WorldWideScience

Sample records for life rechargeable lithium

  1. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  2. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    Science.gov (United States)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  3. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  4. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progresses and perspectives.

    Science.gov (United States)

    Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Rodriguez-Martínez, Lide M; Armand, Michel

    2018-02-14

    Lithium metal (Li°) - based rechargeable batteries (LMBs), such as Li° anode vs. intercalation and/or conversion type cathode batteries, lithium-sulphur (Li-S), and lithium-oxygen (O2)/air (Li-O2/air) are becoming increasingly important for electrifying the modern transportation system, enabling sustainable mobility in the near future. Though some rechargeable LMBs batteries (e.g., Li°/LiFePO4 batteries from Bolloré Bluecar®, Li-S batteries from OXIS Energy and Sion Power) are already commercially viable in niche applications, their large-scale deployment is still hampered due to the existence of a number of formidable challenges, including lithium dendrite growth, electrolyte instability towards high voltage intercalation type cathode, poor electronic and ionic conductivities of sulphur (S8) and O2, as well as their corresponding reduction products (e.g., Li2S and Li2O), dissolution and shuttling of polysulphide (PS) intermediates etc. This ultimately results in short cycle life, low coulombic/energy efficiency, poor safety, and a high self-discharge rate. Among other mitigating strategies, the use of electrolyte additives is considered as one of the most economical, and effective approach for circumventing these dilemmas. Set out to offer an in-depth insight into the rapidly growing research on the account of electrolyte additives for rechargeable LMBs, this review presents an overview of the various functional additives, that are being applied in Li-anode/intercalation cathode-based, Li-S and Li-O2 batteries. This review is believed to assess the status quo of the research and thereby arouse new thoughts and opportunities, opening new avenues for the practical realization of these appealing devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rechargeable Lithium Metal Cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PSI proposes to develop a rechargeable lithium metal cell with energy density >400Wh/kg. This represents a >70% increase as compared to similarly constructed...

  6. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size DATES: The meeting...

  7. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  8. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. DATES: The meeting will...

  9. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  10. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  11. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held...

  12. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held May...

  13. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  14. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-11-01

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  15. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2011-11-14

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225, Rechargeable Lithium Battery and...

  16. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    Science.gov (United States)

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-02-03

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  18. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-04-20

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  19. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-07-01

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  20. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-09-01

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  1. Issue and challenges facing rechargeable thin film lithium batteries

    International Nuclear Information System (INIS)

    Patil, Arun; Patil, Vaishali; Shin, Dong Wook; Choi, Ji-Won; Paik, Dong-Soo; Yoon, Seok-Jin

    2008-01-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5-6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development

  2. Organic electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yanliang; Tao, Zhanliang; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry College, Nankai University, Tianjin (China)

    2012-07-15

    Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Nanocarbon networks for advanced rechargeable lithium batteries.

    Science.gov (United States)

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  4. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    Science.gov (United States)

    1991-11-01

    AD-A274 908IIIIlIIIE McDonald , P. Harris, F. Goebel, S. Hossi ierra, M. Guentert, C. Todino 7 ad r nse TECHNICAL PRODUCTS INCY DTIC ELECTE JAN26 1994...Pawcatuck, CT 06379 94-02298 1425 Best Available Copy I ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL I R.C. McDonald , P. Harris, F. Goebel, S. Hossain...20 minutes. The electrochemical measurements were carried out using a I Starbuck 20-station cycler system which is connected to a computer to monitor

  5. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  6. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    Science.gov (United States)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  7. Advanced manganese oxide material for rechargeable lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Atwater, Terrill B.; Salkind, Alvin J. [Rutgers University, Piscataway, NJ (United States)

    2006-11-22

    A family of potassium-doped manganese oxide materials were synthesized with the stoichiometric formula Li{sub 0.9-X}K{sub X}Mn{sub 2}O{sub 4}, where X=0.0-0.25 and evaluated for their viability as a cathode material for a rechargeable lithium battery. A performance maximum was found at X=0.1 where the initial specific capacity for the lithium-potassium-doped manganese dioxide electrochemical couple was 130mAhg{sup -1} of active cathode material. The discharge capacity of the system was maintained through 90 cycles (95% initial capacity). Additionally, the capacity was maintained at greater than 90% initial discharge through 200 cycles. Other variants demonstrated greater than 75% initial discharge through 200 cycles at comparable capacity. (author)

  8. The state-of-the-art and prospects for the development of rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Skundin, Aleksandr M; Efimov, Oleg N; Yarmolenko, Ol'ga V

    2002-01-01

    The state-of-the-art of investigations into the development and perfection of the most promising class of chemical power sources, namely, rechargeable lithium batteries, is considered. The main problems of designing the batteries with a metallic lithium electrode are formulated and the use of alternative negative electrodes is substantiated. Special attention is paid to the studies dealing with the principles of the performance of lithium-ion batteries as well as the key directions for the perfection of these devices, which mainly concern the elaboration of new materials for lithium-ion batteries. A separate section is devoted to the consideration of polymeric electrolytes for lithium and lithium-ion batteries. The bibliography includes 390 references.

  9. Status of the development of rechargeable lithium cells

    Science.gov (United States)

    Halpert, G.; Surampudi, S.; Shen, D.; Huang, C-K.; Narayanan, S.; Vamos, E.; Perrone, D.

    1993-01-01

    The progress in the development of the ambient temperature lithium - titanium disulfide rechargeable cell under development at the Jet Propulsion Laboratory is described in this paper. Originally aimed at achieving a specific energy of 100 Wh/kg, 'AA' cells have demonstrated 125 Wh/kg at the C/3 discharge rate. The results of evaluating cell design parameters are discussed and cycling test data are also included in the paper. Safety tests results at various over-charge and over discharge conditions and rates proved to be uneventful. The test results of cell with built-in overcharge mechanism proved the concept was feasible. Replacing the lithium foil electrode with a Li(x)C resulted in a capacity at 1mA/cm(exp 2) of 200 mAh/gm and 235 mAh/gm at 0.167 mA.

  10. High-energy cathode material for long-life and safe lithium batteries

    Science.gov (United States)

    Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun; Prakash, Jai; Belharouak, Ilias; Amine, Khalil

    2009-04-01

    Layered lithium nickel-rich oxides, Li[Ni1-xMx]O2 (M=metal), have attracted significant interest as the cathode material for rechargeable lithium batteries owing to their high capacity, excellent rate capability and low cost. However, their low thermal-abuse tolerance and poor cycle life, especially at elevated temperature, prohibit their use in practical batteries. Here, we report on a concentration-gradient cathode material for rechargeable lithium batteries based on a layered lithium nickel cobalt manganese oxide. In this material, each particle has a central bulk that is rich in Ni and a Mn-rich outer layer with decreasing Ni concentration and increasing Mn and Co concentrations as the surface is approached. The former provides high capacity, whereas the latter improves the thermal stability. A half cell using our concentration-gradient cathode material achieved a high capacity of 209mAhg-1 and retained 96% of this capacity after 50 charge-discharge cycles under an aggressive test profile (55∘C between 3.0 and 4.4V). Our concentration-gradient material also showed superior performance in thermal-abuse tests compared with the bulk composition Li[Ni0.8Co0.1Mn0.1]O2 used as reference. These results suggest that our cathode material could enable production of batteries that meet the demanding performance and safety requirements of plug-in hybrid electric vehicles.

  11. Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste

    Science.gov (United States)

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A.

    2013-01-01

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg; σ = 62 897; limit 8000), copper (average 98 694 mg/kg; σ = 28 734; limit 2500), and nickel (average 9525 mg/kg; σ = 11 438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  12. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Sun Qian; Fu Zhengwen

    2008-01-01

    Vanadium mononitride (VN) thin films have been successfully fabricated by magnetron sputtering. Its electrochemical behaviour with lithium was examined by galvanostatic cell cycling and cyclic voltammetry. The capacity of VN was found to be stable above 800 mAh g -1 after 50 cycles. By using ex situ X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction as well as in situ spectroelectrochemical measurements, the electrochemical reaction mechanism of VN with lithium was investigated. The reversible conversion reaction of VN into metal V and Li 3 N was revealed. The high reversible capacity and good stable cycle of VN thin film electrode made it a new promising lithium-ion storage material for future rechargeable lithium batteries

  13. Phase transition and hysteresis in a rechargeable lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Gaberscek, Miran; Jamnik, Janko [Kemijski Institut Ljubljana Slovenija (Slovenia). L10 Lab. for Materials Electrochemistry

    2007-07-01

    We develop a model which describes the evolution of a phase transition that occurs in some part of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate hysteretic behavior of the voltage - charge characteristics. During discharging of the battery, the interstitial lattice sites of a small crystalline host system are filled up with lithium atoms and these are released again during charging. We show within the context of a sharp interface model that two mechanical phenomena go along with a phase transition that appears in the host system during supply and removal of lithium. At first the lithium atoms need more space than it is available by the interstitial lattice sites, which leads to a maximal relative change of the crystal volume of about 6%. Furthermore there is an interface between two adjacent phases that has very large curvature of the order of magnitude 100 m, which evoke here a discontinuity of the normal component of the stress. In order to simulate the dynamics of the phase transitions and in particular the observed hysteresis we establish a new initial and boundary value problem for a nonlinear PDE system that can be reduced in some limiting case to an ODE system. (orig.)

  14. Study on property-gradient polymer electrolyte for rechargeable lithium batteries; Lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kokumi, Z; Kanemura, S; Inaba, M; Takehara, Z; Yao, K; Uchimoto, Y [Kyoto University, Kyoto (Japan)

    1997-02-01

    This paper describes the fundamental experiments for creating property-gradient polymer electrolyte for rechargeable lithium batteries. The rechargeable lithium battery is composed of an anodic composite agent section with high ion conductivity, a separator equivalent section with high mechanical strength (high bridging degree), and a section surpressing the precipitation of metal lithium by contacting with it. The continuous property-gradient polymer electrolyte was tried to be synthesized by means of the plasma polymerization method. As a result, plasma polymerization electrolyte with high ion conductivity could be prepared from the liquid phase by using a monomer with low vapor pressure. Porous material simulating the anodic composite agent was impregnated by the monomer, which was plasma-polymerized. As a result, it was found that the bridging degree decreased from the surface towards the inside of the plasma-polymerized porous material. In addition, polymer was prepared using fluorine-base monomer. Thus, LiF thin film could be prepared through the reaction between the polymer and metal lithium. 3 figs.

  15. Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers (Preprint)

    National Research Council Canada - National Science Library

    Fellner, Joseph P; Miller, Ryan M; Shanmugasundaram, Venkatrama

    2006-01-01

    ...). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at > 1.0 kW/kg...

  16. Improved capacity retention in rechargeable 4 V lithium/lithium manganese oxide (spinel) cells.

    CSIR Research Space (South Africa)

    Gummow, RJ

    1994-04-01

    Full Text Available manganese-ion oxidation state marginally above 3.5. 1. Introduction Over the past decade, the spine1 LiMnzOd has been studied extensively as an electrode for rechargeable lithium cells [l-7]. When O

  17. Investigation of spinel-related and orthorhombic LiMNO2 cathodes for rechargeable lithium batteries

    CSIR Research Space (South Africa)

    Gummow, RJ

    1994-05-01

    Full Text Available ~ and with carbon at 600~ have been evaluated in rechargeable lithium cells. The cathodes which initially have a composition close to LiMnO2 contain structures related to the lithiated-spinel phase Li2\\[Mn2104 and/or orthorhombic Li... the cathode structure to yield an "over-discharged" state which is possible, for example, with a Lix\\[Mn2104 spinel cathode. 7 Lix\\[Mn2\\]O4 operates at approximately 4 V vs. lithium over the range 0 < x -< 1 and has a...

  18. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Yasukawa, Eiki; Mori, Shoichiro

    1999-11-01

    To develop organic electrolytes for 4 V lithium metal rechargeable batteries, LiN(SO{sub 2}CF{sub 3}){sub 2} electrolytes with five-, six-, and seven-membered cyclic ether solvents were characterized. Among these examined electrolytes, LiN(SO{sub 2}CF{sub 3}){sub 2}/tetrahydropyran (THP) electrolyte was found to possess the most advantages, such as high cycling efficiency, good oxidation stability, and high boiling point. Furthermore, lithium cycling efficiency and conductivity were improved by mixing 50% ethylene carbonate (EC) in 1 mol/dm{sup 3} LiN(SO{sub 2}CF{sub 3}){sub 2}/THP electrolyte. By using LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} solute as an alternative to LiN(SO{sub 2}CF{sub 3}){sub 2} in EC + THP (1:1) electrolyte, corrosion of the aluminum current collector was inhibited and therefore, excellent cycling performance of a Li/LiMn{sub 2}O{sub 4} coin cell was realized. It was also found that lithium cycling efficiency increased with decreasing deposition current density or increasing dissolution current density. Especially at deposition/dissolution current densities of 0.2/0.6 mA/cm{sup 2}, the observed lithium cycling efficiency in 1 mol/dm{sup 3} LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2}/EC + THP (1:1) electrolyte was above 99%. Thermal tests further disclosed that this mixed electrolyte has good thermal stability even in the presence of lithium metal or cathode materials.

  20. Negative electrode materials for lithium-ion solid-state microbatteries

    NARCIS (Netherlands)

    Baggetto, L.

    2010-01-01

    Electronic portable devices are becoming more and more important in our daily life. Many portable types of electronic equipment rely on rechargeable lithium-ion batteries as they can reversibly deliver the highest gravimetric and volumetric energy densities. Lithium-ion batteries are currently

  1. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie; Lowe, Michael A.; Abruña, Héctor D.

    2011-01-01

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering

  2. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.

    2010-09-15

    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  3. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun

    2016-08-15

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy of integrating a redox species-based electrolyte in batteries to boost their performance. Taking the olivine LiFePO4-based battery as an example, the incorporation of redox species (i.e., polysulfide of Li2S8) in the electrolyte results in much lower polarization and superior stability, where the dissociated Li+/Sx2– can significantly speed up the lithium diffusion. More importantly, the presence of the S82–/S2– redox reaction further contributes extra capacity, making a completely new LiFePO4/Li2Sx hybrid battery with a high energy density of 1124 Wh kgcathode–1 and a capacity of 442 mAh gcathode–1. The marriage of appropriate redox species in an electrolyte for a rechargeable battery is an efficient and scalable approach for obtaining higher energy density storage devices.

  4. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    Science.gov (United States)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  5. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitendra; Kumar, Binod [Electrochemical Power Group, Metals and Ceramics Division, University of Dayton Research Institute, OH 45469-0171 (United States)

    2009-12-01

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li{sub 1+x}Al{sub x}Ge{sub 2-x}(PO{sub 4}){sub 3} (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si{sub 3}N{sub 4}) and PC(Li{sub 2}O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li{sub 2}O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity. (author)

  6. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries.

    Science.gov (United States)

    Luo, Zhiqiang; Liu, Luojia; Zhao, Qing; Li, Fujun; Chen, Jun

    2017-10-02

    Application of organic electrode materials in rechargeable batteries has attracted great interest because such materials contain abundant carbon, hydrogen, and oxygen elements. However, organic electrodes are highly soluble in organic electrolytes. An organic electrode of 2,3,5,6-tetraphthalimido-1,4-benzoquinone (TPB) is reported in which rigid groups coordinate to a molecular benzoquinone skeleton. The material is insoluble in aprotic electrolyte, and demonstrates a high capacity retention of 91.4 % (204 mA h g -1 ) over 100 cycles at 0.2 C. The extended π-conjugation of the material contributes to enhancement of the electrochemical performance (155 mA h g -1 at 10 C). Moreover, density functional theory calculations suggest that favorable synergistic reactions between multiple carbonyl groups and lithium ions can enhance the initial lithium ion intercalation potential. The described approach may provide a novel entry to next-generation organic electrode materials with relevance to lithium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.

    Science.gov (United States)

    Wu, Xiao; Yao, Shanshan; Hou, Jinli; Jing, Maoxiang; Qian, Xinye; Shen, Xiangqian; Xiang, Jun; Xi, Xiaoming

    2017-04-01

    Conventional lithium-sulfur batteries suffer from severe capacity fade, which is induced by low electron conductivity and high dissolution of intermediated polysulfides. Recent studies have shown the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and improved the performance for lithium sulfur batteries. In this work, we present the nickel coated multi-walled carbon nanotubes (Ni-MWNTs) as additive materials for elemental sulfur positive electrodes for lithium-sulfur rechargeable batteries. Compared with MWNTs, the obtained Ni-MWNTs/sulfur composite cathode demonstrate a reversible specific capacity approaching 545 mAh after 200 cycles at a rate of 0.5C as well as improved cycling stability and excellent rate capacity. The improved electrochemical performance can be attributed to the fact the MWNTs shows a vital role on polysulfides adsorption and nickel has a catalytic effect on the redox reactions during charge–discharge process. Meanwhile, the Ni-MWNTs is a good electric conductor for sulfur cathode.

  8. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  9. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hua Kun, E-mail: hua@uow.edu.au

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  10. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    International Nuclear Information System (INIS)

    Liu, Hua Kun

    2013-01-01

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells

  11. Lithium-Ion Cell Charge Control Unit

    Science.gov (United States)

    Reid, Concha; Button, Robert; Manzo, Michelle; McKissock, Barbara; Miller, Thomas; Gemeiner, Russel; Bennett, William; Hand, Evan

    2006-01-01

    Life-test data of Lithium-Ion battery cells is critical in order to establish their performance capabilities for NASA missions and Exploration goals. Lithium-ion cells have the potential to replace rechargeable alkaline cells in aerospace applications, but they require a more complex charging scheme than is typically required for alkaline cells. To address these requirements in our Lithium-Ion Cell Test Verification Program, a Lithium-Ion Cell Charge Control Unit was developed by NASA Glenn Research Center (GRC). This unit gives researchers the ability to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and results in a substantial reduction in test costs as compared to individual cell testing. The Naval Surface Warfare Center at Crane, Indiana developed a power reduction scheme that works in conjunction with the Lithium-Ion Cell Charge Control Unit. This scheme minimizes the power dissipation required by the circuitry to prolong circuit life and improve its reliability.

  12. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  13. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  14. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  15. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

    Science.gov (United States)

    Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi

    2017-12-01

    The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phosphidation of Li4Ti5O12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries.

    Science.gov (United States)

    Jo, Mi Ru; Nam, Ki Min; Lee, Youngmin; Song, Kyeongse; Park, Joon T; Kang, Yong-Mook

    2011-11-07

    Phosphidated-Li(4)Ti(5)O(12) shows high capacity with a significantly enhanced kinetics opening new possibilities for ultra-fast charge/discharge of lithium rechargeable batteries. The in vitro cytotoxicity test proves its fabulous cell viability, indicating that the toxicity problem of nanoparticles can be also solved by phosphidation. This journal is © The Royal Society of Chemistry 2011

  17. Rechargeable Lithium Sulfur (Li-S) Battery with Specific Energy 400 Wh/kg and Operating Temperature Range -60°C to 60°C, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sion Power is developing a rechargeable lithium sulfur (Li-S) battery with a demonstrated specific energy exceeding 350 Wh/kg and the range of operating temperatures...

  18. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    Science.gov (United States)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  19. Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery

    Science.gov (United States)

    Christy, Maria; Arul, Anupriya; Zahoor, Awan; Moon, Kwang Uk; Oh, Mi Young; Stephan, A. Manuel; Nahm, Kee Suk

    2017-02-01

    The choice of electrolyte solvent is expected to play a key role in influencing the lithium-oxygen battery performance. The electrochemical performances of three electrolytes composed of lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) salt and different solvents namely, ethylene carbonate/propylene carbonate (EC/PC), tetra ethylene glycol dimethyl ether (TEGDME) and dimethyl sulfoxide (DMSO) are investigated by assembling lithium oxygen cells. The electrolyte composition significantly varied the specific capacity of the battery. The choice of electrolyte also influences the overpotential, cycle life, and rechargeability of the battery. Electrochemical impedance spectra, cyclic voltammetry, and chronoamperometry were utilized to determine the reversible reactions associated with the air cathode.

  20. Material Use in the United States - Selected Case Studies for Cadmium, Cobalt, Lithium, and Nickel in Rechargeable Batteries

    Science.gov (United States)

    Wilburn, David R.

    2008-01-01

    This report examines the changes that have taken place in the consumer electronic product sector as they relate to (1) the use of cadmium, cobalt, lithium, and nickel contained in batteries that power camcorders, cameras, cell phones, and portable (laptop) computers and (2) the use of nickel in vehicle batteries for the period 1996 through 2005 and discusses forecasted changes in their use patterns through 2010. Market penetration, material substitution, and technological improvements among nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li-ion) rechargeable batteries are assessed. Consequences of these changes in light of material consumption factors related to disposal, environmental effects, retail price, and serviceability are analyzed in a series of short case studies.

  1. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  2. Bifunctional Membrane for High Energy, Long Shelf Life Li-S Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The adoption of high energy lithium sulfur batteries hinges on significant improvements in charge/recharge cycle life. Cycle life is limited by migration of...

  3. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  4. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  5. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.

    Science.gov (United States)

    Yu, Seung-Ho; Feng, Xinran; Zhang, Na; Seok, Jeesoo; Abruña, Héctor D

    2018-02-20

    The need/desire to lower the consumption of fossil fuels and its environmental consequences has reached unprecedented levels in recent years. A global effort has been undertaken to develop advanced renewable energy generation and especially energy storage technologies, as they would enable a dramatic increase in the effective and efficient use of renewable (and often intermittent) energy sources. The development of electrical energy storage (EES) technologies with high energy and power densities, long life, low cost, and safe use represents a challenge from both the fundamental science and technological application points of view. While the advent and broad deployment of lithium-ion batteries (LIBs) has dramatically changed the EES landscape, their performance metrics need to be greatly enhanced to keep pace with the ever-increasing demands imposed by modern consumer electronics and especially the emerging automotive markets. Current battery technologies are mostly based on the use of a transition metal oxide cathode (e.g., LiCoO 2 , LiFePO 4 , or LiNiMnCoO 2 ) and a graphite anode, both of which depend on intercalation/insertion of lithium ions for operation. While the cathode material currently limits the battery capacity and overall energy density, there is a great deal of interest in the development of high-capacity cathode materials as well as anode materials. Conversion reaction materials have been identified/proposed as potentially high-energy-density alternatives to intercalation-based materials. However, conversion reaction materials react during lithiation to form entirely new products, often with dramatically changed structure and chemistry, by reaction mechanisms that are still not completely understood. This makes it difficult to clearly distinguish the limitations imposed by the mechanism and practical losses from initial particle morphology, synthetic approaches, and electrode preparations. Transition metal compounds such as transition metal oxides

  6. Materialographic preparation of lithium-carbon intercalation compounds; Materialographische Praeparation von Lithium-Kohlenstoff-Einlagerungsverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Druee, Martin; Seyring, Martin; Grasemann, Aaron [Jena Univ. (Germany). Otto Schott Institute of Materials Research; Rettenmayr, Markus [Center for Energy and Environmental Chemistry, Jena (Germany)

    2016-12-15

    The materialographic investigation of anode materials for rechargeable lithium ion batteries is a significant step in the understanding and development of electrode materials, but made dramatically more difficult due to the high reactivity of the materials involved. In this work a method is presented which permits the metallographic preparation of the lithium-carbon intercalation compounds used as anode materials in today's rechargeable lithium ion batteries, and which allows the details of their microstructures to be contrasted. After classic, but absolutely water free, preparation in a protective gas atmosphere, the final stage of preparation is carried out using both ion beam polishing and manual polishing on a stationary polishing disc, whereby no significant differences of the quality of the microstructural images obtained is apparent.

  7. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  8. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie

    2011-07-12

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge-charge tests. The results indicate that this novel type of nanosized Mn3O4 exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles. © 2011 American Chemical Society.

  9. Indicative energy technology assessment of advanced rechargeable batteries

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Hazeldine, Tom

    2015-01-01

    Highlights: • Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated. • Energy, environmental, economic, and technical appraisal techniques were employed. • Li-Ion Polymer (LIP) batteries exhibited the most attractive energy and power metrics. • Lithium-Ion batteries (LIB) and LIP batteries displayed the lowest CO 2 and SO 2 emissions per kW h. • Comparative costs for LIB, LIP and ZEBRA batteries were estimated against Nickel–Cadmium cells. - Abstract: Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated in terms of various energy, environmental, economic, and technical criteria. Their suitability for different applications, such as electric vehicles (EV), consumer electronics, load levelling, and stationary power storage, have also been examined. In order to gain a sense of perspective regarding the performance of the ARBT [including Lithium-Ion batteries (LIB), Li-Ion Polymer (LIP) and Sodium Nickel Chloride (NaNiCl) {or ‘ZEBRA’} batteries] they are compared to more mature Nickel–Cadmium (Ni–Cd) batteries. LIBs currently dominate the rechargeable battery market, and are likely to continue to do so in the short term in view of their excellent all-round performance and firm grip on the consumer electronics market. However, in view of the competition from Li-Ion Polymer their long-term future is uncertain. The high charge/discharge cycle life of Li-Ion batteries means that their use may grow in the electric vehicle (EV) sector, and to a lesser extent in load levelling, if safety concerns are overcome and costs fall significantly. LIP batteries exhibited attractive values of gravimetric energy density, volumetric energy density, and power density. Consequently, they are likely to dominate the consumer electronics market in the long-term, once mass production has become established, but may struggle to break into other sectors unless their charge/discharge cycle life and cost are improved

  10. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan; McDowell, Matthew T.; Jackson, Ariel; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2010-01-01

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode

  11. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  12. Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.

    Science.gov (United States)

    Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung

    2017-04-12

    The LiFePO 4 surface is coated with AlF 3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO 4 and the aqueous electrolyte (1 M Li 2 SO 4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO 4 by 1 wt % AlF 3 has a high discharge capacity of 132 mAh g -1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO 4 has a specific capacity of 123 mAh g -1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF 3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF 3 coating material has good compatibility with the LiFePO 4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO 4 material in aqueous electrolyte solutions.

  13. High-performance lithium battery anodes using silicon nanowires.

    Science.gov (United States)

    Chan, Candace K; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A; Cui, Yi

    2008-01-01

    There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

  14. Inhibition of anodic corrosion of aluminium cathode current collector on recharging in lithium imide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianming; Yasukawa, Eiki; Mori, Shoichiro [Tsukuba Research Center, Mitsubishi Chemical Corp., Ibaraki (Japan)

    2000-07-01

    Pitting corrosion of aluminum as cathode current collector for lithium rechargeable batteries was found to take place at potential positive of 3.5 V in 1 mol dm {sup -3} LiN(SO{sub 2}CF{sub 3}){sub 2} /EC + DME (1:1) electrolyte. The corrosion mechanism of aluminum in the presence of LiN(SO{sub 2}CF{sub 3}){sub 2} was proposed, and three methods were deduced to inhibit the aluminum corrosion based on this mechanism. As a result, an additive of lithium salts based on perfluorinated inorganic anions, especially LiPF{sub 6}, was found to inhibit the aluminum corrosion to a certain extent by forming a protective film on aluminum surface. The oxidation stability of aluminum in LiN(SO{sub 2}CF{sub 3}){sub 2} -containing electrolytes depended strongly on the solvent structure. The ether solvents such as tetrahydrofuran (THF) and dimethoxyethane (DME) were effective in preventing aluminum corrosion due to their low dielectric constants. Furthermore, LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} salt with a larger anion than that of LiN(SO{sub 2}CF{sub 3}){sub 2} was evaluated and good oxidation stability of aluminum was obtained regardless of the kind of solvents. (Author)

  15. Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Alfaruqi, Muhammad Hilmy; Rai, Alok Kumar; Mathew, Vinod; Jo, Jeonggeun; Kim, Jaekook

    2015-01-01

    ZnMn 2 O 4 /C nanoparticles are synthesized by one step polyol assisted pyro-synthesis for use as the anode in rechargeable lithium ion batteries without any post heat treatment. The as-prepared ZnMn 2 O 4 /C is tetragonal with a spherical particle size in the range of 10–30 nm. Electrochemical measurements were performed using the as-prepared powders as the active material for a lithium-ion cell. The nanoparticle electrode delivered an initial charge capacity of 666.1 mAh g −1 and exhibited a capacity retention of ∼81% (539.4 mAh g −1 ) after 50 cycles. The capacity enhancement in the as-prepared ZnMn 2 O 4 /C may be explained on the basis of the polyol medium that enables to develop a sufficient carbon network that can act as electrical conduits during electrochemical reactions. The carbon network appears to enhance the particle-connectivity and hence improve the electronic conductivities

  16. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di; Hiralal, Pritesh; Wang, Haolan; Emrah Unalan, Husnu; Rouvala, Markku; Alexandrou, Ioannis; Andrew, Piers; Ryhä nen, Tapani; Amaratunga, Gehan A.J.

    2013-01-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable

  17. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  18. Surface passivation: a new way to reduce self-output in LiMn{sub 2}O{sub 4}/Li lithium ion rechargeable batteries; Passivation de surface: une nouvelle voie pour reduire l`autodecharge dans les batteries rechargeables a ions lithium LiMn{sub 2}O{sub 4}/Li

    Energy Technology Data Exchange (ETDEWEB)

    Sigala, C.; Blyr, A.; Tarascon, J.M. [Amiens Univ., 80 (France). Laboratoire de Reactivite et de Chimie des Solides; Amatucci, G. [Bellcore, (United States); Alphonse, P. [Toulouse-3 Univ., 31 (France). Laboratoire de Chimie des Materiaux Inorganiques

    1996-12-31

    The new generation of performing rechargeable lithium-ion batteries (``rocking-chair``-type) are penalized by important self-output phenomena linked with the use of highly oxidizing positive electrodes. In order to limit this problem in LiMn{sub 2}O{sub 4}/C batteries, two different passivation techniques were used in order to limit the surface contact between the positive electrode and the electrolyte. Thanks to these treatments, a significant reduction of the percentage of irreversible capacity losses is effectively observed. (J.S.) 3 refs.

  19. Surface passivation: a new way to reduce self-output in LiMn{sub 2}O{sub 4}/Li lithium ion rechargeable batteries; Passivation de surface: une nouvelle voie pour reduire l`autodecharge dans les batteries rechargeables a ions lithium LiMn{sub 2}O{sub 4}/Li

    Energy Technology Data Exchange (ETDEWEB)

    Sigala, C; Blyr, A; Tarascon, J M [Amiens Univ., 80 (France). Laboratoire de Reactivite et de Chimie des Solides; Amatucci, G [Bellcore, (United States); Alphonse, P [Toulouse-3 Univ., 31 (France). Laboratoire de Chimie des Materiaux Inorganiques

    1997-12-31

    The new generation of performing rechargeable lithium-ion batteries (``rocking-chair``-type) are penalized by important self-output phenomena linked with the use of highly oxidizing positive electrodes. In order to limit this problem in LiMn{sub 2}O{sub 4}/C batteries, two different passivation techniques were used in order to limit the surface contact between the positive electrode and the electrolyte. Thanks to these treatments, a significant reduction of the percentage of irreversible capacity losses is effectively observed. (J.S.) 3 refs.

  20. Development of new anodes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G. [Argonne National Laboratory, Argonne, IL (United States)

    2001-10-01

    Lithium ion batteries have been introduced in the early 1990s by Sony Corporation. Ever since their introduction carbonaceous materials have received considerable attention for use as anodes because of their potential safety and reliability advantages. Natural graphite, cokes, carbon fibres, non-graphitizable carbon, and pyrolytic carbon have been used as sources for carbon materials. Recently metal alloys and metal oxides have been studied as alternatives to carbon as negative electrodes in lithium-ion cells. This paper reviews the performance of some of the carbonaceous materials used in lithium-ion batteries as well as some of the new metallic alloys of aluminum, silica, selenium, lead, bismuth, antimony and arsenic, as alternatives to carbon as negative electrodes in lithium-ion batteries. It is concluded that while some of these materials are promising, practical applications will continue to be limited until after the volume expansion and the irreversibility problems are resolved. 50 refs., 5 figs.

  1. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  2. CuCr2O4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries

    Science.gov (United States)

    Liu, Jiandi; Zhao, Yanyan; Li, Xin; Wang, Chunge; Zeng, Yaping; Yue, Guanghui; Chen, Qiang

    2018-06-01

    Rechargeable lithium-oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium-oxygen batteries (LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component. Hence, we aim to demonstrate that CuCr2O4@rGO (CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g-1 at a current density of 200 mA g-1. The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO.[Figure not available: see fulltext.

  3. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode.

    Science.gov (United States)

    Sun, Fu; Huang, Kai; Qi, Xiang; Gao, Tian; Liu, Yuping; Zou, Xianghua; Wei, Xiaolin; Zhong, Jianxin

    2013-09-21

    We have successfully fabricated a free-standing Si-re-G (reduced graphene) alternating stratum structure composite through a repeated process of filtering liquid exfoliated graphene oxide and uniformly dispersed Si solution, followed by the reduction of graphene oxide. The as-prepared free-standing flexible alternating stratum structure composite was directly evaluated as the anode for rechargeable lithium half-cells without adding any polymer binder, conductive additives or using current collectors. The half cells based on this new alternating structure composite exhibit an unexpected capacity of 1500 mA h g(-1) after 100 cycles at 1.35 A g(-1). Our rationally proposed strategy has incorporated the long cycle life of carbon and the high lithium-storage capacity of Si into one entity using the feasible and scalable vacuum filtration technique, rendering this new protocol as a readily applicable means of addressing the practical application challenges associated with the next generation of rechargeable lithium-ion batteries.

  4. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  5. Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells

    International Nuclear Information System (INIS)

    Srinivasan, Rengaswamy; Carkhuff, Bliss G.; Butler, Michael H.; Baisden, Andrew C.

    2011-01-01

    We demonstrate, in three different rechargeable lithium-ion cells, the existence of an intrinsic relationship between a cell's internal temperature and a readily measurable electrical parameter, namely the phase shift between an applied sinusoidal current and the resulting voltage. The temperature range examined spanned from -20 to 66 deg. C. The optimum single frequency for the phase measurement is in the 40-100 Hz range, allowing for a measurement time of much less than a second; the phase shift in this range depends predominantly on temperature, and is almost completely independent of the state-of-charge. Literature reports suggest that the observed dependence of the phase shift on temperature arises from the ionic conduction of the so-called solid-electrolyte-interphase layer between the graphite anode and the electrolyte. A meter measuring the phase shift across this interphase is analogous to a thermometer reporting the temperature, thereby providing feedback for rapid corrections of any operating conditions that might lead to the catastrophic destruction of the cell. This level of monitoring and control is distinctly different from the present safety-enabling mechanisms: typically positive thermal coefficient ceramics/plastics, or 'shutdown' separators based on polyethylene that act to often permanently shut down current flow through the cell.

  6. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  7. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  8. Symposium on Rechargeable Lithium Batteries, Hollywood, FL, Oct. 19-24, 1989, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, S.; Koch, V.R.; Owens, B.B.; Smyrl, W.H.; (JPL, Pasadena, CA; Covalent Associates, Inc., Woburn, MA; Minnesota, University, Minneapolis)

    1990-01-01

    Recent advances in the technology and applications of rechargeable Li cells are discussed in reviews and reports. A general overview of the field is provided, and sections are devoted to organic electrolyte systems, polymeric electrolyte systems, inorganic electrolytes systems, and molten-salt electrolytes. Particular attention is given to electrolyte stabilization, the effects of organic additives on electrolyte performance, a cycle-life sensor, consumer-product applications, in situ measurements of gas evolution in Li secondary cells, ultrathin polymer cathodes, electrochemical growth of conducting polymers, and sealing Li/FeS(x) cells for a bipolar battery.

  9. Symposium on Rechargeable Lithium Batteries, Hollywood, FL, Oct. 19-24, 1989, Proceedings

    Science.gov (United States)

    Subbarao, S.; Koch, V. R.; Owens, B. B.; Smyrl, W. H.

    Recent advances in the technology and applications of rechargeable Li cells are discussed in reviews and reports. A general overview of the field is provided, and sections are devoted to organic electrolyte systems, polymeric electrolyte systems, inorganic electrolytes systems, and molten-salt electrolytes. Particular attention is given to electrolyte stabilization, the effects of organic additives on electrolyte performance, a cycle-life sensor, consumer-product applications, in situ measurements of gas evolution in Li secondary cells, ultrathin polymer cathodes, electrochemical growth of conducting polymers, and sealing Li/FeS(x) cells for a bipolar battery.

  10. Lithium electrode and an electrical energy storage device containing the same

    Science.gov (United States)

    Lai, San-Cheng

    1976-07-13

    An improved lithium electrode structure comprises an alloy of lithium and silicon in specified proportions and a supporting current-collecting matrix in intimate contact with said alloy. The lithium electrode of the present invention is utilized as the negative electrode in a rechargeable electrochemical cell.

  11. Evolution of Surface Temperature of a 13 Amp Hour Nano Lithium-Titanate Battery Cell under Fast Charging

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    Lithium-ion batteries have already gained acceptability for Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) applications because of several reasons such as high theoretical capacity, their cycle-life, and high specific energy density. The intention of this experimental research...... is to study the surface temperature evolution of a 13 Ah Nano Lithium-Titanate battery cell for the usage of rechargeable energy storage system under fast charging conditions. The nominal voltage of the cell is 2.26V and the nominal capacity is 13.4 Ah. In this research, contact thermocouples were employed...

