WorldWideScience

Sample records for lichenase reporter protein

  1. Multiplex PCR assay for detection of recombinant genes encoding fatty acid desaturases fused with lichenase reporter protein in GM plants.

    Science.gov (United States)

    Berdichevets, Iryna N; Shimshilashvili, Hristina R; Gerasymenko, Iryna M; Sindarovska, Yana R; Sheludko, Yuriy V; Goldenkova-Pavlova, Irina V

    2010-07-01

    Thermostable lichenase encoded by licB gene of Clostridium thermocellum can be used as a reporter protein in plant, bacterial, yeast, and mammalian cells. It has important advantages of high sensitivity and specificity in qualitative and quantitative assays. Deletion variants of LicB (e.g., LicBM3) retain its enzymatic activity and thermostability and can be expressed in translational fusion with target proteins without compromising with their properties. Fusion with the lichenase reporter is especially convenient for the heterologous expression of proteins whose analysis is difficult or compromised by host enzyme activities, as it is in case of fatty acid desaturases occurring in all groups of organisms. Recombinant desaturase-lichenase genes can be used for creating genetically modified (GM) plants with improved chill tolerance. Development of an analytical method for detection of fused desaturase-lichenase transgenes is necessary both for production of GM plants and for their certification. Here, we report a multiplex polymerase chain reaction method for detection of desA and desC desaturase genes of cyanobacteria Synechocystis sp. PCC6803 and Synechococcus vulcanus, respectively, fused to licBM3 reporter in GM plants.

  2. Purification and characterization of a novel lichenase from Bacillus licheniformis GZ-2.

    Science.gov (United States)

    Gao, Zhen

    2016-01-01

    A novel lichenase from Bacillus licheniformis GZ-2 was purified to homogeneity by two steps ion-exchange chromatography with a specific activity of 8231.3 U/mg. The purified enzyme showed as a single protein band with a molecular mass of 25 kDa. The optimum pH and temperature for the enzyme activity were 6.5 and 60 °C, respectively. The enzyme exhibited strict specificity for β-1,3-1,4-d-glucans. The kinetic parameters Km and Vmax were 5.11 mg/mL and 2097 µmol/Min/mg for lichenan and 7.42 mg/mL and 1440 µmol/Min/mg for barley β-glucan. Compared to most of the reported β-1,3-1,4-glucanases (lichenase), the activity of the purified enzyme for lichenan was much higher than that for barley β-glucan. The main products of β-glucan hydrolyzed by the lichenase were cellubiosyltriose (DP3) and cellutriosyltraose (DP4). The lichenase gene from B. licheniformis GZ-2 was cloned and sequenced. The open reading frame of gene gz-2 contained 642 bp coding for a 214 amino acid mature protein. The gene was cloned into an expression vector pET 28a and expressed in Escherichia coli BL21. The activity in cell lysate supernatant was 137.9 U/mg. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  3. Creation of glyphosate-resistant Brassica napus L. plants expressing DesC desaturase of cyanobacterium Synechococcus vulcanus

    Directory of Open Access Journals (Sweden)

    Goldenkova-Pavlova I. V.

    2012-12-01

    Full Text Available Aim. Creation of glyphosate-resistant canola plants expressing bifunctional hybrid desC::licBM3 gene. In the hybrid gene the sequence of DesC desaturase of cyanobacterium S. vulcanus without plastid targeting was fused with the sequence of thermostable lichenase reporter LicBM3 gene. Methods. Agrobacterium tumefaciens-mediated transformation, PCR, quantitative and qualitative determination of lichenase activity, genetic analysis. Results. Transgenic canola plants, carring the enolpyruvat shikimat phosphate syntase gene (epsps, conferring on plants resistance to phosphonomethyl glycine herbicides (Roundup, as well as the desC::licBM3 gene, were selected. The presence of transgenes was confimed by multiplex PCR. The epsps gene expression in canola was shown at the transcription level, during in vitro growth and after greenhouse herbicide treatment. Activity of the licBM3 gene product as a part of hybrid protein allowed quantitative and qualitative estimation of the desaturase gene expression. Inheritance of heterologous genes and their expression in the first generation were investigated. Conclusions. Transgenic canola plants were obtained, the presence of trangenes in plant genome was proved and expression of the target genes was detected.

  4. Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system.

    Directory of Open Access Journals (Sweden)

    Shuaizheng Jia

    Full Text Available The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins.

  5. Interpretive Reporting of Protein Electrophoresis Data by Microcomputer

    Science.gov (United States)

    Talamo, Thomas S.; Losos, Frank J.; Kessler, G. Frederick

    1982-01-01

    A microcomputer based system for interpretive reporting of protein electrophoretic data has been developed. Data for serum, urine and cerebrospinal fluid protein electrophoreses as well as immunoelectrophoresis can be entered. Patient demographic information is entered through the keyboard followed by manual entry of total and fractionated protein levels obtained after densitometer scanning of the electrophoretic strip. The patterns are then coded, interpreted, and final reports generated. In most cases interpretation time is less than one second. Misinterpretation by computer is uncommon and can be corrected by edit functions within the system. These discrepancies between computer and pathologist interpretation are automatically stored in a data file for later review and possible program modification. Any or all previous tests on a patient may be reviewed with graphic display of the electrophoretic pattern. The system has been in use for several months and is presently well accepted by both laboratory and clinical staff. It also allows rapid storage, retrieval and analysis of protein electrophoretic datab.

  6. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    Science.gov (United States)

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  7. Cyclin B1 Destruction Box-Mediated Protein Instability: The Enhanced Sensitivity of Fluorescent-Protein-Based Reporter Gene System

    Directory of Open Access Journals (Sweden)

    Chao-Hsun Yang

    2013-01-01

    Full Text Available The periodic expression and destruction of several cyclins are the most important steps for the exact regulation of cell cycle. Cyclins are degraded by the ubiquitin-proteasome system during cell cycle. Besides, a short sequence near the N-terminal of cyclin B called the destruction box (D-box; CDB is also required. Fluorescent-protein-based reporter gene system is insensitive to analysis because of the overly stable fluorescent proteins. Therefore, in this study, we use human CDB fused with both enhanced green fluorescent protein (EGFP at C-terminus and red fluorescent protein (RFP, DsRed at N-terminus in the transfected human melanoma cells to examine the effects of CDB on different fluorescent proteins. Our results indicated that CDB-fused fluorescent protein can be used to examine the slight gene regulations in the reporter gene system and have the potential to be the system for screening of functional compounds in the future.

  8. Phosphate sensing by fluorecent reporter proteins embedded in poly-acrylamide nanoparticles

    DEFF Research Database (Denmark)

    Sun, Honghao; Scharff-Poulsen, Anne Marie; Gu, Hong

    2008-01-01

    Phosphate sensors were developed by embedding fluorescent reporter proteins (FLIPPi) in polyacrylamide nanoparticles; with diameters from 40 to 120 nm. The sensor activity and protein loading efficiency varied according to nanoparticle composition, that is, the total monomer content (% T) and the......, in nanoparticles for, for example, sensing, biological catalysis, and gene delivery.......Phosphate sensors were developed by embedding fluorescent reporter proteins (FLIPPi) in polyacrylamide nanoparticles; with diameters from 40 to 120 nm. The sensor activity and protein loading efficiency varied according to nanoparticle composition, that is, the total monomer content (% T......) and the cross-linker content (% C). Nanoparticles with 28% T and 20% C were considered optimal as a result of relatively high loading efficiency (50.6%) as well as high protein activity (50%). The experimental results prove that the cross-linked polyacrylamide matrix could protect FLIPPi from degradation...

  9. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology.

    Science.gov (United States)

    DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle

    2016-02-15

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction

  10. Reef-coral proteins as visual, non-destructive reporters for plant transformation.

    Science.gov (United States)

    Wenck, A; Pugieux, C; Turner, M; Dunn, M; Stacy, C; Tiozzo, A; Dunder, E; van Grinsven, E; Khan, R; Sigareva, M; Wang, W C; Reed, J; Drayton, P; Oliver, D; Trafford, H; Legris, G; Rushton, H; Tayab, S; Launis, K; Chang, Y-F; Chen, D-F; Melchers, L

    2003-11-01

    Recently, five novel fluorescent proteins have been isolated from non-bioluminescent species of reef-coral organisms and have been made available through ClonTech. They are AmCyan, AsRed, DsRed, ZsGreen and ZsYellow. These proteins are valuable as reporters for transformation because they do not require a substrate or external co-factor to emit fluorescence and can be tested in vivo without destruction of the tissue under study. We have evaluated them in a large range of plants, both monocots and dicots, and our results indicate that they are valuable reporting tools for transformation in a wide variety of crops. We report here their successful expression in wheat, maize, barley, rice, banana, onion, soybean, cotton, tobacco, potato and tomato. Transient expression could be observed as early as 24 h after DNA delivery in some cases, allowing for very clear visualization of individually transformed cells. Stable transgenic events were generated, using mannose, kanamycin or hygromycin selection. Transgenic plants were phenotypically normal, showing a wide range of fluorescence levels, and were fertile. Expression of AmCyan, ZsGreen and AsRed was visible in maize T1 seeds, allowing visual segregation to more than 99% accuracy. The excitation and emission wavelengths of some of these proteins are significantly different; the difference is enough for the simultaneous visualization of cells transformed with more than one of the fluorescent proteins. These proteins will become useful tools for transformation optimization and other studies. The wide variety of plants successfully tested demonstrates that these proteins will potentially find broad use in plant biology.

  11. Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter

    Directory of Open Access Journals (Sweden)

    Klaubert Dieter H

    2008-04-01

    Full Text Available Abstract Background The ability to specifically label proteins within living cells can provide information about their dynamics and function. To study a membrane protein, we fused a multi-functional reporter protein, HaloTag®, to the extracellular domain of a truncated integrin. Results Using the HaloTag technology, we could study the localization, trafficking and processing of an integrin-HaloTag fusion, which we showed had cellular dynamics consistent with native integrins. By labeling live cells with different fluorescent impermeable and permeable ligands, we showed spatial separation of plasma membrane and internal pools of the integrin-HaloTag fusion, and followed these protein pools over time to study bi-directional trafficking. In addition to combining the HaloTag reporter protein with different fluorophores, we also employed an affinity tag to achieve cell capture. Conclusion The HaloTag technology was used successfully to study expression, trafficking, spatial separation and real-time translocation of an integrin-HaloTag fusion, thereby demonstrating that this technology can be a powerful tool to investigate membrane protein biology in live cells.

  12. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    Science.gov (United States)

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  13. Proteins in growth regulation during early development. Comprehensive three year report, 1974--1977

    Energy Technology Data Exchange (ETDEWEB)

    Klein, N.W.

    1977-08-01

    Progress is reported on the following research projects: response of embryo regions to nutrition; synthesis of serum proteins by the yolk-sac; serum protein synthesis in relation to protein nutrition, protease secretion, teratogenic agents, genetic abnormalities, yolk-sac cell cultures, and cell free systems; and effects of serum proteins on rat embryos, chick embryos without yolk-sacs, and isolated brains. (HLW)

  14. Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae.

    Science.gov (United States)

    Masser, Anna E; Kandasamy, Ganapathi; Kaimal, Jayasankar Mohanakrishnan; Andréasson, Claes

    2016-05-01

    Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon-optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half-lives of 40 and 5 min, respectively. The commercial substrate Nano-Glo® is compatible with detection of yNluc bioluminescence in yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd.

  15. InXy and SeXy, compact heterologous reporter proteins for mammalian cells.

    Science.gov (United States)

    Fluri, David A; Kelm, Jens M; Lesage, Guillaume; Baba, Marie Daoud-El; Fussenegger, Martin

    2007-10-15

    Mammalian reporter proteins are essential for gene-function analysis, drugscreening initiatives and as model product proteins for biopharmaceutical manufacturing. Bacillus subtilis can maintain its metabolism by secreting Xylanase A (XynA), which converts xylan into shorter xylose oligosaccharides. XynA is a family 11 xylanase monospecific for D-xylose containing substrates. Mammalian cells transgenic for constitutive expression of wild-type xynA showed substantial secretion of this prokaryotic enzyme. Deletion analysis confirmed that a prokaryotic signal sequence encoded within the first 81 nucleotides was compatible with the secretory pathway of mammalian cells. Codon optimization combined with elimination of the prokaryotic signal sequence resulted in an exclusively intracellular mammalian Xylanase A variant (InXy) while replacement by an immunoglobulin-derived secretion signal created an optimal secreted Xylanase A derivative (SeXy). A variety of chromogenic and fluorescence-based assays adapted for use with mammalian cells detected InXy and SeXy with high sensitivity and showed that both reporter proteins resisted repeated freeze/thaw cycles, remained active over wide temperature and pH ranges, were extremely stable in human serum stored at room temperature and could independently be quantified in samples also containing other prominent reporter proteins such as the human placental alkaline phosphatase (SEAP) and the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY). Glycoprofiling revealed that SeXy produced in mammalian cells was N- glycosylated at four different sites, mutation of which resulted in impaired secretion. SeXy was successfully expressed in a variety of mammalian cell lines and primary cells following transient transfection and transduction with adeno-associated virus particles (AAV) engineered for constitutive SeXy expression. Intramuscular injection of transgenic AAVs into mice showed significant SeXy levels in the bloodstream

  16. A selection that reports on protein-protein interactions within a thermophilic bacterium.

    Science.gov (United States)

    Nguyen, Peter Q; Silberg, Jonathan J

    2010-07-01

    Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.

  17. PIN-G – A novel reporter for imaging and defining the effects of trafficking signals in membrane proteins

    Directory of Open Access Journals (Sweden)

    Hu Weiwen

    2006-03-01

    Full Text Available Abstract Background The identification of protein trafficking signals, and their interacting mechanisms, is a fundamental objective of modern biology. Unfortunately, the analysis of trafficking signals is complicated by their topography, hierarchical nature and regulation. Powerful strategies to test candidate motifs include their ability to direct simpler reporter proteins, to which they are fused, to the appropriate cellular compartment. However, present reporters are limited by their endogenous expression, paucity of cloning sites, and difficult detection in live cells. Results Consequently, we have engineered a mammalian expression vector encoding a novel trafficking reporter – pIN-G – consisting of a simple, type I integral protein bearing permissive intra/extracellular cloning sites, green fluorescent protein (GFP, cMyc and HA epitope tags. Fluorescence imaging, flow cytometry and biochemical assays of transfected HEK293 cells, confirm the size, topology and surface expression of PIN-G. Moreover, a pIN-G fusion construct, containing a Trans-Golgi Network (TGN targeting determinant, internalises rapidly from the cell surface and localises to the TGN. Additionally, another PIN-G fusion protein and its mutants reveal trafficking determinants in the cytoplasmic carboxy terminus of Kv1.4 voltage-gated potassium channels. Conclusion Together, these data indicate that pIN-G is a versatile, powerful, new reporter for analysing signals controlling membrane protein trafficking, surface expression and dynamics.

  18. Reporter-Based Synthetic Genetic Array Analysis: A Functional Genomics Approach for Investigating Transcript or Protein Abundance Using Fluorescent Proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Göttert, Hendrikje; Mattiazzi Usaj, Mojca; Rosebrock, Adam P; Andrews, Brenda J

    2018-01-01

    Fluorescent reporter genes have long been used to quantify various cell features such as transcript and protein abundance. Here, we describe a method, reporter synthetic genetic array (R-SGA) analysis, which allows for the simultaneous quantification of any fluorescent protein readout in thousands of yeast strains using an automated pipeline. R-SGA combines a fluorescent reporter system with standard SGA analysis and can be used to examine any array-based strain collection available to the yeast community. This protocol describes the R-SGA methodology for screening different arrays of yeast mutants including the deletion collection, a collection of temperature-sensitive strains for the assessment of essential yeast genes and a collection of inducible overexpression strains. We also present an alternative pipeline for the analysis of R-SGA output strains using flow cytometry of cells in liquid culture. Data normalization for both pipelines is discussed.

  19. Effect of secretory pathway gene overexpression on secretion of a fluorescent reporter protein in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Schalén, Martin; Anyaogu, Diana Chinyere; Hoof, Jakob Blæsbjerg

    2016-01-01

    roles in the process have been identified through transcriptomics. The assignment of function to these genes has been enabled in combination with gene deletion studies. In this work, 14 genes known to play a role in protein secretion in filamentous fungi were overexpressed in Aspergillus nidulans....... The background strain was a fluorescent reporter secreting mRFP. The overall effect of the overexpressions could thus be easily monitored through fluorescence measurements, while the effects on physiology were determined in batch cultivations and surface growth studies. Results: Fourteen protein secretion...... pathway related genes were overexpressed with a tet-ON promoter in the RFP-secreting reporter strain and macromorphology, physiology and protein secretion were monitored when the secretory genes were induced. Overexpression of several of the chosen genes was shown to cause anomalies on growth, micro...

  20. Sytemic lupus erythematosus presenting with protein losing enteropathy in a resource limited centre: a case report

    Directory of Open Access Journals (Sweden)

    Ratnayake Eranda C

    2012-01-01

    Full Text Available Abstract Introduction Systemic lupus erythematosus is a disease which may initially present with varying symptoms, most commonly a photosensitive rash and arthritis. Protein losing enteropathy is a recognized but rare presenting manifestation. Diagnosing protein losing enteropathy in resource limited centres is challenging but possible through the exclusion of other possible causes of hypoalbunaemia. Case Presentation We report a case of protein losing gastroenteropathy secondary to intestinal lymphangiectasia as the initial manifestation of systemic lupus erythematosus in a 57 year old Sri Lankan (South Asian male patient. The diagnosis was made by the exclusion of other causes of hypoalbuminaemia as the gold standard investigations for protein losing enteropathy were not available at this centre. Conclusions Protein losing enteropathy is a diagnosis of exclusion in resource limited centres in the world. Systemic lupus erythematosus should be considered in the differential diagnosis of protein losing enteropathy. Intestinal lymphangiectasia should also be recognized as a possible pathophysiological mechanism.

  1. Animal proteins in feed : annual report 2009-2010 of the Dutch National Reference Laboratory

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Scholtens-Toma, I.M.J.; Vliege, J.J.M.; Pinckaers, V.G.Z.; Groot, M.J.; Ossenkoppele, J.S.; Ruth, van S.M.

    2011-01-01

    RIKILT serves as the only official control laboratory for animal proteins in feeds in the Netherlands in the framework of Directive 882/2004/EC. As National Reference Laboratory (NRL), RIKILT participated in 2 annual proficiency tests during the reporting period, in 2 additional interlaboratory

  2. Chemical effects of ionizing radiation on the individual amino acids within intact and pure protein molecules. Final report

    International Nuclear Information System (INIS)

    Freidberg, F.

    1977-01-01

    Progress is reported on the following research projects: gamma radiation induced chemical and molecular weight changes in proteins; the free radical pattern for the irradiated protein; similarities in the mechanism of action of ionizing and of uv radiation; and spin trapping in the study of gamma radiolysis

  3. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice.

    Science.gov (United States)

    Tehrani, A M; Hwang, S-K; Kim, T-H; Cho, C-S; Hua, J; Nah, W-S; Kwon, J-T; Kim, J-S; Chang, S-H; Yu, K-N; Park, S-J; Bhandari, D R; Lee, K-H; An, G-H; Beck, G R; Cho, M-H

    2007-03-01

    Lung cancer has emerged as a leading cause of cancer death in the world; however, most of the current conventional therapies are not sufficiently effective in altering the progression of disease. Therefore, development of novel treatment approaches is needed. Although several genes and methods have been used for cancer gene therapy, a number of problems such as specificity, efficacy and toxicity reduce their application. This has led to re-emergence of aerosol gene delivery as a noninvasive method for lung cancer treatment. In this study, nano-sized glucosylated polyethyleneimine (GPEI) was used as a gene delivery carrier to investigate the effects of Akt wild type (WT) and kinase deficient (KD) on Akt-related signaling pathways and protein translation in the lungs of CMV- LucR-cMyc-IRES-LucF dual reporter mice. These mice are a powerful tool for the discrimination between cap-dependent/-independent protein translation. Aerosols containing self-assembled nano-sized GPEI/Akt WT or GPEI/Akt KD were delivered into the lungs of reporter mice through nose-only-inhalation-chamber with the aid of nebulizer. Aerosol delivery of Akt WT caused the increase of protein expression levels of Akt-related signals, whereas aerosol delivery of Akt KD did not. Furthermore, dual luciferase activity assay showed that aerosol delivery of Akt WT enhanced cap-dependent protein translation, whereas a reduction in cap-dependent protein translation by Akt KD was observed. Our results clearly showed that targeting Akt may be a good strategy for prevention as well as treatment of lung cancer. These studies suggest that our aerosol delivery is compatible for in vivo gene delivery which could be used as a noninvasive gene therapy in the future.

  4. Antithrombin deficiency and decreased protein C activity in a young man with venous thromboembolism: a case report.

    Science.gov (United States)

    Wang, Dong; Tian, Min; Cui, Guanglin; Wang, Dao Wen

    2018-06-01

    Antithrombin and protein C are two crucial members in the anticoagulant system and play important roles in hemostasis. Mutations in SERPINC1 and PROC lead to deficiency or dysfunction of the two proteins, which could result in venous thromboembolism (VTE). Here, we report a Chinese 22-year-old young man who developed recurrent and serious VTE in cerebral veins, visceral veins, and deep veins of the lower extremity. Laboratory tests and direct sequencing of PROC and SERPINC1 were conducted for the patient and his family members. Coagulation tests revealed that the patient presented type I antithrombin deficiency combined with decreased protein C activity resulting from a small insertion mutation c.848_849insGATGT in SERPINC1 and a short deletion variant c.572_574delAGA in PROC. This combination of the two mutations was absent in 400 healthy subjects each from southern and northern China. Then, we summarized all the mutations of the SERPINC1 and PROC gene reported in the Chinese Han population. This study demonstrates that the combination of antithrombin deficiency and decreased protein C activity can result in severe VTE and that the coexistence of different genetic factors may increase the risk of VTE.

  5. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  6. The first report of prion-related protein gene (PRNT) polymorphisms in goat.

    Science.gov (United States)

    Kim, Yong-Chan; Jeong, Byung-Hoon

    2017-06-01

    Prion protein is encoded by the prion protein gene (PRNP). Polymorphisms of several members of the prion gene family have shown association with prion diseases in several species. Recent studies on a novel member of the prion gene family in rams have shown that prion-related protein gene (PRNT) has a linkage with codon 26 of prion-like protein (PRND). In a previous study, codon 26 polymorphism of PRND has shown connection with PRNP haplotype which is strongly associated with scrapie vulnerability. In addition, the genotype of a single nucleotide polymorphism (SNP) at codon 26 of PRND is related to fertilisation capacity. These findings necessitate studies on the SNP of PRNT gene which is connected with PRND. In goat, several polymorphism studies have been performed for PRNP, PRND, and shadow of prion protein gene (SPRN). However, polymorphism on PRNT has not been reported. Hence, the objective of this study was to determine the genotype and allelic distribution of SNPs of PRNT in 238 Korean native goats and compare PRNT DNA sequences between Korean native goats and several ruminant species. A total of five SNPs, including PRNT c.-114G > T, PRNT c.-58A > G in the upstream of PRNT gene, PRNT c.71C > T (p.Ala24Val) and PRNT c.102G > A in the open reading frame (ORF) and c.321C > T in the downstream of PRNT gene, were found in this study. All five SNPs of caprine PRNT gene in Korean native goat are in complete linkage disequilibrium (LD) with a D' value of 1.0. Interestingly, comparative sequence analysis of the PRNT gene revealed five mismatches between DNA sequences of Korean native goats and those of goats deposited in the GenBank. Korean native black goats also showed 5 mismatches in PRNT ORF with cattle. To the best of our knowledge, this is the first genetic research of the PRNT gene in goat.

  7. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  8. Effect of radiation on proteins and radiation effects in biochemistry and organic chemistry. Final report, October 15, 1957--October 14, 1974

    International Nuclear Information System (INIS)

    Tolbert, B.M.

    1974-01-01

    A summary is made of a fifteen year study of chemical effects of radiation of amino acids and proteins. Included is a list of publications: 54 papers, reports and abstracts, and 10 M.S. and Ph.D theses. The report concludes with details of the final two studies done under this contract. These are, first, a study of post-irradiation effects of various gases on gamma irradiated lysozyme. This study showed that H 2 S, O 2 , NO, and N 2 O treatment changed the amount of aggregation products, and also that a certain amount of the irradiated lysozyme was subject to main chain cleavage. The second was a study of proteins in rabbit eye lens cataracts induced by x-irradiation or a high galactose diet. The cataract proteins were more soluble in water than normal proteins, and were present in lower amounts in the eye lens

  9. Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function

    DEFF Research Database (Denmark)

    Roos, Laura; Bertelsen, Birgitte; Harris, Pernille

    2015-01-01

    individuals, hypotrichosis was found. KERA was screened for mutations using Sanger sequencing. We detected a novel KERA variant, p.(Ile225Thr), that segregates with the disease in the homozygous form. The three-dimensional structure of keratocan protein was modelled, and we showed that this missense variation...... of the keratocan gene (KERA) on chromosome 12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have been described. Case presentation: In this report, we present clinical data from a Turkish family with autosomal recessive cornea plana. In some of the affected...... are predicted to result in destabilization of the protein. Conclusion: We present the 10th pathogenic KERA mutation identified so far. Protein modelling is a useful tool in predicting the effect of missense mutations. This case underline the importance of the leucin rich repeat domain for the protein function...

  10. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S

    2005-08-15

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.

  11. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants.

    Science.gov (United States)

    Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P

    1998-11-01

    By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.

  12. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice.

    Science.gov (United States)

    Mori, Yu; Adams, Douglas; Hagiwara, Yusuke; Yoshida, Ryu; Kamimura, Masayuki; Itoi, Eiji; Rowe, David W

    2016-11-01

    Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3-green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.

  13. Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat.

    Science.gov (United States)

    Babbitt, Patricia C; Bagos, Pantelis G; Bairoch, Amos; Bateman, Alex; Chatonnet, Arnaud; Chen, Mark Jinan; Craik, David J; Finn, Robert D; Gloriam, David; Haft, Daniel H; Henrissat, Bernard; Holliday, Gemma L; Isberg, Vignir; Kaas, Quentin; Landsman, David; Lenfant, Nicolas; Manning, Gerard; Nagano, Nozomi; Srinivasan, Narayanaswamy; O'Donovan, Claire; Pruitt, Kim D; Sowdhamini, Ramanathan; Rawlings, Neil D; Saier, Milton H; Sharman, Joanna L; Spedding, Michael; Tsirigos, Konstantinos D; Vastermark, Ake; Vriend, Gerrit

    2015-01-01

    During 11-12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue.

  14. Molecular Imaging with Activatable Reporter Systems

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes, the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.

  15. CASE REPORT CASE CASE Protein-losing enteropathy ...

    African Journals Online (AJOL)

    The findings of renal and liver function tests were normal. On physical ... A lower radiation burden, faster background clearance and higher in vitro and in ... does not allow quantification of protein loss due to its short physical half-life. On the ...

  16. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  17. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  18. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    Science.gov (United States)

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  19. Monitoring the Induction of Heat Shock Factor 1/Heat Shock Protein 70 Expression following 17-Allylamino-Demethoxygeldanamycin Treatment by Positron Emission Tomography and Optical Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Mikhail Doubrovin

    2012-01-01

    Full Text Available The cell response to proteotoxic cell stresses is mediated primarily through activation of heat shock factor 1 (HSF1. This transcription factor plays a major role in the regulation of the heat shock proteins (HSPs, including HSP70. We demonstrate that an [124I]iodide-pQHNIG70 positron emission tomography (PET reporter system that includes an inducible HSP70 promoter can be used to image and monitor the activation of the HSF1/HSP70 transcription factor in response to drug treatment (17-allylamino-demethoxygeldanamycin [17-AAG]. We developed a dual imaging reporter (pQHNIG70 for noninvasive imaging of the heat shock response in cell culture and living animals previously and now study HSF1/HSP70 reporter activation in both cell culture and tumor-bearing animals following exposure to 17-AAG. 17-AAG (10–1,000 nM induced reporter expression; a 23-fold increase was observed by 60 hours. Good correspondence between reporter expression and HSP70 protein levels were observed. MicroPET imaging based on [124I]iodide accumulation in pQHNIG70-transduced RG2 xenografts showed a significant 6.2-fold reporter response to 17-AAG, with a corresponding increase in tumor HSP70 and in tumor human sodium iodide symporter and green fluorescent protein reporter proteins. The HSF1 reporter system can be used to screen anticancer drugs for induction of cytotoxic stress and HSF1 activation both in vitro and in vivo.

  20. Inferring high-confidence human protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Yu Xueping

    2012-05-01

    Full Text Available Abstract Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs, aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83% of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134% than either ranking based on the hypergeometric test (~109% or occurrence ranking (~46%. Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high

  1. Scoring functions for protein-protein interactions.

    Science.gov (United States)

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat

    DEFF Research Database (Denmark)

    Babbitt, Patricia C.; Bagos, Pantelis G.; Bairoch, Amos

    2015-01-01

    During 11–12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from...... protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication...

  3. Clinical presentation and endoscopic features of primary gastric Burkitt lymphoma in childhood, presenting as a protein-losing enteropathy: a case report

    Directory of Open Access Journals (Sweden)

    Chieng Jenny Hui Chia

    2009-06-01

    Full Text Available Abstract Introduction Burkitt lymphoma and B cell lymphomas in childhood may arise in many atypical locations, which on rare occasions can include gastric mucosa. A case of primary gastric Burkitt lymphoma is described in a child presenting as a protein-losing enteropathy, including the direct monitoring of the disease response by sequential endoscopic biopsy and molecular analysis. Case presentation We report a 9-year-old boy who presented with gross oedema, ascites and respiratory distress caused by a protein-losing enteropathy. Initial imaging investigations were non-diagnostic but gastroduodenal endoscopy revealed massive involvement of the gastric mucosa with a primary Burkitt lymphoma. His subsequent clinical progress and disease response were monitored directly by endoscopy and he remains in clinical remission 4 years after initial diagnosis. Conclusions This is the first case report of primary Burkitt lymphoma presenting as a protein-losing enteropathy. The clinical course and progress of the patient were monitored by sequential endoscopic biopsy, histology and molecular analysis by fluorescence in situ hybridisation.

