patients from whom life support was discontinued (p families' assessments. Physicians' considerations in recommending limitation of care and families' considerations in making decisions were the same, primarily an inevitably poor prognosis. Neither physician nor families cited cost or availability of care as a deciding factor. Two families disagreed with the recommendation to limit care after initial agreement because the patients' prognosis improved from "likely death" to "vegetative." Care was therefore continued, and both patients remained vegetative 6 months after admission to the hospital and discharge to chronic care facilities. Life support is commonly withheld or withdrawn from patients with severe

  20. Relational use of an electronic quality of life and practice support system in hospital palliative consult care: A pilot study.

    Science.gov (United States)

    Krawczyk, Marian; Sawatzky, Richard

    2018-03-08

    This study is part of an overarching research initiative on the development and integration of an electronic Quality of Life and Practice Support System (QPSS) that uses patient-reported outcome and experience measures in clinical practice. The current study focused on palliative nurse consultants trialing the QPSS with older hospitalized adults receiving acute care. The primary aim of the study was to better understand consultants' and patients' experiences and perspectives of use. The project involved two nurse specialists within a larger palliative outreach consult team (POCT) and consenting older adult patients (age 55+) in a large tertiary acute care hospital in western Canada. User-centered design of the QPSS was informed by three focus groups with the entire POCT team, and implementation was evaluated by direct observation as well as interviews with the POCT nurses and three patients. Thematic analysis of interviews and field notes was informed by theoretical perspectives from social sciences. Result Over 9 weeks, the POCT nurses used the QPSS at least once with 20 patients, for a total of 47 administrations. The nurses most often assisted patients in using the QPSS. Participants referenced three primary benefits of relational use: enhanced communication, strengthened therapeutic relations, and cocreation of new insights about quality of life and care experiences. The nurses also reported increased visibility of quality of life concerns and positive development as relational care providers. Significance of results Participants expressed that QPSS use positively influenced relations of care and enhanced practices consistent with person-centered care. Results also indicate that electronic assessment systems may, in some instances, function as actor-objects enabling new knowledge and relations of care rather than merely as a neutral technological platform. This is the first study to examine hospital palliative consult clinicians' use of a tablet-based system

  1. Human life support during interplanetary travel and domicile. V - Mars expedition technology trade study for solid waste management

    Science.gov (United States)

    Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.

    1992-01-01

    A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.

  2. [A Medical Devices Management Information System Supporting Full Life-Cycle Process Management].

    Science.gov (United States)

    Tang, Guoping; Hu, Liang

    2015-07-01

    Medical equipments are essential supplies to carry out medical work. How to ensure the safety and reliability of the medical equipments in diagnosis, and reduce procurement and maintenance costs is a topic of concern to everyone. In this paper, product lifecycle management (PLM) and enterprise resource planning (ERP) are cited to establish a lifecycle management information system. Through integrative and analysis of the various stages of the relevant data in life-cycle, it can ensure safety and reliability of medical equipments in the operation and provide the convincing data for meticulous management.

  3. Life-cycle support for staff assignment rules in process-aware information systems

    NARCIS (Netherlands)

    Rinderle-Ma, S.; Aalst, van der W.M.P.

    2007-01-01

    Process mining has been proposed as a tool for analyzing business processes based on events logs. Today, most information systems are logging events in some log and thus provide detailed information about the processes they are supporting. This information can be used for two forms of process

  4. Basic life support and children with profound and multiple learning disabilities.

    Science.gov (United States)

    Cash, Stefan; Shinnick-Page, Andrea

    2008-10-01

    Nurses and other carers of people with learning disabilities must be able to manage choking events and perform basic life support effectively. UK guidelines for assessment of airway obstruction and for resuscitation do not take account of the specific needs of people with profound multiple learning disability. For example, they fail to account for inhibited gag and coughing reflexes, limited body movements or chest deformity. There are no national guidelines to assist in clinical decisions and training for nurses and carers. Basic life support training for students of learning disability nursing at Birmingham City University is supplemented to address these issues. The authors ask whether such training should be provided for all nurses including those caring for children and young people. They also invite comment and discussion on questions related to chest compression and training in basic life support for a person in a seated position.

  5. Development of Pediatric Neurologic Emergency Life Support Course: A Preliminary Report.

    Science.gov (United States)

    Haque, Anwarul; Arif, Fehmina; Abass, Qalab; Ahmed, Khalid

    2017-11-01

    Acute neurological emergencies (ANEs) in children are common life-threatening illnesses and are associated with high mortality and severe neurological disability in survivors, if not recognized early and treated appropriately. We describe our experience of teaching a short, novel course "Pediatric Neurologic Emergency Life Support" to pediatricians and trainees in a resource-limited country. This course was conducted at 5 academic hospitals from November 2013 to December 2014. It is a hybrid of pediatric advance life support and emergency neurologic life support. This course is designed to increase knowledge and impart practical training on early recognition and timely appropriate treatment in the first hour of children with ANEs. Neuroresuscitation and neuroprotective strategies are key components of this course to prevent and treat secondary injuries. Four cases of ANEs (status epilepticus, nontraumatic coma, raised intracranial pressure, and severe traumatic brain injury) were taught as a case simulation in a stepped-care, protocolized approach based on best clinical practices with emphasis on key points of managements in the first hour. Eleven courses were conducted during the study period. One hundred ninety-six physicians including 19 consultants and 171 residents participated in these courses. The mean (SD) score was 65.15 (13.87%). Seventy percent (132) of participants were passed (passing score > 60%). The overall satisfaction rate was 85%. Pediatric Neurologic Emergency Life Support was the first-time delivered educational tool to improve outcome of children with ANEs with good achievement and high satisfaction rate of participants. Large number courses are required for future validation.

  6. Socio-Demographic Factors, Social Support, Quality of Life, and HIV/AIDS in Ghana.

    Science.gov (United States)

    Abrefa-Gyan, Tina; Cornelius, Llewellyn J; Okundaye, Joshua

    2016-01-01

    The increase in the access to biomedical interventions for people living with HIV/AIDS in the developing world has not been adequately matched with the requisite psychosocial treatments to help improve the effectiveness of biomedical interventions. Therefore, in this study the author seeks to determine whether socio-demographic characteristics and social support are associated with quality of life in individuals diagnosed with HIV/AIDS in Ghana. A convenience sample of 300 HIV/AIDS support group members was obtained via cross-sectional design survey. The Medical Outcome Studies (MOS) HIV Health Survey, the MOS Social Support Survey (MOS-SSS), and demographic questionnaire instruments were used to assess quality of life, social support, and demographic information respectively. Multiple regression analysis showed that there was a positive association between overall social support and overall quality of life (r = .51). It also showed that being younger, male, attending support group meetings for over a year, and having ≥ 13 years of schooling related to higher quality of life. Implications of the findings for practice, policy, and research in Ghana and the rest of the developing world are discussed.

  7. European top managers’ support for work-life arrangements

    NARCIS (Netherlands)

    Been, Wike M.; van der Lippe, Tanja; den Dulk, Laura; Das Dores Horta Guerreiro, Maria; Kanjuo Mrčela, Aleksandra; Niemistö, Charlotta

    2017-01-01

    Top managers—defined as CEOs, CFOs and members of boards of directors—decide to what degree their organization offers employees work-life arrangements. This study focuses on the conditions under which they support such arrangements. A factorial survey of 202 top managers in five European countries

  8. C.E.B.A.S., a closed equilibrated biological aquatic system as a possible precursor for a long-term life support system?

    Science.gov (United States)

    Blüm, V.

    C.E.B.A.S.-AQUARACK is a long-term multi-generation experimental device for aquatic organisms which is disposed for utlizitation in a space station. It results from the basic idea of a space aquarium for maintaining aquatic animals for longer periods integrated in a AQUARACK which consists of a modular animal holding tank, a semi-biological/physical water recycling system and an electronical control unit. The basic idea to replace a part of the water recycling system by a continuous culture of unicellular algae primarily leads to a second system for experiments with algae, a botanical AQUARACK consisting of an algal reactor, a water recycling and the electronical control unit. The combination of the zoological part, and the botanical part with a common control system in the AQUARACK, however, results in a ``Closed Equilibrated Biological Aquatic System'' (C.E.B.A.S.) representing an closed artificial ecosystem. Although this is disposed primarily as an experimental device for basic zoological, botanical and interdisciplinary research it opens the theoretical possibility to adapt it for combined production of animal and plant biomass on ground or in space. The paper explains the basic conception of the hardware construction of the zoological part of the system, the corresponding scientific frame program including the choice of the experimental animals and gives some selected examples of the hardware-related resrearch. It furtheron discusses the practical and economical relevance of the system in the development of a controlled aquatical life support system in general.

  9. Cloning crops in a CELSS via tissue culture: Prospects and problems

    Science.gov (United States)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  10. The role of interpersonal sensitivity, social support, and quality of life in rural older adults.

    Science.gov (United States)

    Wedgeworth, Monika; LaRocca, Michael A; Chaplin, William F; Scogin, Forrest

    The mental health of elderly individuals in rural areas is increasingly relevant as populations age and social structures change. While social support satisfaction is a well-established predictor of quality of life, interpersonal sensitivity symptoms may diminish this relation. The current study extends the findings of Scogin et al by investigating the relationship among interpersonal sensitivity, social support satisfaction, and quality of life among rural older adults and exploring the mediating role of social support in the relation between interpersonal sensitivity and quality of life (N = 128). Hierarchical regression revealed that interpersonal sensitivity and social support satisfaction predicted quality of life. In addition, bootstrapping resampling supported the role of social support satisfaction as a mediator between interpersonal sensitivity symptoms and quality of life. These results underscore the importance of nurses and allied health providers in assessing and attending to negative self-perceptions of clients, as well as the perceived quality of their social networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Investigation of Interfacial Phenomena During Condensation of Humid Air on a Horizontal Substrate

    Directory of Open Access Journals (Sweden)

    Tiwari Akhilesh

    2013-12-01

    Full Text Available The condensation phenomenon of humid air on solid substrates can occur in many applications, and it is known as one of the most difficult problem to deal with for the improvement of the quality of air in a closed environment. The present study was motivated by the investigation of the coupling between ventilation and condensation inside controlled ecological life support systems (CELSS, as it has an important role for higher plants growth in greenhouses and living conditions in manned spacecraft cabins, particularly in long duration space flights or in future space bases. It is well known that the enhancement of the gas exchange with leaves and the growth of plants are dependent on the organoleptic and/or the surrounding thermo-physical factors. Insufficient air movement around plants and condensation on plant leaves generally limit their growth by suppressing the gas diffusion in the leaf boundary-layer thereby decreasing photosynthetic and transpiration rates. Thus, the optimization of a CELSS will require the control of the airflow and concomitant gas/liquid transfer at the plant surfaces. The experimental and theoretical modeling of CELSS requires a comprehensive understanding of the micro to the macro levels of liquid gas phase transfer. Hence, an experimental set-up was developed at 1-g to evaluate the mass transfer coefficients due to condensation of humid air on specific geometries in well controlled environmental conditions. The goal was to establish correlations between the fluxes of mass and heat, the relative humidity and the mean flow for the development of theoretical models based on local transfer coefficients. The experiments were performed at ambient temperature, with a relative humidity between 35-70% and for a velocity range of 1.0-3.0 m.s−1.

