WorldWideScience

Sample records for life sciences analysis

  1. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology ...

  2. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    Hennie

    curriculum and the new Life Sciences textbooks that are in accord with the National Curriculum Statement. The analysis .... lems and generate new ideas for improvement. (Castells, 2005). ... Accordingly, the following research questions were.

  3. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  4. Life sciences

    International Nuclear Information System (INIS)

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs

  5. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  6. Introduction to statistical data analysis for the life sciences

    CERN Document Server

    Ekstrom, Claus Thorn

    2014-01-01

    This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.

  7. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    Science.gov (United States)

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  8. Life Sciences Accomplishments 1994

    Science.gov (United States)

    Burnell, Mary Lou (Editor)

    1993-01-01

    proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.

  9. KNIME for reproducible cross-domain analysis of life science data.

    Science.gov (United States)

    Fillbrunn, Alexander; Dietz, Christian; Pfeuffer, Julianus; Rahn, René; Landrum, Gregory A; Berthold, Michael R

    2017-11-10

    Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Life sciences recruitment objectives

    Science.gov (United States)

    Keefe, J. Richard

    1992-01-01

    The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995

  11. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  12. Content Analysis of Life Exhibitions in Japanese Science Museums and Centres

    Science.gov (United States)

    Kazama, Tomoko; Ogawa, Masakata

    2015-01-01

    Life exhibitions in Japanese science museums (SMs) face difficulties in coping with rapid progress in the life sciences owing to certain constraints around the frequency of exhibit renovations, and the Japanese indigenous understanding of the natural world (Shizen) that Japanese visitors unconsciously bring with them. To what extent do current…

  13. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  14. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  15. Spacelab Life Sciences-1

    Science.gov (United States)

    Dalton, Bonnie P.; Jahns, Gary; Meylor, John; Hawes, Nikki; Fast, Tom N.; Zarow, Greg

    1995-01-01

    This report provides an historical overview of the Spacelab Life Sciences-1 (SLS-1) mission along with the resultant biomaintenance data and investigators' findings. Only the nonhuman elements, developed by Ames Research Center (ARC) researchers, are addressed herein. The STS-40 flight of SLS-1, in June 1991, was the first spacelab flown after 'return to orbit', it was also the first spacelab mission specifically designated as a Life Sciences Spacelab. The experiments performed provided baseline data for both hardware and rodents used in succeeding missions.

  16. NASA Life Sciences Program

    Science.gov (United States)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  17. The application of computer image analysis in life sciences and environmental engineering

    Science.gov (United States)

    Mazur, R.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.

    2014-04-01

    The main aim of the article was to present research on the application of computer image analysis in Life Science and Environmental Engineering. The authors used different methods of computer image analysis in developing of an innovative biotest in modern biomonitoring of water quality. Created tools were based on live organisms such as bioindicators Lemna minor L. and Hydra vulgaris Pallas as well as computer image analysis method in the assessment of negatives reactions during the exposition of the organisms to selected water toxicants. All of these methods belong to acute toxicity tests and are particularly essential in ecotoxicological assessment of water pollutants. Developed bioassays can be used not only in scientific research but are also applicable in environmental engineering and agriculture in the study of adverse effects on water quality of various compounds used in agriculture and industry.

  18. Life of Science

    DEFF Research Database (Denmark)

    Engelhardt, Robin; Margot Ricard, Lykke

    Learning Lab Denmark, København. 2003 Short description: In connection to the conference Changes and Challenges the White Book "Life of Science" was published. Member states of the European Union as well as applying countries were invited to contribute to the book with texts in order to present...... inspiring cases of concrete educational strategies for improving learning, teaching and recruitment in the fields of science and technology. Abstract: The aim of this white book is to present some of the most inspiring examples of Science and Technology Education in Europe. In creating the white book, we...

  19. NASA Life Sciences Data Repositories: Tools for Retrospective Analysis and Future Planning

    Science.gov (United States)

    Thomas, D.; Wear, M.; VanBaalen, M.; Lee, L.; Fitts, M.

    2011-01-01

    As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future

  20. Future opportunities and future trends for e-infrastructures and life sciences: going beyond grid to enable life science data analysis

    Directory of Open Access Journals (Sweden)

    Fotis ePsomopoulos

    2015-06-01

    Full Text Available With the increasingly rapid growth of data in Life Sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. In the context of the European Grid Infrastructure Community Forum 2014 (Helsinki, 19–23 May 2014, a workshop was held aimed at understanding the state of the art of Grid/Cloud computing in EU research as viewed from within the field of Life Sciences. The workshop brought together Life Science researchers and infrastructure providers from around Europe and facilitated networking between them within the context of EGI. The first part of the workshop included talks from key infrastructures and projects within the Life Sciences community. This was complemented by technical talks that established the key aspects present in major research approaches. Finally, the discussion phase provided significant insights into the road ahead with proposals for possible collaborations and suggestions for future actions.

  1. Spacelab Life Sciences Research Panel

    Science.gov (United States)

    Sulzman, Frank; Young, Laurence R.; Seddon, Rhea; Ross, Muriel; Baldwin, Kenneth; Frey, Mary Anne; Hughes, Rod

    2000-01-01

    This document describes some of the life sciences research that was conducted on Spacelab missions. Dr. Larry Young, Director of the National Space Biomedical Research Institute, provides an overview of the Life Sciences Spacelabs.

  2. Work flows in life science

    NARCIS (Netherlands)

    Wassink, I.

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  3. Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis.

    Science.gov (United States)

    Duarte, Afonso M S; Psomopoulos, Fotis E; Blanchet, Christophe; Bonvin, Alexandre M J J; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C; de Lucas, Jesus M; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B

    2015-01-01

    With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community.

  4. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  5. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  6. The Third Man: comparative analysis of a science autobiography and a cinema classic as windows into post-war life sciences research.

    Science.gov (United States)

    Zwart, Hub

    2015-12-01

    In 2003, biophysicist and Nobel Laureate Maurice Wilkins published his autobiography entitled The Third Man. In the preface, he diffidently points out that the title (which presents him as the 'third' man credited with the co-discovery of the structure of DNA, besides Watson and Crick) was chosen by his publisher, as a reference to the famous 1949 movie no doubt, featuring Orson Welles in his classical role as penicillin racketeer Harry Lime. In this paper I intend to show that there is much more to this title than merely its familiar ring. If subjected to a (psychoanalytically inspired) comparative analysis, multiple correspondences between movie and memoirs can be brought to the fore. Taken together, these documents shed an intriguing light on the vicissitudes of budding life sciences research during the post-war era. I will focus my comparative analysis on issues still relevant today, such as dual use, the handling of sensitive scientific information (in a moral setting defined by the tension between collaboration and competition) and, finally, on the interwovenness of science and warfare (i.e. the 'militarisation' of research and the relationship between beauty and destruction). Thus, I will explain how science autobiographies on the one hand and genres of the imagination (such as novels and movies) on the other may deepen our comprehension of tensions and dilemmas of life sciences research then and now. For that reason, science autobiographies can provide valuable input (case material) for teaching philosophy and history of science to science students.

  7. Bioinformatics: future of life sciences

    International Nuclear Information System (INIS)

    Arif, R.; Ghafoor, M.; Saleem, M.; Baig, S.J.; Hassan, S.W.

    2004-01-01

    The vital part of our life or the basic unit of life is the cell. The cellular biomolecules function in a conjugate manner and this system provide us with the necessary elements of life, and the sciences that deals with nature function of the cell and it's molecular components are defined as life sciences. Vital subjects involved in maintaining the identity and functioning of cells are genomics and proteomics. (author)

  8. Life Sciences and employability

    Directory of Open Access Journals (Sweden)

    Wynand J. Boshoff

    2012-03-01

    Full Text Available This article addresses unemployment in rural areas. South Africa is also characterised by skills shortage and high unemployment figures, especially in rural areas as compared to urban areas. The institutional reality of education is that every rural village hosts a high school which is primarily engaged in preparing learners for further studies, whilst the Further Training Colleges (previously known as technical colleges are mainly located in the larger centres. It is with this scenario as a backdrop that the possible role of high schools to alleviate the problem is being argued. It is clear that rural employers do not expect from school leavers to be in possession of applicable knowledge, but rather to be in possession of the ability as well as certain personal characteristics that would make them employable. Unfortunately, however, this is not always found in young persons who have completed their schooling successfully. Life Sciences educators can render a valuable service should certain nontraditional approaches be incorporated into the teaching practice. This will enable them to contribute to solving one of South Africa’s serious problems.

  9. Physics of the Life Sciences

    CERN Document Server

    Newman, Jay

    2008-01-01

    Originally developed for the author's course at Union College, this text is designed for life science students who need to understand the connections of fundamental physics to modern biology and medicine. Almost all areas of modern life sciences integrally involve physics in both experimental techniques and in basic understanding of structure and function. Physics of the Life Sciences is not a watered-down, algebra-based engineering physics book with sections on relevant biomedical topics added as an afterthought. This authoritative and engaging text, which is designed to be covered in a two-semester course, was written with a thoroughgoing commitment to the needs and interests of life science students. Although covering most of the standard topics in introductory physics in a more or less traditional sequence, the author gives added weight and space to concepts and applications of greater relevance to the life sciences. Students benefit from occasional sidebars using calculus to derive fundamental relations,...

  10. Comparative analysis of knowledge representation and reasoning requirements across a range of life sciences textbooks.

    Science.gov (United States)

    Chaudhri, Vinay K; Elenius, Daniel; Goldenkranz, Andrew; Gong, Allison; Martone, Maryann E; Webb, William; Yorke-Smith, Neil

    2014-01-01

    Using knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms? Our existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important. With some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps

  11. Life Sciences Data Archive (LSDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Life Sciences Data Archive (LSDA) is an active archive that provides information and data from 1961 (Mercury Project) through current flight and flight analog...

  12. Life sciences at CEA

    International Nuclear Information System (INIS)

    2000-01-01

    This paper presents briefly the organization of the - Direction des Sciences du Vivant - of french atomic energy commission (Commissariat a l'Energie Atomique (CEA)) and their main axes of research (F.M)

  13. Life sciences on the moon

    Science.gov (United States)

    Horneck, G.

    Despite of the fact that the lunar environment lacks essential prerequisites for supporting life, lunar missions offer new and promising opportunities to the life sciences community. Among the disciplines of interest are exobiology, radiation biology, ecology and human physiology. In exobiology, the Moon offers an ideal platform for studies related to the understanding of the principles, leading to the origin, evolution and distribution of life. These include the analysis of lunar samples and meteorites in relatively pristine conditions, radioastronomical search for other planetary systems or Search for Extra-Terrestrial Intelligence (SETI), and studies on the role of radiation in evolutionary processes and on the environmental limits for life. For radiation biology, the Moon provides an unique laboratory with built-in sources for optical as well as ionising radiation to investigate the biological importance of the various components of cosmic and solar radiation. Before establishing a lunar base, precursor missions will provide a characterisation of the radiation field, determination of depth dose distributions in different absorbers, the installation of a solar flare alert system, and a qualification of the biological efficiency of the mixed radiation environment. One of the most challenging projects falls into the domain of ecology with the establishment for the first time of an artificial ecosystem on a celestial body beyond the Earth. From this venture, a better understanding of the dynamics regulating our terrestrial biosphere is expected. It will also serve as a precursor of bioregenerative life support systems for a lunar base. The establishment of a lunar base with eventually long-term human presence will raise various problems in the fields of human physiology and health care, psychology and sociology. Protection guidelines for living in this hostile environment have to be established.

  14. Life sciences and Mars exploration

    Science.gov (United States)

    Sulzman, Frank M.; Rummel, John D.; Leveton, Lauren B.; Teeter, Ron

    1990-01-01

    The major life science considerations for Mars exploration missions are discussed. Radiation protection and countermeasures for zero gravity are discussed. Considerations of crew psychological health considerations and life support systems are addressed. Scientific opportunities presented by manned Mars missions are examined.

  15. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  16. Life Sciences Data Archive (LSDA)

    Science.gov (United States)

    Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.

    2008-01-01

    In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.

  17. Space life sciences strategic plan

    Science.gov (United States)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  18. Exobiology and life science

    Science.gov (United States)

    Mckay, C. P.

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) biogenic elements in the interstellar medium; (2) organic material in the solar nebula; (3) volatiles in comets and icy planetesimals; (4) pre-biotic atmospheric chemistry; (5) analysis of cosmic dust particles; and (6) microbial exposure. The required capabilities and desired hardware for the facility are detailed.

  19. Space life sciences: A status report

    Science.gov (United States)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  20. NUCOR Institute for Life Sciences

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article discusses the Nucor Institute for Life Sciences. The institute was previously part of Nucor, but is now an autonomous institute of the University of Pretoria. The task of the institute is to promote the application of radioisotopes and radiation techniques in medicine and biology. Research projects of the institute are shortly discussed

  1. USSR Space Life Sciences Digest

    Science.gov (United States)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  2. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  3. Conformation analysis - ConfC | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us ConfC Conformation analysis Data detail Data name Conformation analysis DOI 10.18908/lsdba.n...bdc00400-005 Description of data contents Results of conformation analysis for PDB files (raw data) Each res...ile size: 63.9 MB Simple search URL - Data acquisition method - Data analysis method - Number of data entrie...s 352 entries - About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Conformation analysis - ConfC | LSDB Archive ...

  4. The scientific use of factor analysis in behavioral and life sciences

    National Research Council Canada - National Science Library

    Cattell, Raymond Bernard

    1978-01-01

    ...; the choice of procedures in experimentation; factor interpretation; the relationship of factor analysis to broadened psychometric concepts such as scaling, validity, and reliability, and to higher- strata models...

  5. Analysis list - ChIP-Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...://ftp.biosciencedbc.jp/archive/chip-atlas/LATEST/chip_atlas_analysis_list.zip File size: 44.8 KB Simple sea...e class. About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Analysis list - ChIP-Atlas | LSDB Archive ...

  6. Life Science Research Sample Transfer Technology for On Orbit Analysis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — With retirement of the space shuttle program, microgravity researchers can no longer count on bringing experiment samples back to earth for post-flight analysis....

  7. PSI life sciences newsletter 1988

    International Nuclear Information System (INIS)

    Schubiger, P.A.

    1989-10-01

    Even as separate institutes, the EIR (Eidg. Institut fuer Reaktorforschung and the SIN (Schweiz. Institut fuer Nuklearforschung) made use of ionizing radiation and radioactivity in medical diagnosis and therapy. After their fusion into a national laboratory, the Paul Scherrer Institute (PSI), these projects were combined with those of the Radiation Protection Group and the Life Sciences Department was formed. In equality with the departments of Nuclear and Particle Physics, Condensed Matter and Materials Sciences, and Energy Research and Engineering Sciences, the department of Life Sciences is one of the major pillars of the new center. The activities are divided into three areas: radiation medicine, radiopharmacy, and radiation protection. The goal of the first two is to develop social and economic uses of radioactivity and elementary particles. The Division of Radiation Medicine proposes to achieve this through the development of original, dynamic and conformal tumor therapy with charged particles and the Division of Radiopharmacy through the investigation into, and the production of, highly specific diagnostic systems for SPECT, PET and MRI and the investigation of the use of radionuclides in therapy. The third division, Radiation Protection, evaluates the risks of ionizing radiation in biology and the ecosphere and proposes adequate protection measures. The present report describes, in the first section, the outstanding scientific results of the past year and, in the second section, gives a progress report on the on-going programs. It is the first report in this style, but it can be considered as a continuation of the earlier Medical Newsletter of SIN. (author) 59 figs., 19 tabs., 61 refs

  8. Nuclear applications in life sciences

    International Nuclear Information System (INIS)

    Uenak, P.

    2009-01-01

    Radioactivity has revolutionized life sciences during the last century, and it is still an indispensable tool. Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics, Nutrition and Environmental Problems Relevant Health are significant application fields of Nuclear Sciences. Nuclear medicine today is a well established branch of medicine. Radionuclides and radiopharmaceuticals play a key role both in diagnostic investigations and therapy-Both cyclotron and reactor produced radionuclides find application, the former more in diagnostic studies and the latter in therapy. New therapy applications such as bor neutron therapy are increasing by time together with the technological improvements in imaging systems such as PET and SPECT. Radionuclides and radiopharmaceuticals play important role in both therapy and imaging. However cyclotron produced radionuclides have been using generally in imaging purposes while reactor produced radionuclides have also therapeutic applications. With the advent of emission tomography, new vistas for probing biochemistry in vivo have been opened. The radio chemist faces an ever-increasing challenge of designing new tracers for diagnostic and therapeutic applications. Rapid, efficient and automated methods of radionuclide and precursor production, labeling of biomolecules, and quality control need to be developed. The purpose of this article is a short interface from Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics Applications of Nuclear Sciences.

  9. The Next Generation Science Standards and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Using the life sciences, this article first reviews essential features of the "NRC Framework for K-12 Science Education" that provided a foundation for the new standards. Second, the article describes the important features of life science standards for elementary, middle, and high school levels. Special attention is paid to the teaching…

  10. Life Sciences Program Tasks and Bibliography

    Science.gov (United States)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  11. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  12. John Greenleaf's life of science.

    Science.gov (United States)

    Watenpaugh, Donald E

    2012-12-01

    This article summarizes the life and career of John E. Greenleaf, PhD. It complements an interview of Dr. Greenleaf sponsored by the American Physiological Society Living History Project found on the American Physiological Society website. Dr. Greenleaf is a "thought leader" and internationally renowned physiologist, with extensive contributions in human systems-level environmental physiology. He avoided self-aggrandizement and believed that deeds rather than words define one's legacy. Viewed another way, however, Greenleaf's words define his deeds: 48% of his 185 articles are first author works, which is an unusually high proportion for a scientist of his stature. He found that writing a thorough and thoughtful discussion section often led to novel ideas that drove future research. Beyond Greenleaf's words are the many students, postdocs, and collaborators lucky enough to have worked with him and thus learn and carry on his ways of science. His core principles included the following: avoid research "fads," embrace diversity, be the first subject in your own research, adhere to rules of fiscal responsibility, and respect administrative forces-but never back down from them when you know you are right. Greenleaf's integrity ensured he was usually right. He thrived on the axiom of many successful scientists: avoid falling in love with hypotheses, so that when unexpected findings appear, they arouse curiosity instead of fear. Dr. Greenleaf's legacy will include the John and Carol Greenleaf Award for prolific environmental and exercise-related publication in the Journal of Applied Physiology.

  13. Semantic Web technologies for the big data in life sciences.

    Science.gov (United States)

    Wu, Hongyan; Yamaguchi, Atsuko

    2014-08-01

    The life sciences field is entering an era of big data with the breakthroughs of science and technology. More and more big data-related projects and activities are being performed in the world. Life sciences data generated by new technologies are continuing to grow in not only size but also variety and complexity, with great speed. To ensure that big data has a major influence in the life sciences, comprehensive data analysis across multiple data sources and even across disciplines is indispensable. The increasing volume of data and the heterogeneous, complex varieties of data are two principal issues mainly discussed in life science informatics. The ever-evolving next-generation Web, characterized as the Semantic Web, is an extension of the current Web, aiming to provide information for not only humans but also computers to semantically process large-scale data. The paper presents a survey of big data in life sciences, big data related projects and Semantic Web technologies. The paper introduces the main Semantic Web technologies and their current situation, and provides a detailed analysis of how Semantic Web technologies address the heterogeneous variety of life sciences big data. The paper helps to understand the role of Semantic Web technologies in the big data era and how they provide a promising solution for the big data in life sciences.

  14. USSR report: life sciences. Biomedical and behavioral sciences

    International Nuclear Information System (INIS)

    1982-09-01

    Studies in life sciences, biomedical sciences, and behavioral sciences are reported. The following fields of interest were studied: agricultural biology, biochemistry, biotechnology, environment effects, medical demography, medicine, microbiology, physiology, radiation biology, and human factors engineering. For individual titles, see N82-33989 through N82-33994

  15. JPRS Report, Science & Technology USSR: Life Sciences.

    Science.gov (United States)

    1988-07-01

    intestinal and renal colic and peritonitis) and 4 diseases closely simulating these (acute gastritis , food poisoning, myocardial infarction...Scientific Research Institute of Experimental Medicine, USSR Academy of Medical Sciences, Leningrad] [Abstract] Histological and histochemical studies...the histological impression of rccip- functional integration. Figures 4; references 25: 5 Rus- rocal connections. A continuum was evident

  16. CSIR ScienceScope: Life sciences

    CSIR Research Space (South Africa)

    CSIR

    2007-04-01

    Full Text Available modern science . . . . . . . . . . . . . . 13 Fight against diseases of developing world . . . . . . . . . . . . . 16 Aptamers: a new approach . . . . . . . . . . . . . . . . . . . . . . . . 18 Medicinal chemistry – the missing link... the impact of biofuels on hydrology, food security, poverty relief and biodiversity conservation. A combination of process-based field measurements and modelling exercises are being undertaken. Tree genetics The reality of an ever-growing demand...

  17. JPRS Report, Science & Technology, USSR: Life Sciences

    Science.gov (United States)

    1989-01-05

    Treatment and Consultation] for homeopathy ): "Why did the hospital become part of a cooperative? Life itself brought this about. Let’s look at the...need to do whatever it takes to deal with a patient properly. As far as homeopathy goes, the cooperative is devoting considerable means to scientific

  18. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  19. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  20. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  1. MATLAB for Engineering and the Life Sciences

    CERN Document Server

    Tranquillo, Joseph

    2011-01-01

    In recent years, the life sciences have embraced simulation as an important tool in biomedical research. Engineers are also using simulation as a powerful step in the design process. In both arenas, Matlab has become the gold standard. It is easy to learn, flexible, and has a large and growing userbase. MATLAB for Engineering and the Life Sciences is a self-guided tour of the basic functionality of MATLAB along with the functions that are most commonly used in biomedical engineering and other life sciences. Although the text is written for undergraduates, graduate students and academics, those

  2. Breathing Life into Engineering: A Lesson Study Life Science Lesson

    Science.gov (United States)

    Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa

    2016-01-01

    A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…

  3. JPRS Report, Science & Technology, USSR: Life Sciences.

    Science.gov (United States)

    1988-02-12

    the [Leu]enkephalin pentapeptide Tyr-Gly-Gly-Phe-Leu (i)and its [D-Ala2]analog Tyr-D-Ala-Gly-Phe-Leu ( la ), which is more resistant to proteinases, by...Biology and Genetics, Ukrainian SSR Academy of Sciences, Kiev] ltl!tra°+V ^° la ^ion ^dies were conducted for mini forms of the M13 bacteri- ophage...of fodder substrates (hay, soya millet,,oats, wheat, barley, bean, etc.) Various degrees of growth were obtained on the various fodder products

  4. More Life-Science Experiments For Spacelab

    Science.gov (United States)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  5. Physical and Life Sciences 2008 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Correll, D L; Hazi, A U

    2009-05-06

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  6. Water in everyday life and in science classrooms: analysis of discursive interactions and teaching strategies in primary education

    Directory of Open Access Journals (Sweden)

    Andreza Fortini da Silva

    2012-02-01

    Full Text Available This article examines how a primary teacher establishes links between students' initial contributions on the theme ‘water’ and the elements that will make up the teaching approach of this subject in the science classroom. For this purpose, we examine discursive interactions in the first lessons of a teaching sequence, looking for links between events that are being elicited and developed by the teacher with intense participation of the students. We shall also examine the teaching strategies conducted by the teacher, emphasizing the presence of visual resources in text production activities, understanding them as literacy practices in the context of science lessons. To examine the effectiveness of these strategies and mediational resources, we shall analyze some exemplars of the students' productions (texts and drawings. We will use as criteria of analysis: speech marks of the opening activity and of the preliminary discussions in the texts produced by the pupils; evidence of changes in the pupils’ initial repertoires about the theme; evidence of connections between the “water in our lives” and “water as a science subject”. The context of the research is a third year grade classroom in a public elementary school in Contagem / MG - Brazil.

  7. Nuclear and chemical data for life sciences

    International Nuclear Information System (INIS)

    Moumita Maiti; Indian Institute of Technology Roorkee, Roorkee, Uttarakhand

    2013-01-01

    Use of reactor produced radionuclides is popular in life sciences. However, cyclotron production of proton rich radionuclides are being more focused in recent times. These radionuclides have already gained attention in various fields, including life sciences, provided they are obtained in pure form. This article is a representative brief of our contributions in generating nuclear data for the production of proton rich radionuclides of terbium, astatine, technetium, ruthenium, cadmium, niobium, zirconium, rhenium, etc., which may have application in clinical, biological, agriculture studies or in basic research. The chemical data required to separate the product isotopes from the corresponding target matrix have been presented along with a few propositions of radiopharmaceuticals. It also emphasizes on the development of simple empirical technique, based on the nuclear reaction model analysis, to generate reliable nuclear data for the estimation of yield and angular distribution of emitted neutrons and light charged particles from light as well as heavy ion induced reactions on thick stopping targets. These data bear utmost important in radiation dosimetry. (author)

  8. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    Science.gov (United States)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  9. Life Sciences Centrifuge Facility assessment

    Science.gov (United States)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  10. Towards ethically sound life sciences

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.

    2004-01-01

    In this collection of papers we have intensively discussed the new, and often uncertain impacts of these sciences and their connected technologies, as well their wider (global) impact. It has become clear that many ethical issues are not only triggered by possible misconduct in the treatment of

  11. USSR Space Life Sciences Digest, issue 13

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  12. Empowering pharmacoinformatics by linked life science data.

    Science.gov (United States)

    Goldmann, Daria; Zdrazil, Barbara; Digles, Daniela; Ecker, Gerhard F

    2017-03-01

    With the public availability of large data sources such as ChEMBLdb and the Open PHACTS Discovery Platform, retrieval of data sets for certain protein targets of interest with consistent assay conditions is no longer a time consuming process. Especially the use of workflow engines such as KNIME or Pipeline Pilot allows complex queries and enables to simultaneously search for several targets. Data can then directly be used as input to various ligand- and structure-based studies. In this contribution, using in-house projects on P-gp inhibition, transporter selectivity, and TRPV1 modulation we outline how the incorporation of linked life science data in the daily execution of projects allowed to expand our approaches from conventional Hansch analysis to complex, integrated multilayer models.

  13. Science foresight using life-cycle analysis, text mining and clustering : a case study on natural ventilation

    NARCIS (Netherlands)

    Rezaeian, M.; Montazeri, H.; Loonen, R.C.G.M.

    2017-01-01

    Science foresight comprises a range of methods to analyze past, present and expected research trends, and uses this information to predict the future status of different fields of science and technology. With the ability to identify high-potential development directions, science foresight can be a

  14. Opportunities and Challenges for the Life Sciences Community

    Science.gov (United States)

    Stewart, Elizabeth; Ozdemir, Vural

    2012-01-01

    Abstract Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19–20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16–17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org) was formed to become a Digital Commons for the life sciences community. PMID:22401659

  15. Accommodating life sciences on the Space Station

    Science.gov (United States)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  16. Life sciences research at JINR, Dubna, Russia

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.