  4. Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat

    NARCIS (Netherlands)

    Babbitt, P.C.; Bagos, P.G.; Bairoch, A.; Bateman, A.; Chatonnet, A.; Chen, M.J.; Craik, D.J.; Finn, R.D.; Gloriam, D.; Haft, D.H.; Henrissat, B.; Holliday, G.L.; Isberg, V.; Kaas, Q.; Landsman, D.; Lenfant, N.; Manning, G.; Nagano, N.; Srinivasan, N.; O'Donovan, C.; Pruitt, K.D.; Sowdhamini, R.; Rawlings, N.D.; Saier, M.H., Jr.; Sharman, J.L.; Spedding, M.; Tsirigos, K.D.; Vastermark, A.; Vriend, G.

    2015-01-01

    During 11-12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from

  5. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  6. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    Science.gov (United States)

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Fiscal 2000 research report on the technology for utilizing intracellular protein transport; 2000 nendo saibonai tanpakushitsu yuso kino riyo gijutsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research was conducted for the establishment of 'intracellular transport engineering' for collecting eucaryotic proteins having cytotoxicity and activated proteins having escaped decomposition into an appropriate intracellular organelle by artificially manipulating the intracellular transport system for proteins in eucaryotes. In this fiscal year, element technologies and tasks necessary for the transport and activation of intracellular proteins in eucaryotes are extracted, and research was conducted on relevant patents. In a survey of the latest trends of research and development, attention was directed mainly at cells or organelles, and the details of progress in the last one year were investigated and reported, which were related to the functions of single membrane organelles excluding for double membrane bound organelles, e.g., mitochondria and chloroplast, etc., that have unique DNA (deoxyribonucleic acid) and to the molecular mechanism of transport of protein to each organelle. Furthermore, relative to each organelle, deployment of protein transport function application technology was taken up. (NEDO)

  8. Ultratight crystal packing of a 10 kDa protein

    Energy Technology Data Exchange (ETDEWEB)

    Trillo-Muyo, Sergio [Molecular Biology Institute of Barcelona, Spanish Research Council CSIC, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona (Spain); Jasilionis, Andrius [Vilnius University, M. K. Čiurlionio 21/27, 03101 Vilnius (Lithuania); Domagalski, Marcin J. [University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0736 (United States); Chruszcz, Maksymilian [University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States); Minor, Wladek [University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0736 (United States); Kuisiene, Nomeda [Vilnius University, M. K. Čiurlionio 21/27, 03101 Vilnius (Lithuania); Arolas, Joan L.; Solà, Maria; Gomis-Rüth, F. Xavier, E-mail: xgrcri@ibmb.csic.es [Molecular Biology Institute of Barcelona, Spanish Research Council CSIC, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona (Spain)

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  9. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann

    2013-01-01

    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...... facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle...

  10. Turnover of whole body proteins and myofibrillar proteins in middle-aged active men

    International Nuclear Information System (INIS)

    Zackin, M.; Meredith, C.; Frontera, W.; Evans, W.

    1986-01-01

    Endurance-trained older men have a higher proportion of lean tissue and greater muscle cell oxidative capacity, reversing age-related trends and suggesting major changes in protein metabolism. In this study, protein turnover was determined in 6 middle-aged (52+/-1 yr) men who were well trained (VO 2 max 55.2+/-5.0 ml O 2 /kg.min) and lean (body fat 18.9+/-2.8%, muscle mass 36.6+/-0.6%). The maintained habitual exercise while consuming 0.6, 0.9 or 1.2 g protein/kg.day for 10-day periods. N flux was measured from 15 N in urea after oral 15 N-glycine administration. Myofibrillar protein breakdown was estimated from urinary 3-methyl-histidine. Dietary protein had no effect on turnover rates, even when N balance was negative. Whole body protein synthesis was 3.60+/-0.12 g/kg.day and breakdown was 3.40+/-0.14 g/kg.day for all N intakes. Whole body protein flux, synthesis and breakdown were similar to values reported for sedentary young (SY) or sedentary old (SO) men on comparable diets. 3-me-his (3.67+/-0.14 μmol/kg.day) was similar to values reported for SY but higher (p<0.01) than for SO. Myofibrillar protein breakdown per unit muscle mass (185+/-7 μmol 3-me-his/g creatinine) was higher (p<0.01) than for SY or SO. In active middle-aged men, myofibrillar proteins may account for a greater proportion of whole body protein turnover, despite an age-related reduction in muscle mass

  11. SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803

    OpenAIRE

    Kim, Woo-Yeon; Kang, Sungsoo; Kim, Byoung-Chul; Oh, Jeehyun; Cho, Seongwoong; Bhak, Jong; Choi, Jong-Soon

    2008-01-01

    Background Cyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date. Description We report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactio...

  12. A credit-card library approach for disrupting protein-protein interactions.

    Science.gov (United States)

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  13. Single Molecule Spectroscopy of Fluorescent Proteins

    NARCIS (Netherlands)

    Blum, Christian; Subramaniam, Vinod

    2009-01-01

    The discovery and use of fluorescent proteins has revolutionized cellular biology. Despite the widespread use of visible fluorescent proteins as reporters and sensors in cellular environments the versatile photophysics of fluorescent proteins is still subject to intense research. Understanding the

  14. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  15. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  16. Coexistence of protease sensitive and resistant prion protein in 129VV homozygous sporadic Creutzfeldt–Jakob disease: a case report

    Directory of Open Access Journals (Sweden)

    Rodríguez-Martínez Ana B

    2012-10-01

    Full Text Available Abstract Introduction The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation A 74-year-old Caucasian woman showed a sporadic Creutzfeldt–Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient’s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt–Jakob disease. This highlights the

  17. Cloud prediction of protein structure and function with PredictProtein for Debian.

    Science.gov (United States)

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  18. Blue Emission in Proteins

    OpenAIRE

    Sarkar, Sohini; Sengupta, Abhigyan; Hazra, Partha; Mandal, Pankaj

    2014-01-01

    Recent literatures reported blue-green emission from amyloid fibril as exclusive signature of fibril formation. This unusual visible luminescence is regularly used to monitor fibril growth. Blue-green emission has also been observed in crystalline protein and in solution. However, the origin of this emission is not known exactly. Our spectroscopic study of serum proteins reveals that the blue-green emission is a property of protein monomer. Evidences suggest that semiconductor-like band struc...

  19. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

    OpenAIRE

    Bajar, Bryce T.; Wang, Emily S.; Lam, Amy J.; Kim, Bongjae B.; Jacobs, Conor L.; Howe, Elizabeth S.; Davidson, Michael W.; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use F?rster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intra...

  20. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Science.gov (United States)

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  1. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  2. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Finnie, Christine

    2006-01-01

    Thioredoxin is ubiquitous and regulates various target proteins through disulfide bond reduction. We report the structure of thioredoxin (HvTrxh2 from barley) in a reaction intermediate complex with a protein substrate, barley alpha-amylase/subtilisin inhibitor (BASI). The crystal structure...... of this mixed disulfide shows a conserved hydrophobic motif in thioredoxin interacting with a sequence of residues from BASI through van der Waals contacts and backbone-backbone hydrogen bonds. The observed structural complementarity suggests that the recognition of features around protein disulfides plays...... a major role in the specificity and protein disulfide reductase activity of thioredoxin. This novel insight into the function of thioredoxin constitutes a basis for comprehensive understanding of its biological role. Moreover, comparison with structurally related proteins shows that thioredoxin shares...

  3. Seed protein improvement in cereals and grain legumes

    International Nuclear Information System (INIS)

    1979-01-01

    Plant breeders, molecular biologists, analytical chemists and nutritionists report on progress and achievements to date. High-lysine genotypes of maize, barley and sorghum have been produced. One high-protein variety of wheat is reported available for commercial use. Grain legumes already have high seed protein content but, compared to cereals, less of the total biological yield is available as seed, and intensive efforts are being made to produce genotypes with higher seed yield. Genetic variability is available from world germplasm collections and from induced-mutation programmes. In the basic sciences considerable advances are reported. Putative structural genes determining protein quality and quantity have been located on various chromosomes. In vitro synthesis of legume and cereal storage proteins and the isolation of some mRNA and the preparation and cloning of cDNA have been reported. Uptake and incorporation of N into amino acids, their synthesis into proteins, and interaction between protein and carbohydrate biosynthesis during seed development are discussed. Future prospects are considered including potential selection at the cellular rather than the whole plant level. In only a minority of the 64 papers is the use of nuclear techniques indicated specifically enough to justify individual entries in INIS

  4. Protein restriction and cancer.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Huang, Xingguo; Li, Tiejun; Yin, Yulong

    2018-03-26

    Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Protein misfolding specifies recruitment to cytoplasmic inclusion bodies.

    Science.gov (United States)

    Bersuker, Kirill; Brandeis, Michael; Kopito, Ron R

    2016-04-25

    Inclusion bodies (IBs) containing aggregated disease-associated proteins and polyubiquitin (poly-Ub) conjugates are universal histopathological features of neurodegenerative diseases. Ub has been proposed to target proteins to IBs for degradation via autophagy, but the mechanisms that govern recruitment of ubiquitylated proteins to IBs are not well understood. In this paper, we use conditionally destabilized reporters that undergo misfolding and ubiquitylation upon removal of a stabilizing ligand to examine the role of Ub conjugation in targeting proteins to IBs that are composed of an N-terminal fragment of mutant huntingtin, the causative protein of Huntington's disease. We show that reporters are excluded from IBs in the presence of the stabilizing ligand but are recruited to IBs after ligand washout. However, we find that Ub conjugation is not necessary to target reporters to IBs. We also report that forced Ub conjugation by the Ub fusion degradation pathway is not sufficient for recruitment to IBs. Finally, we find that reporters and Ub conjugates are stable at IBs. These data indicate that compromised folding states, rather than conjugation to Ub, can specify recruitment to IBs. © 2016 Bersuker et al.

  6. Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins.

    Science.gov (United States)

    Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel; Jarvik, Jonathan W

    2016-01-01

    We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay.

  7. A Novel Reporter Rat Strain That Conditionally Expresses the Bright Red Fluorescent Protein tdTomato.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Igarashi

    Full Text Available Despite the strength of the Cre/loxP recombination system in animal models, its application in rats trails that in mice because of the lack of relevant reporter strains. Here, we generated a floxed STOP tdTomato rat that conditionally expresses a red fluorescent protein variant (tdTomato in the presence of exogenous Cre recombinase. The tdTomato signal vividly visualizes neurons including their projection fibers and spines without any histological enhancement. In addition, a transgenic rat line (FLAME that ubiquitously expresses tdTomato was successfully established by injecting intracytoplasmic Cre mRNA into fertilized ova. Our rat reporter system will facilitate connectome studies as well as the visualization of the fine structures of genetically identified cells for long periods both in vivo and ex vivo. Furthermore, FLAME is an ideal model for organ transplantation research owing to improved traceability of cells/tissues.

  8. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Jouhten, Paula; Nielsen, Jens

    2010-01-01

    proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. RESULTS: Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient......) and for all the interactions between them (edges). The annotated information is readily available utilizing the functionalities of network modelling tools such as Cytoscape and CellDesigner. CONCLUSIONS: The reported fully annotated interaction model serves as a platform for integrated systems biology studies...

  9. A metagenome-derived thermostable β-glucanase with an unusual module architecture which defines the new glycoside hydrolase family GH148.

    Science.gov (United States)

    Angelov, Angel; Pham, Vu Thuy Trang; Übelacker, Maria; Brady, Silja; Leis, Benedikt; Pill, Nicole; Brolle, Judith; Mechelke, Matthias; Moerch, Matthias; Henrissat, Bernard; Liebl, Wolfgang

    2017-12-11

    The discovery of novel and robust enzymes for the breakdown of plant biomass bears tremendous potential for the development of sustainable production processes in the rapidly evolving new bioeconomy. By functional screening of a metagenomic library from a volcano soil sample a novel thermostable endo-β-glucanase (EngU) which is unusual with regard to its module architecture and cleavage specificity was identified. Various recombinant EngU variants were characterized. Assignment of EngU to an existing glycoside hydrolase (GH) family was not possible. Two regions of EngU showed weak sequence similarity to proteins of the GH clan GH-A, and acidic residues crucial for catalytic activity of EngU were identified by mutation. Unusual, a carbohydrate-binding module (CBM4) which displayed binding affinity for β-glucan, lichenin and carboxymethyl-cellulose was found as an insertion between these two regions. EngU hydrolyzed β-1,4 linkages in carboxymethyl-cellulose, but displayed its highest activity with mixed linkage (β-1,3-/β-1,4-) glucans such as barley β-glucan and lichenin, where in contrast to characterized lichenases cleavage occurred predominantly at the β-1,3 linkages of C4-substituted glucose residues. EngU and numerous related enzymes with previously unknown function represent a new GH family of biomass-degrading enzymes within the GH-A clan. The name assigned to the new GH family is GH148.

  10. Protein-losing Enteropathy Caused by Intestinal or Colonic Lymphangiectasia Complicated by Sporadic Lymphangioleiomyomatosis: A Report of Two Cases.

    Science.gov (United States)

    Nishino, Koichi; Yoshimi, Kaku; Shibuya, Tomoyoshi; Hayashi, Takuo; Mitani, Keiko; Kobayashi, Etsuko; Ichikawa, Masako; Asao, Tetsuhiko; Suzuki, Yohei; Sato, Tadashi; Shiota, Satomi; Kodama, Yuzo; Takahashi, Kazuhisa; Seyama, Kuniaki

    2017-01-01

    This report describes two patients with sporadic lymphangioleiomyomatosis complicated by protein-losing enteropathy (PLE). Imaging studies indicated retroperitoneal lymphangioleiomyomas and abnormalities of the adjacent digestive tract. Endoscopic mucosal biopsy revealed colonic lymphangiectasia in one patient; whereas the site in the other patient was intestinal. Treatment with sirolimus led to the complete resolution of PLE within several months; additionally, marked shrinkage was observed in the lymphangioleiomyomas of both cases. These findings suggest that colonic or intestinal lymphatic congestion due to neighboring lymphangioleiomyomas was the mechanism for the development of PLE. At the time of writing this report, the beneficial effect of sirolimus has lasted for more than 3 years.

  11. DNA mimic proteins: functions, structures, and bioinformatic analysis.

    Science.gov (United States)

    Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-05-13

    DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.

  12. Engineering and Characterization of a Superfolder Green Fluorescent Protein

    International Nuclear Information System (INIS)

    Pedelacq, J.; Cabantous, S.; Tran, T.; Terwilliger, T.; Waldo, G.

    2006-01-01

    Existing variants of green fluorescent protein (GFP) often misfold when expressed as fusions with other proteins. We have generated a robustly folded version of GFP, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides. Compared to 'folding reporter' GFP, a folding-enhanced GFP containing the 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, superfolder GFP shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics. The fluorescence of Escherichia coli cells expressing each of eighteen proteins from Pyrobaculum aerophilum as fusions with superfolder GFP was proportional to total protein expression. In contrast, fluorescence of folding reporter GFP fusion proteins was strongly correlated with the productive folding yield of the passenger protein. X-ray crystallographic structural analyses helped explain the enhanced folding of superfolder GFP relative to folding reporter GFP

  13. Monitoring and control of protein production in fungi

    DEFF Research Database (Denmark)

    Schalén, Martin

    : • How is protein production affected on a single cell level due to environmental stress factors? • How can we improve heterologous protein production in filamentous fungi, and how does production in Aspergillus nidulans compare to protein production in the industrially exploited Aspergillus niger...... stress elements on the production of heterologous proteins in S. cerevisiae is investigated. A fluorescent reporter strain, producing an intracellular protein linked to tagRFP from the glycolytic PGK1 promoter is constructed. This strain is used to monitor the level of production in each cell when...... exposed to environmental stress. The cells are grown in shake flasks as well as bioreactors and protein levels are analyzed by flow cytometry. It is demonstrated that the fluorescent reporter can be used to study the effects on stress elements on a population basis. Production of the protein was affected...

  14. Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations.

    Directory of Open Access Journals (Sweden)

    Lydia Chang

    Full Text Available Ubiquilin proteins facilitate delivery of ubiquitinated proteins to the proteasome for degradation. Interest in the proteins has been heightened by the discovery that gene mutations in UBQLN2 cause dominant inheritance of amyotrophic lateral sclerosis (ALS. However, the mechanisms by which the mutations cause ALS are not known. Here we report on the underlying defect of ubiquilin-2 proteins containing ALS-linked mutations in affecting proteasome-mediated degradation. We found that overexpression of ubiquilin-2 proteins containing any one of five different ALS mutations slow degradation of Myc, a prototypic proteasome substrate. Examination of coprecipitating proteins indicated that the mutant proteins are generally capable of binding polyubiquitinated proteins, but defective in binding the proteasome. GST-pulldown studies revealed that many of the mutants bind weaker to the S5a subunit of the proteasome, compared with wild type (WT ubiquilin-2 protein. The results suggest the mutant proteins are unable to deliver their captured cargo to the proteasome for degradation, which presumably leads to toxicity. Quantification of cell death is consistent with this idea. Measurement of protein turnover further indicated the mutant proteins have longer half-lives than WT ubiquilin-2. Our studies provide novel insight into the mechanism by which ALS-linked mutations in UBQLN2 interfere with protein degradation.

  15. Extractable protein of radiation vulcanized natural rubber latex

    International Nuclear Information System (INIS)

    Soebianto, Y.S.; Ratnayake, U.M.; Makuuchi, Keizo; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Protein remained in the latex products are reported to cause serious allergy. A new method to reduce the protein level in the latex products by irradiation is reported. Water soluble protein (WSP) solution (10%) was added into radiation vulcanized NR latex (RVNRL) in three different processes. The amount of WSP was 3 phr. It was only added to RVNRL (standard), added to re-centrifuged RVNRL (pre-centrifugation), and added to RVNRL followed by centrifugation (post-centrifugation). The protein content was determined by enhanced BCA method, and identified by SDS-PAGE. Extractable protein (EP) from the rubber has been reduced up to the minimum protein detection by combining WSP addition and centrifugation. Short leaching time (20-30 min.) can be achieved after the combine treatment, and SDS-PAGE confirms the reduction of soluble protein in the serum phase, and disappearance of protein bands in the rubber extract. Protein-WSP interaction produces water soluble complex, and removed by centrifugation. The efficiency of protein removal by WSP depends on its molecular weight of WSP which relates to its water solubility. (author)

  16. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration.

    Science.gov (United States)

    Beghein, Els; Gettemans, Jan

    2017-01-01

    Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein-protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.

  17. ProDis-ContSHC: learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval.

    Science.gov (United States)

    Wang, Jingyan; Gao, Xin; Wang, Quanquan; Li, Yongping

    2012-05-08

    Context Coherently in an iterative algorithm--ProDis-ContSHC.We test the performance of ProDis-ContSHC on two benchmark sets, i.e., the ASTRAL 1.73 database and the FSSP/DALI database. Experimental results demonstrate that plugging our supervised contextual dissimilarity measures into the retrieval systems significantly outperforms the context-free dissimilarity/similarity measures and other unsupervised contextual dissimilarity measures that do not use the class label information. Using the contextual proteins with their class labels in the database, we can improve the accuracy of the pairwise dissimilarity/similarity measures dramatically for the protein retrieval tasks. In this work, for the first time, we propose the idea of supervised contextual dissimilarity learning, resulting in the ProDis-ContSHC algorithm. Among different contextual dissimilarity learning approaches that can be used to compare a pair of proteins, ProDis-ContSHC provides the highest accuracy. Finally, ProDis-ContSHC compares favorably with other methods reported in the recent literature.

  18. Role of zein proteins in structure and assembly of protein bodies and endosperm texture. Progress report and appendix 1 - preliminary data

    Energy Technology Data Exchange (ETDEWEB)

    Larkins, B.

    1997-05-01

    Although funding for this project was initiated less than two years ago, we have made significant progress with our research objectives. We have cloned the gene responsible for the fl2 mutation. In fl2, the mutant phenotype appears to result from a defective signal peptide in an alpha-zein protein. As a consequence, the signal peptide remains attached when the protein accumulates in the protein body. A mutation like fl2 could explain other semidominant and dominant opaque mutants on the basis of abnormal zein polypeptides. A manuscript describing the research that led to the cloning of fl2 is in press, and a second manuscript on the characterization of this gene has been prepared for publication. We found that increased amounts of the 27-kD gamma-zein protein enlarge the proportion of vitreous endosperm and increases the hardness of o2 mutants. This protein also enhances these properties in wild type seeds. The mechanism by which the gamma-zein protein brings about these changes is unclear, and is under investigation. We have found and characterized several mutants that reduce gamma-zein synthesis. The mutations do not significantly affect synthesis of any other type of zein protein. They appear to create an opaque phenotype by reducing the number rather than the size of protein bodies. Interestingly, the mutant seeds fail to germinate. A manuscript describing one of these mutants, o15, has been prepared for publication. We have created a number of transgenic tobacco plants that can produce alpha-, beta-, gamma(27-kD)-, or delta-zeins, as well as combinations of these proteins. Analysis of seeds from these plants and crosses of these plants has shown that tobacco endosperm can serve as a heterologous system to study zein interactions. We have obtained evidence that interactions between alpha- and gamma-zein proteins are required for stable accumulation of alpha-zeins in the endosperm. These and other preliminary results are illustrated in Appendix 1.

  19. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters!

    Science.gov (United States)

    Chaudhury, Arun

    2015-01-01

    Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of "sphincter proteome." Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled "idiopathic" and facilitating practice of precision medicine.

  20. Improved segmental isotope labeling of proteins and application to a larger protein

    International Nuclear Information System (INIS)

    Otomo, Takanori; Teruya, Kenta; Uegaki, Koichi; Yamazaki, Toshio; Kyogoku, Yoshimasa

    1999-01-01

    A new isotope labeling technique for peptide segments in a protein sample was recently established using the protein splicing element intein [Yamazaki et al. (1998) J. Am. Chem. Soc., 120, 5591-5592]. This method makes it possible to observe signals of a selected amino (N-) or carboxyl (C-) terminal region along a peptide chain. However, there is a problem with the yield of the segmentally labeled protein. In this paper, we report an increase in the yield of the protein that enables the production of sufficient amounts of segmentally 13 C/ 15 N-labeled protein samples. This was achieved by improvement of the expression level of the N-terminal fragment in cells and the efficiency of refolding into the active splicing conformation. The N-terminal fragment was expressed as a fused protein with the cellulose binding domain at its N-terminus, which was expressed as an insoluble peptide in cells and the expression level was increased. Incubation with 2.5 M urea and 50% glycerol increased the efficiency of the refolding greatly, thereby raising the final yields of the ligated proteins. The feasibility of application of the method to a high-molecular-weight protein was demonstrated by the results for a maltose binding protein consisting of 370 amino acids. All four examined joints in the maltose binding protein were successfully ligated to produce segmentally labeled protein samples

  1. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo ...

  2. Roles of Apicomplexan protein kinases at each life cycle stage.

    Science.gov (United States)

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    Science.gov (United States)

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  4. Automated Quantitative Assessment of Proteins' Biological Function in Protein Knowledge Bases

    Directory of Open Access Journals (Sweden)

    Gabriele Mayr

    2008-01-01

    Full Text Available Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  5. Mutations in plasmalemma vesicle-associated protein cause severe syndromic protein-losing enteropathy.

    Science.gov (United States)

    Broekaert, Ilse Julia; Becker, Kerstin; Gottschalk, Ingo; Körber, Friederike; Dötsch, Jörg; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Hünseler, Christoph; Cirak, Sebahattin

    2018-04-16

    Protein-losing enteropathy (PLE) is characterised by gastrointestinal protein leakage due to loss of mucosal integrity or lymphatic abnormalities. PLE can manifest as congenital diarrhoea and should be differentiated from other congenital diarrhoeal disorders. Primary PLEs are genetically heterogeneous and the underlying genetic defects are currently emerging. We report an infant with fatal PLE for whom we aimed to uncover the underlying pathogenic mutation. We performed whole exome sequencing (WES) for the index patient. Variants were classified based on the American College of Medical Genetics and Genomics guidelines. WES results and our detailed clinical description of the patient were compared with the literature. We discovered a novel homozygous stop mutation (c.988C>T, p.Q330*) in the Plasmalemma Vesicle-Associated Protein ( PLVAP ) gene in a newborn with fatal PLE, facial dysmorphism, and renal, ocular and cardiac anomalies. The Q330* mutation is predicted to result in complete loss of PLVAP protein expression leading to deletion of the diaphragms of endothelial fenestrae, resulting in plasma protein extravasation and PLE. Recently, another single homozygous stop mutation in PLVAP causing lethal PLE in an infant was reported. Our findings validate PLVAP mutations as a cause of syndromic PLE. Prenatal anomalies, severe PLE and syndromic features may guide the diagnosis of this rare disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Passive acquisition of leukocyte proteins is associated with changes in phosphorylation of cellular proteins and cell-cell adhesion properties.

    OpenAIRE

    Tabibzadeh, S. S.; Kong, Q. F.; Kapur, S.

    1994-01-01

    In this report, we show that interaction of neoplastic epithelial cells with vesicles derived from leukocytes results in passive acquisition by tumor cells of a diverse group of leukocyte proteins. Vesicles shed from leukocytes were heterogeneous and exhibited the specific proteins expressed on leukocyte subsets. Accordingly, epithelial cells differentially acquired leukocyte proteins associated with vesicles. Ultrastructural localization demonstrated that acquired proteins were associated wi...

  7. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  8. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  9. ProDis-ContSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-05-08

    the Protein Hierarchial Context Coherently in an iterative algorithm--ProDis-ContSHC.We test the performance of ProDis-ContSHC on two benchmark sets, i.e., the ASTRAL 1.73 database and the FSSP/DALI database. Experimental results demonstrate that plugging our supervised contextual dissimilarity measures into the retrieval systems significantly outperforms the context-free dissimilarity/similarity measures and other unsupervised contextual dissimilarity measures that do not use the class label information.Conclusions: Using the contextual proteins with their class labels in the database, we can improve the accuracy of the pairwise dissimilarity/similarity measures dramatically for the protein retrieval tasks. In this work, for the first time, we propose the idea of supervised contextual dissimilarity learning, resulting in the ProDis-ContSHC algorithm. Among different contextual dissimilarity learning approaches that can be used to compare a pair of proteins, ProDis-ContSHC provides the highest accuracy. Finally, ProDis-ContSHC compares favorably with other methods reported in the recent literature. 2012 Wang et al.; licensee BioMed Central Ltd.

  10. Scaffolding Proteins: Not Such Innocent Bystanders

    OpenAIRE

    Smith, F. Donelson; Scott, John D.

    2013-01-01

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay.

  11. In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag

    DEFF Research Database (Denmark)

    Visone, Valeria; Han, Wenyuan; Perugino, Giuseppe

    2017-01-01

    Protein imaging, allowing a wide variety of biological studies both in vitro and in vivo, is of great importance in modern biology. Protein and peptide tags fused to proteins of interest provide the opportunity to elucidate protein location and functions, detect protein-protein interactions, and ......, and allowed visualization of the enzyme in living cells. To the best of our knowledge, this is the first report of in vivo imaging of any protein of a thermophilic archaeon, filling an important gap in available tools for cell biology studies in these organisms....... to production of a functional H5 protein, which was successfully labeled with appropriate fluorescent molecules and visualized in cell extracts as well as in Δogt live cells. H5 was fused to reverse gyrase, a peculiar thermophile-specific DNA topoisomerase endowed with positive supercoiling activity...

  12. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    International Nuclear Information System (INIS)

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-01-01

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication

  13. Lupine protein enrichment by milling and electrostatic separation

    NARCIS (Netherlands)

    Wang, Jue; Zhao, Jun; Wit, De Martin; Boom, Remko M.; Schutyser, Maarten A.I.

    2016-01-01

    Lupine seeds are excellent source of plant protein. We here report on dry fractionation by combining milling and electrostatic separation providing an alternative to wet extraction of protein from lupine seeds. Relatively coarse milling was preferred as this provides sufficient detached protein

  14. Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria M; Della Ventura, Bartolomeo; Vinciguerra, Roberto; Chino, Marco; Gesuele, Felice; Lombardi, Angelina; Velotta, Raffaele; Altucci, Carlo; Birolo, Leila; Piccoli, Renata; Arciello, Angela

    2016-02-01

    A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.

  15. Molecular imaging of drug-modulated protein-protein interactions in living subjects.

    Science.gov (United States)

    Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S

    2004-03-15

    Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.

  16. VP22 herpes simplex virus protein can transduce proteins into stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gabanyi, I.; Lojudice, F.H.; Kossugue, P.M. [Centro de Terapia Celular e Molecular, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Rebelato, E. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Demasi, M.A.; Sogayar, M.C. [Centro de Terapia Celular e Molecular, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-02-01

    The type I herpes simplex virus VP22 tegument protein is abundant and well known for its ability to translocate proteins from one cell to the other. In spite of some reports questioning its ability to translocate proteins by attributing the results observed to fixation artifacts or simple attachment to the cell membrane, VP22 has been used to deliver several proteins into different cell types, triggering the expected cell response. However, the question of the ability of VP22 to enter stem cells has not been addressed. We investigated whether VP22 could be used as a tool to be applied in stem cell research and differentiation due to its capacity to internalize other proteins without altering the cell genome. We generated a VP22.eGFP construct to evaluate whether VP22 could be internalized and carry another protein with it into two different types of stem cells, namely adult human dental pulp stem cells and mouse embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated that, in fact, it enters stem cells. Therefore, this system may be used as a tool to deliver various proteins into stem cells, allowing stem cell research, differentiation and the generation of induced pluripotent stem cells in the absence of genome alterations.

  17. VP22 herpes simplex virus protein can transduce proteins into stem cells

    International Nuclear Information System (INIS)

    Gabanyi, I.; Lojudice, F.H.; Kossugue, P.M.; Rebelato, E.; Demasi, M.A.; Sogayar, M.C.

    2013-01-01

    The type I herpes simplex virus VP22 tegument protein is abundant and well known for its ability to translocate proteins from one cell to the other. In spite of some reports questioning its ability to translocate proteins by attributing the results observed to fixation artifacts or simple attachment to the cell membrane, VP22 has been used to deliver several proteins into different cell types, triggering the expected cell response. However, the question of the ability of VP22 to enter stem cells has not been addressed. We investigated whether VP22 could be used as a tool to be applied in stem cell research and differentiation due to its capacity to internalize other proteins without altering the cell genome. We generated a VP22.eGFP construct to evaluate whether VP22 could be internalized and carry another protein with it into two different types of stem cells, namely adult human dental pulp stem cells and mouse embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated that, in fact, it enters stem cells. Therefore, this system may be used as a tool to deliver various proteins into stem cells, allowing stem cell research, differentiation and the generation of induced pluripotent stem cells in the absence of genome alterations

  18. RFP tags for labeling secretory pathway proteins

    Energy Technology Data Exchange (ETDEWEB)

    Han, Liyang; Zhao, Yanhua [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Xi; Peng, Jianxin [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Xu, Pingyong, E-mail: pyxu@ibp.ac.cn [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Huan, Shuangyan, E-mail: shuangyanhuan@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Mingshu, E-mail: mingshu1984@gmail.com [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to an environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.