  12. A lithium-oxygen battery with a long cycle life in an air-like atmosphere.

    Science.gov (United States)

    Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin

    2018-03-21

    Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

  13. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  14. The cycle life chemistry of ambient-temperature secondary lithium cells

    Science.gov (United States)

    Somoano, R.; Carter, B. J.; Subba Rao, S.; Shen, D.; Yen, S. P. S.

    1985-01-01

    The Jet Propulsion Laboratory is involved in a NASA-sponsored research program to demonstrate the feasibility of ambient-temperature secondary lithium batteries for geosynchronous space applications. Encouraging cycle life has been demonstrated in sealed, cathode-limited laboratory cells. However, the cell capacity declines with cycle life. The results of recent studies of the lithium electrode passivation chemistry, and of conductive diluents for TiS2 cathodes and their possible contribution to capacity decline, are here presented. Technical issues associated with the unique operational requirements of a geosynchronous mission are also described.

  15. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  16. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.

    Science.gov (United States)

    Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide M; Zhang, Heng; Armand, Michel

    2017-11-27

    Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN 3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO 3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lithium Carbon Monofluoride: The Next Primary Chemistry for Soldier Portable Power Sources

    National Research Council Canada - National Science Library

    Suszko, Arek

    2006-01-01

    .... Current lithium-ion rechargeable battery technologies have a specific energy of 170 Watthours/ kilogram and state-of-the-art primary lithium-based systems have a specific energy approaching 200 Watt-hours/kilogram...

  18. Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Yang, Shi-Ze; Gagnon, Catherine; Gariépy, Vincent; Laul, Dharminder; Zhu, Wen; Veillette, René; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-01

    High-performance and long-cycling rechargeable lithium-ion batteries have been in steadily increasing demand for the past decades. Nevertheless, the two dominant anodes at the moment, graphite and L4T5O12, suffer from a safety issue of lithium plating (operating voltage at ∼ 0.1 V vs. Li+/Li) and low capacity (175 mAh/g), respectively. Here, we report LiNi1/3Co1/3Mn1/3O2 as an alternative anode material which has a working voltage of ∼1.1 V and a capacity as high as 330 mAh/g at the current rate of C/15. Symmetric cells with both electrodes containing LiNi1/3Co1/3Mn1/3O2 can deliver average discharge voltage of 2.2 V. In-situ XRD, HRTEM and first principles calculations indicate that the reaction mechanism of a LiNi1/3Co1/3Mn1/3O2 anode is comprised mainly of conversion. Both the fundamental understanding and practical demonstrations suggest that LiNi1/3Co1/3Mn1/3O2 is a promising negative electrode material for lithium-ion batteries.

  19. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  20. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  1. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying; Das, Shyamal K.; Moganty, Surya S.; Archer, Lynden A.

    2012-01-01

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes

  2. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang

    2017-08-29

    Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.

  3. Advances in electrode materials for Li-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui [China Academy of Space Technology (CAST), Beijing (China); Mao, Chengyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jianlin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Chen, Ruiyong [Korea Inst. of Science and Technology (KIST), Saarbrucken (Germany); Saarland Univ., Saarbrucken (Germany)

    2017-07-05

    Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and new tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.

  4. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  6. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangxing; Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S. [Department of Chemical & amp; Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (United States)

    2006-10-27

    Electrochemical and rheological properties are reported of composite polymer electrolytes (CPEs) consisting of dual-functionalized fumed silica with methacrylate and octyl groups+low-molecular weight poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, lithium imide)+butyl methacrylate (BMA). The role of butyl methacrylate, which aids in formation of a crosslinked network by tethering adjacent fumed silica particles, on rheology and electrochemistry is examined together with the effects of fumed silica surface group, fumed silica weight percent, salt concentration, and solvent molecular weight. Chemical crosslinking of the fumed silica with 20% BMA shows a substantial increase in the elastic modulus of the system and a transition from a liquid-like/flocculated state to an elastic network. In contrast, no change in lithium transference number and only a modest decrease (factor of 2) on conductivity of the CPE are observed, indicating that a crosslinked silica network has minimal effect on the mechanism of ionic transport. These trends suggest that the chemical crosslinks occur on a microscopic scale, as opposed to a molecular scale, between adjacent silica particles and therefore do not impede the segmental mobility of the PEGdm. The relative proportion of the methacrylate and octyl groups on the silica surface displays a nominal effect on both rheology and conductivity following crosslinking although the pre-cure rheology is a function of the surface groups. Chemical crosslinked nanocomposite polymer electrolytes offer significant higher elastic modulus and yield stress than the physical nanocomposite counterpart with a small/negligible penalty of transport properties. The crosslinked CPEs exhibit good interfacial stability with lithium metal at open circuit, however, they perform poorly in cycling of lithium-lithium cells. (author)

  7. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  8. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.; Yanga, Dennis A.; Archer, Lynden A.

    2013-01-01

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration

  9. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di

    2013-09-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

  10. NASICON Open Framework Structured Transition Metal Oxides for Lithium Batteries

    OpenAIRE

    Begam, K.M.; Michael, M.S.; Prabaharan, S.R.S.

    2010-01-01

    We identified a group of NASICON open framework structured polyanion materials and examined the materials for rechargeable lithium battery application. We found that the open framework structure of these materials facilitated easy insertion/extraction of lithium into/from their structure. We synthesized the materials in lithium-rich [Li2M2(MoO4)3] and lithium-free [LixM2(MoO4)3] (M= Ni, Co) phases, for the first time, by means of a low temperature soft-combustion technique. The soft-combustio...

  11. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge.

    Science.gov (United States)

    Najeeb, Najeeb W; Detweiler, Carrick

    2017-07-17

    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.

  12. High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode.

    Science.gov (United States)

    Wang, Yuesheng; Yang, Shi-Ze; You, Ya; Feng, Zimin; Zhu, Wen; Gariépy, Vincent; Xia, Jiexiang; Commarieu, Basile; Darwiche, Ali; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-28

    Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO 4 and amorphous FePO 4 ·2H 2 O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO 4 ·2H 2 O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO 4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO 4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO 4 ·2H 2 O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO 4 anodes commercially viable configurations for aqueous lithium-ion batteries.

  13. Synchrotron radiation-based 61Ni Mössbauer spectroscopic study of Li(Ni1/3Mn1/3Co1/3)O2 cathode materials of lithium ion rechargeable battery

    Science.gov (United States)

    Segi, Takashi; Masuda, Ryo; Kobayashi, Yasuhiro; Tsubota, Takayuki; Yoda, Yoshitaka; Seto, Makoto

    2016-12-01

    Layered rocksalt type oxides, such as Li(Ni1/3Mn1/3Co1/3)O2, are widely used as the cathode active materials of lithium-ion rechargeable batteries. Because the nickel ions are associated with the role of the charge compensation at discharge and charge, the 61Ni Mössbauer measurements at 6 K using synchrotron radiation were performed to reveal the role of Ni. The Ni ions of the active materials play two roles for the redox process between the charge and discharge states of lithium-ion batteries. Half of the total Ni ions change to the low-spin Ni3+ with Jahn-Teller distortion from the Ni2+ ions of the discharge state. The remainder exhibit low-spin state divalent Ni ions.

  14. Energetics of lithium ion battery failure

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Richard E., E-mail: richard.e.lyon@faa.gov; Walters, Richard N.

    2016-11-15

    Highlights: • First measure of anaerobic failure energy of lithium ion batteries. • Novel and simple bomb calorimeter method developed and demonstrated. • Four different cathode chemistries examined. • Full range of charged capacity used as independent variable. • Failure energy identified as primary safety hazard. - Abstract: The energy released by failure of rechargeable 18-mm diameter by 65-mm long cylindrical (18650) lithium ion cells/batteries was measured in a bomb calorimeter for 4 different commercial cathode chemistries over the full range of charge using a method developed for this purpose. Thermal runaway was induced by electrical resistance (Joule) heating of the cell in the nitrogen-filled pressure vessel (bomb) to preclude combustion. The total energy released by cell failure, ΔH{sub f}, was assumed to be comprised of the stored electrical energy E (cell potential × charge) and the chemical energy of mixing, reaction and thermal decomposition of the cell components, ΔU{sub rxn}. The contribution of E and ΔU{sub rxn} to ΔH{sub f} was determined and the mass of volatile, combustible thermal decomposition products was measured in an effort to characterize the fire safety hazard of rechargeable lithium ion cells.

  15. Reaction chemistry in rechargeable Li-O2 batteries.

    Science.gov (United States)

    Lim, Hee-Dae; Lee, Byungju; Bae, Youngjoon; Park, Hyeokjun; Ko, Youngmin; Kim, Haegyeom; Kim, Jinsoo; Kang, Kisuk

    2017-05-22

    The seemingly simple reaction of Li-O 2 batteries involving lithium and oxygen makes this chemistry attractive for high-energy-density storage systems; however, achieving this reaction in practical rechargeable Li-O 2 batteries has proven difficult. The reaction paths leading to the final Li 2 O 2 discharge products can be greatly affected by the operating conditions or environment, which often results in major side reactions. Recent research findings have begun to reveal how the reaction paths may be affected by the surrounding conditions and to uncover the factors contributing to the difficulty in achieving the reactions of lithium and oxygen. This progress report describes the current state of understanding of the electrode reaction mechanisms in Li-O 2 batteries; the factors that affect reaction pathways; and the effect of cell components such as solvents, salts, additives, and catalysts on the discharge product and its decomposition during charging. This comprehensive review of the recent progress in understanding the reaction chemistry of the Li-O 2 system will serve as guidelines for future research and aid in the development of reliable high-energy-density rechargeable Li-O 2 batteries.

  16. Synthesis and structural characterization of defect spinels in the Lithium-Manganese-Oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesised by the reaction of MnCO3 and Li2CO3 at 400...

  17. Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery

    Science.gov (United States)

    Wang, Fei; Yang, Jun; NuLi, Yanna; Wang, Jiulin

    2011-05-01

    Hedgehog-like LiCoPO4 with hierarchical microstructures is first synthesized via a simple solvothermal process in water-benzyl alcohol mixed solvent at 200 °C. Morphology and crystalline structure of the samples are characterized by scanning electron microscope, transmission electron microscopy and X-ray diffraction. The hedgehog-like LiCoPO4 microstructures in the size of about 5-8 μm are composed of large numbers of nanorods in diameter of ca. 40 nm and length of ca. 1 μm, which are coated with a carbon layer of ca. 8 nm in thickness by in situ carbonization of glucose during the solvothermal reaction. As a 5 V positive electrode material for rechargeable lithium battery, the hedgehog-like LiCoPO4 delivers an initial discharge capacity of 136 mAh g-1 at 0.1 C rate and retains its 91% after 50 cycles, showing much better electrochemical performances than sub-micrometer LiCoPO4 synthesized by conventional high-temperature solid-state reaction.

  18. Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesized by the reaction of MnCO3 and Li2CO3 at 400°C...

  19. A new, high energy rechargeable lithium ion battery with a surface-treated Li1.2Mn0.54Ni0.13Co0.13O2 cathode and a nano-structured Li4Ti5O12 anode

    International Nuclear Information System (INIS)

    Liu, Xiaoyu; Huang, Tao; Yu, Aishui

    2015-01-01

    Through elaborate design, a new rechargeable lithium ion battery has been developed by comprising a surface-treated Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode and a nano-structured Li 4 Ti 5 O 12 anode. After precondition Na 2 S 2 O 8 treatment, the initial coulombic efficiency of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode has been significantly increased and can be compatible with that of the nano-structured Li 4 Ti 5 O 12 anode. The optimization of structure and morphology for both active electrode materials result in their remarkable electrochemical performances in respective lithium half-cells. Ultimately, the rechargeable lithium ion full battery consisting of both electrodes delivers a specific capacity of 99.0 mAh g −1 and a practical energy density of 201 Wh kg −1 , based on the total weight of both active electrode materials. Furthermore, as a promising candidate in the lithium ion battery field, this full battery also achieves highly attractive electrochemical performance with high coulombic efficiency, excellent cycling stability and outstanding rate capability. Thus the proposed battery displays broad practical application prospects for next generation of high-energy lithium ion battery. - Highlights: • The Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode is surface-treated by Na 2 S 2 O 8 . • The nano-sized Li 4 Ti 5 O 12 anode is obtained by a solid-state method. • A new Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 /Li 4 Ti 5 O 12 lithium ion battery is developed. • The battery shows high coulombic efficiency, specific capacity and energy density. • The battery shows high capacity retention rate and good high-rate capability

  20. Lattice vibrations of materials for lithium rechargeable batteries II. Lithium extraction-insertion in spinel structures

    International Nuclear Information System (INIS)

    Julien, C.M.; Camacho-Lopez, M.A.

    2004-01-01

    Lithiated spinel manganese oxides with various amounts of lithium have been prepared through solid-state reaction and electrochemical intercalation and deintercalation. Local structure of the samples are studied using Raman scattering and Fourier transform infrared spectroscopy. We report vibrational spectra of lithiated manganese oxides Li x Mn 2 O 4 as a function of lithium concentration in the range 0.1≤x≤2.0. Raman and Fourier transform infrared (FTIR) spectral results indicated multiple-phase reactions when the lithium content is modified in the spinel lattice. Lattice dynamics of lithiated spinel manganese oxides have been interpreted using either a classical factor-group analysis or a local environment model. The structural modifications have been studied on the basis of vibrations of LiO 4 tetrahedral and MnO 6 octahedral units when Li/Mn≤0.5, and LiO 4 , LiO 6 , and MnO 6 structural units when Li/Mn>0.5

  1. Lithium containing manganese dioxide (composite dimensional manganese oxide-CDMO) as a cathod active material for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Nobuhiro; Noma, Toshiyuki; Teraji, Kazuo; Nakane, Ikuo; Yamamoto, Yuji; Saito, Toshihiko (Sanyo Electric Co., Ltd., Osaka, Japan)

    1989-06-05

    Manganese dioxide containing lithium ions in a solid matrix was investigated in the lithium nonaqueous cell. Li/sub x/MnO/sub 2+{delta}/ material prepared, with the thermal treatment, by the solid state reaction of manganese dioxide and lithium hydroxide, 7 to 3 in molar ratio, at the temperature of 375{sup 0}C in air for 20 hours, exhibited the rechargeability in the lithium nonaqueous cell. A discharging and changing cycle test, 0.14 or 0.26e/Mn in each of both the discharge and charge, was also made, with the use of a flat type cell, to demonstrate it in performance. Synthetic Li/sub x/MnO/sub 2+{delta}/ was discussed, in advantageous use for the secondary lithium cell, based on the discharging and charging characteristics. As a conclusion of the foregoing, composite dimensional manganese oxide is expected to be good as active material of positive electrode for the secondary lithium cell use. 11 refs., 11 figs., 3 tabs.

  2. Method for estimating capacity and predicting remaining useful life of lithium-ion battery

    International Nuclear Information System (INIS)

    Hu, Chao; Jain, Gaurav; Tamirisa, Prabhakar; Gorka, Tom

    2014-01-01

    Highlights: • We develop an integrated method for the capacity estimation and RUL prediction. • A state projection scheme is derived for capacity estimation. • The Gauss–Hermite particle filter technique is used for the RUL prediction. • Results with 10 years’ continuous cycling data verify the effectiveness of the method. - Abstract: Reliability of lithium-ion (Li-ion) rechargeable batteries used in implantable medical devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, physicians, and patients. To ensure Li-ion batteries in these devices operate reliably, it is important to be able to assess the capacity of Li-ion battery and predict the remaining useful life (RUL) throughout the whole life-time. This paper presents an integrated method for the capacity estimation and RUL prediction of Li-ion battery used in implantable medical devices. A state projection scheme from the author’s previous study is used for the capacity estimation. Then, based on the capacity estimates, the Gauss–Hermite particle filter technique is used to project the capacity fade to the end-of-service (EOS) value (or the failure limit) for the RUL prediction. Results of 10 years’ continuous cycling test on Li-ion prismatic cells in the lab suggest that the proposed method achieves good accuracy in the capacity estimation and captures the uncertainty in the RUL prediction. Post-explant weekly cycling data obtained from field cells with 4–7 implant years further verify the effectiveness of the proposed method in the capacity estimation

  3. Mechanics of high-capacity electrodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhu, Ting

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. (topical review)

  4. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    Science.gov (United States)

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  5. A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Science.gov (United States)

    Appleby, A. J.; Dhar, H. P.; Kim, Y. J.; Murphy, O. J.

    1989-01-01

    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system.

  6. A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen Wei; Wu Jinming; Tu Jiangping

    2012-01-01

    Highlights: ► We examine the electrochemical performance of cobalt oxides fabricated by solution combustion synthesis for rechargeable lithium-ion battery applications. ► The additive of NaF in precursor results in an eruption combustion mode. ► The eruption combustion leads to fluffy networks with smaller grains and more macroporous voids. ► The network contributes to higher discharge capacity, higher initial coulombic efficiency, and better cycling performance for rechargeable lithium-ion batteries. - Abstract: Low cost mass production of cobalt oxide nanoparticles with high electrochemical performance is of practical interest for rechargeable lithium-ion batteries. In this report, cobalt oxide nanoparticles were fabricated by solution combustion synthesis, with the introduction of NaF into the precursor to alter the combustion mode. The novel eruption combustion resulted in fluffy networks with smaller particles and more macroporous voids, which contributed to the higher discharge capacity, higher initial coulombic efficiency, and better cycling performance when compared with that achieved by the conventional combustion mode.

  7. Review of the Remaining Useful Life Prognostics of Vehicle Lithium-Ion Batteries Using Data-Driven Methodologies

    Directory of Open Access Journals (Sweden)

    Lifeng Wu

    2016-05-01

    Full Text Available Lithium-ion batteries are the primary power source in electric vehicles, and the prognosis of their remaining useful life is vital for ensuring the safety, stability, and long lifetime of electric vehicles. Accurately establishing a mechanism model of a vehicle lithium-ion battery involves a complex electrochemical process. Remaining useful life (RUL prognostics based on data-driven methods has become a focus of research. Current research on data-driven methodologies is summarized in this paper. By analyzing the problems of vehicle lithium-ion batteries in practical applications, the problems that need to be solved in the future are identified.

  8. Polypyrrole-encapsulated vanadium pentoxide nanowires on a conductive substrate for electrode in aqueous rechargeable lithium battery.

    Science.gov (United States)

    Liang, Chaowei; Fang, Dong; Cao, Yunhe; Li, Guangzhong; Luo, Zhiping; Zhou, Qunhua; Xiong, Chuanxi; Xu, Weilin

    2015-02-01

    Precursors of ammonium vanadium bronze (NH4V4O10) nanowires assembled on a conductive substrate were prepared by a hydrothermal method. After calcination at 360°C, the NH4V4O10 precursor transformed to vanadium pentoxide (V2O5) nanowires, which presented a high initial capacity of 135.0mA h g(-1) at a current density of 50mA g(-1) in 5M LiNO3 aqueous solution; while the specific capacity faded quickly over 50 cycles. By coating the surface of V2O5 nanowires with water-insoluble polypyrrole (PPy), the formed nanocomposite electrode exhibited a specific discharge capacity of 89.9mA h g(-1) at 50mA g(-1) (after 100 cycles). A V2O5@PPy //LiMn2O4 rechargeable lithium battery exhibited an initial discharge capacity of 95.2mA h g(-1); and after 100 cycles, a specific discharge capacity of 81.5mA h g(-1) could retain at 100mA g(-1). Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction

    Directory of Open Access Journals (Sweden)

    Haitao Liao

    2013-07-01

    Full Text Available Prognostics and remaining useful life (RUL estimation for lithium-ion batteries play an important role in intelligent battery management systems (BMS. The capacity is often used as the fade indicator for estimating the remaining cycle life of a lithium-ion battery. For spacecraft requiring high reliability and long lifetime, in-orbit RUL estimation and reliability verification on ground should be carefully addressed. However, it is quite challenging to monitor and estimate the capacity of a lithium-ion battery on-line in satellite applications. In this work, a novel health indicator (HI is extracted from the operating parameters of a lithium-ion battery to quantify battery degradation. Moreover, the Grey Correlation Analysis (GCA is utilized to evaluate the similarities between the extracted HI and the battery’s capacity. The result illustrates the effectiveness of using this new HI for fading indication. Furthermore, we propose an optimized ensemble monotonic echo state networks (En_MONESN algorithm, in which the monotonic constraint is introduced to improve the adaptivity of degradation trend estimation, and ensemble learning is integrated to achieve high stability and precision of RUL prediction. Experiments with actual testing data show the efficiency of our proposed method in RUL estimation and degradation modeling for the satellite lithium-ion battery application.

  10. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries

    International Nuclear Information System (INIS)

    Barchasz, Céline; Leprêtre, Jean-Claude; Patoux, Sébastien; Alloin, Fannie

    2013-01-01

    Highlights: ► Liquid electrolyte composition for lithium/sulfur secondary batteries. ► Carbonate-based electrolytes prove not to be compatible with the sulfur electrode. ► Poor electrochemical performances related to low polysulfide solubility. ► Increase in the discharge capacity using ether solvents with high solvating ability such as PEGDME. ► Evidence of DIOX polymerization during cycling. -- Abstract: The lithium/sulfur (Li/S) battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g −1 . However, the system suffers from several drawbacks: poor active material conductivity, active material dissolution, and use of the highly reactive lithium metal electrode. In this study, we investigated the electrolyte effects on electrochemical performances of the Li/S cell, by acting on the solvent composition. As conventional carbonate-based electrolytes turned out to be unusable in Li/S cells, alternative ether solvents had to be considered. Different kinds of solvent structures were investigated by changing the ether/alkyl moieties ratio to vary the lithium polysulfide solubility. This allowed to point out the importance of the solvent solvation ability on the discharge capacity. As the end of discharge is linked to the positive electrode passivation, an electrolyte having high solvation ability reduces the polysulfide precipitation and delays the positive electrode passivation

  11. Self-supported formation of needlelike Co{sub 3}O{sub 4} nanotubes and their application as lithium-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lou, X.W. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853-5201 (United States); Deng, D.; Lee, J.Y. [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Feng, J. [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301 (United States); Archer, L.A.

    2008-01-18

    A one-step, self-supported topotactic transformation approach for synthesizing electrochemically active Co{sub 3}O{sub 4} needlelike nanotubes is reported. Used as the active material in the negative electrode of a rechargeable lithium ion battery, the Co{sub 3}O{sub 4} nanotubes manifest ultrahigh Li storage capacity with improved cycle life and rate capability. These features are discussed in terms of the unique structure of the materials. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Effective Usage of Lithium Ion Batteries for Electric Vehicles

    OpenAIRE

    濱田, 耕治; ハマダ, コウジ; Koji, HAMADA

    2008-01-01

    Pure Electric Vehicles(PEV's) are promising when seen in relation to global environment. However, there is the need to solve a number of problems before PEV's become viable alternatives of transportation. For example, reduction of battery charge time, improvement of battery performance, and reduction in vehicle cost. A way to improve battery performance is to use lithium ion batteries. One problem with lithium ion batteries is with charging (recharging). It is difficult to provide a constant ...

  13. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  14. Challenges and issues facing lithium metal for solid-state rechargeable batteries

    Science.gov (United States)

    Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K.

    2017-06-01

    The commercial use of lithium metal batteries was delayed because of dendrite formation on the surface of the lithium electrode, and the difficulty finding a suitable electrolyte that has both the mechanical strength and ionic conductivity required for solid electrolytes. Recently, strategies have developed to overcome these difficulties, so that these batteries are currently an option for different applications, including electric cars. In this work, we review these strategies, and discuss the different routes that are promising for progress in the near future.

  15. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.

    Science.gov (United States)

    Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young; Seo, Dong-Hwa; Gwon, Hyeokjo; Hong, Jihyun; Goddard, William A; Kim, Hyungjun; Kang, Kisuk

    2013-07-03

    Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO2 is of particular interest because of its high solubility in organic solvents and it can react actively with O2(-•), which is the key intermediate species in Li-O2 battery reactions. In this work, we investigated the reaction mechanisms in the Li-O2/CO2 cell under various electrolyte conditions using quantum mechanical simulations combined with experimental verification. Our most important finding is that the subtle balance among various reaction pathways influencing the potential energy surfaces can be modified by the electrolyte solvation effect. Thus, a low dielectric electrolyte tends to primarily form Li2O2, while a high dielectric electrolyte is effective in electrochemically activating CO2, yielding only Li2CO3. Most surprisingly, we further discovered that a high dielectric medium such as DMSO can result in the reversible reaction of Li2CO3 over multiple cycles. We believe that the current mechanistic understanding of the chemistry of CO2 in a Li-air cell and the interplay of CO2 with electrolyte solvation will provide an important guideline for developing Li-air batteries. Furthermore, the possibility for a rechargeable Li-O2/CO2 battery based on Li2CO3 may have merits in enhancing cyclability by minimizing side reactions.

  16. Electrochemical performance of a rechargeable lithium battery containing a Li Mn{sub 2} O{sub 4} cathode; Desempenho eletroquimico de uma bateria recarregavel de litio com catodo de LiMn{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Fabio A.; Ferracin, Luiz C.; Brazuna, Priscila R.; Bocchi, Nerilso [Sao Carlos Univ., SP (Brazil). Dept. de Quimica. Lab. de Pesquisas em Eletroquimica

    1999-07-01

    This paper reports the evaluation of a rechargeable lithium battery, containing a Li Mn{sub 2} O{sub 4} cathode obtained from the {epsilon}-Mn O{sub 2}, through measurements of galvanostatic charge and discharge. The cathode presented a satisfactory electrochemical performance with charge capacity of approximately 110 m A h g{sup -1}. The Teflon electrochemical cell presented satisfactory results only for the initial charge and discharge cycles.

  17. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  18. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan

    2010-04-14

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li 2S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg ?1, which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO2 cathodes and graphite anodes (∼410 Wh kg?1). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg ?1 based on the mass of the active electrode materials. © 2010 American Chemical Society.

  19. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    Science.gov (United States)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  20. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  1. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    Science.gov (United States)

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the

  2. The influence of bismuth oxide doping on the rechargeability of aqueous cells using MnO2 cathode and LiOH electrolyte

    International Nuclear Information System (INIS)

    Minakshi, Manickam; Mitchell, David R.G.

    2008-01-01

    Bi-doped manganese dioxide (MnO 2 ) has been prepared from γ-MnO 2 by physical admixture of bismuth oxide (Bi 2 O 3 ). The doping improved the cycling ability of the aqueous cell. These results are discussed and compared with the electrochemical behavior of bismuth-free MnO 2 . Batteries using the traditional potassium hydroxide (KOH) electrolyte are non-rechargeable. However, with lithium hydroxide (LiOH) as an electrolyte, the cell becomes rechargeable. Furthermore, the incorporation of bismuth into MnO 2 in the LiOH cell was found to result in significantly longer cycle life, compared with cells using undoped MnO 2 . The Bi-doped cell exhibited a greater capacity after 100 discharge cycles, than the undoped cell after just 40 cycles. X-ray diffraction and the microscopic analysis suggest that the presence of Bi 3+ ions reduces the magnitude of structural changes occurring in MnO 2 during cycling. Comparison with additives assessed in our previous studies (titanium disulfide (TiS 2 ); titanium boride (TiB 2 )) shows that the best rechargeability behavior is obtained for the current Bi-doped MnO 2 . As the size of Bi 3+ ions (0.96 A) is much larger than Mn 3+ (0.73 A) or Mn 2+ (0.67 A) they have effectively prevented the formation of non-rechargeable products

  3. Long life lithium batteries with stabilized electrodes

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  4. Lithium-ion batteries for hearing aid applications. II. Pulse discharge and safety tests

    Science.gov (United States)

    Passerini, S.; Coustier, F.; Owens, B. B.

    Rechargeable lithium-ion batteries were designed to meet the power requirements of hearing aid devices (HADs). The batteries were designed in a 312-button cell size, compatible with existing hearing aids. The batteries were tested to evaluate the design and the electrochemical performance, as they relate to a typical hearing aid application. The present report covers the pulse capabilities, cycle life and preliminary safety tests. The results are compared with other battery chemistries: secondary lithium-alloy and nickel-metal hydride batteries and primary Zn-air batteries. The cell AC impedance was stable over the frequency range between 1 and 50 kHz, ranging between 5 Ω at the higher frequency and 12 Ω at the lower extreme. Pulse tests were consistent with these values, as the cells were capable of providing a series of 100 mA pulses of 10-s duration. The safety tests suggest that the design is intrinsically safe with respect to the most common types of abuse conditions.

  5. Synchrotron radiation-based {sup 61}Ni Mössbauer spectroscopic study of Li(Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3})O{sub 2} cathode materials of lithium ion rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Segi, Takashi, E-mail: segi.takashi@kki.kobelco.com [Kobelco Research Institute, Inc. (Japan); Masuda, Ryo; Kobayashi, Yasuhiro [Kyoto University, Research Reactor Institute (Japan); Tsubota, Takayuki [Kobelco Research Institute, Inc. (Japan); Yoda, Yoshitaka [Japan Synchrotron Radiation Research Institute, Research and Utilization Division (Japan); Seto, Makoto [Kyoto University, Research Reactor Institute (Japan)

    2016-12-15

    Layered rocksalt type oxides, such as Li(Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3})O{sub 2}, are widely used as the cathode active materials of lithium-ion rechargeable batteries. Because the nickel ions are associated with the role of the charge compensation at discharge and charge, the {sup 61}Ni Mössbauer measurements at 6 K using synchrotron radiation were performed to reveal the role of Ni. The Ni ions of the active materials play two roles for the redox process between the charge and discharge states of lithium-ion batteries. Half of the total Ni ions change to the low-spin Ni {sup 3+} with Jahn-Teller distortion from the Ni {sup 2+} ions of the discharge state. The remainder exhibit low-spin state divalent Ni ions.

  6. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Lu, Ang-Yu; Wahyudi, Wandi; Li, Lain-Jong

    2016-01-01

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy

  7. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    Science.gov (United States)

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  8. 77 FR 2437 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Rechargeable Lithium...

    Science.gov (United States)

    2012-01-18

    ... delivery of the affected aircraft. In addition, the substance of these special conditions has been subject... Ni-Cd and lead-acid cells, some types of lithium-battery cells use flammable liquid electrolytes. The... lithium batteries. The flammable-fluid fire-protection requirements of Sec. 25.863. In the past, this rule...

  9. Discarded cell phone lithium ion batteries state of health quick method analysis by galvanostatic intermittent titration technique (GITT concept

    Directory of Open Access Journals (Sweden)

    Paulo Rogério Catarini

    2009-03-01

    Full Text Available The state of health (SOH is a important evaluation parameter to rechargeable batteries, because determine its cycle life and help on electric devices supplied by batteries maintenance. In this work the lithium ion discards cell phones batteries state of health and apparent diffusion coefficient (Dap were measured and correlated which purpose is diminish the batteries analyze time. The apparent diffusion coefficient is a ionic diffusion coefficient modification from GITT technique. The SOH and Dap correlation is well behaved, disclosing a cubic dependency. The time analyze was reduced by more than 1 h.

  10. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    Science.gov (United States)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  11. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Managed Aquifer Recharge in Italy: present and prospects.

    Science.gov (United States)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  13. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan

    2015-11-17

    © 2015 American Chemical Society. ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum.Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost

  14. Evaluation of Lithium-ion Battery Second Life Performance and Degradation

    DEFF Research Database (Denmark)

    Martinez-Laserna, Egoitz; Sarasketa-Zabala, Elixabet; Stroe, Daniel Loan

    2016-01-01

    the effects of lithium-ion (Li-ion) battery State of Health (SOH) and ageing history over the second life performance on two different applications: a residential demand management application and a power smoothing renewable integration application. The performance and degradation of second life batteries......Reusing electric vehicle batteries once they have been retired from the automotive application is stated as one of the possible solutions to reduce electric vehicle costs. Many publications in the literature have analyzed the economic viability of such a solution, and some car manufacturers have...... recently started running several projects to demonstrate the technical viability of the so-called battery second life. Nevertheless, the performance and degradation of second life batteries remain an unknown topic and one of the biggest gaps in the literature. The present work aims at evaluating...

  15. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life

    KAUST Repository

    Yao, Yan; McDowell, Matthew T.; Ryu, Ill; Wu, Hui; Liu, Nian; Hu, Liangbing; Nix, William D.; Cui, Yi

    2011-01-01

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major

  16. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    International Nuclear Information System (INIS)

    Li Chilin; Fu Zhengwen

    2008-01-01

    Nano-sized CuWO 4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO 4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO 4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO 4 layers shows a high-volume rate capacity of 145 μAh/cm 2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu 2+ /Cu 0 , additional capacity can be achieved by the reversible reactivity of (WO 4 ) 2- framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO 4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries

  17. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  18. A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Wen-An Yang

    2016-01-01

    Full Text Available Lithium-ion battery is a core component of many systems such as satellite, spacecraft, and electric vehicles and its failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Remaining useful life (RUL prediction of lithium-ion batteries before the future failure event is extremely crucial for proactive maintenance/safety actions. This study proposes a hybrid prognostic approach that can predict the RUL of degraded lithium-ion batteries using physical laws and data-driven modeling simultaneously. In this hybrid prognostic approach, the relevant vectors obtained with the selective kernel ensemble-based relevance vector machine (RVM learning algorithm are fitted to the physical degradation model, which is then extrapolated to failure threshold for estimating the RUL of the lithium-ion battery of interest. The experimental results indicated that the proposed hybrid prognostic approach can accurately predict the RUL of degraded lithium-ion batteries. Empirical comparisons show that the proposed hybrid prognostic approach using the selective kernel ensemble-based RVM learning algorithm performs better than the hybrid prognostic approaches using the popular learning algorithms of feedforward artificial neural networks (ANNs like the conventional backpropagation (BP algorithm and support vector machines (SVMs. In addition, an investigation is also conducted to identify the effects of RVM learning algorithm on the proposed hybrid prognostic approach.

  19. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations

    KAUST Repository

    Cheng, Yingchun; Nie, Anmin; Gan, Liyong; Zhang, Qingyun; Schwingenschlö gl, Udo

    2015-01-01

    Lithium, sodium and magnesium have attracted wide attention as potential ions for rechargeable batteries. The Materials Project database of high throughput first principles calculations is used to investigate the phase transitions of SnO2 during ion

  20. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  1. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Long, Dirk; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2015-10-11

    Lithium-ion cells provide the highest specific energy (>280 Wh/kg) and energy density (>600 Wh/L) rechargeable battery building block to date with the longest life. Electrode/electrolyte thermal instability and flammability of the electrolyte of Li-ion cells make them prone to catastrophic thermal runaway under some rare internal short circuit conditions. Despite extensive QC/QA, standardized industry safety testing, and over 18 years of manufacturing experience, major recalls have taken place and incidents still occur. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. The Internal Short-Circuit Instigator can be used to study types of separators, non-flammable electrolytes, electrolyte additives, fusible tabs, propagation studies, and gas generation within a cell.

  2. Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    Composites of MoS 2 and amorphous carbon are grown and self-assembled into hierarchical nanostructures via a hydrothermal method. Application of the composites as high-energy electrodes for rechargeable lithium-ion batteries is investigated. The critical roles of nanostructuring of MoS 2 and carbon composition on lithium-ion battery performance are highlighted. © 2012 The Royal Society of Chemistry.

  3. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S

    DEFF Research Database (Denmark)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3–4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable...... combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium–metal (Li–metal), lithium–oxygen (Li–O2......), and lithium–sulfur (Li–S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability....

  4. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.

    Science.gov (United States)

    Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp

    2018-01-02

    Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rechargeable lithium and sodium anodes in chloroaluminate molten salts containing thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.; Osteryoung, R.A. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry; Carlin, R.T.

    1995-11-01

    Lithium and sodium deposition-stripping studies were performed in room temperature buffered neutral chloroaluminate melts containing low concentrations of thionyl chloride (SOCl{sub 2}). The SOCl{sub 2} solute promotes high cycling efficiencies of the alkali metals in these electrolytes. Staircase cyclic voltammetry and chronopotentiometry show cycling efficiencies of approximately 90% for both lithium and sodium. High cycling efficiencies are maintained following extended exposure of the melt to the dry box atmosphere and after time delays at open circuit. The performance of the SOCl{sub 2}-promoted systems is substantially improved over previous studies in room temperature melts containing hydrogen chloride as the promoting solute.

  6. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    Science.gov (United States)

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  7. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  8. An all-solid-state lithium/polyaniline rechargeable cell

    Science.gov (United States)

    Li, Changzhi; Peng, Xinsheng; Zhang, Borong; Wang, Baochen

    1992-07-01

    The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)-epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modified PEO-ER interface exhibits good reversibility. At 50-80 C, the Li/PEO-ER-LiClO4/PAn cell shows more than 40 charge/discharge cycles, 90 percent charge/discharge efficiency, and 54 W h kg discharge energy density (on PAn weight basis) at 50 micro-A between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.