    2007-01-01

    Within the broad spectrum of activities in the Life Sciences at JINR such as nuclear medicine and pharmacy, radiation biology, radioecology, radioisotope production radioanalytical investigations play a special role due to the long-term experience in multi-element instrumental neutron activation analysis (INAA) at the reactor IBR-2 of FLNP, JINR. INAA is presently being used in several projects on air pollution studies using bio monitors (moss, lichens, tree bark). The results for some selected areas of Central Russia, South Urals, and countries of Europe (Bulgaria, Poland, Romania, Bosnia and Herzegovina, Serbia and Montenegro, Macedonia, Slovakia, Western Ukraine) are reported to the European Atlas of Heavy Metal Atmospheric Deposition edited under the auspices of the Environmental Commission of the United Nations. Battering-ram studies using NAA were initiated also in Turkey, China and South Korea. Applied to the analysis of air filters, INAA is successfully used in assessing quality of London underground air, Sahara desert impact on the Greater Cairo Area. Epithermal activation analysis in combination with atomic absorption spectrometry and energy-disperse X-ray fluorescence allowed source evaluation of metals in soil from some industrial and metropolitan areas of Russia (South Urals, Cola Peninsula) and the USA (Minneapolis). The analytical possibilities of NAA are favorably used in biotechnology, (i) for investigation of bacterial leaching of metals, including uranium and thorium from low-grade ores, rocks and industrial wastes; (i i) in the development of new pharmaceuticals based on the blue-green alga Spirulina platensis. Occupational health studies are carried out at several fertilizer plants in Russia, Uzbekistan, Poland, Romania, Denmark and the Netherlands in the framework of the 5th Programme Copernicus. The quality of foodstuffs grown in some contaminated areas of Russia is investigated in the framework of IAEA Coordinated Research Programme. In

  17. Scientific Collaboration and Coauthors in Life Science Journal Articles

    Directory of Open Access Journals (Sweden)

    Ya-hsiu Fu

    2002-12-01

    Full Text Available It is common to conduct collaborative research in science and technology. In particular, the development of big science, Internet, and globalization facilitated the scientific collaboration. This study used two databases, Web of Science and Journal Citation Reports as data sources. From the analysis of 320 papers in 16 journals in life sciences, the results showed that there is no significant correlation between the impact factor of journals and the number of authors. Moreover, there is no correlation of authors and the cited times, either. The number of authors and cited times in most papers are under 10 persons and 25 times, respectively.[Article content in Chinese

  18. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  19. JSC Human Life Sciences Project

    Science.gov (United States)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes articles entitled: (1) E029 - Magnetic Resonance Imaging after Exposure to Microgravity; (2) E030 - Extended Studies of Pulmonary Function in Weightlessness; (3) E074 - Direct Measurement of the Initial Bone Response to Spaceflight in Humans; (4) E401 - The Effects of Microgravity on Skeletal Muscle Contractile Properties; (5) E407 - Effects of Microgravity on the Biochemical and Bioenergetic Characteristics of Human Skeletal Muscle; (6) E410 - Torso Rotation Experiment; (7) E920 - Effect of Weightlessness on Human Single Muscle Fiber Function; (8) E948 - Human Sleep, Circadian Rhythms and Performance in Space; (9) E963 - Microgravity Effects on Standardized Cognitive Performance Measures; and (10) E971 - Measurement of Energy Expenditures During Spaceflight Using the Doubly Labeled Water Method

  20. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  1. Space life sciences strategic plan, 1991

    Science.gov (United States)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  2. Nonautonomous dynamical systems in the life sciences

    CERN Document Server

    Pötzsche, Christian

    2013-01-01

    Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.

  3. Life Sciences Division annual report, 1988

    International Nuclear Information System (INIS)

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information

  4. Database Description - The Rice Growth Monitoring for The Phenotypic Functional Analysis | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available on: Department of Biosciences, Faculty of Science and Engineering, Teikyo Univers...ity Contact address 1-1, Toyosatodai, Utsunomiya-shi, Tochigi 320-8551 Japan Department of Biosciences, Faculty of Science and Engine...ering, Teikyo University Tomoko Shinomura E-mail : Database classification Plant da

  5. Quantum Man: Richard Feynman's Life in Science

    CERN Document Server

    CERN. Geneva

    2011-01-01

    It took a man who was willing to break all the rules to tame a theory that breaks all the rules. This talk will be based on my new book Quantum Man: Richard Feynman's life in science. I will try and present a scientific overview of the contributions of Richard Feynman, as seen through the arc of his fascinating life. From Quantum Mechanics to Antiparticles, from Rio de Janeiro to Los Alamos, a whirlwind tour will provide insights into the character, life and accomplishments of one of the 20th centuries most important scientists, and provide an object lesson in scientific integrity.

  6. Learning Behavior Analysis of a Ubiquitous Situated Reflective Learning System with Application to Life Science and Technology Teaching

    Science.gov (United States)

    Hwang, Wu-Yuin; Chen, Hong-Ren; Chen, Nian-Shing; Lin, Li-Kai; Chen, Jin-Wen

    2018-01-01

    Education research has shown that reflective study can efficiently enhance learning, and the acquisition of knowledge and skills from real-life situations has become a focus of interest for scholars. The knowledge-learning model based on verbal instruction, used in traditional classrooms, does not make use of real-life situations that encourage…

  7. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  8. Visualization in medicine and life sciences

    International Nuclear Information System (INIS)

    Linsen, L.; Hamann, B.

    2008-01-01

    Visualization technology is becoming increasingly important for medical and biomedical data processing and analysis. This technology complements traditional image processing methods as it allows scientists to visually interact with large, high-resolution three-dimensional image data, for example. Furthermore, an ever increasing number of new data acquisition methods are being used in medicine and the life sciences, in particular in genomics and proteomics. This book discusses some of the latest visualization techniques and systems for effective analysis of such diverse, large, complex, and multi-source data. Experts from all over the world were invited to participate in a workshop held in July 2006 on the island Ruegen in Germany. About 40 participants presented state-of-the-art research on the topic. Research and survey papers have been solicited and carefully refereed, resulting in this collection. The topics covered include Segmentation and Feature Detection, Surface Extraction, Volume Visualization, Graph and Network Visualization, Visual Data Exploration, Multivariate and Multidimensional Data Visualization, Large Data Visualization. (orig.)

  9. AECL research programs in life sciences

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-04-01

    The present report summarizes the current research activities in life sciences in the Atomic Energy of Canada Limited-Research Company. The research is carried out at its two main research sites: the Chalk River Nuclear Laboratories and the Whiteshell Nuclear Research Establishment. The summaries cover the following areas of research: radiation biology, medical biophysics, epidemiology, environmental research and dosimetry. (author)

  10. Nuclear analytical methods in the life sciences

    NARCIS (Netherlands)

    de Goeij, J.J.M.

    1994-01-01

    A survey is given of various nuclear analytical methods. The type of analytical information obtainable and advantageous features for application in the life sciences are briefly indicated. These features are: physically different basis of the analytical method, isotopic rather than elemental

  11. Valuation in life sciences: a practical guide

    National Research Council Canada - National Science Library

    Bogdan, Boris; Villiger, Ralph

    2010-01-01

    ... apply valuation methodologies in life sciences. One of the complicating factors is that, compared to other industries, valuation of biotech innovation is much more demanding. The long 10-15-year development and clinical trials process still represents the main risks faced by any biotech company. Added to that is the fact that getting a drug across the regulato...

  12. 75 Easy Life Science Demonstrations. Teacher Book.

    Science.gov (United States)

    Kardos, Thomas

    This book is a collection of life science classroom demonstrations. Explanations that review key concepts are included. Topics are: stimulus and response; gravitropism; phototropism; living organisms; carbon dioxide; gases emitted by plants; greenhouse effect; stomata; transpiration; leaf skeletons; seed growth; water evaporation in plants; carbon…

  13. Ethical challenges for the life sciences

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.

    2004-01-01

    In this book we will first discuss broader issues of ethics of the life sciences, which enable us later on to focus on the more specific issues. Therefore, we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good

  14. Enhancing Life Sciences Teachers' Biodiversity Knowledge

    African Journals Online (AJOL)

    This paper provides insights into how Life Sciences teachers in the Eastern Cape ..... Even simulations, in most cases they are quite artificial in the sense that the ... explain the concept of human impacts on biodiversity; and field activities were .... integrated and applied knowledge required for quality teaching (disciplinary, ...

  15. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  16. Ayurveda: Science of life, genetics, and epigenetics.

    Science.gov (United States)

    Sharma, Hari

    2016-01-01

    Ayurveda is a traditional system of medicine originated in the ancient Vedic times of India. This body of knowledge is found in well-documented texts such as the Charaka Samhita and Sushruta Samhita , and describes physiology and interrelated systems of the body, variations in human constitution, surgery, herbal use, and health-promoting recommendations. Ayurveda is translated as the "Science of Life;" Ayus = Life, and Veda = knowledge/science. The principles and treatment modalities have endured over time. For Ayurveda to be appreciated by Western medical researchers, this traditional system of medicine needs to be understood in terms of modern science. The current theories of physiology that support Ayurvedic approaches need to be explored. Herein, one approach of how the realm of epigenetics can help elucidate the mechanisms of Ayurveda has been described.

  17. USSR Space Life Sciences Digest, issue 14

    Science.gov (United States)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  18. USSR Space Life Sciences Digest, issue 11

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  19. USSR Space Life Sciences Digest, issue 2

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  20. USSR Space Life Sciences Digest, issue 3

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  1. Improving Reuse in Software Development for the Life Sciences

    Science.gov (United States)

    Iannotti, Nicholas V.

    2013-01-01

    The last several years have seen unprecedented advancements in the application of technology to the life sciences, particularly in the area of data generation. Novel scientific insights are now often driven primarily by software development supporting new multidisciplinary and increasingly multifaceted data analysis. However, despite the…

  2. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  3. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  4. A Life in Science - Book release programme invite

    Indian Academy of Sciences (India)

    MY OF. CE EDUCA. ВРЕМЕ. STION AND. SCIENCE. OF SCIEN. CES. RESEARC,. AN INSTIT она не. A LIFE IN SCIENCE. Penguin Books India. Indian Academy of Sciences and. Indian Institute of Science Education and Research, Bhopal cordially invite you for the release of book. A LIFE IN SCIENCE by C.N.R. Rao.

  5. USSR Space Life Sciences Digest, issue 28

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  6. USSR Space Life Sciences Digest, issue 4

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  7. Bringing Science to Life for Students, Teachers and the Community

    Science.gov (United States)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  8. Life sciences laboratory breadboard simulations for shuttle

    Science.gov (United States)

    Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.

    1975-01-01

    Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.

  9. Mass spectrometry in life science research.

    Science.gov (United States)

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  10. "Physics and Life" for Europe's Science Teachers

    Science.gov (United States)

    2003-04-01

    interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now

  11. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  12. Life science students’ attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Directory of Open Access Journals (Sweden)

    Catherine H. Crouch

    2018-03-01

    Full Text Available In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students’ attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students’ skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students’ attitudes toward and their interest in physics. Whereas the same students’ attitudes declined during the standard first semester course, we found that students’ attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students’ interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  13. Breathing new life into cognitive science

    Directory of Open Access Journals (Sweden)

    Tom Froese

    2011-08-01

    Full Text Available In this article I take an unusual starting point from which to argue for a unified cognitive science, namely a position defined by what is sometimes called the ‘life-mind continuity thesis’. Accordingly, rather than taking a widely accepted starting point for granted and using it in order to propose answers to some well defined questions, I must first establish that the idea of life-mind continuity can amount to a proper starting point at all. To begin with, I therefore assess the conceptual tools which are available to construct a theory of mind on this basis. By drawing on insights from a variety of disciplines, especially from a combination of existential phenomenology and organism-centered biology, I argue that mind can indeed be conceived as rooted in life, but only if we accept at the same time that social interaction plays a constitutive role for our cognitive capacities.

  14. 77 FR 35353 - Biotech Life Sciences Trade Mission to Australia

    Science.gov (United States)

    2012-06-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Biotech Life Sciences Trade Mission to... Commercial Service (CS) is organizing a Biotech Life Sciences trade mission to Australia, October 29-November.... biotechnology and life science firms. The goals of the trade mission to Australia are to (1) increase U.S...

  15. Life Sciences Program Tasks and Bibliography for FY 1997

    Science.gov (United States)

    Nelson, John C. (Editor)

    1998-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.

  16. Life Sciences Program Tasks and Bibliography for FY 1996

    Science.gov (United States)

    Nelson, John C. (Editor)

    1997-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.

  17. 76 FR 17621 - Biotech Life Science Trade Mission to China

    Science.gov (United States)

    2011-03-30

    ... DEPARTMENT OF COMMERCE International Trade Administration Biotech Life Science Trade Mission to... Commercial Service (CS) is organizing a Biotechnology Life Sciences trade mission to China on October 17-20... representatives from a variety of U.S. biotechnology and life science firms and trade organizations. The mission...

  18. Knowledge-Based Systems in Biomedicine and Computational Life Science

    CERN Document Server

    Jain, Lakhmi

    2013-01-01

    This book presents a sample of research on knowledge-based systems in biomedicine and computational life science. The contributions include: ·         personalized stress diagnosis system ·         image analysis system for breast cancer diagnosis ·         analysis of neuronal cell images ·         structure prediction of protein ·         relationship between two mental disorders ·         detection of cardiac abnormalities ·         holistic medicine based treatment ·         analysis of life-science data  

  19. Bioinformatics and the Politics of Innovation in the Life Sciences

    Science.gov (United States)

    Zhou, Yinhua; Datta, Saheli; Salter, Charlotte

    2016-01-01

    The governments of China, India, and the United Kingdom are unanimous in their belief that bioinformatics should supply the link between basic life sciences research and its translation into health benefits for the population and the economy. Yet at the same time, as ambitious states vying for position in the future global bioeconomy they differ considerably in the strategies adopted in pursuit of this goal. At the heart of these differences lies the interaction between epistemic change within the scientific community itself and the apparatus of the state. Drawing on desk-based research and thirty-two interviews with scientists and policy makers in the three countries, this article analyzes the politics that shape this interaction. From this analysis emerges an understanding of the variable capacities of different kinds of states and political systems to work with science in harnessing the potential of new epistemic territories in global life sciences innovation. PMID:27546935

  20. Pathway enrichment and co-expression cluster analysis - FANTOM5 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us FANTOM...lusters File URL: ftp://ftp.biosciencedbc.jp/archive/fantom5/datafiles/phase1.3/extra/Co-expression_clusters...ite Policy | Contact Us Pathway enrichment and co-expression cluster analysis - FANTOM5 | LSDB Archive ...

  1. USSR Space Life Sciences Digest, issue 9

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  2. Politics and the life sciences: an unfinished revolution.

    Science.gov (United States)

    Johnson, Gary R

    2011-01-01

    Politics and the life sciences--also referred to as biopolitics--is a field of study that seeks to advance knowledge of politics and promote better policymaking through multidisciplinary analysis that draws on the life sciences. While the intellectual origins of the field may be traced at least into the 1960s, a broadly organized movement appeared only with the founding of the Association for Politics and the Life Sciences (APLS) in 1980 and the establishment of its journal, Politics and the Life Sciences ( PLS ), in 1982. This essay--contributed by a past journal editor and association executive director--concludes a celebration of the association's thirtieth anniversary. It reviews the founding of the field and the association, as well as the contributions of the founders. It also discusses the nature of the empirical work that will advance the field, makes recommendations regarding the identity and future of the association, and assesses the status of the revolution of which the association is a part. It argues that there is progress to celebrate, but that this revolution--the last of three great scientific revolutions--is still in its early stages. The revolution is well-started, but remains unfinished.

  3. Graph of growth data - The Rice Growth Monitoring for The Phenotypic Functional Analysis | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us The Rice Growth Monitoring for The Phenotypic Functional Analysis Graph of growth data Data ...detail Data name Graph of growth data DOI 10.18908/lsdba.nbdc00945-003 Description of data contents The grap...h of chronological changes in root, coleoptile, the first leaf, and the second leaf. Data file File name: growth..._data_graph.zip File URL: ftp://ftp.biosciencedbc.jp/archive/agritogo-rice-phenome/LATEST/data/growth...e Update History of This Database Site Policy | Contact Us Graph of growth data -

  4. James Clerk Maxwell: Life and science

    International Nuclear Information System (INIS)

    Marston, Philip L.

    2016-01-01

    Maxwell's life and science are presented with an account of the progression of Maxwell's research on electromagnetic theory. This is appropriate for the International Year of Light and Light-based Technologies, 2015. Maxwell's own confidence in his 1865 electromagnetic theory of light is examined, along with some of the difficulties he faced and the difficulties faced by some of his followers. Maxwell's interest in radiation pressure and electromagnetic stress is addressed, as well as subsequent developments. Some of Maxwell's other contributions to physics are discussed with an emphasis on the kinetic and molecular theory of gases. Maxwell's theistic perspective on science is illustrated, accompanied by examples of perspectives on Maxwell and his science provided by his peers and accounts of his interactions with those peers. Appendices examine the peer review of Maxwell's 1865 electromagnetic theory paper and the naming of the Maxwell Garnett effective media approximation and provide various supplemental perspectives. From Maxwell's publications and correspondence there is evidence he had a high regard for Michael Faraday. Examples of Maxwell's contributions to electromagnetic terminology are noted. - Highlights: • Maxwell’s 1865 “Dynamical theory of the electromagnetic field” is examined. • Maxwell affirmed confidence in his electromagnetic wave theory in his 1873 Treatise. • Discussion includes views and unpublished correspondence of Maxwell's contemporaries. • His contemporaries noticed the depth and breadth of Maxwell’s thought. • Maxwell’s contemporaries noticed his theistic perspective concerning science.

  5. Life, Science, And Meaning Some Logical Considerations

    Directory of Open Access Journals (Sweden)

    Louis Caruana

    2015-01-01

    Full Text Available Both science and theology involve philosophy. They both involve reasoned argument, evaluation of possible explanations, clarification of concepts, ways of interpreting experience, understanding the present significance of what has gone before us, and other such eminently philosophical tasks. They both involve philosophy especially when they enter into dialogue with each other. In fact, they involve philosophical thinking even when they may not be aware of it. In this paper I will explore a specific area of philosophy that is particularly important as a bridge between theology and science. I am referring to the area of meaning. Questions regarding meaning are fundamental because whatever is said about the nature of life, by scientists, by theologians, or by anyone else, must be expressed in meaningful words. Meaning is like the ground we walk on. It constitutes what we need so as to proceed with our activity. Without solid ground under our feet, we cannot go anywhere.

  6. Spacelab life sciences 2 post mission report

    Science.gov (United States)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  7. USSR Space Life Sciences Digest, issue 6

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  8. USSR Space Life Sciences Digest, issue 7

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  9. USSR Space Life Sciences Digest, issue 19

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  10. USSR Space Life Sciences Digest, issue 25

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  11. USSR Space Life Sciences Digest, issue 16

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  12. USSR Space Life Sciences Digest, Issue 18

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  13. USSR Space Life Sciences Digest, Issue 10

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.

    1987-01-01

    The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.

  14. USSR Space Life Sciences Digest, issue 29

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  15. USSR Space Life Sciences Digest, issue 21

    Science.gov (United States)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  16. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  17. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  18. Using egocentric analysis to investigate professional networks and productivity of graduate students and faculty in life sciences in Japan, Singapore, and Taiwan.

    Science.gov (United States)

    Hara, Noriko; Chen, Hui; Ynalvez, Marcus Antonius

    2017-01-01

    Prior studies showed that scientists' professional networks contribute to research productivity, but little work has examined what factors predict the formation of professional networks. This study sought to 1) examine what factors predict the formation of international ties between faculty and graduate students and 2) identify how these international ties would affect publication productivity in three East Asian countries. Face-to-face surveys and in-depth semi-structured interviews were conducted with a sample of faculty and doctoral students in life sciences at 10 research institutions in Japan, Singapore, and Taiwan. Our final sample consisted of 290 respondents (84 faculty and 206 doctoral students) and 1,435 network members. We used egocentric social network analysis to examine the structure of international ties and how they relate to research productivity. Our findings suggest that overseas graduate training can be a key factor in graduate students' development of international ties in these countries. Those with a higher proportion of international ties in their professional networks were likely to have published more papers and written more manuscripts. For faculty, international ties did not affect the number of manuscripts written or of papers published, but did correlate with an increase in publishing in top journals. The networks we examined were identified by asking study participants with whom they discuss their research. Because the relationships may not appear in explicit co-authorship networks, these networks were not officially recorded elsewhere. This study sheds light on the relationships of these invisible support networks to researcher productivity.

  19. European Bioinformatics Institute: Research Infrastructure needed for Life Science

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The life science community is an ever increasing source of data from increasing diverse range of instruments and sources. EMBL-EBI has a remit to store and exploit this data, collected and made available openly across the world, for the benefit of the whole research community. The research infrastructure needed to support the big data analysis around this mission encompasses high performance networks, high-throughput computing, and a range of cloud and storage solutions - and will be described in the presentation.

  20. Mobile Robot for Life Science Automation

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2013-07-01

    Full Text Available The paper presents a control system for mobile robots in distributed life science laboratories. The system covers all technical aspects of laboratory mobile robotics. In this system: (a to get an accurate and low-cost robot localization, a method using a StarGazer module with a number of ceiling landmarks is utilized; (b to have an expansible communication network, a standard IEEE 802.11g wireless network is adopted and a XML-based command protocol is designed for the communication between the remote side and the robot board side; (c to realize a function of dynamic obstacle measurement and collision avoidance, an artificial potential field method based on a Microsoft Kinect sensor is used; and (d to determine the shortest paths for transportation tasks, a hybrid planning strategy based on a Floyd algorithm and a Genetic Algorithm (GA is proposed. Additionally, to make the traditional GA method suitable for the laboratory robot's routing, a series of optimized works are also provided in detail. Two experiments show that the proposed system and its control strategy are effective for a complex life science laboratory.

  1. Spacelab Life Science-1 Mission Onboard Photograph

    Science.gov (United States)

    1995-01-01

    Spacelab Life Science -1 (SLS-1) was the first Spacelab mission dedicated solely to life sciences. The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight, to investigate the consequences of the body's adaptation to microgravity and readjustment to Earth's gravity, and bring the benefits back home to Earth. The mission was designed to explore the responses of the heart, lungs, blood vessels, kidneys, and hormone-secreting glands to microgravity and related body fluid shifts; examine the causes of space motion sickness; and study changes in the muscles, bones, and cells. This photograph shows astronaut Rhea Seddon conducting an inflight study of the Cardiovascular Deconditioning experiment by breathing into the cardiovascular rebreathing unit. This experiment focused on the deconditioning of the heart and lungs and changes in cardiopulmonary function that occur upon return to Earth. By using noninvasive techniques of prolonged expiration and rebreathing, investigators can determine the amount of blood pumped out of the heart (cardiac output), the ease with which blood flows through all the vessels (total peripheral resistance), oxygen used and carbon dioxide released by the body, and lung function and volume changes. SLS-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-40) on June 5, 1995.

  2. Life extension economic analysis

    International Nuclear Information System (INIS)

    Smithling, A.P.

    1992-01-01

    Life extension economic analyses of fossil fueled power plants need the development of consistent methods which consider the capital costs associated with component replacement or repair and estimates of normal station capital expenditures over the units remaining life. In order to link capital and production costs, Niagra Mohawk Power Corp. develops most and worst cases. A most case includes capital components that would definitely need replacement or modification for life extension. The worst case scenario contains must case capital costs plus various components which may need replacement or modification. In addition, two forecasted conditions are used, base case capacity and low capacity

  3. Open Genetic Code : On open source in the life sciences

    NARCIS (Netherlands)

    Deibel, E.

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life

  4. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2018-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning...

  5. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  6. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    Science.gov (United States)

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  7. Life Science Students' Attitudes, Interest, and Performance in Introductory Physics for Life Sciences: An Exploratory Study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-01-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…

  8. Life sciences today and tomorrow: emerging biotechnologies.

    Science.gov (United States)

    Williamson, E Diane

    2017-08-01

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  9. Ames life science telescience testbed evaluation

    Science.gov (United States)

    Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt

    1989-01-01

    Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.

  10. Using egocentric analysis to investigate professional networks and productivity of graduate students and faculty in life sciences in Japan, Singapore, and Taiwan.

    Directory of Open Access Journals (Sweden)

    Noriko Hara

    Full Text Available Prior studies showed that scientists' professional networks contribute to research productivity, but little work has examined what factors predict the formation of professional networks. This study sought to 1 examine what factors predict the formation of international ties between faculty and graduate students and 2 identify how these international ties would affect publication productivity in three East Asian countries. Face-to-face surveys and in-depth semi-structured interviews were conducted with a sample of faculty and doctoral students in life sciences at 10 research institutions in Japan, Singapore, and Taiwan. Our final sample consisted of 290 respondents (84 faculty and 206 doctoral students and 1,435 network members. We used egocentric social network analysis to examine the structure of international ties and how they relate to research productivity. Our findings suggest that overseas graduate training can be a key factor in graduate students' development of international ties in these countries. Those with a higher proportion of international ties in their professional networks were likely to have published more papers and written more manuscripts. For faculty, international ties did not affect the number of manuscripts written or of papers published, but did correlate with an increase in publishing in top journals. The networks we examined were identified by asking study participants with whom they discuss their research. Because the relationships may not appear in explicit co-authorship networks, these networks were not officially recorded elsewhere. This study sheds light on the relationships of these invisible support networks to researcher productivity.

  11. Data life cycle: a perspective from the Information Science

    Directory of Open Access Journals (Sweden)

    Ricardo César Gonçalves Sant’Ana

    2016-08-01

    Full Text Available Introduction: Access and use of data as a key factor has been extended to several areas of knowledge of today's society. It’s necessary to develop a new perspective that presents phases and factors involved in these processes, providing an initial analysis structure, allowing the efforts, skills and actions organization related to the data life cycle. Purpose: This article is a proposal for a new look at the data life cycle, that assumes, as a central element, the data itself, supporting itself on the concepts and contributions that Information Science can provide, without giving up the reflections on the role of other key areas such as Computer Science. Methodology: The methodological procedures consisted of bibliographic research and content analysis to describe the phases and factors related to the Data Life Cycle, developing reflections and considerations from context already consolidated in the development of systems that can corroborate the idea of centrality of data. Results: The results describe the phases of: collect, storage, recovery and discard, permeated by transverse factors: privacy, integration, quality, copyright, dissemination and preservation, composing a Data Life Cycle. Conclusions: The current context of the availability of large volumes of data, with great variety and at speeds that provide access in real time, setting the so-called Big Data that requires new concerns about access and use processes of data. The Information Science may offer a new approach, now centered in the data, and contribute to the optimization of Data Life Cycle as a whole, extending bridges between users and the data they need.

  12. Open Genetic Code: on open source in the life sciences

    OpenAIRE

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first ...