  19. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  20. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study.

    Science.gov (United States)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil; Rasmussen, Søren G F; Kruse, Andrew C; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J; Gether, Ulrik; Banerjee, Surajit; Byrne, Bernadette; Lee, John K; Gellman, Samuel H

    2013-03-21

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al. (Science, 2012, 337, 473).

  1. Salvage of Failed Protein Targets by Reductive Alkylation

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  2. Salvage of failed protein targets by reductive alkylation.

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  3. Dietary protein restriction for renal patients: don't forget protein-free foods.

    Science.gov (United States)

    D'Alessandro, Claudia; Rossi, Andrea; Innocenti, Maurizio; Ricchiuti, Guido; Bozzoli, Laura; Sbragia, Giulietta; Meola, Mario; Cupisti, Adamasco

    2013-09-01

    The treatment of chronic kidney disease (CKD) consists of pharmacological, nutritional, and psychological-social approaches. The dietary therapy of CKD, namely a low-protein low-phosphorus diet, plays a crucial role in contributing to delay the onset of end-stage renal disease (ESRD) and to protect cardiovascular and nutritional status. The protein-free food products represent a very important tool for the implementation of a low-protein diet to ensure adequate energy supply, reducing the production of nitrogenous waste products. This survey included 100 consecutive CKD patients who were asked their opinion about the use of protein-free foods. Ninety-eight patients (98%) reported a regular daily intake of protein-free pasta (as macaroni, spaghetti, etc.), which was the preferred product consumed. Actually, the taste and texture of protein-free pasta were considered as "good" or "very good" by 70% of patients. Conversely, 43% of CKD patients perceived the taste and texture of protein-free bread as "bad" or "very bad", and 30% found it "acceptable". Therefore, the main concern for the implementation of low-protein diets is the use and palatability of the protein-free products, bread in particular. The use of these products may help in reducing protein, phosphorus, and sodium intake while supplying an adequate energy intake, which represents the basis for a nutritionally safe and successful dietary treatment of advanced CKD patients. Manufacturers and food technology should make more efforts to finding new solutions to improve the taste and texture of protein-free products. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... CD44, an adhesion molecule, has been reported to be a binding site for ... receptors in mediating mitogen-activated protein kinase activation. ... surface expression and tumour necrosis factor-alpha levels, ... Abbreviations used: Abs, antibodies; ANOVA, analysis of variance; AP-1, activator protein -1; BCG, ...

  5. Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction

    Directory of Open Access Journals (Sweden)

    Sers Christine T

    2010-12-01

    Full Text Available Abstract Background While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species. Results We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (MLH1, PMS2, EPHB4 and could confirm more than 73% of them based on evidence in the literature. Conclusions The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.

  6. BMI was found to be a consistent determinant related to misreporting of energy, protein and potassium intake using self-report and duplicate portion methods.

    Science.gov (United States)

    Trijsburg, Laura; Geelen, Anouk; Hollman, Peter Ch; Hulshof, Paul Jm; Feskens, Edith Jm; Van't Veer, Pieter; Boshuizen, Hendriek C; de Vries, Jeanne Hm

    2017-03-01

    As misreporting, mostly under-reporting, of dietary intake is a generally known problem in nutritional research, we aimed to analyse the association between selected determinants and the extent of misreporting by the duplicate portion method (DP), 24 h recall (24hR) and FFQ by linear regression analysis using the biomarker values as unbiased estimates. For each individual, two DP, two 24hR, two FFQ and two 24 h urinary biomarkers were collected within 1·5 years. Also, for sixty-nine individuals one or two doubly labelled water measurements were obtained. The associations of basic determinants (BMI, gender, age and level of education) with misreporting of energy, protein and K intake of the DP, 24hR and FFQ were evaluated using linear regression analysis. Additionally, associations between other determinants, such as physical activity and smoking habits, and misreporting were investigated. The Netherlands. One hundred and ninety-seven individuals aged 20-70 years. Higher BMI was associated with under-reporting of dietary intake assessed by the different dietary assessment methods for energy, protein and K, except for K by DP. Men tended to under-report protein by the DP, FFQ and 24hR, and persons of older age under-reported K but only by the 24hR and FFQ. When adjusted for the basic determinants, the other determinants did not show a consistent association with misreporting of energy or nutrients and by the different dietary assessment methods. As BMI was the only consistent determinant of misreporting, we conclude that BMI should always be taken into account when assessing and correcting dietary intake.

  7. Improved catalyzed reporter deposition, iCARD.

    Science.gov (United States)

    Lohse, Jesper; Petersen, Kenneth Heesche; Woller, Nina Claire; Pedersen, Hans Christian; Skladtchikova, Galina; Jørgensen, Rikke Malene

    2014-06-18

    Novel reporters have been synthesized with extended hydrophilic linkers that in combination with polymerizing cross-linkers result in very efficient reporter deposition. By utilizing antibodies to stain HER2 proteins in a cell line model it is demonstrated that the method is highly specific and sensitive with virtually no background. The detection of HER2 proteins in tissue was used to visualize individual antigens as small dots visible in a microscope. Image analysis-assisted counting of fluorescent or colored dots allowed assessment of relative protein levels in tissue. Taken together, we have developed novel reporters that improve the CARD method allowing highly sensitive in situ detection of proteins in tissue. Our findings suggest that in situ protein quantification in biological samples can be performed by object recognition and enumeration of dots, rather than intensity-based fluorescent or colorimetric assays.

  8. Scaffolding proteins: not such innocent bystanders.

    Science.gov (United States)

    Smith, F Donelson; Scott, John D

    2013-06-17

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Directory of Open Access Journals (Sweden)

    Juan A. González-Vera

    2015-11-01

    Full Text Available Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.

  10. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.

    Science.gov (United States)

    Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun

    2016-02-16

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

  11. Caged Protein Prenyltransferase Substrates: Tools for Understanding Protein Prenylation

    Energy Technology Data Exchange (ETDEWEB)

    DeGraw, Amanda J.; Hast, Michael A.; Xu, Juhua; Mullen, Daniel; Beese, Lorena S.; Barany, George; Distefano, Mark D. (Duke); (UMM)

    2010-11-15

    Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds. Caged enzyme substrates are useful tools for understanding enzyme mechanism and biological function. Reported here is the synthesis and characterization of caged substrates of PFTase. The caged isoprenoid diphosphates are poor substrates prior to photolysis. The caged CAAX peptide is a true catalytically caged substrate of PFTase in that it is to not a substrate, yet is able to bind to the enzyme as established by inhibition studies and X-ray crystallography. Irradiation of the caged molecules with 350 nm light readily releases their cognate substrate and their photolysis products are benign. These properties highlight the utility of those analogs towards a variety of in vitro and in vivo applications.

  12. Protein oxidation in muscle foods: A review

    DEFF Research Database (Denmark)

    Lund, Marianne; Heinonen, Marina; Baron, Caroline P.

    2011-01-01

    insight into the reactions involved in the oxidative modifications undergone by muscle proteins. Moreover, a variety of products derived from oxidized muscle proteins, including cross-links and carbonyls, have been identified. The impact of oxidation on protein functionality and on specific meat quality...... and consequences of Pox in muscle foods. The efficiency of different anti-oxidant strategies against the oxidation of muscle proteins is also reported.......Protein oxidation in living tissues is known to play an essential role in the pathogenesis of relevant degenerative diseases, whereas the occurrence and impact of protein oxidation (Pox) in food systems have been ignored for decades. Currently, the increasing interest among food scientists...

  13. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells.

    Science.gov (United States)

    Wawra, Stephan; Djamei, Armin; Albert, Isabell; Nürnberger, Thorsten; Kahmann, Regine; van West, Pieter

    2013-05-01

    Plant-pathogenic oomycetes have a large set of secreted effectors that can be translocated into their host cells during infection. One group of these effectors are the RxLR effectors for which it has been shown, in a few cases, that the RxLR motif is important for their translocation. It has been suggested that the RxLR-leader sequences alone are enough to translocate the respective effectors into eukaryotic cells through binding to surface-exposed phosphoinositol-3-phosphate. These conclusions were primary based on translocation experiments conducted with recombinant fusion proteins whereby the RxLR leader of RxLR effectors (i.e., Avr1b from Phytophthora sojae) were fused to the green fluorescent protein reporter-protein. However, we failed to observe specific cellular uptake for a comparable fusion protein where the RxLR leader of the P. infestans AVR3a was fused to monomeric red fluorescent protein. Therefore, we reexamined the ability of the reported P. sojae AVR1b RxLR leader to enter eukaryotic cells. Different relevant experiments were performed in three independent laboratories, using fluorescent reporter fusion constructs of AVR3a and Avr1b proteins in a side-by-side comparative study on plant tissue and human and animal cells. We report that we were unable to obtain conclusive evidence for specific RxLR-mediated translocation.

  14. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  15. PDBTM: Protein Data Bank of transmembrane proteins after 8 years.

    Science.gov (United States)

    Kozma, Dániel; Simon, István; Tusnády, Gábor E

    2013-01-01

    The PDBTM database (available at http://pdbtm.enzim.hu), the first comprehensive and up-to-date transmembrane protein selection of the Protein Data Bank, was launched in 2004. The database was created and has been continuously updated by the TMDET algorithm that is able to distinguish between transmembrane and non-transmembrane proteins using their 3D atomic coordinates only. The TMDET algorithm can locate the spatial positions of transmembrane proteins in lipid bilayer as well. During the last 8 years not only the size of the PDBTM database has been steadily growing from ∼400 to 1700 entries but also new structural elements have been identified, in addition to the well-known α-helical bundle and β-barrel structures. Numerous 'exotic' transmembrane protein structures have been solved since the first release, which has made it necessary to define these new structural elements, such as membrane loops or interfacial helices in the database. This article reports the new features of the PDBTM database that have been added since its first release, and our current efforts to keep the database up-to-date and easy to use so that it may continue to serve as a fundamental resource for the scientific community.

  16. Collagen targeting using multivalent protein-functionalized dendrimers

    NARCIS (Netherlands)

    Breurken, M.; Lempens, E.H.M.; Temming, R.P.; Helms, B.A.; Meijer, E.W.; Merkx, M.

    2011-01-01

    Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic

  17. Water-Protein Hydrogen Exchange in the Micro-Crystalline Protein Crh as Observed by Solid State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Boeckmann, Anja; Juy, Michel; Bettler, Emmanuel; Emsley, Lyndon; Galinier, Anne; Penin, Francois; Lesage, Anne

    2005-01-01

    We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T 2 ' -selective 1 H- 13 C- 13 C correlation spectra for site-specific assignments of carbons nearby labile protein protons. We compare the proton T 2 ' selective scheme to frequency selective water observation in deuterated proteins, and discuss the impacts of deuteration on 13 C linewidths in Crh. We observe that in micro-crystalline proteins, solvent accessible hydroxyl and amino protons show comparable exchange rates with water protons as for proteins in solution, and that structural constraints, such as hydrogen bonding or solvent accessibility, more significantly reduce exchange rates

  18. Rationalizing the chemical space of protein-protein interaction inhibitors.

    Science.gov (United States)

    Sperandio, Olivier; Reynès, Christelle H; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-03-01

    Protein-protein interactions (PPIs) are one of the next major classes of therapeutic targets, although they are too intricate to tackle with standard approaches. This is due, in part, to the inadequacy of today's chemical libraries. However, the emergence of a growing number of experimentally validated inhibitors of PPIs (i-PPIs) allows drug designers to use chemoinformatics and machine learning technologies to unravel the nature of the chemical space covered by the reported compounds. Key characteristics of i-PPIs can then be revealed and highlight the importance of specific shapes and/or aromatic bonds, enabling the design of i-PPI-enriched focused libraries and, therefore, of cost-effective screening strategies. 2009 Elsevier Ltd. All rights reserved.

  19. Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

    Science.gov (United States)

    Song, Xiao; Lu, Lu-Yi; Passioura, Toby; Suga, Hiroaki

    2017-06-21

    Ebola virus infection leads to severe hemorrhagic fever in human and non-human primates with an average case fatality rate of 50%. To date, numerous potential therapies are in development, but FDA-approved drugs or vaccines are yet unavailable. Ebola viral protein 24 (VP24) is a multifunctional protein that plays critical roles in the pathogenesis of Ebola virus infection, e.g. innate immune suppression by blocking the interaction between KPNA and PY-STAT1. Here we report macrocyclic peptide inhibitors of the VP24-KPNA5 protein-protein interaction (PPI) by means of the RaPID (Random non-standard Peptides Integrated Discovery) system. These macrocyclic peptides showed remarkably high affinity to recombinant Zaire Ebola virus VP24 (eVP24), with a dissociation constant in the single digit nanomolar range, and could also successfully disrupt the eVP24-KPNA interaction. This work provides for the first time a chemical probe capable of modulating this PPI interaction and is the starting point for the development of unique anti-viral drugs against the Ebola virus.

  20. Heterochiral Knottin Protein: Folding and Solution Structure.

    Science.gov (United States)

    Mong, Surin K; Cochran, Frank V; Yu, Hongtao; Graziano, Zachary; Lin, Yu-Shan; Cochran, Jennifer R; Pentelute, Bradley L

    2017-10-31

    Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.

  1. Protein intake and ovulatory infertility.

    Science.gov (United States)

    Chavarro, Jorge E; Rich-Edwards, Janet W; Rosner, Bernard A; Willett, Walter C

    2008-02-01

    The objective of the study was to evaluate whether intake of protein from animal and vegetable origin is associated with ovulatory infertility. A total of 18,555 married women without a history of infertility were followed up as they attempted a pregnancy or became pregnant during an 8 year period. Dietary assessments were related to the incidence of ovulatory infertility. During follow-up, 438 women reported ovulatory infertility. The multivariate-adjusted relative risk (RR) (95% confidence interval [CI]; P for trend) of ovulatory infertility comparing the highest to the lowest quintile of animal protein intake was 1.39 (1.01 to 1.90; 0.03). The corresponding RR (95% CI; P for trend) for vegetable protein intake was 0.78 (0.54 to 1.12; 0.07). Furthermore, consuming 5% of total energy intake as vegetable protein rather than as animal protein was associated with a more than 50% lower risk of ovulatory infertility (P =.007). Replacing animal sources of protein with vegetable sources of protein may reduce ovulatory infertility risk.

  2. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  3. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module

    DEFF Research Database (Denmark)

    Rosenthal, J A; Chen, H; Slepnev, V I

    1999-01-01

    Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries. E...... fluorescent protein-epsin 2 mislocalizes components of the clathrin coat and inhibits clathrin-mediated endocytosis. The epsins define a new protein family implicated in membrane dynamics at the cell surface.......Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries...

  4. A maize spermine synthase 1 PEST sequence fused to the GUS reporter protein facilitates proteolytic degradation.

    Science.gov (United States)

    Maruri-López, Israel; Rodríguez-Kessler, Margarita; Rodríguez-Hernández, Aída Araceli; Becerra-Flora, Alicia; Olivares-Grajales, Juan Elías; Jiménez-Bremont, Juan Francisco

    2014-05-01

    Polyamines are low molecular weight aliphatic compounds involved in various biochemical, cellular and physiological processes in all organisms. In plants, genes involved in polyamine biosynthesis and catabolism are regulated at transcriptional, translational, and posttranslational level. In this research, we focused on the characterization of a PEST sequence (rich in proline, glutamic acid, serine, and threonine) of the maize spermine synthase 1 (ZmSPMS1). To this aim, 123 bp encoding 40 amino acids of the C-terminal region of the ZmSPMS1 enzyme containing the PEST sequence were fused to the GUS reporter gene. This fusion was evaluated in Arabidopsis thaliana transgenic lines and onion monolayers transient expression system. The ZmSPMS1 PEST sequence leads to specific degradation of the GUS reporter protein. It is suggested that the 26S proteasome may be involved in GUS::PEST fusion degradation in both onion and Arabidopsis. The PEST sequences appear to be present in plant spermine synthases, mainly in monocots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2010-08-01

    Full Text Available In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV, is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20 and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20 were blocked in encapsidation (no virus after blind passages but could be rescued if the capsid and 2C(ATPase coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i genome replication is known to be stringently linked to translation, (ii morphogenesis is known to be stringently linked to genome replication, (iii newly synthesized 2C(ATPase is an essential component of the replication complex, and (iv 2C(ATPase has specific affinity to capsid protein(s. These conditions lead to morphogenesis at the site where newly

  6. Toxicological relationships between proteins obtained from protein target predictions of large toxicity databases

    International Nuclear Information System (INIS)

    Nigsch, Florian; Mitchell, John B.O.

    2008-01-01

    The combination of models for protein target prediction with large databases containing toxicological information for individual molecules allows the derivation of 'toxiclogical' profiles, i.e., to what extent are molecules of known toxicity predicted to interact with a set of protein targets. To predict protein targets of drug-like and toxic molecules, we built a computational multiclass model using the Winnow algorithm based on a dataset of protein targets derived from the MDL Drug Data Report. A 15-fold Monte Carlo cross-validation using 50% of each class for training, and the remaining 50% for testing, provided an assessment of the accuracy of that model. We retained the 3 top-ranking predictions and found that in 82% of all cases the correct target was predicted within these three predictions. The first prediction was the correct one in almost 70% of cases. A model built on the whole protein target dataset was then used to predict the protein targets for 150 000 molecules from the MDL Toxicity Database. We analysed the frequency of the predictions across the panel of protein targets for experimentally determined toxicity classes of all molecules. This allowed us to identify clusters of proteins related by their toxicological profiles, as well as toxicities that are related. Literature-based evidence is provided for some specific clusters to show the relevance of the relationships identified

  7. Cdk1-Cyclin B1-mediated Phosphorylation of Tumor-associated Microtubule-associated Protein/Cytoskeleton-associated Protein 2 in Mitosis*

    OpenAIRE

    Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is re...

  8. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants.

    Science.gov (United States)

    Hackenberg, Dieter; McKain, Michael R; Lee, Soon Goo; Roy Choudhury, Swarup; McCann, Tyler; Schreier, Spencer; Harkess, Alex; Pires, J Chris; Wong, Gane Ka-Shu; Jez, Joseph M; Kellogg, Elizabeth A; Pandey, Sona

    2017-10-01

    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. A patient with C protein deficiency and multiple thromboses. case report Paciente con deficiencia de proteína C y múltiples trombosis: reporte de caso

    Directory of Open Access Journals (Sweden)

    Alejandro Román González

    2007-08-01

    Full Text Available Inherited thrombophilias are an important group of diseases that should be taken into account in the study of patients with thromboembolic disease, particularly in those whose clinical presentation includes frequent and recurrent thrombotic episodes at young age, in unusual sites, and a familial history of thrombosis. We report the case of a patient with C protein deficiency which developed deep venous thromboses of both legs when he was 36 and 37 years old. At 51 years of age he suffered from mesenteric thrombosis requiring surgical treatment and small intestine transplantation. His father had deep venous thrombosis. This is the first report of C protein deficiency in the Colombian literature. Other inherited thrombophilias such as the G20210A mutation in the prothrombin gene and actor V Leiden were absent. Se debe considerar un estado de hipercoagulabilidad primaria o trombofilia heredada en los pacientes con enfermedad tromboembólica venosa. La sospecha clínica se debe dirigir a los pacientes con presentación temprana, recurrente, familiar o en sitios anatómicos poco usuales. En este reporte se describe el caso de un paciente con déficit de proteína C de la coagulación, quien desarrolló trombosis venosa profunda del miembro inferior derecho a los 36 años y un año después, trombosis venosa profunda del miembro inferior izquierdo. A la edad de 51 años presentó trombosis de vasos mesentéricos que condujo a una resección intestinal extensa lo que obligó a un trasplante de intestino delgado. Su padre había presentado trombosis venosa de los miembros inferiores. Se descartó la presencia asociada de la mutación G20210A de la protrombina y del Factor V Leiden. Hasta donde sabemos, es el primer caso de deficiencia de proteína C de la coagulación informado en la literatura colombiana.

  10. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Science.gov (United States)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  11. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  12. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Templeton, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-02

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  13. The Role of Hexon Protein as a Molecular Mold in Patterning the Protein IX Organization in Human Adenoviruses.

    Science.gov (United States)

    Reddy, Vijay S

    2017-09-01

    Adenoviruses are respiratory, ocular and enteric pathogens that form complex capsids, which are assembled from seven different structural proteins and composed of several core proteins that closely interact with the packaged dsDNA genome. The recent near-atomic resolution structures revealed that the interlacing continuous hexagonal network formed by the protein IX molecules is conserved among different human adenoviruses (HAdVs), but not in non-HAdVs. In this report, we propose a distinct role for the hexon protein as a "molecular mold" in enabling the formation of such hexagonal protein IX network that has been shown to preserve the stability and infectivity of HAdVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. mKikGR, a monomeric photoswitchable fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Satoshi Habuchi

    Full Text Available The recent demonstration and utilization of fluorescent proteins whose fluorescence can be switched on and off has greatly expanded the toolkit of molecular and cell biology. These photoswitchable proteins have facilitated the characterization of specifically tagged molecular species in the cell and have enabled fluorescence imaging of intracellular structures with a resolution far below the classical diffraction limit of light. Applications are limited, however, by the fast photobleaching, slow photoswitching, and oligomerization typical for photoswitchable proteins currently available. Here, we report the molecular cloning and spectroscopic characterization of mKikGR, a monomeric version of the previously reported KikGR that displays high photostability and switching rates. Furthermore, we present single-molecule imaging experiments that demonstrate that individual mKikGR proteins can be localized with a precision of better than 10 nanometers, suggesting their suitability for super-resolution imaging.

  15. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  16. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.; Hota, Mrinal Kanti; Mallik, Sandipan B.; Maì ti, Chinmay Kumar

    2014-01-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  17. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.

    2014-06-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  18. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.

    Science.gov (United States)

    Audain, Enrique; Uszkoreit, Julian; Sachsenberg, Timo; Pfeuffer, Julianus; Liang, Xiao; Hermjakob, Henning; Sanchez, Aniel; Eisenacher, Martin; Reinert, Knut; Tabb, David L; Kohlbacher, Oliver; Perez-Riverol, Yasset

    2017-01-06

    In mass spectrometry-based shotgun proteomics, protein identifications are usually the desired result. However, most of the analytical methods are based on the identification of reliable peptides and not the direct identification of intact proteins. Thus, assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is a critical step in proteomics research. Currently, different protein inference algorithms and tools are available for the proteomics community. Here, we evaluated five software tools for protein inference (PIA, ProteinProphet, Fido, ProteinLP, MSBayesPro) using three popular database search engines: Mascot, X!Tandem, and MS-GF+. All the algorithms were evaluated using a highly customizable KNIME workflow using four different public datasets with varying complexities (different sample preparation, species and analytical instruments). We defined a set of quality control metrics to evaluate the performance of each combination of search engines, protein inference algorithm, and parameters on each dataset. We show that the results for complex samples vary not only regarding the actual numbers of reported protein groups but also concerning the actual composition of groups. Furthermore, the robustness of reported proteins when using databases of differing complexities is strongly dependant on the applied inference algorithm. Finally, merging the identifications of multiple search engines does not necessarily increase the number of reported proteins, but does increase the number of peptides per protein and thus can generally be recommended. Protein inference is one of the major challenges in MS-based proteomics nowadays. Currently, there are a vast number of protein inference algorithms and implementations available for the proteomics community. Protein assembly impacts in the final results of the research, the quantitation values and the final claims in the research manuscript. Even though protein

  19. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins?

    Science.gov (United States)

    Luévano-Martínez, Luis Alberto

    2012-04-05

    Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  1. Cytokine Expression in CD3+ Cells in an Infant with Food Protein-Induced Enterocolitis Syndrome (FPIES: Case Report

    Directory of Open Access Journals (Sweden)

    F. Mori

    2009-01-01

    Full Text Available Food protein-induced enterocolitis syndrome (FPIES is a non-IgE-mediated food allergy characterized by severe vomiting, diarrhea, and often failure to thrive in infants. Symptoms typically resolve after the triggering food-derived protein is removed from the diet and recur within few hours after the re-exposure to the causal protein. The diagnosis is based on clinical symptoms and a positive food challenge. In this study, we report a case of FPIES to rice in an 8-month-old boy. We performed a double-blind placebo-controlled food challenge (DBPCFC to rice and we measured the intracellular T cell expression of interleukin-4 (IL-4; IL-10, and interferon (IFN- pre-and post-challenge during an acute FPIES reaction and when tolerance to rice had been achieved. For the first time we describe an increase in T cell IL-4 and decrease in IFN- expression after a positive challenge with rice (i.e. rice triggered a FPIES attack and an increase in T cell IL-10 expression after rice challenge 6 months later after a negative challenge (i.e., the child had acquired tolerance to rice in an 8 month old with documented FPIES to rice. A Th2 activation associated with high IL-4 levels may contribute to the pathophysiology of the disease. On the other hand, T cell-derived IL-10 may play a role in the acquisition of immunotolerance by regulating the Th1 and Th2 responses.

  2. Ability of self-reported estimates of dietary sodium, potassium and protein to detect an association with general and abdominal obesity: comparison with the estimates derived from 24 h urinary excretion.

    Science.gov (United States)

    Murakami, Kentaro; Livingstone, M Barbara E; Sasaki, Satoshi; Uenishi, Kazuhiro

    2015-04-28

    As under-reporting of dietary intake, particularly by overweight and obese subjects, is common in dietary surveys, biases inherent in the use of self-reported dietary information may distort true diet-obesity relationships or even create spurious ones. However, empirical evidence of this possibility is limited. The present cross-sectional study compared the relationships of 24 h urine-derived and self-reported intakes of Na, K and protein with obesity. A total of 1043 Japanese women aged 18-22 years completed a 24 h urine collection and a self-administered diet history questionnaire. After adjustment for potential confounders, 24 h urine-derived Na intake was associated with a higher risk of general obesity (BMI≥25 kg/m2) and abdominal obesity (waist circumference≥80 cm; both P for trend=0·04). For 24 h urine-derived protein intake, positive associations with general and abdominal obesity were observed (P for trend=0·02 and 0·053, respectively). For 24 h urine-derived K intake, there was an inverse association with abdominal obesity (P for trend=0·01). Conversely, when self-reported dietary information was used, only inverse associations between K intake and general and abdominal obesity were observed (P for trend=0·04 and 0·02, respectively), with no associations of Na or protein intake. In conclusion, we found positive associations of Na and protein intakes and inverse associations of K intake with obesity when using 24 h urinary excretion for estimating dietary intakes. However, no association was observed based on using self-reported dietary intakes, except for inverse association of K intake, suggesting that the ability of self-reported dietary information using the diet history questionnaire for investigating diet-obesity relationships is limited.

  3. Strategies for the photo-control of endogenous protein activity.

    Science.gov (United States)

    Brechun, Katherine E; Arndt, Katja M; Woolley, G Andrew

    2017-08-01

    Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Chronological protein synthesis in regenerating rat liver.

    Science.gov (United States)

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  6. Biospecific protein immobilization for rapid analysis of weak protein interactions using self-interaction nanoparticle spectroscopy.

    Science.gov (United States)

    Bengali, Aditya N; Tessier, Peter M

    2009-10-01

    "Reversible" protein interactions govern diverse biological behavior ranging from intracellular transport and toxic protein aggregation to protein crystallization and inactivation of protein therapeutics. Much less is known about weak protein interactions than their stronger counterparts since they are difficult to characterize, especially in a parallel format (in contrast to a sequential format) necessary for high-throughput screening. We have recently introduced a highly efficient approach of characterizing protein self-association, namely self-interaction nanoparticle spectroscopy (SINS; Tessier et al., 2008; J Am Chem Soc 130:3106-3112). This approach exploits the separation-dependent optical properties of gold nanoparticles to detect weak self-interactions between proteins immobilized on nanoparticles. A limitation of our previous work is that differences in the sequence and structure of proteins can lead to significant differences in their affinity to adsorb to nanoparticle surfaces, which complicates analysis of the corresponding protein self-association behavior. In this work we demonstrate a highly specific approach for coating nanoparticles with proteins using biotin-avidin interactions to generate protein-nanoparticle conjugates that report protein self-interactions through changes in their optical properties. Using lysozyme as a model protein that is refractory to characterization by conventional SINS, we demonstrate that surface Plasmon wavelengths for gold-avidin-lysozyme conjugates over a range of solution conditions (i.e., pH and ionic strength) are well correlated with lysozyme osmotic second virial coefficient measurements. Since SINS requires orders of magnitude less protein and time than conventional methods (e.g., static light scattering), we envision this approach will find application in large screens of protein self-association aimed at either preventing (e.g., protein aggregation) or promoting (e.g., protein crystallization) these

  7. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    Science.gov (United States)

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Luminescent conjugated oligothiophenes for sensitive fluorescent assignment of protein inclusion bodies.

    Science.gov (United States)

    Klingstedt, Therése; Blechschmidt, Cristiane; Nogalska, Anna; Prokop, Stefan; Häggqvist, Bo; Danielsson, Olof; Engel, W King; Askanas, Valerie; Heppner, Frank L; Nilsson, K Peter R

    2013-03-18

    Small hydrophobic ligands identifying intracellular protein deposits are of great interest, as protein inclusion bodies are the pathological hallmark of several degenerative diseases. Here we report that fluorescent amyloid ligands, termed luminescent conjugated oligothiophenes (LCOs), rapidly and with high sensitivity detect protein inclusion bodies in skeletal muscle tissue from patients with sporadic inclusion body myositis (s-IBM). LCOs having a conjugated backbone of at least five thiophene units emitted strong fluorescence upon binding, and showed co-localization with proteins reported to accumulate in s-IBM protein inclusion bodies. Compared with conventional amyloid ligands, LCOs identified a larger fraction of immunopositive inclusion bodies. When the conjugated thiophene backbone was extended with terminal carboxyl groups, the LCO revealed striking spectral differences between distinct protein inclusion bodies. We conclude that 1) LCOs are sensitive, rapid and powerful tools for identifying protein inclusion bodies and 2) LCOs identify a wider range of protein inclusion bodies than conventional amyloid ligands. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solution structure and dynamics of melanoma inhibitory activity protein

    International Nuclear Information System (INIS)

    Lougheed, Julie C.; Domaille, Peter J.; Handel, Tracy M.