  12. Comparison of Online and Traditional Basic Life Support Renewal Training Methods for Registered Professional Nurses.

    Science.gov (United States)

    Serwetnyk, Tara M; Filmore, Kristi; VonBacho, Stephanie; Cole, Robert; Miterko, Cindy; Smith, Caitlin; Smith, Charlene M

    2015-01-01

    Basic Life Support certification for nursing staff is achieved through various training methods. This study compared three American Heart Association training methods for nurses seeking Basic Life Support renewal: a traditional classroom approach and two online options. Findings indicate that online methods for Basic Life Support renewal deliver cost and time savings, while maintaining positive learning outcomes, satisfaction, and confidence level of participants.

  13. Advanced Hazmat Life Support (AHLS): A Feasibility Assessment

    International Nuclear Information System (INIS)

    Borron, S. W.; Walter, F. G.

    2007-01-01

    A prospective, descriptive, feasibility study aimed to determine whether an interdisciplinary group of health care experts could design and successfully deliver an international, life support, continuing education program that teaches the medical management of hazardous materials (hazmat) patients. The American Academy of Clinical Toxicology and the University of Arizona College of Medicine, Arizona Emergency Medicine Research Center partnered on July 1, 1998 to develop a two-day Advanced Hazmat Life Support (AHLS) Provider Course. Interdisciplinary expert clinicians designed and then delivered the first AHLS Provider Course in 1999. Prior to this, other courses focused on the management of hazmat incidents and almost exclusively on the prehospital care of hazmat victims by firefighters, hazardous materials technicians, and emergency medical technicians (EMTs), not on the medical management of patients from these incidents. Therefore, AHLS was developed for a broader interdisciplinary group of health care professionals, including both prehospital health care professionals and hospital-based, poison center-based, clinic-based, public health care-based, and other health care professionals. From 1999 through 2006, the AHLS Provider Course has trained 7,142 health care professionals from 48 countries. Of the 7,142 health care professionals worldwide, 43% are paramedics, 24% are physicians, 21% are nurses, 2% are pharmacists, 1% are physician assistants, and 9% are other professionals. Of the professionals trained, 88% are from the United States, 5% from Hong Kong, 2% from Canada, 2% from Australia, 1% from Mexico, and the remainder come from 43 other countries. The Advanced Hazmat Life Support Program is feasible and meets the continuing education needs of health care professionals around the world.(author)

  14. Group decision support system for customer-driven product design

    Science.gov (United States)

    Lin, Zhihang; Chen, Hang; Chen, Kuen; Che, Ada

    2000-10-01

    This paper describes the work on the development of a group decision support system for customer driven product design. The customer driven is to develop products, which meet all customer requirements in whole life cycle of products. A process model of decision during product primary design is proposed to formulate the structured, semi-structured and unstructured decision problems. The framework for the decision support system is presented that integrated both advances in the group decision making and distributed artificial intelligent. The system consists of the product primary design tool kit and the collaborative platform with multi-agent structure. The collaborative platform of the system and the product primary design tool kit, including the VOC (Voice of Customer) tool, QFD (Quality Function Deployment) tool, the Conceptual design tool, Reliability analysis tool and the cost and profit forecasting tool, are indicated.

  15. Perceived health status and life satisfaction in old age, and the moderating role of social support.

    Science.gov (United States)

    Dumitrache, Cristina G; Rubio, Laura; Rubio-Herrera, Ramona

    2017-07-01

    The aim of this study was on one hand to examine the associations between health impairment and life satisfaction, as well as social support and life satisfaction, and on the other, to analyze the moderating effect of social support with regard to health impairment and life satisfaction in a sample of community-dwelling older adults from urban areas of Granada, southern Spain. This was a cross-sectional survey in which a sample of 406 older adults with ages between 65 and 99 years old (M age = 74.88, SD = 6.75) was selected. Multiple stepwise regression analysis was used to assess the impact of health impairment and perceived social support on life satisfaction. Moderation analysis was performed using the bias-corrected and accelerated bootstrapping approach. Significant differences in life satisfaction scores were found by number and type of disease, restrictions in daily life activities and subjective health. Perceived health and perceived social support predicted life satisfaction. Besides global social support, emotional and affectionate support moderated the link between perceived health and life satisfaction. Older people who do not rate their health status positively and indicate low levels of social support have a higher risk of being dissatisfied with their lives and due to this they should receive special attention from gerontologists.

  16. Effective work-life balance support for various household structures

    OpenAIRE

    Brummelhuis, L.L. ten; Lippe, T. van der

    2010-01-01

    Today’s workforce encompasses a wide variety of employees with specifi c needs and resources when it comes to balancing work and life roles. Our study explores whether various types of work-life balance support measures improve employee helping behavior and performance among single employees, employees with a partner, and employees with a partner and children. Using a sample of 482 employees at 24 organizations, the results showed that the organization’s work-family culture improved work perf...

  17. Selection and hydroponic growth of potato cultivars for bioregenerative life support systems

    Science.gov (United States)

    Molders, K.; Quinet, M.; Decat, J.; Secco, B.; Dulière, E.; Pieters, S.; van der Kooij, T.; Lutts, S.; Van Der Straeten, D.

    2012-07-01

    As part of the ESA-funded MELiSSA program, Ghent University and the Université catholique de Louvain investigated the suitability, growth and development of four potato cultivars in hydroponic culture under controlled conditions with the aim to incorporate such cultivation system in an Environmental Control and Life Support System (ECLSS). Potato plants can fulfill three major functions in an ECLSS in space missions: (a) fixation of CO2 and production of O2, (b) production of tubers for human nutrition and (c) production of clean water after condensation of the water vapor released from the plants by transpiration. Four cultivars (Annabelle, Bintje, Desiree and Innovator) were selected and grown hydroponically in nutrient film technique (NFT) gullies in a growth chamber under controlled conditions. The plant growth parameters, tuber harvest parameters and results of tuber nutritional analysis of the four cultivars were compared. The four potato cultivars grew well and all produced tubers. The growth period lasted 127 days for all cultivars except for Desiree which needed 145 days. Annabelle (1.45 kg/m2) and Bintje (1.355 kg/m2) were the best performing of the four cultivars. They also produced two times more tubers than Desiree and Innovator. Innovator produced the biggest tubers (20.95 g/tuber) and Desiree the smallest (7.67 g/tuber). The size of Annabelle and Bintje potatoes were intermediate. Bintje plants produced the highest total biomass in term of DW. The highest non-edible biomass was produced by Desiree, which showed both the highest shoot and root DW. The manual length and width measurements were also used to predict the total tuber mass. The energy values of the tubers remained in the range of the 2010 USDA and Souci-Fachmann-Kraut food composition databases. The amount of Ca determined was slightly reduced compared to the USDA value, but close to the Souci-Fachmann-Kraut value. The concentration of Cu, Zn and P were high compared to both databases

  18. A possible NaCl pathway in the bioregenerative human life support system

    Science.gov (United States)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  19. A Bayesian least-squares support vector machine method for predicting the remaining useful life of a microwave component

    Directory of Open Access Journals (Sweden)

    Fuqiang Sun

    2017-01-01

    Full Text Available Rapid and accurate lifetime prediction of critical components in a system is important to maintaining the system’s reliable operation. To this end, many lifetime prediction methods have been developed to handle various failure-related data collected in different situations. Among these methods, machine learning and Bayesian updating are the most popular ones. In this article, a Bayesian least-squares support vector machine method that combines least-squares support vector machine with Bayesian inference is developed for predicting the remaining useful life of a microwave component. A degradation model describing the change in the component’s power gain over time is developed, and the point and interval remaining useful life estimates are obtained considering a predefined failure threshold. In our case study, the radial basis function neural network approach is also implemented for comparison purposes. The results indicate that the Bayesian least-squares support vector machine method is more precise and stable in predicting the remaining useful life of this type of components.

  20. Intergenerational support, satisfaction with parent-child relationship and elderly parents' life satisfaction in Hong Kong.

    Science.gov (United States)

    Peng, Chenhong; Kwok, Chi Leung; Law, Yik Wa; Yip, Paul S F; Cheng, Qijin

    2018-01-22

    This study examines in what exchange patterns that three types of intergenerational support are associated with elderly parents' life satisfaction, and whether elderly parents' evaluation on parent-child relationship plays a mediation role on those associations. Data were drawn from Hong Kong Panel Survey for Poverty Alleviation. Respondents aged 65 and over were included ( N=504). Three types of support, namely, daily-living, financial, and emotional support were examined in four patterns-the over-benefited , under-benefited , reciprocal and no flow of exchange. A multivariable linear regression was applied to investigate the association between pattern of intergenerational exchange and life satisfaction, and mediation analysis was employed to examine the mediating role of satisfaction with parent-child relationship on their associations. Elderly parents were less satisfied with their lives when they had no flow of exchange in daily-living support, and more satisfied when they were under-benefited in financial support, and over-benefited or reciprocal in emotional support. Elderly parents' satisfaction with parent-child relationship mediated the association between exchange of emotional support and life satisfaction; but not the association between daily-living or financial support and life satisfaction. Different types of intergenerational support are associated with elderly parents' life satisfaction in different patterns.

  1. Sustainable life support on Mars - the potential roles of cyanobacteria

    Science.gov (United States)

    Verseux, Cyprien; Baqué, Mickael; Lehto, Kirsi; de Vera, Jean-Pierre P.; Rothschild, Lynn J.; Billi, Daniela

    2016-01-01

    Even though technological advances could allow humans to reach Mars in the coming decades, launch costs prohibit the establishment of permanent manned outposts for which most consumables would be sent from Earth. This issue can be addressed by in situ resource utilization: producing part or all of these consumables on Mars, from local resources. Biological components are needed, among other reasons because various resources could be efficiently produced only by the use of biological systems. But most plants and microorganisms are unable to exploit Martian resources, and sending substrates from Earth to support their metabolism would strongly limit the cost-effectiveness and sustainability of their cultivation. However, resources needed to grow specific cyanobacteria are available on Mars due to their photosynthetic abilities, nitrogen-fixing activities and lithotrophic lifestyles. They could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources. Here we give insights into how and why cyanobacteria could play a role in the development of self-sustainable manned outposts on Mars.