  13. Gail Harlamoff: Executive Director, Life Lab Science Program

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Gail Harlamoff is Executive Director of the Life Lab Science Program, a nationally recognized, award-winning nonprofit science and environmental organization located on the UC Santa Cruz campus. Founded in 1979, Life Lab helps schools develop gardens and implement curricula to enhance students’ learning about science, math, and the natural world. The program has trained tens of thousands of educators in more than 1400 schools across the country. Life Lab’s specialized initiatives inc...

  14. USSR Space Life Sciences Digest, issue 8

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  15. Life sciences - On the critical path for missions of exploration

    Science.gov (United States)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  16. Open life science research, open software and the open century

    Directory of Open Access Journals (Sweden)

    Youhua Chen

    2015-05-01

    Full Text Available At the age of knowledge explosion and mass scientific information, I highlighted the importance of conducting open science in life and medical researches through the extensive usage of open software and documents. The proposal of conducting open science is to reduce the limited repeatability of researches in life science. I outlined the essential steps for conducting open life science and the necessary standards for creating, reusing and reproducing open materials. Different Creative Commons licenses were presented and compared of their usage scope and restriction. As a conclusion, I argued that open materials should be widely adopted in doing life and medical researches.

  17. Mainstreaming Gender Analysis Into Science

    Science.gov (United States)

    Schiebinger, Londa

    This essay considers the question, Has feminism changed science? After three decades of active research, what new insights, questions, and priorities have feminists - men or women - brought to the sciences? The author provides examples of change from three areas: women's health research, primatology, and archaeology. The essay concludes with a discussion of mainstreaming gender analysis into science.

  18. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods

    NARCIS (Netherlands)

    Waltman, L.R.; Van, Raan A.F.J.; Smart, S.

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach

  19. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  20. The Presentation of Science in Everyday Life: The Science Show

    Science.gov (United States)

    Watermeyer, Richard

    2013-01-01

    This paper constitutes a case-study of the "science show" model of public engagement employed by a company of science communicators focused on the popularization of science, technology, engineering and mathematics (STEM) subject disciplines with learner constituencies. It examines the potential of the science show to foster the interest…

  1. Home | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ple Search Original Site Database Center for Life Science Kousaku Okubo organ human The dictionary-type data...-SA Detail Taxonomy Icon Taxonomy Icon Download | Simple Search Original Site National Bioscience Database Center Kousaku Okubo...enter for Life Science Kousaku Okubo Dictionary 9 species (human, mouse, rat, zeb

  2. Text mining resources for the life sciences.

    Science.gov (United States)

    Przybyła, Piotr; Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia

    2016-01-01

    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable-those that have the crucial ability to share information, enabling smooth integration and reusability. © The Author(s) 2016. Published by Oxford University Press.

  3. Workshop on Life sciences and radiation

    CERN Document Server

    Life Sciences and Radiation : Accomplishments and Future Directions

    2004-01-01

    Scope and ideas of the workshop The workshop which took place at the University of Giessen from Oct. 3 to Oct. 7, 2002 and whose proceedings are collected in this volume started from the idea to convene a number of scientists with the aim to outline their ”visions” for the future of radiation research on the basis of their expertise. As radiation research is a very wide field restrictions were unavoidable. It was decided to concentrate this time mainly on molecular and cellular biology because it was felt that here action is par-ticularly needed. This did not exclude contributions from neighbouring fields as may be seen from the table of contents. It was clearly not planned to have a c- prehensive account of the present scientif fic achievements but the results presented should only serve as a starting point for the discussion of future lines of research, with the emphasis on the ”outreach” to other parts of life sciences. If you are interested in the future ask the young – we attempted, therefore, ...

  4. Text mining resources for the life sciences

    Science.gov (United States)

    Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia

    2016-01-01

    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable—those that have the crucial ability to share information, enabling smooth integration and reusability. PMID:27888231

  5. Genome analysis methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods Genome analysis... methods Data detail Data name Genome analysis methods DOI 10.18908/lsdba.nbdc01194-01-005 De...scription of data contents The current status and related information of the genomic analysis about each org...anism (March, 2014). In the case of organisms carried out genomic analysis, the d...e File name: pgdbj_dna_marker_linkage_map_genome_analysis_methods_en.zip File URL: ftp://ftp.biosciencedbc.j

  6. New microfluidic platform for life sciences in South Africa

    CSIR Research Space (South Africa)

    Hugo, S

    2012-10-01

    Full Text Available is also offered as numerous devices can be implemented on one disc. A variety of components from sample preparation through to detection can be implemented simply and effectively into an integrated microfluidic solution for life sciences. The lab... in the field of centrifugal microfluidics. New microfluidic platform for life sciences in South Africa S. HUGO, K. LAND CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidic...

  7. Equity and career-life balance in marine mammal science?

    OpenAIRE

    Hooker, Sascha K.; Simmons, Samantha E.; Stimpert, Alison K.; McDonald, Birgitte I.

    2017-01-01

    It is widely acknowledged that family and care-giving responsibilities are driving women away from Science, Technology, Engineering, and Mathematics (STEM) fields. Marine mammal science often incurs heavy fieldwork and travel obligations, which make it a challenging career in which to find work-life balance. This opinion piece explores gender equality, equity (the principles of fairness that lead to equality), and work-life balance in science generally and in this field in particular. We aim ...

  8. Behavior analysis: the science of training.

    Science.gov (United States)

    Farhoody, Parvene

    2012-09-01

    Behavior analysis is a data-driven science dedicated to understanding the mechanisms of behavior. Applied behavior analysis is a branch of this scientific field that systematically applies scientific principles to real-world problems in an effort to improve quality of life. The use of the behavioral technology provides a way to teach human and nonhuman animals more effectively and efficiently and offers those using this technology increased success in achieving behavioral goals. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Increasing student learning through space life sciences education

    Science.gov (United States)

    Moreno, Nancy P.; Kyle Roberts, J.; Tharp, Barbara Z.; Denk, James P.; Cutler, Paula H.; Thomson, William A.

    2005-05-01

    Scientists and educators at Baylor College of Medicine are using space life sciences research areas as themes for middle school science and health instructional materials. This paper discusses study findings of the most recent unit, Food and Fitness, which teaches concepts related to energy and nutrition through guided inquiry. Results of a field test involving more than 750 students are reported. Use of the teaching materials resulted in significant knowledge gains by students as measured on a pre/post assessment administered by teachers. In addition, an analysis of the time spent by each teacher on each activity suggested that it is preferable to conduct all of the activities in the unit with students rather than allocating the same total amount of time on just a subset of the activities.

  10. Science in the city region: establishing Liverpool’s life science ecology

    Directory of Open Access Journals (Sweden)

    Dane Anderton

    2016-01-01

    Full Text Available This article focuses on the development of soft and hard infrastructures to support a life science ecology in a peripheral European city region. Liverpool City Region has received almost £1.7bn in capital investment through the EU Cohesion Policy to redevelop the city region and reinvigorate its economy towards knowledge based industries. The analysis of the city regions life science ecology highlights the uneven development of hard and soft infrastructures. Due to the diversity of firms within the region it has proven difficult to establish soft infrastructure related to scientific knowledge. The outcome has led to soft infrastructures being more business support orientated rather than scientific knowledge based, reducing inter-firm connections on a product or service basis. The evidence shows that not all types of soft infrastructure emerge as an outcome of investment. Hence, policy makers need to provide a clearer narrative on their investments, focusing on fewer core competencies rather than breadth of activities.

  11. The "Next Generation Science Standards" and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  12. Japan's patent issues relating to life science therapeutic inventions.

    Science.gov (United States)

    Tessensohn, John A

    2014-09-01

    Japan has made 'innovation in science and technology' as one of its central pillars to ensure high growth in its next stage of economic development and its life sciences market which hosts regenerative medicine was proclaimed to be 'the best market in the world right now.' Although life science therapeutic inventions are patentable subject matter under Japanese patent law, there are nuanced obviousness and enablement challenges under Japanese patent law that can be surmounted in view of some encouraging Japanese court developments in fostering a pro-patent applicant environment in the life sciences therapeutic patent field. Nevertheless, great care must be taken when drafting and prosecuting such patent applications in the world's second most important life sciences therapeutic market.

  13. NASA Johnson Space Center Life Sciences Data System

    Science.gov (United States)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  14. Evaluation of Life Sciences and Social Sciences Course Books in Term of Societal Sexuality

    Science.gov (United States)

    Aykac, Necdet

    2012-01-01

    This study aims to evaluate primary school Life Sciences (1st, 2nd, and 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books in terms of gender discrimination. This study is a descriptive study aiming to evaluate the primary school Life Sciences (1st, 2nd, 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books…

  15. Kant on anatomy and the status of the life sciences.

    Science.gov (United States)

    Olson, Michael J

    2016-08-01

    This paper contributes to recent interest in Kant's engagement with the life sciences by focusing on one corner of those sciences that has received comparatively little attention: physical and comparative anatomy. By attending to remarks spread across Kant's writings, we gain some insight into Kant's understanding of the disciplinary limitations but also the methodological sophistication of the study of anatomy and physiology. Insofar as Kant highlights anatomy as a paradigmatic science guided by the principle of teleology in the Critique of the Power of Judgment, a more careful study of Kant's discussions of anatomy promises to illuminate some of the obscurities of that text and of his understanding of the life sciences more generally. In the end, it is argued, Kant's ambivalence with regard to anatomy gives way to a pessimistic conclusion about the possibility that anatomy, natural history, and, by extension, the life sciences more generally might one day become true natural sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hybrid cloud and cluster computing paradigms for life science applications.

    Science.gov (United States)

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  17. New COSPAR space life sciences journal

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Hei, T.; Stoop, J.

    2013-01-01

    Roč. 52, č. 11 (2013), s. 1859 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : COSPAR journal Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117713006753

  18. Life sciences payload definition and integration study, task C and D. Volume 1: Management summary

    Science.gov (United States)

    1973-01-01

    The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.

  19. The LAILAPS Search Engine: Relevance Ranking in Life Science Databases

    Directory of Open Access Journals (Sweden)

    Lange Matthias

    2010-06-01

    Full Text Available Search engines and retrieval systems are popular tools at a life science desktop. The manual inspection of hundreds of database entries, that reflect a life science concept or fact, is a time intensive daily work. Hereby, not the number of query results matters, but the relevance does. In this paper, we present the LAILAPS search engine for life science databases. The concept is to combine a novel feature model for relevance ranking, a machine learning approach to model user relevance profiles, ranking improvement by user feedback tracking and an intuitive and slim web user interface, that estimates relevance rank by tracking user interactions. Queries are formulated as simple keyword lists and will be expanded by synonyms. Supporting a flexible text index and a simple data import format, LAILAPS can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases.

  20. Life sciences. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-09-01

    This catalogue lists all sales publications of the IAEA dealing with life sciences: nuclear medicine, medical physics and radiation biology and issued during the period 1 January 1990 - 30 September 2001

  1. The International Space Life Sciences Strategic Planning Working Group

    Science.gov (United States)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  2. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  3. Application of radiation and radioisotopes in life science

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2005-01-01

    Radiation and Radioisotopes have been played an important role in the wide range of life science, from the field study, such as fertilizer or pesticide development or production of new species, to gene engineering researches. Many mutants through radiation have been provided to the market and the usage of radioactive tracers was an effective tool to study plant physiology. It has been granted that the contribution of radioisotopes has been accelerated the development of the gene engineering technology, which is now overwhelming all the other usages of radiation or radioisotopes. However, because of the difficulty to get social acceptance for gene modified plants, the orientation of the life science is now changing towards, so called ''post genome era''. Therefore, from the point of radiation or radioisotope usage, new application methods are needed to develop new type of researches. We present how (1) neutron activation analysis, (2) neutron radiography and (3) positron emission tomography are promising to study living plant physiology. Some of these techniques are not necessarily new methods but with a little modification, they show new aspects of plant activity. (author)

  4. LIVIVO - the Vertical Search Engine for Life Sciences.

    Science.gov (United States)

    Müller, Bernd; Poley, Christoph; Pössel, Jana; Hagelstein, Alexandra; Gübitz, Thomas

    2017-01-01

    The explosive growth of literature and data in the life sciences challenges researchers to keep track of current advancements in their disciplines. Novel approaches in the life science like the One Health paradigm require integrated methodologies in order to link and connect heterogeneous information from databases and literature resources. Current publications in the life sciences are increasingly characterized by the employment of trans-disciplinary methodologies comprising molecular and cell biology, genetics, genomic, epigenomic, transcriptional and proteomic high throughput technologies with data from humans, plants, and animals. The literature search engine LIVIVO empowers retrieval functionality by incorporating various literature resources from medicine, health, environment, agriculture and nutrition. LIVIVO is developed in-house by ZB MED - Information Centre for Life Sciences. It provides a user-friendly and usability-tested search interface with a corpus of 55 Million citations derived from 50 databases. Standardized application programming interfaces are available for data export and high throughput retrieval. The search functions allow for semantic retrieval with filtering options based on life science entities. The service oriented architecture of LIVIVO uses four different implementation layers to deliver search services. A Knowledge Environment is developed by ZB MED to deal with the heterogeneity of data as an integrative approach to model, store, and link semantic concepts within literature resources and databases. Future work will focus on the exploitation of life science ontologies and on the employment of NLP technologies in order to improve query expansion, filters in faceted search, and concept based relevancy rankings in LIVIVO.

  5. Life Skills from the Perspectives of Classroom and Science Teachers

    Science.gov (United States)

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  6. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    Science.gov (United States)

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  7. The Life Cycle Analysis Toolbox

    International Nuclear Information System (INIS)

    Bishop, L.; Tonn, B.E.; Williams, K.A.; Yerace, P.; Yuracko, K.L.

    1999-01-01

    The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools

  8. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  9. African Journals Online: Biology & Life Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 71 ... African Journal for Physical Activity and Health Sciences ... in the promotion of scientific proceedings and publications in developing countries. ... and proteomics, food and agricultural technologies, and metabolic engineering. ... The African Journal of Chemical Education (AJCE) is a biannual online journal ...

  10. Lyman Spitzer: Life, Times, and Science

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  11. Life Science Literacy of an Undergraduate Population

    Science.gov (United States)

    Medina, Stephanie R.; Ortlieb, Evan; Metoyer, Sandra

    2014-01-01

    Science content knowledge is a concern for educators in the United States because performance has stagnated for the past decade. Investigators designed this study to determine the current levels of scientific literacy among undergraduate students in a freshman-level biology course (a core requirement for majors and nonmajors), identify factors…

  12. When Cognitive Sciences Meet Real Life

    DEFF Research Database (Denmark)

    Smith, Viktor; Selsøe Sørensen, Henrik; Nissilä, Niina

    2012-01-01

    Consumers in general pay little attention to food labels. The study of expert-to-layperson communication related to food labels integrates many aspects of what cognitive sciences are about: Knowledge modelling and knowledge transfer, termhood and precision as well as fuzziness, interaction between...

  13. The amazing world of life science

    Indian Academy of Sciences (India)

    Lawrence

    a successful career as a contractor and financed the independence movement. ... I took music as optional subject in high school, and opted for science in ... tension in cleaveage, the complete division of egg and rearrange- ment of cells and ...

  14. Photons in Natural and Life Sciences An Interdisciplinary Approach

    CERN Document Server

    Lewerenz, Hans-Joachim

    2012-01-01

    The book describes first the principle photon generation processes from nuclear reactions, electron motion and from discrete quantum transitions. It then focuses on the use of photons in various selected fields of modern natural and life sciences. It bridges disciplines such as physics, chemistry, earth- and materials science, proteomics, information technology, photoelectrochemistry, photosynthesis and spintronics. Advanced light sources and their use in natural and life sciences are emphasized and the effects related to the quantum nature of photons (quantum computing, teleportation) are described. The content encompasses among many other examples the role of photons on the origin of life and on homochirality in biology, femtosecond laser slicing, photothermal cancer therapy, the use of gamma rays in materials science, photoelectrochemical surface conditioning, quantum information aspects and photo-spintronics. The book is written for scientists and graduate students from all related disciplines who are int...

  15. Open Genetic Code: on open source in the life sciences.

    Science.gov (United States)

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first section discusses the greater flexibly in regard of patenting and the relationship to the introduction of open source in the life sciences. The main argument is that the ownership of knowledge in the life sciences should be reconsidered in the context of the centrality of DNA in informatic formats. This is illustrated by discussing a range of examples of open source models. The second part focuses on open source in synthetic biology as exemplary for the re-materialization of information into food, energy, medicine and so forth. The paper ends by raising the question whether another kind of alternative might be possible: one that looks at open source as a model for an alternative to the commodification of life that is understood as an attempt to comprehensively remove the restrictions from the usage of DNA in any of its formats.

  16. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    1985-01-28

    M. Zubkova and N. Z. Zagorskaya, Central Scientific Research Institute of Resort Therapy and Physiotherapy , Moscow] [Text] In order to describe...USSR Academy of Medical Sciences, Kiev [Abstract] The wide use of oxygen therapy in geriatric practice and the reported side effects and occasional

  17. S Chandrasekhar: His Life and Science

    Indian Academy of Sciences (India)

    his beautiful writings on the problems of beauty and motivation in scientific life and on .... The final decision to do so was however not so easy and was even painful. .... Eddington did not breathe a word about it, making Chandra apprehensive.

  18. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    1987-02-18

    received one tablet of the multivitamin "Hexavit" as a supplement to their diet. The ration was vacuum-packed, wrapped in three layers of polymer...salicylate, hexamethylene tetramine, etc.) and increasing the useful life of many parenteral drugs (pyrodoxine HC1, norsulfazole, isoniazid

  19. Gerhard Herzberg an illustrious life in science

    CERN Document Server

    Stoicheff, Boris

    2002-01-01

    Gerhard Herzberg (1904-1999) was one of the greatest scientists of the last century. Born and educated in Germany, he started his research just as the exciting discovery of quantum mechanics began unraveling the mysteries of the microscopic world. Herzberg chose to study spectroscopy, the light emitted and absorbed by atoms and molecules, which has played a central role in the development of modern science.

  20. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    1984-02-02

    chromosome composition . Couch grass chromosomes were identified in the substituted state in the hybrid’s endosperm. Phytophathological study showed...the Director of the Laboratory of Enzyme Chemistry of the institute, Doctor of Chemical Sciences, Yuozas Kulis told us: It is known that, in the... nucleolus by 35%. The corresponding values for the large neutrons were 50%, 36%, and 35%, respectively. These changes may reflect the greater metabolic

  1. JPRS Report, Science and Technology USSR: Life Sciences.

    Science.gov (United States)

    1990-09-26

    fold above the control level, had no UDC 577.1 effect on cholera toxin-induced depression of PGE, led to a four-fold reduction in 6-keto-PGFl1 and a...suppressed old, with a 2- to 3-year history of symptomatology. the antibody response. Greatest enhancement of anti- Immunologic workups revealed depression of...Institute of General and Communal Hygiene sicians, Moscow] imeni A. N. Sysin, USSR Academy of Medical Sciences, [Abstract] Acetylcysteine was assessed for its

  2. JPRS Report, Science & Technology, Central Eurasia: Life Sciences.

    Science.gov (United States)

    1992-05-27

    would be the same thing as showing porno raise our entire public health giant to its feet-this aid will films in school rather than providing sex...The participants viewed videos about future science foreign technologies to our health care sector on a broader projects whose realization is now...must not be so irresponsible as to miss an excellent One of the videos told of the tragic history of the domestic opportunity to attract leading

  3. Perspectives on the Origins of Life in Science Textbooks from a Christian Publisher: Implications for Teaching Science

    Science.gov (United States)

    Santos Baptista, Geilsa Costa; da Silva Santos, Rodrigo; Cobern, William W.

    2016-01-01

    This paper presents the results of research regarding approaches to the origin of life featured in science textbooks produced by an Evangelical publisher. The research nature was qualitative with document analysis and an interpretive framework based on Epistemological Pluralism. Overall, the results indicate that there are four perspectives on the…

  4. The oblique perspective: philosophical diagnostics of contemporary life sciences research.

    Science.gov (United States)

    Zwart, Hub

    2017-12-01

    This paper indicates how continental philosophy may contribute to a diagnostics of contemporary life sciences research, as part of a "diagnostics of the present" (envisioned by continental thinkers, from Hegel up to Foucault). First, I describe (as a "practicing" philosopher) various options for an oblique (or symptomatic) reading of emerging scientific discourse, bent on uncovering the basic "philosophemes" of science (i.e. the guiding ideas, the basic conceptions of nature, life and technology at work in contemporary life sciences research practices). Subsequently, I outline a number of radical transformations occurring both at the object-pole and at the subject-pole of the current knowledge relationship, namely the technification of the object and the anonymisation or collectivisation of the subject, under the sway of automation, ICT and big machines. Finally, I further elaborate the specificity of the oblique perspective with the help of Lacan's theorem of the four discourses. Philosophical reflections on contemporary life sciences concur neither with a Master's discourse (which aims to strengthen the legitimacy and credibility of canonical sources), nor with university discourse (which aims to establish professional expertise), nor with what Lacan refers to as hysterical discourse (which aims to challenge representatives of the power establishment), but rather with the discourse of the analyst, listening with evenly-poised attention to the scientific files in order to bring to the fore the cupido sciendi (i.e. the will to know, but also to optimise and to control) which both inspires and disrupts contemporary life sciences discourse.

  5. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    Science.gov (United States)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  6. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    Science.gov (United States)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  7. Science Fiction and Life after Death

    OpenAIRE

    Burt, Stephen Louis

    2014-01-01

    Science fiction (SF) is, and has been since its inception as a self-conscious genre, centrally and persistently interested in presenting some version of or figure for an afterlife, some way to survive the death of the body, some place where our consciousness might live on after we die. We can find representations of an afterlife within every period of SF properly so-called, from late-nineteenth-century “scientific romance” to Campbellian magazine fiction, to the New Wave of the 1960s, to the ...

  8. Richard Feynman a life in science

    CERN Document Server

    Gribbin, John

    1998-01-01

    This text is a portrayal of one of the greatest scientists of the late 20th-century, which also provides a picture of the significant physics of the period. It combines personal anecdotes, writings and recollections with narrative. Richard Feynman's career included: war-time work on the atomic bomb at Los Alamos; a theory of quantum mechanics for which he won the Nobel prize; and major contributions to the sciences of gravity, nuclear physics and particle theory. In 1986, he was able to show that the Challenger disaster was due to the effect of cold on the booster rocket rubber sealings.

  9. Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad; Freyermuth, Sharyn K.; Bailey, Cheryl; Britton, Robert A.; Gordon, Stuart G.; Heinhorst, Sabine; Reed, Kelynne; Xu, Zhaohui; Sanders-Lorenz, Erin R.; Axen, Seth; Kim, Edwin; Johns, Mitrick; Scott, Kathleen; Kerfeld, Cheryl A.

    2011-08-01

    Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010's top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [www.pkal.org]). With the advent of genome sequencing and bioinformatics, many scientists now formulate biological questions and interpret research results in the context of genomic information. Just as the use of bioinformatic tools and databases changed the way scientists investigate problems, it must change how scientists teach to create new opportunities for students to gain experiences reflecting the influence of genomics, proteomics, and bioinformatics on modern life sciences research. Educators have responded by incorporating bioinformatics into diverse life science curricula. While these published exercises in, and guidelines for, bioinformatics curricula are helpful and inspirational, faculty new to the area of bioinformatics inevitably need training in the theoretical underpinnings of the algorithms. Moreover, effectively integrating bioinformatics

  10. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors’ Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students’ emotional satisfaction with math. We then compared life science and non–life science majors and found that major had a small to moderate relationship with students’ responses. Gender also had a small relationship with students’ responses, while students’ race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups—students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates’ emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors’ attitudes toward math. PMID:28798211

  11. Bringing Climate Change into the Life Science Classroom: Essentials, Impacts on Life, and Addressing Misconceptions

    Science.gov (United States)

    Hawkins, Amy J.; Stark, Louisa A.

    2016-01-01

    Climate change is at the forefront of our cultural conversation about science, influencing everything from presidential debates to Leonardo DiCaprio's 2016 Oscar acceptance speech. The topic is becoming increasingly socially and scientifically relevant but is no closer to being resolved. Most high school students take a life science course but…

  12. Developing Deep Learning Applications for Life Science and Pharma Industry.

    Science.gov (United States)

    Siegismund, Daniel; Tolkachev, Vasily; Heyse, Stephan; Sick, Beate; Duerr, Oliver; Steigele, Stephan

    2018-06-01

    Deep Learning has boosted artificial intelligence over the past 5 years and is seen now as one of the major technological innovation areas, predicted to replace lots of repetitive, but complex tasks of human labor within the next decade. It is also expected to be 'game changing' for research activities in pharma and life sciences, where large sets of similar yet complex data samples are systematically analyzed. Deep learning is currently conquering formerly expert domains especially in areas requiring perception, previously not amenable to standard machine learning. A typical example is the automated analysis of images which are typically produced en-masse in many domains, e. g., in high-content screening or digital pathology. Deep learning enables to create competitive applications in so-far defined core domains of 'human intelligence'. Applications of artificial intelligence have been enabled in recent years by (i) the massive availability of data samples, collected in pharma driven drug programs (='big data') as well as (ii) deep learning algorithmic advancements and (iii) increase in compute power. Such applications are based on software frameworks with specific strengths and weaknesses. Here, we introduce typical applications and underlying frameworks for deep learning with a set of practical criteria for developing production ready solutions in life science and pharma research. Based on our own experience in successfully developing deep learning applications we provide suggestions and a baseline for selecting the most suited frameworks for a future-proof and cost-effective development. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Silkworm: A Promising Model Organism in Life Science.

    Science.gov (United States)

    Meng, Xu; Zhu, Feifei; Chen, Keping

    2017-09-01

    As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  14. Microfluidics and nanofluidics handbook chemistry, physics, and life science principles

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fun...

  15. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  16. Marie Curie - science was her life

    International Nuclear Information System (INIS)

    Wolschendorf, K.