    2002-01-01

    Melanoma inhibitory activity (MIA) is a small secreted protein that is implicated in cartilage cell maintenance and melanoma metastasis. It is representative of a recently discovered family of proteins that contain a Src Homologous 3 (SH3) subdomain. While SH3 domains are normally found in intracellular proteins and mediate protein-protein interactions via recognition of polyproline helices, MIA is single-domain extracellular protein, and it probably binds to a different class of ligands.Here we report the assignments, solution structure, and dynamics of human MIA determined by heteronuclear NMR methods. The structures were calculated in a semi-automated manner without manual assignment of NOE crosspeaks, and have a backbone rmsd of 0.38 A over the ordered regions of the protein. The structure consists of an SH3-like subdomain with N- and C-terminal extensions of approximately 20 amino acids each that together form a novel fold. The rmsd between the solution structure and our recently reported crystal structure is 0.86 A over the ordered regions of the backbone, and the main differences are localized to the most dynamic regions of the protein. The similarity between the NMR and crystal structures supports the use of automated NOE assignments and ambiguous restraints to accelerate the calculation of NMR structures

  10. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  11. Protein docking prediction using predicted protein-protein interface.

    Science.gov (United States)

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  12. Protein as chemical cue: non-nutritional growth enhancement by exogenous protein in Pseudomonas putida KT2440.

    Directory of Open Access Journals (Sweden)

    Hiren Joshi

    Full Text Available Research pertaining to microbe-microbe and microbe-plant interactions has been largely limited to small molecules like quorum sensing chemicals. However, a few recent reports have indicated the role of complex molecules like proteins and polysaccharides in microbial communication. Here we demonstrate that exogenous proteins present in culture media can considerably accelerate the growth of Pseudomonas putida KT2440, even when such proteins are not internalized by the cells. The growth enhancement is observed when the exogenous protein is not used as a source of carbon or nitrogen. The data show non-specific nature of the protein inducing growth; growth enhancement was observed irrespective of the protein type. It is shown that growth enhancement is mediated via increased siderophore secretion in response to the exogenous protein, leading to better iron uptake. We highlight the ecological significance of the observation and hypothesize that exogenous proteins serve as chemical cues in the case of P.putida and are perceived as indicator of the presence of competitors in the environment. It is argued that enhanced siderophore secretion in response to exogenous protein helps P.putida establish numerical superiority over competitors by way of enhanced iron assimilation and quicker utilization of aromatic substrates.

  13. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  14. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    DEFF Research Database (Denmark)

    Andersen, Tonni Grube; Nintemann, Sebastian; Marek, Magdalena

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true-from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased se...

  15. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Callis, Judy [Univ. of California, Davis, CA (United States)

    2016-11-30

    This report summarizes our research activities. In the award period, we have made significant progress on the first aim, with new discoveries reported in one published paper (1) and in one submitted manuscript (2) currently under review. The published manuscript reports on our discovery of plant ribokinase and the metabolic pathway in which it functions; the submitted manuscript is identification and characterization of the plant fructokinase family of enzymes from expression studies, sequence comparisons, subcellular localizations and enzymatic activities of recombinant proteins. Our study of loss-of-function mutants in the fructokinase family members (2) revealed that there were no phenotypic differences observed for the five genes analyzed, so we have adopted the Crispr/Cas9 system to isolate mutants in the two genes for which there are no currently available insertion mutants, and we are generating higher order mutants (double, triples, etc) to discern the relative roles and significance for each fructokinase. These mutants will be an important resource to understand regulation of carbohydrate movement and catabolism in plants. As studies from others indicate, alteration of fructokinases results in changes in cell walls and vasculatures, which have importance relative to biofuel yield and quality. In the second aim, we have characterized the protein-protein interactions for the pkfB proteins FLN1 and FLN2 that are localized to chloroplast transcriptional complexes and have proposed a new model for how chloroplast transcription is regulated. This work has been submitted for publication, been revised and will be re-submitted in December 2016

  16. Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew Johnson

    2010-12-01

    Full Text Available One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.

  17. Protein chimerism: novel source of protein diversity in humans adds complexity to bottom-up proteomics.

    Science.gov (United States)

    Casado-Vela, Juan; Lacal, Juan Carlos; Elortza, Felix

    2013-01-01

    Three main molecular mechanisms are considered to contribute expanding the repertoire and diversity of proteins present in living organisms: first, at DNA level (gene polymorphisms and single nucleotide polymorphisms); second, at messenger RNA (pre-mRNA and mRNA) level including alternative splicing (also termed differential splicing or cis-splicing); finally, at the protein level mainly driven through PTM and specific proteolytic cleavages. Chimeric mRNAs constitute an alternative source of protein diversity, which can be generated either by chromosomal translocations or by trans-splicing events. The occurrence of chimeric mRNAs and proteins is a frequent event in cells from the immune system and cancer cells, mainly as a consequence of gene rearrangements. Recent reports support that chimeric proteins may also be expressed at low levels under normal physiological circumstances, thus, representing a novel source of protein diversity. Notably, recent publications demonstrate that chimeric protein products can be successfully identified through bottom-up proteomic analyses. Several questions remain unsolved, such as the physiological role and impact of such chimeric proteins or the potential occurrence of chimeric proteins in higher eukaryotic organisms different from humans. The occurrence of chimeric proteins certainly seems to be another unforeseen source of complexity for the proteome. It may be a process to take in mind not only when performing bottom-up proteomic analyses in cancer studies but also in general bottom-up proteomics experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease.

    Science.gov (United States)

    Gable, Jonathan E; Lee, Gregory M; Acker, Timothy M; Hulce, Kaitlin R; Gonzalez, Eric R; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J; Craik, Charles S

    2016-04-19

    Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Glucose-Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization, Stabilization and Crystallization

    OpenAIRE

    Chae, Pil Seok; Rana, Rohini R.; Gotfryd, Kamil; Rasmussen, Søren G. F.; Kruse, Andrew C.; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J.; Gether, Ulrik; Banerjee, Surajit; Byrne, Bernadette; Lee, John K.; Gellman, Samuel H.

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, “GNG amphiphiles”, is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al.

  20. Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies

    DEFF Research Database (Denmark)

    Callesen, Anne Kjærgaard; Vach, Werner; Jørgensen, Per E

    2008-01-01

    Serum protein profiling by mass spectrometry has achieved attention as a promising technology in oncoproteomics. We performed a systematic review of published reports on protein profiling as a diagnostic tool for breast cancer. The MEDLINE, EMBASE, and COCHRANE databases were searched for original...... studies reporting discriminatory protein peaks for breast cancer as either protein identity or as m/ z values in the period from January 1995 to October 2006. To address the important aspect of reproducibility of mass spectrometry data across different clinical studies, we compared the published lists...... of potential discriminatory peaks with those peaks detected in an original MALDI MS protein profiling study performed by our own research group. A total of 20 protein/peptide profiling studies were eligible for inclusion in the systematic review. Only 3 reports included information on protein identity...

  1. Bodybuilding protein supplements and cow's milk allergy in adult.

    Science.gov (United States)

    Sousa, M J C S; Reis Ferreira, A L; Moreira da Silva, J P

    2018-01-01

    We report a case of a previously healthy 24-year-old man with a 3-month history of gastrointestinal symptoms during exercise and also few minutes after the ingestion of cow's milk (CM) without exercise. He reported the ingestion of a blend of hydrolyzed whey and casein proteins for bodybuilding for the last 2 years. The in vivo tests showed positivity to CM, α-lactalbumin, β-lactoglobulin and casein extracts, and also to the protein supplement. The serum specific IgE was positive for CM, β-lactoglobulin and α-lactalbumin. The in vivo and in vitro tests results suggested an IgE-mediated CMA. Adult-onset CMA has been rarely reported, and to our knowledge this is the first case possibly related to bodybuilding supplements. The authors theorize that the presentation of large amounts of proteins in the gastrointestinal tract may favor sensitization.

  2. A Review on Structures and Functions of Bcl-2 Family Proteins from Homo sapiens.

    Science.gov (United States)

    Sivakumar, Dakshinamurthy; Sivaraman, Thirunavukkarasu

    2016-01-01

    Cancer cells evade apoptosis, which is regulated by proteins of Bcl-2 family in the intrinsic pathways. Numerous experimental three-dimensional (3D) structures of the apoptotic proteins and the proteins bound with small chemical molecules/peptides/proteins have been reported in the literature. In this review article, the 3D structures of the Bcl-2 family proteins from Homo sapiens and as well complex structures of the anti-apoptotic proteins bound with small molecular inhibitors reported in the literature to date have been comprehensively listed out and described in detail. Moreover, the molecular mechanisms by which the Bcl-2 family proteins modulate the apoptotic processes and strategies for designing antagonists to anti-apoptotic proteins have been concisely discussed.

  3. Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Genetically encoded tag is a powerful tool for protein research. Various kinds of tags have been developed: fluorescent proteins for live-cell imaging, affinity tags for protein isolation, and epitope tags for immunological detections. One of the major problems concerning the protein tagging is that many constructs with different tags have to be made for different applications, which is time- and resource-consuming. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel multifunctional green fluorescent protein (mfGFP tag which was engineered by inserting multiple peptide tags, i.e., octa-histidine (8xHis, streptavidin-binding peptide (SBP, and c-Myc tag, in tandem into a loop of GFP. When fused to various proteins, mfGFP monitored their localization in living cells. Streptavidin agarose column chromatography with the SBP tag successfully isolated the protein complexes in a native form with a high purity. Tandem affinity purification (TAP with 8xHis and SBP tags in mfGFP further purified the protein complexes. mfGFP was clearly detected by c-Myc-specific antibody both in immunofluorescence and immuno-electron microscopy (EM. These findings indicate that mfGFP works well as a multifunctional tag in mammalian cells. The tag insertion was also successful in other fluorescent protein, mCherry. CONCLUSIONS AND SIGNIFICANCE: The multifunctional fluorescent protein tag is a useful tool for a wide variety of protein research, and may have the advantage over other multiple tag systems in its higher expandability and compatibility with existing and future tag technologies.

  4. Animal proteins in feed : IAG ring rest 2011

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Pinckaers, V.G.Z.; Vliege, J.J.M.; Ruth, van S.M.

    2011-01-01

    The International Association for Feeding stuff Analysis, section Feeding stuff Microscopy, organises annually a ring test for animal proteins for all their members. In this report the ring test for animal proteins is presented, which was organised by RIKILT in 2011 on behalf of the IAG section

  5. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  6. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    Science.gov (United States)

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of

  7. Extractable protein of radiation vulcanized natural rubber latex

    International Nuclear Information System (INIS)

    Soebianto, Y.S.; Upul, R.M.; Makuuchi, K.; Yoshii, F.; Kume, T.

    2000-01-01

    A new method to reduce the protein level in the latex products by irradiation is reported. Water soluble protein (WSP) solution (10%) was added into radiation vulcanized NR latex (RVNRL) as much as 3 phr in three different processes: added to RVNRL, added to re-centrifuged RVNRL, and added to RVNRL followed by centrifugation. The protein content was determined by enhanced BCA method, and identified by SDS-PAGE analysis. Addition of WSP followed by centrifugation reduces EP up to the minimum protein detection, and shortens the leaching time to 20-30 min. SDS-PAGE analysis confirms the reduction of soluble protein in the serum phase, and disappearance of protein bands in the rubber extract. Protein-WSP interaction produces water soluble complex, and removed by centrifugation. The molecular weight of WSP dictates the efficiency of protein removal. (author)

  8. Extractable protein of radiation vulcanized natural rubber latex

    Energy Technology Data Exchange (ETDEWEB)

    Soebianto, Y.S. [Center for Research and Development of Isotopes and Radiation Technology, BATAN, Jakarta (Indonesia); Upul, R.M. [Rubber Research Institute of Sri Lanka, Ratmalana (Sri Lanka); Makuuchi, K.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    A new method to reduce the protein level in the latex products by irradiation is reported. Water soluble protein (WSP) solution (10%) was added into radiation vulcanized NR latex (RVNRL) as much as 3 phr in three different processes: added to RVNRL, added to re-centrifuged RVNRL, and added to RVNRL followed by centrifugation. The protein content was determined by enhanced BCA method, and identified by SDS-PAGE analysis. Addition of WSP followed by centrifugation reduces EP up to the minimum protein detection, and shortens the leaching time to 20-30 min. SDS-PAGE analysis confirms the reduction of soluble protein in the serum phase, and disappearance of protein bands in the rubber extract. Protein-WSP interaction produces water soluble complex, and removed by centrifugation. The molecular weight of WSP dictates the efficiency of protein removal. (author)

  9. Glucose-Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization, Stabilization and Crystallization

    Science.gov (United States)

    Rana, Rohini R.; Gotfryd, Kamil; Rasmussen, Søren G. F.; Kruse, Andrew C.; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J.; Gether, Ulrik; Banerjee, Surajit

    2012-01-01

    The development of a new class of surfactants for membrane protein manipulation, “GNG amphiphiles”, is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al. PMID:23165475

  10. A universal DNA-based protein detection system.

    Science.gov (United States)

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  11. Sorting of a HaloTag protein that has only a signal peptide sequence into exocrine secretory granules without protein aggregation.

    Science.gov (United States)

    Fujita-Yoshigaki, Junko; Matsuki-Fukushima, Miwako; Yokoyama, Megumi; Katsumata-Kato, Osamu

    2013-11-15

    The mechanism involved in the sorting and accumulation of secretory cargo proteins, such as amylase, into secretory granules of exocrine cells remains to be solved. To clarify that sorting mechanism, we expressed a reporter protein HaloTag fused with partial sequences of salivary amylase protein in primary cultured parotid acinar cells. We found that a HaloTag protein fused with only the signal peptide sequence (Met(1)-Ala(25)) of amylase, termed SS25H, colocalized well with endogenous amylase, which was confirmed by immunofluorescence microscopy. Percoll-density gradient centrifugation of secretory granule fractions shows that the distributions of amylase and SS25H were similar. These results suggest that SS25H is transported to secretory granules and is not discriminated from endogenous amylase by the machinery that functions to remove proteins other than granule cargo from immature granules. Another reporter protein, DsRed2, that has the same signal peptide sequence also colocalized with amylase, suggesting that the sorting to secretory granules is not dependent on a characteristic of the HaloTag protein. Whereas Blue Native PAGE demonstrates that endogenous amylase forms a high-molecular-weight complex, SS25H does not participate in the complex and does not form self-aggregates. Nevertheless, SS25H was released from cells by the addition of a β-adrenergic agonist, isoproterenol, which also induces amylase secretion. These results indicate that addition of the signal peptide sequence, which is necessary for the translocation in the endoplasmic reticulum, is sufficient for the transportation and storage of cargo proteins in secretory granules of exocrine cells.

  12. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  13. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    Science.gov (United States)

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  14. Mung bean proteins and peptides: nutritional, functional and bioactive properties

    Directory of Open Access Journals (Sweden)

    Zhu Yi-Shen

    2018-02-01

    Full Text Available To date, no extensive literature review exists regarding potential uses of mung bean proteins and peptides. As mung bean has long been widely used as a food source, early studies evaluated mung bean nutritional value against the Food and Agriculture Organization of the United Nations (FAO/the World Health Organization (WHO amino acids dietary recommendations. The comparison demonstrated mung bean to be a good protein source, except for deficiencies in sulphur-containing amino acids, methionine and cysteine. Methionine and cysteine residues have been introduced into the 8S globulin through protein engineering technology. Subsequently, purified mung bean proteins and peptides have facilitated the study of their structural and functional properties. Two main types of extraction methods have been reported for isolation of proteins and peptides from mung bean flours, permitting sequencing of major proteins present in mung bean, including albumins and globulins (notably 8S globulin. However, the sequence for albumin deposited in the UniProt database differs from other sequences reported in the literature. Meanwhile, a limited number of reports have revealed other useful bioactivities for proteins and hydrolysed peptides, including angiotensin-converting enzyme inhibitory activity, anti-fungal activity and trypsin inhibitory activity. Consequently, several mung bean hydrolysed peptides have served as effective food additives to prevent proteolysis during storage. Ultimately, further research will reveal other nutritional, functional and bioactive properties of mung bean for uses in diverse applications.

  15. Construction and Testing of orfA +/- FIV Reporter Viruses

    Directory of Open Access Journals (Sweden)

    Eric M. Poeschla

    2012-01-01

    Full Text Available Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV, where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+ and (- for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation.

  16. Analysis of crystallization data in the Protein Data Bank

    International Nuclear Information System (INIS)

    Kirkwood, Jobie; Hargreaves, David; O’Keefe, Simon; Wilson, Julie

    2015-01-01

    In a large-scale study using data from the Protein Data Bank, some of the many reported findings regarding the crystallization of proteins were investigated. The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored

  17. Analysis of crystallization data in the Protein Data Bank

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, Jobie [University of York, York YO10 5DD (United Kingdom); Hargreaves, David [AstraZeneca, Darwin Building, Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); O’Keefe, Simon [University of York, York YO10 5DD (United Kingdom); Wilson, Julie, E-mail: julie.wilson@york.ac.uk [University of York, York YO10 5DD (United Kingdom); University of York, York YO10 5DD (United Kingdom)

    2015-09-23

    In a large-scale study using data from the Protein Data Bank, some of the many reported findings regarding the crystallization of proteins were investigated. The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored.

  18. Sulfated glycopeptide nanostructures for multipotent protein activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp , Samuel I. (NWU)

    2017-06-19

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

  19. Fluorescent Protein Approaches in Alpha Herpesvirus Research

    Directory of Open Access Journals (Sweden)

    Ian B. Hogue

    2015-11-01

    Full Text Available In the nearly two decades since the popularization of green fluorescent protein (GFP, fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1 and pseudorabies virus (PRV structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.

  20. Protein Translation and Signaling in Human Eosinophils

    Directory of Open Access Journals (Sweden)

    Stephane Esnault

    2017-09-01

    Full Text Available We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1 the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2 the mechanisms regulating mRNA binding proteins activity in EOS, and (3 the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases.

  1. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein-Protein Docking.

    Science.gov (United States)

    Klett, Javier; Núñez-Salgado, Alfonso; Dos Santos, Helena G; Cortés-Cabrera, Álvaro; Perona, Almudena; Gil-Redondo, Rubén; Abia, David; Gago, Federico; Morreale, Antonio

    2012-09-11

    An ultrafast and accurate scoring function for protein-protein docking is presented. It includes (1) a molecular mechanics (MM) part based on a 12-6 Lennard-Jones potential; (2) an electrostatic component based on an implicit solvent model (ISM) with individual desolvation penalties for each partner in the protein-protein complex plus a hydrogen bonding term; and (3) a surface area (SA) contribution to account for the loss of water contacts upon protein-protein complex formation. The accuracy and performance of the scoring function, termed MM-ISMSA, have been assessed by (1) comparing the total binding energies, the electrostatic term, and its components (charge-charge and individual desolvation energies), as well as the per residue contributions, to results obtained with well-established methods such as APBSA or MM-PB(GB)SA for a set of 1242 decoy protein-protein complexes and (2) testing its ability to recognize the docking solution closest to the experimental structure as that providing the most favorable total binding energy. For this purpose, a test set consisting of 15 protein-protein complexes with known 3D structure mixed with 10 decoys for each complex was used. The correlation between the values afforded by MM-ISMSA and those from the other methods is quite remarkable (r(2) ∼ 0.9), and only 0.2-5.0 s (depending on the number of residues) are spent on a single calculation including an all vs all pairwise energy decomposition. On the other hand, MM-ISMSA correctly identifies the best docking solution as that closest to the experimental structure in 80% of the cases. Finally, MM-ISMSA can process molecular dynamics trajectories and reports the results as averaged values with their standard deviations. MM-ISMSA has been implemented as a plugin to the widely used molecular graphics program PyMOL, although it can also be executed in command-line mode. MM-ISMSA is distributed free of charge to nonprofit organizations.

  2. [A case of IgA2-lambda type M-protein that IgA concentration differs from the values of M-protein by serum protein electrophoresis].

    Science.gov (United States)

    Fukushima, M; Sugano, M; Ichikawa, T; Honda, T; Totsuka, M; Katsuyama, T; Fujita, K

    2001-07-01

    We report an IgA-lambda type M-protein in which the IgA concentration differed from the values of M-protein by serum protein electrophoresis found in a 53-year-old man with multiple myeloma. The M-protein value as determined by serum protein electrophoresis was 6,170 mg/dl. However, the serum IgA concentration was 3,052 mg/dl by turbidimetric immunoassay. Immuno-fixation electrophoresis using IgA subclass antisera revealed that this M-protein was the IgA2-lambda type. Western blotting analysis showed that the IgA2 molecules were composed of two approximately 68 kDa alpha 2 chains and two 28 kDa lambda chains. In addition the free lambda chain band was detected at the position of 28 kDa without 2-mercaptoethanol(2-ME) even though the patient IgA was purified. Since it is known that IgA2m(1) allotype easily release light chains from the IgA molecules in SDS-PAGE without 2-ME, we speculated that in this patient the IgA was the IgA2m(1) allotype. After peripheral blood stem cell transplantation(PBSCT), immunofixation electrophoresis of the patient serum revealed not only the bands of IgA2-lambda type M-protein, but also three bands of IgG1-kappa type M-protein in the gamma region.

  3. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3

    OpenAIRE

    Halfter, Ursula; Ishitani, Manabu; Zhu, Jian-Kang

    2000-01-01

    The Arabidopsis thaliana SOS2 and SOS3 genes are required for intracellular Na+ and K+ homeostasis and plant tolerance to high Na+ and low K+ environments. SOS3 is an EF hand type calcium-binding protein having sequence similarities with animal neuronal calcium sensors and the yeast calcineurin B. SOS2 is a serine/threonine protein kinase in the SNF1/AMPK family. We report here that SOS3 physically interacts with and activates SOS2 protein kinase. Genetically, sos2sos3 double mutant analysis ...

  4. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  5. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  6. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Edward C Twomey

    Full Text Available Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15 protein in the complex with a mitogen-activated protein (MAP kinase, extracellular regulated kinase 2 (ERK2, which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.

  7. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    Science.gov (United States)

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Kalveram, Birte; Ikegami, Tetsuro

    2013-04-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.

  9. Pyroelectricity in globular protein lysozyme films

    Science.gov (United States)

    Stapleton, A.; Noor, M. R.; Haq, E. U.; Silien, C.; Soulimane, T.; Tofail, S. A. M.

    2018-03-01

    Pyroelectricity is the ability of certain non-centrosymmetric materials to generate an electric charge in response to a change in temperature and finds use in a range of applications from burglar alarms to thermal imaging. Some biological materials also exhibit pyroelectricity but the examples of the effect are limited to fibrous proteins, polypeptides, and tissues and organs of animals and plants. Here, we report pyroelectricity in polycrystalline aggregate films of lysozyme, a globular protein.

  10. In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag.

    Science.gov (United States)

    Visone, Valeria; Han, Wenyuan; Perugino, Giuseppe; Del Monaco, Giovanni; She, Qunxin; Rossi, Mosè; Valenti, Anna; Ciaramella, Maria

    2017-01-01

    Protein imaging, allowing a wide variety of biological studies both in vitro and in vivo, is of great importance in modern biology. Protein and peptide tags fused to proteins of interest provide the opportunity to elucidate protein location and functions, detect protein-protein interactions, and measure protein activity and kinetics in living cells. Whereas several tags are suitable for protein imaging in mesophilic organisms, the application of this approach to microorganisms living at high temperature has lagged behind. Archaea provide an excellent and unique model for understanding basic cell biology mechanisms. Here, we present the development of a toolkit for protein imaging in the hyperthermophilic archaeon Sulfolobus islandicus. The system relies on a thermostable protein tag (H5) constructed by engineering the alkylguanine-DNA-alkyl-transferase protein of Sulfolobus solfataricus, which can be covalently labeled using a wide range of small molecules. As a suitable host, we constructed, by CRISPR-based genome-editing technology, a S. islandicus mutant strain deleted for the alkylguanine-DNA-alkyl-transferase gene (Δogt). Introduction of a plasmid-borne H5 gene in this strain led to production of a functional H5 protein, which was successfully labeled with appropriate fluorescent molecules and visualized in cell extracts as well as in Δogt live cells. H5 was fused to reverse gyrase, a peculiar thermophile-specific DNA topoisomerase endowed with positive supercoiling activity, and allowed visualization of the enzyme in living cells. To the best of our knowledge, this is the first report of in vivo imaging of any protein of a thermophilic archaeon, filling an important gap in available tools for cell biology studies in these organisms.

  11. Tubulinlike protein from Spirochaeta bajacaliforniensis

    Science.gov (United States)

    Bermudes, D.; Fracek, S. P. Jr; Laursen, R. A.; Margulis, L.; Obar, R.; Tzertzinis, G.

    1987-01-01

    Tubulin proteins are the fundamental subunits of all polymeric microtubule-based eukaryotic structures. Long, hollow structures each composed of 13 protofilaments as revealed by electron microscopy, microtubules (240 angstroms in diameter) are nearly ubiquitous in eukaryotes. These proteins have been the subject of intense biochemical and biophyiscal interest since the early 1970s and are of evolutionary interest as well. If tubulin-based structures (i.e., neurotubules, mitotic spindle tubules, centrioles, kinetosomes, axonemes, etc.) evolved from spirochetes by way of motility symbioses, tubulin homologies with spirochete proteins should be detectable. Tubulin proteins are widely thought to be limited to eukaryotes. Yet both azotobacters and spirochetes have shown immunological cross-reactivity with antitubulin antibodies. In neither of these studies was tubulin isolated nor any specific antigen identified as responsible for the immunoreactivity. Furthermore, although far less uniform in structure than eukaryotic microtubules, various cytoplasmic fibers and tubules (as seen by electron microscopy) have been reported in several types of prokaryotes (e.g., Spirochaeta; large termite spirochetes; treponemes; cyanobacteria; and Azotobacter. This work forms a part of our long-range study of the possible prokaryotic origin of tubulin and microtubules. Spirochetes are helically shaped gram-negative motile prokaryotes. They differ from all other bacterial in that the position of their flagella is periplasmic: their flagella lie between the inner and outer membranes of the gram-negative cell wall. Some of the largest spirochetes have longitudinally aligned 240 angstrom microtubules. Unfortunately, in spite of many attempts, all of the larger spirochetes (family Pillotaceae) with well-defined cytoplasmic tubules and antitubulin immunoreactivity are not cultivable. However, a newly described spirochete species (Spirochaeta bajacaliforniensis) possessing cytoplasmic fibers

  12. Isomeric Detergent Comparison for Membrane Protein Stability

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.

    2016-01-01

    and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta...... and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility....../stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane...

  13. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga.

    Science.gov (United States)

    Estrada-Gómez, Sebastian; Vargas-Muñoz, Leidy Johana; Saldarriaga-Córdoba, Mónica; Cifuentes, Yeimy; Perafan, Carlos

    2017-04-01

    Theraphosidae spider venoms are well known for possess a complex mixture of protein and non-protein compounds in their venom. The objective of this study was to report and identify different proteins translated from the venom gland DNA information of the recently described Theraphosidae spider Pamphobeteus verdolaga. Using a venom gland transcriptomic analysis, we reported a set of the first complete sequences of seven different proteins of the recenlty described Theraphosidae spider P. verdolaga. Protein analysis indicates the presence of different proteins on the venom composition of this new spider, some of them uncommon in the Theraphosidae family. MS/MS analysis of P. verdolaga showed different fragments matching sphingomyelinases (sicaritoxin), barytoxins, hexatoxins, latroinsectotoxins, and linear (zadotoxins) peptides. Only four of the MS/MS fragments showed 100% sequence similarity with one of the transcribed proteins. Transcriptomic analysis showed the presence of different groups of proteins like phospholipases, hyaluronidases, inhibitory cysteine knots (ICK) peptides among others. The three database of protein domains used in this study (Pfam, SMART and CDD) showed congruency in the search of unique conserved protein domain for only four of the translated proteins. Those proteins matched with EF-hand proteins, cysteine rich secretory proteins, jingzhaotoxins, theraphotoxins and hexatoxins, from different Mygalomorphae spiders belonging to the families Theraphosidae, Barychelidae and Hexathelidae. None of the analyzed sequences showed a complete 100% similarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The ybeY protein from Escherichia coli is a metalloprotein

    International Nuclear Information System (INIS)

    Zhan, Chenyang; Fedorov, Elena V.; Shi, Wuxian; Ramagopal, U. A.; Thirumuruhan, R.; Manjasetty, Babu A.; Almo, Steve C.; Fiser, Andras; Chance, Mark R.; Fedorov, Alexander A.

    2005-01-01

    The ybeY protein from E. coli is reported at a 2.7 Å resolution with a metal ion. The three-dimensional crystallographic structure of the ybeY protein from Escherichia coli (SwissProt entry P77385) is reported at 2.7 Å resolution. YbeY is a hypothetical protein that belongs to the UPF0054 family. The structure reveals that the protein binds a metal ion in a tetrahedral geometry. Three coordination sites are provided by histidine residues, while the fourth might be a water molecule that is not seen in the diffraction map because of its relatively low resolution. X-ray fluorescence analysis of the purified protein suggests that the metal is a nickel ion. The structure of ybeY and its sequence similarity to a number of predicted metal-dependent hydrolases provides a functional assignment for this protein family. The figures and tables of this paper were prepared using semi-automated tools, termed the Autopublish server, developed by the New York Structural GenomiX Research Consortium, with the goal of facilitating the rapid publication of crystallographic structures that emanate from worldwide Structural Genomics efforts, including the NIH-funded Protein Structure Initiative

  15. Protein signature of lung cancer tissues.

    Directory of Open Access Journals (Sweden)

    Michael R Mehan

    Full Text Available Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan to compare protein expression signatures of non small-cell lung cancer (NSCLC tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment.

  16. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.