  9. Conductive polymeric compositions for lithium batteries

    Science.gov (United States)

    Angell, Charles A [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  10. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    Science.gov (United States)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  11. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chenglong; Lu, Yaxiang; Hu, Yong-Sheng; Chen, Liquan; Wang, Qidi; Li, Baohua

    2017-01-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A 2 MO 3 -family layered compounds (A  =  Li, Na; M  =  Mn 4+ , Ru 4+ , etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible. (topical review)

  12. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  13. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  14. RECOVERY GARAM LITHIUM DARI AIR ASIN (BRINE DENGAN METODA PRESIPITASI

    Directory of Open Access Journals (Sweden)

    Sumarno Sumarno

    2012-07-01

    Full Text Available Lithium demand increases as it is widely used as raw material for rechargeable battery, alloy for airplane, andfuel for fusion nuclear reactor. Lithium is an extremely reactive element, that it is never found as free element innature. Lithium compounds are found in earth crust, with very small concentration (20 – 70 ppm and totalcontent of more than 20 million tons. The biggest lithium reserve is in seawater (0,14 – 0,25 ppm andgeothermal water (7 ppm with total amount of 230 billion tons. There is no industry applies the technology torecover lithium from seawater. Having a vast sea area and abundant geothermal sources, Indonesia needs todevelop a technology to recover lithium from both sources. This research is aimed to recover lithium fromgeothermal water. The experiment was conducted using synthetic and geothermal water with lithiumconcentration range of 220 – 400 ppm, temperature range of 20 – 40°C, and mixing time range of 1 – 4 hours.The experiment was designed with 2 level factorial design. The results show that the most influencing variable ismixing time, while significant interaction amongst variables is not observed. Further experiment usinggeothermal water from Bledug Kuwu with initial lithium concentration of 400 ppm and temperature 30°Cresulted in optimum mixing time, i.e. 3 hours with 92,5% of the lithium could be recovered

  15. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    International Nuclear Information System (INIS)

    Tang, Haoqing; Zan, Lingxing; Zhu, Jiangtao; Ma, Yiheng; Zhao, Naiqin; Tang, Zhiyuan

    2016-01-01

    Lithium zinc titanate (Li_2ZnTi_3O_8) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li_2ZnTi_3O_8/La_2O_3 nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li_2ZnTi_3O_8, the Li_2ZnTi_3O_8/La_2O_3 electrode display a high specific capacity of 188.6 mAh g"−"1 and remain as high as 147.7 mAh g"−"1 after 100 cycles at 2.0 A g"−"1. Moreover, a reversible capacity of 76.3 mAh g"−"1 can be obtained after 1000 cycles at 2.0 A g"−"1 and the retention is 42.7% for Li_2ZnTi_3O_8/La_2O_3, which is much higher than un-coated Li_2ZnTi_3O_8. The superior lithium storage performances of the Li_2ZnTi_3O_8/La_2O_3 can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La_2O_3 coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La_2O_3 coated Li_2ZnTi_3O_8 particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li_2ZnTi_3O_8 has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li"+).

  16. Considerations for the Thermal Modeling of Lithium-Ion Cells for Battery Analysis

    DEFF Research Database (Denmark)

    Rickman, Steven L.; Christie, Robert J.; White, Ralph E.

    Recent well-publicized events involving lithium-ion batteries in laptops, electric cars, commercial aircraft and even hover boards have raised concerns regarding thermal runaway -- a phenomenon in which stored energy in a cell is rapidly released as heat along with vented effluents. If not properly...... managed, testing has shown that thermal runaway in a single cell can propagate to other cells in a battery and may lead to a potentially catastrophic event. Lithium-ion batteries are becoming more widely used in a number of human-rated extravehicular activity (EVA) space applications on the International...... Space Station. Thermal modeling in support of thermal runaway propagation mitigation in the Lithium-ion Rechargeable EVA Battery Assembly (LREBA) and the Lithium-on Pistol Grip Tool (LPGT) was pursued to inform design decisions and to understand the results of extensive development testing with the goal...

  17. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  18. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  19. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin

    2015-01-14

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101¯) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

  20. Remaining useful life assessment of lithium-ion batteries in implantable medical devices

    Science.gov (United States)

    Hu, Chao; Ye, Hui; Jain, Gaurav; Schmidt, Craig

    2018-01-01

    This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid data-driven/model-based method is employed for remaining useful life assessment. The method is developed on and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications exhibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules: 1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade behavior switches between multiple fade models.

  1. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  2. A Capacity Fading Model of Lithium-Ion Battery Cycle Life Based on the Kinetics of Side Reactions for Electric Vehicle Applications

    International Nuclear Information System (INIS)

    Gu, Weijun; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng

    2014-01-01

    Highlights: • Describe the aging mechanism of lithium-ion battery with electrochemical kinetics. • Establish the fading rate equation based on Eyring Equation. • The established equation is applicable to any reaction order. • Integrate the internal kinetics with external degradation characteristics. - Abstract: Battery life prediction is one of the critical issues that restrict the development of electric vehicles. Among the typical battery life models, the mechanism model focusing on the internal physical or electrochemical processes has a stronger theoretical foundation and greater accuracy. The empirical formula, which relies on the simplified mechanism, has a concise model structure and more flexibility in vehicle applications. However, the internal aging mechanism rarely correlates with the external operating characteristics. Based on the summary of the capacity fading mechanism and the reasoning of the internal kinetics of side reactions during the aging process, a lifetime model of the lithium-ion battery is established in this paper. The solutions to the vital parameters based on the external accelerated life testing results are also presented. The testing sample is a manganese oxide lithium-ion battery of 8 Ah. The validation results indicated that the life model established in this paper can describe the capacity fading law of the lithium-ion battery and the operability and accuracy for vehicle applications

  3. Anomalous Lithium Adsorption Propensity of Monolayer ...

    Indian Academy of Sciences (India)

    longer life cycle, thus an ideal candidate to replace the conventional ... tion in the development of lithium ion batteries as they ... interaction of graphene with lithium based on density ... aromatic hydrocarbons.30 Lithium doping increases.

  4. Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Hayashi, Akitoshi; Muramatsu, Hiromasa; Ohtomo, Takamasa; Hama, Sigenori; Tatsumisago, Masahiro

    2014-01-01

    Highlights: • Chemical stability in air of Li 2 S–P 2 S 5 –P 2 O 5 –ZnO composite electrolytes was examined. • A partial substitution of P 2 O 5 for P 2 S 5 decreased the rate of H 2 S generation. • The addition of ZnO to the glasses reduced the amount of H 2 S. • All-solid-state lithium cells using the developed composite electrolytes exhibited good cyclability. -- Abstract: Sulfide glasses with high Li + ion conductivity are promising solid electrolytes for all-solid-state rechargeable lithium batteries. This study specifically examined the chemical stability of Li 2 S–P 2 S 5 -based glass electrolytes in air. Partial substitution of P 2 O 5 for P 2 S 5 decreased the rate of H 2 S generation from glass exposed to air. The addition of ZnO to the Li 2 S–P 2 S 5 –P 2 O 5 glasses as a H 2 S absorbent reduced the H 2 S gas release. A composite electrolyte prepared from 90 mol% of 75Li 2 S⋅21P 2 S 5 ⋅4P 2 O 5 (mol%) glass and 10 mol% ZnO was applied to all-solid-state cells. The all-solid-state In/LiCoO 2 cell with the composite electrolyte showed good cyclability as a lithium secondary battery

  5. Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance

    KAUST Repository

    Das, Shyamal K.; Mallavajula, Rajesh; Jayaprakash, Navaneedhakrishnan; Archer, Lynden A.

    2012-01-01

    Composites of MoS 2 and amorphous carbon are grown and self-assembled into hierarchical nanostructures via a hydrothermal method. Application of the composites as high-energy electrodes for rechargeable lithium-ion batteries is investigated

  6. Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells.

    Science.gov (United States)

    Hwa, Yoon; Zhao, Juan; Cairns, Elton J

    2015-05-13

    In recent years, lithium/sulfur (Li/S) cells have attracted great attention as a candidate for the next generation of rechargeable batteries due to their high theoretical specific energy of 2600 W·h kg(-1), which is much higher than that of Li ion cells (400-600 W·h kg(-1)). However, problems of the S cathode such as highly soluble intermediate species (polysulfides Li2Sn, n = 4-8) and the insulating nature of S cause poor cycle life and low utilization of S, which prevents the practical use of Li/S cells. Here, a high-rate and long-life Li/S cell is proposed, which has a cathode material with a core-shell nanostructure comprising Li2S nanospheres with an embedded graphene oxide (GO) sheet as a core material and a conformal carbon layer as a shell. The conformal carbon coating is easily obtained by a unique CVD coating process using a lab-designed rotating furnace without any repetitive steps. The Li2S/GO@C cathode exhibits a high initial discharge capacity of 650 mA·h g(-1) of Li2S (corresponding to the 942 mA·h g(-1) of S) and very low capacity decay rate of only 0.046% per cycle with a high Coulombic efficiency of up to 99.7% for 1500 cycles when cycled at the 2 C discharge rate.

  7. Synthesis and characterization of cathode, anode and electrolyte materials for rechargeable lithium batteries

    Science.gov (United States)

    Yang, Shoufeng

    Two new classes of cathode materials were studied: iron phosphate/sulfate materials and layered manganese oxides, both of which are low cost and had shown some potential. The first class of materials have poor conductivity and cyclability. I studied a number of methods for increasing the conductivity, and determined that grinding the material with carbon black was as effective as special in-situ coatings. The optimum carbon loading was determined to be between 6 and 15 wt%. Too much carbon reduces the volumetric energy density, whereas too little significantly increased cell polarization (reduced the rate of reaction). The kinetic and thermodynamic stability of LiFePO 4 was also studied and it was determined that over discharge protection will be needed as irreversible Li3PO4 can be formed at low potentials. A novel hydrothermal synthesis method was developed, but the significant level of Fe on the Li site reduces the reaction rate too much. In the case of the layered manganese oxide, cation substitution with Co and Ni is found to be effective in avoiding Jahn-Teller effects and improving electrochemistry. A wide range of tin compounds have been suggested as lithium storage media for advanced anode materials, as tin can store over 4 Li per Sn atom. Lithium hexafluorophosphate, LiPF6, is presently the salt of choice for LiCoO2 batteries, but it is expensive and dissolves some manganese compounds. The lithium bis(oxolato)borate (BOB) salt was recently reported, and I made a study of its use in cells with the LiFePO4 cathode and the tin anode. During its synthesis, it became clear that LiBOB is very reactive with many solvents, and these complexes were characterized to better understand this new material. In LiBOB the lithium is five coordinated, an unstable configuration for the lithium ion so that water and many other solvents rapidly react to make a six coordination. Only in the case of ethylene carbonate was the lithium found to be four coordinated. The Li

  8. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  9. Thin films of lithium manganese oxide spinel as cathode materials for secondary lithium batteries

    International Nuclear Information System (INIS)

    Shui, J.L.; Jiang, G.S.; Xie, S.; Chen, C.H.

    2004-01-01

    The miniaturization of rechargeable lithium-ion batteries requires high quality thin-film electrodes. Electrostatic spray deposition (ESD) technique was used to fabricate LiMn 2 O 4 thin-film electrodes with three different morphologies: sponge-like porous, fractal-like porous, and dense structures. X-ray diffraction (XRD) and scanning electron microscopy were used to analyze the structures of the electrodes. These electrodes were made into coin cells against metallic lithium for electrochemical characterization. Galvanostatic cycling of the cells revealed different rate capability for the cells with LiMn 2 O 4 electrodes of different morphologies. It is found that the cells with LiMn 2 O 4 electrodes of porous, especially the sponge-like porous, morphology better rate capability than those with dense LiMn 2 O 4 electrodes. Electrochemical impedance spectroscopy (EIS) study indicates that the large surface area of the porous electrodes should be attributed to the smaller interfacial resistance and better rate capability

  10. Lithium-ion batteries with intrinsic pulse overcharge protection

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  11. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    Science.gov (United States)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  12. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life

    KAUST Repository

    Yao, Yan

    2011-07-13

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g-1 with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure. © 2011 American Chemical Society.

  13. A new, high energy rechargeable lithium ion battery with a surface-treated Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode and a nano-structured Li{sub 4}Ti{sub 5}O{sub 12} anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoyu; Huang, Tao; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2015-11-05

    Through elaborate design, a new rechargeable lithium ion battery has been developed by comprising a surface-treated Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode and a nano-structured Li{sub 4}Ti{sub 5}O{sub 12} anode. After precondition Na{sub 2}S{sub 2}O{sub 8} treatment, the initial coulombic efficiency of Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode has been significantly increased and can be compatible with that of the nano-structured Li{sub 4}Ti{sub 5}O{sub 12} anode. The optimization of structure and morphology for both active electrode materials result in their remarkable electrochemical performances in respective lithium half-cells. Ultimately, the rechargeable lithium ion full battery consisting of both electrodes delivers a specific capacity of 99.0 mAh g{sup −1} and a practical energy density of 201 Wh kg{sup −1}, based on the total weight of both active electrode materials. Furthermore, as a promising candidate in the lithium ion battery field, this full battery also achieves highly attractive electrochemical performance with high coulombic efficiency, excellent cycling stability and outstanding rate capability. Thus the proposed battery displays broad practical application prospects for next generation of high-energy lithium ion battery. - Highlights: • The Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode is surface-treated by Na{sub 2}S{sub 2}O{sub 8}. • The nano-sized Li{sub 4}Ti{sub 5}O{sub 12} anode is obtained by a solid-state method. • A new Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2}/Li{sub 4}Ti{sub 5}O{sub 12} lithium ion battery is developed. • The battery shows high coulombic efficiency, specific capacity and energy density. • The battery shows high capacity retention rate and good high-rate capability.

  14. Lithium as an adjunct to radioiodine therapy in Graves' disease for prolonging the intrathyroidal effective half-life of radioiodine. Useful or not?

    Energy Technology Data Exchange (ETDEWEB)

    Dunkelmann, S.; Kuenstner, H.; Nabavi, E.; Eberlein, U.; Groth, P.; Schuemichen, C. [Rostock Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin, Zentrum fuer Radiologie

    2006-07-01

    Aim: Evaluation of intrathyroidal kinetics of radioiodine with and without lithium as adjunct with respect to the increase in radiation dose delivered to the thyroid. Patients, methods: 267 patients in three groups were included in the study. Group I with 227 patients served as control group, Group II with 21 patients and Group III with 19 patients were distinguished by an intrathyroidal half-life of radioiodine below 3.5 days in the diagnostic test. Patients in Group III received 885 mg lithium carbonate a day for 2 weeks as adjunct to radioiodine therapy. Both diagnostic and therapeutic radioiodine kinetics were followed up by at least 10 uptake measurements within a minimum of 48 h. Kinetics of radioiodine were defined mathematically as balance of the thyroidal iodine intake and excretion by a two-compartment model. Results: Under therapy the maximum uptake of radioiodine was reduced by nearly 10% in all groups, in Group I, the effective half-life as well as the product of maximum uptake x effective half-life as an equivalent of radiation dose independent of thyroid volume was lowered in the same magnitude. In Group II, the energy-dose equivalent remained constant under therapy. With adjunct lithium in Group III, the effective half-life was prolonged significantly by factor 1.61{+-}0.49 and the volume-independent energy-dose equivalent by factor 1.39{+-}0.37. No severe side effects of lithium were observed. Conclusion: Using lithium as adjunct to radio-iodine therapy increases the radiation dose delivered to the thyroid by 39% on average and nearly 30% of radioiodine activity can be saved in these patients. Lithium is recommended in patients with very short effective half-life in the diagnostic test in order to reduce the activity required and whole-body radiation dose. (orig.)

  15. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

    Science.gov (United States)

    Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying

    2014-10-03

    With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.

  16. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations

    KAUST Repository

    Cheng, Yingchun

    2015-08-28

    Lithium, sodium and magnesium have attracted wide attention as potential ions for rechargeable batteries. The Materials Project database of high throughput first principles calculations is used to investigate the phase transitions of SnO2 during ion intercalation and extraction. Various intermediate phases are predicted to be formed during the first intercalation, whereas in later cycles other intermediate phases are encountered. The volume expansions after intercalation and extraction are analyzed. We show that different lithium and sodium oxide products found in recent experiments are due to different oxygen chemical potentials.

  17. A Foldable Lithium-Sulfur Battery.

    Science.gov (United States)

    Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil

    2015-11-24

    The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.

  18. Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-06-01

    Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10 - 4 to 4 x 10 - 2 s - 1 , the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented

  19. A Real-Time Simulink Interfaced Fast-Charging Methodology of Lithium-Ion Batteries under Temperature Feedback with Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Ali

    2018-05-01

    Full Text Available The lithium-ion battery has high energy and power density, long life cycle, low toxicity, low discharge rate, more reliability, and better efficiency compared to other batteries. On the other hand, the issue of a reduction in charging time of the lithium-ion battery is still a bottleneck for the commercialization of electric vehicles (EVs. Therefore, an approach to charge lithium-ion batteries at a faster rate is needed. This paper proposes an efficient, real-time, fast-charging methodology of lithium-ion batteries. Fuzzy logic was adopted to drive the charging current trajectory. A temperature control unit was also implemented to evade the effects of fast charging on the aging mechanism. The proposed method of charging also protects the battery from overvoltage and overheating. Extensive testing and comprehensive analysis were conducted to examine the proposed charging technique. The results show that the proposed charging strategy favors a full battery recharging in 9.76% less time than the conventional constant-current–constant-voltage (CC/CV method. The strategy charges the battery at a 99.26% state of charge (SOC without significant degradation. The entire scheme was implemented in real time, using Arduino interfaced with MATLABTM Simulink. This decrease in charging time assists in the fast charging of cell phones and notebooks and in the large-scale deployment of EVs.

  20. Influence of surface coating on structure and properties of metallic lithium anode for rechargeable Li-O2 battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Wang, Q.; Ma, Q.; Song, Q.; Chen, Q.

    2017-07-01

    Amorphous lithium phosphorous oxynitride film was coated directly on pre-treated lithium metal as anode of lithium air battery by radio-frequency sputtering technique from a Li3PO4 target. The structure and composition of modified anode was analyzed before and after charge/discharge test in a lithium-air battery, which comprises 0.5M LiNO3/TEGDME as the electrolyte and super P carbon as cathode. Batteries were galvanostatically discharged by an Arbin BT-2000 battery tester between open current voltage and 2.15V vs. Li+/Li at various current regimes ranging from 0.1–0.4mA/cm2. Compared with fresh lithium, LIPON-coated anode exhibited better electrochemical performance. Good charging efficiency of 90% at a narrower voltage gap with high ionic conductivity of 9.4×10−5S/cm was achieved through optimizing lithium pre-treated conditions, sputtering N2 flows and suitable solute for electrolyte. (Author)

  1. Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine.

    Science.gov (United States)

    Hong, Seok-Min; Etacheri, Vinodkumar; Hong, Chulgi Nathan; Choi, Seung Wan; Lee, Ki Bong; Pol, Vilas G

    2017-06-07

    Fluorocarbon (C x F y ) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g -1 and 269 mAh g -1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g -1 ) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

  2. Effect of solvent blending on cycling characteristics of lithium

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masayuki; Matsuda, Yoshiharu

    1987-07-01

    The suitability of electrolytes using mixed solvents has been examined for ambient temperature, rechargeable lithium batteries. Sulfolane (S) and dimethylsulfoxide (DMSO) have been used as base solvents because of their high permittivity, and ethers such as 1,2-dimethoxyethane (DME) have been blended as a low viscosity co-solvent. This blending has been found to yield electrolytes with a high conductivity, and maximum values are observed in solutions with 40-90 mol% ether. The cycling characteristics of lithium are also improved by blending the ethers. The coulombic efficiencies on a nickel substrate are greater than or equal to 80% in S-DME/LiPF/sub 6/ and DMSO-DME/LiPF/sub 6/ solutions. The lithium electrode characteristics are markedly dependent on the type of co-solvent ether, as well as on the electrolytic salt. The results of the conductance behaviour and the electrode characteristics are discussed in terms of ionic structure in the mixed solvent and the state of the electrode/electrolyte interphase.

  3. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  4. Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF 6 and Cyclic Carbonate Additives

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaodi [Energy; Zhang, Yaohui [Energy; Engelhard, Mark H. [Environmental; Li, Qiuyan [Energy; Zhang, Ji-Guang [Energy; Xu, Wu [Energy

    2017-11-20

    Spatial and morphology control over lithium (Li) metal nucleation/growth, as well as improving Li Coulombic efficiency (CE) are of the most challenging issues for rechargeable Li metal batteries. Here, we report that LiAsF6 and vinylene carbonate (VC) can work synergistically to address these challenges. It is revealed that AsF6- can be reduced to Li3As and LiF, which can act as seeds for Li growth and form a robust solid electrolyte interphase (SEI) layer, respectively. The addition of VC is critical because it not only enables uniform AsF6- reduction by passivating the defect sites on Cu substrate, but also improves the SEI layer flexibility during the reductive polymerization process. As a result, highly compact, uniform and dendrite-free Li film with vertically aligned columns structure can be obtained with greatly increased Li CE, and the Li metal batteries using the electrolyte with both LiAsF6 and VC additives can have much improved cycle life.

  5. Solid lithium ion conductors for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Weppner, W.

    1985-01-15

    The phase equilibria and conductivities of the LiF-LiH, LiF-LiOH, LiF-Li/sub 2/O, Li/sub 2/S-Li/sub 2/O, Li/sub 2/S-LiCl and Li/sub 2/S-LiBr systems were investigated. All ternary single phases and two-phase mixtures are solid electrolytes which are thermodynamically stable in respect of reaction with elemental lithium (anode) and at practically useful, low lithium activities (cathode). The conductivity normally increases with decreasing thermodynamic stability and vice versa. The conductivity may be optimized in the case of solid solutions by selecting a composition with a decomposition voltage just above the value required by the cathode material employed. All materials are isotropic in structure and no dendrite formation was observed. This allows their use in rechargeable, thin film electrolyte batteries.

  6. Development of novel strategies for enhancing the cycle life of lithium solid polymer electrolyte batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby D.; Urquidi-Macdonald, Mirna; Allcock, Harry; Engelhard, George; Bomberger, N.; Gao, L.; Olmeijer, D.

    2001-04-30

    Lithium/solid polymer electrolyte (Li/SPE) secondary batteries are under intense development as power sources for portable electronic devices as well as electric vehicles. These batteries offer high specific energy, high energy density, very low self-discharge rates, and flexibility in packaging; however, problems have inhibited their introduction into the marketplace. This report summarizes findings to examine processes that occur with Li/SPE secondary batteries upon cyclic charging/discharging. The report includes a detailed analysis of the impedance measured on the Li/SPE/IC and IC/SPE/IC systems. The SPE was a derivative of methoxyethoxyethoxyphosphazene (MEEP) with lithium triflate salt as the electrolyte, while the intercalated cathodes (IC) comprised mixtures of manganese dioxide, carbon powder, and MEEP as a binder. Studies on symmetrical Li/SPE/Li laminates show that cycling results in a significant expansion of the structure over the first few tens of cycles; however, no corresponding increase in the impedance was noted. The cycle life of the intercalation cathode was found to be very sensitive to the method of fabrication. Results indicate that the cycle life is due to the failure of the IC, not to the failure of the lithium/SPE interface. A pattern recognition neural network was developed to predict the cycle life of a battery from the charge/discharge characteristics.

  7. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haoqing, E-mail: tanghaoqing@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zan, Lingxing [Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn 53117 (Germany); Zhu, Jiangtao; Ma, Yiheng [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhao, Naiqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tang, Zhiyuan, E-mail: zytang46@163.com [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-05-15

    Lithium zinc titanate (Li{sub 2}ZnTi{sub 3}O{sub 8}) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li{sub 2}ZnTi{sub 3}O{sub 8}, the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} electrode display a high specific capacity of 188.6 mAh g{sup −1} and remain as high as 147.7 mAh g{sup −1} after 100 cycles at 2.0 A g{sup −1}. Moreover, a reversible capacity of 76.3 mAh g{sup −1} can be obtained after 1000 cycles at 2.0 A g{sup −1} and the retention is 42.7% for Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3}, which is much higher than un-coated Li{sub 2}ZnTi{sub 3}O{sub 8}. The superior lithium storage performances of the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La{sub 2}O{sub 3} coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La{sub 2}O{sub 3} coated Li{sub 2}ZnTi{sub 3}O{sub 8} particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li{sub 2}ZnTi{sub 3}O{sub 8} has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li{sup +}).

  8. Investigating the stability of cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Huang, Yiqing

    Lithium ion batteries are widely used in portable electronic devices and electric vehicles. However, safety is one of the most important issues for the Li-ion batteries' use. Some cathode materials, such as LiCoO 2, are thermally unstable in the charged state. Upon decomposition these cathode materials release O2, which could react with organic electrolyte, leading to a thermal runaway. Thus understanding the stability of the cathode materials is critical to the safety of lithium ion batteries. Olivine-type LiMnPO4 is a promising cathode material for lithium ion batteries because of its high energy density. We have revealed the critical role of carbon in the stability and thermal behaviour of olivine MnPO 4 obtained by chemical delithiation of LiMnPO4. (Li)MnPO 4 samples with various particle sizes and carbon contents were studied. Carbon-free LiMnPO4 obtained by solid state synthesis in O 2 becomes amorphous upon delithiation. Small amounts of carbon (0.3 wt.%) help to stabilize the olivine structure, so that completely delithiated crystalline olivine MnPO4 can be obtained. Larger amount of carbon (2 wt.%) prevents full delithiation. Heating in air, O2, or N 2 results in structural disorder (cathode materials and the electrolyte. The thermal stability of electrochemically delithiated Li0.1N 0.8C0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4 and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability is found in the order: NCA< VOPO4< MFP< FP=LiVOPO4=Li2VOPO4. Sealed capsule high pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC: DMC=1:1) between 200 and 300 °C. Finally, we characterize the lithium storage and release mechanism of V2O5 aerogels by x-ray photoelectron spectroscopy (XPS). We study the

  9. Energy storage in hybrid organic-inorganic materials hexacyanoferrate-doped polypyrrole as cathode in reversible lithium cells

    DEFF Research Database (Denmark)

    Torres-Gomez, G,; Skaarup, Steen; West, Keld

    2000-01-01

    A study of the hybrid oganic-inorganic hexacyanoferrate-polypyrrole material as a cathode in rechargeable lithium cells is reported as part of a series of functional hybrid materials that represent a new concept in energy storage. The effect of synthesis temperatures of the hybrid in the specific...

  10. Multilevel structures of Li3V2(PO4)3/phosphorus-doped carbon nanocomposites derived from hybrid V-MOFs for long-life and cheap lithium ion battery cathodes

    Science.gov (United States)

    Wang, Zhaoyang; He, Wen; Zhang, Xudong; Yue, Yuanzheng; Liu, Jinhua; Zhang, Chuanjiang; Fang, Leyong

    2017-10-01

    The Li3V2(PO4)3/phosphorus-doped carbon (LVP/P-C) nanocomposites with multilevel structures (such as spheroidal, foam, prism and flower-like structures) are synthesized via one-pot in-situ synthesis using hybrid vanadium metal-organic frameworks (V-MOFs) as precursor. The structure and morphology of the LVP/P-C nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, Raman, X-ray diffraction and element mapping. The results show that the multilevel structures are generated from the assemblies of the hybrid surfactant templates in the glass fiber drawing wastewater (GFDW) and the hybrid V-MOFs. The structure of LVP/P-C nanocomposite is controlled by V-MOFs. The nanocomposites exhibit a long service life, a discharge capacity of 65 mA h g-1 at 10 C with 90% capacity retention after 1100 cycles. The high cycling stability is attributed to the multilevel structures, which is ideal for making rechargeable lithium ion batteries. More importantly, our results have demonstrated that GFDW can be transformed into treasure of multilevel structure nanocomposites for cheap Li ion batteries.

  11. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective.

    Science.gov (United States)

    Chen, Biao; Meng, Yuhuan; Sha, Junwei; Zhong, Cheng; Hu, Wenbin; Zhao, Naiqin

    2017-12-21

    The rapidly increasing severity of the energy crisis and environmental degradation are stimulating the rapid development of photocatalysts and rechargeable lithium/sodium ion batteries. In particular, MoS 2 /TiO 2 based nanocomposites show great potential and have been widely studied in the areas of both photocatalysis and rechargeable lithium/sodium ion batteries due to their superior combination properties. In addition to the low-cost, abundance, and high chemical stability of both MoS 2 and TiO 2 , MoS 2 /TiO 2 composites also show complementary advantages. These include the strong optical absorption of TiO 2 vs. the high catalytic activity of MoS 2 , which is promising for photocatalysis; and excellent safety and superior structural stability of TiO 2 vs. the high theoretic specific capacity and unique layered structure of MoS 2 , thus, these composites are exciting as anode materials. In this review, we first summarize the recent progress in MoS 2 /TiO 2 -based nanomaterials for applications in photocatalysis and rechargeable batteries. We highlight the synthesis, structure and mechanism of MoS 2 /TiO 2 -based nanomaterials. Then, advancements and strategies for improving the performance of these composites in photocatalytic degradation, hydrogen evolution, CO 2 reduction, LIBs and SIBs are critically discussed. Finally, perspectives on existing challenges and probable opportunities for future exploration of MoS 2 /TiO 2 -based composites towards photocatalysis and rechargeable batteries are presented. We believe the present review would provide enriched information for a deeper understanding of MoS 2 /TiO 2 composites and open avenues for the rational design of MoS 2 /TiO 2 based composites for energy and environment-related applications.

  12. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.

    Science.gov (United States)

    Wang, Kai-Xue; Zhu, Qian-Cheng; Chen, Jie-Sheng

    2018-05-11

    Rechargeable aprotic lithium (Li)-O 2 batteries with high theoretical energy densities are regarded as promising next-generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round-trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li-O 2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high-performance cathode catalysts for stable Li-O 2 batteries. Perspectives on enhancing the overall electrochemical performance of Li-O 2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high-performance lithium-O 2 batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Imaging Lithium Atoms at Sub-Angstrom Resolution

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2005-01-03

    John Cowley and his group at ASU were pioneers in the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4A resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.

  14. Nanowire Electrodes for Advanced Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei; Wei, Qiulong; Sun, Ruimin; Mai, Liqiang, E-mail: mlq518@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan (China)

    2014-10-27

    Since the commercialization of lithium ion batteries (LIBs) in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism need to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate that the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reaction limit the cycling performance of LIBs. Based on the in situ observations, some feasible optimization strategies, including prelithiation, coaxial structure, nanowire arrays, and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some “beyond Li-ion” batteries, such as Li-S and Li-air batteries are also described.

  15. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  16. Nanowire Electrodes for Advanced Lithium Batteries

    International Nuclear Information System (INIS)

    Huang, Lei; Wei, Qiulong; Sun, Ruimin; Mai, Liqiang

    2014-01-01

    Since the commercialization of lithium ion batteries (LIBs) in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism need to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate that the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reaction limit the cycling performance of LIBs. Based on the in situ observations, some feasible optimization strategies, including prelithiation, coaxial structure, nanowire arrays, and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some “beyond Li-ion” batteries, such as Li-S and Li-air batteries are also described.

  17. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2011-01-01

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber

  18. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodan, E-mail: xiaodan_li@yeah.net [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Wu, Gaoxiang, E-mail: wgxjimmy@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chen, Jiewei, E-mail: kzscjw@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chongqing Materials Research Institute, Chongqing 400707 (China); Li, Wei, E-mail: wei.li@inl.int [International Iberian Nanotechnology Laboratory (INL), Braga 4715-330 (Portugal); Wang, Tianyue, E-mail: 1355796015@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Jiang, Bing, E-mail: BingJiang@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); He, Yue, E-mail: 947667748@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Mai, Liqiang, E-mail: mlq518@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2017-01-15

    Highlights: • Low-crystallinity molybdenum sulfide coated on carbon nanotubes were synthesized. • This anode material has unusual electrochemical behaviors compared to typical MoS{sub 2}. • It exhibits noticable ascending trends in capacity and superior rate performance. • The ascending performance can effectively extend the circulation life of batteries. - Abstract: Low-crystallinity molybdenum sulfide (LCMS, Mo:S = 1:2.75) nanosheets synthesized by a facile and low temperature solvothermal method is now reported. The as-prepared LCMS anode material is composited of MoS{sub 2} layers mixed with amorphous MoS{sub 3}, which leads to an unusual electrochemical process for lithium storage compared to typical MoS{sub 2} anode. The existence of MoS{sub 3} and Mo (VI) provide strong adsorption and binding sites for polar polysulphides, which compels abundant sulfur to turn into new-formed MoS{sub 3} rather than diffuse into electrolyte. To fully utilize this novel electrochemical process, LCMS is decorated on carbon nanotubes, obtaining well-dispersed CNTs@LCMS. As electrode material for lithium storage, CNTs@LCMS exhibits a noticable ascending trend in capacity from 820 mA h g{sup −1} to 1350 mA h g{sup −1} at 100 mA g{sup −1} during 130 cycles. The persistent ascending capacity is ascribed to the increasing lithium storage caused by new-formed MoS{sub 3}, combined with the reduced volume change benifiting from well-dispersed CNTs@LCMS. Furthermore, the ascending performance is proved to be able to effectively extend the circulation life (up to 200%) for lithium-ion batteries by mathematical modeling and calculation. Accordingly, the CNTs@LCMS composite is a promising anode material for long-life lithium-ion batteries.

  19. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Ma, Jizhen; Ma, Houyi; Dai, Liming; Zhang, Jintao

    2017-09-13

    Graphitic carbons have been used as conductive supports for developing rechargeable batteries. However, the classic ion intercalation in graphitic carbon has yet to be coupled with extrinsic redox reactions to develop rechargeable batteries. Herein, we demonstrate the preparation of a free-standing, flexible nitrogen and phosphorus co-doped hierarchically porous graphitic carbon for iodine loading by pyrolysis of polyaniline coated cellulose wiper. We find that heteroatoms could provide additional defect sites for encapsulating iodine while the porous carbon skeleton facilitates redox reactions of iodine and ion intercalation. The combination of ion intercalation with redox reactions of iodine allows for developing rechargeable iodine-carbon batteries free from the unsafe lithium/sodium metals, and hence eliminates the long-standing safety issue. The unique architecture of the hierarchically porous graphitic carbon with heteroatom doping not only provides suitable spaces for both iodine encapsulation and cation intercalation but also generates efficient electronic and ionic transport pathways, thus leading to enhanced performance.Carbon-based electrodes able to intercalate Li + and Na + ions have been exploited for high performing energy storage devices. Here, the authors combine the ion intercalation properties of porous graphitic carbons with the redox chemistry of iodine to produce iodine-carbon batteries with high reversible capacities.

  20. Management decision of optimal recharge water in groundwater artificial recharge conditions- A case study in an artificial recharge test site

    Science.gov (United States)

    He, H. Y.; Shi, X. F.; Zhu, W.; Wang, C. Q.; Ma, H. W.; Zhang, W. J.

    2017-11-01

    The city conducted groundwater artificial recharge test which was taken a typical site as an example, and the purpose is to prevent and control land subsidence, increase the amount of groundwater resources. To protect groundwater environmental quality and safety, the city chose tap water as recharge water, however, the high cost makes it not conducive to the optimal allocation of water resources and not suitable to popularize widely. To solve this, the city selects two major surface water of River A and B as the proposed recharge water, to explore its feasibility. According to a comprehensive analysis of the cost of recharge, the distance of the water transport, the quality of recharge water and others. Entropy weight Fuzzy Comprehensive Evaluation Method is used to prefer tap water and water of River A and B. Evaluation results show that water of River B is the optimal recharge water, if used; recharge cost will be from 0.4724/m3 to 0.3696/m3. Using Entropy weight Fuzzy Comprehensive Evaluation Method to confirm water of River B as optimal water is scientific and reasonable. The optimal water management decisions can provide technical support for the city to carry out overall groundwater artificial recharge engineering in deep aquifer.

  1. Chronic kidney disease in lithium-treated older adults: a review of epidemiology, mechanisms, and implications for the treatment of late-life mood disorders.

    Science.gov (United States)

    Rej, Soham; Elie, Dominique; Mucsi, Istvan; Looper, Karl J; Segal, Marilyn

    2015-01-01

    Lithium is an important medication in the treatment of mood disorders. However, clinicians are hesitant to use lithium in older adults for fear of its medical effects, particularly kidney disease. This review describes the current understanding of the epidemiology and mechanisms underlying chronic kidney disease (CKD) in older lithium users, with recommendations for using lithium safely in late life. Prevalence estimates of CKD in older lithium users range from 42-50%, which does not differ greatly from the 37.8% rates seen in community-dwelling non-lithium using, non-psychiatric populations. Clinical and pre-clinical data suggest a variety of synergistic mechanisms contributing to CKD in older lithium users, including aging, cardiovascular factors, oxidative stress, inflammation, nephrogenic diabetes insipidus, acute kidney injury, and medication interactions. With regards to CKD, lithium can be used safely in many older adults with mood disorders. Compared to patients with pre-existing CKD, those with an estimated glomerular filtration rate >60 mL/min/1.73 m(2) are probably not as susceptible to lithium-associated renal decline. Using lithium concentrations kidney injury, nephrogenic diabetes insipidus, diabetes mellitus, hypertension, smoking, and coronary artery disease can all help prevent CKD and further renal decline in older lithium users.

  2. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading of 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.

  3. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.