    1998-01-01

    In this paper a short survey of the life and the work of Marie Curie is presented. She was born in 1867 in Warsaw/Poland and went to Paris in 1891 to study physics, mathematics, and chemistry. In 1895 the married the physicist Pierre Curie, and together they began research work on radioactivity. For her doctorate she investigated various radiating substances and discovered the radioactive element Radium in 1898. She was awarded the Nobel Prize in Physics in 1903, and later on the Nobel Prize in Chemistry in 1911 for performing pioneering studies with radium and contributing profoundly to the understanding of radioactivity. In 1934 she died in a health resort due to leukemia. (orig.) [de

  17. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  18. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  19. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  20. Of Sheep's Pluck and Science Exhibitions: The Professional Life of Mother Bernard Towers RSM (1883-1963)

    Science.gov (United States)

    Collins, Jenny

    2009-01-01

    An examination of the professional lives of women science teachers presents an opportunity to consider ways in which women became "knowledge purveyors" and to reflect on the extent to which they challenged contemporary boundaries about what science women should know. An analysis of the life of a woman science teacher who was also a…

  1. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    1985-02-05

    work is performed in the Soviet Union to prevent anthrax. Several million animals are immunized each year. Analysis of the morbidity over the past 30...bonding the antigens to erythrocytes were determined.. The concentrations of chromium chloride and tannin to-be used for preliminary treatment of the...Moscow [Abstract] An analysis is presented of some biologic and genetic character- istics of the multiploid-forming mutant of Venezuelian equine

  2. Engineering for Life Sciences: A Fruitful Collaboration Enabled by Chemistry.

    Science.gov (United States)

    Niemeyer, Christof M

    2017-02-13

    "… The interaction of engineering and life sciences has a long history that is characterized by a mutual dependency. The role of chemistry in these developments is to connect the engineers' instrumentation with the life scientists' specimens. This very successful partnership will further continue to produce essential and innovative solutions for future challenges …" Read more in the Guest Editorial by Christof M. Niemeyer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Discourse in science communities: Issues of language, authority, and gender in a life sciences laboratory

    Science.gov (United States)

    Conefrey, Theresa Catherine

    Government-sponsored and private research initiatives continue to document the underrepresentation of women in the sciences. Despite policy initiatives, women's attrition rates each stage of their scientific careers remain higher than those of their male colleagues. In order to improve retention rates more information is needed about why many drop out or do not succeed as well as they could. While broad sociological studies and statistical surveys offer a valuable overview of institutional practices, in-depth qualitative analyses are needed to complement these large-scale studies. This present study goes behind statistical generalizations about the situation of women in science to explore the actual experience of scientific socialization and professionalization. Beginning with one reason often cited by women who have dropped out of science: "a bad lab experience," I explore through detailed observation in a naturalistic setting what this phrase might actually mean. Using ethnographic and discourse analytic methods, I present a detailed analysis of the discourse patterns in a life sciences laboratory group at a large research university. I show how language accomplishes the work of indexing and constituting social constraints, of maintaining or undermining the hierarchical power dynamics of the laboratory, of shaping members' presentation of self, and of modeling social and professional skills required to "do science." Despite the widespread conviction among scientists that "the mind has no sex," my study details how gender marks many routine interactions in the lab, including an emphasis on competition, a reinforcement of sex-role stereotypes, and a conversational style that is in several respects more compatible with men's than women's forms of talk.

  4. Exploring the living universe: A strategy for space life sciences

    Science.gov (United States)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  5. Applications of Raman spectroscopy in life science

    Science.gov (United States)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  6. Nuclear activation techniques in the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-08-15

    The analysis of the elemental composition of biological materials is presently undertaken on a large scale in many countries around the world One recent estimate puts the number of such analyses at six thousand million single-element determinations per year, of which about sixteen million are for the so-called trace elements. Since many of these elements are known to play an important role in relation to health and disease, there is considerable interest in learning more about the ways in which they function in living organisms. Nuclear activation techniques, generally referred to collectively as 'activation analysis' constitute an important group of methods for the analysis of the elemental composition of biological materials. Generally they rely on the use of a research nuclear reactor as a source of neutrons for bombarding small samples of biological material, followed by a measurement of the induced radioactivity to provide an estimate of the concentrations of elements. Other methods of activation with Bremsstrahlung and charged particles may also be used, and have their own special applications. These methods of in vitro analysis are particularly suitable for the study of trace elements. Another important group of methods makes use of neutrons from isotopic neutron sources or neutron generators to activate the whole body, or a part of the body, of a living patient. They are generally used for the study of major elements such as Ca, Na and N. All these techniques have previously been the subject of two symposia organised by the IAEA in 1967 and 1972. The present meeting was held to review some of the more recent developments in this field and also to provide a viewpoint on the current status of nuclear activation techniques vis-a-vis other competing non-nuclear methods of analysis.

  7. Space life sciences perspectives for Space Station Freedom

    Science.gov (United States)

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  8. Introduction to Life Science (Introduccion a la Ciencia Biologica).

    Science.gov (United States)

    Barnhard, Diana; And Others

    These materials were developed to meet an expressed need for bilingual materials for a secondary school Life Science Course. Eight units were prepared. These include the following topics: (1) Introduction to the Scientific Method; (2) The Microscope; (3) The Cell; (4) Single-celled Protists, Plants, and Animals; (5) Multicellular Living Things;…

  9. Recent developments in life sciences research: Role of bioinformatics

    African Journals Online (AJOL)

    Life sciences research and development has opened up new challenges and opportunities for bioinformatics. The contribution of bioinformatics advances made possible the mapping of the entire human genome and genomes of many other organisms in just over a decade. These discoveries, along with current efforts to ...

  10. Assessment of a Bioinformatics across Life Science Curricula Initiative

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.; Grunwald, Sandra K.; Abler, Michael L.

    2007-01-01

    At the University of Wisconsin-La Crosse, we have undertaken a program to integrate the study of bioinformatics across the undergraduate life science curricula. Our efforts have included incorporating bioinformatics exercises into courses in the biology, microbiology, and chemistry departments, as well as coordinating the efforts of faculty within…

  11. Collaborating in Life Science Research Groups: The Question of Authorship

    Science.gov (United States)

    Muller, Ruth

    2012-01-01

    This qualitative study explores how life science postdocs' perceptions of contemporary academic career rationales influence how they relate to collaboration within research groups. One consequential dimension of these perceptions is the high value assigned to publications. For career progress, postdocs consider producing publications and…

  12. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…

  13. Sustainable Infrastructures for Life Science Communication: Workshop Summary

    Science.gov (United States)

    Brown, Elizabeth Stallman; Yeung, Laurence; Sawyer, Keegan

    2014-01-01

    Advances in the life sciences--from the human genome to biotechnology to personalized medicine and sustainable communities--have profound implications for the well-being of society and the natural world. Improved public understanding of such scientific advances has the potential to benefit both individuals and society through enhanced quality of…

  14. Life Science Professional Societies Expand Undergraduate Education Efforts

    Science.gov (United States)

    Matyas, Marsha Lakes; Ruedi, Elizabeth A.; Engen, Katie; Chang, Amy L.

    2017-01-01

    The "Vision and Change in Undergraduate Biology Education" reports cite the critical role of professional societies in undergraduate life science education and, since 2008, have called for the increased involvement of professional societies in support of undergraduate education. Our study explored the level of support being provided by…

  15. TÜV - Zertifizierungen in der Life Science Branche

    Science.gov (United States)

    Schaff, Peter; Gerbl-Rieger, Susanne; Kloth, Sabine; Schübel, Christian; Daxenberger, Andreas; Engler, Claus

    Life Sciences [1] (Lebenswissenschaften) sind ein globales Innovationsfeld mit Anwendungen der Bio- und Medizinwissenschaften, der Pharma-, Chemie-, Kosmetik- und Lebensmittelindustrie. Diese Branche zeichnet sich durch eine stark interdisziplinäre Ausrichtung aus, mit Anwendung wissenschaftlicher Erkenntnisse und Einsatz von Ausgangsstoffen aus der modernen Biologie, Chemie und Humanmedizin sowie gezielter marktwirtschaftlich orientierter Arbeit.

  16. Optical Measurement Techniques Innovations for Industry and the Life Sciences

    CERN Document Server

    Peiponen, Kai-Erik; Priezzhev, Alexander V

    2009-01-01

    Devoted to novel optical measurement techniques that are applied both in industry and life sciences, this book contributes a fresh perspective on the development of modern optical sensors. These sensors are often essential in detecting and controlling parameters that are important for both industrial and biomedical applications. The book provides easy access for beginners wishing to gain familiarity with the innovations of modern optics.

  17. Life Science-Related Physics Laboratory on Geometrical Optics

    Science.gov (United States)

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  18. Deliberations on the Life Science: Pitfalls, Challenges and Solutions

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.

    2011-01-01

    In this article I sketch several versions of the deliberative approach and then discuss five problems which confront a deliberative ethicist of contemporary problems of the life sciences, in particular about food, nature and agriculture. I begin by discussing problems of unequal participation in

  19. Student teachers' views: what is an interesting Life Sciences ...

    African Journals Online (AJOL)

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10–12 ...

  20. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  1. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  2. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. A Multilevel Analysis of Diverse Learners Playing Life Science Video Games: Interactions between Game Content, Learning Disability Status, Reading Proficiency, and Gender

    Science.gov (United States)

    Israel, Maya; Wang, Shuai; Marino, Matthew T.

    2016-01-01

    Extant research reports differential effects related to the efficacy of video games as a means to enhance science instruction. However, there are very few studies examining differences in learning outcomes across student-level independent variables. This study used multilevel modeling to examine the effects of three video game-enhanced life…

  4. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  5. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Science.gov (United States)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  6. Secondary school students' perceptions of working life skills in science-related careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-07-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were 144 Finnish 7th graders (aged 13-14 years). Using a questionnaire and qualitative content analysis, we examined their perceptions of working life skills in 'careers in science' and 'careers with science'. Results reveal that although students have a great deal of knowledge about working life skills, it is often just stereotyped. Sector-specific knowledge and skills were highlighted in particular but skills related to society, organisation, time and higher order thinking, were often omitted. Results also indicate that students do not associate 'careers in science' with creativity, innovation, collaboration or technology and ICT skills. Conversely, according to the students, these careers demand more sector-specific knowledge and responsibility than 'careers with science'. We conclude that students need more wide-ranging information about scientific careers and the competencies demanded; such information can be acquired by e.g. interacting with professionals and their real working life problems.

  7. Registered plant list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...the Plant DB link list in simple search page) Genome analysis methods Presence or... absence of Genome analysis methods information in this DB (link to the Genome analysis methods information ...base Site Policy | Contact Us Registered plant list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  8. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  9. Download - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...t_db_link_en.zip (36.3 KB) - 6 Genome analysis methods pgdbj_dna_marker_linkage_map_genome_analysis_methods_... of This Database Site Policy | Contact Us Download - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  10. Update History of This Database - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...B link & Genome analysis methods English archive site is opened. 2012/08/08 PGDBj... Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods is opened. About This...ate History of This Database - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  11. License - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...t list, Marker list, QTL list, Plant DB link & Genome analysis methods © Satoshi ... Policy | Contact Us License - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  12. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  13. ICP-MS and elemental tags for the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Giesen, Charlotte

    2012-08-07

    Inductively coupled plasma mass spectrometry (ICP-MS) has been applied for the analysis of biomolecules due to its high sensitivity, wide linear dynamic range, and multielement capabilities. However, outside the elemental MS community the potential of this technique, e.g. for life sciences applications, is not yet fully exploited. Thus, the development of ICP-MS-based (immuno) assays for a wide range of medical (cancer diagnostics, cisplatin toxicity studies), biochemical (DNA microarray, single cell analysis), and environmental (analysis of comestible goods) applications was accomplished by utilization of chemical labels. Laser ablation (LA)-ICP-MS was employed for the direct analysis of solid samples like microarrays and thin tissue sections. An immunoassay was developed for ochratoxin A (OTA) determination in wine, and ICP-MS detection was compared to conventional photometry by gold nanoparticle tagging and horseradish peroxidase, respectively. Detection limits of the assay were optimized to 0.003 {mu}g L{sup -1}, and the quantification range was 0.01-1 {mu}g L{sup -1} for both methods. For LA-ICP-MS-based DNA microarray detection, gold nanoparticle tags were specifically introduced via a streptavidin-biotin linkage. In immunohistochemistry (IHC), up to 20 tumor markers are routinely evaluated for one patient and thus, a common analysis results in a series of time consuming staining procedures. Hence, LA-ICP-MS was elaborated as a detection tool for a novel, multiplexed IHC analysis of tissue sections. Different lanthanides were employed for the simultaneous detection of up to three tumor markers (Her 2, CK 7, and MUC 1) in a breast cancer tissue. Additionally, iodine was employed as a labeling reagent, and a new LA-ICP-MS method for single cell and cell nucleus imaging was developed at 4 {mu}m laser spot size. Iodine was also applied as a new internal standard for tissue samples. Moreover, Pt-protein complexes separated by an optimized 1D and 2D gel

  14. Social science in a stem cell laboratory: what happened when social and life sciences met.

    Science.gov (United States)

    Stacey, Glyn; Stephens, Neil

    2012-01-01

    We describe the experience of conducting intensive social science research at the UK Stem Cell Bank from the viewpoint of both the person conducting the social science research and the Director of the Bank. We detail the initial misunderstandings and concerns held by both and the problems these caused. Then we describe how the relationship developed as the project progressed and shared benefits became apparent. Finally, while acknowledging potential areas of tension between the life and social sciences, we suggest further interaction between the disciplines would prove beneficial for both and speculate as to how this may be achieved. In the discussion we identify a set of learning points from our experience and definitions of social science terminology that may help to inform future engagements between life and social scientists.

  15. Database Description - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ... QTL list, Plant DB link & Genome analysis methods Alternative name - DOI 10.18908/lsdba.nbdc01194-01-000 Cr...ers and QTLs are curated manually from the published literature. The marker information includes marker sequences, genotyping methods... Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  16. Kierkegaard and psychology as the science of the "multifarious life".

    Science.gov (United States)

    Klempe, Sven Hroar

    2013-09-01

    The aim of this paper is to demonstrate the actuality of some considerations around psychology made by the Danish philosopher Søren Kierkegaard (1813-1855). According to him psychology is about the "multifarious" life, which is a term that pinpoints the challenges psychology still have when it comes to including changes and genetic perspectives on its understanding of actual living. Yet Kierkegaard discusses psychology in relationship to metaphysics, which is an almost forgotten perspective. His understanding opens up for narrowing the definition of psychology down to the science of subjectivity, which at the same time elevates psychology to being the only science that focuses on the actual human life. Yet Kierkegaard's most important contribution to psychology is to maintain a radical distinction between subjectivity and objectivity, and in this respect the psychology of today is challenged.

  17. Venture Capital Investment in the Life Sciences in Switzerland.

    Science.gov (United States)

    Hosang, Markus

    2014-12-01

    Innovation is one of the main driving factors for continuous and healthy economic growth and welfare. Switzerland as a resource-poor country is particularly dependent on innovation, and the life sciences, which comprise biotechnologies, (bio)pharmaceuticals, medical technologies and diagnostics, are one of the key areas of innovative strength of Switzerland. Venture capital financing and venture capitalists (frequently called 'VCs') and investors in public equities have played and still play a pivotal role in financing the Swiss biotechnology industry. In the following some general features of venture capital investment in life sciences as well as some opportunities and challenges which venture capital investors in Switzerland are facing are highlighted. In addition certain means to counteract these challenges including the 'Zukunftsfonds Schweiz' are discussed.

  18. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  19. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  20. Georges Lema\\^itre: Life, Science and Legacy

    OpenAIRE

    Mitton, Simon

    2016-01-01

    This paper celebrates the remarkable life, science and legacy of Abb\\'e Georges Lema\\^itre, the Belgian cleric and professor of physics; he was the architect of the fireworks model for the origin of the universe. He died half a century ago, three days after learning that Arno Penzias and Robert Wilson had discovered the cosmic microwave background. Despite being gravely ill from leukaemia, Lema\\^itre lucidly praised this news, which confirmed the explosive genesis of our universe.

  1. Trips and the Life Sciences - Perspectives on Limitations to Patentability

    DEFF Research Database (Denmark)

    Wested, Jakob; Minssen, Timo

    2017-01-01

    This report is based on the material and input that was presented and discussed at the webinar with the title: “Perspectives on limitations to patentability”. The Webinar and the theme where introduced by Prof. Timo Minssen. Then Prof. Nari Lee gave a presentation introducing some of the context ...... and Minssen, Timo, Trips and the Life Sciences - Perspectives on Limitations to Patentability (June 15, 2017). Available at SSRN: https://ssrn.com/abstract=2986751...

  2. Hiroshima University Research and Technology Guide 2012 Version : Life Science

    OpenAIRE

    Center for Collaborative Research & Community Cooperation,

    2012-01-01

    I Life ScienceDevelopment of Treatment Strategy for Hepatocellular Carcinoma to Improve the Long Term Prognosis / Hiroshi AIKATA...2Development of Revolutional Apatite-implant Complex with Simultaneous Bone Augmentation and Osseointegration / Yasumasa AKAGAWA...3How Do Patients with Alzheimer’s Disease Experience Memory Impairments? / Sawako ARAI...4Development of New Therapies for Chronic Viral Hepatitis Using Human Hepatocyte Chimeric Mice / Kazuaki CHAYAMA...5Identification of High Risk Pa...

  3. Introductory life science mathematics and quantitative neuroscience courses.

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.

  4. The next phase of life-sciences spaceflight research

    Science.gov (United States)

    Etheridge, Timothy; Nemoto, Kanako; Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Higashitani, Atsushi

    2011-01-01

    Recently we demonstrated that the effectiveness of RNAi interference (RNAi) for inhibiting gene expression is maintained during spaceflight in the worm Caenorhabditis elegans and argued for the biomedical importance of this finding. We also successfully utilized green fluorescent protein (GFP)-tagged proteins to monitor changes in GPF localization during flight. Here we discuss potential applications of RNAi and GFP in spaceflight studies and the ramifications of these experiments for the future of space life-sciences research. PMID:22446523

  5. Digest of Russian Space Life Sciences, issue 33

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  6. Marker list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...Database Site Policy | Contact Us Marker list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  7. QTL list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...Policy | Contact Us QTL list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  8. Plant DB link - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...e Site Policy | Contact Us Plant DB link - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  9. Advancing palliative and end-of-life science in cardiorespiratory populations: The contributions of nursing science.

    Science.gov (United States)

    Grady, Patricia A

    Nursing science has a critical role to inform practice, promote health, and improve the lives of individuals across the lifespan who face the challenges of advanced cardiorespiratory disease. Since 1997, the National Institute of Nursing Research (NINR) has focused attention on the importance of palliative and end-of-life care for advanced heart failure and advanced pulmonary disease through the publication of multiple funding opportunity announcements and by supporting a cadre of nurse scientists that will continue to address new priorities and future directions for advancing palliative and end-of-life science in cardiorespiratory populations. Published by Elsevier Inc.

  10. Devices development and techniques research for space life sciences

    Science.gov (United States)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  11. Improving life sciences information retrieval using semantic web technology.

    Science.gov (United States)

    Quan, Dennis

    2007-05-01

    The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.

  12. Sources of student engagement in Introductory Physics for Life Sciences

    Science.gov (United States)

    Geller, Benjamin D.; Turpen, Chandra; Crouch, Catherine H.

    2018-06-01

    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students' other coursework in biology and chemistry, and examples that make connections to what students perceive to be the "real world," are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various "engagement pathways" by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways.

  13. Intersections of life histories and science identities: the stories of three preservice elementary teachers

    Science.gov (United States)

    Avraamidou, Lucy

    2016-03-01

    Grounded within Connelly and Clandinin's conceptualization of teachers' professional identity in terms of 'stories to live by' and through a life-history lens, this multiple case study aimed to respond to the following questions: (a) How do three preservice elementary teachers view themselves as future science teachers? (b) How have the participants' life histories shaped their science identity trajectories? In order to characterize the participants' formation of science identities over time, various data regarding their life histories in relation to science were collected: science biographies, self-portraits, interviews, reflective journals, lesson plans, and classroom observations. The analysis of the data illustrated how the three participants' identities have been in formation from the early years of their lives and how various events, experiences, and interactions had shaped their identities through time and across contexts. These findings are discussed alongside implications for theory, specifically, identity and life-history intersections, for teacher preparation, and for research related to explorations of beginning elementary teachers' identity trajectories.

  14. Database Description - AT Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available 1-8540, JAPAN Platform for Drug Discovery, Informatics, and Structural Life Science Research Organization...m for Drug Discovery, Informatics, and Structural Life Science Research Organization of Information and Syst

  15. Emerging Tensions at the Interface of Artificial Intelligence, IPRs & Competition Law in the Health & Life Sciences

    DEFF Research Database (Denmark)

    Minssen, Timo

    This presentation: • describes the interface between Big Data, IPRs & competition law in the life sciences. • highlights selected life-science areas, where tensions and potential clashes are crystallizing. • discusses how these tensions could be addressed...

  16. Counterfactuals and history: Contingency and convergence in histories of science and life.

    Science.gov (United States)

    Hesketh, Ian

    2016-08-01

    This article examines a series of recent histories of science that have attempted to consider how science may have developed in slightly altered historical realities. These works have, moreover, been influenced by debates in evolutionary science about the opposing forces of contingency and convergence in regard to Stephen Jay Gould's notion of "replaying life's tape." The article argues that while the historians under analysis seem to embrace contingency in order to present their counterfactual narratives, for the sake of historical plausibility they are forced to accept a fairly weak role for contingency in shaping the development of science. It is therefore argued that Simon Conway Morris's theory of evolutionary convergence comes closer to describing the restrained counterfactual worlds imagined by these historians of science than does contingency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Science, culture and the search for life on other worlds

    CERN Document Server

    Traphagan, John W

    2016-01-01

    This book explores humanity’s thoughts and ideas about extraterrestrial life, paying close attention to the ways science and culture interact with one another to create a context of imagination and discovery related to life on other worlds. Despite the recent explosion in our knowledge of other planets and the seeming era of discovery in which we live, to date we have found no concrete evidence that we are not alone. Our thinking about life on other worlds has been and remains the product of a combination of scientific investigation and human imagination shaped by cultural values--particularly values of exploration and discovery connected to American society. The rapid growth in our awareness of other worlds makes this a crucial moment to think about and assess the influence of cultural values on the scientific search for extraterrestrial life. Here the author considers the junction of science and culture with a focus on two main themes: (1) the underlying assumptions, many of which are tacitly based upon c...

  18. A sociological Analysis on the Modes of Science Production

    Directory of Open Access Journals (Sweden)

    Ali Rabbani Khorasgani

    2012-12-01

    Full Text Available The main aim of this article was sociological Analysis on the modes of science, survey of new Approaches in this context, description of available Approaches relevant to Application of Indigenous paradigm in prodvetion of knowledge and conclusion to attain imitated Approaches from Analysis and mentioned discussions for planning in space of science production in society of Iran. After Analysis of propound Approaches in sociology of science concreted that sociology of science three generation transitioned yet : classic sociology of science (OSS [ Theories of Merton ] , New sociology of science ( NSS [Theories of Thomas kuhn and others ] and Third generation sociology of science that consisted of non - Marxist composinal and processive Approaches for example: Actor - Network theory (ANT, Triple Helix Theory life eyeles, mode 2 and Mode 3. On the other hand , because science production is encompass process in social structures and social communications , allowance for Analysis of Recent Development in mode of science production , three paradigm Analysis and critiqued titles mode 1 , 2 , 3 production of knowledge . Also, Application of Indigenous paradigm studied in production of knowledge and introduced two groups: A - External Approaches B - Internal Approaches that each of two groups propounded Ideas relevant to Indigenous knowledge and Indigenization of knowledge. In the final section, mode an efforted to answered this question that what doctrines can be concluded from these discourse in order to improve the conditions in Iran.

  19. The rice growth image files - The Rice Growth Monitoring for The Phenotypic Functional Analysis | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us The Rice Growth Monitoring for The Phenotypic Functional Analysis The rice growth image file...s Data detail Data name The rice growth image files DOI 10.18908/lsdba.nbdc00945-004 Description of data contents The rice growth ima...ge files categorized based on file size. Data file File name: image files (director...y) File URL: ftp://ftp.biosciencedbc.jp/archive/agritogo-rice-phenome/LATEST/image...ite Policy | Contact Us The rice growth image files - The Rice Growth Monitoring for The Phenotypic Functional Analysis | LSDB Archive ...

  20. The list of strains and growth conditions - The Rice Growth Monitoring for The Phenotypic Functional Analysis | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us The Rice Growth Monitoring for The Phenotypic Functional Analysis The list of strains and growth... conditions Data detail Data name The list of strains and growth conditions DOI 10.18908/lsdba.nbdc00945...-001 Description of data contents The list of strains and growth conditions for respective samples. Data fil...servation Intervals of imaging Intervals of imaging Growth data Graph of chronological changes in growth Ima...History of This Database Site Policy | Contact Us The list of strains and growth conditions - The Rice Growth Monitoring for The Phenotypic Functional Analysis | LSDB Archive ...

  1. The Technology in the Programs of Life Sciences in Turkey and Sachunterricht in Germany

    Science.gov (United States)

    Keskin, Tuba

    2017-01-01

    The purpose of this study is to compare the gains of the Life Sciences program in Turkey and the Life sciences program (Sachunterricht) used in the state of Niedersachsen in Germany. The study aiming to compare the technology-related acquisitions in Life sciences program in Turkey and Germany is a comparative education research that used…

  2. 76 FR 42682 - China Biotech Life Sciences Trade Mission-Clarification and Amendment

    Science.gov (United States)

    2011-07-19

    ... DEPARTMENT OF COMMERCE International Trade Administration China Biotech Life Sciences Trade... Life Science Trade Mission to China, 76 FR 17,621, Mar. 30, 2011, to clarify eligibility and amend the... representatives from a variety of U.S. biotechnology and life science firms and trade organizations. In response...

  3. Inspiring the Next Generation in Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  4. Science at the supermarket: multiplication, personalization and consumption of science in everyday life.

    Science.gov (United States)

    Tateo, Luca

    2014-06-01

    Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems.

  5. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-01-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…

  6. Life Science Start-up Activities at the Universities of Applied Sciences (UAS).

    Science.gov (United States)

    Huber, Gerda

    2014-12-01

    The universities of applied sciences (UAS) provide several values for the society and economy of a country. Besides education of high level professionals, transfer of knowledge from research to applications in industry or as new start-up companies is an important task. This is done in different ways in the various disciplines. In Life Sciences, a key industry branch in Switzerland, innovation is a competitive success factor and research findings from UAS/Life Sciences contribute to the valorization of new technologies to products, services and to business performance. In order to foster awareness for the innovation need of industry, UAS install processes and support for transfer of research and technology results to marketable applications. Furthermore they may facilitate contacts of researchers and students with entrepreneurs in order to animate start-up founding as a true alternative to being employed. Access to coaching and entrepreneurial training completes the essential basis.

  7. Premenstrual syndrome and life quality in Turkish health science students.

    Science.gov (United States)

    İşik, Hatice; Ergöl, Şule; Aynioğlu, Öner; Şahbaz, Ahmet; Kuzu, Ayşe; Uzun, Müge

    2016-04-19

    The purpose of the present study was to investigate the incidence of PMS, risk factors affecting PMS symptoms, and life quality in health science students. A total of 608 volunteer female students studying at the health campus of a state university in Turkey were included in the study. The participants were asked to fill out questionnaires on sociodemographic data, PMS symptoms, and SF-36 life quality tests. The overall frequency of PMS among participants was 84.5%. The average PMS and general health SF scores were 118.34 ± 37.3 and 20.03 ± 3.72, respectively. Students who had irregular breakfast, drank ≥2 cups of coffee/day, and consumed alcohol or fast food had higher PMS scores. Irregular menstruation and family history increased PMS scores and decreased life quality (P life quality of the students significantly decreased as the severity of PMS increased (P life quality, students should be informed about the symptoms, risk factors, and management options of PMS.