    Science.gov (United States)

    Hayat, Maqsood; Khan, Asifullah

    2011-02-21

    Membrane proteins are vital type of proteins that serve as channels, receptors, and energy transducers in a cell. Prediction of membrane protein types is an important research area in bioinformatics. Knowledge of membrane protein types provides some valuable information for predicting novel example of the membrane protein types. However, classification of membrane protein types can be both time consuming and susceptible to errors due to the inherent similarity of membrane protein types. In this paper, neural networks based membrane protein type prediction system is proposed. Composite protein sequence representation (CPSR) is used to extract the features of a protein sequence, which includes seven feature sets; amino acid composition, sequence length, 2 gram exchange group frequency, hydrophobic group, electronic group, sum of hydrophobicity, and R-group. Principal component analysis is then employed to reduce the dimensionality of the feature vector. The probabilistic neural network (PNN), generalized regression neural network, and support vector machine (SVM) are used as classifiers. A high success rate of 86.01% is obtained using SVM for the jackknife test. In case of independent dataset test, PNN yields the highest accuracy of 95.73%. These classifiers exhibit improved performance using other performance measures such as sensitivity, specificity, Mathew's correlation coefficient, and F-measure. The experimental results show that the prediction performance of the proposed scheme for classifying membrane protein types is the best reported, so far. This performance improvement may largely be credited to the learning capabilities of neural networks and the composite feature extraction strategy, which exploits seven different properties of protein sequences. The proposed Mem-Predictor can be accessed at http://111.68.99.218/Mem-Predictor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Tools for controlling protein interactions with light

    Science.gov (United States)

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  18. PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer’s amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE

    Directory of Open Access Journals (Sweden)

    Lahiri Debomoy K

    2013-01-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is intimately tied to amyloid-β (Aβ peptide. Extraneuronal brain plaques consisting primarily of Aβ aggregates are a hallmark of AD. Intraneuronal Aβ subunits are strongly implicated in disease progression. Protein sequence mutations of the Aβ precursor protein (APP account for a small proportion of AD cases, suggesting that regulation of the associated gene (APP may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or “proximal regulatory element” (PRE, at −76/−47, from the +1 transcription start site that confers cell type specificity. This PRE contains sequences that make it vulnerable to epigenetic modification and may present a viable target for drug studies. We examined PRE-nuclear protein interaction by gel electrophoretic mobility shift assay (EMSA and PRE mutant EMSA. This was followed by functional studies of PRE mutant/reporter gene fusion clones. Results EMSA probed with the PRE showed DNA-protein interaction in multiple nuclear extracts and in human brain tissue nuclear extract in a tissue-type specific manner. We identified transcription factors that are likely to bind the PRE, using competition gel shift and gel supershift: Activator protein 2 (AP2, nm23 nucleoside diphosphate kinase/metastatic inhibitory protein (PuF, and specificity protein 1 (SP1. These sites crossed a known single nucleotide polymorphism (SNP. EMSA with PRE mutants and promoter/reporter clone transfection analysis further implicated PuF in cells and extracts. Functional assays of mutant/reporter clone transfections were evaluated by ELISA of reporter protein levels. EMSA and ELISA results correlated by meta-analysis. Conclusions We propose that PuF may regulate the APP gene promoter and that AD risk may be increased by interference with PuF regulation at the PRE. PuF is targeted by calcium/calmodulin-dependent protein kinase II inhibitor 1, which also

  19. Evolution of a protein folding nucleus.

    Science.gov (United States)

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  20. Discrimination of thermophilic and mesophilic proteins

    Directory of Open Access Journals (Sweden)

    Vaisman Iosif I

    2010-05-01

    Full Text Available Abstract Background There is a considerable literature on the source of the thermostability of proteins from thermophilic organisms. Understanding the mechanisms for this thermostability would provide insights into proteins generally and permit the design of synthetic hyperstable biocatalysts. Results We have systematically tested a large number of sequence and structure derived quantities for their ability to discriminate thermostable proteins from their non-thermostable orthologs using sets of mesophile-thermophile ortholog pairs. Most of the quantities tested correspond to properties previously reported to be associated with thermostability. Many of the structure related properties were derived from the Delaunay tessellation of protein structures. Conclusions Carefully selected sequence based indices discriminate better than purely structure based indices. Combined sequence and structure based indices improve performance somewhat further. Based on our analysis, the strongest contributors to thermostability are an increase in ion pairs on the protein surface and a more strongly hydrophobic interior.

  1. Protein synthesis and its regulation: a background study related to the biological effects of radiation. Progress report, July 1, 1976--August 31, 1977

    International Nuclear Information System (INIS)

    Zamecnik, P.C.

    1977-06-01

    Results of studies are reported on delineation of the steps involved in protein synthesis and the role of transfer and messenger RNAs in the translation process. During the past year we have studied the mechanisms by which an oncogenic RNA virus modifies the growth process, and have begun to elucidate the role a novel dinucleotide, discovered in these laboratories, plays in rapidly growing cells in tissue culture

  2. Claudins, dietary milk proteins, and intestinal barrier regulation.

    Science.gov (United States)

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  3. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  4. Small angle X-ray scattering from protein in solution

    International Nuclear Information System (INIS)

    Souza, C.F. de; Torriani, I.L.

    1988-01-01

    In this work we report experiments performed with giant respiratory proteins from annelids. X-ray scattering data were obtained both by the use of conventional rotating anod source and synchotron radiation. Data from solutions with several protein concentrations were analyzed. (A.C.A.S.) [pt

  5. Protein substitution to produce a processed cheese with high ...

    African Journals Online (AJOL)

    Multiple studies report the beneficial effects of BCAAs supplementation to improve plasma amino acids imbalance, several neurologic diseases, protein energy malnutrition, and subsequently the survival rate of cirrhotic patients. Methods: In the present study we used a protein substitution technique to synthesize a new ...

  6. Biochemical characterization of the small hydrophobic protein of avian metapneumovirus.

    Science.gov (United States)

    Deng, Qiji; Song, Minxun; Demers, Andrew; Weng, Yuejin; Lu, Wuxun; Wang, Dan; Kaushik, Radhey S; Yu, Qingzhong; Li, Feng

    2012-08-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that has three membrane proteins (G, F, and SH). Among them, the SH protein is a small type II integral membrane protein that is incorporated into virions and is only present in certain paramyxoviruses. In the present study, we show that the AMPV SH protein is modified by N-linked glycans and can be released into the extracellular environment. Furthermore, we demonstrate that glycosylated AMPV SH proteins form homodimers through cysteine-mediated disulfide bonds, which has not been reported previously for SH proteins of paramyxoviruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies.

    Science.gov (United States)

    Chervyakova, Olga V; Zaitsev, Valentin L; Iskakov, Bulat K; Tailakova, Elmira T; Strochkov, Vitaliy M; Sultankulova, Kulyaisan T; Sandybayev, Nurlan T; Stanbekova, Gulshan E; Beisenov, Daniyar K; Abduraimov, Yergali O; Mambetaliyev, Muratbay; Sansyzbay, Abylay R; Kovalskaya, Natalia Y; Nemchinov, Lev G; Hammond, Rosemarie W

    2016-06-07

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  8. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Olga V. Chervyakova

    2016-06-01

    Full Text Available The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122, orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  9. Cell-specific monitoring of protein synthesis in vivo.

    Directory of Open Access Journals (Sweden)

    Nikos Kourtis

    Full Text Available Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.

  10. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation

    Directory of Open Access Journals (Sweden)

    Andreas eWachter

    2012-05-01

    Full Text Available Alternative precursor mRNA splicing is a widespread phenomenon in multicellular eukaryotes and represents a major means for functional expansion of the transcriptome. While several recent studies have revealed an important link between splicing regulation and fundamental biological processes in plants, many important aspects, such as the underlying splicing regulatory mechanisms, are so far not well understood. Splicing decisions are in general based on a splicing code that is determined by the dynamic interplay of splicing-controlling factors and cis-regulatory elements. Several members of the group of heterogeneous nuclear ribonucleoprotein (hnRNP proteins are well-known regulators of splicing in animals and the comparatively few reports on some of their plant homologues revealed similar functions. This also applies to polypyrimidine tract-binding proteins (PTBs, a thoroughly investigated class of hnRNP proteins with splicing regulatory functions in both animals and plants. Further examples from plants are auto- and cross-regulatory splicing circuits of glycine-rich RNA-binding proteins (GRPs and splicing enhancement by oligouridylatebinding proteins. Besides their role in defining splice site choice, hnRNP proteins are also involved in multiple other steps of nucleic acid metabolism, highlighting the functional versatility of this group of proteins in higher eukaryotes.

  11. A domain-based approach to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-06-01

    Full Text Available Abstract Background Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins. Results DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms. Conclusion We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed

  12. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers.

    Science.gov (United States)

    Linhoff, Michael W; Laurén, Juha; Cassidy, Robert M; Dobie, Frederick A; Takahashi, Hideto; Nygaard, Haakon B; Airaksinen, Matti S; Strittmatter, Stephen M; Craig, Ann Marie

    2009-03-12

    Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.

  13. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  14. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    Directory of Open Access Journals (Sweden)

    Walchli John

    2009-04-01

    Full Text Available Abstract Background With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. Results In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38α, viral polymerase (HCV NS5B, and bacterial structural protein (FtsZ were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. Conclusion The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  15. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element

    Directory of Open Access Journals (Sweden)

    Dudley Jaquelin P

    2009-02-01

    Full Text Available Abstract Background Mouse mammary tumor virus (MMTV encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV, human T-cell leukemia virus (HTLV, and human endogenous retrovirus type K (HERV-K. In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE. Results MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export. Conclusion These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.

  16. Neuronal Functions of Activators of G Protein Signaling

    Directory of Open Access Journals (Sweden)

    Man K. Tse

    2012-05-01

    Full Text Available G protein-coupled receptors (GPCRs are one of the most important gateways for signal transduction across the plasma membrane. Over the past decade, several classes of alternative regulators of G protein signaling have been identified and reported to activate the G proteins independent of the GPCRs. One group of such regulators is the activator of G protein signaling (AGS family which comprises of AGS1-10. They have entirely different activation mechanisms for G proteins as compared to the classic model of GPCR-mediated signaling and confer upon cells new avenues of signal transduction. As GPCRs are widely expressed in our nervous system, it is believed that the AGS family plays a major role in modulating the G protein signaling in neurons. In this article, we will review the current knowledge on AGS proteins in relation to their potential roles in neuronal regulations.

  17. Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation

    International Nuclear Information System (INIS)

    Isenman, L.D.; Dice, J.F.

    1989-01-01

    We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes. We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed [3H]ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected [ 3 H]ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides

  18. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts

    International Nuclear Information System (INIS)

    Graf, Marcus; Ludwig, Christine; Kehlenbeck, Sylvia; Jungert, Kerstin; Wagner, Ralf

    2006-01-01

    We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays

  19. Induced proteins in human melanomas by γ-ray

    International Nuclear Information System (INIS)

    Ohnishi, T.; Ihara, M.; Utsumi, H.

    1992-01-01

    When cells are exposed to environmental stresses such as heat, chemicals, radiation, the cells respond to them by synthesizing a characteristic group of proteins, called stress proteins. There are many famous stress proteins: heat shock proteins and metallothionein. Treated cells have a protective mechanism against these environmental stresses. SOS responses in Escherichia coli are most famous. As the mechanisms, when cells are exposed by many kinds of DNA damage agents, various enzymes are induced after the cleavage of repressor protein LexA by activated RecA enzyme. Thereafter, induced proteins act for DNA repair and mutagenesis. In mammalian cells there are many reports about inducible genes such as O 6 -methylguanine methyltransferase gene. This gene was also inducible by alkylating agents. The difference of radiation sensitivities may be reflected by the contents of repair enzymes(s) or the induced proteins. Therefore, this study aims on the differences in inducible proteins between radiosensitive cells and control cells. Since it was hypothesized that induced proteins concerning to DNA damage repair or the proteins to recognize the damage may exist in the nuclei, induced proteins in nuclei of γ-ray irradiated cells were analyzed. (author). 5 refs., 1 tab

  20. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  1. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  2. The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.

    Science.gov (United States)

    Mizejewski, G J

    2016-09-01

    The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.

  3. Monoclonal protein reference change value as determined by gel-based serum protein electrophoresis.

    Science.gov (United States)

    Salamatmanesh, Mina; McCudden, Christopher R; McCurdy, Arleigh; Booth, Ronald A

    2018-01-01

    The International Myeloma Working Group recommendations for monitoring disease progression or response include quantitation of the involved monoclonal immunoglobulin. They have defined the minimum change criteria of ≧25% with an absolute change of no gel-based serum protein electrophoresis. Sixteen clinically stable MGUS patients were identified from our clinical hematology database. Individual biological variability (CVi) was determined and used to calculate a monoclonal protein reference change value (RCV). Analytical variability of the normal protein fractions (albumin, alpha-1, alpha-2, beta, total gamma) ranged from 1.3% for albumin to 5.8% for the alpha-1 globulins. CVa of low (5.6g/L) and high (32.2g/L) concentration monoclonal proteins were 3.1% and 22.2%, respectively. Individual CVi of stable patients ranged from 3.5% to 24.5% with a CVi of 12.9%. The reference change value (RCV) at a 95% probability was determined to be 36.7% (low) 39.6% (high) using our CVa and CVi. Serial monitoring of monoclonal protein concentration is important for MGUS and multiple myeloma patients. Accurate criteria for interpreting a change in monoclonal protein concentration are required for appropriate decision making. We used QC results and real-world conditions to assess imprecision of serum protein fractions including low and high monoclonal protein fractions and clinically stable MGUS patients to determine CVi and RCV. The calculated RCVs of 36.7% (low) and 39.6% (high) in this study were greater that reported previously and greater than the established criteria for relapse. Response criteria may be reassessed to increase sensitivity and specificity for detection of response. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. A statistical view of protein chemical synthesis using NCL and extended methodologies.

    Science.gov (United States)

    Agouridas, Vangelis; El Mahdi, Ouafâa; Cargoët, Marine; Melnyk, Oleg

    2017-09-15

    Native chemical ligation and extended methodologies are the most popular chemoselective reactions for protein chemical synthesis. Their combination with desulfurization techniques can give access to small or challenging proteins that are exploited in a large variety of research areas. In this report, we have conducted a statistical review of their use for protein chemical synthesis in order to provide a flavor of the recent trends and identify the most popular chemical tools used by protein chemists. To this end, a protein chemical synthesis (PCS) database (http://pcs-db.fr) was created by collecting a set of relevant data from more than 450 publications covering the period 1994-2017. A preliminary account of what this database tells us is presented in this report. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    Science.gov (United States)

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  6. Structure and function of nanoparticle-protein conjugates

    International Nuclear Information System (INIS)

    Aubin-Tam, M-E; Hamad-Schifferli, K

    2008-01-01

    Conjugation of proteins to nanoparticles has numerous applications in sensing, imaging, delivery, catalysis, therapy and control of protein structure and activity. Therefore, characterizing the nanoparticle-protein interface is of great importance. A variety of covalent and non-covalent linking chemistries have been reported for nanoparticle attachment. Site-specific labeling is desirable in order to control the protein orientation on the nanoparticle, which is crucial in many applications such as fluorescence resonance energy transfer. We evaluate methods for successful site-specific attachment. Typically, a specific protein residue is linked directly to the nanoparticle core or to the ligand. As conjugation often affects the protein structure and function, techniques to probe structure and activity are assessed. We also examine how molecular dynamics simulations of conjugates would complete those experimental techniques in order to provide atomistic details on the effect of nanoparticle attachment. Characterization studies of nanoparticle-protein complexes show that the structure and function are influenced by the chemistry of the nanoparticle ligand, the nanoparticle size, the nanoparticle material, the stoichiometry of the conjugates, the labeling site on the protein and the nature of the linkage (covalent versus non-covalent)

  7. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Mateu, Batirtze Prats; Pum, Dietmar; Sleytr, Uwe B; Toca-Herrera, José L; Kainz, Birgit

    2014-01-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  8. Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo.

    Science.gov (United States)

    Mootz, Henning D; Blum, Elyse S; Tyszkiewicz, Amy B; Muir, Tom W

    2003-09-03

    Protein splicing is a naturally occurring process in which an intervening intein domain excises itself out of a precursor polypeptide in an autocatalytic fashion with concomitant linkage of the two flanking extein sequences by a native peptide bond. We have recently reported an engineered split VMA intein whose splicing activity in trans between two polypeptides can be triggered by the small molecule rapamycin. In this report, we show that this conditional protein splicing (CPS) system can be used in mammalian cells. Two model constructs harboring maltose-binding protein (MBP) and a His-tag as exteins were expressed from a constitutive promoter after transient transfection. The splicing product MBP-His was detected by Western blotting and immunoprecipitation in cells treated with rapamycin or a nontoxic analogue thereof. No background splicing in the absence of the small-molecule inducer was observed over a 24-h time course. Product formation could be detected within 10 min of addition of rapamycin, indicating the advantage of the posttranslational nature of CPS for quick responses. The level of protein splicing was dose dependent and could be competitively attenuated with the small molecule ascomycin. In related studies, the geometric flexibility of the CPS components was investigated with a series of purified proteins. The FKBP and FRB domains, which are dimerized by rapamycin and thereby induce the reconstitution of the split intein, were fused to the extein sequences of the split intein halves. CPS was still triggered by rapamycin when FKBP and FRB occupied one or both of the extein positions. This finding suggests yet further applications of CPS in the area of proteomics. In summary, CPS holds great promise to become a powerful new tool to control protein structure and function in vitro and in living cells.

  9. Ménage à trois: the complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins.

    Science.gov (United States)

    Weyhe, Martin; Eschen-Lippold, Lennart; Pecher, Pascal; Scheel, Dierk; Lee, Justin

    2014-01-01

    Out of the 34 members of the VQ-motif-containing protein (VQP) family, 10 are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families - either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change - for instance, through MPK3/6-mediated modulation of protein stability - and therefore control defense gene transcription.

  10. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  11. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  12. The Role of RUB (related to ubiquitin) Family of Proteins in the Hormone Response. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Callis, Judy [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology

    2013-03-22

    The Rub pathway is a conserved protein modification pathway. RUB (called Rubp1 in budding yeast, Nedd8 in animals and RUB in plants) is a ubiquitin-like 76-amino acid protein. It covalently attaches to protein using an enzymatic machinery analogous to the enzymes that attach ubiquitin to its substrate proteins. However, the nature of the complement of Rub-modified proteins in organisms was not clear. From bioinformatics analyses, one can identify a Rub activating enzymes and Rub conjugating enzymes. However, in many cases, their biochemical properties were not described. In DOE-funded work, we made major advances in our understanding of the Rub pathway in yeast and plants, work that is applicable to other organisms as well. There is a multi-subunit enzyme called SCF in all eukaryotes. The SCF consists of several subunits that serve as a scaffold (the cullin, SKP and RBX subunits) and one subunit that interacts with the substrate. This cullin protein (called Cdc53p in yeast and CULLIN 1 in plants and animals) was a known Rub target. In this work, we identified additional Rub targets in yeast as the other cullin-like proteins Cul3p and Rtt101p. Additionally we described the conservation of the Rub pathway because plant RUB1 can conjugated to yeast Cdc53p- in yeast. In the model plant Arabidopsis thaliana, we characterized the Rub activating enzymes and showed that they are not biochemically equivalent. We also showed that the Rub pathway is essential in plants and characterized plants with reduced levels of rub proteins. These plants are affected in multiple developmental processes. We discovered that they over-produce ethylene as dark-grown seedlings. We characterized a mutant allele of CULLIN1 in Arabidopsis with impaired interaction with RBX and showed that it is unstable in vivo. We used our knowledge of monitoring protein degradation to map the degradation determinants in a plant transcription factor. Finally, we took a mass spectrometric approach to identify

  13. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Cockayne syndrome protein A in complex with DNA damage-binding protein 1

    International Nuclear Information System (INIS)

    Meulenbroek, Elisabeth M.; Pannu, Navraj S.

    2011-01-01

    Human Cockayne syndrome protein A has been cocrystallized with human DNA damage-binding protein 1 and data have been collected to 2.9 Å resolution. Cockayne syndrome protein A is one of the main components in mammalian transcription coupled repair. Here, the overproduction, purification and crystallization of human Cockayne syndrome protein A in complex with its interacting partner DNA damage binding protein 1 are reported. The complex was coproduced in insect cells, copurified and crystallized using sitting drops with PEG 3350 and sodium citrate as crystallizing agents. The crystals had unit-cell parameters a = b = 142.03, c = 250.19 Å and diffracted to 2.9 Å resolution on beamline ID14-1 at the European Synchrotron Radiation Facility

  14. Random close packing in protein cores.

    Science.gov (United States)

    Gaines, Jennifer C; Smith, W Wendell; Regan, Lynne; O'Hern, Corey S

    2016-03-01

    Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈ 0.75, a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈ 0.56, which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.

  15. Protein unfolding with a steric trap.

    Science.gov (United States)

    Blois, Tracy M; Hong, Heedeok; Kim, Tae H; Bowie, James U

    2009-10-07

    The study of protein folding requires a method to drive unfolding, which is typically accomplished by altering solution conditions to favor the denatured state. This has the undesirable consequence that the molecular forces responsible for configuring the polypeptide chain are also changed. It would therefore be useful to develop methods that can drive unfolding without the need for destabilizing solvent conditions. Here we introduce a new method to accomplish this goal, which we call steric trapping. In the steric trap method, the target protein is labeled with two biotin tags placed close in space so that both biotin tags can only be bound by streptavidin when the protein unfolds. Thus, binding of the second streptavidin is energetically coupled to unfolding of the target protein. Testing the method on a model protein, dihydrofolate reductase (DHFR), we find that streptavidin binding can drive unfolding and that the apparent binding affinity reports on changes in DHFR stability. Finally, by employing the slow off-rate of wild-type streptavidin, we find that DHFR can be locked in the unfolded state. The steric trap method provides a simple method for studying aspects of protein folding and stability in native solvent conditions, could be used to specifically unfold selected domains, and could be applicable to membrane proteins.

  16. Monitoring protein synthesis by fluorescence recovery after photobleaching (FRAP) in vivo

    OpenAIRE

    sprotocols

    2015-01-01

    Currently available methodologies for measuring protein synthesis rates rely on metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides. These approaches are hampered by several limitations and cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. Here, we describe a novel method for monitoring protein synthesis in specific cells and tissues of live Caenorhabditis elegans animals. Fluorescent reporter proteins such as...

  17. The nucleocapsid protein of measles virus blocks host interferon response

    International Nuclear Information System (INIS)

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko

    2012-01-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-α/β and γ-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  18. The nucleocapsid protein of measles virus blocks host interferon response

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko, E-mail: ckai@ims.u-tokyo.ac.jp

    2012-03-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-{alpha}/{beta} and {gamma}-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  19. Protein synthesis and sublethal damage repair in synchronized CHO cells

    International Nuclear Information System (INIS)

    Yezzi, M.J.; Tobias, C.A.; Blakely, E.A.

    1984-01-01

    The authors have previously reported that the split dose survival response to x-rays of asynchronous CHO-TSH1 cells is reduced if the cells are held at 40 0 C,a temperature that inhibits protein synthesis, for 2 hours before the first dose and during a 2-hour interval between doses. In conjunction with the survival experiments on asynchronous cells, the authors also examined the DNA rejoining ability in split dose studies with and without inhibition of protein synthesis. The results of these experiments suggest that inhibition of protein synthesis affects a pool of proteins that are necessary for the correct expression of the DNA, although they do not appear to be involved in rejoining DNA breaks. They have extended this work to the study of cells synchronized in G1 phase (2 hour post-mitosis) and S phase (10 hour post-mitosis). Autoradiographic analyses, using 3H-TdR pulse labeling, demonstrated that a delay in the progression of each synchronized cell population occurs after inhibition of protein synthesis. Data are reported on the effects of inhibition of protein synthesis on the ability of G1 and S phase cells to repair sublethal damage

  20. A two-hybrid assay to study protein interactions within the secretory pathway.

    Directory of Open Access Journals (Sweden)

    Danielle H Dube

    Full Text Available Interactions of transcriptional activators are difficult to study using transcription-based two-hybrid assays due to potent activation resulting in false positives. Here we report the development of the Golgi two-hybrid (G2H, a method that interrogates protein interactions within the Golgi, where transcriptional activators can be assayed with negligible background. The G2H relies on cell surface glycosylation to report extracellularly on protein-protein interactions occurring within the secretory pathway. In the G2H, protein pairs are fused to modular domains of the reporter glycosyltransferase, Och1p, and proper cell wall formation due to Och1p activity is observed only when a pair of proteins interacts. Cells containing interacting protein pairs are identified by selectable phenotypes associated with Och1p activity and proper cell wall formation: cells that have interacting proteins grow under selective conditions and display weak wheat germ agglutinin (WGA binding by flow cytometry, whereas cells that lack interacting proteins display stunted growth and strong WGA binding. Using this assay, we detected the interaction between transcription factor MyoD and its binding partner Id2. Interfering mutations along the MyoD:Id2 interaction interface ablated signal in the G2H assay. Furthermore, we used the G2H to detect interactions of the activation domain of Gal4p with a variety of binding partners. Finally, selective conditions were used to enrich for cells encoding interacting partners. The G2H detects protein-protein interactions that cannot be identified via traditional two-hybrid methods and should be broadly useful for probing previously inaccessible subsets of the interactome, including transcriptional activators and proteins that traffic through the secretory pathway.

  1. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Seed protein improvement in cereals and grain legumes

    International Nuclear Information System (INIS)

    1979-01-01

    Based upon the recommendations of a panel of experts in 1968, the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture established an international programme to improve the protein content and quality in seed crops of importance to developing countries. Reports of previous meetings held under this programme have been published by the IAEA. The meeting on Seed Protein Improvement in Cereals and Grain Legumes, held in September 1978, marked the formal end of the FAO/IAEA/GSF Co-ordinated Research Programme on Seed Protein Improvement. It reviewed the progress achieved. Volume I covers 27 papers. Following a review of the world protein and nutritional situation, the contributions are grouped under the main headings of the need for and use of variability in protein characteristics; genetics, biochemistry and physiology of seed storage proteins; analytical and nutritional techniques; and coordinated research programmes under a joint FAO/IAEA/GSF programme on grain protein improvement. Individual papers of direct relevance are cited as separate entries in INIS

  3. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    Science.gov (United States)

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  4. Thermal precipitation fluorescence assay for protein stability screening.

    Science.gov (United States)

    Fan, Junping; Huang, Bo; Wang, Xianping; Zhang, Xuejun C

    2011-09-01

    A simple and reliable method of protein stability assessment is desirable for high throughput expression screening of recombinant proteins. Here we described an assay termed thermal precipitation fluorescence (TPF) which can be used to compare thermal stabilities of recombinant protein samples directly from cell lysate supernatants. In this assay, target membrane proteins are expressed as recombinant fusions with a green fluorescence protein tag and solubilized with detergent, and the fluorescence signals are used to report the quantity of the fusion proteins in the soluble fraction of the cell lysate. After applying a heat shock, insoluble protein aggregates are removed by centrifugation. Subsequently, the amount of remaining protein in the supernatant is quantified by in-gel fluorescence analysis and compared to samples without a heat shock treatment. Over 60 recombinant membrane proteins from Escherichia coli were subject to this screening in the presence and absence of a few commonly used detergents, and the results were analyzed. Because no sophisticated protein purification is required, this TPF technique is suitable to high throughput expression screening of recombinant membrane proteins as well as soluble ones and can be used to prioritize target proteins based on their thermal stabilities for subsequent large scale expression and structural studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Green Fluorescent Protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora ramorum

    Science.gov (United States)

    Marko Riedel; Gautier Calmin; Lassaad Belbahri; Francois Lefort; Monika Gotz; Stefan Wagner; Sabine. Werres

    2009-01-01

    Transgenic Phytophthora ramorum strains that produce green fluorescent protein (GFP) constitutively were obtained after stable DNA integration using a polyethylene glycol and CaCl2-based transformation protocol. Green fluorescent protein production was studied in developing colonies and in different propagules of the pathogen...

  6. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer

    Science.gov (United States)

    CHEN, CHEN; SHEN, HONG; ZHANG, LI-GUO; LIU, JIAN; CAO, XIAO-GE; YAO, AN-LIANG; KANG, SHAO-SAN; GAO, WEI-XING; HAN, HUI; CAO, FENG-HONG; LI, ZHI-GUO

    2016-01-01

    Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963

  7. Protein engineering and its applications in food industry.

    Science.gov (United States)

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2017-07-24

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  8. Overexpression of the anti-apoptotic protein BAG3 in human choroidal melanoma: A case report.

    Science.gov (United States)

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Kondo, Takashi; Ishii, Yoko; Hayashi, Atsushi

    2017-06-01

    Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), exerts anti-apoptotic effects in various malignant tumors. However, relationships between choroidal melanoma and BAG3 are poorly studied. This study investigated the expression of BAG3 in a case of human choroidal melanoma. Funduscopy, computed tomography, and single-photon emission computed tomography with the intravenous injection of N-isopropyl-p-[ 123 I] iodoamphetamine strongly indicated choroidal melanoma in a 68-year-old woman. Accordingly, we carried out an enucleation and pathological diagnosis. Proteins and total RNA were extracted from normal retinochoroidal and tumor tissues. Proteins were also extracted from ocular nevus tissues of other patients. We examined the expression of BAG3 protein and mRNA using Western blotting and the real-time quantitative polymerase chain reaction, respectively. Immunohistochemical stains were positive for melan-A, HMB-45, and S-100. Histopathology confirmed a choroidal melanoma. The expression of BAG3 protein and mRNA in the choroidal melanoma tissue was upregulated with respect to both normal retinochoroidal tissue and ocular nevus tissues from other patients. Because BAG3 may inhibit apoptosis of choroidal melanoma and facilitate its survival, overexpression of this gene product may be a prognostic marker and therapeutic target.

  9. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  10. Inherited protein S deficiency due to a novel nonsense mutation in the PROS1 gene in the patient with recurrent vascular access thrombosis: A case report

    Directory of Open Access Journals (Sweden)

    Eun Jin Cho

    2012-03-01

    Full Text Available Vascular access thrombosis is one of the major causes of morbidity in patients maintained on chronic hemodialysis. Thrombophilia has been recognized as a risk factor of vascular access thrombosis. The authors report a case of inherited protein S deficiency associated with vascular access thrombotic events. DNA sequence analysis of the PROS1 gene identified a novel heterozygous nonsense mutation in exon 10 by transition of AAG (lysine to TAG (stop codon at codon 473 (c.1417A>T, p.K473X. Results from the study suggest that the inherited protein S deficiency due to a PROS1 gene mutation may cause vascular access thrombosis in hemodialysis patients.

  11. Purification and characterization of Escherichia coli MreB protein.

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J

    2013-02-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μM.

  12. Purification and Characterization of Escherichia coli MreB Protein*

    Science.gov (United States)

    Nurse, Pearl; Marians, Kenneth J.

    2013-01-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm. PMID:23235161

  13. Brain transcriptome-wide screen for HIV-1 Nef protein interaction partners reveals various membrane-associated proteins.

    Directory of Open Access Journals (Sweden)

    Ellen C Kammula

    Full Text Available HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions. Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7, CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1 Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef interaction partners may help to further elucidate the molecular basis of HIV-related diseases.