    Science.gov (United States)

    Guo, Ziyang; Li, Chao; Liu, Jingyuan; Wang, Yonggang; Xia, Yongyao

    2017-06-19

    Lithium-air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li 2 O 2 /LiOH/Li 2 CO 3 accumulation in the air electrode. Herein, we present a Li-air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I - /I 2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li-air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li-air battery that can be operated in ambient air. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation

    International Nuclear Information System (INIS)

    Tong, Shi Jie; Same, Adam; Kootstra, Mark A.; Park, Jae Wan

    2013-01-01

    Highlights: ► We have examined the feasibility of a second life battery pack for an off-grid photovoltaic vehicle charging system. ► The second life battery successfully achieved the desired function using simple control methods. ► The system has been modeled using equivalent circuit techniques. ► The model can simulate the system’s performance under different application scenarios. - Abstract: Partially degraded lithium batteries from automotive applications, also known as second life batteries, are becoming more available for secondary applications due to the increasing market share of plug-in hybrid and electric vehicles. This study examines the feasibility of installing a second life battery pack in an off-grid photovoltaic vehicle charging system. The system was constructed using a photovoltaic array to charge a battery pack via a maximum power point tracking controller and later charge a vehicle via an inverter. The battery pack was configured using 135 second life LiFePO 4 based battery cells, selected based on remaining capacity, connected to form a nine parallel by 15 serial battery pack with accessible storage capacity of 13.9 kW h. Experimental results show that the proposed second life battery system successfully achieves the desired function with a simple system structure and control methods. A numerical simulation was performed by constructing an equivalent system model, where the photovoltaic array and battery pack were modeled using equivalent circuit techniques. The model was parameterized and validated via testing of the system. Coupled with weather data, the model can simulate the system’s performance under different application scenarios. The numerical investigation reveals that the proposed system, using second life batteries, can achieve similar performance to systems using new lithium batteries, but at a reduced cost

  5. Cathodes for lithium ion batteries: the benefits of using nanostructured materials

    International Nuclear Information System (INIS)

    Bazito, Fernanda F.C.; Torresi, Roberto M.

    2006-01-01

    Commercially available lithium ion cells, which are the most advanced among rechargeable batteries available so far, employ microcrystalline transition metal oxides as cathodes, which function as Li insertion hosts. In search for better electrochemical performance the use of nanomaterials in place of these conventional ones has emerged as excellent alternative. In this review we present a brief introduction about the motivations to use nanostructured materials as cathodes in lithium ion batteries. To illustrate such advantages we present some examples of research directed toward preparations and electrochemical data of the most used cathodes in nanoscale, such as LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiV 2 O 5 e LiFePO 4 . (author)

  6. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  7. A high-voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery.

    Science.gov (United States)

    Wang, Huali; Gu, Sichen; Bai, Ying; Chen, Shi; Wu, Feng; Wu, Chuan

    2016-10-03

    As a promising post-lithium battery, rechargeable aluminum battery has the potential to achieve a three-electron reaction with fully use of metal aluminum. Alternative electrolytes are strongly needed for further development of rechargeable aluminum batteries, since typical AlCl3-contained imidazole-based ionic liquids are moisture sensitive, corrosive, and with low oxidation voltage. In this letter, a kind of non-corrosive and water-stable ionic liquid obtained by mixing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTF) with the corresponding aluminum salt (Al(OTF)3) is studied. This ionic liquid electrolyte has a high oxidation voltage (3.25V vs Al3+/Al) and high ionic conductivity, and a good electrochemical performance is also achieved. A new strategy, which first use corrosive AlCl3-based electrolyte to construct a suitable passageway on the Al anode for Al3+, and then use non-corrosive Al(OTF)3-based electrolyte to get stable Al/electrolyte interface, is put forward.

  8. The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries

    Science.gov (United States)

    Zhao, Shijia; Fan, Yunxia; Zhu, Kai; Zhang, Dong; Zhang, Weiwei; Chen, Shuanglong; Liu, Ran; Yao, Mingguang; Liu, Bingbing

    2015-01-01

    Hydrogenated carbon nanomaterials exhibit many advantages in both mechanical and electrochemical properties, and thus have a wide range of potential applications. However, methods to control the hydrogenation and the effect of hydrogenation on the microstructure and properties of the produced nanomaterials have rarely been studied. Here we report the synthesis of hydrogenated carbon nanospheres (HCNSs) with different degrees of hydrogenation by a facile solvothermal method, in which C2H3Cl3/C2H4Cl2 was used as the carbon precursor and potassium as the reductant. The hydrogenation level of the obtained nanospheres depends on the reaction temperature and higher temperature leads to lower hydrogenation due to the fact that the breaking of C-H bonds requires more external energy. The reaction temperature also affects the diameter of the HCNSs and larger spheres are produced at higher temperatures. More importantly, the size and the degree of hydrogenation are both critical factors for determining the electrochemical properties of the HCNSs. The nanospheres synthesized at 100 °C have a smaller size and a higher hydrogenation degree and show a capacity of 821 mA h g-1 after 50 cycles, which is significantly higher than that of the HCNSs produced at 150 °C (450 mA h g-1). Our study opens a possible way for obtaining high-performance anode materials for rechargeable lithium-ion batteries.

  9. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition

    Science.gov (United States)

    Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki

    2018-05-01

    Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.

  10. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li

  11. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion.

    Science.gov (United States)

    Parker, Joseph F; Chervin, Christopher N; Pala, Irina R; Machler, Meinrad; Burz, Michael F; Long, Jeffrey W; Rolison, Debra R

    2017-04-28

    The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel-zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel-zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DOD Zn ) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DOD Zn at lithium-ion-commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles. Copyright © 2017, American Association for the Advancement of Science.

  12. A three-dimensional interlayer composed of graphene and porous carbon for Long-life, High capacity Lithium-Iron Fluoride Battery

    International Nuclear Information System (INIS)

    Yang, Juan; Xu, Zhanglin; Sun, Hongxu; Zhou, Xiangyang

    2016-01-01

    We design a macroscopic structure composing of porous carbon and graphene sheets, which are coated onto a cellulose paper as an interlayer inserted between electrode and separator. The interlayer mainly acts as a divertor to accommodate the discharge products breaking away from the electrode by mechanical degradation or cathode dissolution during cycling and keeps the close contact with current collector. Iron fluoride is a new-type lithium storage material developed in recent years, which can act as a cathode material candidate for the rechargeable lithium ion battery due to their large theoretical capacity and relatively high operating potential. Specifically, FeF 3 ·0.33H 2 O, which possesses unusual tunnel structure, is attracting more and more attentions. However, FeF 3 ·0.33H 2 O suffers from the poor electronic conductivity and volume effect during cycling, causing the large capacity fading. In this study, we design a macroscopic structure composing of porous carbon and graphene sheets, which are coated onto a cellulose paper as an interlayer inserted between electrode and separator. The interlayer can not only enhance the electronic conductivity, but also absorb the FeF 3 ·0.33H 2 O nanoparticles breaking away from the Al foil due to the volume effect upon cycling. When the interlayer is applied in battery, discharge capacities of 600 and 460 mAh g −1 can be achieved at the rates of 100 and 600 mA g −1 after 60 cycles, respectively. Furthermore, the capacity of 435 mAh g −1 can be still retained at a high rate of 1000 mA g −1 after 250 cycles. The results demonstrate a potential feasibility for the porous carbon/graphene sheets to be applied to obtain a high-performance lithium-iron fluoride battery.

  13. Rechargeable quasi-solid state lithium battery with organic crystalline cathode

    Science.gov (United States)

    Hanyu, Yuki; Honma, Itaru

    2012-01-01

    Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655

  14. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Harry, KJ; Higa, K; Srinivasan, V; Balsara, NP

    2016-08-10

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabled estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.

  15. High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2.

    Science.gov (United States)

    Gao, Peng; Wang, Liping; Zhang, Yu-Yang; Huang, Yuan; Liao, Lei; Sutter, Peter; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge

    2016-09-14

    In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials.

  16. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  17. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  18. Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles

    International Nuclear Information System (INIS)

    Capasso, Clemente; Veneri, Ottorino

    2014-01-01

    Highlights: • Performance analysis for lithium storage technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries. • Actual capacity of lithium technologies analyzed almost close to their nominal capacity also for high discharging current. • The charging efficiency for Li[NiCoMn]O 2 positively affects the regenerative breaking and fast recharging operations. • The analyzed battery packs follow dynamic power requirements on performed road driving cycles. • Experimental results demonstrate driving range is much higher when battery packs are based on lithium technology. - Abstract: This paper deals with an experimental evaluation regarding the real performance of lithium based energy storage systems for automotive applications. In particular real working operations of different lithium based storage system technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries, are compared in this work from the point of view of their application in supplying full electric and hybrid vehicles, taking as a reference the well-known behavior of lead acid batteries. For this purpose, the experimental tests carried out in laboratory are firstly performed on single storage modules in stationary conditions. In this case the related results are obtained by means of a bidirectional cycle tester based on the IGBT technology, and consent to evaluate, compare and contrast charge/discharge characteristics and efficiency at constant values of current/voltage/power for each storage technology analyzed. Then, lithium battery packs are tested in supplying a 1.8 kW electric power train using a laboratory test bench, based on a 48 V DC bus and specifically configured to simulate working operations of electric vehicles on the road. For this other experimentation the test bench is equipped with an electric brake and acquisition/control system, able to represent in laboratory the real vehicle conditions and road characteristics on predefined driving cycles at different slopes. The obtained

  19. Life Prediction of Large Lithium-Ion Battery Packs with Active and Passive Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zane, Regan [Utah State University; Anderson, Dyche [Ford Motor Company

    2017-07-03

    Lithium-ion battery packs take a major part of large-scale stationary energy storage systems. One challenge in reducing battery pack cost is to reduce pack size without compromising pack service performance and lifespan. Prognostic life model can be a powerful tool to handle the state of health (SOH) estimate and enable active life balancing strategy to reduce cell imbalance and extend pack life. This work proposed a life model using both empirical and physical-based approaches. The life model described the compounding effect of different degradations on the entire cell with an empirical model. Then its lower-level submodels considered the complex physical links between testing statistics (state of charge level, C-rate level, duty cycles, etc.) and the degradation reaction rates with respect to specific aging mechanisms. The hybrid approach made the life model generic, robust and stable regardless of battery chemistry and application usage. The model was validated with a custom pack with both passive and active balancing systems implemented, which created four different aging paths in the pack. The life model successfully captured the aging trajectories of all four paths. The life model prediction errors on capacity fade and resistance growth were within +/-3% and +/-5% of the experiment measurements.

  20. Evolution of strategies for modern rechargeable batteries.

    Science.gov (United States)

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  1. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Staiger, Chad L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Pratt, III, Harry D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rempe, Susan B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leung, Kevin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chaudhari, Mangesh I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  2. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  3. Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Yongjin Jeong

    2016-12-01

    Full Text Available Porous carbon materials are used for many electrochemical applications due to their outstanding properties. However, research on controlling the pore structure and analyzing the carbon structures is still necessary to achieve enhanced electrochemical properties. In this study, mesoporous carbon nanotube (CNT-carbon nanofiber electrodes were developed by heat-treatment of electrospun starch with carbon nanotubes, and then applied as a binder-free electrochemical electrode for a lithium-ion battery. Using the unique lamellar structure of starch, mesoporous CNT-carbon nanofibers were prepared and their pore structures were controlled by manipulating the heat-treatment conditions. The activation process greatly increased the volume of micropores and mesopores of carbon nanofibers by etching carbons with CO2 gas, and the Brunauer-Emmett-Teller (BET specific area increased to about 982.4 m2·g−1. The activated CNT-carbon nanofibers exhibited a high specific capacity (743 mAh·g−1 and good cycle performance (510 mAh·g−1 after 30 cycles due to their larger specific surface area. This condition presents many adsorption sites of lithium ions, and higher electrical conductivity, compared with carbon nanofibers without CNT. The research suggests that by controlling the heat-treatment conditions and activation process, the pore structure of the carbon nanofibers made from starch could be tuned to provide the conditions needed for various applications.

  4. Advanced Materials Enabled by Atomic Layer Deposition for High Energy Density Rechargeable Batteries

    Science.gov (United States)

    Chen, Lin

    In order to meet the ever increasing energy needs of society and realize the US Department of Energy (DOE)'s target for energy storage, acquiring a fundamental understanding of the chemical mechanisms in batteries for direct guidance and searching novel advanced materials with high energy density are critical. To realize rechargeable batteries with superior energy density, great cathodes and excellent anodes are required. LiMn2O4 (LMO) has been considered as a simpler surrogate for high energy cathode materials like NMC. Previous studies demonstrated that Al2O3 coatings prepared by atomic layer deposition (ALD) improved the capacity of LMO cathodes. This improvement was attributed to a reduction in surface area and diminished Mn dissolution. However, here we propose a different mechanism for ALD Al 2O3 on LMO based on in-situ and ex-situ investigations coupled with density functional theory calculations. We discovered that Al2O 3 not only coats the LMO, but also dopes the LMO surface with Al leading to changes in the Mn oxidation state. Different thicknesses of Al2O 3 were deposited on nonstoichiometric LiMn2O4 for electrochemical measurements. The LMO treated with one cycle of ALD Al2O3 (1xAl 2O3 LMO) to produce a sub-monolayer coating yielded a remarkable initial capacity, 16.4% higher than its uncoated LMO counterpart in full cells. The stability of 1xAl2O3 LMO is also much better as a result of stabilized defects with Al species. Furthermore, 4xAl 2O3 LMO demonstrates remarkable capacity retention. Stoichiometric LiMn2O4 was also evaluated with similar improved performance achieved. All superior results, accomplished by great stability and reduced Mn dissolution, is thanks to the synergetic effects of Al-doping and ALD Al2O 3 coating. Turning our attention to the anode, we again utilized aluminum oxide ALD to form conformal films on lithium. We elaborately designed and studied, for the first time, the growth mechanism during Al2O3 ALD on lithium metal in

  5. Recharge quantification with radiocarbon: Independent corroboration in three Karoo aquifer studies in Botswana

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Bredenkamp, D.B.; Janse van Rensburg, H.; Farr, J.L.

    1999-01-01

    Environmental isotope data from a 'snapshot' sampling hold out the promise of producing acceptable estimates of ground water recharge for resource management purposes. In three major ground water developments in Botswana, estimates of recharge to the Karoo aquifers in the Kalahari, were based on residence times derived from radiocarbon data. In the assessment, three factors needed to be considered: 1) the model leading to acceptable values of residence times 2) the initial, or recharge, radiocarbon value and 3) appropriate values of aquifer porosity. In the three studies, porosity had been measured on numerous drill cores obtained from the principal fractured sandstone aquifers. The resulting isotope-based recharge values correspond reasonably with independent recharge assessments using the equal volume method to analyse long-term rest level observations in two cases; in the third, recharge was independently assessed on the basis of chloride balance in both unsaturated and saturated zones. It is concluded that a) the isotope snapshot approach can give acceptable values for recharge in the development of ground water resources, providing rational management information early in the life of a ground water supply scheme; b) the exponential model and an initial radiocarbon values of 85% atmospheric are realistic in this environment and c) the total porosity appears to be the appropriate parameter in the calculation of recharge. This also provides an insight into the behaviour of the aquifers. (author)

  6. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture

    Science.gov (United States)

    Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang

    2016-01-01

    The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176

  7. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A.

    2017-01-01

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  8. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  9. Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

    DEFF Research Database (Denmark)

    Goutam, Shovon; Timmermans, Jean-Marc; Omar, Noshin

    2014-01-01

    This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel...

  10. Electrochemical reaction of lithium with orthorhombic bismuth tungstate thin films fabricated by radio-frequency sputtering

    International Nuclear Information System (INIS)

    Li Chilin; Sun Ke; Yu Le; Fu Zhengwen

    2009-01-01

    Bi 2 WO 6 thin films with fast deposition rate have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrodes in rechargeable thin film lithium batteries. An initial discharge capacity of 113 μAh/cm 2 -μm is obtainable for Bi 2 WO 6 film electrode with good capacity reversibility. A multiple-center reactive mechanism associated with both Bi 3+ /Bi 0 and W 6+ /W x+ (x 2 WO 6 electrochemical performance with those of Bi 2 O 3 and WO 3 thin films. A possible explanation about smooth capacity loss of Bi 2 WO 6 after long-term cycling is suggested from the incomplete reaction of Bi component. The advantages of Bi 2 WO 6 thin films over the singer-center Bi 2 O 3 or WO 3 thin films are shown in both the aspects of volumetric capacity and cycling life.

  11. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    International Nuclear Information System (INIS)

    Arora, P.; Doyle, M.; White, R.E.

    1999-01-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li x C 6 vertical bar 1 M LiPF 6 , 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) vert b ar LiMn 2 O 4 cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized

  12. 76 FR 57627 - Special Conditions: Cessna Aircraft Company Model M680 Airplane; Rechargeable Lithium-Ion Battery...

    Science.gov (United States)

    2011-09-16

    ... currently approved for installation in transport-category airplanes. Large, high-capacity, rechargeable... electrolytes. The electrolyte can serve as a source of fuel for an external fire if the cell container is..., are established to ensure the availability of electrical power from the batteries when needed...

  13. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  14. Batteries 2020 – Lithium - ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters

    DEFF Research Database (Denmark)

    Timmermans, Jean-Marc; Nikolian, Alexandros; De Hoog, Joris

    2016-01-01

    The European Project “Batteries 2020” unites nine partners jointly working on research and the development of competitive European automotive batteries. The project aims at increasing both the energy density and lifetime of large format pouch lithium-ion batteries towards the goals targeted...... vehicle application. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary and renewable energy application. Therefore, possible second life opportunities have been identified and further assessed. In this paper, the main ageing effects of lithium...... ion batteries are explained. Next, an overview of different validated battery models will be discussed. Finally, a methodology for assessing the performance of the battery cells in a second life application is presented....

  15. A Combined Thermodynamics & Computational Method to Assess Lithium Composition in Anode and Cathode of Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Wenyu; Jiang, Lianlian; Van Durmen, Pauline; Saadat, Somaye; Yazami, Rachid

    2016-01-01

    With aim to address the open question of accurate determination of lithium composition in anode and cathode at a defined state of charge (SOC) of lithium ion batteries (LIB), we developed a method combining electrochemical thermodynamic measurements (ETM) and computational data fitting protocol. It is a common knowledge that in a lithium ion battery the SOC of anode and cathode differ from the SOC of the full-cell. Differences are in large part due to irreversible lithium losses within cell and to electrode mass unbalance. This implies that the lithium composition range in anode and in cathode during full charge and discharge cycle in full-cell is different from the composition range achieved in lithium half-cells of anode and cathode over their respective full SOC ranges. To the authors knowledge there is no unequivocal and practical method to determine the actual lithium composition of electrodes in a LIB, hence their SOC. Yet, accurate lithium composition assessment is fundamental not only for understanding the physics of electrodes but also for optimizing cell performances, particularly energy density and cycle life.

  16. Simultaneous Determination of Electrochemical Impedance of Lithium-ion Rechargeable Batteries with Measurement of Charge-discharge Curves by Wavelet Transformation

    International Nuclear Information System (INIS)

    Itagaki, Masayuki; Ueno, Masaki; Hoshi, Yoshinao; Shitanda, Isao

    2017-01-01

    Highlights: • Wavelet transformation (WT) was used to obtain electrochemical impedance (EI) from time domain data. • Complex Morlet mother wavelet was employed to transform current and voltage time series from time domain to frequency domain. • An analytical method to determine EI of LIRB at arbitrary state of charge was proposed. • EI of LIRB was determined at arbitrary state of charge without stopping galvanostatic polarization for charge and discharge. - Abstract: A new analytical method was developed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) at an arbitrary state of charge (SOC). Wavelet transformation (WT) is one of the waveform analysis methods, which allows the determination of frequency domain data as a function of time. The frequency domain data are obtained by convolution integral of a mother wavelet and original time domain data via the WT. A complex Morlet mother wavelet is used to obtain the complex number data in the frequency domain. The time series data of input current and output voltage signals are recorded by superimposing the double pulse current as an input signal to constant charge current for the charge of LIRB without stopping galvanostatic polarization. The double pulse current is composed of symmetrical positive and negative square waves. In this case, the SOC of LIRB is not affected by the input signal because the total amount of charge calculated from double pulse current is 0C. The impedance spectrum of LIRB at SOC 25% is determined in the frequency range from 0.1 to 100 Hz during charge/discharge cycles without stopping galvanostatic polarization for the charge/discharge.

  17. Materials Compositions for Lithium Ion Batteries with Extended Thermal Stability

    Science.gov (United States)

    Kalaga, Kaushik

    Advancements in portable electronics have generated a pronounced demand for rechargeable energy storage devices with superior capacity and reliability. Lithium ion batteries (LIBs) have evolved as the primary choice of portable power for several such applications. While multiple variations have been developed, safety concerns of commercial technologies limit them to atmospheric temperature operability. With several niche markets such as aerospace, defense and oil & gas demanding energy storage at elevated temperatures, there is a renewed interest in developing rechargeable batteries that could survive temperatures beyond 100°C. Instability of critical battery components towards extreme thermal and electrochemical conditions limit their usability at high temperatures. This study deals with developing material configurations for LIB components to stabilize them at such temperatures. Flammable organic solvent based electrolytes and low melting polymer based separators have been identified as the primary bottleneck for LIBs to survive increasing temperature. Furthermore, thermally activated degradation processes in oxide based electrodes have been identified as the reason for their limited lifetime. A quasi-solid composite comprising of room temperature ionic liquids (RTILs) and Clay was developed as an electrolyte/separator hybrid and tested to be stable up to 120°C. These composites facilitate complete reversible Li intercalation in lithium titanate (LTO) with a stable capacity of 120 mAh g-1 for several cycles of charge and discharge while simultaneously resisting severe thermal conditions. Modified phosphate based electrodes were introduced as a reliable alternative for operability at high temperatures in this study. These systems were shown to deliver stable reversible capacity for numerous charge/discharge cycles at elevated temperatures. Higher lithium intercalation potential of the developed cathode materials makes them interesting candidates for high voltage

  18. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode - Long term cycle life study, rate effect and charge sharing analysis

    Science.gov (United States)

    Shellikeri, A.; Yturriaga, S.; Zheng, J. S.; Cao, W.; Hagen, M.; Read, J. A.; Jow, T. R.; Zheng, J. P.

    2018-07-01

    Energy storage devices, which can combine the advantages of lithium-ion battery with that of electric double layer capacitor, are of prime interest. Recently, composite cathodes, which combine a battery material with capacitor material, have shown promise in enhancing life cycle and energy/power performances. Lithium-ion capacitor (LIC), with unique charge storage mechanism of combining a pre-lithiated battery anode with a capacitor cathode, is one such device which has the potential to synergistically incorporate the composite cathode to enhance capacity and cycle life. We report here a hybrid LIC consisting of a lithium iron phosphate (LiFePO4-LFP)/Activated Carbon composite cathode in combination with a hard carbon anode, by integrating the cycle life and capacity enhancing strategies of a dry method of electrode fabrication, anode pre-lithiation and a 3:1 anode to cathode capacity ratio, demonstrating a long cycle life, while elaborating on the charge sharing between the faradaic and non-faradaic mechanism in the battery and capacitor materials, respectively in the composite cathode. An excellent cell capacity retention of 94% (1000 cycles at 1C) and 92% (100,000 cycles at 60C) were demonstrated, while retaining 78% (over 6000 cycles at 2.7C) and 67% (over 70,000 cycles at 43C) of the LFP capacity in the composite cathode.

  19. Progress in aqueous rechargeable batteries

    OpenAIRE

    Jilei Liu; Chaohe Xu; Zhen Chen; Shibing Ni; Ze Xiang Shen

    2018-01-01

    Over the past decades, a series of aqueous rechargeable batteries (ARBs) were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+) batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. B...

  20. Electrochemical performance of high specific capacity of lithium-ion cell LiV3O8//LiMn2O4 with LiNO3 aqueous solution electrolyte

    International Nuclear Information System (INIS)

    Zhao Mingshu; Zheng Qingyang; Wang Fei; Dai Weimin; Song Xiaoping

    2011-01-01

    Research highlights: → In this paper, the electrochemical performance of aqueous rechargeable lithium battery with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. → The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. → In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries. - Abstract: The electrochemical performance of aqueous rechargeable lithium battery (ARLB) with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. The results indicate that these two electrode materials are stable in the aqueous solution and no hydrogen or oxygen produced, moreover, intercalation/de-intercalation of lithium ions occurred within the range of electrochemical stability of water. The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries.

  1. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    Science.gov (United States)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  2. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    Science.gov (United States)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  3. Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode

    International Nuclear Information System (INIS)

    Chen, Hedong; Wang, Zhoulu; Hou, Xianhua; Fu, Lijun; Wang, Shaofeng; Hu, Xiaoqiao; Qin, Haiqing; Wu, Yuping

    2017-01-01

    Carbon-coated core-shell structure artificial graphite@plasma nano-silicon@carbon (AG@PNSi@C) composite, applying as lithium ion battery anode material, has been prepared via spray drying method. The plasma nano-silicon (<100 nm), which contained amorphous silicon, was synthesized by radio frequency induction plasma system with the high temperatures processing capability and high quench rates. The artificial graphite in the composite acts as the core which supports the particle and provides electroconductivity, while PNSi attached on the surface of the core, enhances the specific capacity of the composite. The as prepared composite shows superior performance as anode in lithium-ion batteries, regarding to the initial Coulombic efficiency and cycle life. The initial Coulombic efficiency of AG@PNSi@C electrode is 81.0% with a discharge capacity of 553 mAh g −1 and a recharge capacity of 448 mAh g −1 . During cycling, AG@PNSi@C exhibits excellent performance with a very low capacity fading that the discharge capacity maintains 498.2 mAh g −1 and 449.4 mAh g −1 after 250 cycles and 500 cycles. AG@PNSi@C also shows enhanced resistance against high current density. Besides the remarkable electrochemical performances, the facile and mass-producible synthesis process makes the AG@PNSi@C composite very promising for its application in lithium-ion batteries.

  4. Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Arumugam, D.; Kalaignan, G. Paruthimal

    2010-01-01

    LiMn 2 O 4 spinel cathode materials were coated with 0.5, 1.0, and 1.5 wt.% CeO 2 by a polymeric process, followed by calcination at 850 o C for 6 h in air. The surface-coated LiMn 2 O 4 cathode materials were physically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron microscopy (XPS). XRD patterns of CeO 2 -coated LiMn 2 O 4 revealed that the coating did not affect the crystal structure or the Fd3m space group of the cathode materials compared to uncoated LiMn 2 O 4 . The surface morphology and particle agglomeration were investigated using SEM, TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 20 nm. The XPS data illustrated that the CeO 2 completely coated the surface of the LiMn 2 O 4 core cathode materials. The galvanostatic charge and discharge of the uncoated and CeO 2 -coated LiMn 2 O 4 cathode materials were measured in the potential range of 3.0-4.5 V (0.5 C rate) at 30 o C and 60 o C. Among them, the 1.0 wt.% of CeO 2 -coated spinel LiMn 2 O 4 cathode satisfies the structural stability, high reversible capacity and excellent electrochemical performances of rechargeable lithium batteries.

  5. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction

    Science.gov (United States)

    Zhou, Yapeng; Huang, Miaohua; Chen, Yupu; Tao, Ye

    2016-07-01

    Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in an intelligent battery management system. The capacity and internal resistance are often used as the batteries health indicator (HI) for quantifying degradation and predicting RUL. However, on-line measurement of capacity and internal resistance are hardly realizable due to the not fully charged and discharged condition and the extremely expensive cost, respectively. Therefore, there is a great need to find an optional way to deal with this plight. In this work, a novel HI is extracted from the operating parameters of lithium-ion batteries for degradation modeling and RUL prediction. Moreover, Box-Cox transformation is employed to improve HI performance. Then Pearson and Spearman correlation analyses are utilized to evaluate the similarity between real capacity and the estimated capacity derived from the HI. Next, both simple statistical regression technique and optimized relevance vector machine are employed to predict the RUL based on the presented HI. The correlation analyses and prediction results show the efficiency and effectiveness of the proposed HI for battery degradation modeling and RUL prediction.

  6. A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery

    International Nuclear Information System (INIS)

    Chang, Yang; Fang, Huajing; Zhang, Yong

    2017-01-01

    Highlights: •The proposed prognostic method can make full use of historical information. •The method of obtaining historical error data is discussed in detail. •Comparative experiments based on data-driven and model-based methods are performed. •Battery working with different discharging currents is considered. -- Abstract: The lithium-ion battery has become the main power source of many electronic devices, it is necessary to know its state-of-health and remaining useful life to ensure the reliability of electronic device. In this paper, a novel hybrid method with the thought of error-correction is proposed to predict the remaining useful life of lithium-ion battery, which fuses the algorithms of unscented Kalman filter, complete ensemble empirical mode decomposition (CEEMD) and relevance vector machine. Firstly, the unscented Kalman filter algorithm is adopted to obtain a prognostic result based on an estimated model and produce a raw error series. Secondly, a new error series is constructed by analyzing the decomposition results of the raw error series obtained by CEEMD method. Finally, the new error series is utilized by relevance vector machine regression model to predict the prognostic error which is adopted to correct the prognostic result obtained by unscented Kalman filter. Remaining useful life prediction experiments for batteries with different rated capacities and discharging currents are performed to show the high reliability of the proposed hybrid method.

  7. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  9. Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics

    Directory of Open Access Journals (Sweden)

    Noshin Omar

    2012-08-01

    Full Text Available In this paper, the performances of various lithium-ion chemistries for use in plug-in hybrid electric vehicles have been investigated and compared to several other rechargeable energy storage systems technologies such as lead-acid, nickel-metal hydride and electrical-double layer capacitors. The analysis has shown the beneficial properties of lithium-ion in the terms of energy density, power density and rate capabilities. Particularly, the nickel manganese cobalt oxide cathode stands out with the high energy density up to 160 Wh/kg, compared to 70–110, 90 and 71 Wh/kg for lithium iron phosphate cathode, lithium nickel cobalt aluminum cathode and, lithium titanate oxide anode battery cells, respectively. These values are considerably higher than the lead-acid (23–28 Wh/kg and nickel-metal hydride (44–53 Wh/kg battery technologies. The dynamic discharge performance test shows that the energy efficiency of the lithium-ion batteries is significantly higher than the lead-acid and nickel-metal hydride technologies. The efficiency varies between 86% and 98%, with the best values obtained by pouch battery cells, ahead of cylindrical and prismatic battery design concepts. Also the power capacity of lithium-ion technology is superior compared to other technologies. The power density is in the range of 300–2400 W/kg against 200–400 and 90–120 W/kg for lead-acid and nickel-metal hydride, respectively. However, considering the influence of energy efficiency, the power density is in the range of 100–1150 W/kg. Lithium-ion batteries optimized for high energy are at the lower end of this range and are challenged to meet the United States Advanced Battery Consortium, SuperLIB and Massachusetts Institute of Technology goals. Their association with electric-double layer capacitors, which have low energy density (4–6 Wh/kg but outstanding power capabilities, could be very interesting. The study of the rate capability of the lithium-ion batteries has

  10. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  11. Multiple recharge processes to heterogeneous Mediterranean coastal aquifers and implications on recharge rates evolution in time

    Science.gov (United States)

    Santoni, S.; Huneau, F.; Garel, E.; Celle-Jeanton, H.

    2018-04-01

    Climate change is nowadays widely considered to have major effects on groundwater resources. Climatic projections suggest a global increase in evaporation and higher frequency of strong rainfall events especially in Mediterranean context. Since evaporation is synonym of low recharge conditions whereas strong rainfall events are more favourable to recharge in heterogeneous subsurface contexts, a lack of knowledge remains then on the real ongoing and future drinking groundwater supply availability at aquifers scale. Due to low recharge potential and high inter-annual climate variability, this issue is strategic for the Mediterranean hydrosystems. This is especially the case for coastal aquifers because they are exposed to seawater intrusion, sea-level rise and overpumping risks. In this context, recharge processes and rates were investigated in a Mediterranean coastal aquifer with subsurface heterogeneity located in Southern Corsica (France). Aquifer recharge rates from combining ten physical and chemical methods were computed. In addition, hydrochemical and isotopic investigations were carried out through a monthly two years monitoring combining major ions and stable isotopes of water in rain, runoff and groundwater. Diffuse, focused, lateral mountain system and irrigation recharge processes were identified and characterized. A predominant focused recharge conditioned by subsurface heterogeneity is evidenced in agreement with variable but highly favourable recharge rates. The fast water transfer from the surface to the aquifer implied by this recharge process suggests less evaporation, which means higher groundwater renewal and availability in such Mediterranean coastal aquifers.

  12. Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode.

    Science.gov (United States)

    Qie, Long; Lin, Yi; Connell, John W; Xu, Jiantie; Dai, Liming

    2017-06-06

    Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO 2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li 2 CO 3 , making the battery less rechargeable. To make the Li-CO 2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO 2 reduction and evolution reactions and investigate the electrochemical behavior of Li-CO 2 batteries. Here, we demonstrate a rechargeable Li-CO 2 battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO 2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO 2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g -1 . Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of lithium environment on the fatigue properties of ferritic and austenitic steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1982-01-01

    Low-cycle fatigue data have been obtained on HT-9 alloy and Type 304 stainless steel at 755 K in a flowing lithium environment of controlled purity. The results show that the fatigue properties of these materials are strongly influenced by the concentration of nitrogen in lithium. For HT-9 alloy, the fatigue life in lithium containing 1000-1500 wppm nitrogen is a factor of 2 to 5 lower than that in lithium with 100-200 wppm nitrogen. The reduction in fatigue life in high-nitrogen lithium can be attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show considerable surface corrosion, internal corrosive attack, secondary cracks, and partial intergranular fracture mode. This behavior is not observed in specimens tested either in low-nitrogen lithium or a sodium environment. (orig.)

  14. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  16. Summary of groundwater-recharge estimates for Pennsylvania

    Science.gov (United States)

    Stuart O. Reese,; Risser, Dennis W.

    2010-01-01

    Groundwater recharge is water that infiltrates through the subsurface to the zone of saturation beneath the water table. Because recharge is a difficult parameter to quantify, it is typically estimated from measurements of other parameters like streamflow and precipitation. This report provides a general overview of processes affecting recharge in Pennsylvania and presents estimates of recharge rates from studies at various scales.The most common method for estimating recharge in Pennsylvania has been to estimate base flow from measurements of streamflow and assume that base flow (expressed in inches over the basin) approximates recharge. Statewide estimates of mean annual groundwater recharge were developed by relating base flow to basin characteristics of HUC10 watersheds (a fifth-level classification that uses 10 digits to define unique hydrologic units) using a regression equation. The regression analysis indicated that mean annual precipitation, average daily maximum temperature, percent of sand in soil, percent of carbonate rock in the watershed, and average stream-channel slope were significant factors in the explaining the variability of groundwater recharge across the Commonwealth.Several maps are included in this report to illustrate the principal factors affecting recharge and provide additional information about the spatial distribution of recharge in Pennsylvania. The maps portray the patterns of precipitation, temperature, prevailing winds across Pennsylvania’s varied physiography; illustrate the error associated with recharge estimates; and show the spatial variability of recharge as a percent of precipitation. National, statewide, regional, and local values of recharge, based on numerous studies, are compiled to allow comparison of estimates from various sources. Together these plates provide a synopsis of groundwater-recharge estimations and factors in Pennsylvania.Areas that receive the most recharge are typically those that get the most

  17. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  18. 78 FR 52107 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Rechargeable Lithium...

    Science.gov (United States)

    2013-08-22

    ... passengers. The Model 777-200, -300, and -300ER series airplanes have fly-by-wire controls, fully software... lead acid batteries and nickel cadmium batteries. These special conditions provide an equivalent level... characteristics that differ significantly from those of the nickel cadmium and lead acid rechargeable batteries...

  19. Evaluation Method for Low-Temperature Performance of Lithium Battery

    Science.gov (United States)

    Wang, H. W.; Ma, Q.; Fu, Y. L.; Tao, Z. Q.; Xiao, H. Q.; Bai, H.; Bai, H.

    2018-05-01

    In this paper, the evaluation method for low temperature performance of lithium battery is established. The low temperature performance level was set up to determine the best operating temperature range of the lithium battery using different cathode materials. Results are shared with the consumers for the proper use of lithium battery to make it have a longer service life and avoid the occurrence of early rejection.

  20. Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst

    Science.gov (United States)

    Ding, Ning; Zhou, Lan; Zhou, Changwei; Geng, Dongsheng; Yang, Jin; Chien, Sheau Wei; Liu, Zhaolin; Ng, Man-Fai; Yu, Aishui; Hor, T. S. Andy; Sullivan, Michael B.; Zong, Yun

    2016-09-01

    Lithium nitrate (LiNO3) is known as an important electrolyte additive in lithium-sulfur (Li-S) batteries. The prevailing understanding is that LiNO3 reacts with metallic lithium anode to form a passivation layer which suppresses redox shuttles of lithium polysulfides, enabling good rechargeability of Li-S batteries. However, this view is seeing more challenges in the recent studies, and above all, the inability of inhibiting polysulfide reduction on Li anode. A closely related issue is the progressive reduction of LiNO3 on Li anode which elevates internal resistance of the cell and compromises its cycling stability. Herein, we systematically investigated the function of LiNO3 in redox-shuttle suppression, and propose the suppression as a result of catalyzed oxidation of polysulfides to sulfur by nitrate anions on or in the proximity of the electrode surface upon cell charging. This hypothesis is supported by both density functional theory calculations and the nitrate anions-suppressed self-discharge rate in Li-S cells. The catalytic mechanism is further validated by the use of ruthenium oxide (RuO2, a good oxygen evolution catalyst) on cathode, which equips the LiNO3-free cell with higher capacity and improved capacity retention over 400 cycles.