  8. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  9. Visualization in medicine and life sciences III towards making an impact

    CERN Document Server

    Hamann, Bernd; Hege, Hans-Christian

    2016-01-01

    The book discusses novel visualization techniques driven by the needs in medicine and life sciences as well as new application areas and challenges for visualization within these fields. It presents ideas and concepts for visual analysis of data from scientific studies of living organs or to the delivery of healthcare. Target scientific domains include the entire field of biology at all scales - from genes and proteins to organs and populations - as well as interdisciplinary research based on technological advances such as bioinformatics, biomedicine, biochemistry, or biophysics. Moreover, they comprise the field of medicine and the application of science and technology to healthcare problems. This book does not only present basic research pushing the state of the art in the field of visualization, but it also documents the impact in the fields of medicine and life sciences.

  10. Arnold Sommerfeld science, life and turbulent times : 1868-1951

    CERN Document Server

    Eckert, Michael

    2013-01-01

    Arnold Sommerfeld (1868-1951) belongs with Max Planck (1858-1947), Albert Einstein (1879-1955) and Niels Bohr (1885-1962) among the founders of modern theoretical physics, a science that developed into a budding discipline during his lifetime. Sommerfeld witnessed many of the most dramatic scientific, cultural and political events of this era. His correspondence with his family offers a vivid testament to the challenges and joys of a life in science. This biography attempts to reconstruct Sommerfeld’s life and work not only from the perspective of his achievements in theoretical physics but also with the goal of portraying the career of a scientist within the social and political environment in which it evolved. It is based to a large extent on Sommerfeld’s voluminous correspondence, which sheds light both on his private and scientific life. Furthermore, it provides an authentic view on the circumstances that shaped Sommerfeld’s career in different places – Königsberg, Göttingen, Clausthal, Aachen, ...

  11. Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future.......The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future....

  12. Grid Information Technology as a New Technological Tool for e-Science, Healthcare and Life Science

    Directory of Open Access Journals (Sweden)

    Juan Manuel Maqueira Marín

    2007-06-01

    Full Text Available Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science.

  13. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  14. The formality of learning science in everyday life

    DEFF Research Database (Denmark)

    Bonderup Dohn, Niels

    2010-01-01

    The terms non-formal and informal are attributed to learning in everyday life by many authors, often linked to their interests in particular learning practices. However, many authors use the terms without any clear definition, or employ conflicting definitions and boundaries. An analysis of relev......The terms non-formal and informal are attributed to learning in everyday life by many authors, often linked to their interests in particular learning practices. However, many authors use the terms without any clear definition, or employ conflicting definitions and boundaries. An analysis...

  15. The why of things: causality in science, medicine, and life

    CERN Document Server

    Rabins, Peter V.

    2013-01-01

    Why was there a meltdown at the Fukushima power plant? Why do some people get cancer and not others? Why is global warming happening? Why does one person get depressed in the face of life's vicissitudes while another finds resilience? Questions like these -- questions of causality -- form the basis of modern scientific inquiry, posing profound intellectual and methodological challenges for researchers in the physical, natural, biomedical, and social sciences. In this groundbreaking book, noted psychiatrist and author Peter Rabins offers a conceptual framework for analyzing daunting questions of causality. Navigating a lively intellectual voyage between the shoals of strict reductionism and relativism, Rabins maps a three-facet model of causality and applies it to a variety of questions in science, medicine, economics, and more. Throughout this book, Rabins situates his argument within relevant scientific contexts, such as quantum mechanics, cybernetics, chaos theory, and epigenetics. A renowned communicator o...

  16. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  17. Proceedings of the symposium on 'radiation research in life science'

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1993-06-01

    This report is the collection of the papers presented at the title symposium on radiation research in life science. The themes included in this report are as follows: (1) cellular aging process, (2) senescence gene and cellular immortalization, (3) molecular mechanism of replicative senescence, (4) programmed cell death during differentiation, (5) thymocyte apoptosis, (6) neuronal death, (7) apoptosis by HIV infection, (8) apoptosis and immunology, (9) radiation induced apoptosis, and so on. Separate abstract was prepared for 1 of the papers in this report. The remaining 10 papers were considered outside the subject scope of INIS. (J.P.N.)

  18. Professional Networks in the Life Sciences: Linking the Linked

    Directory of Open Access Journals (Sweden)

    Thomas S. Deisboeck

    2010-08-01

    Full Text Available The world wide web has furthered the emergence of a multitude of online expert communities. Continued progress on many of the remaining complex scientific questions requires a wide ranging expertise spectrum with access to a variety of distinct data types. Moving beyond peer-to-peer to community-to-community interaction is therefore one of the biggest challenges for global interdisciplinary Life Sciences research, including that of cancer. Cross-domain data query, access, and retrieval will be important innovation areas to enable and facilitate this interaction in the coming years.

  19. Life sciences research in space: The requirement for animal models

    Science.gov (United States)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  20. The comeback of hand drawing in modern life sciences.

    Science.gov (United States)

    Chabrier, Renaud; Janke, Carsten

    2018-03-01

    Scientific manuscripts are full of images. Since the birth of the life sciences, these images were in a form of hand drawings, with great examples from da Vinci, Hooke, van Leeuwenhoek, Remak, Buffon, Bovery, Darwin, Huxley, Haeckel and Gray's Anatomy to name a few. However, in the course of the past century, photographs and simplified schematics have gradually taken over as a way of illustrating scientific data and concepts, assuming that these are 'accurate' representations of the truth. Here, we argue for the importance of reviving the art of scientific drawings as a way of effectively communicating complex scientific ideas to both specialists and the general public.

  1. Philosophical Approaches towards Sciences of Life in Early Cybernetics

    Science.gov (United States)

    Montagnini, Leone

    2008-07-01

    The article focuses on the different conceptual and philosophical approaches towards the sciences of life operating in the backstage of Early Cybernetics. After a short reconstruction of the main steps characterizing the origins of Cybernetics, from 1940 until 1948, the paper examines the complementary conceptual views between Norbert Wiener and John von Neumann, as a "fuzzy thinking" versus a "logical thinking", and the marked difference between the "methodological individualism" shared by both of them versus the "methodological collectivism" of most of the numerous scientists of life and society attending the Macy Conferences on Cybernetics. The main thesis sustained here is that these different approaches, quite invisible to the participants, were different, maybe even opposite, but they could provoke clashes, as well as cooperate in a synergic way.

  2. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  3. Darwin and the origin of life: public versus private science.

    Science.gov (United States)

    Strick, James E

    2009-12-01

    In the first twenty years after the publication of Darwin's On the Origin of Species, an intense debate took place within the ranks of Darwin's supporters over exactly what his theory implied about the means by which the original living organism formed on Earth. Many supporters of evolutionary science also supported the doctrine of spontaneous generation: life forming from nonliving material not just once but many times up to the present day. Darwin was ambivalent on this topic. He feared its explosive potential to drive away liberal-minded Christians who might otherwise be supporters. His ambivalent wording created still more confusion, both among friends and foes, about what Darwin actually believed about the origin of life. A famous lecture by Thomas H. Huxley in 1870 set forth what later became the 'party line' Darwinian position on the subject.

  4. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    Directory of Open Access Journals (Sweden)

    Ludo Waltman

    Full Text Available We investigate the extent to which advances in the health and life sciences (HLS are dependent on research in the engineering and physical sciences (EPS, particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  5. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    Science.gov (United States)

    Waltman, Ludo; van Raan, Anthony F J; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  6. Selfies. Symmetry_Encoding_Life_Fakes_Insight_Encoding_Science

    Directory of Open Access Journals (Sweden)

    Paolo Amodio

    2014-12-01

    Full Text Available By observing through the microscope a biological structure at the different scale levels, it is possible to live an astonishing experience which leads the explorer to travel across hierarchically structured geometrical worlds where spaces and paths are established by forms of unexpected strictness and symmetrical constructions conceal nested architectures which create self-similar universes evoking Koch's fractals or three-dimensional versions of Mandelbrot sets. The finding – surprising and consolatory at the same time – that living matter can somehow exhibit symmetries and levels of order one generally (and only associates to inorganic crystals, de facto undermines the foundations of some dichotomous categories on which both Science and Philosophy are based, consequently making fluid the boundaries between organic and inorganic, artificial and natural and – at the end – between life and death. The Life – at the macro- and micro-scopic eye – is available. It is geometrical disposition, conformal symmetry, solution and result. But Life, where that eye (and its extents is slotted, is meta-order, at most World as energy and kinematic laps, anyway para-logical priority, logical noise, paradox of the tangible and of the material. So, Science and Philosophy become comment and/or protest of the human mind in front of a “There Is”, and in this blame game between meta-bio-logical prius and historical preemption, any result of the human mind is also a result of the Life, of physical and chemical auto-organization which allows the Life itself. Not only methodological explosion of dichotomies as Natural/Artificial, Organic/Inorganic – the practice or the break of the dichotomy is however an existential demand of the Logos – rather secret horizon required by human livings, mass-produced mirrors of self-references and semantic codes. Symmetries and violations of symmetries in piles of Selfies to post on social networks of Science and

  7. Fullness of life as minimal unit: Science, technology, engineering, and mathematics (STEM) learning across the life span.

    NARCIS (Netherlands)

    Roth, W.-M.; Eijck, van M.W.

    2011-01-01

    Challenged by a National Science Foundation–funded conference, 2020 Vision: The Next Generation of STEM Learning Research, in which participants were asked to recognize science, technology, engineering, and mathematics (STEM) learning as lifelong, life-wide, and life-deep, we draw upon 20 years of

  8. Decision Analysis: Engineering Science or Clinical Art

    Science.gov (United States)

    1979-11-01

    TECHNICAL REPORT TR 79-2-97 DECISION ANALYSIS: ENGINEERING SCIENCE OR CLINICAL ART ? by Dennis M. Buede Prepared for Defense Advanced Research...APPLICATIONS OF THE ENGINEER- ING SCIENCE AND CLINICAL ART EXTREMES 9 3.1 Applications of the Engineering Science Approach 9 3.1.1 Mexican electrical...DISCUSSION 29 4.1 Engineering Science versus Clinical Art : A Characterization of When Each is Most Attractive 30 4.2 The Implications of the Engineering

  9. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  10. Biophotonics: a new link between physical and life sciences

    International Nuclear Information System (INIS)

    Wilson, B.C.

    2002-01-01

    Photonics is the science of generating, manipulating and measuring light (ultraviolet-UV, visible-vis and infrared-IR). It involves ultrafast processes (lasers producing pulses -15 ), ultrahigh power densities (>10 12 W.cm -2 ) and ultrahigh information density (10 15 bits per cm 3 of optical storage material). Photonic technologies have many applications, including optical fiber communications, laser precision machining, materials analysis, remote sensing, and optical information storage. The enabling technologies include lasers and other light sources, optical fibers, and photodetectors and detector arrays. These are ubiquitous in everyday life, from the CD player to the supermarket checkout scanner, to the digital camera. Biophotonics is a rapidly developing field that applies photonics in exploiting the interaction of light with tissues, cells and biomolecules for biomedical research and clinical medicine. Although the therapeutic use of light was known to the ancient Egyptians, it has only been in the last few decades that the key technologies and sufficient understanding of optical biophysics have become available to enable light-based therapeutic and diagnostic in vivo techniques to be developed. Similarly, although the optical microscope was invented by Leeuwenhoek over 300 years ago, there is now a renaissance in optical micro-imaging of cells and tissues based on different optical interactions, and a rapidly expanding range of other analytic optical tools for biotechnology applications. Therapeutic applications exploit the effect of light on tissues, cells and biomolecules. That is, optical energy is absorbed by specific molecules and results in biophysical and/or biochemical changes. Conversely, analytic applications and in vivo clinical diagnostics exploit the effect of tissues, cells and biomolecules on light, i.e., the interactions cause changes in wavelength, spatial or temporal distribution, phase, or polarization of the light that give information

  11. Biographical Sources in the Sciences--Life, Earth and Physical Sciences (1989-2006). LC Science Tracer Bullet. TB 06-4

    Science.gov (United States)

    Freitag, Ruth, Comp.; Bradley, Michelle Cadoree, Comp.

    2006-01-01

    This guide offers a systematic approach to the wide variety of published biographical information on men and women of science in the life, earth and physical sciences, primarily from 1989 to 2006, and complements Library of Congress Science Tracer Bullet "TB88-3" ("Biographical Sources in the Sciences," compiled 1988 [ED306074]) and "TB06-7"…

  12. The Planning of New Japanese Facilities for Life Science in ISS

    Science.gov (United States)

    Ohnishi, Takeo; Hoson, Takayuki

    Though basic rules and mechanisms of life have been rapidly advanced, in recent years, the most sciences are limited under earth environment. To clarify the universality and the real nature of life, it is necessary to perform the space experiments. We, Japanese Society for Biological Sciences in Space, schedule new five types of up-to-date facilities required for the forefront research in the Kibo Module for utilization during 2015-2020. The project was proposed to the Council of Japan and the utilization Committee of Space Environment Science. We aim (1) further high quality science, (2) widely utilization for various requirements among Japan and foreign scientists. The schedules are 2015-2016, manufacture of them and suitability for space experiments and safety tests; 2016-2018, settlement of the new facilities to ISS; 2018-2023, space experiments. At now stage, we are unable to use space shuttles any more. It is difficult to get the biological samples to the spot of launch. Tests of vibration and shock during launch and landing are required. We recommend the down-road of experimental results from ISS. Now, we schedule new facilities: (1) Plant culture system; culture of various kinds of plants for the cell cycle and the next generation, and space agriculture for long stay in space. (2) Whole-body animal culture system; fertilization, growth, development, movement, life keeping in closed environment and health life in space by many kinds of analysis. (3) Localization and movement of cellular components; gene expression, proteins, chromosome and organelles in the cell with a real time analysis. (4) Collection of biological samples from space and total analysis system; (a) settlement of samples in ISS, space experiments and analysis in space, (b) the collection the samples after space experiments. (5) Exposure area at ISS platform; biological effect and fine physical dosimetry of solar radiations and space radiations under various filters among different radiation

  13. Challenges and Opportunities for Education about Dual Use Issues in the Life Sciences

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    The Challenges and Opportunities for Education About Dual Use Issues in the Life Sciences workshop was held to engage the life sciences community on the particular security issues related to research with dual use potential. More than 60 participants from almost 30 countries took part and included practicing life scientists, bioethics and…

  14. Multistate analysis of life histories with R

    CERN Document Server

    Willekens, Frans

    2014-01-01

    This book provides an introduction to multistate event history analysis. It is an extension of survival analysis, in which a single terminal event (endpoint) is considered and the time-to-event is studied. Multistate models focus on life histories or trajectories, conceptualized as sequences of states and sequences of transitions between states. Life histories are modeled as realizations of continuous-time Markov processes. The model parameters, transition rates, are estimated from data on event counts and populations at risk, using the statistical theory of counting processes. The Comprehensive R Network Archive (CRAN) includes several packages for multistate modeling. This book is about Biograph. The package is designed to (a) enhance exploratory analysis of life histories and (b) make multistate modeling accessible. The package incorporates utilities that connect to several packages for multistate modeling, including survival, eha, Epi, mvna, etm, mstate, msm, and TraMineR for sequence analysis. The book ...

  15. Of Responsible Research--Exploring the Science-Society Dialogue in Undergraduate Training within the Life Sciences

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-01

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in…

  16. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    Science.gov (United States)

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  17. Space Science Outreach in the Virtual World of Second Life

    Science.gov (United States)

    Crider, Anthony W.; International Spaceflight Museum

    2006-12-01

    The on-line "game" of Second Life allows users to construct a highly detailed and customized environment. Users often pool talents and resources to construct virtual islands that focus on their common interest. One such group has built the International Spaceflight Museum, committed to constructing and displaying accurate models of rockets, spacecraft, telescopes, and planetariums. Current exhibits include a Saturn V rocket, a Viking lander on Mars, Spaceship One, the New Horizons mission to the Kuiper Belt, and a prototype of the Orion crew exploration vehicle. This museum also hosts public lectures, shuttle launch viewings, and university astronomy class projects. In this presentation, I will focus on how space science researchers and educators may take advantage of this new resource as a means to engage the public.

  18. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  19. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  20. Paul Scherrer Institute Scientific Report 1998. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Gschwend, Beatrice; Jaussi, Rolf [eds.

    1999-09-01

    The Department of Life Sciences, is aiming to perform high quality research in biosciences focused primarily on oncology and in close interaction with the technical facilities at PSI e.g. proton therapy, SINQ, SLS, and the national and international bioscience community. Within this department, the Division of Radiation Protection and Radioactive Waste Treatment is responsible for the radiological safety of the personnel, the installations and the environment at PSI, and it is charged with dismantling obsolete nuclear installations at PSI. The principal research and development activities of this division concern novel methods for neutron dosimetry, and the study of presence and pathways of natural and man made radioactivity in humans and in the environment. (author) figs., tabs., refs.

  1. Paul Scherrer Institute Scientific Report 1998. Volume II: Life Sciences

    International Nuclear Information System (INIS)

    Gschwend, Beatrice; Jaussi, Rolf

    1999-01-01

    The Department of Life Sciences, is aiming to perform high quality research in biosciences focused primarily on oncology and in close interaction with the technical facilities at PSI e.g. proton therapy, SINQ, SLS, and the national and international bioscience community. Within this department, the Division of Radiation Protection and Radioactive Waste Treatment is responsible for the radiological safety of the personnel, the installations and the environment at PSI, and it is charged with dismantling obsolete nuclear installations at PSI. The principal research and development activities of this division concern novel methods for neutron dosimetry, and the study of presence and pathways of natural and man made radioactivity in humans and in the environment. (author)

  2. Development of life sciences equipment for microgravity and hypergravity simulation

    Science.gov (United States)

    Mulenburg, G. M.; Evans, J.; Vasques, M.; Gundo, D. P.; Griffith, J. B.; Harper, J.; Skundberg, T.

    1994-01-01

    The mission of the Life Science Division at the NASA Ames Research Center is to investigate the effects of gravity on living systems in the spectrum from cells to humans. The range of these investigations is from microgravity, as experienced in space, to Earth's gravity, and hypergravity. Exposure to microgravity causes many physiological changes in humans and other mammals including a headward shift of body fluids, atrophy of muscles - especially the large muscles of the legs - and changes in bone and mineral metabolism. The high cost and limited opportunity for research experiments in space create a need to perform ground based simulation experiments on Earth. Models that simulate microgravity are used to help identify and quantify these changes, to investigate the mechanisms causing these changes and, in some cases, to develop countermeasures.

  3. 5th International Conference on Optics Within Life Sciences

    CERN Document Server

    Papazoglou, Theodore; Kalpouzos, Costas

    2000-01-01

    Following to previous OWLS conferences devoted to widespread applications of optics in life sciences, this 5th OWLS Conference focuses on recent achievements in applying lasers and optics in biomedicine and the preservation of our cultural heritage. Particular attention is paid to laser diagnostics in medicine, interaction of laser radiation with biological tissue, aspects of the preservation of cultural heritage, and the development of new systems for these studies. The contributors to this volume cover international research activities in the following areas: Laser-tissue interactions and tissue optics - photon migration in tissue; Medical sensors - fiber optics; Clinical use of lasers (dermatology, ENT, cardiology, etc.); Laser-based techniques in art conservation (cleaning, diagnostics, analytical applications); Imaging techniques and lasers in archaeology; Laser technologies in contemporary art (holography, marking, etc.); and New laser and opto-electronic systems for biomedical and art-related studies.

  4. Annual report: AEC Institute for Life Sciences, 1986

    International Nuclear Information System (INIS)

    1987-08-01

    The AEC-Institute for life sciences research programme can be divided into four divisions: experimental nuclear medicine, radiobiology, radiopharmacy and hormone receptor studies. The experimental nuclear medicine division investigates and undertakes new developments in nuclear diagnostics with a view to clinical application, especially developments in dataprocessing techniques and radiopharmaceuticals. Physiological, biochemical and pharmacological problems are also investigated by using tracers and nuclear diagnostic techniques. The radiobiology division is concerned with the development of biochemical techniques for determining radiosensitivity amongst radiation workers as well as clinical-biochemical, diagnostic procedures for identifying exposure to ionizing types of radiation (X- or gamma radiation). The hormone receptor division is concerned with the study of the role of steroid hormone receptors, steroids and carcinogenes in the etiology of breast cancer. Research projects as well as completed and ongoing research are listed in this report

  5. The caBIG® Life Science Business Architecture Model.

    Science.gov (United States)

    Boyd, Lauren Becnel; Hunicke-Smith, Scott P; Stafford, Grace A; Freund, Elaine T; Ehlman, Michele; Chandran, Uma; Dennis, Robert; Fernandez, Anna T; Goldstein, Stephen; Steffen, David; Tycko, Benjamin; Klemm, Juli D

    2011-05-15

    Business Architecture Models (BAMs) describe what a business does, who performs the activities, where and when activities are performed, how activities are accomplished and which data are present. The purpose of a BAM is to provide a common resource for understanding business functions and requirements and to guide software development. The cancer Biomedical Informatics Grid (caBIG®) Life Science BAM (LS BAM) provides a shared understanding of the vocabulary, goals and processes that are common in the business of LS research. LS BAM 1.1 includes 90 goals and 61 people and groups within Use Case and Activity Unified Modeling Language (UML) Diagrams. Here we report on the model's current release, LS BAM 1.1, its utility and usage, and plans for future use and continuing development for future releases. The LS BAM is freely available as UML, PDF and HTML (https://wiki.nci.nih.gov/x/OFNyAQ).

  6. mORCA: ubiquitous access to life science web services.

    Science.gov (United States)

    Diaz-Del-Pino, Sergio; Trelles, Oswaldo; Falgueras, Juan

    2018-01-16

    Technical advances in mobile devices such as smartphones and tablets have produced an extraordinary increase in their use around the world and have become part of our daily lives. The possibility of carrying these devices in a pocket, particularly mobile phones, has enabled ubiquitous access to Internet resources. Furthermore, in the life sciences world there has been a vast proliferation of data types and services that finish as Web Services. This suggests the need for research into mobile clients to deal with life sciences applications for effective usage and exploitation. Analysing the current features in existing bioinformatics applications managing Web Services, we have devised, implemented, and deployed an easy-to-use web-based lightweight mobile client. This client is able to browse, select, compose parameters, invoke, and monitor the execution of Web Services stored in catalogues or central repositories. The client is also able to deal with huge amounts of data between external storage mounts. In addition, we also present a validation use case, which illustrates the usage of the application while executing, monitoring, and exploring the results of a registered workflow. The software its available in the Apple Store and Android Market and the source code is publicly available in Github. Mobile devices are becoming increasingly important in the scientific world due to their strong potential impact on scientific applications. Bioinformatics should not fall behind this trend. We present an original software client that deals with the intrinsic limitations of such devices and propose different guidelines to provide location-independent access to computational resources in bioinformatics and biomedicine. Its modular design makes it easily expandable with the inclusion of new repositories, tools, types of visualization, etc.

  7. Nuclear analysis techniques and environmental sciences

    International Nuclear Information System (INIS)

    1997-10-01

    31 theses are collected in this book. It introduced molecular activation analysis micro-PIXE and micro-probe analysis, x-ray fluorescence analysis and accelerator mass spectrometry. The applications about these nuclear analysis techniques are presented and reviewed for environmental sciences

  8. The uses of radiotracers in the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Thomas J [TRIUMF, Vancouver (Canada)

    2009-01-15

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.

  9. The uses of radiotracers in the life sciences

    Science.gov (United States)

    Ruth, Thomas J.

    2009-01-01

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.

  10. The uses of radiotracers in the life sciences

    International Nuclear Information System (INIS)

    Ruth, Thomas J

    2009-01-01

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination

  11. Meghnad Saha his life in science and politics

    CERN Document Server

    Naik, Pramod V

    2017-01-01

    This biography is a short yet comprehensive overview of the life of Meghnad Saha, the mastermind behind the frequently used Saha equations and a strong contributor to the foundation of science in India. The author explores the lesser known details behind the man who played a major role in building scientific institutions in India, developed the breakthrough theory of thermal ionization, and whose fervor about India’s rapid progress in science and technology, along with concern for uplifting his countrymen and optimizing resources, led him to eventually enter politics and identify the mismanagement of many programs of national importance to Parliament. This book is free of most academic technicalities, so that the reader with general scientific knowledge can read and understand it easily. One interested only in Saha’s contribution to physics can pick up just that part and read it. Conversely, the average reader may skip the technical chapters, and read the book without loss of continuity or generality to s...

  12. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-01-01

    fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative

  13. Definition of Life Sciences laboratories for shuttle/Spacelab. Volume 1: Executive summary

    Science.gov (United States)

    1975-01-01

    Research requirements and the laboratories needed to support a Life Sciences research program during the shuttle/Spacelab era were investigated. A common operational research equipment inventory was developed to support a comprehensive but flexible Life Sciences program. Candidate laboratories and operational schedules were defined and evaluated in terms of accomodation with the Spacelab and overall program planning. Results provide a firm foundation for the initiation of a life science program for the shuttle era.

  14. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  15. Ames Life Science Data Archive: Translational Rodent Research at Ames

    Science.gov (United States)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  16. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  17. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  18. Astrobiology in culture: the search for extraterrestrial life as "science".

    Science.gov (United States)

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.

  19. Convergence facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond

    CERN Document Server

    2014-01-01

    Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and imple...

  20. A precautionary principle for dual use research in the life sciences.

    Science.gov (United States)

    Kuhlau, Frida; Höglund, Anna T; Evers, Kathinka; Eriksson, Stefan

    2011-01-01

    Most life science research entails dual-use complexity and may be misused for harmful purposes, e.g. biological weapons. The Precautionary Principle applies to special problems characterized by complexity in the relationship between human activities and their consequences. This article examines whether the principle, so far mainly used in environmental and public health issues, is applicable and suitable to the field of dual-use life science research. Four central elements of the principle are examined: threat, uncertainty, prescription and action. Although charges against the principle exist - for example that it stifles scientific development, lacks practical applicability and is poorly defined and vague - the analysis concludes that a Precautionary Principle is applicable to the field. Certain factors such as credibility of the threat, availability of information, clear prescriptive demands on responsibility and directives on how to act, determine the suitability and success of a Precautionary Principle. Moreover, policy-makers and researchers share a responsibility for providing and seeking information about potential sources of harm. A central conclusion is that the principle is meaningful and useful if applied as a context-dependent moral principle and allowed flexibility in its practical use. The principle may then inspire awareness-raising and the establishment of practical routines which appropriately reflect the fact that life science research may be misused for harmful purposes. © 2009 Blackwell Publishing Ltd.

  1. Sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, E.A.; Heijungs, R.; Bokkers, E.A.M.; Boer, de I.J.M.

    2014-01-01

    Life cycle assessments require many input parameters and many of these parameters are uncertain; therefore, a sensitivity analysis is an essential part of the final interpretation. The aim of this study is to compare seven sensitivity methods applied to three types of case stud-ies. Two

  2. Mathematical and statistical applications in life sciences and engineering

    CERN Document Server

    Adhikari, Mahima; Chaubey, Yogendra

    2017-01-01

    The book includes articles from eminent international scientists discussing a wide spectrum of topics of current importance in mathematics and statistics and their applications. It presents state-of-the-art material along with a clear and detailed review of the relevant topics and issues concerned. The topics discussed include message transmission, colouring problem, control of stochastic structures and information dynamics, image denoising, life testing and reliability, survival and frailty models, analysis of drought periods, prediction of genomic profiles, competing risks, environmental applications and chronic disease control. It is a valuable resource for researchers and practitioners in the relevant areas of mathematics and statistics.