  14. Polycomb group protein bodybuilding: working out the routines.

    Science.gov (United States)

    Sievers, Cem; Paro, Renato

    2013-09-30

    Polycomb group (PcG) proteins regulate gene expression by modifying chemical and structural properties of chromatin. Isono et al. (2013) now report in Developmental Cell a polymerization-dependent mechanism used by PcG proteins to form higher-order chromatin structures, referred to as Polycomb bodies, and demonstrate its necessity for gene silencing. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. High-throughput assessment of context-dependent effects of chromatin proteins

    NARCIS (Netherlands)

    Brueckner, L. (Laura); Van Arensbergen, J. (Joris); Akhtar, W. (Waseem); L. Pagie (Ludo); B. van Steensel (Bas)

    2016-01-01

    textabstractBackground: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy

  16. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles

    Science.gov (United States)

    A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or an...

  17. Ranking beta sheet topologies of proteins

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel

    2010-01-01

    One of the challenges of protein structure prediction is to identify long-range interactions between amino acids. To reliably predict such interactions, we enumerate, score and rank all beta-topologies (partitions of beta-strands into sheets, orderings of strands within sheets and orientations...... of paired strands) of a given protein. We show that the beta-topology corresponding to the native structure is, with high probability, among the top-ranked. Since full enumeration is very time-consuming, we also suggest a method to deal with proteins with many beta-strands. The results reported...... in this paper are highly relevant for ab initio protein structure prediction methods based on decoy generation. The top-ranked beta-topologies can be used to find initial conformations from which conformational searches can be started. They can also be used to filter decoys by removing those with poorly...

  18. Engineering nutritious proteins: improvement of stability in the designer protein MB-1 via introduction of disulfide bridges.

    Science.gov (United States)

    Doucet, Alain; Williams, Martin; Gagnon, Mylene C; Sasseville, Maxime; Beauregard, Marc

    2002-01-02

    Protein design is currently used for the creation of new proteins with desirable traits. In this laboratory the focus has been on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations faced in this endeavor is achieving stable proteins despite a highly biased amino acid content. Reported here are the synthesis and characterization of two disulfide-bridged mutants derived from the MB-1 designer protein. Both mutants outperformed their parent protein MB-1 with their bridge formed, as shown by circular dichroism, size exclusion chromatography, thermal denaturation, and proteolytic degradation experiments. When the disulfide bridges were cleaved, the mutants' behavior changed: the mutants significantly unfolded, suggesting that the introduction of Cys residues was deleterious to MB-1-folding. In an attempt to compensate for the mutations used, a Tyr62-Trp mutation was performed, leading to an increase in bulk and hydrophobicity in the core. The Trp-containing disulfide-bridged mutants did not behave as well as the original MB-1Trp, suggesting that position 62 might not be adequate for a compensatory mutation.

  19. Protein interfacial structure and nanotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    White, John W. [Research School of Chemistry, Australian National University, Canberra (Australia)], E-mail: jww@rsc.anu.edu.au; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M. [Research School of Chemistry, Australian National University, Canberra (Australia)

    2009-02-21

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between {beta}-casein and {kappa}-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a {beta}-casein monolayer is attacked by a {kappa}-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a {beta}-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  20. Protein interfacial structure and nanotoxicology

    International Nuclear Information System (INIS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M.

    2009-01-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  1. Observing Protein & Energy Nutrition (OPEN) Study

    Science.gov (United States)

    The Observing Protein and Energy Nutrition (OPEN) Study was designed to assess dietary measurement error by comparing results from self-reported dietary intake data with four dietary biomarkers: doubly labeled water and urinary nitrogen, sodium, and potassium.

  2. 2BC Non-Structural Protein of Enterovirus A71 Interacts with SNARE Proteins to Trigger Autolysosome Formation.

    Science.gov (United States)

    Lai, Jeffrey K F; Sam, I-Ching; Verlhac, Pauline; Baguet, Joël; Eskelinen, Eeva-Liisa; Faure, Mathias; Chan, Yoke Fun

    2017-07-04

    Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N -ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.

  3. Serum protein capillary electrophoresis and measurement of acute phase proteins in a captive cheetah (Acinonyx jubatus) population.

    Science.gov (United States)

    Depauw, Sarah; Delanghe, Joris; Whitehouse-Tedd, Katherine; Kjelgaard-Hansen, Mads; Christensen, Michelle; Hesta, Myriam; Tugirimana, Pierrot; Budd, Jane; Dermauw, Veronique; Janssens, Geert P J

    2014-09-01

    Renal and gastrointestinal pathologies are widespread in the captive cheetah (Acinonyx jubatus) population but are often diagnosed at a late stage, because diagnostic tools are limited to the evaluation of clinical signs or general blood examination. Presently, no data are available on serum proteins and acute-phase proteins in cheetahs during health or disease, although they might be important to improve health monitoring. This study aimed to quantify serum proteins by capillary electrophoresis in 80 serum samples from captive cheetahs, categorized according to health status and disease type. Moreover, serum amyloid A concentrations were measured via a turbidimetric immunoassay validated in domestic cats, whereas haptoglobin and C-reactive protein were determined by non-species-specific functional tests. Cheetahs classified as healthy had serum protein and acute phase protein concentrations within reference ranges for healthy domestic cats. In contrast, unhealthy cheetahs had higher (P cheetahs suffering from chronic kidney disease were significantly greater compared to the reportedly healthy cheetahs. Our study indicates that serum proteins in the cheetah can be analyzed by routine capillary electrophoresis, whereas acute-phase proteins can be measured using available immunoassays or non-species-specific techniques, which are also likely to be applicable in other exotic felids. Moreover, results suggest that serum amyloid A and haptoglobin are important acute-phase proteins in the diseased cheetah and highlight the need to evaluate their role as early-onset markers for disease.

  4. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces.

    Directory of Open Access Journals (Sweden)

    Ruzianisra Mohamed

    Full Text Available Protein-protein interactions (PPIs play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP complexes, and 161 protein-ligand (PL complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.

  5. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  6. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  7. Single-molecule protein sequencing through fingerprinting: computational assessment

    Science.gov (United States)

    Yao, Yao; Docter, Margreet; van Ginkel, Jetty; de Ridder, Dick; Joo, Chirlmin

    2015-10-01

    Proteins are vital in all biological systems as they constitute the main structural and functional components of cells. Recent advances in mass spectrometry have brought the promise of complete proteomics by helping draft the human proteome. Yet, this commonly used protein sequencing technique has fundamental limitations in sensitivity. Here we propose a method for single-molecule (SM) protein sequencing. A major challenge lies in the fact that proteins are composed of 20 different amino acids, which demands 20 molecular reporters. We computationally demonstrate that it suffices to measure only two types of amino acids to identify proteins and suggest an experimental scheme using SM fluorescence. When achieved, this highly sensitive approach will result in a paradigm shift in proteomics, with major impact in the biological and medical sciences.

  8. Single-molecule protein sequencing through fingerprinting: computational assessment

    International Nuclear Information System (INIS)

    Yao, Yao; Docter, Margreet; Van Ginkel, Jetty; Joo, Chirlmin; De Ridder, Dick

    2015-01-01

    Proteins are vital in all biological systems as they constitute the main structural and functional components of cells. Recent advances in mass spectrometry have brought the promise of complete proteomics by helping draft the human proteome. Yet, this commonly used protein sequencing technique has fundamental limitations in sensitivity. Here we propose a method for single-molecule (SM) protein sequencing. A major challenge lies in the fact that proteins are composed of 20 different amino acids, which demands 20 molecular reporters. We computationally demonstrate that it suffices to measure only two types of amino acids to identify proteins and suggest an experimental scheme using SM fluorescence. When achieved, this highly sensitive approach will result in a paradigm shift in proteomics, with major impact in the biological and medical sciences. (paper)

  9. A novel expansin protein from the white-rot fungus Schizophyllum commune.

    Directory of Open Access Journals (Sweden)

    Omar Eduardo Tovar-Herrera

    Full Text Available A novel expansin protein (ScExlx1 was found, cloned and expressed from the Basidiomycete fungus Schizophylum commune. This protein showed the canonical features of plant expansins. ScExlx1 showed the ability to form "bubbles" in cotton fibers, reduce the size of avicel particles and enhance reducing sugar liberation from cotton fibers pretreated with the protein and then treated with cellulases. ScExlx1 was able to bind cellulose, birchwood xylan and chitin and this property was not affected by different sodium chloride concentrations. A novel property of ScExlx1 is its capacity to enhance reducing sugars (N-acetyl glucosamine liberation from pretreated chitin and further added with chitinase, which has not been reported for any expansin or expansin-like protein. To the best of our knowledge, this is the first report of a bona fide fungal expansin found in a basidiomycete and we could express the bioactive protein in Pichia pastoris.

  10. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Daniele Marcotulli

    2017-12-01

    Full Text Available Presynaptic proteins are potential therapeutic targets for epilepsy and other neurological diseases. We tested the hypothesis that chronic treatment with the SV2A ligand levetiracetam affects the expression of other presynaptic proteins. Results showed that in rat neocortex no significant difference was detected in SV2A protein levels in levetiracetam treated animals compared to controls, whereas levetiracetam post-transcriptionally decreased several vesicular proteins and increased LRRK2, without any change in mRNA levels. Analysis of SV2A interactome indicates that the presynaptic proteins regulation induced by levetiracetam reported here is mediated by this interactome, and suggests that LRRK2 plays a role in forging the pattern of effects.

  11. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer.

    Science.gov (United States)

    Lynch, Jennifer R; Wang, Jenny Yingzi

    2016-05-11

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  12. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer R. Lynch

    2016-05-01

    Full Text Available G protein-coupled receptors (GPCRs are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84 and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  13. Hidden Markov model-derived structural alphabet for proteins: the learning of protein local shapes captures sequence specificity.

    Science.gov (United States)

    Camproux, A C; Tufféry, P

    2005-08-05

    Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. We have recently set up a Hidden Markov Model to optimally compress protein three-dimensional conformations into a one-dimensional series of letters of a structural alphabet. Such a model learns simultaneously the shape of representative structural letters describing the local conformation and the logic of their connections, i.e. the transition matrix between the letters. Here, we move one step further and report some evidence that such a model of protein local architecture also captures some accurate amino acid features. All the letters have specific and distinct amino acid distributions. Moreover, we show that words of amino acids can have significant propensities for some letters. Perspectives point towards the prediction of the series of letters describing the structure of a protein from its amino acid sequence.

  14. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex

    Directory of Open Access Journals (Sweden)

    Lisa M. Tuttle

    2018-03-01

    Full Text Available Summary: Transcription activation domains (ADs are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. : Tuttle et al. report a “fuzzy free-for-all” interaction mechanism that explains how seemingly unrelated transcription activators converge on a limited number of coactivator targets. The mechanism provides a rationale for the observation that individually weak and low-specificity interactions can combine to produce biologically critical function without requiring highly ordered structure. Keywords: transcription activation, intrinsically disordered proteins, fuzzy binding

  15. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  16. Al cation induces aggregation of serum proteins.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-07-15

    Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Biomimetic devices functionalized by membrane channel proteins

    Science.gov (United States)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  18. Interactions between Therapeutic Proteins and Acrylic Acid Leachable.

    Science.gov (United States)

    Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da

    2012-01-01

    Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.

  19. Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Lifang; Zhang, Yiming; Liu, Zihe

    2015-01-01

    Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested in incre......Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested...... in increasing recombinant protein production under aerobic conditions so we focused on Rox1p regulation. Rox1p is a transcriptional regulator, which in oxidative conditions represses genes induced in hypoxia. We deleted ROX1 and studied the effects on the production of recombinant proteins in Saccharomyces...

  20. A feedback framework for protein inference with peptides identified from tandem mass spectra

    Directory of Open Access Journals (Sweden)

    Shi Jinhong

    2012-11-01

    Full Text Available Abstract Background Protein inference is an important computational step in proteomics. There exists a natural nest relationship between protein inference and peptide identification, but these two steps are usually performed separately in existing methods. We believe that both peptide identification and protein inference can be improved by exploring such nest relationship. Results In this study, a feedback framework is proposed to process peptide identification reports from search engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification reports according to the framework. The iterative method is verified on two datasets with known validity of proteins and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more true positive and less false positive peptides than PeptideProphet. Conclusions The proposed iterative method implemented according to the feedback framework can unify and improve the results of peptide identification and protein inference.

  1. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  2. Total protein, albumin and low-molecular-weight protein excretion in HIV-positive patients

    Directory of Open Access Journals (Sweden)

    Campbell Lucy J

    2012-08-01

    Full Text Available Abstract Background Chronic kidney disease is common in HIV positive patients and renal tubular dysfunction has been reported in those receiving combination antiretroviral therapy (cART. Tenofovir (TFV in particular has been linked to severe renal tubular disease as well as proximal tubular dysfunction. Markedly elevated urinary concentrations of retinal-binding protein (RBP have been reported in patients with severe renal tubular disease, and low-molecular-weight proteins (LMWP such as RBP may be useful in clinical practice to assess renal tubular function in patients receiving TFV. We analysed 3 LMWP as well as protein and albumin in the urine of a sample of HIV positive patients. Methods In a cross-sectional fashion, total protein, albumin, RBP, cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL were quantified in random urine samples of 317 HIV positive outpatients and expressed as the ratio-to-creatinine (RBPCR, CCR and NGALCR. Exposure to cART was categorised as none, cART without TFV, and cART containing TFV and a non-nucleoside reverse-transcriptase-inhibitor (TFV/NNRTI or TFV and a protease-inhibitor (TFV/PI. Results Proteinuria was present in 10.4 % and microalbuminuria in 16.7 % of patients. Albumin accounted for approximately 10 % of total urinary protein. RBPCR was within the reference range in 95 % of patients while NGALCR was elevated in 67 % of patients. No overall differences in urine protein, albumin, and LMWP levels were observed among patients stratified by cART exposure, although a greater proportion of patients exposed to TFV/PI had RBPCR >38.8 μg/mmol (343 μg/g (p = 0.003. In multivariate analyses, black ethnicity (OR 0.43, 95 % CI 0.24, 0.77 and eGFR 2 (OR 3.54, 95 % CI 1.61, 7.80 were independently associated with upper quartile (UQ RBPCR. RBPCR correlated well to CCR (r2 = 0.71, but not to NGALCR, PCR or ACR. Conclusions In HIV positive patients, proteinuria was predominantly of

  3. Filling and mining the reactive metabolite target protein database.

    Science.gov (United States)

    Hanzlik, Robert P; Fang, Jianwen; Koen, Yakov M

    2009-04-15

    The post-translational modification of proteins is a well-known endogenous mechanism for regulating protein function and activity. Cellular proteins are also susceptible to post-translational modification by xenobiotic agents that possess, or whose metabolites possess, significant electrophilic character. Such non-physiological modifications to endogenous proteins are sometimes benign, but in other cases they are strongly associated with, and are presumed to cause, lethal cytotoxic consequences via necrosis and/or apoptosis. The Reactive Metabolite Target Protein Database (TPDB) is a searchable, freely web-accessible (http://tpdb.medchem.ku.edu:8080/protein_database/) resource that attempts to provide a comprehensive, up-to-date listing of known reactive metabolite target proteins. In this report we characterize the TPDB by reviewing briefly how the information it contains came to be known. We also compare its information to that provided by other types of "-omics" studies relevant to toxicology, and we illustrate how bioinformatic analysis of target proteins may help to elucidate mechanisms of cytotoxic responses to reactive metabolites.

  4. Destabilization of Heterologous Proteins Mediated by the GSK3β Phosphorylation Domain of the β-Catenin Protein

    Directory of Open Access Journals (Sweden)

    Yuhan Kong

    2013-11-01

    Full Text Available Background and Aims: Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal degradation domain. Aberrant activation of β-catenin signaling has been implicated in the development of human cancers. It has been recently suggested that GSK3βmay play an essential role in regulating global protein turnover. Here, we investigate if the GSK3β phosphorylation site-containing degradation domain of β-catenin is sufficient to destabilize heterologous proteins. Methods and Results: We engineer chimeric proteins by fusing β-catenin degradation domain at the N- and/or C-termini of the enhanced green fluorescent protein (eGFP. In both transient and stable expression experiments, the chimeric GFP proteins exhibit a significantly decreased stability, which can be effectively antagonized by lithium and Wnt1. An activating mutation in the destruction domain significantly stabilizes the fusion protein. Furthermore, GSK3 inhibitor SB-216763 effectively increases the GFP signal of the fusion protein. Conversely, the inhibition of Wnt signaling with tankyrase inhibitor XAV939 results in a decrease in GFP signal of the fusion proteins, while these small molecules have no significant effects on the mutant destruction domain-GFP fusion protein. Conclusion: Our findings strongly suggest that the β-catenin degradation domain may be sufficient to destabilize heterologous proteins in Wnt signaling-dependent manner. It is conceivable that the chimeric GFP proteins may be used as a functional reporter to measure the dynamic status of β-catenin signaling, and to identify potential anticancer drugs that target β-catenin signaling.

  5. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera.

    Science.gov (United States)

    Zhu, Jiao; Iovinella, Immacolata; Dani, Francesca Romana; Liu, Yu-Ling; Huang, Ling-Qiao; Liu, Yang; Wang, Chen-Zhu; Pelosi, Paolo; Wang, Guirong

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are endowed with several different functions besides being carriers for pheromones and odorants. Based on a previous report of a CSP acting as surfactant in the proboscis of the moth Helicoverpa armigera , we revealed the presence of orthologue proteins in two other moths Plutella xylostella and Chilo suppressalis , as well as two butterflies Papilio machaon and Pieris rapae , using immunodetection and proteomic analysis. The unusual conservation of these proteins across large phylogenetic distances indicated a common specific function for these CSPs. This fact prompted us to search for other functions of these proteins and discovered that CSPs are abundantly expressed in the eyes of H. armigera and possibly involved as carriers for carotenoids and visual pigments. This hypothesis is supported by ligand-binding experiments and docking simulations with retinol and β-carotene. This last orange pigment, occurring in many fruits and vegetables, is an antioxidant and the precursor of visual pigments. We propose that structurally related CSPs solubilise nutritionally important carotenoids in the proboscis, while they act as carriers of both β-carotene and its derived products 3-hydroxyretinol and 3-hydroxyretinal in the eye. The use of soluble olfactory proteins, such as CSPs, as carriers for visual pigments in insects, here reported for the first time, parallels the function of retinol-binding protein in vertebrates, a lipocalin structurally related to vertebrate odorant-binding proteins.

  6. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  7. Prion protein induced signaling cascades in monocytes

    International Nuclear Information System (INIS)

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Schmalzbauer, Ruediger; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A.

    2006-01-01

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP C ), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP C fusion proteins synthesized with a human Fc-tag. PrP C fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK 1,2 and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP C in monocytes and macrophages

  8. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  9. Protein Determinants of Meiotic DNA Break Hotspots

    Science.gov (United States)

    Fowler, Kyle R.; Gutiérrez-Velasco, Susana

    2013-01-01

    SUMMARY Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is an unsolved problem, although transcription factors determine some hotspots. We report the discovery that three coiled-coil proteins – Rec25, Rec27, and Mug20 – bind essentially all hotspots with unprecedented specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose a new paradigm for hotspot determination and crossover control by linear element proteins. PMID:23395004

  10. Intrinsically Disordered Segments Affect Protein Half-Life in the Cell and during Evolution

    NARCIS (Netherlands)

    Lee, R.T.J.G. van der; Lang, B.; Kruse, K.; Gsponer, J.; Groot, N.; Huynen, M.A.; Matouschek, A.; Fuxreiter, M.; Babu, M.M.

    2014-01-01

    Precise control of protein turnover is essential for cellular homeostasis. The ubiquitin-proteasome system is well established as a major regulator of protein degradation, but an understanding of how inherent structural features influence the lifetimes of proteins is lacking. We report that yeast,

  11. Do vulnerable populations consume adequate amounts of dietary protein?

    Science.gov (United States)

    In the previous year there has been a renewed interest in the adequacy of protein intake to maintain optimal health and to promote normal growth and development (1, 2). In this issue of the Journal there is an excellent report on protein consumption among children aged 6–36 mo from low-income countr...

  12. Aptamer-Phage Reporters for Ultrasensitive Lateral Flow Assays.

    Science.gov (United States)

    Adhikari, Meena; Strych, Ulrich; Kim, Jinsu; Goux, Heather; Dhamane, Sagar; Poongavanam, Mohan-Vivekanandan; Hagström, Anna E V; Kourentzi, Katerina; Conrad, Jacinta C; Willson, Richard C

    2015-12-01

    We introduce the modification of bacteriophage particles with aptamers for use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ∼100 times lower than those of previously reported IgE assays.

  13. Transfection of Eimeria mitis with yellow fluorescent protein as reporter and the endogenous development of the transgenic parasite.

    Directory of Open Access Journals (Sweden)

    Mei Qin

    Full Text Available BACKGROUND: Advancements have been made in the genetic manipulation of apicomplexan parasites. Both the in vitro transient and in vivo stable transfection of Eimeria tenella have been developed successfully. Herein, we report the transient and stable transfection of Eimeria mitis. METHODS AND FINDINGS: Sporozoites of E. mitis transfected with enhanced yellow fluorescent protein (EYFP expression plasmid were inoculated into chickens via the cloacal route. The recovered fluorescent oocysts were sorted by fluorescence activated cell sorting (FACS and then passaged 6 generations successively in chickens. The resulting population was analyzed by genome walking and Western blot. The endogenous development of the transgenic E. mitis was observed and its reproduction potential was tested. The stable transfection of E. mitis was developed. Genome walking confirmed the random integration of plasmid DNA into the genome; while Western blot analysis demonstrated the expression of foreign proteins. Constitutive expression of EYFP was observed in all stages of merogony, gametogony and sporogony. The peak of the transgenic oocyst output was delayed by 24 h and the total oocyst reproduction was reduced by 7-fold when compared to the parental strain. CONCLUSION: Stable transfection of E. mitis was successfully developed. The expression of foreign antigens in the transgenic parasites will facilitate the development of transgenic E. mitis as a vaccine vector.

  14. High Protein Diet and Huntington's Disease

    Science.gov (United States)

    Wu, Yih-Ru; Chen, Pei; Tsai, Fuu-Jen; Yang, Chueh-Lien; Tsao, Ya-Tzu; Chang, Wen; Hsieh, I-Shan; Chern, Yijuang; Soong, Bing-Wen

    2015-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by the huntingtin (HTT) gene with expanded CAG repeats. In addition to the apparent brain abnormalities, impairments also occur in peripheral tissues. We previously reported that mutant Huntingtin (mHTT) exists in the liver and causes urea cycle deficiency. A low protein diet (17%) restores urea cycle activity and ameliorates symptoms in HD model mice. It remains unknown whether the dietary protein content should be monitored closely in HD patients because the normal protein consumption is lower in humans (~15% of total calories) than in mice (~22%). We assessed whether dietary protein content affects the urea cycle in HD patients. Thirty HD patients were hospitalized and received a standard protein diet (13.7% protein) for 5 days, followed by a high protein diet (HPD, 26.3% protein) for another 5 days. Urea cycle deficiency was monitored by the blood levels of citrulline and ammonia. HD progression was determined by the Unified Huntington’s Disease Rating Scale (UHDRS). The HPD increased blood citrulline concentration from 15.19 μmol/l to 16.30 μmol/l (p = 0.0378) in HD patients but did not change blood ammonia concentration. A 2-year pilot study of 14 HD patients found no significant correlation between blood citrulline concentration and HD progression. Our results indicated a short period of the HPD did not markedly compromise urea cycle function. Blood citrulline concentration is not a reliable biomarker of HD progression. PMID:25992839

  15. High Protein Diet and Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Chiung-Mei Chen

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder caused by the huntingtin (HTT gene with expanded CAG repeats. In addition to the apparent brain abnormalities, impairments also occur in peripheral tissues. We previously reported that mutant Huntingtin (mHTT exists in the liver and causes urea cycle deficiency. A low protein diet (17% restores urea cycle activity and ameliorates symptoms in HD model mice. It remains unknown whether the dietary protein content should be monitored closely in HD patients because the normal protein consumption is lower in humans (~15% of total calories than in mice (~22%. We assessed whether dietary protein content affects the urea cycle in HD patients. Thirty HD patients were hospitalized and received a standard protein diet (13.7% protein for 5 days, followed by a high protein diet (HPD, 26.3% protein for another 5 days. Urea cycle deficiency was monitored by the blood levels of citrulline and ammonia. HD progression was determined by the Unified Huntington's Disease Rating Scale (UHDRS. The HPD increased blood citrulline concentration from 15.19 μmol/l to 16.30 μmol/l (p = 0.0378 in HD patients but did not change blood ammonia concentration. A 2-year pilot study of 14 HD patients found no significant correlation between blood citrulline concentration and HD progression. Our results indicated a short period of the HPD did not markedly compromise urea cycle function. Blood citrulline concentration is not a reliable biomarker of HD progression.

  16. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  17. Analysis of Nanobody-Epitope Interactions in Living Cells via Quantitative Protein Transport Assays.

    Science.gov (United States)

    Früholz, Simone; Pimpl, Peter

    2017-01-01

    Over the past few decades, quantitative protein transport analyses have been used to elucidate the sorting and transport of proteins in the endomembrane system of plants. Here, we have applied our knowledge about transport routes and the corresponding sorting signals to establish an in vivo system for testing specific interactions between soluble proteins.Here, we describe the use of quantitative protein transport assays in tobacco mesophyll protoplasts to test for interactions occurring between a GFP-binding nanobody and its GFP epitope. For this, we use a secreted GFP-tagged α-amylase as a reporter together with a vacuolar-targeted RFP-tagged nanobody. The interaction between these proteins is then revealed by a transport alteration of the secretory reporter due to the interaction-triggered attachment of the vacuolar sorting signal.

  18. Structural analysis of recombinant human protein QM

    International Nuclear Information System (INIS)

    Gualberto, D.C.H.; Fernandes, J.L.; Silva, F.S.; Saraiva, K.W.; Affonso, R.; Pereira, L.M.; Silva, I.D.C.G.

    2012-01-01

    Full text: The ribosomal protein QM belongs to a family of ribosomal proteins, which is highly conserved from yeast to humans. The presence of the QM protein is necessary for joining the 60S and 40S subunits in a late step of the initiation of mRNA translation. Although the exact extra-ribosomal functions of QM are not yet fully understood, it has been identified as a putative tumor suppressor. This protein was reported to interact with the transcription factor c-Jun and thereby prevent c-Jun actives genes of the cellular growth. In this study, the human QM protein was expressed in bacterial system, in the soluble form and this structure was analyzed by Circular Dichroism and Fluorescence. The results of Circular Dichroism showed that this protein has less alpha helix than beta sheet, as described in the literature. QM protein does not contain a leucine zipper region; however the ion zinc is necessary for binding of QM to c-Jun. Then we analyzed the relationship between the removal of zinc ions and folding of protein. Preliminary results obtained by the technique Fluorescence showed a gradual increase in fluorescence with the addition of increasing concentration of EDTA. This suggests that the zinc is important in the tertiary structure of the protein. More studies are being made for better understand these results. (author)

  19. Identifying Key Proteins in Hg Methylation Pathways of Desulfovibrio by Global Proteomics, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Anne O. [Univ. of Georgia, Athens, GA (United States). Dept. of Microbiology; Miller, Susan M. [Univ. of California, San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry; Wall, Judy [Univ. of Missouri, Columbia, MO (United States). Dept. of Biochemistry; Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-18

    Elemental mercury, Hg(0) is a contaminant at many DOE sites, especially at Oak Ridge National Laboratory (ORNL) where the spread of spilled Hg and its effects on microbial populations have been monitored for decades. To explore the microbial interactions with Hg, we have devised a global proteomic approach capable of directly detecting Hg-adducts of proteins. This technique developed in the facultative anaerobe, Escherichia coli, allows us to identify the proteins most vulnerable to acute exposure to organomercurials phenyl- and ethyl-mercury (as surrogates for the highly neurotoxic methyl-Hg) (Polacco, et al, 2011). We have found >300 such proteins in all metabolic functional groups and cellular compartments; most are highly conserved and can serve as markers for acute Hg exposure (Zink, et al. 2016, in preparation). We have also discovered that acute Hg exposure severely disrupts thiol, iron and redox homeostases, and electrolyte balance (LaVoie, et al., 2015) Thus, we proposed to bring these techniques to bear on the central problem of identifying the cellular proteins involved in bacterial uptake and methylation of mercury and its release from the cell.

  20. Early localization of NPA58, a rat nuclear pore-associated protein

    Indian Academy of Sciences (India)

    We have studied the mitotic reassembly of the nuclear envelope, using antibodies to nuclear marker proteins and NPA58 in F-111 rat fibroblast cells. In earlier studies we have proposed that NPA58, a 58 kDa rat nuclear protein, is involved in nuclear protein import. In this report, NPA58 is shown to be localized on the ...

  1. MAVS protein is attenuated by rotavirus nonstructural protein 1.

    Directory of Open Access Journals (Sweden)

    Satabdi Nandi

    Full Text Available Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS, which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1 which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies.

  2. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    Science.gov (United States)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  3. Protein-Protein Docking in Drug Design and Discovery.

    Science.gov (United States)

    Kaczor, Agnieszka A; Bartuzi, Damian; Stępniewski, Tomasz Maciej; Matosiuk, Dariusz; Selent, Jana

    2018-01-01

    Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

  4. Prediction of protein-protein interaction sites in sequences and 3D structures by random forests.

    Directory of Open Access Journals (Sweden)

    Mile Sikić

    2009-01-01

    Full Text Available Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i a combination of sequence- and structure-derived parameters and (ii sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras-Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.

  5. Global Analysis of Palmitoylated Proteins in Toxoplasma gondii.

    Science.gov (United States)

    Foe, Ian T; Child, Matthew A; Majmudar, Jaimeen D; Krishnamurthy, Shruthi; van der Linden, Wouter A; Ward, Gary E; Martin, Brent R; Bogyo, Matthew

    2015-10-14

    Post-translational modifications (PTMs) such as palmitoylation are critical for the lytic cycle of the protozoan parasite Toxoplasma gondii. While palmitoylation is involved in invasion, motility, and cell morphology, the proteins that utilize this PTM remain largely unknown. Using a chemical proteomic approach, we report a comprehensive analysis of palmitoylated proteins in T. gondii, identifying a total of 282 proteins, including cytosolic, membrane-associated, and transmembrane proteins. From this large set of palmitoylated targets, we validate palmitoylation of proteins involved in motility (myosin light chain 1, myosin A), cell morphology (PhIL1), and host cell invasion (apical membrane antigen 1, AMA1). Further studies reveal that blocking AMA1 palmitoylation enhances the release of AMA1 and other invasion-related proteins from apical secretory organelles, suggesting a previously unrecognized role for AMA1. These findings suggest that palmitoylation is ubiquitous throughout the T. gondii proteome and reveal insights into the biology of this important human pathogen. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  7. Isotopic Changes During Digestion: Protein

    Science.gov (United States)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  8. A cytoplasmic serine protein kinase binds and may regulate the Fanconi anemia protein FANCA.