  2. Spousal recovery support, recovery experiences, and life satisfaction crossover among dual-earner couples.

    Science.gov (United States)

    Park, YoungAh; Fritz, Charlotte

    2015-03-01

    Research has indicated the importance of recovery from work stress for employee well-being and work engagement. However, very little is known about the specific factors that may support or hinder recovery in the context of dual-earner couples. This study proposes spousal recovery support as a potential resource that dual-earner couples can draw on to enhance their recovery experiences and well-being. It was hypothesized that spousal recovery support would be related to the recipient spouse's life satisfaction via his or her own recovery experiences (i.e., psychological detachment, relaxation, and mastery experiences). The study further investigated the crossover of life satisfaction between working spouses as a potential outcome of recovery processes. Data from 318 full-time employed married couples in South Korea were analyzed using structural equation modeling. Results showed that spousal recovery support was positively related to all 3 recovery experiences of the recipient spouse. Moreover, this recovery support was related to the recipient spouse's life satisfaction via relaxation and mastery experiences. Unexpectedly, psychological detachment was negatively related to life satisfaction, possibly indicating a suppression effect. Life satisfaction crossed over between working spouses. No gender differences were found in the hypothesized paths. Based on these findings, theoretical and practical implications are discussed, and future research directions are presented. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  3. Living Arrangement and Life Satisfaction in Older Malaysians: The Mediating Role of Social Support Function

    Science.gov (United States)

    Kooshiar, Hadi; Yahaya, Nurizan; Hamid, Tengku Aizan; Abu Samah, Asnarulkhadi; Sedaghat Jou, Vajiheh

    2012-01-01

    Background This cross-sectional and correlational survey examines the association between different types of living arrangements and life satisfaction in older Malaysians, while taking into account the mediating effects of social support function. Methodology and Findings A total of 1880 of older adults were selected by multistage stratified sampling. Life satisfaction and social support were measured with the Philadelphia Geriatric Center Morale Scale and Medical Outcomes Study Social Support Survey. The result shows living with children as the commonest type of living arrangement for older adults in peninsular Malaysia. Compared to living alone, living only with a spouse especially and then co-residency with children were both associated with better life satisfaction (psocial support function (psocial support function enhanced the relation between living arrangements and life satisfaction. Conclusion This study revealed that types of living arrangement directly, and indirectly through social support function, play an important role in predicting life satisfaction for older adults in Malaysia. This study makes remarkable contributions to the Convoy model in older Malaysians. PMID:22912806

  4. Synthesis of Biomass and Utilization of Plant Wastes in a Physical Model of a Biological Life Support System

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu A.; Kovalev, V. S.; Gribovksaya, I. V.; Tirranen, L. S.; Zolotukkhin, I. G.; Gros, J. B.; Lasseur, Ch.

    Biological life support systems (LSS) with highly closed intrasystem mass ex change mass ex change hold much promise for long-term human life support at planetary stations (Moon, Mars, etc.). The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotroph block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas ex change in such a system consists of respiratory gas ex change of SLS and photosynthesis and respiration of plants. Specifics of gas ex change dynamics of high plants -SLS complex has been considered. Relationship between such a gas ex change and photosynthetic active radiation (PAR) and age of plants has been established. SLS fertility has been shown to depend on its thickness and phase of maturity. The biogenic elements (potassium, phosphorus, nitrogen) in Liebig minimum have been found to include nitrogen which is the first to impair plants' growth in disruption of the process conditions. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances -products of ex change of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. In multiple recycle of the mat ter (more than 5 cycles) under the irradiance intensity of 150 W/m2 PAR and the SLS mass (dry weight) of 17.7 -19.9 kg/m2 average total harvest of

  5. Social support, self-care, and quality of life in cancer patients receiving radiotherapy in Thailand

    International Nuclear Information System (INIS)

    Hanucharurnkul, S.

    1988-01-01

    The purpose of the study was two-fold: (1) to examine the relationships among self-care, social support, and quality of life in adult cancer patients receiving radiotherapy while the selected basic conditioning factors of age, marital and socio-economic status, living arrangement, stage and site of cancer were statistically controlled; and (2) to test a theoretical model which postulated that (a) quality of life was predicted jointly by the selected basic conditioning factors, social support and self-care, and (b) self-care was predicted jointly by the selected basic conditioning factors and social support. A convenience sample of 112 adult cervical and head/neck cancer patients receiving radiotherapy was obtained from radiotherapy outpatient clinic in three hospitals located in Bangkok, Thailand. Results of the study indicated positive relationships among self-care, social support, and quality of life. Socio-economic status, site of cancer, and self-care were significant predictors for reported quality of life. Social support appeared to be a significant predictor of quality of life indirectly through self-care. Socio-economic status and social support were also significant predictors of self-care, whereas, stage and site of cancer seemed to predict self-care indirectly through social support

  6. Computer-Based Decision Support for Railroad Transportation Systems: an Investment Case Study

    Directory of Open Access Journals (Sweden)

    Luminita DUTA

    2009-01-01

    Full Text Available In the last decade the development of the economical and social life increased the complexity of transportation systems. In this context, the role of Decision Support Systems (DSS became more and more important. The paper presents the characteristics, necessity, and usage of DSS in transportation and describes a practical application in the railroad field. To compute the optimal transportation capacity and flow on a certain railroad, specialized decision-support software which is available on the market was used.

  7. Drivers\\' Life Quality, Marital Satisfaction, and Social Support in Cargo Terminal of Yazd City

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Morovati Sharifabadi

    2017-02-01

    Full Text Available Abstract Introduction: This is important to consider the health, social support, and marital satisfaction of drivers since they own one of the essential and stressful jobs in society. The purpose of this research was to investigate quality of life, marital satisfaction, and social support of the drivers referring to the cargo terminal of Yazd City. Methods: In order to collect data, 134 drivers in Yazd cargo terminal were selected. The ENRICH questionnaire of marital satisfaction, SF-36 questionnaire, and social support questionnaire (SSQ have been used as data collection tools. The collected data were then analyzed by Independent T test, Analysis of Variance (ANOVA, and Pearson correlation. Results: According to the results, the drivers' average age was 40.2±9.17 years old. The mean scores of marital satisfaction, quality of life, and social support were equal to 120.04±20.14 out of 175, 99.69±18.14 out of 149, and 15±4.76 out of 23, respectively. About 60.4 % of drivers were not satisfied with their jobs. There were significant relationships between weight and marital satisfaction (P=0.02, as well as between job satisfaction (P=0.003 (P=0.015 and income (P=0.047 (P=0.020, to social support and quality of life. Also, a strong significant positive relationship was observed in correlation coefficient between social support and two variables of quality of life and marital satisfaction (P=0.000. Conclusion: This can be argued that marital satisfaction, quality of life, and social support of the drivers are lower than the expected levels. Therefore, it can be concluded that physical and mental health of drivers can be effective on safety of roads; thereby it is necessary to improve their conditions in marital satisfaction, quality of life, and social support

  8. Refurbishment of the IEAR1 primary coolant system piping supports

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  9. The Effect of Instructional Method on Cardiopulmonary Resuscitation Skill Performance: A Comparison Between Instructor-Led Basic Life Support and Computer-Based Basic Life Support With Voice-Activated Manikin.

    Science.gov (United States)

    Wilson-Sands, Cathy; Brahn, Pamela; Graves, Kristal

    2015-01-01

    Validating participants' ability to correctly perform cardiopulmonary resuscitation (CPR) skills during basic life support courses can be a challenge for nursing professional development specialists. This study compares two methods of basic life support training, instructor-led and computer-based learning with voice-activated manikins, to identify if one method is more effective for performance of CPR skills. The findings suggest that a computer-based learning course with voice-activated manikins is a more effective method of training for improved CPR performance.

  10. Health of women: associations among life events, social support, and personality for selected patient groups.

    Science.gov (United States)

    Norlander, T; Dahlin, A; Archer, T

    2000-02-01

    This study examined the effects of life events, social support, personality traits, and siblings' birth-order on the health of women. 199 middle-class participants were included. 95 women, randomly assigned from four different patient groups, were compared with a control group of 96 randomly selected women without any special health problems. They completed a questionnaire which included questions regarding family background, health, different life events, social support, and signs of disease and a projective test, the Sivik Psychosomatism Test. Analysis indicated that report of negative life events was associated with more physical symptoms than positive life events and that the patient groups reported more negative life events and less social support than the control group.

  11. The existential experience of everyday life with systemic lupus erythematosus.

    Science.gov (United States)

    Larsen, Janni Lisander; Hall, Elisabeth O C; Jacobsen, Søren; Birkelund, Regner

    2018-05-01

    To explore from the perspective of women the nature of basic existential conditions while living with systemic lupus erythematosus. Systemic lupus erythematosus has an unpredictable disease course and is documented to cause an existential rearrangement of life. The significance of changes in existential conditions and related experiences are unclear in the context of nursing and women with systemic lupus erythematosus. A qualitative design guided by Van Manen's hermeneutic-phenomenological methodology. Individual in-depth interviews with 15 women diagnosed with systemic lupus erythematosus and of various ages, disease durations and severities were undertaken from September 2013 - October 2015. Data were analysed following van Manen's phenomenological approach and using drawing as an interpretive tool. The main existential experience was interpreted as a person "moving with the waves of systemic lupus erythematosus" constituted by the themes "oscillating between presence and absence of systemic lupus erythematosus," "recognizing space and bodily possibilities and limitations" and "being enriched through relationships and activities." When systemic lupus erythematosus was flaring, well-being was threatened and a laborious time to escape the feeling of a setback-in-life persisted long after the disease was medically under control. Daily life with systemic lupus erythematosus is conditioned by a prominent need to be in existential motion, related to the absence and presence of systemic lupus erythematosus. The experience of a setback-in-life by illness might challenge well-being and indicates that periods of disease flares or disturbing symptoms are critical time points to provide support. © 2018 John Wiley & Sons Ltd.

  12. Social Support System in Learning Network for lifelong learners: A Conceptual framework

    NARCIS (Netherlands)

    Nadeem, Danish; Stoyanov, Slavi; Koper, Rob

    2009-01-01

    Nadeem, D., Stoyanov, S., & Koper, R. (2009). Social support system in learning network for lifelong learners: A Conceptual framework [Special issue]. International Journal of Continuing Engineering Education and Life-Long Learning, 19(4/5/6), 337-351.

  13. A urine-fuelled soil-based bioregenerative life support system for long-term and long-distance manned space missions

    Science.gov (United States)

    Maggi, Federico; Tang, Fiona H. M.; Pallud, Céline; Gu, Chuanhui

    2018-05-01

    A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions.

  14. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  15. Research on the full life cycle management system of smart electric energy meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  16. Gut microbes in correlation with mood: case study in a closed experimental human life support system.

    Science.gov (United States)

    Li, L; Su, Q; Xie, B; Duan, L; Zhao, W; Hu, D; Wu, R; Liu, H

    2016-08-01

    Gut microbial community, which may influence our mood, can be shaped by modulating the gut ecosystem through dietary strategies. Understanding the gut-brain correlationship in healthy people is important for maintenance of mental health and prevention of mental illnesses. A case study on the correlation between gut microbial alternation and mood swing of healthy adults was conducted in a closed human life support system during a 105-day experiment. Gut microbial community structures were analyzed using high-throughput sequencing every 2 weeks. A profile of mood states questionnaire was used to record the mood swings. Correlation between gut microbes and mood were identified with partial least squares discrimination analysis. Microbial community structures in the three healthy adults were strongly correlated with mood states. Bacterial genera Roseburia, Phascolarctobacterium, Lachnospira, and Prevotella had potential positive correlation with positive mood, while genera Faecalibacterium, Bifidobacterium, Bacteroides, Parabacteroides, and Anaerostipes were correlated with negative mood. Among which, Faecalibacterium spp. had the highest abundance, and showed a significant negative correlation with mood. Our results indicated that the composition of microbial community could play a role in emotional change in mentally physically healthy adults. © 2016 John Wiley & Sons Ltd.

  17. The internal design phase of the breeding and multigeneration support system: A tracking and decision support system for NCTR (National Center for Toxicological Research)

    Energy Technology Data Exchange (ETDEWEB)

    Strand, R.; Cox, T.L.; Sjoreen, A.; Alvic, D.