  3. New challenges for Life Sciences flight project management

    Science.gov (United States)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  4. Paul Scherrer Institute Scientific Report 1999. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jaussi, Rolf; Gschwend, Beatrice [eds.

    2000-07-01

    The existing activities of the Department of Life Sciences have grown out of the specific know how and the unique experimental possibilities available at PSI. Primarily, these have been and are complex facilities for using particle beams (protons, neutrons) on the one hand and know how in the production, handling and chemistry of radionuclides on the other. The common theme of the department has thus been the study and use of various types of radiation in therapy and diagnostics of human disease and in particular of cancer. The four units active in this area are: The major activity in the Radiation Medicine unit is Proton Therapy, which aims to further develop and optimise the world-wide unique spot scanning facility for irradiating malignant tumours with minimal damage to surrounding healthy tissues, including the established OPTIS program for the treatment of eye tumours. The Centre for Radiopharmaceutical Science represents a joint activity of PSI with the Swiss Federal Institute of Technology (ETHZ) and the University of Zurich. Its major goals are the development of novel tumour targeted radioconjugates for cancer diagnosis and therapy and the production and evaluation of new PET (positron emission tomography) radiotracers for various applications in neuro physiology and drug development. The Institute of Medical Radiobiology analyses questions of the molecular biology of DNA repair. It is a joint activity of PSI and the University of Zurich. The Structural Biology unit is currently being established. A strong in-house research activity in macromolecular crystallography will complement the more user-oriented protein crystallography beam line, which is being built at the Swiss Light Source (SLS). In particular, tumour targeting by molecular vehicles and DNA repair are areas where structural information can provide important insights. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  5. Paul Scherrer Institute Scientific Report 2000. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jaussi, Rolf; Gschwend, Beatrice [eds.

    2001-07-01

    The existing activities of the Department of Life Sciences have grown out of the specific know-how and the unique experimental possibilities available at PSI. Primarily, these have been and are complex facilities for using particle beams (protons, neutrons) on the one hand and know-how in the production, handling and chemistry of radionuclides on the other. The common theme of the department has thus been the study and use of various types of radiation in therapy and diagnostics of human disease and in particular of cancer. The four units active in this area are: The major activity in the Radiation Medicine unit is Proton Therapy, which aims to further develop and optimise the world-wide unique spot scanning facility for irradiating malignant tumours with minimal damage to surrounding healthy tissues, including the established OPTIS program for the treatment of eye tumours. The Centre for Radiopharmaceutical Science represents a joint activity of PSI with the Swiss Federal Institute of Technology (ETHZ) and the University of Zurich. Its major goals are the development of novel tumour targeted radioconjugates for cancer diagnosis and therapy and the production and evaluation of new PET (positron emission tomography) radiotracers for various applications in neuro physiology and drug development. The Institute of Medical Radiobiology analyses questions of the molecular biology of DNA repair. It is a joint activity of PSI and the University of Zurich. The newly established Structural Biology group is still in the build-up phase. A strong in-house research activity in macromolecular crystallography will complement the more user-oriented protein crystallography beam line, which is being built at the Swiss Light Source (SLS). In particular, tumour targeting by molecular vehicles and DNA repair are areas where structural information can provide important insights. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000

  6. Paul Scherrer Institute Scientific Report 1999. Volume II: Life Sciences

    International Nuclear Information System (INIS)

    Jaussi, Rolf; Gschwend, Beatrice

    2000-01-01

    The existing activities of the Department of Life Sciences have grown out of the specific know how and the unique experimental possibilities available at PSI. Primarily, these have been and are complex facilities for using particle beams (protons, neutrons) on the one hand and know how in the production, handling and chemistry of radionuclides on the other. The common theme of the department has thus been the study and use of various types of radiation in therapy and diagnostics of human disease and in particular of cancer. The four units active in this area are: The major activity in the Radiation Medicine unit is Proton Therapy, which aims to further develop and optimise the world-wide unique spot scanning facility for irradiating malignant tumours with minimal damage to surrounding healthy tissues, including the established OPTIS program for the treatment of eye tumours. The Centre for Radiopharmaceutical Science represents a joint activity of PSI with the Swiss Federal Institute of Technology (ETHZ) and the University of Zurich. Its major goals are the development of novel tumour targeted radioconjugates for cancer diagnosis and therapy and the production and evaluation of new PET (positron emission tomography) radiotracers for various applications in neuro physiology and drug development. The Institute of Medical Radiobiology analyses questions of the molecular biology of DNA repair. It is a joint activity of PSI and the University of Zurich. The Structural Biology unit is currently being established. A strong in-house research activity in macromolecular crystallography will complement the more user-oriented protein crystallography beam line, which is being built at the Swiss Light Source (SLS). In particular, tumour targeting by molecular vehicles and DNA repair are areas where structural information can provide important insights. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided

  7. Paul Scherrer Institute Scientific Report 2000. Volume II: Life Sciences

    International Nuclear Information System (INIS)

    Jaussi, Rolf; Gschwend, Beatrice

    2001-01-01

    The existing activities of the Department of Life Sciences have grown out of the specific know-how and the unique experimental possibilities available at PSI. Primarily, these have been and are complex facilities for using particle beams (protons, neutrons) on the one hand and know-how in the production, handling and chemistry of radionuclides on the other. The common theme of the department has thus been the study and use of various types of radiation in therapy and diagnostics of human disease and in particular of cancer. The four units active in this area are: The major activity in the Radiation Medicine unit is Proton Therapy, which aims to further develop and optimise the world-wide unique spot scanning facility for irradiating malignant tumours with minimal damage to surrounding healthy tissues, including the established OPTIS program for the treatment of eye tumours. The Centre for Radiopharmaceutical Science represents a joint activity of PSI with the Swiss Federal Institute of Technology (ETHZ) and the University of Zurich. Its major goals are the development of novel tumour targeted radioconjugates for cancer diagnosis and therapy and the production and evaluation of new PET (positron emission tomography) radiotracers for various applications in neuro physiology and drug development. The Institute of Medical Radiobiology analyses questions of the molecular biology of DNA repair. It is a joint activity of PSI and the University of Zurich. The newly established Structural Biology group is still in the build-up phase. A strong in-house research activity in macromolecular crystallography will complement the more user-oriented protein crystallography beam line, which is being built at the Swiss Light Source (SLS). In particular, tumour targeting by molecular vehicles and DNA repair are areas where structural information can provide important insights. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000

  8. Life Sciences Division progress report for CYs 1997-1998[Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mann, Reinhold C.

    1999-01-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R and D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R and D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  9. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  10. Targeting change: Assessing a faculty learning community focused on increasing statistics content in life science curricula.

    Science.gov (United States)

    Parker, Loran Carleton; Gleichsner, Alyssa M; Adedokun, Omolola A; Forney, James

    2016-11-12

    Transformation of research in all biological fields necessitates the design, analysis and, interpretation of large data sets. Preparing students with the requisite skills in experimental design, statistical analysis, and interpretation, and mathematical reasoning will require both curricular reform and faculty who are willing and able to integrate mathematical and statistical concepts into their life science courses. A new Faculty Learning Community (FLC) was constituted each year for four years to assist in the transformation of the life sciences curriculum and faculty at a large, Midwestern research university. Participants were interviewed after participation and surveyed before and after participation to assess the impact of the FLC on their attitudes toward teaching, perceived pedagogical skills, and planned teaching practice. Overall, the FLC had a meaningful positive impact on participants' attitudes toward teaching, knowledge about teaching, and perceived pedagogical skills. Interestingly, confidence for viewing the classroom as a site for research about teaching declined. Implications for the creation and development of FLCs for science faculty are discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):517-525, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  11. An introduction to statistics with Python with applications in the life sciences

    CERN Document Server

    Haslwanter, Thomas

    2016-01-01

    This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis. .

  12. 78 FR 12369 - United States Government Policy for Institutional Oversight of Life Sciences Dual Use Research of...

    Science.gov (United States)

    2013-02-22

    ... Oversight of Life Sciences Dual Use Research of Concern AGENCY: Office of Science and Technology Policy... comments on the proposed United States Government Policy for Institutional Oversight of Life Sciences Dual... requirements for certain categories of life sciences research at institutions that accept Federal funding for...

  13. A Strategy for Reorientation of Post-Graduate Courses in Life Sciences

    Science.gov (United States)

    Jayaraman, J.

    1975-01-01

    The Binational Conference on Life Sciences in Bangalore in 1971 made recommendations for reorganization of teaching and research in life sciences (e.g. integration of botany and zoology departments). The author notes administrative reasons why changes have not been implemented and outlines notes administrative reasons why changes have not been…

  14. Computer Literacy for Life Sciences: Helping the Digital-Era Biology Undergraduates Face Today's Research

    Science.gov (United States)

    Smolinski, Tomasz G.

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of…

  15. Changing Lives: The Baltimore City Community College Life Sciences Partnership with the University of Maryland, Baltimore

    Science.gov (United States)

    Carroll, Vanessa G.; Harris-Bondima, Michelle; Norris, Kathleen Kennedy; Williams, Carolane

    2010-01-01

    Baltimore City Community College (BCCC) leveraged heightened student interest and enrollment in the sciences and allied health with Maryland's world-leading biotechnology industry to build a community college life sciences learning and research center right on the University of Maryland, Baltimore's downtown BioPark campus. The BCCC Life Sciences…

  16. Semiconductor Pixel detectors and their applications in life sciences

    International Nuclear Information System (INIS)

    Jakubek, J

    2009-01-01

    Recent advances in semiconductor technology allow construction of highly efficient and low noise pixel detectors of ionizing radiation. Steadily improving quality of front end electronics enables fast digital signal processing in each pixel which offers recording of more complete information about each detected quantum (energy, time, number of particles). All these features improve an extend applicability of pixel technology in different fields. Some applications of this technology especially for imaging in life sciences will be shown (energy and phase sensitive X-ray radiography and tomography, radiography with heavy charged particles, neutron radiography, etc). On the other hand a number of obstacles can limit the detector performance if not handled. The pixel detector is in fact an array of individual detectors (pixels), each of them has its own efficiency, energy calibration and also noise. The common effort is to make all these parameters uniform for all pixels. However an ideal uniformity can be never reached. Moreover, it is often seen that the signal in one pixel can affect the neighbouring pixels due to various reasons (e.g. charge sharing). All such effects have to be taken into account during data processing to avoid false data interpretation. A brief view into the future of pixel detectors and their applications including also spectroscopy, tracking and dosimetry is given too. Special attention is paid to the problem of detector segmentation in context of the charge sharing effect.

  17. Trade Secrets in Life Science and Pharmaceutical Companies

    Science.gov (United States)

    Nealey, Tara; Daignault, Ronald M.; Cai, Yu

    2015-01-01

    Trade secret protection arises under state common law and state statutes. In general, a trade secret is information that is not generally known to the public and is maintained as a secret, and it provides a competitive advantage or economic benefit to the trade secret holder. Trade secrets can be worth tens or hundreds of millions of dollars, and damage awards in trade secret litigation have been high; often, there is a lot at stake. Obtaining a trade secret through “improper means” is misappropriation. If the alleged trade secret, however, was developed independently, known publicly, or not maintained as a secret, then those defenses may successfully overcome a claim for trade secret misappropriation. With today’s interconnectedness in the biotechnology and pharmaceutical fields, more collaborations, joint ventures, and outsourcing arrangements among firms, and increased mobility of employees’ careers, life science companies need to not only understand how to protect their trade secrets, but also know how to defend against a claim for trade secret theft. PMID:25414378

  18. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    Science.gov (United States)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  19. Trade secrets in life science and pharmaceutical companies.

    Science.gov (United States)

    Nealey, Tara; Daignault, Ronald M; Cai, Yu

    2014-11-20

    Trade secret protection arises under state common law and state statutes. In general, a trade secret is information that is not generally known to the public and is maintained as a secret, and it provides a competitive advantage or economic benefit to the trade secret holder. Trade secrets can be worth tens or hundreds of millions of dollars, and damage awards in trade secret litigation have been high; often, there is a lot at stake. Obtaining a trade secret through "improper means" is misappropriation. If the alleged trade secret, however, was developed independently, known publicly, or not maintained as a secret, then those defenses may successfully overcome a claim for trade secret misappropriation. With today's interconnectedness in the biotechnology and pharmaceutical fields, more collaborations, joint ventures, and outsourcing arrangements among firms, and increased mobility of employees' careers, life science companies need to not only understand how to protect their trade secrets, but also know how to defend against a claim for trade secret theft. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Toward applied behavior analysis of life aloft

    Science.gov (United States)

    Brady, J. V.

    1990-01-01

    This article deals with systems at multiple levels, at least from cell to organization. It also deals with learning, decision making, and other behavior at multiple levels. Technological development of a human behavioral ecosystem appropriate to space environments requires an analytic and synthetic orientation, explicitly experimental in nature, dictated by scientific and pragmatic considerations, and closely approximating procedures of established effectiveness in other areas of natural science. The conceptual basis of such an approach has its roots in environmentalism which has two main features: (1) knowledge comes from experience rather than from innate ideas, divine revelation, or other obscure sources; and (2) action is governed by consequences rather than by instinct, reason, will, beliefs, attitudes or even the currently fashionable cognitions. Without an experimentally derived data base founded upon such a functional analysis of human behavior, the overgenerality of "ecological systems" approaches render them incapable of ensuring the successful establishment of enduring space habitats. Without an experimentally derived function account of individual behavioral variability, a natural science of behavior cannot exist. And without a natural science of behavior, the social sciences will necessarily remain in their current status as disciplines of less than optimal precision or utility. Such a functional analysis of human performance should provide an operational account of behavior change in a manner similar to the way in which Darwin's approach to natural selection accounted for the evolution of phylogenetic lines (i.e., in descriptive, nonteleological terms). Similarly, as Darwin's account has subsequently been shown to be consonant with information obtained at the cellular level, so too should behavior principles ultimately prove to be in accord with an account of ontogenetic adaptation at a biochemical level. It would thus seem obvious that the most

  1. The Implementation of a Cost Effectiveness Analyzer for Web-Supported Academic Instruction: An Example from Life Science

    Science.gov (United States)

    Cohen, Anat; Nachmias, Rafi

    2012-01-01

    This paper describes implementation of a quantitative cost effectiveness analyzer for Web-supported academic instruction that was developed in our University. The paper presents the cost effectiveness analysis of one academic exemplary course in Life Science department and its introducing to the course lecturer for evaluation. The benefits and…

  2. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  3. Assessing the Life Science Knowledge of Students and Teachers Represented by the K-8 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.; Coyle, Harold; Cook Smith, Nancy; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test…

  4. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.

    Science.gov (United States)

    Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker

    2016-01-01

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.

  5. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.

    Directory of Open Access Journals (Sweden)

    Nirav Merchant

    2016-01-01

    Full Text Available The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.

  6. JEM-X science analysis software

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt; Kretschmar, P.; Oxborrow, Carol Anne

    2003-01-01

    The science analysis of the data from JEM-X on INTEGRAL is performed through a number of levels including corrections, good time selection, imaging and source finding, spectrum and light-curve extraction. These levels consist of individual executables and the running of the complete analysis...

  7. Examination of the Transfer of Astronomy and Space Sciences Knowledge to Daily Life

    Science.gov (United States)

    Emrahoglu, Nuri

    2017-01-01

    In this study, it was aimed to determine the levels of the ability of science teaching fourth grade students to transfer their knowledge of astronomy and space sciences to daily life within the scope of the Astronomy and Space Sciences lesson. For this purpose, the research method was designed as the mixed method including both the quantitative…

  8. Database Description - GRIPDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available erative Program of the Japan Science and Technology Agency (JST). Reference(s) Article title: GRIPDB - G pro...ntenance site National Institute of Industrial Science and Technology (AIST), Tok

  9. Particle Analysis in Forensic Science.

    Science.gov (United States)

    Bisbing, R E; Schneck, W M

    2006-07-01

    Microscopic trace evidence includes particles from many sources such as biologicals, soil, building materials, metals, explosives, gunshot residues, and cosmetics. The particles are identified by morphological analysis, microscopy, and chemical analysis. Their identity is confirmed by comparison with reference materials or other comparison samples. The probative value of particles of forensic interest depends on their nature and the circumstances of their presence. Copyright © 2006 Central Police University.

  10. The relationship between quality of work life and job satisfaction of faculty members in Zahedan University of Medical Sciences.

    Science.gov (United States)

    Kermansaravi, Fatihe; Navidian, Ali; Navabi Rigi, Shahindokht; Yaghoubinia, Fariba

    2014-10-29

    Quality of work life is one of the most important factors for human motivating and improving of job satisfaction. The current study was carried out aimed to determine the relationship between quality of work life and job satisfaction in faculty members of Zahedan University of Medical Sciences. In this descriptive-analytic study, 202 faculty members of Zahedan University of Medical Sciences in 2012 were entered the study through census. The job satisfaction questionnaire of Smith and Kendall and Walton Quality of Work Life questionnaire were used for data collection. Validity and reliability of questionnaires were confirmed in previous studies. Data analysis was done using SPSS 18. The Pearson correlation coefficient and multiple regression tests were used for data analysis. The mean score of quality of work life was 121/30±37/08 and job satisfaction was 135/98 ±33/78. There was a significant and positive correlation between job satisfaction of faculty members and their quality of work life (P=0.003). In addition, two components of quality of work life "adequate and fair compensation" (β=0.3) and "Social Integration" (β=0.4) can predict job satisfaction of faculty members. According to correlation between job satisfaction and quality of work life in faculty members, job satisfaction can be improved through the changing and manipulating the components of quality of work life and in this way; the suitable environment for organization development should be provided.

  11. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  12. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  13. Evaluation of pavement life cycle cost analysis: Review and analysis

    Directory of Open Access Journals (Sweden)

    Peyman Babashamsi

    2016-07-01

    Full Text Available The cost of road construction consists of design expenses, material extraction, construction equipment, maintenance and rehabilitation strategies, and operations over the entire service life. An economic analysis process known as Life-Cycle Cost Analysis (LCCA is used to evaluate the cost-efficiency of alternatives based on the Net Present Value (NPV concept. It is essential to evaluate the above-mentioned cost aspects in order to obtain optimum pavement life-cycle costs. However, pavement managers are often unable to consider each important element that may be required for performing future maintenance tasks. Over the last few decades, several approaches have been developed by agencies and institutions for pavement Life-Cycle Cost Analysis (LCCA. While the transportation community has increasingly been utilising LCCA as an essential practice, several organisations have even designed computer programs for their LCCA approaches in order to assist with the analysis. Current LCCA methods are analysed and LCCA software is introduced in this article. Subsequently, a list of economic indicators is provided along with their substantial components. Collecting previous literature will help highlight and study the weakest aspects so as to mitigate the shortcomings of existing LCCA methods and processes. LCCA research will become more robust if improvements are made, facilitating private industries and government agencies to accomplish their economic aims. Keywords: Life-Cycle Cost Analysis (LCCA, Pavement management, LCCA software, Net Present Value (NPV

  14. Nanocrystalline diamond--an excellent platform for life science applications.

    Science.gov (United States)

    Kloss, Frank R; Najam-Ul-Haq, Muhammed; Rainer, Matthias; Gassner, Robert; Lepperdinger, Günter; Huck, Christian W; Bonn, Günther; Klauser, Frederik; Liu, Xianjie; Memmel, Norbert; Bertel, Erminald; Garrido, Jose A; Steinmüller-Nethl, Doris

    2007-12-01

    Nanocrystalline diamond (NCD) has recently been successfully utilized in a variety of life science applications. NCD films are favorable and salubrious substrates for cells during cultivation. Therefore NCD has also been employed in tissue engineering strategies. NCD as reported in this contribution was grown by means of a modified hot-filament chemical vapor deposition technique, which results in less than 3% sp2-hybridization and yields grain sizes of 5-20 nm. After production the NCD surface was rather hydrophobic, however it could be efficiently refined to exhibit more hydrophilic properties. Changing of the surface structure was found to be an efficient means to influence growth and differentiation capacity of a variety of cells. The particular needs for any given cell type has to be proven empirically. Yet flexible features of NCD appear to be superior to plastic surfaces which can be hardly changed in quality. Besides its molecular properties, crystal structural peculiarities of NCD appear to influence cell growth as well. In our attempt to facilitate, highly specialized applications in biomedicine, we recently discovered that growth factors can be tightly bound to NCD by mere physisorption. Hence, combination of surface functionalization together with further options to coat NCD with any kind of three-dimensional structure opens up new avenues for many more applications. In fact, high through-put protein profiling of early disease stages may become possible from serum samples, because proteins bound to NCD can now be efficiently analyzed by MALDI/TOF-MS. Given these results, it is to be presumed that the physical properties and effective electrochemical characteristics of NCD will allow tailoring devices suitable for many more diagnostic as well as therapeutic applications.

  15. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  16. End-of-Life Care Interventions: An Economic Analysis.

    Science.gov (United States)

    Pham, B; Krahn, M

    2014-01-01

    The annual cost of providing care for patients in their last year of life is estimated to account for approximately 9% of the Ontario health care budget. Access to integrated, comprehensive support and pain/symptom management appears to be inadequate and inequitable. To evaluate the cost-effectiveness of end-of-life (EoL) care interventions included in the EoL care mega-analysis. Multiple sources were used, including systematic reviews, linked health administration databases, survey data, planning documents, expert input, and additional literature searches. We conducted a literature review of cost-effectiveness studies to inform the primary economic analysis. We conducted the primary economic analysis and budget impact analysis for an Ontario cohort of decedents and their families and included interventions pertaining to team-based models of care, patient care planning discussions, educational interventions for patients and caregivers, and supportive interventions for informal caregivers. The time horizon was the last year of life. Costs were in 2013 Canadian dollars. Effectiveness measures included days at home, percentage dying at home, and quality-adjusted life-days. We developed a Markov model; model inputs were obtained from a cohort of Ontario decedents assembled from Institute for Clinical Evaluative Sciences databases and published literature. In-home palliative team care was cost-effective; it increased the chance of dying at home by 10%, increased the average number of days at home (6 days) and quality-adjusted life-days (0.5 days), and it reduced costs by approximately $4,400 per patient. Expanding in-home palliative team care to those currently not receiving such services (approximately 45,000 per year, at an annual cost of $76-108 million) is likely to improve quality of life, reduce the use of acute care resources, and save $191-$385 million in health care costs. Results for the other interventions were uncertain. The cost-effectiveness analysis was

  17. Perspective of Dimensional Analysis in Medical Science

    Directory of Open Access Journals (Sweden)

    Kowalewski Wojciech

    2017-09-01

    Full Text Available This paper presents several applications of the dimensional analysis method to problems investigated in medical sciences. The method is used to analyze various complex processes without using formal laws governing the same. It is particularly suitable for a general analysis of fluid transfer (liquids and gases in the human body. This paper mainly serves as an overview of selected applications, mostly those emerging in the recent years, and includes a discussion of the mathematical fundamentals of dimensional analysis together followed by its critical analysis. Containing detailed calculations of two examples, the paper also serves as training material in the area of the computational method of the dimensional analysis algorithm.

  18. Deuterium- and tritium-labelled compounds. Applications in the life sciences

    International Nuclear Information System (INIS)

    Atzrodt, Jens; Derdau, Volker; Kerr, William J.; Reid, Marc

    2018-01-01

    Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium ( 3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this review, advances in the application of hydrogen isotopes in the life sciences are described. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Deuterium- and tritium-labelled compounds. Applications in the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Atzrodt, Jens; Derdau, Volker [Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Frankfurt (Germany); Kerr, William J.; Reid, Marc [Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow (United Kingdom)

    2018-02-12

    Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium ({sup 3}H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this review, advances in the application of hydrogen isotopes in the life sciences are described. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. From dioramas to the dinner table: An ethnographic case study of the role of science museums in family life

    Science.gov (United States)

    Ellenbogen, Kirsten M.

    What we know about learning in museums tends to come from studies of single museum visits evaluating success according to the museum's agenda, neglecting the impressive cooperative learning strategies and resources that families bring to their museum experiences. This is a report of an ethnographic case study of four families that visit science museums frequently. The study used ethnographic research and discourse analysis as combined methodological approaches, and was grounded in a sociocultural perspective that frames science as a socially and culturally constituted activity. Over eighteen months, data were collected during observations of the families in science museums, at home, and at other leisure sites. The study generated two types of findings. First, macroanalysis based on established frameworks for understanding learning in museums revealed differences in the orientation and extent of the museum visits. Additionally, a hierarchical framework for measuring science learning in museums proved insensitive. These findings underscore limitations of some of the traditional frameworks for understanding family learning in science museums. Second, microanalysis of interactions around science objects at home and in museums revealed that parents provided children with opportunities to understand the "middle ground" of science. Analysis also revealed that families adapted the science content of the museum to renegotiate family identities. Interestingly, the types of discourse most valued in science education were least important for establishing family identity. These frequent museumgoers eliminated the distance between them and science objects by transforming their meanings to establish family identity. This study demonstrates that the families' mediating strategies shape not just an understanding of science, but also a family identity that is constructed in and through interactions with science. The results of this study provide a foundation for examining how

  1. Targeting Future Customers: An Introductory Biobanking Course for Undergraduate Students of Life Sciences.

    Science.gov (United States)

    Abdelhafiz, Ahmed Samir; Fouda, Merhan Ahmed; El-Jaafary, Shaimaa Ibrahim; Farghly, Maysa Ibrahim; Salem, Mazen; Tammam, Ahmed; Gabr, Hala

    2017-08-01

    Biobanking is a relatively new concept in the Arab region. Targeting different stakeholders to introduce the concept of biobanking and develop an acceptance of it among them is important for the growth of biobanking in the region. Undergraduate students of life sciences represent an important segment of stakeholders, since they constitute potential future biobank customers. Limited funding, lack of awareness of the existence of the term "biobanking" itself among these students, and questions regarding best marketing strategies presented challenges to planning for the most effective message delivery to this target group. A specific course was designed for undergraduate students of life sciences, which was conducted at the Faculty of Medicine, Cairo University, Egypt. The course was conducted twice in 2016 and included lectures covering biobanking, quality, ethics, information technology, and translational research. Facebook and word-of-mouth were used for marketing and advertising. A total number of 125 participants attended both courses cumulatively. Facebook appeared to have been an effective marketing outlet, especially when paid advertisements were used. Evaluation of knowledge, measured using a pretest and posttest, demonstrated some improvement in knowledge of participants. Evaluation forms filled after the course showed positive attitude toward content and message delivery by a majority of participants. Facebook was also used as an evaluation method through analysis of engagement with posts created after course completion. Biobanking education can be carried out effectively with limited resources. Understanding the needs of the target group and using appropriate methods of communication are essential prerequisites to a well-tailored curriculum and effective message delivery. Using Facebook appears to be an effective and affordable method of communication and advertising. Targeting undergraduate students of life sciences interested in research is a good

  2. Alien To Me? Science in Search for Life Beyond Earth and Perceptions of Alien Life in Popular Culture

    Science.gov (United States)

    Capova, K. A.