  1. Full and Partial Thickness Burns from Spontaneous Combustion of E-Cigarette Lithium-Ion Batteries with Review of Literature.

    Science.gov (United States)

    Treitl, Daniela; Solomon, Rachele; Davare, Dafney L; Sanchez, Rafael; Kiffin, Chauniqua

    2017-07-01

    In recent years, the use of electronic cigarettes (e-cigarettes) has increased worldwide. Most electronic nicotine delivery systems use rechargeable lithium-ion batteries, which are relatively safe, but in rare cases these batteries can spontaneously combust, leading to serious full and partial thickness burn injuries. Explosions from lithium-ion batteries can cause a flash fire and accelerant-related burn injuries. A retrospective chart review was conducted of 3 patients with lithium-ion battery burns seen at our Level I community-based trauma center. Clinical presentation, management, and outcome are presented. All 3 patients sustained burn injuries (total body surface area range 5-13%) from the spontaneous combustion of lithium-ion batteries used for e-cigarettes. All patients were treated with debridement and local wound care. All fully recovered without sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians can expect to treat burn cases due to spontaneous lithium-ion battery combustion as e-cigarette use continues to increase. The cases presented here are intended to bring attention to lithium-ion battery-related burns, prepare physicians for the clinical presentation of this burn mechanism, and facilitate patient education to minimize burn risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synthesis of hollandite-type Li yMn 1- xCo xO 2 (x = 0-0.15) by Li + ion-exchange in molten salt and the electrochemical property for rechargeable lithium battery electrodes

    Science.gov (United States)

    Kumagai, Naoaki; Oshitari, Satoru; Komaba, Shinichi; Kadoma, Yoshihiro

    The Li + ion-exchange reaction of K +-type α-K 0.14MnO 1.93·0.18H 2O and its Co-doped α-K 0.14(Mn 0.85Co 0.15)O 1.96·0.21H 2O with a large (2 × 2) tunnel structure has been investigated in a LiNO 3/LiCl molten salt at 300 °C. The Li + ion-exchanged products were examined by chemical analysis, X-ray diffraction, and scanning and transmission electron microscopic measurements. Almost all the K + ions and the hydrogens of water molecules in the (2 × 2) tunnel of α-MnO 2 and its Co-doped one were exchanged by Li + ions in the molten salt, resulting in Li +-type α-MnO 2 and its Co-doped one containing Li + ions as well as Li 2O (lithium oxide) in the (2 × 2) tunnel with maintaining the original hollandite structure. The electrochemical properties including charge-discharge cycling of the Li + ion-exchanged α-MnO 2 and its Co-doped samples have been investigated as insertion compounds in the search for new cathode materials for rechargeable lithium batteries. The Li + ion-exchanged α-MnO 2 and its Co-doped samples provided higher capacities than the K +-type parent materials on initial discharge and charge-discharge cyclings, probably due to the structural stabilization with the existence of Li 2O in the (2 × 2) tunnels.

  3. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  4. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B; Johansson, Arne; Selaanger, P [Catella Generics, Kista (Sweden)

    1996-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  5. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  6. Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bo [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); National Key Laboratory of Power Sources, Tianjin Institute of Power Sources, Tianjin 300381 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Bai, Zhimin, E-mail: zhimibai@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Minsi [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Dong, Lei; Xiong, Dongbin [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2015-06-15

    Highlights: • Hierarchical porous vanadium pentoxide nanofibers were synthesized by electrospinning. • V{sub 2}O{sub 5} nanofibers showed much enhanced lithium storage performance. • Kinetics process of electrospinning V{sub 2}O{sub 5} nanofibers was studied by means of EIS for the first time. • Strategies to enhance the electrochemical performance of V{sub 2}O{sub 5} electrode were concluded. - Abstract: The hierarchical V{sub 2}O{sub 5} nanofibers cathode materials with diameter of 200–400 nm are successfully synthesized via an electrospinning followed by annealing. Powder X-ray diffraction (XRD) pattern confirms the formation of phase-pure product. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) obviously display the hierarchical porous nanofibers constructed by attached tiny vanadium oxide nanoplates. Electrochemical behavior of the as-prepared product is systematically studied using galvanostatic charge/discharge testing, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It turns out that in comparison to the commercial V{sub 2}O{sub 5} and other unique nanostructured materials in the literature, our V{sub 2}O{sub 5} nanofibers show much enhanced lithium storage capacity, improved cyclic stability, and higher rate capability. After 100 cycles at a current density of 800 mA g{sup −1}, the specific capacity of the V{sub 2}O{sub 5} nanofibers retain 133.9 mAh g{sup −1}, corresponding to high capacity retention of 96.05%. More importantly, the EIS at various discharge depths clearly reveal the kinetics process of the V{sub 2}O{sub 5} cathode reaction with lithium. Based on our results, the possible approach to improve the specific capacity and rate capability of the V{sub 2}O{sub 5} cathode material is proposed. It is expected that this study could accelerate the development of V{sub 2}O{sub 5} cathode in rechargeable lithium ion batteries.

  7. Lithium battery fires: implications for air medical transport.

    Science.gov (United States)

    Thomas, Frank; Mills, Gordon; Howe, Robert; Zobell, Jim

    2012-01-01

    Lithium-ion batteries provide more power and longer life to electronic medical devices, with the benefits of reduced size and weight. It is no wonder medical device manufacturers are designing these batteries into their products. Lithium batteries are found in cell phones, electronic tablets, computers, and portable medical devices such as ventilators, intravenous pumps, pacemakers, incubators, and ventricular assist devices. Yet, if improperly handled, lithium batteries can pose a serious fire threat to air medical transport personnel. Specifically, this article discusses how lithium-ion batteries work, the fire danger associated with them, preventive measures to reduce the likelihood of a lithium battery fire, and emergency procedures that should be performed in that event. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  8. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.

    Science.gov (United States)

    Lei, Zhendong; Yang, Qinsi; Xu, Yi; Guo, Siyu; Sun, Weiwei; Liu, Hao; Lv, Li-Ping; Zhang, Yong; Wang, Yong

    2018-02-08

    Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g -1 and can sustain 500 cycles at 100 mA g -1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.

  9. Corrosion behaviour of materials selected for FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Brehm, W.F.

    1983-09-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/ to 270/sup 0/C and static lithium at temperatures from 200/sup 0/ to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.

  10. Corrosion behaviour of materials selected for FMIT lithium system

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Brehm, W.F.

    1983-01-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230 0 to 270 0 C and static lithium at temperatures from 200 0 to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system

  11. High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure

    International Nuclear Information System (INIS)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua

    2015-01-01

    Graphical abstract: The porous Co 3 O 4 nanotubes (P-Co 3 O 4 -NTs) are prepared by coaxial electrospinning method followed by a fine annealing treatment. The resultant P-Co 3 O 4 -NTs exhibit excellent lithium storage performance in terms of specific capacity, rate capability, and cycling stability when used as an anode material for rechargeable lithium ion batteries (LIBs). - Abstract: Co 3 O 4 has been investigated intensively for its high specific capacity which makes it a promising candidate anode for high-performance lithium ion batteries (LIBs). However, rational design of Co 3 O 4 electrode that is beneficial for its electrochemical performance is still a great challenge. Herein, we designed and fabricated porous Co 3 O 4 nanotubes (P-Co 3 O 4 -NTs) by coaxial electrospinning method followed by a fine annealing treatment, which display one dimensional tubular structure with porous wall and hollow interior. The uniqueness of this strategy is that the morphologies of the P-Co 3 O 4 -NTs could be tuned by adjusting the mass ratio of reactants. The resultant P-Co 3 O 4 -NTs exhibit excellent lithium storage performance in terms of specific capacity, rate capability, and cycling stability, when used as an anode material for rechargeable LIBs. This unique structure endows a high reversible specific capacity of 1826.2 mA g −1 at a current density of 0.3 A g −1 after 100 cycles. Even at high current densities of 2 and 5 A g −1 , the P-Co 3 O 4 -NTs electrode still could deliver remarkable discharge capacities of 1506.2 and 1145.1 mAh g −1 , respectively. The excellent electrochemical performance can be attributed to the unique tubular and porous structure of P-Co 3 O 4 -NTs, which not only can accommodate the large volume change but also can provide an excellent ion diffusion and electronic conduction pathway. Therefore, the P-Co 3 O 4 -NTs have the potential for use as a high performance anode material in LIBs.

  12. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.

    Science.gov (United States)

    Gao, Ping; Reddy, M Anji; Mu, Xiaoke; Diemant, Thomas; Zhang, Le; Zhao-Karger, Zhirong; Chakravadhanula, Venkata Sai Kiran; Clemens, Oliver; Behm, R Jürgen; Fichtner, Maximilian

    2016-03-18

    A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g(-1) . A reversible capacity of 113 mAh g(-1) was retained even after 100 cycles when cycled at a high current density of 522 mA g(-1) . Such high cycling stability was achieved in chloride ion batteries for the first time, demonstrating the practicality of the system beyond a proof of concept model. The electrochemical reaction mechanism of the VOCl electrode in the chloride ion cell was investigated in detail by ex situ X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results confirm reversible deintercalation-intercalation of chloride ions in the VOCl electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. State of health detection for Lithium ion batteries in photovoltaic system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2013-01-01

    Highlights: ► DC resistances of batteries. ► Fuzzy logic inference. ► SOH detection for battery. - Abstract: In many photovoltaic systems, rechargeable batteries are required to even out irregularities in solar irradiation. However, the health conditions of the batteries are crucial for the reliability of the overall system. In this paper, the equivalent DC resistances of Lithium ion battery cells of various health conditions during charging under different temperatures have been collected and the relationships between equivalent DC resistance, health condition and working temperature have been identified. The equivalent DC resistance can easily be obtained during the charging period of a battery by switching off the charging current periodically for a very short duration of time. A simple and effective battery charger with state of health (SOH) detection for Lithium ion battery cell has been developed based on the identified equivalent DC resistance. Experimental results are included to demonstrate the effectiveness of the proposed SOH determination scheme.

  14. Progress in aqueous rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Jilei Liu

    2018-01-01

    Full Text Available Over the past decades, a series of aqueous rechargeable batteries (ARBs were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+ batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+ batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.

  15. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks

    International Nuclear Information System (INIS)

    Wu, Ji; Zhang, Chenbin; Chen, Zonghai

    2016-01-01

    Highlights: • An online RUL estimation method for lithium-ion battery is proposed. • RUL is described by the difference among battery terminal voltage curves. • A feed forward neural network is employed for RUL estimation. • Importance sampling is utilized to select feed forward neural network inputs. - Abstract: An accurate battery remaining useful life (RUL) estimation can facilitate the design of a reliable battery system as well as the safety and reliability of actual operation. A reasonable definition and an effective prediction algorithm are indispensable for the achievement of an accurate RUL estimation result. In this paper, the analysis of battery terminal voltage curves under different cycle numbers during charge process is utilized for RUL definition. Moreover, the relationship between RUL and charge curve is simulated by feed forward neural network (FFNN) for its simplicity and effectiveness. Considering the nonlinearity of lithium-ion charge curve, importance sampling (IS) is employed for FFNN input selection. Based on these results, an online approach using FFNN and IS is presented to estimate lithium-ion battery RUL in this paper. Experiments and numerical comparisons are conducted to validate the proposed method. The results show that the FFNN with IS is an accurate estimation method for actual operation.

  16. Novel XRD technique and equipment for in-situ monitoring of phase transformations in lithium batteries during cycling

    International Nuclear Information System (INIS)

    Nikolov, J.; Howlett, P.

    2002-01-01

    Full text: Safe, rechargeable batteries utilising a lithium metal electrode have not been realised due to phenomena, which occur on the lithium surface during the cycling of a battery. Lithium ion conduction inhomogeneities through the surface film give rise to uneven deposition of lithium, which can result in short circuits. The large potential increase in energy density that the use of the lithium electrode represents makes the nature of the surface film of interest to battery researchers. The lithium surface is highly reactive, particularly in the case of electrodes with a rough surface deposit. This presents difficulties to researchers hoping to obtain representative measurements of the lithium surface and requires the use of environmental sample chambers and in-situ techniques. X-ray diffraction techniques have been used to probe changes in cathode materials (typically transition metal oxides) for lithium batteries, but to our knowledge has not been successfully used to study changes taking place on the lithium surface during cycling. We present early results from work we have undertaken to develop a technique for characterising the surface film on lithium battery electrodes. The instrumentation was set-up as follows. An XRD was fitted with an INEL CPS 120 position sensitive detector (PSD), multilayer mirror and environmental chamber. The latter was specially developed in our laboratory for the purpose of these experiments. The lithium cells were sealed in laminated foil. Cycled and uncycled cells were investigated. Different radiation sources were used (Cu, Co and Cr). The in-situ measurements aiming at monitoring the phase transitions of cycled/uncycled cells at different angles (including grazing angles) in time were carried out in both transmission and reflection mode. Copyright (2002) Australian X-ray Analytical Association Inc

  17. Graphene composites as anode materials in lithium-ion batteries

    Science.gov (United States)

    Mazar Atabaki, M.; Kovacevic, R.

    2013-03-01

    Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant electronic companies, therefore, compete in developing more efficient hardware such as batteries used inside the small metallic or polymeric frame. One of the most important materials in the production lines is the lithium-based batteries which is so famous for its ability in recharging as many times as a user needs. However, this is not an indication of being long lasted, as many of the electronic devices are frequently being used for a long time. The performance, chemistry, safety and above all cost of the lithium ion batteries should be considered when the design of the compounds are at the top concern of the engineers. To increase the efficiency of the batteries a combination of graphene and nanoparticles is recently introduced and it has shown to have enormous technological effect in enhancing the durability of the batteries. However, due to very high electronic conductivity, these materials can be thought of as preparing the anode electrode in the lithiumion battery. In this paper, the various approaches to characterize different types of graphene/nanoparticles and the process of preparing the anode for the lithium-ion batteries as well as their electrical properties are discussed.

  18. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations.

    Science.gov (United States)

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging.

  19. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  20. Serum lithium levels and suicide attempts: a case-controlled comparison in lithium therapy-naive individuals.

    Science.gov (United States)

    Kanehisa, Masayuki; Terao, Takeshi; Shiotsuki, Ippei; Kurosawa, Keiko; Takenaka, Ryuichi; Sakamoto, Teruo; Shigemitsu, Osamu; Ishii, Nobuyoshi; Hatano, Koji; Hirakawa, Hirofumi

    2017-11-01

    Several epidemiological studies have shown the inverse association of lithium levels in drinking water and suicide rates; however, it is necessary to perform a clinical study dealing with individual patients. We analyzed 199 patients including 31 patients with suicide attempts, 21 patients with self-harm, and 147 control patients. All were transferred to a university emergency department suffering from intoxication or injury, were aged 20 or more years, and were alive at the start of the study. The exclusion criteria consisted of suffering from schizophrenia and a past or present history of lithium therapy. These exclusions were applied because it is difficult to determine whether their suicide attempt was induced by the intent to end their life or by psychotic symptoms such as auditory hallucinations, and if the patient had received lithium therapy, the association between the small amount of lithium taken from drinking water and food and serum lithium levels cannot be detected. There was a significant difference (p = 0.043) between the three groups whereby patients with suicide attempts had significantly lower lithium levels than control patients (p = 0.012) in males but not females. Multivariate logistic regression analysis with adjustment for age and gender revealed that patients with suicide attempts had significantly lower lithium levels than control patients (p = 0.032, odds ratio 0.228, 95% CI 0.059-0.883). The limitations of the present study are the nature of observational research which cannot reveal a causal relationship and the relatively small number of subjects. The present findings suggest that higher serum lithium levels may be protective against suicide attempts in lithium therapy-naive individuals.

  1. Lithium batteries: Status, prospects and future

    International Nuclear Information System (INIS)

    Scrosati, Bruno; Garche, Juergen

    2010-01-01

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content. (author)

  2. Nanostructured lithium titanates (Li4Ti5O12) for lithium-ion batteries

    CSIR Research Space (South Africa)

    Wen, L

    2016-07-01

    Full Text Available Nanostructured lithium titanates (Li(sub4)Ti(sub5)O(sub12)) have been intensively investigated as anode materials of Li-ion batteries due to their many advantages, such as excellent performance, outstanding safety, and excellent cycle life...

  3. Electrochemical properties of carbon nanocoils and hollow graphite fibers as anodes for rechargeable lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Liyong; Liu, Zhanjun; Guo, Quangui; Wang, Guizhen; Yang, Jinhua; Li, Peng; Wang, Xianglei; Liu, Lang

    2016-01-01

    Carbon nanocoils (CNCs) have been used as anode materials for preparation of lithium ion batteries. As pure carbon material without any chemical modification, the graphitized CNCs anode exhibited larger capacities with good Coulombic efficiency, a higher rate capability, and better reversibility than the hollow graphite fibers (HGFs) anode. The excellent performance of the CNCs was possibly ascribed to the special structure and the high degree of graphitization. As a result, the CNCs anode exhibited high reversible capacity of 385.5 mA h g"−"1 at 50 mA g"−"1, 104.7% reversible capacity retention after 105 cycles, and superior reversible capability of 177.4 mA h g"−"1 at 1 A g"−"1 after 100 cycles. This result indicated that CNCs could be an attractive choice as anode material for high-energy density and high-power lithium-ion batteries.

  4. Sexual function in lithium-treated manic-depressive patients

    DEFF Research Database (Denmark)

    Kristensen, Ellids; Jørgensen, Per

    1987-01-01

      Sexual function in 24 patients with major affective disorders who were given prophylactic lithium treatment was compared with that of a control group of surgical outpatients with no known psychiatric disease. Changes in sexual function during lithium treatment were also recorded retrospectively...... in sexual function during lithium treatment were reported by one-fourth of the patients. Of these, four reported a positive influence of the treatment and five a negative influence. Statistically, significantly more patients than controls were dissatisfied with their present sex life....

  5. 75 FR 18399 - Special Conditions: Modification to Boeing Model 737-600/-700/-700C/-800/-900 and -900ER Series...

    Science.gov (United States)

    2010-04-12

    ..., transport-category airplanes. Large, high- capacity, rechargeable lithium batteries and rechargeable lithium... requirements, are established to ensure the availability of electrical power from the batteries when needed... external fire from a breach of the battery container. Such problems, experienced by users of rechargeable...

  6. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today\\'s commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect to the standard hydrogen electrode, which makes this material attractive for use as a negative electrode in aqueous electrolytes. This material was synthesized using a Pechini type method. Galvanostatic cycling of the resulting lithium titanium phosphate showed an initial discharge capacity of 115 mAh/g and quite good capacity retention during cycling, 84% after 100 cycles, and 70% after 160 cycles at a 1 C cycling rate in an organic electrolyte. An initial discharge capacity of 113 mAh/g and capacity retention of 89% after 100 cycles with a coulombic efficiency above 98% was observed at a C/5 rate in pH -neutral 2 M Li2 S O4. The good cycle life and high efficiency in an aqueous electrolyte demonstrate that lithium titanium phosphate is an excellent candidate negative electrode material for use in aqueous lithium-ion batteries. © 2011 The Electrochemical Society.

  7. Characterization of LT-LiXO1-YNIYO2 electrodes for rechargeable lithium cells

    CSIR Research Space (South Africa)

    Gummow, RJ

    1993-12-01

    Full Text Available -spinel in character and that LT- Li0.4Co0.sNi0.102 is a defect spinel with spinel notation {Li0.s\\[:\\]0.2}sa \\[Co, 6Nio.2D0.2104. Electrochemical data.--The charge and discharge pro- files for the first four cycles of Li/LT-LiCoO2, Li... on the B sites of an A\\[B2104 spinel structure. The spinel phase is significantly more stable to lithium insertion/extraction reactions than the quasi-spinel phase. It is believed that by optimizing the processing conditions...

  8. Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries

    Science.gov (United States)

    Ganter, Matthew

    Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel

  9. Recharge at the Hanford Site: Status report

    International Nuclear Information System (INIS)

    Gee, G.W.

    1987-11-01

    A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly where soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs

  10. Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries.

    Science.gov (United States)

    Kwon, Tae-woo; Jeong, You Kyeong; Lee, Inhwa; Kim, Taek-Soo; Choi, Jang Wook; Coskun, Ali

    2014-12-17

    Covalent or Noncovalent? Systematic investigation of polymeric binders incorporating Meldrum's acid reveals most critical binder properties for silicon -anodes in lithium ion batteries, that is self-healing effect facilitated by a series of noncovalent interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Performance and cost of materials for lithium-based rechargeable automotive batteries

    Science.gov (United States)

    Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin

    2018-04-01

    It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.

  12. Statewide Groundwater Recharge Modeling in New Mexico

    Science.gov (United States)

    Xu, F.; Cadol, D.; Newton, B. T.; Phillips, F. M.

    2017-12-01

    It is crucial to understand the rate and distribution of groundwater recharge in New Mexico because it not only largely defines a limit for water availability in this semi-arid state, but also is the least understood aspect of the state's water budget. With the goal of estimating groundwater recharge statewide, we are developing the Evapotranspiration and Recharge Model (ETRM), which uses existing spatial datasets to model the daily soil water balance over the state at a resolution of 250 m cell. The input datasets includes PRISM precipitation data, MODIS Normalized Difference Vegetation Index (NDVI), NRCS soils data, state geology data and reference ET estimates produced by Gridded Atmospheric Data downscalinG and Evapotranspiration Tools (GADGET). The current estimated recharge presents diffuse recharge only, not focused recharge as in channels or playas. Direct recharge measurements are challenging and rare, therefore we estimate diffuse recharge using a water balance approach. The ETRM simulated runoff amount was compared with USGS gauged discharge in four selected ephemeral channels: Mogollon Creek, Zuni River, the Rio Puerco above Bernardo, and the Rio Puerco above Arroyo Chico. Result showed that focused recharge is important, and basin characteristics can be linked with watershed hydrological response. As the sparse instruments in NM provide limited help in improving estimation of focused recharge by linking basin characteristics, the Walnut Gulch Experimental Watershed, which is one of the most densely gauged and monitored semiarid rangeland watershed for hydrology research purpose, is now being modeled with ETRM. Higher spatial resolution of field data is expected to enable detailed comparison of model recharge results with measured transmission losses in ephemeral channels. The final ETRM product will establish an algorithm to estimate the groundwater recharge as a water budget component of the entire state of New Mexico. Reference ET estimated by GADGET

  13. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries

    International Nuclear Information System (INIS)

    Lopez I, J.

    2007-01-01

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO 2 , with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al 2 O 3 ; for that the study of the formation of thin films in bilayer form LiMO 2 /AI 2 O 3 is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO 2 it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO 2 , it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li 2 O) obtaining stoichiometric LiNiO 2 . For the formation of the thin films of LiNiO 2 it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO 2 and LiNiO 2 ). (Author)

  14. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries

    Science.gov (United States)

    Shim, Jae-Hyun; Lee, Sanghun

    2016-08-01

    Surface-modified graphite for application as an anode material in lithium ion batteries was obtained by etching with KOH under mild conditions without high-temperature annealing. The surface of the etched graphite is covered with many nano-sized pores that act as entrances for lithium ions during the charging process. As compared with pristine graphite and other references such as pitch-coated or etched graphite samples with annealing, our non-annealed etched graphite exhibits excellent electrochemical properties, particularly at fast charging rates of over 2.5 C. While avoidance of the trade-off between increase of irreversible capacity and good rate capability has previously been a main concern in highly porous carbonaceous materials, we show that the slightly larger surface area created by the etching does not induce a significant increase of irreversible capacity. This study shows that it is important to limit the size of pores to the nanometer scale for excellent battery performance, which is possible by etching under relatively mild conditions.

  15. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    Science.gov (United States)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  16. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium

    Directory of Open Access Journals (Sweden)

    Yanbin Li

    2017-12-01

    Full Text Available Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-Li3N film directly bonded onto Li metal foil. The film consists of highly textured large Li3N grains (tens of μm with (001 crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10–4 S cm–1, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This Li3N coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|Li4Ti5O12 cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis.

  17. Life-threatening lithium-induced diabetes insipidus after colonic ...

    African Journals Online (AJOL)

    ... concentration of 185mmol/l and required ventilation after a respiratory arrest. We suggest any surgical patient who describes a history of bipolar disorder or lithium therapy should be questioned directly to ascertain confirmatory features of LINDI, and have post-operative polyuria treated with aggressive fluid replacement.

  18. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2017-09-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45 × 106 m3 discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from ˜ 11 to ˜ 0.4 m d-1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface - abundant in many MAR operations - are negated by the high-quality desalinated seawater (turbidity ˜ 0.2 NTU, total dissolved solids ˜ 120 mg L-1) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

  19. Climatic controls on diffuse groundwater recharge across Australia

    Directory of Open Access Journals (Sweden)

    O. V. Barron

    2012-12-01

    Full Text Available Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modelling for a range of Köppen-Geiger climate types (tropical, arid and temperate to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types, the correlation between the modelled recharge and total annual rainfall is weaker than the correlation between recharge and the annual rainfall parameters reflecting rainfall intensity. Under similar soil and vegetation conditions for the same annual rainfall, annual recharge in regions with winter-dominated rainfall is greater than in regions with summer-dominated rainfall. The importance of climate parameters other than rainfall in recharge estimation is highest in the tropical climate type. Mean annual values of solar radiation and vapour pressure deficit show a greater importance in recharge estimation than mean annual values of the daily mean temperature. Climate parameters have the lowest relative importance in recharge estimation in the arid climate type (with cold winters and the temperate climate type. For 75% of all soil, vegetation and climate types investigated, recharge elasticity varies between 2 and 4 indicating a 20% to 40% change in recharge for a 10% change in annual rainfall. Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.

  20. Lithium-Ion Battery Management System: A Lifecycle Evaluation Model for the Use in the Development of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sisodia Ayush

    2018-01-01

    Full Text Available The use of Lithium-ion batteries in the automobile sector has expanded drastically in the recent years. The foreseen increment of lithium to power electric and hybrid electric vehicles has provoked specialists to analyze the long term credibility of lithium as a transportation asset. To give a better picture of future accessibility, this paper exhibits a life cycle model for the key procedures and materials associated with the electric vehicle lithium-ion battery life cycle, on a worldwide scale. This model tracks the flow of lithium and energy sources from extraction, to generation, to on road utilization, and the role of reusing and scrapping. This life cycle evaluation model is the initial phase in building up an examination model for the lithium ion battery production that would enable the policymakers to survey the future importance of lithium battery recycling, and when in time setting up a reusing foundation be made necessary.

  1. Study of the lithium insertion-deinsertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Quintin, M.; Devos, O.; Delville, M.H.; Campet, G.

    2006-01-01

    Lithium intercalation hosts are a key point to the energy density of the largely used LiCoO 2 (even if of high cost and toxicity) as well as of manganese oxides which have been investigated most extensively. Iron oxides are attractive electrode materials for low-voltage rechargeable lithium batteries from both cost and environmental standpoints. However, search for iron oxides of conventional crystalline structures and micrometer particle sizes as lithium intercalation cathodes, has been greeted with disappointing results. Here we report on the synthesis, characterizations, electrochemical study and electrochemical impedance spectroscopy (EIS) of a nanocrystalline γ-Fe 2 O 3 that simultaneously exhibits high lithium insertion capacity and good capacity retention upon cycling. These properties reveal thermodynamics of the nanocrystalline material inherently different from those of its microcrystalline counterpart. Moreover, EIS showed that the intercalation process of the lithium ion occurs according to two processes involving first the reduction of the surface Fe 3+ with concomitant charge neutralization by Li + ions onto the surface defects of the nanoparticle followed by the reduction of the core Fe 3+ with insertion of the Li + deeper in the particle

  2. Novel Approach for Lithium-Ion Battery On-Line Remaining Useful Life Prediction Based on Permutation Entropy

    Directory of Open Access Journals (Sweden)

    Luping Chen

    2018-04-01

    Full Text Available The degradation of lithium-ion battery often leads to electrical system failure. Battery remaining useful life (RUL prediction can effectively prevent this failure. Battery capacity is usually utilized as health indicator (HI for RUL prediction. However, battery capacity is often estimated on-line and it is difficult to be obtained by monitoring on-line parameters. Therefore, there is a great need to find a simple and on-line prediction method to solve this issue. In this paper, as a novel HI, permutation entropy (PE is extracted from the discharge voltage curve for analyzing battery degradation. Then the similarity between PE and battery capacity are judged by Pearson and Spearman correlation analyses. Experiment results illustrate the effectiveness and excellent similar performance of the novel HI for battery fading indication. Furthermore, we propose a hybrid approach combining Variational mode decomposition (VMD denoising technique, autoregressive integrated moving average (ARIMA, and GM(1,1 models for RUL prediction. Experiment results illustrate the accuracy of the proposed approach for lithium-ion battery on-line RUL prediction.

  3. A sulfur–microporous carbon composite positive electrode for lithium/sulfur and silicon/sulfur rechargeble batteries

    Directory of Open Access Journals (Sweden)

    Takuya Takahashi

    2015-12-01

    Full Text Available Sulfur is an advantageous material as a promising next-generation positive electrode material for high-energy lithium batteries due to a high theoretical capacity of 1672 mA h g−1 although its discharge potential is somewhat modest: ca. 2 V vs Li/Li+. However, a sulfur positive electrode has some crucial problems for practical use, which are mainly attributed to the dissolution of its intermediate products in charge–discharge processes. In order to resolve the dissolution problem of lithium polysulfide, we attempted to synthesize a sulfur–microporous activated carbon (AC composite positive electrode. Moreover, we have systematically researched the battery performance of sulfur–microporous AC positive electrode with variations of electrolytes as well as negative electrodes, and found its promising positive electrode performance for a next-generation rechargeable battery.

  4. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Khomenko, Volodymyr G.; Barsukov, Viacheslav Z.

    2007-01-01

    In recent years development of active materials for negative electrodes has been of great interest. Special attention has been focused on the active materials possessing higher reversible capacity than that of conventional graphite. In the present work the electrochemical performance of some carbon/silicon-based materials has been analyzed. For this purpose various silicon-based composites were prepared using such carbon materials as graphite, hard carbon and graphitized carbon black. An analysis of charging-discharging processes at electrodes based on different carbon materials has shown that graphite modified with silicon is the most promising anode material. It has also been revealed that the irreversible capacity mainly depends on the content of Si. An optimum content of Si has been determined with taking into account that high irreversible capacity is not suitable for practical application in lithium-ion batteries. This content falls within the range of 8-10 wt%. The reversible capacity of graphite modified with 8 wt% carbon-coated Si was as high as 604 mAh g -1 . The irreversible capacity loss with this material was as low as 8.1%. The small irreversible capacity of the material allowed developing full lithium-ion rechargeable cells in the 2016 coin cell configuration. Lithium-ion batteries based on graphite modified with silicon show gravimetric and volumetric specific energy densities which are higher by approximately 20% than those for a lithium-ion battery based on natural graphite

  5. Interfacial reactions in lithium batteries

    International Nuclear Information System (INIS)

    Chen, Zonghai; Amine, Khalil; Amine, Rachid; Ma, Zi-Feng

    2017-01-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented. (topical review)

  6. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  7. Highly rechargeable lithium-CO{sub 2} batteries with a boron- and nitrogen-codoped holey-graphene cathode

    Energy Technology Data Exchange (ETDEWEB)

    Qie, Long; Xu, Jiantie; Dai, Liming [Center of Advanced Science and Engineering for Carbon, Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH (United States); Lin, Yi [National Institute of Aerospace, Hampton, VA (United States); Connell, John W. [Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA (United States)

    2017-06-06

    Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO{sub 2} (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li{sub 2}CO{sub 3}, making the battery less rechargeable. To make the Li-CO{sub 2} batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO{sub 2} reduction and evolution reactions and investigate the electrochemical behavior of Li-CO{sub 2} batteries. Here, we demonstrate a rechargeable Li-CO{sub 2} battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO{sub 2} reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO{sub 2} batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g{sup -1}. Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO{sub 2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    Directory of Open Access Journals (Sweden)

    H. Hashemi

    2013-02-01

    Full Text Available Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.

  9. Quantification of groundwater recharge in urban environments.

    Science.gov (United States)

    Tubau, Isabel; Vázquez-Suñé, Enric; Carrera, Jesús; Valhondo, Cristina; Criollo, Rotman

    2017-08-15

    Groundwater management in urban areas requires a detailed knowledge of the hydrogeological system as well as the adequate tools for predicting the amount of groundwater and water quality evolution. In that context, a key difference between urban and natural areas lies in recharge evaluation. A large number of studies have been published since the 1990s that evaluate recharge in urban areas, with no specific methodology. Most of these methods show that there are generally higher rates of recharge in urban settings than in natural settings. Methods such as mixing ratios or groundwater modeling can be used to better estimate the relative importance of different sources of recharge and may prove to be a good tool for total recharge evaluation. However, accurate evaluation of this input is difficult. The objective is to present a methodology to help overcome those difficulties, and which will allow us to quantify the variability in space and time of the recharge into aquifers in urban areas. Recharge calculations have been initially performed by defining and applying some analytical equations, and validation has been assessed based on groundwater flow and solute transport modeling. This methodology is applicable to complex systems by considering temporal variability of all water sources. This allows managers of urban groundwater to evaluate the relative contribution of different recharge sources at a city scale by considering quantity and quality factors. The methodology is applied to the assessment of recharge sources in the Barcelona city aquifers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Long life, low cost, rechargeable AgZn battery for non-military applications

    Science.gov (United States)

    Brown, Curtis C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven ``enabling technology'' for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost.

  11. Fe-N-C catalyst modified graphene sponge as a cathode material for lithium-oxygen battery

    International Nuclear Information System (INIS)

    Yu, Ling; Shen, Yue; Huang, Yunhui

    2014-01-01

    Highlights: • Hydrothermally-synthesized graphene sponge is excellent skeleton of Li-O 2 cathode. • Fe-N-C catalyst loaded on GS was attained via pyrolysis of FePc and GS composites. • High capacity and good cyclability were achieved with Fe-N-GS air electrode. • The synergy of porous structure and catalytic activity leads to the high performance. - Abstract: The cathode of a lithium-oxygen battery needs the synergism of a porous conducting material and a catalyst to facilitate the formation and decomposition of lithium peroxide. Here we introduce a graphene sponge (GS) modified with Fe-N-C catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The porous, 3-dimensional conductive and free standing nature of the graphene sponge makes it become excellent skeleton of cathode for lithium-oxygen battery. The Fe-N-C catalyst nanoparticles dispersed uniformly on the graphene sheets show excellent catalytic reactivity in both discharge and charge processes. This kind of composite material greatly improves the capacity and cyclability of the lithium-oxygen battery. With dimethyl sulphoxide as electrolyte, the capacity reaches 6762 mAh g −1 which is twice of the pure graphene sponge. In addition, the cell containing Fe-N-GS air electrode exhibits stable cyclic performance and effective reduction of charge potential plateau, indicating that Fe-N-GS is promising as an OER catalyst in rechargeable lithium-air batteries

  12. SWB Groundwater Recharge Analysis, Catalina Island, California: Assessing Spatial and Temporal Recharge Patterns Within a Mediterranean Climate Zone

    Science.gov (United States)

    Harlow, J.

    2017-12-01

    Groundwater recharge quantification is a key parameter for sustainable groundwater management. Many recharge quantification techniques have been devised, each with advantages and disadvantages. A free, GIS based recharge quantification tool - the Soil Water Balance (SWB) model - was developed by the USGS to produce fine-tuned recharge constraints in watersheds and illuminate spatial and temporal dynamics of recharge. The subject of this research is to examine SWB within a Mediterranean climate zone, focusing on the Catalina Island, California. This project relied on publicly available online resources with the exception the geospatial processing software, ArcGIS. Daily climate station precipitation and temperature data was obtained from the Desert Research Institute for the years 2008-2014. Precipitation interpolations were performed with ArcGIS using the Natural Neighbor method. The USGS-National Map Viewer (NMV) website provided a 30-meter DEM - to interpolate high and low temperature ASCII grids using the Temperature Lapse Rate (TLR) method, to construct a D-8 flow direction grid for downhill redirection of soil-moisture saturated runoff toward non-saturated cells, and for aesthetic map creation. NMV also provided a modified Anderson land cover classification raster. The US Department of Agriculture-National Resource Conservation Service (NRCS) Web Soil Survey website provided shapefiles of soil water capacity and hydrologic soil groups. The Hargreaves and Samani method was implemented to determine evapotranspiration rates. The resulting SWB output data, in the form of ASCII grids are easily added to ArcGIS for quick visualization and data analysis (Figure 1). Calculated average recharge for 2008-2014 was 3537 inches/year, or 0.0174 acre feet/year. Recharge was 10.2% of the islands gross precipitation. The spatial distribution of the most significant recharge is in hotspots which dominate the residential hills above Avalon, followed by grassy/unvegetated areas

  13. Metal-organic frameworks for lithium ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-01-01

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m 2 g −1 ) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m 2 g −1 ), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study

  14. Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ye [Wildcat Discovery Technologies, San Diego, CA (United States); Yang, Johnny [Wildcat Discovery Technologies, San Diego, CA (United States); Cheng, Gang [Wildcat Discovery Technologies, San Diego, CA (United States); Carroll, Kyler [Wildcat Discovery Technologies, San Diego, CA (United States); Clemons, Owen [Wildcat Discovery Technologies, San Diego, CA (United States); Strand, Diedre [Wildcat Discovery Technologies, San Diego, CA (United States)

    2016-09-09

    Substantial improvement in the energy density of rechargeable lithium batteries is required to meet the future needs for electric and plug-in electric vehicles (EV and PHEV). Present day lithium ion battery technology is based on shuttling lithium between graphitic carbon and inorganic oxides. Non-graphitic anodes, such as silicon can provide significant improvements in energy density but are currently limited in cycle life due to reactivity with the electrolyte. Wildcat/3M proposes the development of non-carbonate electrolyte formulations tailored for silicon alloy anodes. Combining these electrolytes with 3M’s anode and an NMC cathode will enable up to a 20% increase in the volumetric cell energy density, while still meeting the PHEV/EV cell level cycle/calendar life goals.