    1989-06-01

    The National Center for Toxicological Research (NCTR) is the basic research arm of the US Food and Drug Administration (FDA). The NCTR has upgraded and standardized its computer operations on Digital Equipment Corporation VAX minicomputers using Software AG's ADABAS data base management system for all research applications. The NCTR is currently performing a large study to improve the functionality of the animal husbandry systems and applications called Breeding/Multigeneration Support System (BMSS). When functional, it will operate on VAX equipment using the ADABAS data base management system, TDMS, and COBOL. Oak Ridge National Laboratory (ORNL) is supporting NCTR in the design, prototyping, and software engineering of the BMSS. This document summarizes the internal design elements that include data structures, file structures, and system attributes that were required to facilitate the decision support requirements defined in the external design work. Prototype pseudocode then was developed for the recommended system attributes and file and data structures. Finally, ORNL described the processing requirements including the initial access of the BMSS, integration of the existing INLIFE system and the STUDY DEFINITION system under development, data system initialization and maintenance, and BMSS testing and verification. This document describes ORNL's recommendations for the internal design of the BMSS. ORNL will provide research support to NCTR in the additional phases of systems life cycle development for BMSS. ORNL has prepared this document according to NCTR's Standard Operating Procedures for Systems Development. 6 figs., 5 tabs.

  18. Analysis of silkworm gut microflora in the Bioregenerative Life Support System

    Science.gov (United States)

    Liang, Xue; Liu, lh64. Hong

    2012-07-01

    Silkworm (Bombyx mori L) has advantages in the nutritional composition, growth characteristics and other factors, it is regarded as animal protein source for astronauts in the Bioregenerative Life Support System (BLSS).Due to the features of BLSS, silkworm breeding way is different from the conventional one (mulberry leaves throughout five instars): they were fed with mulberry and lettuce leaves during the 1st-3rd instars and 4th -5th instars, respectively. As the lettuce stem can be eaten by astronauts, the leaves not favored by humans can be insect's foodstuff. Therefore, it is necessary to investigate the gut microbial composition, the type of dominant bacteria of silkworm raised with this way and the differences from the conventional breeding method, so as to reduce the mortality rate caused by the foodstuff change and to provide more animal protein for astronauts. In this study, 16srDNA sequencing, phylogenetic analysis and denaturing gradient gel electrophoresis method were used to analyze the silkworm gut microbial flora under two breeding manners. The results show that conventional and BLSS breeding way have six dominant bacteria in common: Clostridium, Enterococcus, Bacteroides, Chryseobacterium, Parabacteroides, Paenibacillus. We also found Escherichia, Janthinobacterium, Sedimentibacter, Streptococcus, Bacillus, Arcobacter, Rothia, Polaribacter and Acinetobacter, Anaerofilum, Rummeliibacillus, Anaeroplasma, Serratia in the ground conventional and BLSS special breeding way, respectively. Changing the foodstuff of silkworm leads to the dynamic alteration of gut microbial. Dominant bacteria of the two breeding ways have diversities from each other. The ground conventional breeding way has more abundant bacteria than the BLSS one. Due to the lettuce leaves have replaced mulberry leaves at the beginning of the silkworm 4th instar, some silkworms can not survive without the bacteria that digest and absorb lettuce leaves. We suggest those dominant bacteria

  19. Nutrient retention capabilities of Nile tilapia ( Oreochromis niloticus) fed bio-regenerative life support system (BLSS) waste residues

    Science.gov (United States)

    Gonzales, John M.; Brown, Paul B.

    Nile tilapia were evaluated as a bio-regenerative sub-process for reducing solid waste potentially encountered in bio-regenerative life support systems. Ten juvenile Nile tilapia (mean weight = 2.05 g) were stocked into triplicate aquaria and fed one of seven experimental diets consisting of vegetable, bacterial, or food waste for a period of seven weeks. Weight gain (g), specific growth rate (mg/d), and daily consumption (g) was significantly higher ( p diet (37.99 and 68.54, respectively) followed by fish fed the wheat bran/wheat germ diet (23.19 and 63.67, respectively). Nitrogen, sulfur, and crude protein retention was significantly higher ( p diet (23.68, 21.89, and 23.68, respectively). A general loss of minerals was observed among all groups. Strong associations were observed between crude lipid retention and sulfur retention ( r2 = 0.94), crude lipid retention and carbon retention ( r2 = 0.92), WG and fiber content of dietary treatments ( r2 = 0.92), WG and carbon retention and ( r2 = 0.88), WG and lysine content of waste residues ( r2 = 0.86), crude protein retention and carbon retention ( r2 = 0.84), sulfur retention and crude protein retention ( r2 = 0.84), and total sulfur amino acid (TSAA) content of residues and WG ( r2 = 0.81). Weaker associations existed between WG and crude lipid retention ( r2 = 0.77), crude fiber content and carbon retention ( r2 = 0.76), and WG and methionine content of waste residues ( r2 = 0.75). Additional research is needed to improve the nutritional quality of fibrous residues as a means to improve tilapia's ability to utilize these residues as a food source in bio-regenerative support systems.

  20. ADULT BASIC LIFE SUPPORT ON NEAR DROWNING AT THE SCENE

    Directory of Open Access Journals (Sweden)

    Gd. Harry Kurnia Prawedana

    2013-04-01

    Full Text Available Indonesia is a popular tourist destination which has potential for drowning cases. Therefore, required knowledge of adult basic life support to be able to deal with such cases in the field. Basic life support in an act to maintain airway and assist breathing and circulation without the use of tools other than simple breathing aids. The most important factor that determines the outcome of drowning event is the duration and severity of hypoxia induced. The management of near drowning at the scene include the rescue of victim from the water, rescue breathing, chest compression, cleaning the vomit substances which allowing blockage of the airway, prevent loss of body heat, and transport the victim to nearest emergency department for evaluation and monitoring.

  1. Proposal of the School Children Support System Using ICF to Communicate with the Teachers, the Specialists and the Guardians, Requiring Special Support Education

    Science.gov (United States)

    Ogoshi, Yasuhiro; Nakai, Akio; Mitsuhashi, Yoshinori; Araki, Chikahiro

    At the present, educational support is required to the school children who confronts problems on study, life style, mental and health. For the school children who hold these problems, inference and understanding of those around adults are mandatory, for that intimate cooperation between the school, home and specialized agencies should be important. With above reason, the school children support system using ICF to communicate the school, the specialist and the guardian is developed in this works. Realization of this system, immediate support to the school children and their guardians will be possible. It is also considered to be a preventive support instead of an allopathic support.

  2. Increase in cerebral oxygenation during advanced life support in out-of-hospital patients is associated with return of spontaneous circulation.

    Science.gov (United States)

    Genbrugge, Cornelia; Meex, Ingrid; Boer, Willem; Jans, Frank; Heylen, René; Ferdinande, Bert; Dens, Jo; De Deyne, Cathy

    2015-03-24

    By maintaining sufficient cerebral blood flow and oxygenation, the goal of cardiopulmonary resuscitation (CPR) is to preserve the pre-arrest neurological state. To date, cerebral monitoring abilities during CPR have been limited. Therefore, we investigated the time-course of cerebral oxygen saturation values (rSO₂) during advanced life support in out-of-hospital cardiac arrest. Our primary aim was to compare rSO₂ values during advanced life support from patients with return of spontaneous circulation (ROSC) to patients who did not achieve ROSC. We performed an observational study to measure rSO₂ using Equanox (Nonin, Plymouth, MI) from the start of advanced life support in the pre-hospital setting. rSO₂ of 49 consecutive out-of-hospital cardiac arrest patients were analyzed. The total increase from initial rSO₂ value until two minutes before ROSC or end of advanced life support efforts was significantly larger in the group with ROSC 16% (9 to 36) compared to the patients without ROSC 10% (4 to 15) (P = 0.02). Mean rSO₂ from the start of measurement until two minutes before ROSC or until termination of advanced life support was higher in patients with ROSC than in those without, namely 39% ± 7 and 31% ± 4 (P = 0.05) respectively. During pre-hospital advanced life support, higher increases in rSO₂ are observed in patients attaining ROSC, even before ROSC was clinically determined. Our findings suggest that rSO₂ could be used in the future to guide patient tailored treatment during cardiac arrest and could therefore be a surrogate marker of the systemic oxygenation state of the patient.

  3. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    The life cycle assessment (LCA) of a waste management system relies on many internal characteristics such as pollution control systems and recovery efficiencies. It also relies on technical externalities supporting the waste management system in terms of capital goods and energy and material...... for the primary and secondary production of materials, 366 datasets were gathered. The materials in focus were: paper, newsprint, cardboard, corrugated board, glass, aluminium, steel and plastics (HDPE, LDPE, LLDPE, PET, PS, PVC). Only one quarter of these data concerned secondary production, thus underlining...

  4. [Basic life support in pediatrics].

    Science.gov (United States)

    Calvo Macías, A; Manrique Martínez, I; Rodríguez Núñez, A; López-Herce Cid, J

    2006-09-01

    Basic life support (BLS) is the combination of maneuvers that identifies the child in cardiopulmonary arrest and initiates the substitution of respiratory and circulatory function, without the use of technical adjuncts, until the child can receive more advanced treatment. BLS includes a sequence of steps or maneuvers that should be performed sequentially: ensuring the safety of rescuer and child, assessing unconsciousness, calling for help, positioning the victim, opening the airway, assessing breathing, ventilating, assessing signs of circulation and/or central arterial pulse, performing chest compressions, activating the emergency medical service system, and checking the results of resuscitation. The most important changes in the new guidelines are the compression: ventilation ratio and the algorithm for relieving foreign body airway obstruction. A compression/ ventilation ratio of 30:2 will be recommended for lay rescuers of infants, children and adults. Health professionals will use a compression: ventilation ratio of 15:2 for infants and children. If the health professional is alone, he/she may also use a ratio of 30:2 to avoid fatigue. In the algorithm for relieving foreign body airway obstruction, when the child becomes unconscious, the maneuvers will be similar to the BLS sequence with chest compressions (functioning as a deobstruction procedure) and ventilation, with reassessment of the mouth every 2 min to check for a foreign body, and evaluation of breathing and the presence of vital signs. BLS maneuvers are easy to learn and can be performed by anyone with adequate training. Therefore, BLS should be taught to all citizens.

  5. Evaluating a Clinical Decision Support Interface for End-of-Life Nurse Care.

    Science.gov (United States)

    Febretti, Alessandro; Stifter, Janet; Keenan, Gail M; Lopez, Karen D; Johnson, Andrew; Wilkie, Diana J

    2014-01-01

    Clinical Decision Support Systems (CDSS) are tools that assist healthcare personnel in the decision-making process for patient care. Although CDSSs have been successfully deployed in the clinical setting to assist physicians, few CDSS have been targeted at professional nurses, the largest group of health providers. We present our experience in designing and testing a CDSS interface embedded within a nurse care planning and documentation tool. We developed four prototypes based on different CDSS feature designs, and tested them in simulated end-of-life patient handoff sessions with a group of 40 nurse clinicians. We show how our prototypes directed nurses towards an optimal care decision that was rarely performed in unassisted practice. We also discuss the effect of CDSS layout and interface navigation in a nurse's acceptance of suggested actions. These findings provide insights into effective nursing CDSS design that are generalizable to care scenarios different than end-of-life.