    Science.gov (United States)

    Yagasaki, H; Adachi, D; Oda, T; Garcia-Higuera, I; Tetteh, N; D'Andrea, A D; Futaki, M; Asano, S; Yamashita, T

    2001-12-15

    Fanconi anemia (FA) is an autosomal recessive disease with congenital anomalies, bone marrow failure, and susceptibility to leukemia. Patient cells show chromosome instability and hypersensitivity to DNA cross-linking agents. At least 8 complementation groups (A-G) have been identified and 6 FA genes (for subtypes A, C, D2, E, F, and G) have been cloned. Increasing evidence indicates that a protein complex assembly of multiple FA proteins, including FANCA and FANCG, plays a crucial role in the FA pathway. Previously, it was reported that FANCA was phosphorylated in lymphoblasts from normal controls, whereas the phosphorylation was defective in those derived from patients with FA of multiple complementation groups. The present study examined phosphorylation of FANCA ectopically expressed in FANCA(-) cells. Several patient-derived mutations abrogated in vivo phosphorylation of FANCA in this system, suggesting that FANCA phosphorylation is associated with its function. In vitro phosphorylation studies indicated that a physiologic protein kinase for FANCA (FANCA-PK) forms a complex with the substrate. Furthermore, at least a part of FANCA-PK as well as phosphorylated FANCA were included in the FANCA/FANCG complex. Thus, FANCA-PK appears to be another component of the FA protein complex and may regulate function of FANCA. FANCA-PK was characterized as a cytoplasmic serine kinase sensitive to wortmannin. Identification of the protein kinase is expected to elucidate regulatory mechanisms that control the FA pathway.

  9. Cdk1-cyclin B1-mediated phosphorylation of tumor-associated microtubule-associated protein/cytoskeleton-associated protein 2 in mitosis.

    Science.gov (United States)

    Hong, Kyung Uk; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-06-12

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis.

  10. Cdk1-Cyclin B1-mediated Phosphorylation of Tumor-associated Microtubule-associated Protein/Cytoskeleton-associated Protein 2 in Mitosis*

    Science.gov (United States)

    Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis. PMID:19369249

  11. Profiling cellular protein complexes by proximity ligation with dual tag microarray readout.

    Science.gov (United States)

    Hammond, Maria; Nong, Rachel Yuan; Ericsson, Olle; Pardali, Katerina; Landegren, Ulf

    2012-01-01

    Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.

  12. Expression and Activation of Horseradish Peroxidase-Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes.

    Science.gov (United States)

    Xxxx, Patmawati; Minamihata, Kosuke; Tatsuke, Tsuneyuki; Lee, Jae Man; Kusakabe, Takahiro; Kamiya, Noriho

    2018-06-01

    Recombinant protein production can create artificial proteins with desired functions by introducing genetic modifications to the target proteins. Horseradish peroxidase (HRP) has been used extensively as a reporter enzyme in biotechnological applications; however, recombinant production of HRP has not been very successful, hampering the utilization of HRP with genetic modifications. A fusion protein comprising an antibody binding protein and HRP will be an ideal bio-probe for high-quality HRP-based diagnostic systems. A HRP-protein A/G fusion protein (HRP-pAG) is designed and its production in silkworm (Bombyx mori) is evaluated for the first time. HRP-pAG is expressed in a soluble apo form, and is activated successfully by incubating with hemin. The activated HRP-pAG is used directly for ELISA experiments and retains its activity over 20 days at 4 °C. Moreover, HRP-pAG is modified with biotin by the microbial transglutaminase (MTG) reaction. The biotinylated HRP-pAG is conjugated with streptavidin to form a HRP-pAG multimer and the multimeric HRP-pAG produced higher signals in the ELISA system than monomeric HRP-pAG. The successful production of recombinant HRP in silkworm will contribute to creating novel HRP-based bioconjugates as well as further functionalization of HRP by applying enzymatic post-translational modifications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...

  14. Tunneling explains efficient electron transport via protein junctions.

    Science.gov (United States)

    Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David

    2018-05-15

    Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.

  15. Hydrophobic Collapse of Ubiquitin Generates Rapid Protein-Water Motions.

    Science.gov (United States)

    Wirtz, Hanna; Schäfer, Sarah; Hoberg, Claudius; Reid, Korey M; Leitner, David M; Havenith, Martina

    2018-06-04

    We report time-resolved measurements of the coupled protein-water modes of solvated ubiquitin during protein folding. Kinetic terahertz absorption (KITA) spectroscopy serves as a label-free technique for monitoring large scale conformational changes and folding of proteins subsequent to a sudden T-jump. We report here KITA measurements at an unprecedented time resolution of 500 ns, a resolution 2 orders of magnitude better than those of any previous KITA measurements, which reveal the coupled ubiquitin-solvent dynamics even in the initial phase of hydrophobic collapse. Complementary equilibrium experiments and molecular simulations of ubiquitin solutions are performed to clarify non-equilibrium contributions and reveal the molecular picture upon a change in structure, respectively. On the basis of our results, we propose that in the case of ubiquitin a rapid (<500 ns) initial phase of the hydrophobic collapse from the elongated protein to a molten globule structure precedes secondary structure formation. We find that these very first steps, including large-amplitude changes within the unfolded manifold, are accompanied by a rapid (<500 ns) pronounced change of the coupled protein-solvent response. The KITA response upon secondary structure formation exhibits an opposite sign, which indicates a distinct effect on the solvent-exposed surface.

  16. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Protein Structure Prediction by Protein Threading

    Science.gov (United States)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  18. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  19. [Non-enzymatic glycosylation of dietary protein in vitro].

    Science.gov (United States)

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  20. Protein Assembly and Building Blocks: Beyond the Limits of the LEGO Brick Metaphor.

    Science.gov (United States)

    Levy, Yaakov

    2017-09-26

    Proteins, like other biomolecules, have a modular and hierarchical structure. Various building blocks are used to construct proteins of high structural complexity and diverse functionality. In multidomain proteins, for example, domains are fused to each other in different combinations to achieve different functions. Although the LEGO brick metaphor is justified as a means of simplifying the complexity of three-dimensional protein structures, several fundamental properties (such as allostery or the induced-fit mechanism) make deviation from it necessary to respect the plasticity, softness, and cross-talk that are essential to protein function. In this work, we illustrate recently reported protein behavior in multidomain proteins that deviates from the LEGO brick analogy. While earlier studies showed that a protein domain is often unaffected by being fused to another domain or becomes more stable following the formation of a new interface between the tethered domains, destabilization due to tethering has been reported for several systems. We illustrate that tethering may sometimes result in a multidomain protein behaving as "less than the sum of its parts". We survey these cases for which structure additivity does not guarantee thermodynamic additivity. Protein destabilization due to fusion to other domains may be linked in some cases to biological function and should be taken into account when designing large assemblies.

  1. Structural biology of the sequestration and transport of heavy metal toxins: NMR structure determination of proteins containing the -Cys-X-Y-Cys-metal binding motifs. 1998 annual progress report

    International Nuclear Information System (INIS)

    Opella, S.J.

    1998-01-01

    'The overall goal of the research is to apply the methods of structural biology, which have been previously used primarily in biomedical applications, to bioremediation. The authors are doing this by using NMR spectroscopy to determine the structures of proteins involved in the bacterial mercury detoxification system. The research is based on the premise that the proteins encoded in the genes of the bacterial detoxification system are an untapped source of reagents and, more fundamentally, chemical strategies that can be used to remove heavy metal toxins from the environment. The initial goals are to determine the structures of the proteins of the bacterial mercury detoxification systems responsible for the sequestration and transport of the Hg(II) ions in to the cell where reduction to Hg(O) occurs. These proteins are meP, which is water soluble and can be investigated with multidimensional solution NMR methods, and merT, the transport protein in the membrane that requires solid-state NMR methods. As of June 1998, this report summarizes work after about one and half years of the three-year award. The authors have made significant accomplishments in three aspects of the NMR studies of the proteins of the bacterial mercury detoxification system.'

  2. Food safety assessment of Cry8Ka5 mutant protein using Cry1Ac as a control Bt protein.

    Science.gov (United States)

    Farias, Davi Felipe; Viana, Martônio Ponte; Oliveira, Gustavo Ramos; Santos, Vanessa Olinto; Pinto, Clidia Eduarda Moreira; Viana, Daniel Araújo; Vasconcelos, Ilka Maria; Grossi-de-Sa, Maria Fátima; Carvalho, Ana Fontenele Urano

    2015-07-01

    Cry8Ka5 is a mutant protein from Bacillus thuringiensis (Bt) that has been proposed for developing transgenic plants due to promising activity against coleopterans, like Anthonomus grandis (the major pest of Brazilian cotton culture). Thus, an early food safety assessment of Cry8Ka5 protein could provide valuable information to support its use as a harmless biotechnological tool. This study aimed to evaluate the food safety of Cry8Ka5 protein following the two-tiered approach, based on weights of evidence, proposed by ILSI. Cry1Ac protein was used as a control Bt protein. The history of safe use revealed no convincing hazard reports for Bt pesticides and three-domain Cry proteins. The bioinformatics analysis with the primary amino acids sequence of Cry8Ka5 showed no similarity to any known toxic, antinutritional or allergenic proteins. The mode of action of Cry proteins is well understood and their fine specificity is restricted to insects. Cry8Ka5 and Cry1Ac proteins were rapidly degraded in simulated gastric fluid, but were resistant to simulated intestinal fluid and heat treatment. The LD50 for Cry8Ka5 and Cry1Ac was >5000 mg/kg body weight when administered by gavage in mice. Thus, no expected relevant risks are associated with the consumption of Cry8Ka5 protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. DNA repair by the Ada protein of E. coli

    International Nuclear Information System (INIS)

    Karran, P.; Hall, J.

    1988-01-01

    This paper discusses the Ada protein of E. coli which exemplifies the highly specialized nature of the enzymes which have evolved to repair DNA. According to the authors, this protein exhibits not only novel mechanistic features but also provides an apparently unique example of a strategy for controlling gene expression in E. coli. They report that knowledge of the properties and mode of action of the Ada protein has afforded insight into how human cells are affected by alkylating agents, including those used in chemotherapy

  4. Hepatitis C virus expressing reporter tagged NS5A protein

    DEFF Research Database (Denmark)

    2014-01-01

    Hepatitis C reporter viruses containing Core through NS2 of prototype isolates of all major HCV genotypes and the remaining genes of isolate JFH1, by insertion of reporter genes in domain III of HCV NS5A were developed. A deletion upstream of the inserted reporter gene sequence conferred favorable...... growth kinetics in Huh7.5 cells to these viruses. These reporter viruses can be used for high throughput analysis of drug and vaccine candidates as well as patient samples. JFH1-based intergenotypic recombinants with genotype specific homotypic 5'UTR, or heterotypic 5'UTR (either of genotype 1a (strain H...

  5. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  6. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography.

    Science.gov (United States)

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-04-01

    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.

  7. Photoactive assemblies of organic compounds and biomolecules: drug-protein supramolecular systems

    OpenAIRE

    Vayá Pérez, Ignacio; Lhiaubet-Vallet, Virginie Lyria; Jiménez Molero, María Consuelo; Miranda Alonso, Miguel Ángel

    2014-01-01

    [EN] The properties of singlet and triplet excited states are strongly medium-dependent. Hence, these species constitute valuable tools as reporters to probe compartmentalised microenvironments, including drug@protein supramolecular systems. In the present review, the attention is focused on the photophysical properties of the probe drugs (rather than those of the protein chromophores) using transport proteins (serum albumins and 1-acid glycoproteins) as hosts. Specifically, f...

  8. Solid-phase synthesis of protein-polymers on reversible immobilization supports.

    Science.gov (United States)

    Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J

    2018-02-27

    Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.

  9. The Measurement and Interpretation of Dietary Protein Distribution During a Rugby Preseason.

    Science.gov (United States)

    MacKenzie, Kristen; Slater, Gary; King, Neil; Byrne, Nuala

    2015-08-01

    Evidence suggests that increasing protein distribution may be desirable to promote muscle protein synthesis (MPS) in combination with resistance exercise. However, there is a threshold above which additional protein consumption has limited benefit for MPS and may promote protein loss due to increased oxidation. This study aimed to measure daily protein intake and protein distribution in a cohort of rugby players. Twenty-five developing elite rugby union athletes (20.5 ± 2.3 years, 100.2 ± 13.3 kg, 184.4 ± 7.4 cm) were assessed at the start and end of a rugby preseason. Using a 7-day food diary the reported daily protein intake was 2.2 ± 0.7 g · kg · day(-1) which exceeds daily recommendations. The reported carbohydrate intake was 3.6 ± 1.3 g · kg · day(-1) which may reflect a suboptimal intake or dietary underreporting. In general, the rugby athletes were regularly consuming more than 20 g of protein; 3.8 ± 0.9 times per day (68 ± 18% of eating occasions). In addition to documenting current dietary intakes, an excess protein estimation score was calculated to determine how frequently the rugby athletes consumed protein above a known effective dose with a margin of error. 2.0 ± 0.9 eating occasions contained protein in excess of doses (20 g) known to promote MPS. Therefore, it is currently unclear whether the consumption of regular large doses of protein will benefit rugby athletes via increasing protein distribution, or whether high protein intakes may have unintended effects including a reduction in carbohydrate and/or energy intake.

  10. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation.

    Science.gov (United States)

    Zhang, Hua; Song, Lei; Cong, Haolong; Tien, Po

    2015-10-01

    Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially

  11. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet - A pilot study.

    Science.gov (United States)

    Jourdan, Marion; Nair, K Sreekumaran; Carter, Rickey E; Schimke, Jill; Ford, G Charles; Marc, Julie; Aussel, Christian; Cynober, Luc

    2015-06-01

    Amino acid (AA) availability is critical to maintain protein homeostasis and reduced protein intake causes a decline in protein synthesis. Citrulline, an amino acid metabolite, has been reported to stimulate muscle protein synthesis in malnourished rats. To determine whether citrulline stimulates muscle protein synthesis in healthy adults while on a low-protein diet, we studied 8 healthy participants twice in a cross-over study design. Following a 3-days of low-protein intake, either citrulline or a non-essential AA mixture (NEAA) was given orally as small boluses over the course of 8 h. [ring-(13)C6] phenylalanine and [(15)N] tyrosine were administered as tracers to assess protein metabolism. Fractional synthesis rates (FSR) of muscle proteins were measured using phenylalanine enrichment in muscle tissue fluid as the precursor pool. FSR of mixed muscle protein was higher during the administration of citrulline than during NEAA (NEAA: 0.049 ± 0.005; citrulline: 0.060 ± 0.006; P = 0.03), while muscle mitochondrial protein FSR and whole-body protein turnover were not different between the studies. Citrulline administration increased arginine and ornithine plasma concentrations without any effect on glucose, insulin, C-peptide, and IGF-1 levels. Citrulline administration did not promote mitochondria protein synthesis, transcripts, or citrate synthesis. Citrulline ingestion enhances mixed muscle protein synthesis in healthy participants on 3-day low-protein intake. This anabolic action of citrulline appears to be independent of insulin action and may offer potential clinical application in conditions involving low amino acid intake. Copyright © 2014. Published by Elsevier Ltd.

  12. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  13. Disturbed vesicular trafficking of membrane proteins in prion disease.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  14. Case report

    African Journals Online (AJOL)

    abp

    Cerebral venous sinus thrombosis in HIV-infected patients: report of 2 cases ... often affects young adults and children [1]. ... local trauma and infection, prothrombotic states like nephrotic ... head trauma. ... She denied any history of alcohol intake, cigarette smoking .... against protein S among HIV infected patients, leading to.

  15. Protein flexibility: coordinate uncertainties and interpretation of structural differences

    Energy Technology Data Exchange (ETDEWEB)

    Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); Rashin, Abraham H. L. [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); Rutgers, The State University of New Jersey, 22371 BPO WAY, Piscataway, NJ 08854-8123 (United States); Jernigan, Robert L. [LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States)

    2009-11-01

    Criteria for the interpretability of coordinate differences and a new method for identifying rigid-body motions and nonrigid deformations in protein conformational changes are developed and applied to functionally induced and crystallization-induced conformational changes. Valid interpretations of conformational movements in protein structures determined by X-ray crystallography require that the movement magnitudes exceed their uncertainty threshold. Here, it is shown that such thresholds can be obtained from the distance difference matrices (DDMs) of 1014 pairs of independently determined structures of bovine ribonuclease A and sperm whale myoglobin, with no explanations provided for reportedly minor coordinate differences. The smallest magnitudes of reportedly functional motions are just above these thresholds. Uncertainty thresholds can provide objective criteria that distinguish between true conformational changes and apparent ‘noise’, showing that some previous interpretations of protein coordinate changes attributed to external conditions or mutations may be doubtful or erroneous. The use of uncertainty thresholds, DDMs, the newly introduced CDDMs (contact distance difference matrices) and a novel simple rotation algorithm allows a more meaningful classification and description of protein motions, distinguishing between various rigid-fragment motions and nonrigid conformational deformations. It is also shown that half of 75 pairs of identical molecules, each from the same asymmetric crystallographic cell, exhibit coordinate differences that range from just outside the coordinate uncertainty threshold to the full magnitude of large functional movements. Thus, crystallization might often induce protein conformational changes that are comparable to those related to or induced by the protein function.

  16. 3DSwap: Curated knowledgebase of proteins involved in 3D domain swapping

    KAUST Repository

    Shameer, Khader

    2011-09-29

    Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like \\'secondary major interface\\' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the \\'extent of swapping\\' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping. The Author(s) 2011.

  17. Model systems for understanding absorption tuning by opsin proteins

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brøndsted

    2009-01-01

    This tutorial review reports on model systems that have been synthesised and investigated for elucidating how opsin proteins tune the absorption of the protonated retinal Schiff base chromophore. In particular, the importance of the counteranion is highlighted. In addition, the review advocates...... is avoided, and it becomes clear that opsin proteins induce blueshifts in the chromophore absorption rather than redshifts....

  18. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  19. Dynamic protein assembly by programmable DNA strand displacement

    Science.gov (United States)

    Chen, Rebecca P.; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-03-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  20. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  1. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    Science.gov (United States)

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  2. Photochemistry of modified proteins benzophenone-containing bovine serum albumin

    International Nuclear Information System (INIS)

    Mariano, P.S.; Glover, G.I.; Wilkinson, T.J.

    1976-01-01

    The results of exploratory and mechanistic studies of the photochemistry of poly-p-benzoyl-acetimido-bovine serum albumin, a modified protein containing photoreactive and photosensitizing groups, are reported. Specifically described are recent findings concerning (1) the synthesis and characterization of a modified bovine serum albumin that contains benzophenone-like moieties, (2) the photochemistry of this modified protein which appeared to involve photoreductive coupling of the benzophenone chromophores to the protein backbone, and (3) triplet energy transfer from modified bovine serum albumin to small molecule acceptors resulting in quenching of the photoreaction. (author)

  3. Influence of a protein on percolation phenomena in water-in-oil micro-emulsions

    International Nuclear Information System (INIS)

    Huruguen, Jean-Pierre

    1991-01-01

    This research thesis addresses the study of a small protein named cytochrome c which has a peculiar affinity with the inner wall of droplets. This affinity is such that it increases the available interface in the system. The author first presents the properties and the solubilizing power of the ternary system made of AOT (sodium diethyl-hexyl sulfosuccinate, a surfactant), water and iso-octane. Then, he reports the study of the influence and behaviour of the protein in a dense micellar AOT/water/isooctane system: study of percolation phenomena and of light diffusion. The next part reports the structural study of the AOT/water/isooctane system in presence of the protein: models of polymer solutions, methods of exploitation of the diffused intensity, experimental conditions, study by X ray diffusion. The study of the reaction behaviour of the protein in dense medium is then reported: presentation of pulsed radiolysis, experimental results in presence or absence of cytochrome c. In the last part, the author reports the structural study of de-mixed phases: structural models, phase diagram, X and neutron diffusion of de-mixed phases, result interpretation [fr

  4. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  5. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamaguchi

    2014-02-01

    Full Text Available Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  6. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    Science.gov (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-12-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  7. Amino acid metabolism and whole-body protein turnover in lambs ...

    African Journals Online (AJOL)

    The effect of protein supplementation of a wheat straw diet on the metabolism of lysine, leucine, methionine and urea, and on whole-body protein turnover rate was investigated in lambs. The metabolism of lysine and leucine is reported elsewhere (Cronje et aI., 1992); in this paper methionine metabolism is discussed, and ...

  8. Effect of processing intensity on immunologically active bovine milk serum proteins

    NARCIS (Netherlands)

    Brick, Tabea; Ege, Markus; Boeren, Sjef; Böck, Andreas; Mutius, Von Erika; Vervoort, Jacques; Hettinga, Kasper

    2017-01-01

    Consumption of raw cow’s milk instead of industrially processed milk has been reported to protect children from developing asthma, allergies, and respiratory infections. Several heat-sensitive milk serum proteins have been implied in this effect though unbiased assessment of milk proteins in general

  9. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  10. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  11. Electrophoretic studies on rape seed proteins

    International Nuclear Information System (INIS)

    Chaudry, M.A.; Starr, A.; Bibi, N.

    1992-07-01

    Electrophoresis is a technique which separates biological molecules on the basis of charge and mass properties. The technique is used for separation, purification, characterization and identification of molecules/ compounds. Two major objectives for applications of electrophoresis have been studied in this report i.e. characterization of rape seed proteins and enzymes and identification of rape seed cultivars by polyacrylamide gel electrophoresis (PAGE). Gamma irradiation is being successfully used to create genetic variability and germination which brought about definite changes in the rape seed proteins reflected in different bands. These differences could be used to study variability in crop plants. (A.B.)

  12. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  13. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  14. Differential plasma protein binding to metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F; Schiller, Tara; Musumeci, Anthony; Martin, Darren

    2009-01-01

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO 2 , the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO 2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  15. Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors

    Directory of Open Access Journals (Sweden)

    Fadel Sayes

    2018-04-01

    Full Text Available Summary: The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. : Sayes et al. develop an approach to express distinct fluorescent reporters that is based on the recognition of specific Mycobacterium tuberculosis MHC class II epitopes by highly discriminative T cell hybridomas. This multiplexed technology allows the study of secretion, subcellular location, and regulation patterns of these instrumental protein members. Keywords: mycobacterium tuberculosis, type VII secretion systems, intracellular bacteria, T-cell hybridomas, mycobacterial virulence factors, bacterial antigen presentation, lentiviral vectors, reporter T cells, in vivo antigen presentation, protein localization

  16. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    Science.gov (United States)

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  17. Data on isoaspartylation of neuronal ELAVL proteins

    Directory of Open Access Journals (Sweden)

    Mario A. Pulido

    2016-12-01

    Full Text Available This article contains experimental data examining the propensity of neuronal ELAVL proteins to become isoaspartylated. The data are related to the article “Isoaspartylation appears to trigger small cell lung cancer-associated autoimmunity against neuronal protein ELAVL4” (M.A. Pulido, M.K. DerHartunian, Z. Qin, E.M. Chung, D.S. Kang, A.W. Woodham, J.A. Tsou, R. Klooster, O. Akbari, L. Wang, W.M. Kast, S.V. Liu, J.J.G.M. Verschuuren, D.W. Aswad, I.A. Laird-Offringa, 2016 [1], in which it was reported that the N-terminal region of recombinant human ELAVL4 protein, incubated under physiological conditions, acquires a type of highly immunogenic protein damage. Here, we present Western blot analysis data generated by using an affinity-purified polyclonal rabbit antibody (raised against an N-terminal ELAVL4 isoaspartyl-converted peptide to probe recombinant protein fragments of the other three members of the ELAVL family: the highly homologous neuronal ELAVL2 (HuB and ELAVL3 (HuC, and the much less homologous ubiquitously expressed ELAVL1 (HuR.

  18. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Twister Protein: a ludic tool involving protein synthesis

    Directory of Open Access Journals (Sweden)

    Aline Weyh

    2015-07-01

    Full Text Available Several studies show that students of various grade levels report the Genetics as an abstract theme and difficult to assimilate by the students, with multiple problems in the teaching-learning process and becoming necessary the development of auxiliary practices. Among the teaching tools, the game is the most currently opted playful activity by stimulating multiple intelligences, allowing greater student-teacher interaction. This work seeks the production of an innovative and dynamic educational game, Twister Protein, as a pedagogical resource for Genetics discipline. The development of the game was based on the use of easily accessible and low cost materials by teachers, allowing the knowledge of transcription, translation and protein folding. The activity was proposed and applied in the classroom with pilot undergraduate students. The fun associated with the knowledge of science not only allowed a better memorization of the content addressed, as aroused the curiosity, theme reflection, character building and collaborative spirits, as well as competitiveness through the interaction between class. This practice proved to be an effective tool in the escape from routine and fault repair of the theoretical process.

  20. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  1. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  2. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  3. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  4. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  5. Protein solubility and folding enhancement by interaction with RNA.

    Directory of Open Access Journals (Sweden)

    Seong Il Choi

    Full Text Available While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.

  6. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.

    Science.gov (United States)

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-09-03

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR - X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution.

  7. Biotechnology Conference: Protein Engineering Held in Oxford, United Kingdom on 5-8 April 1987.

    Science.gov (United States)

    1987-07-27

    engineered by protein engineering was reported by J. new variants which are now being checked. Brange (Novo Research Institute, Bags- Studies of a cassette...to Brange . Therefore, multidomain protein consisting of five Brange and his group applied protein en- putative domains: the fribonectin finger

  8. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  9. Distinct Mechanism Evolved for Mycobacterial RNA Polymerase and Topoisomerase I Protein-Protein Interaction.

    Science.gov (United States)

    Banda, Srikanth; Cao, Nan; Tse-Dinh, Yuk-Ching

    2017-09-15

    We report here a distinct mechanism of interaction between topoisomerase I and RNA polymerase in Mycobacterium tuberculosis and Mycobacterium smegmatis that has evolved independently from the previously characterized interaction between bacterial topoisomerase I and RNA polymerase. Bacterial DNA topoisomerase I is responsible for preventing the hyper-negative supercoiling of genomic DNA. The association of topoisomerase I with RNA polymerase during transcription elongation could efficiently relieve transcription-driven negative supercoiling. Our results demonstrate a direct physical interaction between the C-terminal domains of topoisomerase I (TopoI-CTDs) and the β' subunit of RNA polymerase of M. smegmatis in the absence of DNA. The TopoI-CTDs in mycobacteria are evolutionarily unrelated in amino acid sequence and three-dimensional structure to the TopoI-CTD found in the majority of bacterial species outside Actinobacteria, including Escherichia coli. The functional interaction between topoisomerase I and RNA polymerase has evolved independently in mycobacteria and E. coli, with distinctively different structural elements of TopoI-CTD utilized for this protein-protein interaction. Zinc ribbon motifs in E. coli TopoI-CTD are involved in the interaction with RNA polymerase. For M. smegmatis TopoI-CTD, a 27-amino-acid tail that is rich in basic residues at the C-terminal end is responsible for the interaction with RNA polymerase. Overexpression of recombinant TopoI-CTD in M. smegmatis competed with the endogenous topoisomerase I for protein-protein interactions with RNA polymerase. The TopoI-CTD overexpression resulted in decreased survival following treatment with antibiotics and hydrogen peroxide, supporting the importance of the protein-protein interaction between topoisomerase I and RNA polymerase during stress response of mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Context-specific protein network miner - an online system for exploring context-specific protein interaction networks from the literature

    KAUST Repository

    Chowdhary, Rajesh

    2012-04-06

    Background: Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of deriving context-specific PINs for conducting exploratory analysis. Results: We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed query system. CPNM reports enriched information on protein interactions (with type and directionality), their network topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time, user-queried, up-to-date PubMed document processing, and prediction of PIN directionality. Conclusions: CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/CPNM/. © 2012 Chowdhary et al.

  11. Context-specific protein network miner - an online system for exploring context-specific protein interaction networks from the literature

    KAUST Repository

    Chowdhary, Rajesh; Tan, Sin Lam; Zhang, Jinfeng; Karnik, Shreyas; Bajic, Vladimir B.; Liu, Jun S.

    2012-01-01

    Background: Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of deriving context-specific PINs for conducting exploratory analysis. Results: We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed query system. CPNM reports enriched information on protein interactions (with type and directionality), their network topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time, user-queried, up-to-date PubMed document processing, and prediction of PIN directionality. Conclusions: CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/CPNM/. © 2012 Chowdhary et al.

  12. Protein identification and in vitro digestion of fractions from Tenebrio molitor

    NARCIS (Netherlands)

    Yi, Liya; Boekel, van M.A.J.S.; Boeren, Sjef; Lakemond, Catriona M.M.

    2016-01-01

    The nutritional value of insect protein is evaluated not only in amino acid composition, but also in protein digestibility. The general amino acid composition of Tenebrio molitor has been reported before, but limited knowledge is available on its digestibility. The objective of this study was to

  13. A threshold for low-protein-diet-induced elevations in parathyroid hormone

    DEFF Research Database (Denmark)

    Kerstetter, J E; Svastisalee, C M; Caseria, D M

    2000-01-01

    We reported previously that lowering dietary protein intake in young healthy women to 0.7 g/kg depressed intestinal calcium absorption and was accompanied by elevations in parathyroid hormone (PTH). Moderate amounts of dietary protein (1.0 g/kg) did not appear to perturb calcium homeostasis....

  14. Dietary protein effects on irradiated rat kidney function

    International Nuclear Information System (INIS)

    Mahler, P.A.; Yatuin, M.B.