  15. Analysis of redox additive-based overcharge protection for rechargeable lithium batteries

    Science.gov (United States)

    Narayanan, S. R.; Surampudi, S.; Attia, A. I.; Bankston, C. P.

    1991-01-01

    The overcharge condition in secondary lithium batteries employing redox additives for overcharge protection, has been theoretically analyzed in terms of a finite linear diffusion model. The analysis leads to expressions relating the steady-state overcharge current density and cell voltage to the concentration, diffusion coefficient, standard reduction potential of the redox couple, and interelectrode distance. The model permits the estimation of the maximum permissible overcharge rate for any chosen set of system conditions. Digital simulation of the overcharge experiment leads to numerical representation of the potential transients, and estimate of the influence of diffusion coefficient and interelectrode distance on the transient attainment of the steady state during overcharge. The model has been experimentally verified using 1,1-prime-dimethyl ferrocene as a redox additive. The analysis of the experimental results in terms of the theory allows the calculation of the diffusion coefficient and the formal potential of the redox couple. The model and the theoretical results may be exploited in the design and optimization of overcharge protection by the redox additive approach.

  16. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  17. Synthesis and characterization of CMC from water hyacinth for lithium-ion battery applications

    Science.gov (United States)

    Hidayat, Sahrul; Susanty, Riveli, Nowo; Suroto, Bambang Joko; Rahayu, Iman

    2018-02-01

    Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and longer lifetime compared to similar rechargeable battery systems. One of the components that determine the performance of a lithium ion battery is the binder material, whether at the anode or the cathode. In commercial batteries, the material used as the binder is Polyvinylidene Difluoride (PVDF), with n-methyl-2-phyrrolidone (NMP) as the solvent. Both are synthetic materials that are expensive, toxic and harmful to the environment. An alternative binder material for lithium-ion battery electrodes is CMC (carboxymethyl cellulose) in a water solvent. CMC is cheaper than PVDF, non-toxic and more environmental friendly. CMC can be synthesized from several types of plants, such as water hyacinth, which is a weed plant with high cellulose content. The synthesis of CMC consists of three main steps, namely 1) the isolation process from water hyacinth, 2) the alkalization and carboxymethylation process and 3) the purification process to obtain CMC in high purity. FTIR characterization of the CMC shows five region of absorption bands. The bands in the region 1330-1400 cm-1 are due to symmetrical deformations of CH2 and OH groups. The ether bonds in CMC occur in the fingerprint region of 1250-1060 cm-1. The presence of new and strong absorption band around 1600 cm-1 is confirmed to the stretching vibration of the carboxyl group (COO-), while the one around 1415 cm-1 is assigned to carboxyl groups as it salts. The broad absorption band above 3400 cm-1 is due to the stretching frequency of the hydroxyl group (-OH). Purity test on three samples (CMC mesh-100, CMC mesh-60 and CMC, mesh-40) gives purity values of 99.89%, 99.99% and 99.89%, respectively. This proves that CMC have actually been formed with high purity.

  18. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  19. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    Directory of Open Access Journals (Sweden)

    Y. Ganot

    2017-09-01

    Full Text Available We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015 of continuous intensive MAR (2.45  ×  106 m3 discharged to a 10.7 ha area, groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d−1. This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L−1 or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016 fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

  20. Investigation of the Present Recharge Rate and Recharge Origins in the Disi Sandstone Aquifer in Southern Jordan

    International Nuclear Information System (INIS)

    Kilani, S.F.

    2003-01-01

    This study presents a thorough investigation of recharge origins of the strategic Disi sandstone aquifer in southern Jordan. This aquifer is of substantial potential and huge extension most of which lies in Saudi Arabia. Disi groundwater infiltrated in the ground thousands of years ago and is not currently being replenished, therefore crucial management for this resource is very important. This aquifer is foreseen to provide 100 MCM/a of high quality drinking water to the Capital Amman in addition to the current use of about 60 MCM/a for agricultural activities in the area and to meet the water demand in the port of Aqaba. Origins and amount of recharge to groundwater is one critical aspect in resource management. A study to estimate recharge rate was conducted in the Quaternary sediments and sandstone's of Al Quwayra in southern Jordan where the average rainfall is less than 70 mm per year. Environmental chloride, deuterium and nitrate in the sand profiles in the vadose zone were the study tools. The study showed that recharge if present is a result of severe infrequent storm events and that the aquifer does not receive significant direct recharge from rain. The pollutant profiles in the unsaturated zone might give chronology of the recharge history

  1. Enhancing Near Zero Volt Storage Tolerance of Lithium-ion Batteries

    Science.gov (United States)

    Crompton, Kyle R.

    There are inherent safety risks associated with inactive lithium ion batteries leading to greater restrictions and regulations on shipping and storage. Maintaining all cells of a lithium ion battery at near zero voltage with an applied fixed resistive load is one promising approach which can lessen (and potentially eliminate) the risk of a lithium ion battery entering thermal runaway when in an inactive state. However, in a conventional lithium ion cell, a near zero cell voltage can be damaging if the anode electrochemical potential increases to greater than the potential where dissolution of the standard copper current collector occurs (i.e. 3.1 V vs. Li/Li+ at room temperature). Past approaches to yield lithium ion cells that are resilient to a near zero volt state of charge involve use of secondary active materials or alternative current collectors which have anticipated tradeoffs in terms of cell performance and cost. In the the present dissertation work the approach of managing the amount of reversible lithium in a cell during construction to prevent the anode potential from increasing to greater than 3.1 V vs. Li/Li+ during near zero volt storage is introduced. Anode pre-lithiation was used in LiCoO 2/MCMB pouch cells to appropriately manage the amount of reversible lithium so that there is excess reversible lithium compared to the cathodes intercalation capacity (reversible lithium excess cell or RLE cell). RLE LiCoO 2/MCMB cells maintained 99% of their original capacity after three, 3-day and three, 7-day storage periods at near zero volts under fixed load. A LiCoO2/MCMB pouch cell fabricated with a pre-lithiated anode also maintained its original discharge performance after three, 3-day storage periods under fixed load at 45°C. The strong recharge performance after near zero volt storage is attributed to the anode potential remaining below the copper dissolution potential during near zero volt storage as informed by reference electrode measurements. Pulse

  2. Estimating the proportion of groundwater recharge from flood events in relation to total annual recharge in a karst aquifer

    Science.gov (United States)

    Dvory, N. Z.; Ronen, A.; Livshitz, Y.; Adar, E.; Kuznetsov, M.; Yakirevich, A.

    2017-12-01

    Sustainable groundwater production from karstic aquifers is primarily dictated by its recharge rate. Therefore, in order to limit over-exploitation, it is essential to accurately quantify groundwater recharge. Infiltration during erratic floods in karstic basins may contribute substantial amount to aquifer recharge. However, the complicated nature of karst systems, which are characterized in part by multiple springs, sinkholes, and losing/gaining streams, present a large obstacle to accurately assess the actual contribution of flood water to groundwater recharge. In this study, we aim to quantify the proportion of groundwater recharge during flood events in relation to the annual recharge for karst aquifers. The role of karst conduits on flash flood infiltration was examined during four flood and artificial runoff events in the Sorek creek near Jerusalem, Israel. The events were monitored in short time steps (four minutes). This high resolution analysis is essential to accurately estimating surface flow volumes, which are of particular importance in arid and semi-arid climate where ephemeral flows may provide a substantial contribution to the groundwater reservoirs. For the present investigation, we distinguished between direct infiltration, percolation through karst conduits and diffused infiltration, which is most affected by evapotranspiration. A water balance was then calculated for the 2014/15 hydrologic year using the Hydrologic Engineering Center - Hydrologic Modelling System (HEC-HMS). Simulations show that an additional 8% to 24% of the annual recharge volume is added from runoff losses along the creek that infiltrate through the karst system into the aquifer. The results improve the understanding of recharge processes and support the use of the proposed methodology for quantifying groundwater recharge.

  3. A fundamental approach to better understand the lithium insertion mechanisms in electrode materials; Une approche fondamentale pour mieux comprendre les mecanismes d`insertion du lithium dans les materiaux d`electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier-Fourcade, J.; Branci, C.; Sarradin, J.; Jumas, J.C. [Montpellier-2 Univ., 34 (France). Laboratoire de Physicochimie de la Matiere Condensee

    1996-12-31

    The development of rechargeable lithium batteries with a high mass capacity, made with non-toxic and low cost materials is an important industrial challenge. Morphological and structural modifications occurring in the electrode materials during charge-output cycles should not lower the electrochemical characteristics and the cycling properties of the battery. Thus the structure of electrode materials must be sufficiently deformable and stable to support the constraints linked with lithium intercalation and de-intercalation (ions and electrons absorption/extraction). The aim of this work is to explain some characteristics (mass capacity, ions and electrons mobility, cycling) using the relation between some mechanisms of lithium insertion (sites occupation, lattice reduction mods) and the nature of atoms and chemical bonds (covalence, ionicity). This approach is developed on 2-D models of crystallized and vitreous sulfur compounds (CdI{sub 2} type) with a large inter-sheet distance, and on 3-D spinel models with a huge number of vacant sites. The method is based on a correlation between experimental studies (XAFS, DX, Moessbauer, XPS) and theoretical calculations and on the electronic and electrochemical characteristics. The model proposed should allow to improve materials in a predictive way (type of substitution) or to imagine new materials. (J.S.) 15 refs.

  4. A fundamental approach to better understand the lithium insertion mechanisms in electrode materials; Une approche fondamentale pour mieux comprendre les mecanismes d`insertion du lithium dans les materiaux d`electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier-Fourcade, J; Branci, C; Sarradin, J; Jumas, J C [Montpellier-2 Univ., 34 (France). Laboratoire de Physicochimie de la Matiere Condensee

    1997-12-31

    The development of rechargeable lithium batteries with a high mass capacity, made with non-toxic and low cost materials is an important industrial challenge. Morphological and structural modifications occurring in the electrode materials during charge-output cycles should not lower the electrochemical characteristics and the cycling properties of the battery. Thus the structure of electrode materials must be sufficiently deformable and stable to support the constraints linked with lithium intercalation and de-intercalation (ions and electrons absorption/extraction). The aim of this work is to explain some characteristics (mass capacity, ions and electrons mobility, cycling) using the relation between some mechanisms of lithium insertion (sites occupation, lattice reduction mods) and the nature of atoms and chemical bonds (covalence, ionicity). This approach is developed on 2-D models of crystallized and vitreous sulfur compounds (CdI{sub 2} type) with a large inter-sheet distance, and on 3-D spinel models with a huge number of vacant sites. The method is based on a correlation between experimental studies (XAFS, DX, Moessbauer, XPS) and theoretical calculations and on the electronic and electrochemical characteristics. The model proposed should allow to improve materials in a predictive way (type of substitution) or to imagine new materials. (J.S.) 15 refs.

  5. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  6. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, J.; Shui, J.L.; Zhang, S.L.; Wei, X.; Xiang, Y.J.; Xie, S.; Zhu, C.F.; Chen, C.H.

    2005-01-01

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship

  7. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Shui, J.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhang, S.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Wei, X. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xiang, Y.J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xie, S. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhu, C.F. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Chen, C.H. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)]. E-mail: cchchen@ustc.edu.cn

    2005-04-05

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship.

  8. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Y.; Ganot, Y.; Holtzman, R.; Weisbrod, N.; Nitzan, I.; Katz, Y.; Kurtzman, D.

    2017-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil senso...

  9. A new rechargeable lithium-ion battery with a xLi2MnO3.(1 - x) LiMn0.4Ni0.4Co0.2O2 cathode and a hard carbon anode

    International Nuclear Information System (INIS)

    Liu Jinlong; Wang Jie; Xia Yongyao

    2011-01-01

    Highlights: → A new type of battery with 0.4Li 2 MnO 3 0.6LiMn 0.4 Ni 0.4 Co 0.2 O 2 and hard carbon was proposed. → The irreversible capacity encountered at both electrodes, can be counterbalanced each other. → The battery delivers capacities of 105 mAh g -1 and specific energies of 315 Wh kg -1 . - Abstract: We reported a new type of rechargeable lithium-ion battery consisting of a structurally integrated 0.4Li 2 MnO 3 .0.6LiMnNi 0.4 Co 0.2 O 2 cathode and a hard carbon anode. The drawback of the high irreversible capacity loss of both electrodes, occurring at the first charge/discharge process, can be counterbalanced each other. The battery shows good reversibility with a sloping voltage from 1.5 V to 4.5 V and delivers a capacity of 105 mA h g -1 and a specific energy of 315 W h kg -1 based on the total weight of the both active electrode materials.

  10. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2016-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors and observation...

  11. The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium

    International Nuclear Information System (INIS)

    Cui Yanhua; Xue Mingzhe; Zhou Yongning; Peng Shuming; Wang Xiaolin; Fu Zhengwen

    2011-01-01

    Crystalline CuF 2 thin films were prepared by pulsed laser deposition under room temperature. The physical and electrochemical properties of the as-deposited thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic cycling and cyclic voltammetry (CV). Reversible capacity of 544 mAh g -1 was achieved in the potential range of 1.0-4.0 V. A reversible couple of redox peaks at 3.0 V and 3.7 V was firstly observed. By using ex situ XRD and TEM techniques, an insertion process followed by a fully conversion reaction to Cu and LiF was revealed in the lithium electrochemical reaction of CuF 2 thin film electrode. The reversible insertion reaction above 2.8 V could provide a capacity of about 125 mAh g -1 , which makes CuF 2 a potential cathode material for rechargeable lithium batteries.

  12. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries

    Science.gov (United States)

    Ferrari, Stefania; Loveridge, Melanie; Beattie, Shane D.; Jahn, Marcus; Dashwood, Richard J.; Bhagat, Rohit

    2015-07-01

    Recent advances in micro- and nano-electromechanical systems (MEMS/NEMS) technology have led to a niche industry of diverse small-scale devices that include microsensors, micromachines and drug-delivery systems. For these devices, there is an urgent need to develop Micro Lithium Ion Batteries (MLIBs) with dimensions on the scale 1-10 mm3 enabling on-board power delivery. Unfortunately, power limitations are inherent in planar 2D cells and only the advent of 3D designs and microarchitectures will lead to a real breakthrough in the microbattery technology. During the last few years, many efforts to optimise MLIBs were discussed in literature, both in the planar and 3D configurations. This review highlights the importance of 3D microarchitectured electrodes to fabricate batteries that can be device-integrated with exceptionally high specific power density coupled with exquisite miniaturisation. A wide literature overview is provided and recent advances in manufacturing routes to 3D-MLIBs comprising materials synthesis, device formulation, device testing are herein discussed. The advent of simple, economic and easily scalable fabrication processes such as 3D printing will have a decisive role in the growing field of micropower sources and microdevices.

  13. Social Impact of Recharging Activity in Long-Term HRI and Verbal Strategies to Manage User Expectations During Recharge

    Directory of Open Access Journals (Sweden)

    Amol Deshmukh

    2018-04-01

    Full Text Available Social robots perform tasks to help humans in their daily activities. However, if they fail to fulfill expectations this may affect their acceptance. This work investigates the service degradation caused by recharging, during which the robot is socially inactive. We describe two studies conducted in an ecologically valid office environment. In the first long-term study (3 weeks, we investigated the service degradation caused by the recharging behavior of a social robot. In the second study, we explored the social strategies used to manage users’ expectations during recharge. Our findings suggest that the use of verbal strategies (transparency, apology, and politeness can make robots more acceptable to users during recharge.

  14. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    Science.gov (United States)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  15. About the safety of lithium batteries with carbon anode; De la securite des accumulateurs au lithium a anode de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Biensan, Ph.; Le Nay, F. [SAFT, Direction de la Recherche, 91 - Marcoussis (France); Simon, B. [Alcatel Alsthom Recherche, 91 - Marcoussis (France); Bodet, J.M. [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1996-12-31

    The replacement of lithium metal from the negative electrode of lithium batteries by a material allowing the reversible insertion of lithium ions is an undeniable commercial success. Carbon electrodes, generally called Li{sub x}C{sub 6}, are the most common type and allow to increase the service life of the battery, its charging fastness and its safety. The safety of such batteries is well known in normal conditions of use, but it has to be known also in any abusive condition of use, whatever is the charging state. The mastery of the phenomena that can occur requires a good knowledge of the kinetics of the exothermal chemical reactions involved. (J.S.) 8 refs.

  16. About the safety of lithium batteries with carbon anode; De la securite des accumulateurs au lithium a anode de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Biensan, Ph; Le Nay, F [SAFT, Direction de la Recherche, 91 - Marcoussis (France); Simon, B [Alcatel Alsthom Recherche, 91 - Marcoussis (France); Bodet, J M [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1997-12-31

    The replacement of lithium metal from the negative electrode of lithium batteries by a material allowing the reversible insertion of lithium ions is an undeniable commercial success. Carbon electrodes, generally called Li{sub x}C{sub 6}, are the most common type and allow to increase the service life of the battery, its charging fastness and its safety. The safety of such batteries is well known in normal conditions of use, but it has to be known also in any abusive condition of use, whatever is the charging state. The mastery of the phenomena that can occur requires a good knowledge of the kinetics of the exothermal chemical reactions involved. (J.S.) 8 refs.

  17. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.

    Science.gov (United States)

    Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe

    2018-03-29

    The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.

  18. Proposed artificial recharge studies in northern Qatar

    Science.gov (United States)

    Kimrey, J.O.

    1985-01-01

    The aquifer system in northern Qatar comprises a water-table aquifer in the Rus Formation which is separated by an aquitard from a partially confined aquifer in the top of the overlying Umm er Radhuma Formation. These two aquifers are composed of limestone and dolomite of Eocene and Paleocene age and contain a fragile lens of freshwater which is heavily exploited as a source of water for agricultural irrigation. Net withdrawals are greatly in excess of total recharge, and quality of ground water is declining. Use of desalinated seawater for artificial recharge has been proposed for the area. Artificial recharge, on a large scale, could stabilize the decline in ground-water quality while allowing increased withdrawals for irrigation. The proposal appears technically feasible. Recharge should be by injection to the Umm er Radhuma aquifer whose average transmissivity is about 2,000 meters squared per day (as compared to an average of about 200 meters squared per day for the Rus aquifer). Implementation of artificial recharge should be preceded by a hydrogeologic appraisal. These studies should include test drilling, conventional aquifer tests, and recharge-recovery tests at four sites in northern Qatar. (USGS)

  19. The Li-ion rechargeable battery: a perspective.

    Science.gov (United States)

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  20. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  1. A novel mechanistic modeling framework for analysis of electrode balancing and degradation modes in commercial lithium-ion cells

    Science.gov (United States)

    Schindler, Stefan; Danzer, Michael A.

    2017-03-01

    Aiming at a long-term stable and safe operation of rechargeable lithium-ion cells, elementary design aspects and degradation phenomena have to be considered depending on the specific application. Among the degrees of freedom in cell design, electrode balancing is of particular interest and has a distinct effect on useable capacity and voltage range. Concerning intrinsic degradation modes, understanding the underlying electrochemical processes and tracing the overall degradation history are the most crucial tasks. In this study, a model-based, minimal parameter framework for combined elucidation of electrode balancing and degradation pathways in commercial lithium-ion cells is introduced. The framework rests upon the simulation of full cell voltage profiles from the superposition of equivalent, artificially degraded half-cell profiles and allows to separate aging contributions from loss of available lithium and active materials in both electrodes. A physically meaningful coupling between thermodynamic and kinetic degradation modes based on the correlation between altered impedance features and loss of available lithium as well as loss of active material is proposed and validated by a low temperature degradation profile examined in one of our recent publications. The coupled framework is able to determine the electrode balancing within an error range of < 1% and the projected cell degradation is qualitatively and quantitatively in line with experimental observations.

  2. How a gel polymer electrolyte affects performance of lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Sheng S.; Tran, Dat T.

    2013-01-01

    Highlights: •Conventional separator is coated with a 50PEO-50SiO 2 (wt.%) composite layer. •Composite coating increases tensile strength and electrolyte wettability. •Coated separator offers an alternative approach for making gel polymer Li/S battery. •Li/S battery takes benefits of gel polymer electrolyte at the expense of capacity. -- Abstract: Gel polymer electrolyte (GPE) and composite gel polymer electrolyte (CGPE) have been widely employed to improve the safety and cycling performance of rechargeable lithium and lithium-ion batteries. In order to determine whether this approach is applicable to lithium/sulfur (Li/S) battery, we examine the effect of CGPE on the cycling and storage performances of Li/S cells by comparing a 50PEO-50SiO 2 (wt.%) composite coated separator (C-separator) with a pristine separator (P-separator). Results show that the composite coating significantly enhances the wettability of liquid electrolyte on the separator and that resulting CGPE can tightly glue the separator and electrode together. In comparison with the P-separator, the C-separator offers Li/S cells similar capacity retention and rate capability; however it greatly affects the specific capacity of sulfur. The analysis on the impedance spectrum of a lithium polysulfide (PS) solution reveal that the reduction of sulfur specific capacity is due to the high viscosity of the CGPE and the strong adsorption of SiO 2 filler to the PS species, which trap PS species in the separator and hence reduce the utilization of sulfur active material. Therefore, the benefits of the GPE and CGPE to the Li/S batteries can be taken only at the expense of sulfur specific capacity

  3. Metal-organic frameworks for lithium ion batteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  4. NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994

    Science.gov (United States)

    North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

  5. Groundwater recharge: The intersection between humanity and hydrogeology

    Science.gov (United States)

    Smerdon, Brian D.; Drewes, Jörg E.

    2017-12-01

    Groundwater recharge is an essential part of subsurface water circulation and the beginning of groundwater flow systems that can vary in duration from days to millennia. Globally, there is a growing body of evidence suggesting that many of Earth's aquifers contain 'fossil' groundwater that was recharged more than 12,000 years ago (Jasechko et al., 2017), and a very small portion of groundwater that was recharged within the last 50 years (Gleeson et al., 2015). Together, this information demonstrates the irregular distribution of groundwater circulation within the Earth and the wide variability of recharge conditions that replenish aquifer systems (Befus et al., 2017). Knowledge of groundwater recharge rates and distribution are needed for evaluating and regulating the quantity and quality of water resources, understanding consequences of landscapes use, identifying where managed aquifer recharge can augment supply, and predicting how groundwater systems will respond to a changing climate. In-turn, these topics are of central importance for the health of humans and ecosystems, and security of food and energy. Yet, despite the global importance, quantifying groundwater recharge remains challenging as it cannot be measured directly, and there is uncertainty associated with all currently known estimation methods (Scanlon et al., 2002).

  6. Quantifying potential recharge in mantled sinkholes using ERT.

    Science.gov (United States)

    Schwartz, Benjamin F; Schreiber, Madeline E

    2009-01-01

    Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system.

  7. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  8. Recharge signal identification based on groundwater level observations.

    Science.gov (United States)

    Yu, Hwa-Lung; Chu, Hone-Jay

    2012-10-01

    This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area.

  9. The Science of Electrode Materials for Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  10. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in

  11. Estimation of potential rainfall recharge in the pothwar area

    International Nuclear Information System (INIS)

    Afzal, M.; Yaseen, M.

    2015-01-01

    Groundwater recharge is complex phenomenon to understand and describe because it cannot be seen with open eyes. We have to depend some theoretical assumptions to understand this complicated hidden natural underground water movement process. There are many factors affecting and controlling the water movement in soil profile. Groundwater use in district chakwal is of a fundamental importance to meet the rapidly expanding drinking and agricultural water requirements. The man factors contributing to groundwater recharge in chakwal are rainfall, evapotranspiration and geology. due to the semi arid climatic conditions of the area, this resource is almost the only key to economic development. There are a number of dug wells in the area where water is getting stored during rainy season. source and processes of recharge in humid areas are different compared with semi-arid areas. Due to the main resource of available water in the area, the potential groundwater recharge estimation could be good exercise to visulize the amount of rainwater entering the ground. For groundwater recharge estimation there are a number of simple and advanced techniques available. In the present study simple methods were used to estimate potential recharge due to available limited resources. Rainfall runoff, gravimetric and water table fluctuation methods were used to quantify rainfall recharge during the monsoon season. The average potential recharge estimated was 60% of the rainfall of 148 mm. Rainfall runoff and gravimetric methods were found to be comparable for short period potential recharge estimation while water table fluctuation method gives actual recharge and require longer period data. Potential recharge values were higher for area having grassland type vegetation and low for area covering shrubs and tick vegetation. (author)

  12. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  13. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  14. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com [Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur – 342 005 (India)

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.

  15. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  16. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, Bridget R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

    2006-01-01

    Global synthesis of the findings from ∼140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40–374 000 km2) range from 0·2 to 35 mm year−1, representing 0·1–5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ∼720 m year−1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Niño Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Niños (1977–1998) relative to periods dominated by La Niñas (1941–1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year−1 during the Sahel drought (1970–1986) to 150 mm year−1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (≥10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in

  17. Lithium insertion in V{sub 2}O{sub 5}, M{sub x}V{sub 2}O{sub 5} (M = Fe, Cr, Al, La) mixed oxides; Insertion du lithium dans les oxydes mixtes de V{sub 2}O{sub 5}, M{sub x}V{sub 2}O{sub 5} (M = Fe, Cr, Al, La)

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G.; Pecquenard, B.; Baffier, N. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Laboratoire de Chimie Appliquee de l`Etat Solide; Soudan, P.; Farcy, J.; Pereira-Ramos, J.P. [Centre National de la Recherche Scientifique (CNRS), 94 - Ivry-sur-Seine (France). Laboratoire d`Electrochimie Catalyse et Synthese Organique

    1996-12-31

    V{sub 2}O{sub 5} based compounds are interesting low potential materials for rechargeable cathodes of lithium electrochemical generators. However, the ionic conductivity and the reversibility of electrochemical cycling of V{sub 2}O{sub 5} are limited by the possibilities of lithium insertion. This work shows that the doping of vanadium pentoxide by a M{sup 3+} trivalent transition element (M Fe, Al, Cr or La) allows to intercalate a more important amount of lithium and to improve the behaviour of the material during cycling. These materials of M{sub 0.11}V{sub 2}O{sub 5.16} formula are obtained by sol-gel synthesis. the electrochemical study of the Fe compound has shown that it is a mixed oxide with a behaviour similar to V{sub 2}O{sub 5}. The maximum capacity is of about 2 F/mole in the case of Fe, Al and Cr compounds and of about 1.7 F/mole in the case of La. The structural evolution of the Fe compound has been followed during the chemical insertion of Li and the same succession of phases ({alpha}, {epsilon}, {delta} and {gamma}) is observed as in Li{sub x}V{sub 2}O{sub 5} compounds but with a delay. The occurrence of the {gamma} phase, in particular, which is involved in recharging problems is delayed thanks to the (Fe-O){sub n} chains perpendicular to the (V{sub 2}O{sub 5}){sub n} layers. Abstract only. (J.S.) 3 refs.

  18. Lithium insertion in V{sub 2}O{sub 5}, M{sub x}V{sub 2}O{sub 5} (M = Fe, Cr, Al, La) mixed oxides; Insertion du lithium dans les oxydes mixtes de V{sub 2}O{sub 5}, M{sub x}V{sub 2}O{sub 5} (M = Fe, Cr, Al, La)

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G; Pecquenard, B; Baffier, N [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Laboratoire de Chimie Appliquee de l` Etat Solide; Soudan, P; Farcy, J; Pereira-Ramos, J P [Centre National de la Recherche Scientifique (CNRS), 94 - Ivry-sur-Seine (France). Laboratoire d` Electrochimie Catalyse et Synthese Organique

    1997-12-31

    V{sub 2}O{sub 5} based compounds are interesting low potential materials for rechargeable cathodes of lithium electrochemical generators. However, the ionic conductivity and the reversibility of electrochemical cycling of V{sub 2}O{sub 5} are limited by the possibilities of lithium insertion. This work shows that the doping of vanadium pentoxide by a M{sup 3+} trivalent transition element (M Fe, Al, Cr or La) allows to intercalate a more important amount of lithium and to improve the behaviour of the material during cycling. These materials of M{sub 0.11}V{sub 2}O{sub 5.16} formula are obtained by sol-gel synthesis. the electrochemical study of the Fe compound has shown that it is a mixed oxide with a behaviour similar to V{sub 2}O{sub 5}. The maximum capacity is of about 2 F/mole in the case of Fe, Al and Cr compounds and of about 1.7 F/mole in the case of La. The structural evolution of the Fe compound has been followed during the chemical insertion of Li and the same succession of phases ({alpha}, {epsilon}, {delta} and {gamma}) is observed as in Li{sub x}V{sub 2}O{sub 5} compounds but with a delay. The occurrence of the {gamma} phase, in particular, which is involved in recharging problems is delayed thanks to the (Fe-O){sub n} chains perpendicular to the (V{sub 2}O{sub 5}){sub n} layers. Abstract only. (J.S.) 3 refs.

  19. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    International Nuclear Information System (INIS)

    Jiao, Shuhong; University of Science and Technology of China, Hefei; Zheng, Jianming; Li, Qiuyan; Li, Xing

    2017-01-01

    We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cycle causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.

  20. Lithium toxicity and myxedema crisis in an elderly patient.

    Science.gov (United States)

    Mir, Shahnaz Ahmad; Wani, Arshad Iqbal; Masoodi, Shariq Rashid; Bashir, Mir Iftikhar; Ahmad, Nadeem

    2013-12-01

    While thyroid dysfunction is a frequent complication of lithium treatment, myxedema crisis is a rare occurrence with a handful of cases described. Here, we describe a patient receiving lithium for about a decade for bipolar disorder, who presented with myxedema crisis and lithium toxicity. In this patient, myxedema crisis was likely precipitated by lithium toxicity and community acquired pneumonia. The effects of lithium on thyroid are briefly reviewed. To describe an elderly male who was diagnosed with myxedema crisis and lithium toxicity. A 70-year-old male was admitted in our hospital with history of gradual onset progressive decrease in level of consciousness and altered behavior for last 1 month. Patient also had history of respiratory tract symptoms for 1 week. Patient was a known case of diabetes and bipolar affective disorder for which he had been receiving insulin and lithium for 10 years. One year earlier, patient was admitted in our ward for glycemic control and evaluation of complications and was found to be clinically and biochemically euthyroid; he never returned for follow up until the present admission. On examination patient had incoherent speech, hypothermia, and bradycardia. Thyroid function showed thyroid-stimulating hormone >150 IU/ml, Tetraiodothyronine (T4) Coma Scale of 15/15, normal electrolyte, serum creatinine of 1.8 mg/dl and serum lithium level of 0.5 nmol/L. Lithium-induced hypothyroidism may be life-threatening, thyroid function should be monitored before and during lithium therapy and drug should be discontinued and appropriate therapy instituted if hypothyroidism develops.

  1. Programming settings and recharge interval in a prospective study of a rechargeable sacral neuromodulation system for the treatment of overactive bladder.

    Science.gov (United States)

    Blok, Bertil; Van Kerrebroeck, Philip; de Wachter, Stefan; Ruffion, Alain; Van der Aa, Frank; Jairam, Ranjana; Perrouin-Verbe, Marie; Elneil, Sohier

    2018-02-01

    The RELAX-OAB study is designed to confirm the safety, efficacy, and technical performance of the Axonics r-SNM System, a miniaturized, rechargeable SNM system approved in Europe and Canada for the treatment of bladder and bowel dysfunction. The purpose of this article is to describe study subjects' ability to charge the rechargeable neurostimulator and to document their neurostimulator program settings and recharge interval over time. Fifty-one OAB patients were implanted in a single-stage procedure. These results represent the 3-month charging experience for 48 subjects who completed the 3-month follow-up. Recharge intervals were estimated using therapy stimulation settings and subject experience was evaluated using questionnaires. Forty-seven of forty-eight (98%) subjects were able to successfully charge their device prior to follow-up within 1-month post-implant. At 3-month post-implant, 98% of subjects were able to charge prior to their follow-up visit. Average stimulation amplitude across all subjects was 1.8 mA (±1.1 mA). A total of 69% of subjects had ≥14-day recharge intervals (time between charging) and 98% of subjects had ≥7-day recharge interval. No charging related adverse events occurred. Study subjects were able to charge the Axonics r-SNM System and stimulation settings provided 2 weeks of therapy between recharging for most subjects. Subject satisfaction indicates that subjects are satisfied with rechargeable SNM therapy. © 2018 The Authors. Neurourology and Urodynamics Published by Wiley Periodicals, Inc.

  2. NTS groundwater recharge study, FY 1992

    International Nuclear Information System (INIS)

    Lyles, B.F.; Mihevc, T.M.

    1992-10-01

    Groundwater recharge from precipitation is thought by many scientists to be extremely low in Southem Nevada; however, no direct measurements of recharge have been made to substantiate this hypothesis. Three geomorphic regions have been identified as potential areas of groundwater recharge at the Nevada Test Site (NTS): mesas, washes, and lowlands. Eight recharge monitoring stations have been installed to monitor each of these regions; four of the stations are on Pahute/Rainier Mesa, two stations are in Fortymile Wash, one station is in a transition area between the mesas and the lowlands (Whiterock Spring), and one station is located in Yucca Flat at the bottom of the U-3fd crater. An additional station is proposed for Frenchman Flat near the Area 5 mixed waste facility; however, the instrumentation of that site has been delayed due to the complex permitting process associated with instrument installation near the mixed waste facility. Digital data were collected from eight sites during FY 1992

  3. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

    Science.gov (United States)

    Zhu, Xiaobo; Lin, Tongen; Manning, Eric; Zhang, Yuancheng; Yu, Mengmeng; Zuo, Bin; Wang, Lianzhou

    2018-06-01

    The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth's abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.

  4. Lithium-associated primary hyperparathyroidism complicated by nephrogenic diabetes insipidus.

    Science.gov (United States)

    Aksakal, Nihat; Erçetin, Candaş; Özçınar, Beyza; Aral, Ferihan; Erbil, Yeşim

    2015-01-01

    Lithium-associated hyperparathyroidism is the leading cause of hypercalcemia in lithium-treated patients. Lithium may lead to exacerbation of pre-existing primary hyperparathyroidism or cause an increased set-point of calcium for parathyroid hormone suppression, leading to parathyroid hyperplasia. Lithium may cause renal tubular concentration defects directly by the development of nephrogenic diabetes insipidus or indirectly by the effects of hypercalcemia. In this study, we present a female patient on long-term lithium treatment who was evaluated for hypercalcemia. Preoperative imaging studies indicated parathyroid adenoma and multinodular goiter. Parathyroidectomy and thyroidectomy were planned. During the postoperative course, prolonged intubation was necessary because of agitation and delirium. During this period, polyuria, severe dehydration, and hypernatremia developed, which responded to controlled hypotonic fluid infusions and was unresponsive to parenteral desmopressin. A diagnosis of nephrogenic diabetes insipidus was apparent. A parathyroid adenoma and multifocal papillary thyroid cancer were detected on histopathological examination. It was thought that nephrogenic diabetes insipidus was masked by hypercalcemia preoperatively. A patient on lithium treatment should be carefully followed up during or after surgery to prevent life-threatening complications of previously unrecognized nephrogenic diabetes insipidus, and the possibility of renal concentrating defects on long-term lithium use should be sought, particularly in patients with impaired consciousness.