  6. Is reciprocity always beneficial? Age differences in the association between support balance and life satisfaction.

    Science.gov (United States)

    Li, Tianyuan; Fok, Hung Kit; Fung, Helene H

    2011-07-01

    Reciprocity in support exchanges is believed to be beneficial to psychological well-being. This study examined perceived emotional and instrumental support balance from either family or friends, and the relationship between each support balance and life satisfaction among young and older adults. The sample included 107 older adults and 96 young adults. They rated their life satisfaction, as well as the emotional and instrumental support they provided to and received from family members and friends. Consistent with the socioemotional selectivity theory, age differences were found in perceived emotional support balance with friends. Older adults reported more emotionally reciprocal friendships than did young adults. Moreover, contrary to the equity rule, emotionally over-benefited friendships were associated with higher life satisfaction for older adults than were reciprocal friendships. Age, type of support, and source of support should be considered when studying the relationships between support balance and psychological well-being.

  7. Patient support systems

    International Nuclear Information System (INIS)

    Braden, A.B.; McBride, T.R.; Styblo, D.J.; Taylor, S.K.; Richey, J.B.

    1979-01-01

    A patient support system for use in computerized tomography (CT) is described. The system is particularly useful for CT scanning of the brain and also of the abdominal area. The support system consists of two moveable tables which may be translated into position for X-ray scanning of the patient's body and which may be translated incrementally and automatically to obtain scans at adjacent locations. For use with brain scans, the second table is replaced by a detachable restraint assembly which is described in detail. The support system is so designed that only a small volume of low density material will intercept the X-ray beam. (UK)

  8. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    Science.gov (United States)

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  9. Perceived Discrimination, Social Support, and Quality of Life in Gender Dysphoria.

    Science.gov (United States)

    Başar, Koray; Öz, Gökhan; Karakaya, Jale

    2016-07-01

    Transgender individuals experience discrimination in all domains of their personal and social life. Discrimination is believed to be associated with worse quality of life (QoL). To investigate the relation between QoL and perceived levels of discrimination and social support in individuals with gender dysphoria (GD). Individuals with GD who attended a psychiatry clinic from January 2012 through December 2014 were recruited. Demographic, social, and medical transition features were collected with standardized forms. Self-report measurements of QoL (Turkish version of the World Health Organization's Quality of Life-BREF) that included physical, psychological, social, and environmental domains, perceived discrimination with personal and group subscales (Perceived Discrimination Scale [PDS]), and social support (Multidimensional Scale of Perceived Social Support) were completed. Ninety-four participants (76.6% trans men) adequately completed the study measurements. Regression models with each QoL domain score as a dependent variable indicated a significant predictor value of personal PDS in social and environmental QoL. Social support from family was associated with better QoL in psychological QoL, whereas perceived support from friends significantly predicted all other domains of QoL. There was a tendency for group PDS to be rated higher than personal PDS, suggesting personal vs group discrimination discrepancy. However, group PDS was not found to be a predictor of QoL in the multivariate model. Perceived personal discrimination and social support from different sources predicted domains of QoL with a non-uniform pattern in individuals with GD. Social support and discrimination were found to have opposing contributions to QoL in GD. The present findings emphasize the necessity of addressing discrimination and social support in clinical work with GD. Moreover, strategies to improve and strengthen friend and family support for individuals with GD should be explored by

  10. Perceived social support and life satisfaction in drug addicts: Self-esteem and loneliness as mediators.

    Science.gov (United States)

    Cao, Qilong; Liang, Ying

    2017-11-01

    This study was designed to investigate the mediation effects of both self-esteem and loneliness on the relationship between social support and subjective well-being in drug addicts. In all, 110 participants, all drug addicts from Guangdong Fangcun Brain Hospital, completed the questionnaire. Pearson's correlation analysis showed that perceived social support was positively related to self-esteem and life satisfaction and was negatively correlated with loneliness in drug addicts. Structural equation modeling estimated by the Bootstrap method indicated that loneliness and self-esteem partially mediated the association between perceived social support and life satisfaction. These findings provided insights into the association between perceived social support and life satisfaction in drug addicts.

  11. Under a crimson sun prospects for life in a red dwarf system

    CERN Document Server

    Stevenson, David S

    2013-01-01

    Gliese 581 is a red dwarf star some 20.3 light years from Earth. Red dwarfs are among the most numerous stars in the galaxy, and they sport diverse planetary systems. At magnitude 10, Gliese 581 is visible to amateur observers but does not stand out. So what makes this star so important? It is that professional observers have confirmed that it has at least four planets orbiting it, and in 2009, Planet d was described in the letters of The Astrophysical Journal as “the first confirmed exoplanet that could support Earth-like life.”   Under a Crimson Sun looks at the nature of red dwarf systems such as Gliese as potential homes for life.   Realistically, what are prospects for life on these distant worlds? Could life evolve and survive there? How do these planetary surfaces and geology evolve? How would life on a red dwarf planet differ from life on Earth? And what are the implications for finding further habitable worlds in our galaxy?   Stevenson provides readers with insight into the habitability of pl...

  12. Parental autonomy-support, intrinsic life goals, and well-being among adolescents in China and North America.

    Science.gov (United States)

    Lekes, Natasha; Gingras, Isabelle; Philippe, Frederick L; Koestner, Richard; Fang, Jianqun

    2010-08-01

    Self-determination theory proposes that prioritizing intrinsic life goals, such as community involvement, is related to well-being, whereas focusing on extrinsic life goals, such as financial success, is associated with lower well-being and that parenting influences the type of life goals that youth adopt. In a sample of 515 Chinese (56% female, mean age = 15.50) and 567 North American (52% male, mean age = 14.17) adolescents, a model of the relationships between parenting, life goals, and well-being was investigated and confirmed for intrinsic life goals. Across societies, autonomy-supportive parenting was associated with the endorsement of intrinsic life goals, which in turn was associated with well-being. Intrinsic life goals partially mediated the relationship between parental autonomy-support and well-being. These findings suggest that, cross-culturally, prioritizing intrinsic life goals is related to increased well-being among adolescents and that parents could encourage intrinsic life goals by being supportive of their children's autonomy.

  13. Perceived Social Support And Life Satisfaction Of Residents In A Nursing Home In Turkey

    OpenAIRE

    Çimen, Mesut; Akbolat, Mahmut

    2016-01-01

    Abstract: This study was conducted to identify the factors that affect the perception of social support and life satisfaction of selected nursing home residents in Turkey, using the Multidimensional Scale of Perceived Social Support (MSPSS) and the Satisfaction with Life Scale (SWLS). 80 residents participated in the study. Results of univariate analyses indicated that family-based perceived social support of nursing home residents is significantly higher in married residents and in residents...

  14. Characteristics of mineral nutrition of plants in the bio-technical life support system with human wastes included in mass exchange

    Science.gov (United States)

    Tikhomirova, Natalia; Ushakova, Sofya; Kalacheva, Galina; Tikhomirov, Alexander

    2016-09-01

    The study addresses the effectiveness of using ion exchange substrates (IES) to optimize mineral nutrition of plants grown in the nutrient solutions containing oxidized human wastes for application in bio-technical life support systems. The study shows that the addition of IES to the root-inhabited substrate is favorable for the growth of wheat vegetative organs but causes a decrease in the grain yield. By contrast, the addition of IES to the nutrient solution does not influence the growth of vegetative organs but favors normal development of wheat reproductive organs. Thus, to choose the proper method of adjusting the solution with IES, one should take into account specific parameters of plant growth and development and the possibility of multiple recycling of IES based on the liquid products of mineralization of human wastes.

  15. Phase Change Permeation Technology for Environmental Control & Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is evaluating Dutyion™, a phase change permeation membrane technology developed by Design Technology and Irrigation (DTI), for use in future advanced life...

  16. Testing fungistatic properties of soil-like substrate for growing plants in bioregenerative life support systems

    Science.gov (United States)

    Enzhu, Hu; Nesterenko, Elena; Liu, Professor Hong; Manukovsky, N. S.; Kovalev, Vladimir; Gurevich, Yu.; Kozlov, Vladimir; Khizhnyak, Serge; Xing, Yidong; Hu, Enzhu; Enzhu, Hu

    There are two ways of getting vegetable food in BLSS: in hydroponic culture and on soil substrates. In any case there is a chance that the plants will be affected by plant pathogenic microorganisms. The subject of the research was a soil-like substrate (SLS) for growing plants in a Bioregenerative Life Support System (BLSS). We estimated the fungistatic properties of SLS using test cultures of Bipolaris and Alternaria plant pathogenic fungi. Experiments were made with the samples of SLS, natural soil and sand (as control). We tested 2 samples of SLS produced by way of bioconversion of wheat and rice straw. We measured the disease severity of wheat seedlings and the incidence of common root rot in natural (non-infectious) background and man-made (infectious) conditions. The severity of disease on the SLS was considerably smaller both in non-infectious and infectious background conditions (8 and 12%) than on the natural soil (18 and 32%) and sand. It was the soil-like substrate that had the minimal value among the variants being compared (20% in non-infectious and 40% in infectious background conditions). This index in respect of the soil was 55 and 78%, correspondingly, and in respect of the sand - 60%, regardless of the background. It was found that SLS significantly suppressed conidia germination of Bipolaris soroikiniana (pwheat and rice straw.

  17. War Reserve Analysis and Secondary Item Procureability Assessment of the AMCOM Supported Weapon Systems

    National Research Council Canada - National Science Library

    Maddux, Gary

    2000-01-01

    .... IOD evaluates the impacts of nonavailability of secondary items on the life cycle supportability of AMCOM weapon systems and evaluates the producibility of secondary items for war reserve requirements...

  18. Status of the Tidal Regenerator Engine for nuclear circulatory support systems

    International Nuclear Information System (INIS)

    Watelet, R.P.; Ruggles, A.E.; Torti, V.

    1976-01-01

    Based on the annular version of the Tidal Regenerator Engine, a packaged energy system for nuclear powered circulatory support systems was developed. Net power output of approximately 3 watts is delivered using a 33-watt heat source for an engine module volume of 0.7 liter and a weight of 1.6 kg. A higher efficiency dual cycle version of the annular engine using a Dowtherm A topping cycle on the basic steam cycle is also under development. Projected system output using this advanced engine is 5 watts for the same sized heat source. Life testing of critical components has demonstrated substantial reliability improvement over earlier designs. Of particular significance is the continuing operation of a complete implantable engine system after 1200 hours. Component life testing is continuing with over five thousand hours accumulated on two pump actuators employing welded metal bellows

  19. Nanostructured Humidity Sensor for Spacecraft Life Support Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Humidity is a critical variable for monitoring and control on extended duration missions because it can affect the operation and efficiency of closed loop life...

  20. Relationship between family support and quality of life of type-2 ...

    African Journals Online (AJOL)

    Materials and Methods: A cross-sectional study of 250 adult patients with type 2 diabetes mellitus was carried out over twenty (20) weeks. Respondents' family support was measured using Perceived Social Support – Family Scale {PSS- Fa}, while their quality of life was measured using the short version of the World Health ...

  1. Environmental control and life support technologies for advanced manned space missions

    Science.gov (United States)

    Powell, F. T.; Wynveen, R. A.; Lin, C.

    1986-01-01

    Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.