    2013-09-01

    The paper will introduce an original piece of research that is devoted to the socio-cultural aspects of scientifi c search for life in outer space and it draws from doctoral research in anthropology of science. In this piece of research the extraterrestrial life hypothesis is conceptualized as a significant part of the general world-view, constantly shaped by the work and discoveries of science. The paper presents data from qualitative ethnographic fieldwork conducted in the UK as well as uses quantitative data from public from the USA, UK and other countries.

  3. Effectiveness of integrated science instructional material on pressure in daily life theme to improve digital age literacy of students

    Science.gov (United States)

    Asrizal; Amran, A.; Ananda, A.; Festiyed; Khairani, S.

    2018-04-01

    Integrated science learning and literacy skills are relevant issues in Indonesian’s education. However, the use of the integrated science learning and the integration of literacy in learning cannot be implemented well. An alternative solution of this problem is to develop integrated science instructional material on pressure in daily life theme by integrating digital age literacy. Purpose of research is to investigate the effectiveness of the use of integrated science instructional material on pressure in daily life theme to improve knowledge competence, attitudes competence and literacy skills of students. This research was a part of development research which has been conducted. In the product testing stage of this research and development was used before and after design of treatment for one sample group. Instruments to collect the data consist of learning outcomes test sheet, attitude observation sheet, and performance assessment sheet of students. Data analysis techniques include descriptive statistics analysis, normality test, homogeneity test, and paired comparison test. Therefore, the important result of research is the use of integrated science instructional material on pressure in daily life theme is effective in scientific approach to improve knowledge competence, attitudes competence, and digital age literacy skills of grade VIII students at 95% confidence level.

  4. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  5. Development of computer software for pavement life cycle cost analysis.

    Science.gov (United States)

    1988-01-01

    The life cycle cost analysis program (LCCA) is designed to automate and standardize life cycle costing in Virginia. It allows the user to input information necessary for the analysis, and it then completes the calculations and produces a printed copy...

  6. Multiple chronic conditions and life expectancy: a life table analysis.

    Science.gov (United States)

    DuGoff, Eva H; Canudas-Romo, Vladimir; Buttorff, Christine; Leff, Bruce; Anderson, Gerard F

    2014-08-01

    The number of people living with multiple chronic conditions is increasing, but we know little about the impact of multimorbidity on life expectancy. We analyze life expectancy in Medicare beneficiaries by number of chronic conditions. A retrospective cohort study using single-decrement period life tables. Medicare fee-for-service beneficiaries (N=1,372,272) aged 67 and older as of January 1, 2008. Our primary outcome measure is life expectancy. We categorize study subjects by sex, race, selected chronic conditions (heart disease, cancer, chronic obstructive pulmonary disease, stroke, and Alzheimer disease), and number of comorbid conditions. Comorbidity was measured as a count of conditions collected by Chronic Conditions Warehouse and the Charlson Comorbidity Index. Life expectancy decreases with each additional chronic condition. A 67-year-old individual with no chronic conditions will live on average 22.6 additional years. A 67-year-old individual with 5 chronic conditions and ≥10 chronic conditions will live 7.7 fewer years and 17.6 fewer years, respectively. The average marginal decline in life expectancy is 1.8 years with each additional chronic condition-ranging from 0.4 fewer years with the first condition to 2.6 fewer years with the sixth condition. These results are consistent by sex and race. We observe differences in life expectancy by selected conditions at 67, but these differences diminish with age and increasing numbers of comorbid conditions. Social Security and Medicare actuaries should account for the growing number of beneficiaries with multiple chronic conditions when determining population projections and trust fund solvency.

  7. 76 FR 35221 - Proposed Collection; Comment Request; NINR End-of-Life and Palliative Care Science Needs...

    Science.gov (United States)

    2011-06-16

    ... Request; NINR End-of-Life and Palliative Care Science Needs Assessment: Funding Source Questionnaire... Collection: Title: NINR End-of-Life and Palliative Care Science Needs Assessment: Funding Source... Collection: The NINR End-of-Life Science Palliative Care (EOL PC) Needs Assessment: Funding Source...

  8. 76 FR 59145 - Submission for OMB Review; Comment Request; NINR End-of-Life and Palliative Care Science Needs...

    Science.gov (United States)

    2011-09-23

    ...; Comment Request; NINR End-of-Life and Palliative Care Science Needs Assessment: Funding Source (Survey of... End-of-Life and Palliative Care Science Needs Assessment: Funding Source (Survey of Authors). Type of Information Collection Request: NEW. Need and Use of Information Collection: The NINR End-of-Life Science...

  9. Educational challenges of molecular life science: Characteristics and implications for education and research.

    Science.gov (United States)

    Tibell, Lena A E; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.

  10. From darwin to the census of marine life: marine biology as big science.

    Directory of Open Access Journals (Sweden)

    Niki Vermeulen

    Full Text Available With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  11. From darwin to the census of marine life: marine biology as big science.

    Science.gov (United States)

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  12. Regression analysis for the social sciences

    CERN Document Server

    Gordon, Rachel A

    2010-01-01

    The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set.

  13. Life sciences: Nuclear medicine, radiation biology, medical physics, 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1994-11-01

    The catalogue lists all sales publications of the IAEA dealing with Life Sciences issued during the period 1980-1994. The publications are grouped in the following chapters: Nuclear Medicine (including Radiopharmaceuticals), Radiation Biology and Medical Physics (including Dosimetry)

  14. Semantic Web applications and tools for the life sciences: SWAT4LS 2010.

    Science.gov (United States)

    Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea

    2012-01-25

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.

  15. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  16. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    Science.gov (United States)

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life. Copyright © 2016. Published by Elsevier Ltd.

  17. Confronting product life thinking with product life cycle analysis

    DEFF Research Database (Denmark)

    McAloone, Tim C.

    2001-01-01

    to "read" the environment out of the product, in order to systematically, quickly and efficiently come to some design recommendations for the company. The phrases "LCA" and "product life thinking" will be described and differentiated and a pattern identified for their cooperative effect in use....

  18. Gravitational biology and space life sciences: Current status and ...

    Indian Academy of Sciences (India)

    Gravitational and space biology organizations and journals. American Institute of ... of Scientific Unions (now the International Council for. Science). COSPAR ... Greek Aerospace Medical Association & Space Research. (GASMA). Provides ...

  19. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  20. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  1. License - RPD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available lows: Rice Proteome Database © Setsuko Komatsu (National Institute of Crop Science, National Agriculture and Food Research Organizati...1-18 Kannondai Tsukuba, Ibaraki 305-8634, Japan National Institute of Crop Science, National Agriculture and Food Research Organizati...on) licensed under CC Attribution-Share Alike 4.0 Intern...on Setsuko Komatsu E-mail: About Providing Links to This Database You can freely pr

  2. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  3. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    Science.gov (United States)

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  4. Homo Politicus meets Homo Ludens: Public participation in serious life science games.

    Science.gov (United States)

    Radchuk, Olga; Kerbe, Wolfgang; Schmidt, Markus

    2017-07-01

    Public participation in science and gamification of science are two strong contemporary trends, especially in the area of emerging techno-sciences. Involvement of the public in research-related activities is an integral part of public engagement with science and technologies, which can be successfully achieved through a participatory game design. Focusing on the participatory dimension of educational games, we have reviewed a number of existing participation heuristics in light of their suitability to characterize available mobile and browser science games. We analyzed 87 games with respect to their participatory and motivational elements and demonstrated that the majority of mobile games have only basic participative features. This review of the landscape of participative science games in the domain of life sciences highlights a number of major challenges present in the design of such applications. At the same time, it reveals a number of opportunities to enhance public engagement using science games.

  5. H3Africa and the African life sciences ecosystem: building sustainable innovation.

    Science.gov (United States)

    Dandara, Collet; Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen

    2014-12-01

    Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science

  6. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  7. Career-Life Balance for Women of Color: Experiences in Science and Engineering Academia

    Science.gov (United States)

    Kachchaf, Rachel; Ko, Lily; Hodari, Apriel; Ong, Maria

    2015-01-01

    The National Science Foundation recently recognized that career-life balance in science, technology, engineering, and mathematics (STEM) may present some unique challenges for women of color compared with their White and/or male counterparts, thus negatively impacting retention and advancement for a minority demographic that has long been…

  8. Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2

    Science.gov (United States)

    Thompson, Stephen

    2007-01-01

    This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…

  9. Broadening Participation in the Life Sciences with Social-Psychological Interventions

    Science.gov (United States)

    Tibbetts, Yoi; Harackiewicz, Judith M.; Priniski, Stacy J.; Canning, Elizabeth A.

    2016-01-01

    Randomized controlled trials (RCTs) have recently documented the positive effects of social-psychological interventions on the performance and retention of underrepresented students in the life sciences. We review two types of social-psychological interventions that address either students' well-being in college science courses or students'…

  10. Problem-Based Learning in the Life Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom; Parker, Joyce; Eberhardt, Janet

    2016-01-01

    "Problem-Based Learning in the Life Science Classroom, K-12" offers a great new way to ignite your creativity. Authors Tom McConnell, Joyce Parker, and Janet Eberhardt show you how to engage students with scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios prompt K-12 learners to immerse…

  11. Secondary School Students' Perceptions of Working Life Skills in Science-Related Careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-01-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were…

  12. Physical Sciences Preservice Teachers' Religious and Scientific Views Regarding the Origin of the Universe and Life

    Science.gov (United States)

    Govender, Nadaraj

    2017-01-01

    This paper explores final-year physical sciences preservice teachers' religious and scientific views regarding the origin of the universe and life. Data was obtained from 10 preservice teachers from individual in-depth interviews conducted at the end of the Science Method module. Their viewpoints were analyzed using coding, sorting, and…

  13. Proceedings of the DAE-BRNS life sciences symposium on current trends in biology and medicine

    International Nuclear Information System (INIS)

    2010-01-01

    This year's Life Sciences Symposium is focused on Health Sciences. It will provide an interactive platform for deliberations on current developments in basic research on cancer, diabetes, infectious diseases, reproduction, stem cells and degenerative diseases. Several aspects like metabolism, use of biophysical techniques, detection methods, micro RNA based regulation, assisted reproductive technologies etc. are covered. Papers relevant to INIS are indexed separately

  14. Science in culture the life of Paul Dirac

    CERN Multimedia

    Abbott, A

    2000-01-01

    The life of Paul Dirac has been used as the theme of a show held underground at the Delphi experiment at CERN. The 'Oracle of Delphi' was created as an outreach project and has been extremely successful (1 p).

  15. Why, from a Life Sciences Perspective, This Mission to Mars?

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Mars may have had water and life early in its history and this make it a key target for robotic and human exploration. Extensive human exploration of Mars will of necessity depend on life support systems that rely on agricultural plants. If current concept for recreating, a biosphere on Mars are implemented this would involve widespread use of plants, particularly species from Arctic and alpine environments.

  16. Measurement of quality of life II. From the philosophy of life to science.

    Science.gov (United States)

    Ventegodt, Søren; Merrick, Joav; Andersen, Niels Jørgen

    2003-10-13

    We believe it should be possible to make operational the philosophical ideas of the good life in order to make it the object of scientific research. The Quality of Life Research Center in Copenhagen, Denmark has therefore spent the last several years with these questions and tried to find practical and evidence-based scientific solutions. This paper describes the theoretical road taken in moving from the abstract philosophy of life to the actual questionnaire. It presents an important aspect of our work with the quality-of-life (QOL) concept though the last decade. We have developed the quality-of-life philosophy; the SEQOL, QOL5, and QOL1 questionnaires; the quality-of-life theory; and the quality-of-life research methodology. We carried out quality-of-life population surveys and developed techniques for improving quality of life with the chronically sick patient. This paper presents the struggle to create a rating scale for the generic measurement of the global quality of life, based on quality-of-life theory, derived from quality-of-life philosophy. The developed rating scale is a ratio scale combining a Likert scale, a visual analogue scale, and a numerical scale, to a reduced combination scale. This allows for the extraction of as much information from the respondents as possible without exhausting them unduly or demanding more than can be reasonably expected.

  17. Educational Challenges of Molecular Life Science: Characteristics and Implications for Education and Research

    Science.gov (United States)

    Tibell, Lena A. E.; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life--often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure…

  18. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    Science.gov (United States)

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  19. Learning, Unlearning and Relearning--Knowledge Life Cycles in Library and Information Science Education

    Science.gov (United States)

    Bedford, Denise A. D.

    2015-01-01

    The knowledge life cycle is applied to two core capabilities of library and information science (LIS) education--teaching, and research and development. The knowledge claim validation, invalidation and integration steps of the knowledge life cycle are translated to learning, unlearning and relearning processes. Mixed methods are used to determine…

  20. RISA: Remote Interface for Science Analysis

    Science.gov (United States)

    Gabriel, C.; Ibarra, A.; de La Calle, I.; Salgado, J.; Osuna, P.; Tapiador, D.

    2008-08-01

    The Scientific Analysis System (SAS) is the package for interactive and pipeline data reduction of all XMM-Newton data. Freely distributed by ESA to run under many different operating systems, the SAS has been used by almost every one of the 1600 refereed scientific publications obtained so far from the mission. We are developing RISA, the Remote Interface for Science Analysis, which makes it possible to run SAS through fully configurable web service workflows, enabling observers to access and analyse data making use of all of the existing SAS functionalities, without any installation/download of software/data. The workflows run primarily but not exclusively on the ESAC Grid, which offers scalable processing resources, directly connected to the XMM-Newton Science Archive. A first project internal version of RISA was issued in May 2007, a public release is expected already within this year.

  1. Multivariate analysis of data in sensory science

    CERN Document Server

    Naes, T; Risvik, E

    1996-01-01

    The state-of-the-art of multivariate analysis in sensory science is described in this volume. Both methods for aggregated and individual sensory profiles are discussed. Processes and results are presented in such a way that they can be understood not only by statisticians but also by experienced sensory panel leaders and users of sensory analysis. The techniques presented are focused on examples and interpretation rather than on the technical aspects, with an emphasis on new and important methods which are possibly not so well known to scientists in the field. Important features of the book are discussions on the relationship among the methods with a strong accent on the connection between problems and methods. All procedures presented are described in relation to sensory data and not as completely general statistical techniques. Sensory scientists, applied statisticians, chemometricians, those working in consumer science, food scientists and agronomers will find this book of value.

  2. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  3. Trace-element analysis in environmental sciences

    International Nuclear Information System (INIS)

    Valkovic, V.; Moschini, G.

    1988-01-01

    The use of charged-particle accelerators in trace-element analysis in the field of environmental sciences is described in this article. Nuclear reactions, charged-particle-induced X-ray emission as well as other nuclear and atomic processes can be used individually, or combined, in developing adequate analytical systems. In addition to concentration levels, concentration levels, concentration profiles can be measured, resulting in unique information. Some examples of experiments performed are described together with the suggestions for future measurements [pt

  4. NARRATIVE: A short history of my life in science A short history of my life in science

    Science.gov (United States)

    Manson, Joseph R.

    2010-08-01

    I was certainly surprised, and felt extremely honored, when Salvador Miret-Artés suggested that he would like to organize this festschrift. Before that day I never anticipated that such an honor would come to me. I would like to thank Salvador for the large amount of time and work he has expended in organizing this special issue, the Editors of Journal of Physics: Condensed Matter for making it possible, and also the contributing authors for their efforts. My family home was outside of Petersburg, Virginia in Dinwiddie County in an area that was, during my youth, largely occupied by small farms. This is a region rich in American history and our earliest ancestors on both sides of the family settled in this area, beginning in the decade after the first Virginia settlement in Jamestown. My father was an engineer and my mother was a former school teacher, and their parents were small business owners. From earliest memories I recall being interested in finding out how things worked and especially learning about the wonders of nature. These interests were fostered by my parents who encouraged such investigations during long walks, visits to friends and relatives, and trips to museums. However, my earliest memory of wanting to become a scientist is associated with a Christmas gift of a chemistry set when I was about ten years old. I was absolutely fascinated by the amazing results that could be achieved with simple chemical reactions and realized then that I wanted to do something in life that would be associated with science. The gift of that small chemistry set developed over the next few years into a serious interest in chemistry, and throughout my junior high-school years I spent nearly all the money I earned doing odd jobs for neighbors on small laboratory equipment and chemical supplies, eventually taking over our old abandoned chicken house and turning it into a small chemistry lab. I remember being somewhat frustrated at the limits, mainly financial, that kept

  5. Controversies on the beginning of human life - science and religions closer and closer.

    Science.gov (United States)

    Kurjak, Asim

    2017-04-01

    One of the most controversial topics in modern bioethics, science, and philosophy is the beginning of individual human life. In the seemingly endless debate, strongly stimulated by recent technologic advances in human reproduction, a synthesis between scientific data and hypothesis, philosophical thought, and issues of humanities has become a necessity to deal with ethical, juridical, and social problems. Furthermore, in this field there is a temptation to ask science to choose between opinions and beliefs, which neutralize one another. The question of when human life begins requires the essential aid of different forms of knowledge. Here we become involved in the juncture between science and religion, which needs to be carefully explored.

  6. Stimulating translational research: several European life science institutions put their heads together.

    Science.gov (United States)

    Bentires-Alj, Mohamed; Rajan, Abinaya; van Harten, Wim; van Luenen, Henri G A M; Kubicek, Stefan; Andersen, Jesper B; Saarela, Janna; Cook, Simon J; Van Minnebruggen, Geert; Roman-Roman, Sergio; Maurer, Cornelia; Erler, Janine T; Bertero, Michela G

    2015-09-01

    Translational research leaves no-one indifferent and everyone expects a particular benefit. We as EU-LIFE (www.eu-life.eu), an alliance of 13 research institutes in European life sciences, would like to share our experience in an attempt to identify measures to promote translational research without undermining basic exploratory research and academic freedom. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Life sciences payload definition and integration study. Volume 1: Management summary

    Science.gov (United States)

    1972-01-01

    The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.

  8. Life Science Teachers' Decision Making on Sex Education

    Science.gov (United States)

    Gill, Puneet Singh

    2013-01-01

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and…

  9. Centre of the Cell: Science Comes to Life.

    Science.gov (United States)

    Balkwill, Frances; Chambers, Katie

    2015-01-01

    Centre of the Cell is a unique biomedical science education centre, a widening participation and outreach project in London's East End. This article describes Centre of the Cell's first five years of operation, the evolution of the project in response to audience demand, and the impact of siting a major public engagement project within a research laboratory.

  10. Vocabulary Learning Strategies of Japanese Life Science Students

    Science.gov (United States)

    Little, Andrea; Kobayashi, Kaoru

    2015-01-01

    This study investigates vocabulary learning strategy (VLS) preferences of lower and higher proficiency Japanese university science students studying English as a foreign language. The study was conducted over a 9-week period as the participants received supplemental explicit VLS instruction on six strategies. The 38 participants (14 males and 24…

  11. Overview of Infrastructure Science and Analysis for Homeland Security

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-21

    This presentation offers an analysis of infrastructure science with goals to provide third-party independent science based input into complex problems of national concern and to use scientific analysis to "turn down the noise" around complex problems.

  12. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-06-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.

  13. Applied quantitative analysis in the social sciences

    CERN Document Server

    Petscher, Yaacov; Compton, Donald L

    2013-01-01

    To say that complex data analyses are ubiquitous in the education and social sciences might be an understatement. Funding agencies and peer-review journals alike require that researchers use the most appropriate models and methods for explaining phenomena. Univariate and multivariate data structures often require the application of more rigorous methods than basic correlational or analysis of variance models. Additionally, though a vast set of resources may exist on how to run analysis, difficulties may be encountered when explicit direction is not provided as to how one should run a model

  14. Operational plans for life science payloads - From experiment selection through postflight reporting

    Science.gov (United States)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  15. sensitivity analysis on flexible road pavement life cycle cost model

    African Journals Online (AJOL)

    user

    of sensitivity analysis on a developed flexible pavement life cycle cost model using varying discount rate. The study .... organizations and specific projects needs based. Life-cycle ... developed and completed urban road infrastructure corridor ...

  16. Nonlinear Dynamics in Complex Systems Theory and Applications for the Life-, Neuro- and Natural Sciences

    CERN Document Server

    Fuchs, Armin

    2013-01-01

    With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified.This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz ...

  17. A comparison of major petroleum life cycle models | Science ...

    Science.gov (United States)

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attempting to evaluate their data quality. Carbon dioxide well-to-pump emissions for gasoline showed a variation of 35 %, and other pollutants such as ammonia and particulate matter varied up to 100 %. Differences in allocation do not appear to explain differences in predictions. Effects of these deviations on well-to-wheels passenger vehicle and truck transportation life cycle models may be minimal for effects such as global warming potential (6 % spread), but for respiratory effects of criteria pollutants (41 % spread) and other impact categories, they can be significant. A data quality assessment of the models’ documentation revealed real differences between models in temporal and geographic representativeness, completeness, as well as transparency. Stakeholders may need to consider carefully the tradeoffs inherent when selecting a model to conduct life cycle assessments for systems that make heavy use of petroleum products. This is a qualitative and quantitative comparison of petroleum LCA models intended for an expert audience interested in better understanding the data quality of existing petroleum life cycle models and the quantitative differences between these models.

  18. Presence in a Collaborative Science Learning Activity in Second Life

    DEFF Research Database (Denmark)

    Vrellis, Ioannis; Papachristos, Nikiforos; Natsis, Antonios

    2012-01-01

    interacting with and via virtual environments and seems to play an important role in learning. This chapter presents empirical data gathered from an exploratory study regarding a problem-based physics learning activity in Second Life (SL). Our aim is to gain knowledge and experience about the sense...

  19. Bridging Arctic environmental science and life cycle assessment

    DEFF Research Database (Denmark)

    Johnsen, Fredrik Moltu

    2014-01-01

    Current research aims to make the impact assessment module of life cycle assessment (LCA) less site-generic and thus more relevant to particular regions. The Arctic region attracts its share of interest when it comes to environmental issues, but little research has been performed with the explicit...

  20. Genome Island: A Virtual Science Environment in Second Life

    Science.gov (United States)

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  1. Ways of life analysis and food culture

    DEFF Research Database (Denmark)

    Land, Birgit

    Executive Summary 1. People's food patterns are among other things influenced by their social environments. Analysing the relationship between the social environment and food culture is an important lead in trying to derive consumer objectives directed towards the food sector. 2. The way of life...... typology proposed by Højrup may be a useful device for analysing how the social environment impacts food patterns. Højrup proposes three ways of life: the independent way of life, the wage-earner way of life, and the career-bound way of life. He relates these types to empirical observation by qualitative...

  2. Advancing Alternative Analysis: Integration of Decision Science

    DEFF Research Database (Denmark)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina

    2016-01-01

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate......, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect......) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts....

  3. Radio-science performance analysis software

    Science.gov (United States)

    Morabito, D. D.; Asmar, S. W.

    1995-02-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  4. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  5. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  6. Database Description - RPD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ase Description General information of database Database name RPD Alternative name Rice Proteome Database...titute of Crop Science, National Agriculture and Food Research Organization Setsuko Komatsu E-mail: Database... classification Proteomics Resources Plant databases - Rice Organism Taxonomy Name: Oryza sativa Taxonomy ID: 4530 Database... description Rice Proteome Database contains information on protei...and entered in the Rice Proteome Database. The database is searchable by keyword,

  7. Database Description - JSNP | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available base Description General information of database Database name JSNP Alternative nam...n Science and Technology Agency Creator Affiliation: Contact address E-mail : Database...sapiens Taxonomy ID: 9606 Database description A database of about 197,000 polymorphisms in Japanese populat...1):605-610 External Links: Original website information Database maintenance site Institute of Medical Scien...er registration Not available About This Database Database Description Download License Update History of This Database

  8. Database Description - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ase Description General information of database Database name RMG Alternative name ...raki 305-8602, Japan National Institute of Agrobiological Sciences E-mail : Database... classification Nucleotide Sequence Databases Organism Taxonomy Name: Oryza sativa Japonica Group Taxonomy ID: 39947 Database...rnal: Mol Genet Genomics (2002) 268: 434–445 External Links: Original website information Database...available URL of Web services - Need for user registration Not available About This Database Database Descri

  9. Database Description - KOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available base Description General information of database Database name KOME Alternative nam... Sciences Plant Genome Research Unit Shoshi Kikuchi E-mail : Database classification Plant databases - Rice ...Organism Taxonomy Name: Oryza sativa Taxonomy ID: 4530 Database description Information about approximately ...Hayashizaki Y, Kikuchi S. Journal: PLoS One. 2007 Nov 28; 2(11):e1235. External Links: Original website information Database...OS) Rice mutant panel database (Tos17) A Database of Plant Cis-acting Regulatory

  10. Database Description - RED | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ase Description General information of database Database name RED Alternative name Rice Expression Database...enome Research Unit Shoshi Kikuchi E-mail : Database classification Plant databases - Rice Database classifi...cation Microarray, Gene Expression Organism Taxonomy Name: Oryza sativa Taxonomy ID: 4530 Database descripti... Article title: Rice Expression Database: the gateway to rice functional genomics...nt Science (2002) Dec 7 (12):563-564 External Links: Original website information Database maintenance site

  11. Database Description - PSCDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available abase Description General information of database Database name PSCDB Alternative n...rial Science and Technology (AIST) Takayuki Amemiya E-mail: Database classification Structure Databases - Protein structure Database...554-D558. External Links: Original website information Database maintenance site Graduate School of Informat...available URL of Web services - Need for user registration Not available About This Database Database Descri...ption Download License Update History of This Database Site Policy | Contact Us Database Description - PSCDB | LSDB Archive ...

  12. Database Description - RPSD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available base Description General information of database Database name RPSD Alternative nam...e Rice Protein Structure Database DOI 10.18908/lsdba.nbdc00749-000 Creator Creator Name: Toshimasa Yamazaki ... Ibaraki 305-8602, Japan National Institute of Agrobiological Sciences Toshimasa Yamazaki E-mail : Databas...e classification Structure Databases - Protein structure Organism Taxonomy Name: Or...or name(s): Journal: External Links: Original website information Database maintenance site National Institu

  13. Database Description - PLACE | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available abase Description General information of database Database name PLACE Alternative name A Database...Kannondai, Tsukuba, Ibaraki 305-8602, Japan National Institute of Agrobiological Sciences E-mail : Databas...e classification Plant databases Organism Taxonomy Name: Tracheophyta Taxonomy ID: 58023 Database...99, Vol.27, No.1 :297-300 External Links: Original website information Database maintenance site National In...- Need for user registration Not available About This Database Database Descripti

  14. Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System

    Science.gov (United States)

    Richard Bergman; Hongmei Gu

    2014-01-01

    Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...