  5. Fate of N-nitrosodimethylamine in recycled water after recharge into anaerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Pitoi, M M; Furness, A J; Bastow, T P; McKinley, A J

    2012-03-15

    Laboratory and field experiments were undertaken to assess the fate of N-nitrosodimethylamine (NDMA) in aerobic recycled water that was recharged into a deep anaerobic pyritic aquifer, as part of a managed aquifer recharge (MAR) strategy. Laboratory studies demonstrated a high mobility of NDMA in the Leederville aquifer system with a retardation coefficient of 1.1. Anaerobic degradation column and (14)C-NDMA microcosm studies showed that anaerobic conditions of the aquifer provided a suitable environment for the biodegradation of NDMA with first-order kinetics. At microgram per litre concentrations, inhibition of biodegradation was observed with degradation half-lives (260±20 days) up to an order of magnitude greater than at nanogram per litre concentrations (25-150 days), which are more typical of environmental concentrations. No threshold effects were observed at the lower ng L(-1) concentrations with NDMA concentrations reduced from 560 ng L(-1) to recharge bore. These microcosm experiments showed a faster degradation rate than anaerobic microcosms, with a degradation half-life of 8±2 days, after a lag period of approximately 10 days. Results from a MAR field trial recharging the Leederville aquifer with aerobic recycled water showed that NDMA concentrations reduced from 2.5±1.0 ng L(-1) to 1.3±0.4 ng L(-1) between the recharge bore and a monitoring location 20 m down gradient (an estimated aquifer residence time of 10 days), consistent with data from the aerobic microcosm experiment. Further down gradient, in the anaerobic zone of the aquifer, NDMA degradation could not be assessed, as NDMA concentrations were too close to their analytical detection limit (<1 ng L(-1)). Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. Recharge Area of Groundwater of Jakarta Basin

    International Nuclear Information System (INIS)

    Wandowo; Abidin, Zainal; Alip; Djiono

    2002-01-01

    Groundwater inside the earth contained in a porous and permeable layers called aquifers. Depend on the hydrogeological structure, the aquifers may be composed of independent layers separated each other by impermeable boundaries. Such a condition may effect the location of recharge where water is able to infiltrate and goes to the aquifers. The objective of this research is to find out and to locate the recharge area of Jakarta basin by utilizing stable isotopes 2H and 18O . The work was done by collecting shallow and deep groundwater samples throughout Jabotabek area and precipitations from different altitudes. Since the stable isotopes composition of precipitation is subject to the altitude, the recharge area would be able to be identified by assessing the correlation of stable isotopes composition of precipitation and corresponding groundwater population. The data obtained from this study suggested that shallow groundwater is originated from local recharge while deep groundwater is recharged from the area having altitude of 125 -230 meters, it correspond to the area between Depok and Bogor

  7. Uncertainty in recharge estimation: impact on groundwater vulnerability assessments for the Pearl Harbor Basin, O'ahu, Hawai'i, U.S.A.

    Science.gov (United States)

    Giambelluca, Thomas W.; Loague, Keith; Green, Richard E.; Nullet, Michael A.

    1996-06-01

    In this paper, uncertainty in recharge estimates is investigated relative to its impact on assessments of groundwater contamination vulnerability using a relatively simple pesticide mobility index, attenuation factor (AF). We employ a combination of first-order uncertainty analysis (FOUA) and sensitivity analysis to investigate recharge uncertainties for agricultural land on the island of O'ahu, Hawai'i, that is currently, or has been in the past, under sugarcane or pineapple cultivation. Uncertainty in recharge due to recharge component uncertainties is 49% of the mean for sugarcane and 58% of the mean for pineapple. The components contributing the largest amounts of uncertainty to the recharge estimate are irrigation in the case of sugarcane and precipitation in the case of pineapple. For a suite of pesticides formerly or currently used in the region, the contribution to AF uncertainty of recharge uncertainty was compared with the contributions of other AF components: retardation factor (RF), a measure of the effects of sorption; soil-water content at field capacity (ΘFC); and pesticide half-life (t1/2). Depending upon the pesticide, the contribution of recharge to uncertainty ranks second or third among the four AF components tested. The natural temporal variability of recharge is another source of uncertainty in AF, because the index is calculated using the time-averaged recharge rate. Relative to the mean, recharge variability is 10%, 44%, and 176% for the annual, monthly, and daily time scales, respectively, under sugarcane, and 31%, 112%, and 344%, respectively, under pineapple. In general, uncertainty in AF associated with temporal variability in recharge at all time scales exceeds AF. For chemicals such as atrazine or diuron under sugarcane, and atrazine or bromacil under pineapple, the range of AF uncertainty due to temporal variability in recharge encompasses significantly higher levels of leaching potential at some locations than that indicated by the

  8. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  9. Process for recovery of lithium from spent lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kunugita, Eiichi; Jonghwa, Kim; Komasawa, Isao [Osaka Univ., Faculty of Engineering Science, Osaka, (Japan)

    1989-07-10

    An experimental study of the recovery and purification of lithium from spent lithium batteries was carried out, taking advantage of the characterisitics of lithium ion and its carbonate. More than 75% of the lithium contained in the whole battery or its anode component can be leached with sulfuric acid where the pH of the final pregnant liquor is 7.7 or higher, the other metals being left in the residue is their hydroxides. The extracted liquor is evaporated/concentrated, added with saturated sodium carbonate solution at around 100{sup 0}C to precipitate lithium as a carbonate. The coprecipitated sodium carbonate is washed/removed with a hotwater to give 99% pure lithium carbonate. Separation of lithium and sodium in the barren liquor is conducted with LIX 51, a chelating/extracting agent, and TOPO, a neutral organic phosphate, which have a synergic effect, to selectively extract lithium; the organic phase is reverse-extracted with a dilute hydrochloric acid to obtain lithium of 99% purity. 9 refs., 4 figs., 5 tabs.

  10. Aqueous lithium air batteries

    Science.gov (United States)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  11. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

    KAUST Repository

    Ruffo, Riccardo

    2009-02-01

    Despite the large number of studies on the behavior of LiCoO2 in organic electrolytes and its recent application as a positive electrode in rechargeable water battery prototypes, a little information is available about the lithium intercalation reaction in this layered compound in aqueous electrolytes. This work shows that LiCoO2 electrodes can be reversibly cycled in LiNO3 aqueous electrolytes for tens of cycles at remarkably high rates with impressive values specific capacity higher than 100 mAh/g, and with a coulomb efficiency greater than 99.7%. Stable and reproducible cycling measurements have been made using a simple cell design that can be easily applied to the study of other intercalation materials, assuming that they are stable in water and that their intercalation potential range matches the electrochemical stability window of the aqueous electrolyte. The experimental arrangement uses a three-electrode flooded cell in which another insertion compound acts as a reversible source and sink of lithium ions, i.e., as the counter electrode. A commercial reference electrode is also present. Both the working and the counter electrodes have been prepared as thin layers on a metallic substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic solvent electrolytes. © 2008 Elsevier B.V. All rights reserved.

  13. Delineation of groundwater recharge areas, western Cape Cod, Massachusetts

    Science.gov (United States)

    Masterson, John P.; Walter, Donald A.

    2000-01-01

    The unconfined sand-and-gravel aquifer in western Cape Cod, Massachusetts, which is the sole source of water supply for the communities in the area, is recharged primarily from precipitation. The rate of recharge from precipitation is estimated to be about 26 inches per year (in/yr), or about 60 percent of the precipitation rate. This recharge rate yields a flow through the aquifer of about 180 million gallons per day (Mgal/d). Groundwater flows radially outward from the top of the water-table mound in the north-central part of the flow system toward the coast, as indicated by the water-table contours on the large map on this sheet. Recharge that reaches the water table near the top of the mound travels deeper through the aquifer than recharge that reaches the water table closer to the coast. All recharge to the aquifer ultimately discharges to pumping wells, streams, or coastal areas; however, some of this recharge may flow first through kettle ponds before eventually reaching these discharge points.

  14. Modeling Recharge - can it be Done?

    Science.gov (United States)

    Verburg, K.; Bond, W. J.; Smith, C. J.; Dunin, F. X.

    2001-12-01

    In sub-humid areas where rainfall is relatively low and sporadic, recharge (defined as water movement beyond the active root zone) is the small difference between the much larger numbers rainfall and evapotranspiration. It is very difficult to measure and often modeling is resorted to instead. But is modeling this small number any less difficult than measurement? In Australia there is considerable debate over the magnitude of recharge under different agricultural systems because of its contribution to rising saline groundwater levels following the clearing of native vegetation in the last 100 years. Hence the adequacy of measured and modeled estimates of recharge is under close scrutiny. Results will be presented for the water balance of an intensively monitored 8 year sequence of crops and pastures. Measurements included meteorological inputs, evapotranspiration measured with a pair of weighing lysimeters, and soil water content was measured with TDR and neutron moisture meter. Recharge was estimated from the percolate removed from the lysimeters as well as, when conditions were suitable, from soil water measurements and combined soil water and evapotranspiration measurements. This data was simulated using a comprehensive soil-plant-atmosphere model (APSIM). Comparison with field measurements shows that the recharge can be simulated with an accuracy similar to that with which it can be measured. However, is either sufficiently accurate for the applications for which they are required?

  15. Environmentally-friendly lithium recycling from a spent organic li-ion battery.

    Science.gov (United States)

    Renault, Stéven; Brandell, Daniel; Edström, Kristina

    2014-10-01

    A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    Science.gov (United States)

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a Cathode for Rechargeable Lithium Batteries with Dramatically Improved Performance

    KAUST Repository

    Gao, Jie; Lowe, Michael A.; Conte, Sean; Burkhardt, Stephen E.; Abruñ a, Hé ctor D.

    2012-01-01

    ) composite cathode for lithium-ion batteries with a new method and investigated its electrochemical behavior by charge/discharge cycles and cyclic voltammetry (CV) in an ether-based electrolyte. Based on a comparison of the electrochemical performance with a

  18. Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Bijani, S.; Gabas, M.; Martinez, L.; Ramos-Barrado, J.R.; Morales, J.; Sanchez, L.

    2007-01-01

    Uniform films of Cu 2 O with thickness below 1 μm were prepared from a Cu(II) lactate solution. The deposits were compact and of high purity with the particle size varying from 60 to 400 nm. They were tested as electrodes in lithium batteries and their electrochemical response was consistent with the Cu 2 O + 2e - + 2Li + ↔ 2Cu + Li 2 O reaction. Nevertheless, the reversibility of this reaction was dependent on thickness. Kinetic factors associated with the poor electronic conductivity of Cu 2 O could account for the relevance of the influence of film thickness. The thinnest film, about 300 nm thick, exhibited the best electrochemical performance by sustaining a specific capacity as high as 350 Ah kg -1

  19. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    Science.gov (United States)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  20. Reaction mechanism and thermal stability study on cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Fang, Jin

    Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4

  1. SnO2/ZnO composite structure for the lithium-ion battery electrode

    International Nuclear Information System (INIS)

    Ahmad, Mashkoor; Yingying, Shi; Sun, Hongyu; Shen, Wanci; Zhu, Jing

    2012-01-01

    In this article, SnO 2 /ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO 2 micro-crystals, demonstrate the higher initial discharge capacity of 1540 mA h g −1 with a Coulombic efficiency of 68% at a rate of 120 mA h g −1 between 0.02 and 2 V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497 mA h g −1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO 2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. - Graphical abstract: SnO 2 /ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. Highlights: ► Synthesis of SnO 2 /ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO 2 /ZnO composite structures.

  2. Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries

    International Nuclear Information System (INIS)

    Mosa, J.; Aparicio, M.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M.

    2014-01-01

    Rechargeable thin-film batteries have recently become the topic of widespread research for use as efficient energy storage devices. Spinel Li 4 Ti 5 O 12 has been considered as one of the most prospective anode materials for Li-ion batteries because of its excellent reversibility and long cycle life. We report here the sol–gel synthesis and coating preparation of spinel thin-film Li 4 Ti 5 O 12 electrodes for Li-ion microbatteries using lithium ethoxide produced in situ that reacts with titanium alkoxide to produce the precursor solution without particle precipitation. This synthesis procedure reduces the thermal treatment to obtain a pure phase at only 700 °C and 15 minutes. The physical and structural characterization of the 300 nm Li 4 Ti 5 O 12 coatings shows a very homogeneous distribution of elements and a pure spinel phase. Galvanostatic discharge-charge tests indicate maximum discharge capacities of 152 mA h g −1 when the material is treated at 700 °C for 15 minutes

  3. Li3-xNaxV2(PO4)3 (0≤x≤3): Possible anode materials for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Pengfei; Shao, Lianyi; Qian, Shangshu; Yi, Ting-Feng; Yu, Haoxiang; Yan, Lei; Li, Peng; Lin, Xiaoting; Shui, Miao; Shu, Jie

    2016-01-01

    Highlights: • Li 3-x Na x V 2 (PO 4 ) 3 (0 ≤ x ≤ 3) series are firstly evaluated as anode materials. • Li 3-x Na x V 2 (PO 4 ) 3 anodes show lithium storage activity in 1.0–3.0 V. • The lithium storage capability of different Li 3-x Na x V 2 (PO 4 ) 3 is compared. • Structural reversibility of Li 3-x Na x V 2 (PO 4 ) 3 is studied by in-situ XRD. - Abstract: In this paper, a series of Li 3-x Na x V 2 (PO 4 ) 3 (0 ≤ x ≤ 3) are prepared by a solid state reaction and systematically evaluated as anode materials for lithium-ion batteries. Structural analysis shows that the phase structure of Li 3-x Na x V 2 (PO 4 ) 3 changes along with the evolution of Na content. Charge-discharge tests exhibit that Li 3 V 2 (PO 4 ) 3 shows the highest initial charge specific capacity as high as 88.3 mAh g −1 among all the seven samples, and the reversible capacity is kept at 68.3 mAh g −1 after 45 cycles, corresponding to 77.3% of the initial charge capacity. With increasing of Na content in Li 3-x Na x V 2 (PO 4 ) 3 , the as-obtained sample show poorer lithium storage capability than Li 3 V 2 (PO 4 ) 3 . As a result, Na 3 V 2 (PO 4 ) 3 shows the inferior cycling performance than other Li 3-x Na x V 2 (PO 4 ) 3 . It can only deliver a reversible capacity of 20.9 mAh g −1 after 45 cycles, corresponding to 45.9% of the initial charge capacity. In-situ X-ray diffraction observations demonstrate that the poor electrochemical property of Na 3 V 2 (PO 4 ) 3 anode is due to the irreversible structural evolution during charge-discharge process. Therefore, reducing the Na 3 V 2 (PO 4 ) 3 phase in as-obtained sample is a feasible route to improve the lithium storage capability of Li 3-x Na x V 2 (PO 4 ) 3 .

  4. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    Science.gov (United States)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  5. Prediction Model and Principle of End-of-Life Threshold for Lithium Ion Batteries Based on Open Circuit Voltage Drifts

    International Nuclear Information System (INIS)

    Cui, Yingzhi; Yang, Jie; Du, Chunyu; Zuo, Pengjian; Gao, Yunzhi; Cheng, Xinqun; Ma, Yulin; Yin, Geping

    2017-01-01

    Highlights: •Open circuit voltage evolution over ageing of lithium ion batteries is deciphered. •The mechanism responsible for the end-of-life (EOL) threshold is elaborated. •A new prediction model of EOL threshold with improved accuracy is developed. •This EOL prediction model is promising for the applications in electric vehicles. -- Abstract: The end-of-life (EOL) of a lithium ion battery (LIB) is defined as the time point when the LIB can no longer provide sufficient power or energy to accomplish its intended function. Generally, the EOL occurs abruptly when the degradation of a LIB reaches the threshold. Therefore, current prediction methods of EOL by extrapolating the early degradation behavior often result in significant errors. To address this problem, this paper analyzes the reason for the EOL threshold of a LIB with shallow depth of discharge. It is found that the sudden appearance of EOL threshold results from the drift of open circuit voltage (OCV) at the end of both shallow depth and full discharges. Further, a new EOL threshold prediction model with highly improved accuracy is developed based on the OCV drifts and their evolution mechanism, which can effectively avoid the misjudgment of EOL threshold. The accuracy of this EOL threshold prediction model is verified by comparing with experimental results. The EOL threshold prediction model can be applied to other battery chemistry systems and its possible application in electric vehicles is finally discussed.

  6. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  7. Lithium-Ion Battery Program Status

    Science.gov (United States)

    Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-01-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  8. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  9. Geostatistical estimates of future recharge for the Death Valley region

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.

    1998-01-01

    Spatially distributed estimates of regional ground water recharge rates under both current and potential future climates are needed to evaluate a potential geologic repository for high-level nuclear waste at Yucca Mountain, Nevada, which is located within the Death Valley ground-water region (DVGWR). Determining the spatial distribution of recharge is important for regional saturated-zone ground-water flow models. In the southern Nevada region, the Maxey-Eakin method has been used for estimating recharge based on average annual precipitation. Although this method does not directly account for a variety of location-specific factors which control recharge (such as bedrock permeability, soil cover, and net radiation), precipitation is the primary factor that controls in the region. Estimates of recharge obtained by using the Maxey-Eakin method are comparable to estimates of recharge obtained by using chloride balance studies. The authors consider the Maxey-Eakin approach as a relatively simple method of obtaining preliminary estimates of recharge on a regional scale

  10. Fast reactor recharging device

    International Nuclear Information System (INIS)

    Artemiev, L.N.; Kurilkin, V.V.

    1979-01-01

    Disclosure is made of a device for recharging a fast-neutron reactor, intended for the transfer of fuel assemblies and rods of the control and safety system, having profiled heads to be gripped on the outside. The device comprises storage drums whose compartments for rods of the control and safety system are identical to compartments for fuel assemblies. In order to store and transport rods of the control and safety system from the storage drums to the recharging mechanism provision is made for sleeve-type holders. When placed in such a holder, the dimensions of a rod of the control and safety system are equal to those of a fuel assembly. To join a holder to a rod of the control and safety system, on the open end of each holder there is mounted a collet, whereas on the surface of each rod of the control and safety system, close to its head, there is provided an encircling groove to interact with the collet. The grip of the recharging mechanism is provided with a stop interacting with the collet in order to open the latter and withdraw the safety and control system rod from its holder

  11. Synthesis of nitrided MoO{sub 2} and its application as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukeun, E-mail: skyoon@kier.re.kr [New and Renewable Energy Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Jung, Kyu-Nam; Jin, Chang Soo; Shin, Kyung-Hee [New and Renewable Energy Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Synthesis of nitrided molybdenum oxide by nitridation. Black-Right-Pointing-Pointer Superior cyclability for nitrided molybdenum oxide anodes. Black-Right-Pointing-Pointer Electrochemical reaction behavior of nitrided molybdenum oxide with lithium. - Abstract: Nitrided MoO{sub 2} has been synthesized by hydrothermal processing followed by post-nitridation with NH{sub 3} and investigated as alternative anode materials for rechargeable lithium batteries. Characterization data reveal the presence of molybdenum nitride ({gamma}-Mo{sub 2}N and {delta}-MoN) and molybdenum oxynitride (MoO{sub x}N{sub y}). The nitrided MoO{sub 2} exhibits a capacity of >420 mAh/g after 100 cycles and good rate capability. The improved electrochemical performance of the nitrided MoO{sub 2} compared to that of molybdenum oxide (MoO{sub 2}) is attributed to high electrical conductivity provided by nitrogen doping/or substitution in the oxygen octahedral site of MoO{sub 2} structure.

  12. Role of LiNO3 in rechargeable lithium/sulfur battery

    International Nuclear Information System (INIS)

    Zhang, Sheng S.

    2012-01-01

    Highlights: ► Effect of LiNO 3 on the Li anode and cathode of Li/S battery is studied, respectively. ► LiNO 3 participates in the formation of a stable passivation film on the Li anode surface. ► LiNO 3 may be reduced irreversibly on the cathode, affecting Li/S battery performance. ► Discharge mechanism of Li/S battery is explained from the viewpoint of phase transition. - Abstract: In this work we study the effect of LiNO 3 on the Li anode and sulfur cathode, respectively, of Li/S battery by using a Li/Li symmetric cell and a liquid Li/Li 2 S 9 cell. On the Li anode, LiNO 3 participates in the formation of a stable passivation film, and the resulting passivation film grows infinitely with the consumption of LiNO 3 . The passivation film formed with LiNO 3 is known to effectively suppress the redox shuttle of the dissolved lithium polysulfides on Li anode. On the cathode, LiNO 3 undergoes a large and irreversible reduction starting at 1.6 V in the first discharge, and the irreversible reduction disappears in the subsequent cycles. Moreover, the insoluble reduction products of LiNO 3 on the cathode adversely affect the redox reversibility of sulfur cathode. These results indicate that both the Li anode and sulfur cathode consume LiNO 3 , and that the best benefit of LiNO 3 to Li/S battery occurs at the potentials higher than 1.6 V. By limiting the irreversible reduction of LiNO 3 on the cathode, we have shown that the Li/S cell with a 0.2 m LiNO 3 as the co-salt can provide a stable capacity of ∼500 mAh g −1 .

  13. A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery.

    Science.gov (United States)

    De, Bibekananda; Yadav, Amit; Khan, Salman; Kar, Kamal K

    2017-06-14

    Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a poly(ethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO 4 ) and titanium dioxide (TiO 2 ) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge-discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of ∼2.67 V and discharge time ∼2000 s. It shows similar performance at different repeated bending angles (0° to 180°) and continuous bending along with long cycle life. The application of the battery is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.

  14. Seasonal variation in natural recharge of coastal aquifers

    Science.gov (United States)

    Mollema, Pauline N.; Antonellini, Marco

    2013-06-01

    Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960-1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258-616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.

  15. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  16. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method

    International Nuclear Information System (INIS)

    Zhao, Meng-Yao; Ji, Zhi-Yong; Zhang, Yong-Guang; Guo, Zhi-Yuan; Zhao, Ying-Ying; Liu, Jie; Yuan, Jun-Sheng

    2017-01-01

    Highlights: •A recovery system with LiMn 2 O 4 /Li 1-x Mn 2 O 4 as electrodes was used to extract lithium. •The influence sequence of coexisting ions on lithium extraction was Mg 2+ > Na + > Ca 2+ > K + . •The values of α Li-Na , α Li-Mg and α Li-Ca were more than 300, 70 and 110, respectively. •The specific energy consumption was between 18 and 19 W h·mol −1 . -- Abstract: Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn 2 O 4 positive electrode, a Li 1-x Mn 2 O 4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li + reached 34.31 mg· (1 g LiMn 2 O 4 ) −1 at 1.2 V. With higher reaction rate and lower energy consumption, 25 °C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li + even in the presence of impurity ions (K + , Na + , Mg 2+ , Ca 2+ ). With simulated brine and concentrated seawater as source solutions, the concentrations of Na + , Mg 2+ and Ca 2+ were reduced more than 300, 70 and 100 times, consuming 18–19 W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li + and Me n+ (Na + , Mg 2+ , Ca 2+ ) after five cycles although a slight drop was existing.

  17. Innovation and its Management as Observed in the Lithium Ion Secondary Battery Business

    OpenAIRE

    正本, 順三

    2008-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei, where the present author formerly worked. In this paper, the author describes how the lithium ion secondary battery was developed by the inventor, how the technology originated in Japan and...

  18. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    Science.gov (United States)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  19. High Recharge Areas in the Choushui River Alluvial Fan (Taiwan Assessed from Recharge Potential Analysis and Average Storage Variation Indexes

    Directory of Open Access Journals (Sweden)

    Jui-Pin Tsai

    2015-03-01

    Full Text Available High recharge areas significantly influence the groundwater quality and quantity in regional groundwater systems. Many studies have applied recharge potential analysis (RPA to estimate groundwater recharge potential (GRP and have delineated high recharge areas based on the estimated GRP. However, most of these studies define the RPA parameters with supposition, and this represents a major source of uncertainty for applying RPA. To objectively define the RPA parameter values without supposition, this study proposes a systematic method based on the theory of parameter identification. A surrogate variable, namely the average storage variation (ASV index, is developed to calibrate the RPA parameters, because of the lack of direct GRP observations. The study results show that the correlations between the ASV indexes and computed GRP values improved from 0.67 before calibration to 0.85 after calibration, thus indicating that the calibrated RPA parameters represent the recharge characteristics of the study area well; these data also highlight how defining the RPA parameters with ASV indexes can help to improve the accuracy. The calibrated RPA parameters were used to estimate the GRP distribution of the study area, and the GRP values were graded into five levels. High and excellent level areas are defined as high recharge areas, which composed 7.92% of the study area. Overall, this study demonstrates that the developed approach can objectively define the RPA parameters and high recharge areas of the Choushui River alluvial fan, and the results should serve as valuable references for the Taiwanese government in their efforts to conserve the groundwater quality and quantity of the study area.

  20. Recharge and discharge calculations to characterize the groundwater hydrologic balance

    International Nuclear Information System (INIS)

    Liddle, R.G.

    1998-01-01

    Several methods are presented to quantify the ground water component of the hydrologic balance; including (1) hydrograph separation techniques, (2) water budget calculations, (3) spoil discharge techniques, and (4) underground mine inflow studies. Stream hydrograph analysis was used to calculate natural groundwater recharge and discharge rates. Yearly continuous discharge hydrographs were obtained for 16 watersheds in the Cumberland Plateau area of Tennessee. Baseflow was separated from storm runoff using computerized hydrograph analysis techniques developed by the USGS. The programs RECESS, RORA, and PART were used to develop master recession curves, calculate ground water recharge, and ground water discharge respectively. Station records ranged from 1 year of data to 60 years of data with areas of 0.67 to 402 square miles. Calculated recharge ranged from 7 to 28 inches of precipitation while ground water discharge ranged from 6 to 25 inches. Baseflow ranged from 36 to 69% of total flow. For sites with more than 4 years of data the median recharge was 20 inches/year and the 95% confidence interval for the median was 16.4 to 23.8 inches of recharge. Water budget calculations were also developed independently by a mining company in southern Tennessee. Results showed about 19 inches of recharge is available on a yearly basis. A third method used spoil water discharge measurements to calculate average recharge rate to the mine. Results showed 21.5 inches of recharge for this relatively flat area strip mine. In a further analysis it was shown that premining soil recharge rates of 19 inches consisted of about 17 inches of interflow and 2 inches of deep aquifer recharge while postmining recharge to the spoils had almost no interflow component. OSM also evaluated underground mine inflow data from northeast Tennessee and southeast Kentucky. This empirical data showed from 0.38 to 1.26 gallons per minute discharge per unit acreage of underground workings. This is the

  1. Lithium toxicity and myxedema crisis in an elderly patient

    Directory of Open Access Journals (Sweden)

    Shahnaz Ahmad Mir

    2013-01-01

    Full Text Available While thyroid dysfunction is a frequent complication of lithium treatment, myxedema crisis is a rare occurrence with a handful of cases described. Here, we describe a patient receiving lithium for about a decade for bipolar disorder, who presented with myxedema crisis and lithium toxicity. In this patient, myxedema crisis was likely precipitated by lithium toxicity and community acquired pneumonia. The effects of lithium on thyroid are briefly reviewed. Objective: To describe an elderly male who was diagnosed with myxedema crisis and lithium toxicity. Case Report: A 70-year-old male was admitted in our hospital with history of gradual onset progressive decrease in level of consciousness and altered behavior for last 1 month. Patient also had history of respiratory tract symptoms for 1 week. Patient was a known case of diabetes and bipolar affective disorder for which he had been receiving insulin and lithium for 10 years. One year earlier, patient was admitted in our ward for glycemic control and evaluation of complications and was found to be clinically and biochemically euthyroid; he never returned for follow up until the present admission. On examination patient had incoherent speech, hypothermia, and bradycardia. Thyroid function showed thyroid-stimulating hormone >150 IU/ml, Tetraiodothyronine (T4 <1 ΅g/dl, anti-thyroid peroxidase titer of 60 IU/ml. The serum lithium level was 2.9 nmol/L (therapeutic level 0.2-1.2 nmol/L. He was managed with levothyroxine, starting with a loading oral dose of 500 ΅g through ryles tube followed by 100 ΅g daily, IV antibiotics and fluids; lithium was stopped after consultation with a psychiatrist. From day 5, patient started showing progressive improvement and by day 10, he had a Glasgow Coma Scale of 15/15, normal electrolyte, serum creatinine of 1.8 mg/dl and serum lithium level of 0.5 nmol/L. Conclusion: Lithium-induced hypothyroidism may be life-threatening, thyroid function should be monitored before

  2. A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Liang Yanyu; Bao Shujuan; Li Hulin

    2006-01-01

    A series of spinel-structured materials have been prepared by a simple hydrothermal procedure in an aqueous medium. The new synthetic method is time and energy saving i.e., no further thermal treatment and extended grinding. The main experimental process involved the insertion of lithium into electrolytic manganese dioxide with glucose as a mild reductant in an autoclave. Both the hydrothermal temperature and the presence of glucose play the critical roles in determining the final spinel integrity. Particular electrochemical performance has also been systematically explored, and the results show that Al 3+ , F - co-substituted spinels have the best combination of initial capacity and capacity retention among all these samples, exhibited the initial capacity of 115 mAh/g and maintained more than 90% of the initial value at the 50th cycle. - Graphical abstract: It is a SEM image of the spinel LiMn 2 O 4 , which was prepared by this novel hydrothermal procedure. It illustrates that reasonable-crystallized spinel oxide has occurred through the special hydrothermal process and the average particle size declined to about 1 μm. This homogeneous grain size distribution provides an important morphological basis for the reversibility and accessibility of lithium ion insertion/extraction reactions

  3. Preparation of C-LiFePO{sub 4}/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Boyano, Iker; Blazquez, J. Alberto; de Meatza, Iratxe; Bengoechea, Miguel; Miguel, Oscar; Grande, Hans [CIDETEC-IK4, P Miramon 196, 20009 Donostia, San Sebastian (Spain); Huang, Yunhui [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 730074 (China); Goodenough, John B. [Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States)

    2010-08-15

    In this work carbon coated lithium iron phosphate (C-LiFePO{sub 4})/polypyrrole (PPy) composite preparation has been carried out using electrochemical techniques. This composite has been deposited on a stainless steel mesh in order to use it as a cathode in a lithium-ion battery. When an oxidation potential is applied to the working electrode, the pyrrole monomer is polymerized and the C-LiFePO{sub 4} particles are incorporated into the polymer matrix and bound to the polymer and mesh. An experimental procedure was performed in order to understand how the composite formation is carried out and what the oxidation state of the composite material is during the charge-discharge process. As the electrochemical method of synthesis has a big influence in the electrochemical properties of the polymer, the use of consecutive potential steps has been studied in order to improve the charge-storage capacity of the composite material. The influence on the final composite properties of the oxidation-deposition time and potential and the effect of the number of cycles has been analyzed. An improvement of about 20% has been achieved using short oxidation times (3 s) at 0.9 V vs. Ag/AgCl. The reasons for this improvement are discussed and analyzed using different experimental techniques. (author)

  4. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration...... is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...

  5. Groundwater Recharge Process in the Morondava Sedimentary Basin, Southwestern Madagascar

    International Nuclear Information System (INIS)

    Mamifarananahary, E.; Rajaobelison, J.; Ramaroson, V.; Rahobisoa, J.J.

    2007-01-01

    The groundwater recharge process in the Morondava Sedimentary basin was determined using chemical and isotopic tools. The results showed that the main recharge into shallow aquifer is from infiltration of evaporated water. Into deeper aquifer, it is done either from direct infiltration of rainfall from recharge areas on the top of the hill in the East towards the low-lying discharge areas in the West, or from vertical infiltration of evaporated shallow groundwater. The tritium contents suggest that recharge from shallow aquifers is from recent rainfall with short residence time while recharge into deeper aquifers is from older rainfall with longer residence time.

  6. In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode

    International Nuclear Information System (INIS)

    Shimoda, Keiji; Murakami, Miwa; Takamatsu, Daiko; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2013-01-01

    Abstract: Rechargeable lithium-ion batteries (LIBs) are currently accepted to be one of the most suitable energy storage resources in portable electronic devices because of their high gravimetric and volumetric energy density. To understand the behavior of Li + ions on electrochemical lithium extraction/insertion process, we performed in situ 7 Li nuclear magnetic resonance (NMR) measurements for LiCoO 2 cathode in a plastic cell battery, and the spectral evolutions of the 7 Li NMR signal of Li x CoO 2 (0 ≤ x ≤ 1) were well investigated. Very narrow solid solution region of Li x CoO 2 (∼0.99 ≤ x 2 signal at ∼0 ppm, which is related to the localized nature of the electronic spin of paramagnetic Co 4+ ion formed at the very early delithiation stage. With further decreasing the signal intensity of LiCoO 2 , a Knight-shifted signal corresponding to an electrically conductive Li x CoO 2 phase emerged at x = 0.97, which then monotonously decreased in intensity for x x CoO 2 . These observations acquired in situ fully confirm the earlier studies obtained in ex situ measurements, although the present study offers more quantitative information. Moreover, it was shown that the peak position of the NMR shift for Li x CoO 2 moved as a function of lithium content, which behavior is analogous to the change in its c lattice parameter. Also, the growth and consumption of dendritic/mossy metallic lithium on the counter electrode was clearly observed during the charge/discharge cycles

  7. Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Bao, Qi; Huang, Yao-Hui; Lan, Chun-Kai; Chen, Bing-Hong; Duh, Jenq-Gong

    2015-01-01

    Silicon (Si) has been perceived as a promising next-generation anode material for lithium ion batteries (LIBs) due to its superior theoretical capacity. Despite the natural abundance of this element on Earth, large-scale production of high-purity Si nanomaterials in a green and energy-efficient way is yet to become an industrial reality. Spray-drying methods have been exploited to recover Si particles from low-value sludge produced in the photovoltaic industry, providing a massive and cost-effective Si resource for fabricating anode materials. To address such drawbacks like volume expansion, low electrical and Li + conductivity and unstable solid electrolyte interphase (SEI) formation, the recycled silicon particles have been downsized into nanoscale and shielded by a highly conductive and protective graphene multilayer through high energy ball milling. Cyclic voltammetry and electrochemical impedance spectroscopy measurements have revealed that the graphene wrapping and size reduction approach have significantly improved the electrochemical performance. It delivers an excellent reversible capacity of 1,138 mA h g −1 and a long cycle life with 73% capacity retention over 150 cycles at a high current of 450 mA g −1 . The plentiful waste conversion methodology also provides considerable opportunities for developing additional rechargeable devices, ceramic, powder metallurgy and silane/siloxane products

  8. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, Evvy [Center for Science and Technology of Advanced Materials – National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia); Manawan, Maykel [Post Graduate Program of Materials Science, University of Indonesia, Jl.Salemba Raya No.4, Jakarta 10430 (Indonesia)

    2016-02-08

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  9. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    International Nuclear Information System (INIS)

    Kartini, Evvy; Manawan, Maykel

    2016-01-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  10. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Science.gov (United States)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  11. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  12. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Barnes, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  13. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery

    International Nuclear Information System (INIS)

    Ng, Selina S.Y.; Xing, Yinjiao; Tsui, Kwok L.

    2014-01-01

    Highlights: • Robustness of RUL predictions for lithium-ion batteries is analyzed quantitatively. • RUL predictions of the same battery over cycle life are evaluated. • RUL predictions of batteries over different operating conditions are evaluated. • Naive Bayes (NB) is proposed for predictions under constant discharge environments. • Its robustness and accuracy are compared with that of support vector machine (SVM). - Abstract: Online state-of-health (SoH) estimation and remaining useful life (RUL) prediction is a critical problem in battery health management. This paper studies the modeling of battery degradation under different usage conditions and ambient temperatures, which is seldom considered in the literature. Li-ion battery RUL prediction under constant operating conditions at different values of ambient temperature and discharge current are considered. A naive Bayes (NB) model is proposed for RUL prediction of batteries under different operating conditions. It is shown in this analysis that under constant discharge environments, the RUL of Li-ion batteries can be predicted with the NB method, irrespective of the exact values of the operating conditions. The case study shows that the NB generates stable and competitive prediction performance over that of the support vector machine (SVM). This also suggests that, while it is well known that the environmental conditions have big impact on the degradation trend, it is the changes in operating conditions of a Li-ion battery over cycle life that makes the Li-ion battery degradation and RUL prediction even more difficult

  14. Emulation of recharge and evapotranspiration processes in shallow groundwater systems

    Science.gov (United States)

    Doble, Rebecca C.; Pickett, Trevor; Crosbie, Russell S.; Morgan, Leanne K.; Turnadge, Chris; Davies, Phil J.

    2017-12-01

    In shallow groundwater systems, recharge and evapotranspiration are highly sensitive to changes in the depth to water table. To effectively model these fluxes, complex functions that include soil and vegetation properties are often required. Model emulation (surrogate modelling or meta-modelling) can provide a means of incorporating detailed conceptualisation of recharge and evapotranspiration processes, while maintaining the numerical tractability and computational performance required for regional scale groundwater models and uncertainty analysis. A method for emulating recharge and evapotranspiration processes in groundwater flow models was developed, and applied to the South East region of South Australia and western Victoria, which is characterised by shallow groundwater, wetlands and coastal lakes. The soil-vegetation-atmosphere transfer (SVAT) model WAVES was used to generate relationships between net recharge (diffuse recharge minus evapotranspiration from groundwater) and depth to water table for different combinations of climate, soil and land cover types. These relationships, which mimicked previously described soil, vegetation and groundwater behaviour, were combined into a net recharge lookup table. The segmented evapotranspiration package in MODFLOW was adapted to select values of net recharge from the lookup table depending on groundwater depth, and the climate, soil and land use characteristics of each cell. The model was found to be numerically robust in steady state testing, had no major increase in run time, and would be more efficient than tightly-coupled modelling approaches. It made reasonable predictions of net recharge and groundwater head compared with remotely sensed estimates of net recharge and a standard MODFLOW comparison model. In particular, the method was better able to predict net recharge and groundwater head in areas with steep hydraulic gradients.

  15. Lithium-Ion Electrolytes Containing Flame Retardant Additives for Increased Safety Characteristics

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Smith, Kiah A. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick Charles (Inventor)

    2014-01-01

    The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.