  2. Life Insurance and Individual Pension System

    Directory of Open Access Journals (Sweden)

    İbrahim PAÇACI

    2017-12-01

    Full Text Available There is no explanation in the source about the insurance and the private pension system, which are not known at the time of the formation of the fiqh and the period of the support. Upon the spread of the insurance, The provision of insurance in the geography of Islam has also begun to be discussed. There are contracts that have the elements and conditions that must be found in itself and that are not contradictory to the basic principles of Islam. In this respect, without accumulating life insurance that protects the person against sudden risks is permissible. The provision of cumulative life insurance and the individual pension system depends on the area where the premiums are deposited and the type of payment. Provided that the premiums are assessed in halal areas; a at the end of the period premiums and interests are paid back in full or on a specific plan, or b all or part of the premiums and interests are left in the company and the income share is paid as salary, these are permissible. However, it is not permissible if all or part of the premiums and duties are left in the company and a fixed salary is attached. It is permissible for the State to contribute to the entry into the private pension system in order to incentivize the savings, and it is permissible for them to receive this contribution.

  3. EPIC: Helping School Life and Family Support Each Other.

    Science.gov (United States)

    Montgomery, David

    1992-01-01

    Born out of a 1981 murder, Buffalo (New York) Public Schools' EPIC (Effective Parenting Information for Children) program successfully combines parenting, effective teaching, and community programs to help family and school life support each other. Under EPIC, teachers are advised to help students acquire 23 skills involving self-esteem, rules,…

  4. Use of dynamic Bayesian networks for life extension assessment of ageing systems

    International Nuclear Information System (INIS)

    Ramírez, Pedro A. Pérez; Utne, Ingrid Bouwer

    2015-01-01

    Extending the operating lifetime of ageing technical systems is of great interest for industrial applications. Life extension requires identifying and selecting decision alternatives which allow for a safe and economic operation of the system beyond its design lifetime. This article proposes a dynamic Bayesian network for assessing the life extension of ageing repairable systems. The main objective of the model is to provide decision support based on the system performance during a finite time horizon, which is defined by the life extension period. The model has three main applications: (i) assessing and selecting optimal decision alternatives for the life extension at present time, based on historical data; (ii) identifying and minimizing the factors that have a negative impact on the system performance; and (iii) reassessing and optimizing the decision alternatives during operation throughout the life extension period, based on updating the model with new operational data gathered. A case study illustrates the application of the model for life extension of a real firewater pump system in an oil and gas facility. The case study analyzes three decision alternatives, where preventive maintenance and functional test policies are optimized, and the uncertainty involved in each alternative is computed. - Highlights: • A dynamic Bayesian network is used for predicting the system performance. • The performance is measured with relevant variables: cost; unavailability; safety. • The model can be used when scarce data is available, no degradation data is needed. • The uncertainty associated to each alternative is computed in the model. • A detailed case study of a real safety system shows the applicability of the model

  5. Resilience As A Mediator Between Affect, Coping Styles, Support and Life Satisfaction

    Directory of Open Access Journals (Sweden)

    Ozlem Kelle

    2018-06-01

    Full Text Available As humans, we are always targets of many positive and negative life events in which we would show differences in dealing with those events. In this study, the aim was to investigate how individuals react to stressful situations through the concept of resilience. Therefore it was aimed to test the role of individual characteristics of affect and coping styles in addition to receiving support from family and social environment on resilience. The role of resilience in life satisfaction was also investigated. A survey was used including demographic questions, ego resilience scale, positive and negative affect scale, stress coping styles inventory, and satisfaction with life scale. Target of the study was individuals who were over 18 years of age and 403 participants were reached through snowball sampling. Seventy six percent of the participants were female (n=310 and 24% of them were male (n=93. Hypothesized model was tested by using path analysis. Study results showed that positive affect, optimistic coping style and confident coping style were significant predictors of resilience as individual characteristics in addition to receiving social support. Resilience was found as a significant predictor of life satisfaction. Moreover, resilience was also found as a significant mediator of the relationships between positive affect, optimistic coping, confident coping styles, receiving social support and life satisfaction. Importance of the study in the field of psychology and suggestions for future research were also discussed with relevant literature.

  6. Nutritional support in patients with systemic sclerosis.

    Science.gov (United States)

    Ortiz-Santamaria, Vera; Puig, Celia; Soldevillla, Cristina; Barata, Anna; Cuquet, Jordi; Recasens, Asunción

    2014-01-01

    Systemic sclerosis (SSc) is a chronic multisystem autoimmune disease which involves the gastrointestinal tract in about 90% of cases. It may contribute to nutritional deterioration. To assess whether the application of a nutritional support protocol to these patients could improve their nutritional status and quality of life. Single center prospective study, performed on an outpatient basis, in a county hospital. The Malnutrition Universal Screening Tool (MUST) was used to screen risk for malnutrition. Health questionnaire SF-36 and the Hospital Anxiety and Depression Scale were used to assess quality of life and psychopathology respectively. Weight, height, energy and protein requirements, macronutrient intake and nutritional biochemical parameters were evaluated. Nutritional intervention was performed in patients at risk for malnutrition. Of the 72 patients, 12.5% were at risk for malnutrition. Iron deficiency anemia (18.35%) and vitamin D deficiency (54%) were the most frequently observed nutritional deficits. The questionnaires on psychopathology and quality of life showed a high prevalence of anxiety and depression, and lower level poor quality of life in the physical and mental component. No significant improvements were observed in the weight, food intake, nutritional biochemical parameters, psychopathology and quality of life follow-up. Dietary intervention was able to maintain body weight and food intake. Iron deficiency anemia and vitamin D deficiency improved with iron and vitamine D supplements. No deterioration was observed in psychological assessment or quality of life. Studies with larger numbers of patients are needed to assess the efficacy of this intervention. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  7. Biological life-support systems for Mars mission.

    Science.gov (United States)

    Gitelson, J I

    1992-01-01

    Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.

  8. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-02-01

    An Environmental Control and Life Support System (ECLSS) is necessary for humans to survive in the hostile environment of space. As future missions move beyond Earth orbit for extended durations, reclaiming human metabolic waste streams for recycled use becomes increasingly important. Historically, these functions have been accomplished using a variety of physical and chemical processes with limited recycling capabilities. In contrast, biological systems can also be incorporated into a spacecraft to essentially mimic the balance of photosynthesis and respiration that occurs in Earth's ecosystem, along with increasing the reuse of biomass throughout the food chain. In particular, algal photobioreactors that use Chlorella vulgaris have been identified as potential multifunctional components for use as part of such a bioregenerative life support system (BLSS). However, a connection between the biological research examining C. vulgaris behavior and the engineered spacecraft cabin environmental conditions has not yet been thoroughly established. This review article characterizes the ranges of prior and expected cabin parameters (e.g. temperature, lighting, carbon dioxide, pH, oxygen, pressure, growth media, contamination, gravity, and radiation) and reviews algal metabolic response (e.g. growth rate, composition, carbon dioxide fixation rates, and oxygen evolution rates) to changes in those parameters that have been reported in prior space research and from related Earth-based experimental observations. Based on our findings, it appears that C. vulgaris offers many promising advantages for use in a BLSS. Typical atmospheric conditions found in spacecraft such as elevated carbon dioxide levels are, in fact, beneficial for algal cultivation. Other spacecraft cabin parameters, however, introduce unique environmental factors, such as reduced total pressure with elevated oxygen concentration, increased radiation, and altered gravity, whose effects on the biological responses

  9. Effect of ionizing radiation on advanced life support medications

    International Nuclear Information System (INIS)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-01-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs

  10. e-Learning in Advanced Life Support-What factors influence assessment outcome?

    Science.gov (United States)

    Thorne, C J; Lockey, A S; Kimani, P K; Bullock, I; Hampshire, S; Begum-Ali, S; Perkins, G D

    2017-05-01

    To establish variables which are associated with favourable Advanced Life Support (ALS) course assessment outcomes, maximising learning effect. Between 1 January 2013 and 30 June 2014, 8218 individuals participated in a Resuscitation Council (UK) e-learning Advanced Life Support (e-ALS) course. Participants completed 5-8h of online e-learning prior to attending a one day face-to-face course. e-Learning access data were collected through the Learning Management System (LMS). All participants were assessed by a multiple choice questionnaire (MCQ) before and after the face-to-face aspect alongside a practical cardiac arrest simulation (CAS-Test). Participant demographics and assessment outcomes were analysed. The mean post e-learning MCQ score was 83.7 (SD 7.3) and the mean post-course MCQ score was 87.7 (SD 7.9). The first attempt CAS-Test pass rate was 84.6% and overall pass rate 96.6%. Participants with previous ALS experience, ILS experience, or who were a core member of the resuscitation team performed better in the post-course MCQ, CAS-Test and overall assessment. Median time spent on the e-learning was 5.2h (IQR 3.7-7.1). There was a large range in the degree of access to e-learning content. Increased time spent accessing e-learning had no effect on the overall result (OR 0.98, P=0.367) on simulated learning outcome. Clinical experience through membership of cardiac arrest teams and previous ILS or ALS training were independent predictors of performance on the ALS course whilst time spent accessing e-learning materials did not affect course outcomes. This supports the blended approach to e-ALS which allows participants to tailor their e-learning experience to their specific needs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Experiences of housing support in everyday life for persons with schizophrenia and the role of the media from a societal perspective

    Directory of Open Access Journals (Sweden)

    Henrika Jormfeldt

    2016-05-01

    Full Text Available Background: The mental health-care system in Sweden, as in many other counties, has its main focus on the reduction of psychiatric symptoms and the prevention of relapses. People diagnosed with schizophrenia often have significant health issues and experience reduced well-being in everyday life. The social imaginary of mental illness as an imbalance of the brain has implications concerning general attitudes in society. The news media are an important source of information on psychiatric disorders and have an important role in cultivating public perceptions and stigma. News media can contribute to the mental illness stigma and place individuals with mental illnesses at risk of not receiving adequate care and support. The aim of this preliminary study was to describe users’ experiences of housing support in everyday life. Results: The results revealed three themes of housing support, which were needed, but frequently insufficiently fulfilled in the municipality. The three themes were: “Support to Practice Healthy Routines in Daily Life,” “Support to Shape Meaningful Contents in Everyday Life,” and “Support to Meet Needs of Integrity and Respect.” Conclusions: The findings support previous studies arguing that current health care and housing support fails to meet basic needs and may lead to significant and unnecessary health risks. Further investigation is needed regarding the links between attitudes to mental illness in society and political and financial principles for health care and housing support for persons with schizophrenia. Further research is needed regarding the role of the media in policymaking concerning health promotion interventions for people diagnosed with schizophrenia.

  12. Experiences of housing support in everyday life for persons with schizophrenia and the role of the media from a societal perspective.

    Science.gov (United States)

    Jormfeldt, Henrika; Hallén, Malin

    2016-01-01

    The mental health-care system in Sweden, as in many other counties, has its main focus on the reduction of psychiatric symptoms and the prevention of relapses. People diagnosed with schizophrenia often have significant health issues and experience reduced well-being in everyday life. The social imaginary of mental illness as an imbalance of the brain has implications concerning general attitudes in society. The news media are an important source of information on psychiatric disorders and have an important role in cultivating public perceptions and stigma. News media can contribute to the mental illness stigma and place individuals with mental illnesses at risk of not receiving adequate care and support. The aim of this preliminary study was to describe users' experiences of housing support in everyday life. The results revealed three themes of housing support, which were needed, but frequently insufficiently fulfilled in the municipality. The three themes were: "Support to Practice Healthy Routines in Daily Life," "Support to Shape Meaningful Contents in Everyday Life," and "Support to Meet Needs of Integrity and Respect." The findings support previous studies arguing that current health care and housing support fails to meet basic needs and may lead to significant and unnecessary health risks. Further investigation is needed regarding the links between attitudes to mental illness in society and political and financial principles for health care and housing support for persons with schizophrenia. Further research is needed regarding the role of the media in policymaking concerning health promotion interventions for people diagnosed with schizophrenia.