  15. The Nature of Science in Science Curricula: Methods and Concepts of Analysis

    Science.gov (United States)

    Ferreira, Sílvia; Morais, Ana M.

    2013-01-01

    The article shows methods and concepts of analysis of the nature of science in science curricula through an exemplary study made in Portugal. The study analyses the extent to which the message transmitted by the Natural Science curriculum for Portuguese middle school considers the nature of science. It is epistemologically and sociologically…

  16. Regression analysis for the social sciences

    CERN Document Server

    Gordon, Rachel A

    2015-01-01

    Provides graduate students in the social sciences with the basic skills they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of Stata and use of chapter exercises in which students practice programming and interpretation on the same data set. A separate set of exercises allows students to select a data set to apply the concepts learned in each chapter to a research question of interest to them, all updated for this edition.

  17. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Science.gov (United States)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  18. Georges Lemaître Life, Science and Legacy

    CERN Document Server

    Mitton, Simon

    2012-01-01

    The year 2011 marked the 80th anniversary of Georges Lemaître’s primeval atom model of the universe, forerunner of the modern day Big Bang theory. Prompted by this momentous anniversary the Royal Astronomical Society decided to publish a volume of essays on the life, work and faith of this great cosmologist, who was also a Roman Catholic priest. The papers presented in this book examine in detail the historical, cosmological, philosophical and theological issues surrounding the development of the Big Bang theory from its beginnings in the pioneering work of Lemaître through to the modern day. This book offers the best account in English of Lemaître’s life and work. It will be appreciated by professionals and graduate students interested in the history of cosmology.

  19. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of…

  20. 76 FR 47596 - Notice of Scientific Summit; The Science of Compassion-Future Directions in End-of-Life and...

    Science.gov (United States)

    2011-08-05

    ...; The Science of Compassion--Future Directions in End-of-Life and Palliative Care SUMMARY: Notice is... science at the end-of-life. On August 11-12, the summit will feature keynote presentations, three plenary...), Department of Health and Human Services, will convene a scientific summit titled ``The Science of Compassion...

  1. Nuclear activation techniques in the life sciences, 1978

    International Nuclear Information System (INIS)

    Parr, R.M.; Ryabukhin, Yu.S.

    1978-01-01

    A brief summary of the symposium is presented, pointing out the main achievements in the use of activation analysis for elemental analysis of biological materials. Some of the individual papers presented at the meeting are mentioned

  2. Ways of life analysis and food culture

    OpenAIRE

    Land, Birgit

    1994-01-01

    Executive Summary 1. People's food patterns are among other things influenced by their social environments. Analysing the relationship between the social environment and food culture is an important lead in trying to derive consumer objectives directed towards the food sector. 2. The way of life typology proposed by Højrup may be a useful device for analysing how the social environment impacts food patterns. Højrup proposes three ways of life: the independent way of life, the wage-earner way ...

  3. [The development of European Union common research and development policy and programs with special regard to life sciences].

    Science.gov (United States)

    Pörzse, Gábor

    2009-08-09

    Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of

  4. Wired to freedom: Life science, public politics, and the case of Cochlear Implantation.

    Science.gov (United States)

    Jepsen, Kim Sune; Bertilsson, T Margareta

    2017-02-01

    Cochlear Implantation is now regarded as the most successful medical technology. It carries promises to provide deaf/hearing impaired individuals with a technological sense of hearing and an access to participate on a more equal level in social life. In this article, we explore the adoption of cochlear implantations among Danish users in order to shed more light on their social and political implications. We situate cochlear implantation in a framework of new life science advances, politics, and user experiences. Analytically, we draw upon the notion of social imaginary and explore the social dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being "wired to freedom" that involves new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as "wired to freedom," we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear Implantation. As our empirical observations are largely based in the Scandinavian countries (notably Denmark), we also provide some reflections on the character of the technology-friendly Scandinavian welfare states and the unintended consequences that may follow in the wake of rapid technology implementation of life science in society.

  5. Life Sciences at the Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Kovac, P.; Macasek, F.

    2004-01-01

    In this presentation the history and present status of the Cyclotron Center of the Slovak (CC SR) are presented. A state run scientific center and production facility ensuring: - the basic and applied research in nuclear physics, chemistry, biology and medicine; - production of radionuclides and radiopharmaceuticals; - and applications of heavy ions and electron accelerator technologies in medicine and material science. Current financial status of the CC SR is following: Deblocation of the Russian; Federation debt to the Slovak Republic (94 %); State budget of the Slovak Republic (3 %); IAEA (3 %)

  6. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  7. Breathing life into fisheries stock assessments with citizen science.

    Science.gov (United States)

    Fairclough, D V; Brown, J I; Carlish, B J; Crisafulli, B M; Keay, I S

    2014-11-28

    Citizen science offers a potentially cost-effective way for researchers to obtain large data sets over large spatial scales. However, it is not used widely to support biological data collection for fisheries stock assessments. Overfishing of demersal fishes along 1,000 km of the west Australian coast led to restrictive management to recover stocks. This diminished opportunities for scientists to cost-effectively monitor stock recovery via fishery-dependent sampling, particularly of the recreational fishing sector. As fishery-independent methods would be too expensive and logistically-challenging to implement, a citizen science program, Send us your skeletons (SUYS), was developed. SUYS asks recreational fishers to voluntarily donate fish skeletons of important species from their catch to allow biological data extraction by scientists to produce age structures and conduct stock assessment analyses. During SUYS, recreational fisher involvement, sample sizes and spatial and temporal coverage of samples have dramatically increased, while the collection cost per skeleton has declined substantially. SUYS is ensuring sampling objectives for stock assessments are achieved via fishery-dependent collection and reliable and timely scientific advice can be provided to managers. The program is also encouraging public ownership through involvement in the monitoring process, which can lead to greater acceptance of management decisions.

  8. Dice world science and life in a random universe

    CERN Document Server

    Clegg, Brian

    2013-01-01

    For centuries scientists believed that the universe was a vast machine ? with enough detail, you could predict exactly what would happen. Admittedly real life wasn’t like that. But only, they argued, because we didn’t have enough data to be certain. Then the cracks began to appear. It proved impossible to predict exactly how three planets orbiting each other would move. Meteorologists discovered that the weather was truly chaotic ? so dependent on small variations that it could never be predicted for more than a few days out. And the final nail in the coffin was quantum theory,

  9. Occupation embedded in a real life: interweaving occupational science and occupational therapy. 1993 Eleanor Clarke Slagle Lecture.

    Science.gov (United States)

    Clark, F

    1993-12-01

    This lecture presents an example of research in the genre of interpretive occupational science and demonstrates how occupational science can inform clinical practice. The innovative qualitative methodology used blended elements of the anthropological tradition of life history ethnography, ethnomethodology, the naturalistic methods used by Mattingly and Schön to study practice, and especially narrative analysis as described by Polkinghorne. The bulk of the paper is presented in the form of a narrative analysis that provides an account of a stroke survivor's personal struggle for recovery, a story that emerged from transcription, coding, and analysis of transcripts from approximately 20 hours of interview time. First, this narrative analysis provides an example of how the occupational science framework can evoke a particular kind of storytelling in which childhood occupation can be related to adult character. Storytelling of this kind is later shown to be therapeutic for the stroke survivor. Next, the narrative illustrates how rehabilitation can be experienced by the survivor as a rite of passage in which a person is moved to disability status and then abandoned. Finally, a picture is given of how occupational story making and occupational storytelling embedded in real life can nurture the human spirit to act and can become the core of clinical practice.

  10. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    Science.gov (United States)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  11. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    Science.gov (United States)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  12. Conference Report: The 2016 Olten Meeting at the Basel Life Science Week.

    Science.gov (United States)

    Heinzelmann, Elsbeth

    2016-12-21

    "This 'telephone' has too many shortcomings to be seriously considered as a means of communication. The device is inherently of no value to us." This was an internal memo written by Western Union in 1876. That's right. Without efficient knowledge sharing and technology transfer, even the best scientific development may prove to be a damp squib for a long time. The Basel Life Science Week was created in order to promote scientific and economic exchange and pave the way for innovative ideas. That's why NTN Swiss Biotech has moved its traditional 'Olten Meeting' to the Basel Life Science Week. It is the ideal setting for NTN Swiss Biotech and the School of Life Sciences FHNW to present innovative developments within its network of academic and industrial partners in the future-oriented disciplines of Molecular Diagnostics and Medicinal Chemistry. Short summaries of the key lectures are reported below.

  13. International conference on nuclear analytical methods in the life sciences (NAMLS) (abstracts)

    International Nuclear Information System (INIS)

    1999-01-01

    The International Conference on Nuclear Analytical Methods in the Life Sciences (NAMLS) was hold on October 26-30, 1998 in Beijing, China, which was organized by China Institute of Atomic Energy in Cooperation with IAEA, National Science Foundation of China, China National Nuclear Cooperation, Chinese Academy of Sciences, Institute of High Energy Physics, Shanghai Institute for Nuclear Research, Chinese Nuclear Society, Nuclear Physics Society of China and Nuclear Chemistry Society of China. the contents of this Conference include: 1. QA-QC and CRM studies; 2. Elemental speciation and localization; 3. Health-related environmental studies; 4. Recent development in nuclear and related analytical techniques; 5. Trace elements in health and diseases; 6. Miscellaneous applications of NAT in the life sciences

  14. Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions

    Science.gov (United States)

    Cabrol, N. A.a; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Dohm, J. M.; Fisher, G.

    2005-01-01

    The Life In The Atacama (LITA) project develops and field tests a long-range, solarpowered, automated rover platform (Zo ) and a science payload assembled to search for microbial life in the Atacama desert. Life is barely detectable over most of the driest desert on Earth. Its unique geological, climatic, and biological evolution have created a unique training site for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars.

  15. The LAILAPS search engine: a feature model for relevance ranking in life science databases.

    Science.gov (United States)

    Lange, Matthias; Spies, Karl; Colmsee, Christian; Flemming, Steffen; Klapperstück, Matthias; Scholz, Uwe

    2010-03-25

    Efficient and effective information retrieval in life sciences is one of the most pressing challenge in bioinformatics. The incredible growth of life science databases to a vast network of interconnected information systems is to the same extent a big challenge and a great chance for life science research. The knowledge found in the Web, in particular in life-science databases, are a valuable major resource. In order to bring it to the scientist desktop, it is essential to have well performing search engines. Thereby, not the response time nor the number of results is important. The most crucial factor for millions of query results is the relevance ranking. In this paper, we present a feature model for relevance ranking in life science databases and its implementation in the LAILAPS search engine. Motivated by the observation of user behavior during their inspection of search engine result, we condensed a set of 9 relevance discriminating features. These features are intuitively used by scientists, who briefly screen database entries for potential relevance. The features are both sufficient to estimate the potential relevance, and efficiently quantifiable. The derivation of a relevance prediction function that computes the relevance from this features constitutes a regression problem. To solve this problem, we used artificial neural networks that have been trained with a reference set of relevant database entries for 19 protein queries. Supporting a flexible text index and a simple data import format, this concepts are implemented in the LAILAPS search engine. It can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. LAILAPS is publicly available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.

  16. Moving Life Science Ethics Debates Beyond National Borders: Some Empirical Observations

    OpenAIRE

    Bezuidenhout, Louise

    2013-01-01

    The life sciences are increasingly being called on to produce “socially robust” knowledge that honors the social contract between science and society. This has resulted in the emergence of a number of “broad social issues” that reflect the ethical tensions in these social contracts. These issues are framed in a variety of ways around the world, evidenced by differences in regulations addressing them. It is important to question whether these variations are simply regulatory variations or in f...

  17. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Science.gov (United States)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  18. Life science, agriculture and forestry and fishery and health and medical treatment

    International Nuclear Information System (INIS)

    1999-11-01

    This book gives descriptions of future technology in Korea, by field : Life science, agriculture and forestry and fishery and health and medical treatment. It indicates the purpose of survey, survey system survey outline, characteristic of this survey, how to read the prediction of survey result, the result of survey with the tasks of survey object, field on important survey and development period of realizable prediction, obstacle of realization, propel ways for survey and development, policy tasks, important future technology chronological table, characteristic of respondent, the result of survey : Life science, agriculture and forestry and fishery and health and medical treatment.

  19. Life science payloads planning study. [for space shuttle orbiters and spacelab

    Science.gov (United States)

    Nelson, W. G.; Wells, G. W.

    1977-01-01

    Preferred approaches and procedures were defined for integrating the space shuttle life sciences payload from experiment solicitation through final data dissemination at mission completion. The payloads operations plan was refined and expended to include current information. The NASA-JSC facility accommodations were assessed, and modifications recommended to improve payload processing capability. Standard format worksheets were developed to permit rapid location of experiment requirements and a Spacelab mission handbook was developed to assist potential life sciences investigators at academic, industrial, health research, and NASA centers. Practical, cost effective methods were determined for accommodating various categories of live specimens during all mission phases.

  20. Relationships between academic institutions and industry in the life sciences--an industry survey.

    Science.gov (United States)

    Blumenthal, D; Causino, N; Campbell, E; Louis, K S

    1996-02-08

    Despite growing acceptance of relationships between academia and industry in the life sciences, systematic, up-to-date information about their extent and the consequences for the parties involved remains scarce. We attempted to collect information about the prevalence, magnitude, commercial benefits, and potential risks of such relationships by surveying a representative sample of life-science companies in the United States to determine their relationships with academic institutions. We collected data by telephone from May through September 1994 from senior executives of 210 life-science companies (of 306 companies surveyed; response rate, 69 percent). The sample contained all Fortune 500 companies in the fields of agriculture, chemicals, and pharmaceuticals; all international pharmaceutical companies with sales volumes similar to those of the Fortune 500 companies; and a random sample of non-Fortune 500 companies in the life sciences drawn from multiple commercial and noncommercial directories. Both the survey instrument and the survey methods resembled those of our 1984 study of 106 biotechnology companies, allowing us to assess the evolution of relationships between academia and industry over the past decade. Ninety percent of companies conducting life-science research in the United States had relationships involving the life sciences with an academic institution in 1994. Fifty-nine percent supported research in such institutions, providing an estimated $1.5 billion, or approximately 11.7 percent of all research-and-development funding received that year. The agreements with universities tended to be short-term and to involve small amounts, implying that most such relationships supported applied research or development. Over 60 percent of companies providing support for life-science research in universities had received patents, products, and sales as a result of those relationships. At the same time, the companies reported that their relationships with

  1. On the use of Space Station Freedom in support of the SEI - Life science research

    Science.gov (United States)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  2. Paul Scherrer Institut Scientific Report 2001. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jaussi, R; Gschwend, B [eds.

    2002-03-01

    The IMR group investigated some new approaches to tumour therapy. Several candidate molecules for targeting the tumour vasculature have been identified and are being produced for in vivo studies in tumour-bearing mice. The liposome technology is well established in this group and the goal is to produce suitably tagged liposomes for delivering a variety of cytotoxic agents to tumours. The Centre for Radiopharmaceutical Science, a joint venture with the ETH Zurich and the University of Zurich, pursues a number of projects that should eventually lead to novel radiopharmaceuticals for tumour diagnosis and therapy. Functionally, these radioactive drugs consist of a tumour targeting part, a radionuclide and a linking moiety, which stably connects the two. Optimisation of the components and their combination in terms of in vitro and in vivo properties as well as the efficient large-scale production of promising candidates for eventual first clinical trials is a demanding task. The major emphasis is still on using antibodies, antibody derivatives or peptides as tumour targeting vehicles. In collaboration with the Queens Medical Centre Nottingham, the first patients were treated with a {sup 67}Cu labelled antibody targeting bladder carcinomas. When completed, these studies should give us important information on the usefulness of {sup 67}Cu as a therapeutic radionuclide. Neuropeptides such as neurotensin and bombesin are promising starting points for tumour targeting as their receptors are over expressed on certain tumour cells. Presently, the efforts concentrate on preparing for further clinical studies with neurotensin derivatives (diagnosis of pancreatic tumours using {sup 99m}Tc) and further improving the stability and pharmacological properties of bombesin derivatives. In both these projects the ultimate goal is to label the optimised compounds with {sup 186}Re, a therapeutic radionuclide that can be attached in the stable tricarbonyl form which is easily accessible by

  3. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  4. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  5. Coffee, Black Holes, Editors, and Beer: The Science-Writing Life

    Science.gov (United States)

    Francis, Matthew R.

    2016-01-01

    What does a science writer do all day? In a tough job market and the pressures of the publish-or-perish life, careers outside academia are enticing. But it's not just a matter of swapping research papers for news stories, or adapting course lectures to magazine articles. I am a former academic scientist (with a PhD in physics and astronomy, as well as six years of university teaching) who now works as a freelance science journalist. In this talk, I'll share my experiences, along with a brief guide to the science-writing life. Along the way, we'll touch on misconceptions ("I love teaching, so science writing should be easy!"), bad attitudes ("dumbing down" is a concept that should be nuked from orbit), and the joys of sharing science with others. There are some hard truths: don't choose science writing because you think it's an easy option compared with academic research. Nevertheless, it's a rewarding profession, and one that allows you to remember the love of science — and share that love with large numbers of other people.

  6. Crude Life: The Art-Science Engagement Work of Brandon Ballengee

    Science.gov (United States)

    Ballengee, B.; Kirn, M.

    2017-12-01

    Crude Life is an interdisciplinary art, science and outreach project focused on raising public awareness of Gulf of Mexico species, ecosystems, and regional environmental challenges through community "citizen science" surveys and a portable art-science museum of Gulf coastal biodiversity. A primary research focus is gathering data on endemic fishes affected by the 2010 Gulf of Mexico Oil Spill and attempting to locate 14 species that have been `missing' following the spill. Programming emphasis has been given to rural coastal communities that due to changing climate and alteration of geophysical systems (mostly from the oil and gas industry) are populations particularly at risk to tidal inundation. In addition these communities generally lack access to science literacy (as Louisiana ranks as among the worst in the nation for science education) and have little access to contemporary art.

  7. Applied statistical methods in agriculture, health and life sciences

    CERN Document Server

    Lawal, Bayo

    2014-01-01

    This textbook teaches crucial statistical methods to answer research questions using a unique range of statistical software programs, including MINITAB and R. This textbook is developed for undergraduate students in agriculture, nursing, biology and biomedical research. Graduate students will also find it to be a useful way to refresh their statistics skills and to reference software options. The unique combination of examples is approached using MINITAB and R for their individual strengths. Subjects covered include among others data description, probability distributions, experimental design, regression analysis, randomized design and biological assay. Unlike other biostatistics textbooks, this text also includes outliers, influential observations in regression and an introduction to survival analysis. Material is taken from the author's extensive teaching and research in Africa, USA and the UK. Sample problems, references and electronic supplementary material accompany each chapter.

  8. Life Science Research Facility materials management requirements and concepts

    Science.gov (United States)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  9. Life cycle analysis of transportation fuel pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-24

    The purpose of this work is to improve the understanding of the concept of life cycle analysis (LCA) of transportation fuels and some of its pertinent issues among non-technical people, senior managers, and policy makers. This work should provide some guidance to nations considering LCA-based policies and to people who are affected by existing policies or those being developed. While the concept of employing LCA to evaluate fuel options is simple and straightforward, the act of putting the concept into practice is complex and fraught with issues. Policy makers need to understand the limitations inherent in carrying out LCA work for transportation fuel systems. For many systems, even those that have been employed for a 100 years, there is a lack of sound data on the performance of those systems. Comparisons between systems should ideally be made using the same tool, so that differences caused by system boundaries, allocation processes, and temporal issues can be minimized (although probably not eliminated). Comparing the results for fuel pathway 1 from tool A to those of fuel system 2 from tool B introduces significant uncertainty into the results. There is also the question of the scale of system changes. LCA will give more reliable estimates when it is used to examine small changes in transportation fuel pathways than when used to estimate large scale changes that replace current pathways with completely new pathways. Some LCA tools have been developed recently primarily for regulatory purposes. These tools may deviate from ISO principles in order to facilitate simplicity and ease of use. In a regulatory environment, simplicity and ease of use are worthy objectives and in most cases there is nothing inherently wrong with this approach, particularly for assessing relative performance. However, the results of these tools should not be confused with, or compared to, the results that are obtained from a more complex and rigorous ISO compliant LCA. It should be

  10. Pioneer Valley Life Sciences Institute Translational Biomedical Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sallie; Shao, Rong; Schwartz, Lawrence; Jerry, D Joseph

    2012-09-20

    1. Analysis of angiogenic factors in breast cancer angiogenesis. Determine whether Acheron and YKL-40 were elevated in subsets of primary breast cancers and if they participated directly in determining the behavior of tumors. 2. Use of polymers for chemotherapeutic delivery to breast cancer tumors. The experiments were designed to define the utility of biocompatible polymers for addressing certain limitations and establish a flexible platform for delivery of diverse compound.

  11. Life beyond the limits of knowledge: crystalline life in the popular science of Desiderius Papp (1895-1993).

    Science.gov (United States)

    Brandstetter, Thomas

    2012-10-01

    The aim of this article is to show how, and in which context, astrobiological reasoning was employed before the establishment of astrobiology as a scientific discipline. By way of an example, I will discuss a popular science book published in 1931 by the Hungarian journalist Desiderius Papp. The author claims that this book represents an innovation in astrobiological reasoning, as it draws on contemporary biological research to conduct thought experiments, thereby coming up with concrete forms of possible extraterrestrial life. One of the most interesting of these forms was crystalline life. After a short overview on the history of this concept, this article will show how Papp drew on recent research by Otto Lehmann on liquid crystals to convey the idea that life may be based on other elements than carbon. The author concludes by arguing that popular science did not only make specialist knowledge accessible to a general public but also served to probe the limits of knowledge and point toward the situatedness of established categories and definitions.

  12. Relationship between mediation analysis and the structured life course approach

    Science.gov (United States)

    Howe, Laura D; Smith, Andrew D; Macdonald-Wallis, Corrie; Anderson, Emma L; Galobardes, Bruna; Lawlor, Debbie A; Ben-Shlomo, Yoav; Hardy, Rebecca; Cooper, Rachel; Tilling, Kate; Fraser, Abigail

    2016-01-01

    Abstract Many questions in life course epidemiology involve mediation and/or interaction because of the long latency period between exposures and outcomes. In this paper, we explore how mediation analysis (based on counterfactual theory and implemented using conventional regression approaches) links with a structured approach to selecting life course hypotheses. Using theory and simulated data, we show how the alternative life course hypotheses assessed in the structured life course approach correspond to different combinations of mediation and interaction parameters. For example, an early life critical period model corresponds to a direct effect of the early life exposure, but no indirect effect via the mediator and no interaction between the early life exposure and the mediator. We also compare these methods using an illustrative real-data example using data on parental occupational social class (early life exposure), own adult occupational social class (mediator) and physical capability (outcome). PMID:27681097

  13. Relationship between mediation analysis and the structured life course approach.

    Science.gov (United States)

    Howe, Laura D; Smith, Andrew D; Macdonald-Wallis, Corrie; Anderson, Emma L; Galobardes, Bruna; Lawlor, Debbie A; Ben-Shlomo, Yoav; Hardy, Rebecca; Cooper, Rachel; Tilling, Kate; Fraser, Abigail

    2016-08-01

    Many questions in life course epidemiology involve mediation and/or interaction because of the long latency period between exposures and outcomes. In this paper, we explore how mediation analysis (based on counterfactual theory and implemented using conventional regression approaches) links with a structured approach to selecting life course hypotheses. Using theory and simulated data, we show how the alternative life course hypotheses assessed in the structured life course approach correspond to different combinations of mediation and interaction parameters. For example, an early life critical period model corresponds to a direct effect of the early life exposure, but no indirect effect via the mediator and no interaction between the early life exposure and the mediator. We also compare these methods using an illustrative real-data example using data on parental occupational social class (early life exposure), own adult occupational social class (mediator) and physical capability (outcome). © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  14. Motivation and career outcomes of a precollege life science experience for underrepresented minorities

    Science.gov (United States)

    Ortega, Robbie Ray

    Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were

  15. The Dutch Techcentre for Life Sciences: Enabling data-intensive life science research in the Netherlands [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Lars Eijssen

    2016-01-01

    Full Text Available We describe the Data programme of the Dutch Techcentre for Life Sciences (DTL, www.dtls.nl. DTL is a new national organisation in scientific research that facilitates life scientists with technologies and technological expertise in an era where new projects often are data-intensive, multi-disciplinary, and multi-site. It is run as a lean not-for-profit organisation with research organisations (both academic and industrial as paying members. The small staff of the organisation undertakes a variety of tasks that are necessary to perform or support modern academic research, but that are not easily undertaken in a purely academic setting. DTL Data takes care of such tasks related to data stewardship, facilitating exchange of knowledge and expertise, and brokering access to e-infrastructure. DTL also represents the Netherlands in ELIXIR, the European infrastructure for life science data. The organisation is still being fine-tuned and this will continue over time, as it is crucial for this kind of organisation to adapt to a constantly changing environment. However, already being underway for several years, our experiences can benefit researchers in other fields or other countries setting up similar initiatives.

  16. Protein - Trypanosomes Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us Trypanoso...nhibitor of the protein. Data file File name: trypanosome.zip File URL: ftp://ftp....biosciencedbc.jp/archive/trypanosome/LATEST/trypanosome.zip File size: 1.4 KB Simple search URL http://togo...db.biosciencedbc.jp/togodb/view/trypanosome#en Data acquisition method - Data analysis method - Number of da...ndelian inheritance in Man ) map Location of the gene on a chromosome or its chromosome number pdb PDB ID (P

  17. GPCR Interaction - GRIPDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us GRI...ed information (disease etc.). Data file File name: gripdb_main.zip File URL: ftp://ftp.biosciencedbc.jp/archive/gripdb/LATEST/gri...godb.biosciencedbc.jp/togodb/view/gripdb_main#en Data acquisition method PDB, Refseq Data analysis method - ...Number of data entries 409 entries Data item Description GRIP ID Interaction ID Main Title Interaction title...tabase Database Description Download License Update History of This Database Site Policy | Contact Us GPCR Interaction - GRIPDB | LSDB Archive ...

  18. Disease - KEGG MEDICUS | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] English ]; } else if ( url.search(//en//) != -1 ) { url = url.replace(/...switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us KEGG MEDI...bling computational processing and analysis of disease data. Data file File name: kegg_medi...cus_disease_en.zip File URL: ftp://ftp.biosciencedbc.jp/archive/kegg-medicus/LATEST/kegg_medicus_d...isease_en.zip File size: 733 KB Simple search URL http://togodb.biosciencedbc.jp/togodb/view/kegg_medicus_di

  19. Academic Performance and Pass Rates: Comparison of Three First-Year Life Science Courses

    Science.gov (United States)

    Downs, C. T.

    2009-01-01

    First year students' academic performance in three Life Science courses (Botany, Zoology and Bioscience) was compared. Pass rates, as well as the means and distributions of final marks were analysed. Of the three components (coursework, practical and theory examinations) contributing to the final mark of each course, students performed best in the…

  20. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…