  16. SnO{sub 2}/ZnO composite structure for the lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Nanomaterial Research Group, Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Yingying, Shi [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Sun, Hongyu [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Shen, Wanci [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Material, China Iron and Steel Research Institute Group, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2012-12-15

    In this article, SnO{sub 2}/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO{sub 2} micro-crystals, demonstrate the higher initial discharge capacity of 1540 mA h g{sup -1} with a Coulombic efficiency of 68% at a rate of 120 mA h g{sup -1} between 0.02 and 2 V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497 mA h g{sup -1} is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO{sub 2} structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. - Graphical abstract: SnO{sub 2}/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. Highlights: Black-Right-Pointing-Pointer Synthesis of SnO{sub 2}/ZnO composite structures by two steps hydrothermal approach. Black-Right-Pointing-Pointer Investigation of lithium storage capacity. Black-Right-Pointing-Pointer Excellent lithium storage capacity and cycle life of SnO{sub 2}/ZnO composite structures.

  17. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. East Bay (CalState), Hayward, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in part as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.

  18. Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pan [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Han, Jia-Jun, E-mail: hanjiajunhitweihai@163.com [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Jiang, Li-Feng [Dalian Chemical Institute of Chinese Academy of Sciences, Dalian 116011 (China); Li, Zhao-Yu; Cheng, Jin-Ning [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China)

    2017-04-01

    Highlights: • The polyaniline multi-walled carbon nanotubes composite with core-shell structures was synthetized via in situ chemical oxidative polymerization, and the materials were characterized by physical and chemical methods. • The PANI/WMCNTs was synthetized via in situ chemical oxidative polymerization with core-shell structures. • The WMCNTs highly enhanced the conductivity of composites. • The comopsites were more conducive to the intercalation and deintercalation of anions and cations. • The much better performance as the cathode for lithium-ion cells was acquired for the composites. • The composites are low cost and eco-friendly which have a good prospect in future. - Abstract: The aniline was polymerized onto functionalized multi-walled carbon nanotubes in order to obtain a cathode material with core-shell structures for lithium batteries. The structure and morphology of the samples were investigated by Fourier transform infrared spectroscopy analysis, scanning electron microscope, transmission electron microscope and X-ray diffraction. The electrochemical properties of the composite were characterized by the cyclic voltammetry, the charge/discharge property, coulombic efficiency, and ac impedance spectroscopy in detail. At a constant current density of 0.2 C, the first specific discharge capacity of the reduced and oxidized PANI/WMCNTs were 181.8 mAh/g and 135.1 mAh/g separately, and the capacity retention rates were corresponding to 76.75% and 86.04% for 100 cycles with 99% coulombic efficiency. It was confirmed that the CNTs obviously enhanced the conductivity and electrochemical performance of polyaniline, and compared with the pure PANI, the reduced composite possessed a quite good performance for the cathode of lithium batteries.

  19. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  20. Application of lithium carbonate on radioiodine treatment of Graves' hyperthyroidism

    International Nuclear Information System (INIS)

    Zha Jinshun; Huang Chunling; Jiang Tingyin; Jiang Yan

    2011-01-01

    Effectiveness of radioiodine for Graves' hyperthyroidism depends on retention time of 131 I in the thyroid, and may be effected by several factors, including previous treatment with antithyroid drugs,goiter volume, 24 h thyroidal radioactive iodine uptake and so on. A short course of therapy with low dose of lithium carbonate increased retention of 131 I in the thyroid and prolong the intrathyroidal effective half-life of 131 I before and after 131 I therapy in patients with Graves' disease, because of the actions that lithium blocks the release of organic iodine and thyroid hormone from the thyroid gland without affecting thyroidal radioactive iodine uptake. Therefore, using lithium as adjunct to radioiodine therapy increases the radiation dose delivered to the thyroid, to result in reduced the activity required and whole-body radiation dose in patients with very short effective half-life, and so improve the cure rate of hyperthyroidism. A short course of lithium carbonate therapy can be considered a useful adjunct to 131 I therapy for obtaining a more rapid control of thyrotoxicosis and avoiding its transient exacerbation because of methimazole withdrawal prior to 131 I administration or in patients who cannot tolerate or do not respond to antithyroid drugs, and for helping to prevent the radioiodine-associated increase in serum free thyroid hormone concentrations. In addition, lithium carbonate enhances the effectiveness of 131 I therapy, in terms of prompter control of hyperthyroidism in patients with small or large goiters. At the same time, lithium also may increases the rate of permanent control of hyperthyroidism in patients with large goiters. In summary, in the short-term lithium plays an important role as an adjunct to 131 I, since it helps to prevent the 131 I-associated increase in serum free thyroid hormone concentrations and allows a more prompt control of thyrotoxicosis. This is of particular importance in high risk patients, such as the elderly

  1. Approach to lithium burn-up effect in lithium ceramics

    International Nuclear Information System (INIS)

    Rasneur, B.

    1994-01-01

    The lithium burn-up in Li 2 ZrO 3 is simulated by removing lithium under Li 2 O form and trapping it in high specific surface area powder while heating during 15 days or 1 month at moderate temperature so that lithium mobility be large enough without causing any sintering neither of the specimens nor of the powder. In a first treatment at 775 deg C during 1 month. 30% of the lithium content could be removed inducing a lithium concentration gradient in the specimen and the formation of a lithium-free monoclinic ZrO 2 skin. Improvements led to similar results at 650 deg C and 600 deg C, the latter temperatures are closer to the operating temperature of the ceramic breeder blanket of a fusion reactor. (author) 4 refs.; 4 figs.; 1 tab

  2. Lithium-ion Battery Degradation Assessment and Remaining Useful Life Estimation in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nabil Laayouj

    2016-06-01

    Full Text Available Abstract—Prognostic activity deals with prediction of the remaining useful life (RUL of physical systems based on their actual health state and their usage conditions. RUL estimation gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. In addition, it can be used to improve the characterization of the material proprieties that govern damage propagation for the structure being monitored. RUL can be estimated by using three main approaches, namely model-based, data-driven and hybrid approaches. The prognostics methods used later in this paper are hybrid and data-driven approaches, which employ the Particle Filter in the first one and the autoregressive integrated moving average in the second. The performance of the suggested approaches is evaluated in a comparative study on data collected from lithium-ion battery of hybrid electric vehicle.

  3. Influence of water contamination and conductive additives on the intercalation of lithium into graphite

    Energy Technology Data Exchange (ETDEWEB)

    Joho, F; Rykart, B; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Spahr, M E; Monnier, A [Timcal AG, Sins (Switzerland)

    1999-08-01

    The irreversible charge loss in the first cycle of lithium intercalation into graphite electrodes for lithium-ion batteries is discussed as a function of water contamination of the electrolyte solution. Furthermore, the improvement of the electrode cycle life due to conductive additives to graphite is demonstrated. (author) 5 figs., 3 refs.

  4. High Capacity Anodes for Advanced Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  5. Artificial recharge of groundwater and its role in water management

    Science.gov (United States)

    Kimrey, J.O.

    1989-01-01

    This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of

  6. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries

    International Nuclear Information System (INIS)

    Ben youcef, Hicham; Garcia-Calvo, Oihane; Lago, Nerea; Devaraj, Shanmukaraj; Armand, Michel

    2016-01-01

    Semi-interpenetrated network Solid Polymer Electrolytes (SPEs) were fabricated by UV-induced cross-linking of poly(ethyleneglycol) diacrylate (PEGDA) and divinylbenzene (DVB) within a poly(ethyleneoxide) (PEO) matrix (M v = 5 × 10 6 g mol −1 ), comprising lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), at a molar ratio of EO:Li ∼ 30:1. The influence of the DVB content on the final SPE properties was investigated in detail. An increase of DVB concentration resulted in self-standing polymer electrolytes. The DVB cross-linker incorporation was found to decrease the crystallinity of the PEO matrix from 34% to 23%, with a decrease in the melting temperature (T m ) of the membrane from 50 °C to 34 °C. Moreover, the influence of the DVB concentration on the ionic conductivity was determined for polymer electrolytes with 0, 10, 20 and 45% DVB from room temperature (RT) to 80 °C. The resulting SPEs showed a high electrochemical stability of 4.3 V as well as practical conductivity values exceeding 10 −4 S cm −1 at 70 °C. Cycling performance of these semi-interpenetrated SPE’s have been shown with a Li metal polymer battery and all solid -state Li sulphur battery.

  7. Development of lithium air novel materials for electrical vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Aucher, Christophe; Knipping, E.; Amantia, D.; Almarza, A.; Faccini, M.; Gutierrez-Tauste, D.; Saez, J.A.; Aubouy, L. [Leitat Technological Center, Terrassa (Spain)

    2012-07-01

    Fluctuation of oil prices and effects of global warming have forced the scientific-technical community to look for the alternative energy storage and conversion systems, such as the smart grid. The maximum energy density of current lithium-ion batteries (LIB) is limited because of the intercalation chemistry of each electrode. Then actual LIBs are not fully satisfactory for the practical application of electric vehicles (EV). Therefore metal-air batteries have attracted much attention as a possible alternative, especially for the replacing of the diesel or gasoline, because of their energy density is extremely high compared to that of other rechargeable batteries and theoretically close to the energy density of the fossil energy. This technology leads to a very light dispositive where the limited intercalation chemistry is avoided. Li-air batteries are suitable for the development of the new generation of EVs. It is estimated that a well optimized Li-air battery can yield a specific energy of up to 3000 Wh/Kg, over a factor of 15 greater than the state of the art lithium ion batteries. Electrical cars today typically can travel only about 150 km on current LIB technology. The development of the lithium air batteries stands chance of being light enough to travel 800 km on a single charge and cheap enough to be practical for a typical family car. This problem is creating a significant barrier to electric vehicle adoption. However, the impact of this technology has so far fallen short of its potential due to several daunting challenges which must be overcome as the cyclability or the wide gap between the practical (362 Wh/kg) and the theoretical (11 kWh/g) values of the specific energy.

  8. The progress of the electrode materials development for lithium ion battery

    International Nuclear Information System (INIS)

    Kang Kai; Dai Shouhui; Wan Yuhua

    2001-01-01

    The structure and the charge-discharge principle of Li-ion battery are briefly discussed; the progress of electrode materials for Li-ion battery is reviewed in detail. Graphite has found wide applications in commercial Li-ion batteries, however, the hard carbon, especially the carbon with hydrogen is the most promising anode material for Li-ion battery owing to its high capacity, which has now become hot spot of investigation. Following the LiCoO 2 , LiMn 2 O 4 spinel compound becomes the most powerful contestant. On the basis of the authors' results, the synthesis methods of LiMn 2 O 4 and its characterizations are compared. Moreover, the structural properties of intercalation electrode materials that are related to the rechargeable capacity and stability during cycling of lithium ions are also discussed

  9. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In-Situ Electrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Tao, Jinhui; Yan, Pengfei; Zheng, Jianming; Engelhard, Mark H.; Lu, Dongping; Wang, Chongmin; Zhang, Jiguang

    2018-04-16

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more than those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.

  10. Radioecological aspects in artificial groundwater recharge

    Energy Technology Data Exchange (ETDEWEB)

    Matthess, G [Kiel Univ. (Germany, F.R.). Geologisch-Palaeontologisches Inst. und Museum; Neumayr, V [Institut fuer Wasser-, Boden- und Lufthygiene, Frankfurt am Main (Germany, F.R.)

    1980-01-01

    In increasing extent surface waters, especially those of rivers and streams, are contaminated by radionuclides. Therefore it is necessary to investigate the possibility of impairment of the quality of artificially recharged groundwater and drinking water by radionuclides. Hazards for man are possible by drinking water, that was affected by waste and during exposition to air, as well as indirectly by irrigation water and the food chain. In a model calculation using realistic conditions the order of magnitude of these hazards for man by incorporation of radioactively contaminated artificially recharged drinking water are to be assessed. Here the parameters are discussed which must be considered in such an assessment. The model includes the use of river water for artificial recharge. All models and assessments assume the most unfavourable preconditions, which may lead to an impact to man.

  11. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  12. Comparing potential recharge estimates from three Land Surface Models across the Western US

    Science.gov (United States)

    NIRAULA, REWATI; MEIXNER, THOMAS; AJAMI, HOORI; RODELL, MATTHEW; GOCHIS, DAVID; CASTRO, CHRISTOPHER L.

    2018-01-01

    Groundwater is a major source of water in the western US. However, there are limited recharge estimates available in this region due to the complexity of recharge processes and the challenge of direct observations. Land surface Models (LSMs) could be a valuable tool for estimating current recharge and projecting changes due to future climate change. In this study, simulations of three LSMs (Noah, Mosaic and VIC) obtained from the North American Land Data Assimilation System (NLDAS-2) are used to estimate potential recharge in the western US. Modeled recharge was compared with published recharge estimates for several aquifers in the region. Annual recharge to precipitation ratios across the study basins varied from 0.01–15% for Mosaic, 3.2–42% for Noah, and 6.7–31.8% for VIC simulations. Mosaic consistently underestimates recharge across all basins. Noah captures recharge reasonably well in wetter basins, but overestimates it in drier basins. VIC slightly overestimates recharge in drier basins and slightly underestimates it for wetter basins. While the average annual recharge values vary among the models, the models were consistent in identifying high and low recharge areas in the region. Models agree in seasonality of recharge occurring dominantly during the spring across the region. Overall, our results highlight that LSMs have the potential to capture the spatial and temporal patterns as well as seasonality of recharge at large scales. Therefore, LSMs (specifically VIC and Noah) can be used as a tool for estimating future recharge rates in data limited regions. PMID:29618845

  13. High Energy-Density Lithium-Sulfur Batteries with Extended Cycle Life, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional lithium-ion batteries demonstrate great potential for energy storage applications but they face some major challenges such as low energy density and...

  14. Impacts of vegetation change on groundwater recharge

    Science.gov (United States)

    Bond, W. J.; Verburg, K.; Smith, C. J.

    2003-12-01

    Vegetation change is the accepted cause of increasing river salt concentrations and the salinisation of millions of hectares of farm land in Australia. Replacement of perennial native vegetation by annual crops and pastures following European settlement has altered the water balance causing increased groundwater recharge and mobilising the naturally saline groundwater. The Redesigning Agriculture for Australian Landscapes Program, of which the work described here is a part, was established to develop agricultural practices that are more attuned to the delicate water balance described above. Results of field measurements will be presented that contrast the water balance characteristics of native vegetation with those of conventional agricultural plants, and indicate the functional characteristics required of new agricultural practices to reduce recharge. New agricultural practices may comprise different management of current crops and pastures, or may involve introducing totally new species. In either case, long-term testing is required to examine their impact on recharge over a long enough climate record to encompass the natural variability of rainfall that is characteristic of most Australian farming regions. Field experimentation therefore needs to be complemented and extended by computer simulation. This requires a modelling approach that is more robust than conventional crop modelling because (a) it needs to be sensitive enough to predict small changes in the residual recharge term, (b) it needs to be able to simulate a variety of vegetation in different sequences, (c) it needs to be able to simulate continuously for several decades of input data, and (d) it therefore needs to be able to simulate the period between crops, which often has a critical impact on recharge. The APSIM simulation framework will be used to illustrate these issues and to explore the effect of different vegetation combinations on recharge.

  15. Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data

    Science.gov (United States)

    Gebert, Warren A.; Walker, John F.; Hunt, Randall J.

    2011-01-01

    The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.

  16. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  17. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  18. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  19. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    Science.gov (United States)

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  20. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed

  1. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle Ann

    2016-01-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10–20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using

  2. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    Science.gov (United States)

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Designer interphases for the lithium-oxygen electrochemical cell

    KAUST Repository

    Choudhury, Snehashis

    2017-04-20

    An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.

  4. Designer interphases for the lithium-oxygen electrochemical cell

    KAUST Repository

    Choudhury, Snehashis; Wan, Charles Tai-Chieh; Al Sadat, Wajdi I.; Tu, Zhengyuan; Lau, Sampson; Zachman, Michael J.; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.

  5. Using groundwater levels to estimate recharge

    Science.gov (United States)

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  6. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2016-09-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.

  7. Technical feasibility for commercialization of lithium ion battery as a substitute dry battery for motorcycle

    Science.gov (United States)

    Kurniyati, Indah; Sutopo, Wahyudi; Zakaria, Roni; Kadir, Evizal Abdul

    2017-11-01

    Dry battery on a motorcycle has a rapid rate of voltage drop, life time is not too long, and a long charging time. These are problems for users of dry battery for motorcycle. When the rate in the voltage decreases, the energy storage in the battery is reduced, then at the age of one to two years of battery will be dead and cannot be used, it makes the user should replace the battery. New technology development of a motorcycle battery is lithium ion battery. Lithium ion battery has a specification that has been tested and possible to replace dry battery. Characteristics of lithium ion battery can answer the question on the dry battery service life, the rate of decrease in voltage and charging time. This paper discusses about the technical feasibility for commercialization of lithium ion battery for motorcycle battery. Our proposed methodology of technical feasibility by using a goldsmith commercialization model of the technical feasibility and reconfirm the technical standard using the national standard of motorcycle battery. The battery has been through all the stages of the technical feasibility of the goldsmith model. Based on the results of the study, lithium ion batteries have the minimum technical requirements to be commercialized and has been confirmed in accordance with the standard motorcycle battery. This paper results that the lithium ion battery is visible to commercialized by the technical aspect.

  8. Synthesis and electrochemical characteristics of Sn-Sb-Ni alloy composite anode for Li-ion rechargeable batteries

    International Nuclear Information System (INIS)

    Guo Hong; Zhao Hailei; Jia Xidi; Qiu Weihua; Cui Fenge

    2007-01-01

    Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g -1 in the first cycle and maintained at 370-380 mAh g -1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries

  9. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  10. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  11. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  12. Fabrication of Li4Ti5O12-TiO2 Nanosheets with Structural Defects as High-Rate and Long-Life Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Xu, Hui; Chen, Jian; Li, Yanhuai; Guo, Xinli; Shen, Yuanfang; Wang, Dan; Zhang, Yao; Wang, Zengmei

    2017-06-07

    Development of high-power lithium-ion batteries with high safety and durability has become a key challenge for practical applications of large-scale energy storage devices. Accordingly, we report here on a promising strategy to synthesize a high-rate and long-life Li 4 Ti 5 O 12 -TiO 2 anode material. The novel material exhibits remarkable rate capability and long-term cycle stability. The specific capacities at 20 and 30 C (1 C = 175 mA g -1 ) reach 170.3 and 168.2 mA h g -1 , respectively. Moreover, a capacity of up to 161.3 mA h g -1 is retained after 1000 cycles at 20 C, and the capacity retention ratio reaches up to 94.2%. The extraordinary rate performance of the Li 4 Ti 5 O 12 -TiO 2 composite is attributed to the existence of oxygen vacancies and grain boundaries, significantly enhancing electrical conductivity and lithium insertion/extraction kinetics. Meanwhile, the pseudocapacitive effect is induced owing to the presence of abundant interfaces in the composite, which is beneficial to enhancing specific capacity and rate capability. Additionally, the ultrahigh capacity at low rates, greater than the theoretical value of spinel Li 4 Ti 5 O 12 , may be correlated to the lithium vacancies in 8a sites, increasing the extra docking sites of lithium ions.

  13. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  14. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  15. Recent Developments in Synthesis of xLi2MnO3 · (1 − x)LiMO2 (M = Ni, Co, Mn) Cathode Powders for High-Energy Lithium Rechargeable Batteries

    International Nuclear Information System (INIS)

    Doan, The Nam Long; Yoo, Kimoon; Hoang, Tuan K. A.; Chen, P.

    2014-01-01

    Lithium-rich layered powders, Li 2 MnO 3 -stabilized LiMO 2 (M = Ni, Co, Mn), are attractive cathode candidates for the next generations of high-energy lithium-ion batteries. However, most of the state-of-the-art preparation procedures are complicated and require multiple energy-intensive reaction steps. Thus, elucidating a low-cost synthetic protocol is important for the application of these materials in future lithium-ion batteries. Recent developments in the synthesis procedures of lithium-rich layered powders are discussed and future directions are pointed out in this review.

  16. The aquifer recharge: an overview of the legislative and planning aspect.

    Science.gov (United States)

    De Giglio, O; Caggiano, G; Apollonio, F; Marzella, A; Brigida, S; Ranieri, E; Lucentini, L; Uricchio, V F; Montagna, M T

    2018-01-01

    In most regions of the world, safeguarding groundwater resources is a serious issue, particularly in coastal areas where groundwater is the main water source for drinking, irrigation and industry. Water availability depends on climate, topography and geology. The aim of this paper is to evaluate aquifer recharge as a possible strategy to relieve water resource scarcity. Natural aquifer recharge is defined as the downward flow of water reaching the water table, increasing the groundwater reservoir. Hydro-meteorological factors (rainfall, evapotranspiration and runoff) may alter natural recharge processes. Artificial aquifer recharge is a process by which surface water is introduced with artificial systems underground to fill an aquifer. As a consequence of global warming that has increased the frequency and severity of natural disasters like the drought, the impacts of climate change and seasonality, the artificial recharge has been considered as a viable option. Different direct and indirect techniques can be used, and the choice depends on the hydrologic characteristics of a specific area. In Italy, Legislative Decree no. 152/06 plans artificial aquifer recharge as an additional measure in water management, and Decree no. 100/2016 establishes quantitative and qualitative conditions for recharge. Many projects examine aquifer recharge, such us WADIS-MAR in the southern Mediterranean region, WARBO in Italy and municipal wastewater treatment project in Apulia, a southern Italian region. However, aside from groundwater recharge, the community must foster a spirit of cooperation to manage groundwater as a sustainable resource.

  17. Transformer Recharging with Alpha Channeling in Tokamaks

    International Nuclear Information System (INIS)

    Fisch, N.J.

    2009-01-01

    Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible.

  18. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States

    Directory of Open Access Journals (Sweden)

    Brian F. Thomas

    2016-03-01

    Full Text Available Episodic recharge as a result of infrequent, high intensity precipitation events comprises the bulk of groundwater recharge in arid environments. Climate change and shifts in precipitation intensity will affect groundwater continuity, thus altering groundwater recharge. This study aims to identify changes in the ratio of groundwater recharge and precipitation, the R:P ratio, in the arid southwestern United States to characterize observed changes in groundwater recharge attributed to variations in precipitation intensity. Our precipitation metric, precipitation intensity magnification, was used to investigate the relationship between the R:P ratio and precipitation intensity. Our analysis identified significant changes in the R:P ratio concurrent with decreases in precipitation intensity. The results illustrate the importance of precipitation intensity in relation to groundwater recharge in arid regions and provide further insights for groundwater management in nonrenewable groundwater systems and in a changing climate.

  19. 30 CFR 57.4203 - Extinguisher recharging or replacement.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Extinguisher recharging or replacement. 57.4203 Section 57.4203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Prevention and Control Firefighting Equipment § 57.4203 Extinguisher recharging or replacement. Fire...

  20. 30 CFR 56.4203 - Extinguisher recharging or replacement.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Extinguisher recharging or replacement. 56.4203 Section 56.4203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Prevention and Control Firefighting Equipment § 56.4203 Extinguisher recharging or replacement. Fire...

  1. Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance

    Science.gov (United States)

    Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-03-01

    Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.

  2. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  3. The testing report of the development for the lithium grains and lithium rod automatic machine

    International Nuclear Information System (INIS)

    Qian Zongkui; Kong Xianghong; Huang Yong

    2008-06-01

    With the development of lithium industry, the lithium grains and lithium rod, as additive or catalyzer, having a big comparatively acreage and a strong activated feature, have a broad application. The lithium grains and lithium rod belong to the kind of final machining materials. The principle of the lithium grains and lithium rod that how to take shape through the procedures of extrusion, cutting, anti-conglutination, threshing and so on are analysed, A sort of lithium grains and lithium rod automatic machine is developed. (authors)

  4. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    Science.gov (United States)

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  5. Recharge estimation in semi-arid karst catchments: Central West Bank, Palestine

    Science.gov (United States)

    Jebreen, Hassan; Wohnlich, Stefan; Wisotzky, Frank; Banning, Andre; Niedermayr, Andrea; Ghanem, Marwan

    2018-03-01

    Knowledge of groundwater recharge constitutes a valuable tool for sustainable management in karst systems. In this respect, a quantitative evaluation of groundwater recharge can be considered a pre-requisite for the optimal operation of groundwater resources systems, particular for semi-arid areas. This paper demonstrates the processes affecting recharge in Palestine aquifers. The Central Western Catchment is one of the main water supply sources in the West Bank. Quantification of potential recharge rates are estimated using chloride mass balance (CMB) and empirical recharge equations over the catchment. The results showing the spatialized recharge rate, which ranges from 111-216 mm/year, representing 19-37% of the long-term mean annual rainfall. Using Water Balance models and climatological data (e. g. solar radiation, monthly temperature, average monthly relative humidity and precipitation), actual evapotranspiration (AET) is estimated. The mean annual actual evapotranspiration was about 66-70% of precipitation.

  6. Chloride-mass-balance for predicting increased recharge after land-use change

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Zhang, Z.F.; Tyler, S.W.; Albright, W.H.; Singleton, M.J.

    2004-02-23

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6-m-deep lysimeter at a simulated waste-burial ground, located on the Department of Energy s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20 percent of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  7. Experimental study on the artificial recharge of semiconfined aquifers involved in deep excavation engineering

    Science.gov (United States)

    Zheng, G.; Cao, J. R.; Cheng, X. S.; Ha, D.; Wang, F. J.

    2018-02-01

    Artificial recharge measures have been adopted to control the drawdown of confined aquifers and the ground subsidence caused by dewatering during deep excavation in Tianjin, Shanghai and other regions in China. However, research on recharge theory is still limited. Additionally, confined aquifers consisting of silt and silty sand in Tianjin have lower hydraulic conductivities than those consisting of sand or gravel, and the feasibility and effectiveness of recharge methods in these semiconfined aquifers urgently require investigation. A series of single-well and multiwell pumping and recharge tests was conducted at a metro station excavation site in Tianjin. The test results showed that it was feasible to recharge silt and silty sand semiconfined aquifers, and, to a certain extent, the hydrogeological parameters obtained from the pumping tests could be used to predict the water level rise during single-well recharge. However, the predicted results underestimated the water level rise near the recharge well (within 7 m) by approximately 10-25%, likely because the permeability coefficient around the well was reduced during the recharge process. Pressured recharge significantly improved the efficiency of the recharge process. Maintaining the recharge and pumping rates at a nearly equal level effectively controlled the surrounding surface and building settlement. However, the surrounding surface subsidence tended to rapidly develop when recharge stopped. Therefore, the recharge process should continue and gradually stop after the pumping stops. The twin-well combined recharge technique can be used to control the head loss of an aquifer when one of the recharge wells requires pumping to solve the associated clogging problems.

  8. Novel peapoded Li4Ti5O12 nanoparticles for high-rate and ultralong-life rechargeable lithium ion batteries at room and lower temperatures

    Science.gov (United States)

    Peng, Liang; Zhang, Huijuan; Fang, Ling; Zhang, Yan; Wang, Yu

    2016-01-01

    In this paper, a novel peapod-like Li4Ti5O12-C composite architecture with high conductivity is firstly designed and synthesized to be used as anode materials for lithium-ion batteries. In the synthesis, Na2Ti3O7 nanotubes act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source, thus the peapod-like Li4Ti5O12-C composite can be fabricated by a facile hydrothermal reaction and the subsequent solid-state process. Compared to the previous reports, the as-prepared samples obtained by our new strategy exhibit excellent electrochemical performances, such as outstanding rate capability (an extremely reversible capability of 148 mA h g-1, 125 mA h g-1 at 30 C and 90 C, respectively) as well as excellent cycling performance (about 5% capacity loss after 5000 cycles at 10 C with 152 mA h g-1 capacity retained). The low-temperature measurements also demonstrate that the electrochemical performances of the peapod-like Li4Ti5O12-C composite are remarkably improved at various rate currents (at the low-temperature of -25 °C, a high Coulombic efficiency of about 99% can be achieved after 500 cycles at 10 C).In this paper, a novel peapod-like Li4Ti5O12-C composite architecture with high conductivity is firstly designed and synthesized to be used as anode materials for lithium-ion batteries. In the synthesis, Na2Ti3O7 nanotubes act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source, thus the peapod-like Li4Ti5O12-C composite can be fabricated by a facile hydrothermal reaction and the subsequent solid-state process. Compared to the previous reports, the as-prepared samples obtained by our new strategy exhibit excellent electrochemical performances, such as outstanding rate capability (an extremely reversible capability of 148 mA h g-1, 125 mA h g-1 at 30 C and 90 C, respectively) as well as excellent cycling performance (about 5% capacity loss after 5000 cycles at 10 C with 152 mA h g-1 capacity

  9. Chemical properties of various organic electrolytes for lithium rechargeable batteries. Pt. 1.. Characterization of passivating layer formed on graphite in alkyl carbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoichiro; Asahina, Hitoshi; Suzuki, Hitoshi; Yonei, Ayako; Yokoto, Kiyomi [Tsukuba Research Center, Mitsubishi Chemical Corporation, Ibaraki (Japan)

    1997-09-01

    The characteristics and reaction mechanisms of the passivating film formed on the surface of graphite were investigated in ethylene carbonate-diethyl carbonate solutions containing LiClO{sub 4}, LiPF{sub 6} and LiN(SO{sub 2}CF{sub 3}){sub 2}. The electron consumption resulting on the irreversible capacity of graphite was almost equivalent to that used in the one-electron reduction of Li{sup +} found in the film. The electrochemical reactions in the first discharge process may be divided into the following steps: (i) `initial film formation step` from 1.4 to 0.55 V; (ii) `main film formation step` from 0.55 to 0.2 V, and (iii) `lithium intercalation step from 0.2 to 0.0 V. Most of the passivating film is formed together with the lithium intercalation reaction at step (ii). The passivating film formed at this step contained a significant amount of organic film such as EtOCO{sub 2}Li, (CH{sub 2}OCO{sub 2}Li){sub 2}, etc. Through the consecutive formation of passivating film at steps (i) and (ii), lithium intercalation into graphite proceeds smoothly without further decomposition of organic electrolyte. (orig.)

  10. Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors

    Directory of Open Access Journals (Sweden)

    Z. Zomlot

    2015-09-01

    New hydrological insights for the region: The average resulting recharge is 235 mm/year and occurs mainly in winter. The overall moderate correlation between base flow estimates and modeled recharge rates indicates that base flow is a reasonable proxy of recharge. Groundwater recharge variation was explained in order of importance by precipitation, soil texture and vegetation cover; while base flow variation was strongly controlled by vegetation cover and groundwater depth. The results of this study highlight the important role of spatial variables in estimation of recharge and base flow. In addition, the prominent role of vegetation makes clear the potential importance of land-use changes on recharge and hence the need to include a proper strategy for land-use change in sustainable management of groundwater resources.

  11. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  12. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  13. Lithium uptake and the corrosion of zirconium alloys in aqueous lithium hydroxide solutions

    International Nuclear Information System (INIS)

    Ramasubramanian, N.

    1991-01-01

    This paper reports on corrosion films on zirconium alloys that were analyzed for lithium by Atomic Absorption Spectroscopy (AAS), Secondary Ion Mass Spectrometry (SIMS), and Infrared Reflection Absorption Spectroscopy (IRAS). The oxides grown in reactor in dilute lithium hydroxide solution, specimens cut from Zircaloy, and Zr-2.5Nb alloy pressure tubes removed from CANDU (Canada Deuterium Uranium, Registered Trademark) reactors showed low concentrations of lithium (4 to 50 ppm). The lithium was not leachable in a warm dilute acid. 6 Li undergoes transmutation by the 6 Li(n,t) 4 He reaction. However, SIMS profiles for d 7 Li were identical through the bulk oxide and the isotopic ratio was close to the natural abundance value. The lithium in the oxide, existing as adsorbed lithium on the surface, has been in dynamic equilibrium with lithium in the coolant, and, in spite of many Effective Full Power Years (EFPY) of operation, lithium added to the CANDU coolant at ∼2.5 ppm is not concentrating in the oxides. On the other hand, corrosion films grown in the laboratory in concentrated lithium hydroxide solutions were very porous and contained hundreds of ppm of lithium in the oxide

  14. Fate of human viruses in groundwater recharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  15. Ground-water recharge from small intermittent streams in the western Mojave Desert, California: Chapter G in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Izbicki, John A.; Johnson, Russell U.; Kulongoski, Justin T.; Predmore, Steven; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Population growth has impacted ground-water resources in the western Mojave Desert, where declining water levels suggest that recharge rates have not kept pace with withdrawals. Recharge from the Mojave River, the largest hydrographic feature in the study area, is relatively well characterized. In contrast, recharge from numerous smaller streams that convey runoff from the bounding mountains is poorly characterized. The current study examined four representative streams to assess recharge from these intermittent sources. Hydraulic, thermal, geomorphic, chemical, and isotopic data were used to study recharge processes, from streamflow generation and infiltration to percolation through the unsaturated zone. Ground-water movement away from recharge areas was also assessed.Infiltration in amounts sufficient to have a measurable effect on subsurface temperature profiles did not occur in every year in instrumented study reaches. In addition to streamflow availability, results showed the importance of sediment texture in controlling infiltration and eventual recharge. Infiltration amounts of about 0.7 meters per year were an approximate threshold for the occurrence of ground-water recharge. Estimated travel times through the thick unsaturated zones underlying channels reached several hundred years. Recharging fluxes were influenced by stratigraphic complexity and depositional dynamics. Because of channel meandering, not all water that penetrates beneath the root zone can be assumed to become recharge on active alluvial fans.Away from study washes, elevated chloride concentrations and highly negative water potentials beneath the root zone indicated negligible recharge from direct infiltration of precipitation under current climatic conditions. In upstream portions of washes, generally low subsurface chloride concentrations and near-zero water potentials indicated downward movement of water toward the water table, driven primarily by gravity. Recharging conditions did not

  16. Optimization of control bars patterns and fuel recharges of coupled form

    International Nuclear Information System (INIS)

    Mejia S, D.M.; Ortiz S, J.J.

    2006-01-01

    In this work a system coupled for the optimization of fuel recharges and control bars patterns in boiling water reactors (BWR by its initials in English) is presented. It was used a multi state recurrent neural net like optimization technique. This type of neural net has been used in the solution of diverse problems, in particular the design of patterns of control bars and the design of the fuel recharge. However, these problems have been resolved in an independent way with different optimization techniques. The system was developed in FORTRAN 77 language, it calls OCORN (Optimization of Cycles of Operation using Neural Nets) and it solves both problems of combinatory optimization in a coupled way. OCORN begins creating a seed recharge by means of an optimization through the Haling principle. Later on a pattern of control bars for this recharge seed is proposed. Then a new fuel recharge is designed using the control bars patterns previously found. By this way an iterative process begins among the optimization of control bars patterns and the fuel recharge until a stop criteria it is completed. The stop criteria is completed when the fuel recharges and the control bars patterns don't vary in several successive iterations. The final result is an optimal fuel recharge and its respective control bars pattern. In this work the obtained results by this system for a cycle of balance of 18 months divided in 12 steps of burnt are presented. The obtained results are very encouraging, since the fuel recharge and the control bars pattern, its fulfill with the restrictions imposed in each one of the problems. (Author)

  17. Synthesis, characterization and application of Li3Fe2(PO4)3 nanoparticles as cathode of lithium-ion rechargeable batteries

    Science.gov (United States)

    Karami, Hassan; Taala, Foroozandeh

    2011-08-01

    This work introduces a new method to synthesize Li3Fe2(PO4)3 nanoparticles in the nanopowder form and study its electrochemical performance by cyclic voltammetry and battery tests. Li3Fe2(PO4)3 is synthesized by the gel combustion method based on polyvinyl alcohol (PVA) as gel making agent. The optimum conditions of the synthesis include 8 wt% PVA, 0.34 wt% lithium slat, 1 wt% iron salt, 0.57 wt% ammonium dihydrogen phosphate, ethanol-water 50:50 as solvent, 675 °C combustion temperature and 4 h combustion time. Characterization of the samples is performed by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), EDX analysis, XRD patterns, BET specific surface area and DSL size distribution. In the optimum conditions, a nanopowder is obtained that consisting of uniform nanoparticles with an average diameter of 70 nm. The optimized sample shows 12.5 m2 g-1 specific surface areas. Cyclic voltammetry (CV) studies show that the synthesized compound has good reversibility and high cyclic stability. The CV results are confirmed by the battery tests. The obtained results show that the synthesized cathodic material has high practical discharge capacity (average 125.5 mAh g-1 approximately same with its theoretical capacity 128.2 mA h-1) and long cycle life.

  18. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Ri [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Kwan-Young [Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Oh, Si Hyoung, E-mail: sho74@kist.re.kr [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2017-01-15

    Graphical abstract: Strategically-designed spinel-structured nano-scale surface layer, LiM{sub x}Mn{sup IV}{sub 1−x}O{sub 4}, featuring a high Li{sup +} ion conductivity and a good chemical stability was applied on Al-doped LiMn{sub 2}O{sub 4} spinel for the drastic improvement of the electrochemical performance at the elevated temperature as a promising cathode material for lithium rechargeable batteries. - Highlights: • Spinel-structured surface layer with a high Li-ion conductivity and a good chemical stability was prepared. • Simple wet process was developed to apply nano-scale surface layer on aluminum doped lithium manganese oxide spinel. • The properties of nano-scale surface layer were characterized by analytical tools including GITT, HR-TEM and XAS. • Materials with surface coating layer exhibit an excellent electrochemical performance at the elevated temperature. - Abstract: Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO{sub 4} and LiMg{sub 0.5}Mn{sub 1.5}O{sub 4} layers on the surface of LiAl{sub 0.1}Mn{sub 1.9}O{sub 4}. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  19. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    Science.gov (United States)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  20. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-10-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.