  13. Pediatric Basic Life Support Self-training is Comparable to Instructor-led Training: A randomized manikin study

    DEFF Research Database (Denmark)

    Vestergaard, L. D.; Løfgren, Bo; Jessen, C.

    2011-01-01

    Pediatric Basic Life Support Self-training is comparable to Instructor-led Training: A randomized manikin study.......Pediatric Basic Life Support Self-training is comparable to Instructor-led Training: A randomized manikin study....

  14. Artificial intelligence tools decision support systems in condition monitoring and diagnosis

    CERN Document Server

    Galar Pascual, Diego

    2015-01-01

    Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring and Diagnosis discusses various white- and black-box approaches to fault diagnosis in condition monitoring (CM). This indispensable resource: Addresses nearest-neighbor-based, clustering-based, statistical, and information theory-based techniques Considers the merits of each technique as well as the issues associated with real-life application Covers classification methods, from neural networks to Bayesian and support vector machines Proposes fuzzy logic to explain the uncertainties associated with diagnostic processes Provides data sets, sample signals, and MATLAB® code for algorithm testing Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring and Diagnosis delivers a thorough evaluation of the latest AI tools for CM, describing the most common fault diagnosis techniques used and the data acquired when these techniques are applied.

  15. An Intelligent Virtual Human System For Providing Healthcare Information And Support

    Science.gov (United States)

    2011-01-01

    healthcare system, and also to other SMs and Veterans by way of a variety of social networking tools (e.g., 2nd Life, Facebook, etc.). The user can progress... CyberPsychology and Behavior 8, 3 (2005), 187-211. [2] T. Parsons & A.A. Rizzo, Affective Outcomes of Virtual Reality Exposure Therapy for Anxiety...VH System for Providing Healthcare Information and Support508 [4] G. Riva, Virtual Reality in Psychotherapy: Review, CyberPsychology and Behavior 8

  16. Residual life of technical systems; diagnosis, prediction and life extension

    International Nuclear Information System (INIS)

    Reinertsen, Rune

    1996-01-01

    The paper presents and discusses research related to residual life of non-repairable and repairable technical systems. Diagnosis of systems and extension of residual life of technical systems are also presented and discussed. This paper concludes that research published describing determination and extension of residual life as well as methods for diagnosis of non-repairable and repairable technical systems, is somewhat limited. Many papers have a rather pragmatic approach. The authors only describe special cases from their own plant and do not provide any explanation of a more academical nature. The other papers are mainly describing very specific applications of statistical models, leaving the more general case out of consideration. One of the main results of this paper is to point out these facts, and thereby identify the need for future research in this area

  17. Support system, excavation arrangement, and process of supporting an object

    Science.gov (United States)

    Arnold, Bill W.

    2017-08-01

    A support system, an excavation arrangement, and a process of supporting an object are disclosed. The support system includes a weight-bearing device and a camming mechanism positioned below the weight-bearing device. A downward force on the weight-bearing device at least partially secures the camming mechanism to opposing surfaces. The excavation arrangement includes a borehole, a support system positioned within and secured to the borehole, and an object positioned on and supported by the support system. The process includes positioning and securing the support system and positioning the object on the weight-bearing device.

  18. Pengaruh Persepsi Dukungan Organisasi Terhadap Work-Life Balance (The Influence of Perceived Organizational Support toward Work-Life Balance)

    OpenAIRE

    Sianturi, Elisabet Damayanti

    2017-01-01

    121301107 Work-life balance merupakan suatu keadaan dimana individu merasa terikat dan puas terhadap kehidupan pekerjaan dan kehidupan keluarganya. Salah satu faktor yang mempengaruhi work-life balance adalah organizational support (dukungan organisasi). Dalam hal ini, dukungan organisasi sangat penting karena ketersediaan dukungan terhadap karyawan dalam menjalankan perannya di tempat kerja dan keluarga akan membuat karyawan merasa bahwa organisasi memperhatikan kesejaht...

  19. A method for making a glass supported system, such glass supported system, and the use of a glass support therefor

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Fazal, I.; Louwerse, M.C.; Mogulkoc, B.; Sanders, Remco G.P.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2008-01-01

    The invention relates to a method for making a glass supported micro or nano system, comprising the steps of: i) providing a glass support; ii) mounting at least one system on at least one glass support; and iii) bonding the system to the glass support, such that the system is circumferentially

  20. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  1. Support System Model for Value based Group Decision on Roof System Selection

    Directory of Open Access Journals (Sweden)

    Christiono Utomo

    2011-02-01

    Full Text Available A group decision support system is required on a value-based decision because there are different concern caused by differing preferences, experiences, and background. It is to enable each decision-maker to evaluate and rank the solution alternatives before engaging into negotiation with other decision-makers. Stakeholder of multi-criteria decision making problems usually evaluates the alternative solution from different perspective, making it possible to have a dominant solution among the alternatives. Each stakeholder needs to identify the goals that can be optimized and those that can be compromised in order to reach an agreement with other stakeholders. This paper presents group decision model involving three decision-makers on the selection of suitable system for a building’s roof. The objective of the research is to find an agreement options model and coalition algorithms for multi person decision with two main preferences of value which are function and cost. The methodology combines value analysis method using Function Analysis System Technique (FAST; Life Cycle Cost analysis, group decision analysis method based on Analytical Hierarchy Process (AHP in a satisfying options, and Game theory-based agent system to develop agreement option and coalition formation for the support system. The support system bridges theoretical gap between automated design in construction domain and automated negotiation in information technology domain by providing a structured methodology which can lead to systematic support system and automated negotiation. It will contribute to value management body of knowledge as an advanced method for creativity and analysis phase, since the practice of this knowledge is teamwork based. In the case of roof system selection, it reveals the start of the first negotiation round. Some of the solutions are not an option because no individual stakeholder or coalition of stakeholders desires to select it. The result indicates

  2. Prehospital interventions for penetrating trauma victims: a prospective comparison between Advanced Life Support and Basic Life Support.

    Science.gov (United States)

    Seamon, Mark J; Doane, Stephen M; Gaughan, John P; Kulp, Heather; D'Andrea, Anthony P; Pathak, Abhijit S; Santora, Thomas A; Goldberg, Amy J; Wydro, Gerald C

    2013-05-01

    Advanced Life Support (ALS) providers may perform more invasive prehospital procedures, while Basic Life Support (BLS) providers offer stabilisation care and often "scoop and run". We hypothesised that prehospital interventions by urban ALS providers prolong prehospital time and decrease survival in penetrating trauma victims. We prospectively analysed 236 consecutive ambulance-transported, penetrating trauma patients an our urban Level-1 trauma centre (6/2008-12/2009). Inclusion criteria included ICU admission, length of stay >/=2 days, or in-hospital death. Demographics, clinical characteristics, and outcomes were compared between ALS and BLS patients. Single and multiple variable logistic regression analysis determined predictors of hospital survival. Of 236 patients, 71% were transported by ALS and 29% by BLS. When ALS and BLS patients were compared, no differences in age, penetrating mechanism, scene GCS score, Injury Severity Score, or need for emergency surgery were detected (p>0.05). Patients transported by ALS units more often underwent prehospital interventions (97% vs. 17%; p<0.01), including endotracheal intubation, needle thoracostomy, cervical collar, IV placement, and crystalloid resuscitation. While ALS ambulance on-scene time was significantly longer than that of BLS (p<0.01), total prehospital time was not (p=0.98) despite these prehospital interventions (1.8 ± 1.0 per ALS patient vs. 0.2 ± 0.5 per BLS patient; p<0.01). Overall, 69.5% ALS patients and 88.4% of BLS patients (p<0.01) survived to hospital discharge. Prehospital resuscitative interventions by ALS units performed on penetrating trauma patients may lengthen on-scene time but do not significantly increase total prehospital time. Regardless, these interventions did not appear to benefit our rapidly transported, urban penetrating trauma patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Life concerns of elderly people living at home determined as by Community General Support Center staff: implications for organizing a more effective integrated community care system. The Kurihara Project.

    Science.gov (United States)

    Takada, Junko; Meguro, Kenichi; Sato, Yuko; Chiba, Yumiko

    2014-09-01

    In Japan, the integrated community care system aims to enable people to continue to live in their homes. Based on the concept, one of the activities of a Community General Support Center (CGSC) is to provide preventive intervention based on a Community Support Program. Currently, a Basic Checklist (BC) is sent to elderly people to identify persons appropriate for a Secondary Prevention Program. To find people who had not responded to the BC, CGSC staff evaluated the files of 592 subjects who had participated in the Kurihara Project to identify activities they cannot do that they did in the past, decreased activity levels at home, loss of interaction with people other than their family, and the need for medical interventions. This information was classified, when applicable, into the following categories: (A) 'no life concerns'; (B) 'undecided'; and (C) 'life concerns'. The relationships between these classifications and clinical information, certified need for long-term care, and items on the BC were examined. The numbers of subjects in categories A, B, and C were 291, 42, and 186, respectively. Life concerns were related to scores on the Clinical Dementia Rating, global cognitive function, depressive state, and apathy. Most items on the BC were not associated with classification into category C, but ≥25% of the subjects had life concerns related to these items. Assessment of life concerns by the CGSC staff has clinical validity. The results suggest that there are people who do not respond to the checklist or apply for Long-Term Care Insurance, meaning that they 'hide' in the community, probably due to apathy or depressive state. To organize a more effective integrated community care system, the CGSC staff should focus mainly on preventive care. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.

  4. Prediction of Quality of Life of Non–Insulin-Dependent Diabetic Patients Based on Perceived Social Support

    Directory of Open Access Journals (Sweden)

    Hossein Shareh

    2012-04-01

    Full Text Available Background: The objective of this study was to predic quality of life based on perceived social support components in non–insulin-dependent diabetic patients.Materials and Method: Fifty patients with non–insulin-dependent diabetes mellitus from Al-Zahra diabetic center in Shiraz participated in a cross-sectional study via survey instrument. All subjects completed multidimensional scale of perceived social support (MSPSS and world health organization quality of life- brief (WHOQOL-BREF questionnaires. Results: On the basis of stepwise multiple regression analysis friends and family dimensions of perceived social support were the best predictors of the quality of life and its dimensions (p<0.01.Conclusion: Friends and family dimensions of perceived social support have significant contributions in predicting quality of life of patients with non–insulin-dependent diabetes mellitus.

  5. Effects of obligatory training and prior training experience on attitudes towards performing basic life support: a questionnaire survey.

    Science.gov (United States)

    Matsubara, Hiroki; Enami, Miki; Hirose, Keiko; Kamikura, Takahisa; Nishi, Taiki; Takei, Yutaka; Inaba, Hideo

    2015-04-01

    To determine the effect of Japanese obligatory basic life support training for new driver's license applicants on their willingness to carry out basic life support. We distributed a questionnaire to 9,807 participants of basic life support courses in authorized driving schools from May 2007 to April 2008 after the release of the 2006 Japanese guidelines. The questionnaire explored the participants' willingness to perform basic life support in four hypothetical scenarios: cardiopulmonary resuscitation on one's own initiative; compression-only cardiopulmonary resuscitation following telephone cardiopulmonary resuscitation; early emergency call; and use of an automated external defibrillator. The questionnaire was given at the beginning of the basic life support course in the first 6-month term and at the end in the second 6-month term. The 9,011 fully completed answer sheets were analyzed. The training significantly increased the proportion of respondents willing to use an automated external defibrillator and to perform cardiopulmonary resuscitation on their own initiative in those with and without prior basic life support training experience. It significantly increased the proportion of respondents willing to carry out favorable actions in all four scenarios. In multiple logistic regression analysis, basic life support training and prior training experiences within 3 years were associated with the attitude. The analysis of reasons for unwillingness suggested that the training reduced the lack of confidence in their skill but did not attenuate the lack of confidence in detection of arrest or clinical judgment to initiate a basic life support action. Obligatory basic life support training should be carried out periodically and modified to ensure that participants gain confidence in judging and detecting cardiac arrest.

  6. Human-machine cooperation: a solution for life-critical systems?

    Science.gov (United States)

    Millot, Patrick; Boy, Guy A

    2012-01-01

    Decision-making plays an important role in life-critical systems. It entails cognitive functions such as monitoring, as well as fault prevention and recovery. Three kinds of objectives are typically considered: safety, efficiency and comfort. People involved in the control and management of such systems provide two kinds of contributions: positive with their unique involvement and capacity to deal with the unexpected; and negative with their ability to make errors. In the negative view, people are the problem and need to be supervised by regulatory systems in the form of operational constraints or by design. In the positive view, people are the solution and lead the game; they are decision-makers. The former view also deals with error resistance, and the latter with error tolerance, which, for example, enables cooperation between people and decision support systems (DSS). In the real life, both views should be considered with respect to appropriate situational factors, such as time constraints and very dangerous environments. This is known as function allocation between people and systems. This paper presents a possibility to reconcile both approaches into a joint human-machine organization, where the main dimensioning factors are safety and complexity. A framework for cooperative and fault tolerant systems is proposed, and illustrated by an example in Air Traffic Control.

  7. [The level of first aid and basic life support for the next generation of physicians

    NARCIS (Netherlands)

    Severien, I.; Tan, E.C.T.H.; Metz, J.C.; Biert, J.; Berden, H.J.J.M.

    2005-01-01

    According to Dutch medical-education guidelines junior doctors are expected to be able to carry out first aid and basic life support. We determined the level of first aid and basic life support of junior doctors at the Radboud University Nijmegen Medical Centre, The Netherlands. Of the 300 junior

  8. The Consistent Support System in The Society for Lifelong Sports : From a View Point of Self-Organization of Sports Club and Support

    OpenAIRE

    長岡, 雅美; 赤松, 喜久; Masami, Nagaoka; Yoshihisa, Akamatsu

    2008-01-01

    The purpose of this study is to clarify the concept of Guidance and Support on community sports and to specify the directionality of organization and support for achievement of the sports society through life. The authors have stressed that it is necessary for achievement of the society for longlife sports,to cooperate with other groups and to construct a consistent support system. This study is also to explore the condition of community sports club management through analyzing the Japan Juni...

  9. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  10. Withholding and withdrawing life-support therapy in an Emergency Department: prospective survey.

    Science.gov (United States)

    Le Conte, Philippe; Baron, Denis; Trewick, David; Touzé, Marie Dominique; Longo, Céline; Vial, Irshaad; Yatim, Danielle; Potel, Gille

    2004-12-01

    Few studies have focused on decisions to withdraw or withhold life-support therapies in the emergency department. Our objectives were to identify clinical situations where life-support was withheld or withdrawn, the criteria used by physicians to justify their decisions, the modalities necessary to implement these decisions, patient disposition, and outcome. Prospective unicenter survey in an Emergency Department of a tertiary care teaching hospital. All non-trauma patients (n=119) for whom a decision to withhold or withdraw life-sustaining treatments was taken between January and September 1998. Choice of criteria justifying the decision to withhold or withdraw life-sustaining treatments, time interval from ED admission to the decision; type of decision implemented, outcome. Fourteen thousand eight hundred and seventy-five non-trauma patients were admitted during the study period, 119 were included, mean age 75+/-13 years. Resuscitation procedures were instituted for 96 (80%) patients before a subsequent decision was taken. Physicians chose on average 6+/-2 items to justify their decision; the principal acute medical disorder and futility of care were the two criteria most often used. Median time interval to reach the decision was 187 min. Withdrawal involved 37% of patients and withholding 63% of patients. The family was involved in the decision-making process in 72% of patients. The median time interval from the decision to death was 16 h (5 min to 140 days). Withdrawing and withholding life-support therapy involved elderly patients with underlying chronic cardiopulmonary disease or metastatic cancer or patients with acute non-treatable illness.

  11. Life in the solar system and beyond

    CERN Document Server

    Jones, Barrie W

    2004-01-01

    In Life in the Solar System and Beyond, Professor Jones has written a broad introduction to the subject, addressing important topics such as, what is life?, the origins of life and where to look for extraterrestrial life The chapters are arranged as follows Chapter 1 is a broad introduction to the cosmos, with an emphasis on where we might find life In Chapters 2 and 3 Professor Jones discusses life on Earth, the one place we know to be inhabited Chapter 4 is a brief tour of the Solar system, leading us in Chapters 5 and 6 to two promising potential habitats, Mars and Europa In Chapter 7 the author discusses the fate of life in the Solar system, which gives us extra reason to consider life further afield Chapter 8 focuses on the types of stars that might host habitable planets, and where in the Galaxy these might be concentrated Chapters 9 and 10 describe the instruments and techniques being employed to discover planets around other stars (exoplanetary systems), and those that will be employed in the near fut...

  12. Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems. Part 1, Bulk Phase. Part 1; Bulk Phase

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in

  13. Use of Bioregenerative Technologies for Advanced Life Support: Some Considerations for BIO-Plex and Related Testbeds

    Science.gov (United States)

    Wheeler, Raymond M.; Strayer, Richard F.

    1997-01-01

    A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.

  14. An Innovation in Learning and Teaching Basic Life Support: A Community Based Educational Intervention

    Directory of Open Access Journals (Sweden)

    Anne D Souza

    2018-01-01

    Full Text Available Background: Out of hospital deaths due to cardiac arrest would commonly occur because of the lack of awareness about the quick and right action to be taken. In this context the healthcare students undergo training in basic life support. However the lay persons are not exposed to such training. The present study was intended to train the auto drivers, the basic skills of basic life support by the medical and nursing students. Students got an opportunity to learn and teach the skills under the supervision of faculty. Methods: A total of fourteen students, 20 auto drivers of Manipal were included in the study population. The session on one and two rescuer cardio pulmonary resuscitation and relieving foreign body airway obstruction was conducted by the trained students for the auto drivers under the observation of the faculty. Prior knowledge of the study population was assessed by the pre-session questionnaire followed by a post-session questionnaire at the end of the session. The skill evaluation was carried out using a checklist. Results: The auto drivers participated in the session, gained required skills of providing basic life support. The students who trained the study population opined that they got an opportunity to teach basic life support which would help them build their teaching skills and confidence. Conclusion: The lay persons attaining basic life support skills have a high impact on the management of out of hospital cardiac arrest victims. Involving the healthcare students as instructors makes an innovation in learning.

  15. [Current recommendations for basic/advanced life support : Addressing unanswered questions and future prospects].

    Science.gov (United States)

    Fink, K; Schmid, B; Busch, H-J

    2016-11-01

    The revised guidelines for cardiopulmonary resuscitation were implemented by the European Resuscitation Council (ERC) in October 2015. There were few changes concerning basic and advanced life support; however, some issues were clarified compared to the ERC recommendations from 2010. The present paper summarizes the procedures of basic and advanced life support according to the current guidelines and highlights the updates of 2015. Furthermore, the article depicts future prospects of cardiopulmonary resuscitation that may improve outcome of patients after cardiac arrest in the future.

  16. Use of a Lunar Outpost for Developing Space Settlement Technologies

    Science.gov (United States)

    Purves, Lloyd R.

    2008-01-01

    The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory

  17. Early-Life Parent-Child Relationships and Adult Children's Support of Unpartnered Parents in Later Life.

    Science.gov (United States)

    Lin, I-Fen; Wu, Hsueh-Sheng

    2018-02-08

    The proportion of older adults who are unpartnered has increased significantly over the past 25 years. Unpartnered older adults often rely on their adult children for support. Most previous studies have focused on proximal factors associated with adult children's support of their parents, while few have examined distal factors, such as parent-child relationships formed during childhood. This study fills the gap by investigating the direct and indirect associations between early-life parent-child relationships and adult children's upward transfers to unpartnered parents. Data came from two supplements to the Panel Study of Income Dynamics, in which respondents were asked about their relationships with mothers and fathers before age 17 and their transfers of time and money to parents in 2013. Path models were estimated for unpartnered mother-adult child dyads and father-adult child dyads separately. For adult children of unpartnered mothers, psychological closeness has a direct, positive association with time transfer, while physical violence has an indirect association with time transfer through adult children's marital status. For adult children of unpartnered fathers, psychological closeness has neither a direct nor an indirect association with time or money transfer, but physical violence has a direct, negative association with time transfer. Early-life parent-child relationships play a pivotal role in influencing adult children's caregiving behavior, both directly and indirectly. Our findings suggest that by improving their relationships with children early in life, parents may be able to increase the amount of time transfer that they receive in late life. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  19. Is the association between high strain work and depressive symptoms modified by private life social support

    DEFF Research Database (Denmark)

    Madsen, Ida E H; Jorgensen, Anette F B; Borritz, Marianne

    2014-01-01

    be modified by factors outside the working environment. This article examines the modifying role of private life social support in the relation between high strain work and the development of severe depressive symptoms. METHODS: Data were questionnaire-based, collected from a cross-occupational sample of 1......,074 Danish employees. At baseline, all participants were free of severe depressive symptoms, measured by the Mental Health Inventory. High strain work was defined by the combination of high psychological demands at work and low control, measured with multi-dimensional scales. Private life social support......, neither high strain work nor low private life social support statistically significantly predicted depressive symptoms. However, participants with joint exposure to high strain work and low private life social support had an Odds ratio (OR) for severe depressive symptoms of 3.41 (95% CI: 1...

  20. A PetriNet-Based Approach for Supporting Traceability in Cyber-Physical Manufacturing Systems.

    Science.gov (United States)

    Huang, Jiwei; Zhu, Yeping; Cheng, Bo; Lin, Chuang; Chen, Junliang

    2016-03-17

    With the growing popularity of complex dynamic activities in manufacturing processes, traceability of the entire life of every product has drawn significant attention especially for food, clinical materials, and similar items. This paper studies the traceability issue in cyber-physical manufacturing systems from a theoretical viewpoint. Petri net models are generalized for formulating dynamic manufacturing processes, based on which a detailed approach for enabling traceability analysis is presented. Models as well as algorithms are carefully designed, which can trace back the lifecycle of a possibly contaminated item. A practical prototype system for supporting traceability is designed, and a real-life case study of a quality control system for bee products is presented to validate the effectiveness of the approach.