    1984-01-01

    The authors have previously reported that unilaterally nephrectomized, kidney irradiated young male S-D rats have an increased median survival when placed on a low (4%) protein diet, as compared to a normal (20%) or high (50%) protein diet (200, 103, and 59 days respectively for 14 Gy irradiation). They have expanded these studies to examine the effects of irradiation and dietary protein levels on kidney function, by examining the parameters of blood urea nitrogen, serum creatinine, urine urea nitrogen, urine creatinine, urine osmolarity, urine volume, and water consumption. Irradiated 20% protein diet animals show an increase in water consumption and urine production and also a decrease in urine osmolarity, urine urea concentration and urine creatinine concentration. These changes all support the hypothesis the kidney irradiated rats fed a normal protein diet have a reduced capability to concentrate urine compared to nonirradiated control rats. Evaluation of the same parameters in irradiated rats fed a 4% protein diet does not indicate a similar loss of concentrating capability. Whether this protection is due to the growth inhibition of the 4% protein diet or some other phenomena remains to be determined

  15. MultitaskProtDB: a database of multitasking proteins.

    Science.gov (United States)

    Hernández, Sergio; Ferragut, Gabriela; Amela, Isaac; Perez-Pons, JosepAntoni; Piñol, Jaume; Mozo-Villarias, Angel; Cedano, Juan; Querol, Enrique

    2014-01-01

    We have compiled MultitaskProtDB, available online at http://wallace.uab.es/multitask, to provide a repository where the many multitasking proteins found in the literature can be stored. Multitasking or moonlighting is the capability of some proteins to execute two or more biological functions. Usually, multitasking proteins are experimentally revealed by serendipity. This ability of proteins to perform multitasking functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Even so, the study of this phenomenon is complex because, among other things, there is no database of moonlighting proteins. The existence of such a tool facilitates the collection and dissemination of these important data. This work reports the database, MultitaskProtDB, which is designed as a friendly user web page containing >288 multitasking proteins with their NCBI and UniProt accession numbers, canonical and additional biological functions, monomeric/oligomeric states, PDB codes when available and bibliographic references. This database also serves to gain insight into some characteristics of multitasking proteins such as frequencies of the different pairs of functions, phylogenetic conservation and so forth.

  16. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  17. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  18. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet – A pilot study

    Science.gov (United States)

    Jourdan, Marion; Nair, K. Sreekumaran; Carter, Rickey E.; Schimke, Jill; Ford, G. Charles; Marc, Julie; Aussel, Christian; Cynober, Luc

    2015-01-01

    Background and Aims Amino acid (AA) availability is critical to maintain protein homeostasis and reduced protein intake causes a decline in protein synthesis. Citrulline, an amino acid metabolite, has been reported to stimulate muscle protein synthesis in malnourished rats. Methods To determine whether citrulline stimulates muscle protein synthesis in healthy adults while on a low-protein diet, we studied 8 healthy participants twice in a cross-over study design. Following a 3-days of low-protein intake, either citrulline or a non-essential AA mixture (NEAA) was given orally as small boluses over the course of 8 hours. [ring-13C6] phenylalanine and [15N] tyrosine were administered as tracers to assess protein metabolism. Fractional synthesis rates (FSR) of muscle proteins were measured using phenylalanine enrichment in muscle tissue fluid as the precursor pool. Results FSR of mixed muscle protein was higher during the administration of citrulline than during NEAA (NEAA: 0.049 ± 0.005; citrulline: 0.060 ± 0.006; p=0.03), while muscle mitochondrial protein FSR and whole-body protein turnover were not different between the studies. Citrulline administration increased arginine and ornithine plasma concentrations without any effect on glucose, insulin, C-peptide, and IGF-1 levels. Citrulline administration did not promote mitochondria protein synthesis, transcripts, or citrate synthesis. Conclusions Citrulline ingestion enhances mixed muscle protein synthesis in healthy participants on 3-day low-protein intake. This anabolic action of citrulline appears to be independent of insulin action and may offer potential clinical application in conditions involving low amino acid intake. PMID:24972455

  19. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  20. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  1. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations

    Directory of Open Access Journals (Sweden)

    Colombo Elisa A

    2012-01-01

    Full Text Available Abstract Background Poikiloderma with Neutropenia (PN is a rare autosomal recessive genodermatosis caused by C16orf57 mutations. To date 17 mutations have been identified in 31 PN patients. Results We characterize six PN patients expanding the clinical phenotype of the syndrome and the mutational repertoire of the gene. We detect the two novel C16orf57 mutations, c.232C>T and c.265+2T>G, as well as the already reported c.179delC, c.531delA and c.693+1G>T mutations. cDNA analysis evidences the presence of aberrant transcripts, and bioinformatic prediction of C16orf57 protein structure gauges the mutations effects on the folded protein chain. Computational analysis of the C16orf57 protein shows two conserved H-X-S/T-X tetrapeptide motifs marking the active site of a two-fold pseudosymmetric structure recalling the 2H phosphoesterase superfamily. Based on this model C16orf57 is likely a 2H-active site enzyme functioning in RNA processing, as a presumptive RNA ligase. According to bioinformatic prediction, all known C16orf57 mutations, including the novel mutations herein described, impair the protein structure by either removing one or both tetrapeptide motifs or by destroying the symmetry of the native folding. Finally, we analyse the geographical distribution of the recurrent mutations that depicts clusters featuring a founder effect. Conclusions In cohorts of patients clinically affected by genodermatoses with overlapping symptoms, the molecular screening of C16orf57 gene seems the proper way to address the correct diagnosis of PN, enabling the syndrome-specific oncosurveillance. The bioinformatic prediction of the C16orf57 protein structure denotes a very basic enzymatic function consistent with a housekeeping function. Detection of aberrant transcripts, also in cells from PN patients carrying early truncated mutations, suggests they might be translatable. Tissue-specific sensitivity to the lack of functionally correct protein accounts for the

  2. Thrombotic CV Stroke in a Young Male with Hyperhomocysteinemia and Protein S Deficiency: A Case Report

    Directory of Open Access Journals (Sweden)

    Nilima Shah

    2014-12-01

    Full Text Available Stroke in young poses a major health problem. Thrombophilic factors have been implicated in 4-8% of the young strokes worldwide. Hyperhomocysteinemia is an independent risk factor for atherosclerosis but there are few data regarding its role in acute arterial thrombosis without any previous lesion. Overall estimated incidence of deep vein thrombosis is 1 per 1000 persons with Protein S deficiency but very few studies suggest association between arterial thrombosis with Protein S deficiency. We present a case of 18 year old boy who presented to us with acute onset right sided hemiplegia and aphasia whose laboratory findings were suggestive of hyperhomocyseinemia and Protein S deficiency.

  3. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae.

    Science.gov (United States)

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-08-20

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  5. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Directory of Open Access Journals (Sweden)

    Atsushi Kurotani

    2015-08-01

    Full Text Available Recent proteome analyses have reported that intrinsically disordered regions (IDRs of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  6. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins

    DEFF Research Database (Denmark)

    Diella, F.; Cameron, S.; Gemund, C.

    2004-01-01

    Background: Post-translational phosphorylation is one of the most common protein modifications. Phosphoserine, threonine and tyrosine residues play critical roles in the regulation of many cellular processes. The fast growing number of research reports on protein phosphorylation points to a gener...

  7. PAnalyzer: A software tool for protein inference in shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Prieto Gorka

    2012-11-01

    Full Text Available Abstract Background Protein inference from peptide identifications in shotgun proteomics must deal with ambiguities that arise due to the presence of peptides shared between different proteins, which is common in higher eukaryotes. Recently data independent acquisition (DIA approaches have emerged as an alternative to the traditional data dependent acquisition (DDA in shotgun proteomics experiments. MSE is the term used to name one of the DIA approaches used in QTOF instruments. MSE data require specialized software to process acquired spectra and to perform peptide and protein identifications. However the software available at the moment does not group the identified proteins in a transparent way by taking into account peptide evidence categories. Furthermore the inspection, comparison and report of the obtained results require tedious manual intervention. Here we report a software tool to address these limitations for MSE data. Results In this paper we present PAnalyzer, a software tool focused on the protein inference process of shotgun proteomics. Our approach considers all the identified proteins and groups them when necessary indicating their confidence using different evidence categories. PAnalyzer can read protein identification files in the XML output format of the ProteinLynx Global Server (PLGS software provided by Waters Corporation for their MSE data, and also in the mzIdentML format recently standardized by HUPO-PSI. Multiple files can also be read simultaneously and are considered as technical replicates. Results are saved to CSV, HTML and mzIdentML (in the case of a single mzIdentML input file files. An MSE analysis of a real sample is presented to compare the results of PAnalyzer and ProteinLynx Global Server. Conclusions We present a software tool to deal with the ambiguities that arise in the protein inference process. Key contributions are support for MSE data analysis by ProteinLynx Global Server and technical replicates

  8. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP

    NARCIS (Netherlands)

    Jansen, Casper; Parchi, Piero; Capellari, Sabina; Vermeij, Ad J.; Corrado, Patrizia; Baas, Frank; Strammiello, Rosaria; van Gool, Willem A.; van Swieten, John C.; Rozemuller, Annemieke J. M.

    2010-01-01

    Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrPSc)

  9. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  10. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  11. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  12. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  13. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  14. Fluorogen-activating proteins: beyond classical fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Shengnan Xu

    2018-05-01

    Full Text Available Fluorescence imaging is a powerful technique for the real-time noninvasive monitoring of protein dynamics. Recently, fluorogen activating proteins (FAPs/fluorogen probes for protein imaging were developed. Unlike the traditional fluorescent proteins (FPs, FAPs do not fluoresce unless bound to their specific small-molecule fluorogens. When using FAPs/fluorogen probes, a washing step is not required for the removal of free probes from the cells, thus allowing rapid and specific detection of proteins in living cells with high signal-to-noise ratio. Furthermore, with different fluorogens, living cell multi-color proteins labeling system was developed. In this review, we describe about the discovery of FAPs, the design strategy of FAP fluorogens, the application of the FAP technology and the advances of FAP technology in protein labeling systems. KEY WORDS: Fluorogen activating proteins, Fluorogens, Genetically encoded sensors, Fluorescence imaging, Molecular imaging

  15. Crystallization, diffraction data collection and preliminary crystallographic analysis of DING protein from Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Moniot, Sebastien; Elias, Mikael; Kim, Donghyo; Scott, Ken; Chabriere, Eric

    2007-01-01

    Crystallization of DING protein from P. fluorescens is reported. A complete data set was collected to 1.43 Å resolution. PfluDING is a phosphate-binding protein expressed in Pseudomonas fluorescens. This protein is clearly distinct from the bacterial ABC transporter soluble phosphate-binding protein PstS and is more homologous to eukaryotic DING proteins. Interestingly, bacterial DING proteins have only been detected in certain Pseudomonas species. Although DING proteins seem to be ubiquitous in eukaryotes, they are systematically absent from eukaryotic genomic databases and thus are still quite mysterious and poorly characterized. PfluDING displays mitogenic activity towards human cells and binds various ligands such as inorganic phosphate, pyrophosphate, nucleotide triphosphates and cotinine. Here, the crystallization of PfluDING is reported in a monoclinic space group (P2 1 ), with typical unit-cell parameters a = 36.7, b = 123.7, c = 40.8 Å, α = 90, β = 116.7, γ = 90°. Preliminary crystallographic analysis reveals good diffraction quality for these crystals and a 1.43 Å resolution data set has been collected

  16. Transport proteins promoting Escherichia coli pathogenesis

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  17. Transport proteins promoting Escherichia coli pathogenesis.

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Petunia nectar proteins have ribonuclease activity.

    Science.gov (United States)

    Hillwig, Melissa S; Liu, Xiaoteng; Liu, Guangyu; Thornburg, Robert W; Macintosh, Gustavo C

    2010-06-01

    Plants requiring an insect pollinator often produce nectar as a reward for the pollinator's visitations. This rich secretion needs mechanisms to inhibit microbial growth. In Nicotiana spp. nectar, anti-microbial activity is due to the production of hydrogen peroxide. In a close relative, Petunia hybrida, limited production of hydrogen peroxide was found; yet petunia nectar still has anti-bacterial properties, suggesting that a different mechanism may exist for this inhibition. The nectar proteins of petunia plants were compared with those of ornamental tobacco and significant differences were found in protein profiles and function between these two closely related species. Among those proteins, RNase activities unique to petunia nectar were identified. The genes corresponding to four RNase T2 proteins from Petunia hybrida that show unique expression patterns in different plant tissues were cloned. Two of these enzymes, RNase Phy3 and RNase Phy4 are unique among the T2 family and contain characteristics similar to both S- and S-like RNases. Analysis of amino acid patterns suggest that these proteins are an intermediate between S- and S-like RNases, and support the hypothesis that S-RNases evolved from defence RNases expressed in floral parts. This is the first report of RNase activities in nectar.

  19. Uniform and selective deuteration in two-dimensional NMR of proteins

    International Nuclear Information System (INIS)

    LeMaster, D.M.

    1990-01-01

    This paper reports on the practicality of isotopic labeling, particularly deuteration, that has received considerable impetus from advances in molecular biology, which have allowed ready production of NMR quantities of labeled proteins. Protein expression in Escherichia coli allows use of the considerable metabolic genetics known for the organism in shaping the biosynthetic process to meet the labeling demands of the NMR experiments. In addition to deuteration's common use in spectral assignment problems, it also offers considerable potential for enhancing the quality of the nuclear Overhauser effect (NOE) distance and dihedral angle constraints used for solution structural analysis of proteins. Recent reviews emphasize the sample preparation and spectral benefits of protein deuteration

  20. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    Science.gov (United States)

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  2. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    Science.gov (United States)

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides.

    Science.gov (United States)

    Lohse, Jonas; Swier, Lotteke J Y M; Oudshoorn, Ruben C; Médard, Guillaume; Kuster, Bernhard; Slotboom, Dirk-Jan; Witte, Martin D

    2017-04-19

    In chemical biology, azides are used to chemically manipulate target structures in a bioorthogonal manner for a plethora of applications ranging from target identification to the synthesis of homogeneously modified protein conjugates. While a variety of methods have been established to introduce the azido group into recombinant proteins, a method that directly converts specific amino groups in endogenous proteins is lacking. Here, we report the first biotin-tethered diazotransfer reagent DtBio and demonstrate that it selectively modifies the model proteins streptavidin and avidin and the membrane protein BioY on cell surface. The reagent converts amines in the proximity of the binding pocket to azides and leaves the remaining amino groups in streptavidin untouched. Reagents of this novel class will find use in target identification as well as the selective functionalization and bioorthogonal protection of proteins.

  4. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.

    Science.gov (United States)

    Lin, Yu Hsuan; Pratt, Matthew R

    2014-04-14

    One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament.

    Directory of Open Access Journals (Sweden)

    Wellington C Leite

    Full Text Available The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA. HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.

  6. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament.

    Science.gov (United States)

    Leite, Wellington C; Galvão, Carolina W; Saab, Sérgio C; Iulek, Jorge; Etto, Rafael M; Steffens, Maria B R; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L; Cox, Michael M

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.

  7. Biases in Drosophila melanogaster protein trap screens

    Directory of Open Access Journals (Sweden)

    Müller Ilka

    2009-05-01

    Full Text Available Abstract Background The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. Results We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p -4. Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Conclusion Our analyses suggest that the

  8. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  9. The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins.

    Science.gov (United States)

    An, Ningfei; Blumer, Joe B; Bernard, Michael L; Lanier, Stephen M

    2008-09-05

    Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galphai. Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha2-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galphai3 in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galphai3 indicating that the interaction of AGS3 with Frmpd1 and Galphai3 is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galphai in a regulated manner.

  10. Finding protein sites using machine learning methods

    Directory of Open Access Journals (Sweden)

    Jaime Leonardo Bobadilla Molina

    2003-07-01

    Full Text Available The increasing amount of protein three-dimensional (3D structures determined by x-ray and NMR technologies as well as structures predicted by computational methods results in the need for automated methods to provide inital annotations. We have developed a new method for recognizing sites in three-dimensional protein structures. Our method is based on a previosly reported algorithm for creating descriptions of protein microenviroments using physical and chemical properties at multiple levels of detail. The recognition method takes three inputs: 1. A set of control nonsites that share some structural or functional role. 2. A set of control nonsites that lack this role. 3. A single query site. A support vector machine classifier is built using feature vectors where each component represents a property in a given volume. Validation against an independent test set shows that this recognition approach has high sensitivity and specificity. We also describe the results of scanning four calcium binding proteins (with the calcium removed using a three dimensional grid of probe points at 1.25 angstrom spacing. The system finds the sites in the proteins giving points at or near the blinding sites. Our results show that property based descriptions along with support vector machines can be used for recognizing protein sites in unannotated structures.

  11. Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic protein

    DEFF Research Database (Denmark)

    Jørgensen, Nicolai Grønne Dahlager; Ahmad, Shamaila Munir; Abildgaard, N.

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic vacc...... vaccination. Vaccination against Bcl-2 was well tolerated and was able to induce immune responses in patients with relapsed MM. © Stem Cell Investigation. All rights reserved.......The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic...... vaccination with peptides from the proteins Bcl-2, Bcl-XL and Mcl-1 in patients with relapsed MM. Vaccines were given concomitant with bortezomib. Out of 7 enrolled patients, 4 received the full course of 8 vaccinations. The remaining 3 patients received fewer vaccinations due to progression, clinical...

  12. Irradiated foods and allergy. From a perspective of irradiation chemistry of proteins

    International Nuclear Information System (INIS)

    Miyahara, Makoto

    2003-01-01

    A change of protein in irradiated food has been known. There are a few reports on change of allergy of irradiated foods. Two kinds of allergy such as the immediate allergy (I type) and delayed allergy (IV type) are taken ill by foods. I type is related to irradiated foods. Allergen enters body through digestive tract. Anti body (IgE) is protein with from 10,000 to 100,000 molecular weight. Allergic disease is originated mainly by egg, milk, wheat, buckwheat, peanut and shrimp. When food is irradiated, the proteins are decomposed and produced higher and lower molecular compounds at the same time. Change of the viscosity and the sedimentation coefficient and deactivation of enzymes of β-lactoglobulin, cow albumin, egg albumin and casein were investigated. There is no report of increasing allergy by irradiation. However, some paper indicated that immunogenicity of protein was decreased by irradiation. (S.Y.)

  13. Crystal structure of Homo sapiens protein LOC79017

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N. (UW)

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  14. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen

    2005-01-01

    Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA...... denaturation (bubble breathing), deriving its dynamic response to external physical parameters and the DNA sequence in terms of the bubble relaxation time spectrum and the autocorrelation function of bubble breathing. The interaction with binding proteins that selectively bind to the DNA single strand exposed...... in a denaturation bubble are shown to involve an interesting competition of time scales, varying between kinetic blocking of protein binding up to full binding protein-induced denaturation of the DNA. We will also address the potential to use DNA physics for the design of nanosensors. Finally, we report recent...

  15. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    Science.gov (United States)

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  17. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein

  18. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    Science.gov (United States)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  19. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    Science.gov (United States)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  20. In silico functional elucidation of uncharacterized proteins of Chlamydia abortus strain LLG.

    Science.gov (United States)

    Singh, Gagandeep; Sharma, Dixit; Singh, Vikram; Rani, Jyoti; Marotta, Francessco; Kumar, Manoj; Mal, Gorakh; Singh, Birbal

    2017-03-01

    This study reports structural modeling, molecular dynamics profiling of hypothetical proteins in Chlamydia abortus genome database. The hypothetical protein sequences were extracted from C. abortus LLG Genome Database for functional elucidation using in silico methods. Fifty-one proteins with their roles in defense, binding and transporting other biomolecules were unraveled. Forty-five proteins were found to be nonhomologous to proteins present in hosts infected by C. abortus . Of these, 31 proteins were related to virulence. The structural modeling of two proteins, first, WP_006344020.1 (phosphorylase) and second, WP_006344325.1 (chlamydial protease/proteasome-like activity factor) were accomplished. The conserved active sites necessary for the catalytic function were analyzed. The finally concluded proteins are envisioned as possible targets for developing drugs to curtail chlamydial infections, however, and should be validated by molecular biological methods.

  1. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein.

    Science.gov (United States)

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncations of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T][T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein.

  2. N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis.

    Science.gov (United States)

    Yi, Dan; Hou, Yongqing; Wang, Lei; Long, Minhui; Hu, Shengdi; Mei, Huimin; Yan, Liqiong; Hu, Chien-An Andy; Wu, Guoyao

    2016-02-01

    Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco's modified Eagle medium containing 0 or 100 μM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 μM GSH, 100 μM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 μM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 μM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.

  3. Model test on the relationship feed energy and protein ratio to the production and quality of milk protein

    Science.gov (United States)

    Hartanto, R.; Jantra, M. A. C.; Santosa, S. A. B.; Purnomoadi, A.

    2018-01-01

    The purpose of this research was to find an appropriate relationship model between the feed energy and protein ratio with the amount of production and quality of milk proteins. This research was conducted at Getasan Sub-district, Semarang Regency, Central Java Province, Indonesia using 40 samples (Holstein Friesian cattle, lactation period II-III and lactation month 3-4). Data were analyzed using linear and quadratic regressions, to predict the production and quality of milk protein from feed energy and protein ratio that describe the diet. The significance of model was tested using analysis of variance. Coefficient of determination (R2), residual variance (RV) and root mean square prediction error (RMSPE) were reported for the developed equations as an indicator of the goodness of model fit. The results showed no relationship in milk protein (kg), milk casein (%), milk casein (kg) and milk urea N (mg/dl) as function of CP/TDN. The significant relationship was observed in milk production (L or kg) and milk protein (%) as function of CP/TDN, both in linear and quadratic models. In addition, a quadratic change in milk production (L) (P = 0.003), milk production (kg) (P = 0.003) and milk protein concentration (%) (P = 0.026) were observed with increase of CP/TDN. It can be concluded that quadratic equation was the good fitting model for this research, because quadratic equation has larger R2, smaller RV and smaller RMSPE than those of linear equation.

  4. Cell-free protein synthesis for structure determination by X-ray crystallography.

    Science.gov (United States)

    Watanabe, Miki; Miyazono, Ken-ichi; Tanokura, Masaru; Sawasaki, Tatsuya; Endo, Yaeta; Kobayashi, Ichizo

    2010-01-01

    Structure determination has been difficult for those proteins that are toxic to the cells and cannot be prepared in a large amount in vivo. These proteins, even when biologically very interesting, tend to be left uncharacterized in the structural genomics projects. Their cell-free synthesis can bypass the toxicity problem. Among the various cell-free systems, the wheat-germ-based system is of special interest due to the following points: (1) Because the gene is placed under a plant translational signal, its toxic expression in a bacterial host is reduced. (2) It has only little codon preference and, especially, little discrimination between methionine and selenomethionine (SeMet), which allows easy preparation of selenomethionylated proteins for crystal structure determination by SAD and MAD methods. (3) Translation is uncoupled from transcription, so that the toxicity of the translation product on DNA and its transcription, if any, can be bypassed. We have shown that the wheat-germ-based cell-free protein synthesis is useful for X-ray crystallography of one of the 4-bp cutter restriction enzymes, which are expected to be very toxic to all forms of cells retaining the genome. Our report on its structure represents the first report of structure determination by X-ray crystallography using protein overexpressed with the wheat-germ-based cell-free protein expression system. This will be a method of choice for cytotoxic proteins when its cost is not a problem. Its use will become popular when the crystal structure determination technology has evolved to require only a tiny amount of protein.

  5. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  6. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Proteome scale identification, classification and structural analysis of iron-binding proteins in bread wheat.

    Science.gov (United States)

    Verma, Shailender Kumar; Sharma, Ankita; Sandhu, Padmani; Choudhary, Neha; Sharma, Shailaja; Acharya, Vishal; Akhter, Yusuf

    2017-05-01

    Bread wheat is one of the major staple foods of worldwide population and iron plays a significant role in growth and development of the plant. In this report, we are presenting the genome wide identification of iron-binding proteins in bread wheat. The wheat genome derived putative proteome was screened for identification of iron-binding sequence motifs. Out of 602 putative iron-binding proteins, 130 were able to produce reliable structural models by homology techniques and further analyzed for the presence of iron-binding structural motifs. The computationally identified proteins appear to bind to ferrous and ferric ions and showed diverse coordination geometries. Glu, His, Asp and Cys amino acid residues were found to be mostly involved in iron binding. We have classified these proteins on the basis of their localization in the different cellular compartments. The identified proteins were further classified into their protein folds, families and functional classes ranging from structure maintenance of cellular components, regulation of gene expression, post translational modification, membrane proteins, enzymes, signaling and storage proteins. This comprehensive report regarding structural iron binding proteome provides useful insights into the diversity of iron binding proteins of wheat plants and further utilized to study their roles in plant growth, development and physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Leptin (Obesity Protein) and Breast Cancer Metastasis

    National Research Council Canada - National Science Library

    Surmacz, Eva

    2002-01-01

    ...). Leptin, a 16 kDa protein product of the OB (obesity) gene is a cytokine reported to be secreted mainly from adipocytes and has been shown to control body fat mass and food intake by providing information to the central nervous system (2...

  9. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  10. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

    DEFF Research Database (Denmark)

    Ho, Yuen; Gruhler, Albrecht; Heilbut, Adrian

    2002-01-01

    The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects...... as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were...... identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two...

  11. Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake.

    Science.gov (United States)

    León-López, Liliana; Dávila-Ortiz, Gloria; Jiménez-Martínez, Cristian; Hernández-Sánchez, Humberto

    2013-01-01

    Jatropha curcas seed cake is a protein-rich byproduct of oil extraction which could be used to produce protein isolates. The purpose of this study was the optimization of the protein isolation process from the seed cake of an edible provenance of J. curcas by an alkaline extraction followed by isoelectric precipitation method via a sequentially integrated optimization approach. The influence of four different factors (solubilization pH, extraction temperature, NaCl addition, and precipitation pH) on the protein and antinutritional compounds content of the isolate was evaluated. The estimated optimal conditions were an extraction temperature of 20°C, a precipitation pH of 4, and an amount of NaCl in the extraction solution of 0.6 M for a predicted protein content of 93.3%. Under these conditions, it was possible to obtain experimentally a protein isolate with 93.21% of proteins, 316.5 mg 100 g(-1) of total phenolics, 2891.84 mg 100 g(-1) of phytates and 168 mg 100 g(-1) of saponins. The protein content of the this isolate was higher than the content reported by other authors.

  12. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein–Protein Interaction Analysis, and Protein Function Exploration

    Directory of Open Access Journals (Sweden)

    Els Beghein

    2017-07-01

    Full Text Available Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein–protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.

  13. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein–Protein Interaction Analysis, and Protein Function Exploration

    Science.gov (United States)

    Beghein, Els; Gettemans, Jan

    2017-01-01

    Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein–protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research. PMID:28725224

  14. Isolation and identification of the human homolog of a new p53-binding protein, Mdmx

    NARCIS (Netherlands)

    Shvarts, A.; Bazuine, M.; Dekker, P.; Ramos, Y. F.; Steegenga, W. T.; Merckx, G.; van Ham, R. C.; van der Houven van Oordt, W.; van der Eb, A. J.; Jochemsen, A. G.

    1997-01-01

    We recently reported the identification of a mouse cDNA encoding a new p53-associating protein that we called Mdmx because of its structural similarity to Mdm2, a well-known p53-binding protein. Here we report the isolation of a cDNA encoding the human homolog of Mdmx. The ORF of the cDNA encodes a

  15. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  16. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Nitin S. Baliga and Leroy Hood

    2008-11-12

    The proposed overarching goal for this project was the following: Data integration, simulation and visualization will facilitate metabolic and regulatory network prediction, exploration, and formulation of hypotheses. We stated three specific aims to achieve the overarching goal of this project: (1) Integration of multiple levels of information such as mRNA and protein levels, predicted protein-protein interactions/associations and gene function will enable construction of models describing environmental response and dynamic behavior. (2) Flexible tools for network inference will accelerate our understanding of biological systems. (3) Flexible exploration and queries of model hypotheses will provide focus and reveal novel dependencies. The underlying philosophy of these proposed aims is that an iterative cycle of experiments, experimental design, and verification will lead to a comprehensive and predictive model that will shed light on systems level mechanisms involved in responses elicited by living systems upon sensing a change in their environment. In the previous years report we demonstrated considerable progress in development of data standards, regulatory network inference and data visualization and exploration. We are pleased to report that several manuscripts describing these procedures have been published in top international peer reviewed journals including Genome Biology, PNAS, and Cell. The abstracts of these manuscripts are given and they summarize our accomplishments in this project.

  17. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    Science.gov (United States)

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Mann, Florian A; Pichler, Garwin; Natale, Francesco; Krause, Eberhard; Cardoso, M Cristina; Hackenberger, Christian P R; Leonhardt, Heinrich

    2015-11-09

    A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.

    Science.gov (United States)

    Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia

    2015-07-07

    In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.

  20. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  1. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    International Nuclear Information System (INIS)

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-01-01

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  2. Protein profiling reveals inter-individual protein homogeneity of arachnoid cyst fluid and high qualitative similarity to cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Berle Magnus

    2011-05-01

    Full Text Available Abstract Background The mechanisms behind formation and filling of intracranial arachnoid cysts (AC are poorly understood. The aim of this study was to evaluate AC fluid by proteomics to gain further knowledge about ACs. Two goals were set: 1 Comparison of AC fluid from individual patients to determine whether or not temporal AC is a homogenous condition; and 2 Evaluate the protein content of a pool of AC fluid from several patients and qualitatively compare this with published protein lists of cerebrospinal fluid (CSF and plasma. Methods AC fluid from 15 patients with temporal AC was included in this study. In the AC protein comparison experiment, AC fluid from 14 patients was digested, analyzed by LC-MS/MS using a semi-quantitative label-free approach and the data were compared by principal component analysis (PCA to gain knowledge of protein homogeneity of AC. In the AC proteome evaluation experiment, AC fluid from 11 patients was pooled, digested, and fractionated by SCX chromatography prior to analysis by LC-MS/MS. Proteins identified were compared to published databases of proteins identified from CSF and plasma. AC fluid proteins not found in these two databases were experimentally searched for in lumbar CSF taken from neurologically-normal patients, by a targeted protein identification approach called MIDAS (Multiple Reaction Monitoring (MRM initiated detection and sequence analysis. Results We did not identify systematic trends or grouping of data in the AC protein comparison experiment, implying low variability between individual proteomic profiles of AC. In the AC proteome evaluation experiment, we identified 199 proteins. When compared to previously published lists of proteins identified from CSF and plasma, 15 of the AC proteins had not been reported in either of these datasets. By a targeted protein identification approach, we identified 11 of these 15 proteins in pooled CSF from neurologically-normal patients, demonstrating that

  3. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  4. Natural loss-of-function mutation of myeloid differentiation protein 88 disrupts its ability to form Myddosomes

    NARCIS (Netherlands)

    Nagpal, K.; Plantinga, T.S.; Sirois, C.M.; Monks, B.G.; Latz, E.; Netea, M.G.; Golenbock, D.T.

    2011-01-01

    Myeloid differentiation protein 88 (MyD88) is a key signaling adapter in Toll-like receptor (TLR) signaling. MyD88 is also one of the most polymorphic adapter proteins. We screened the reported nonsynonymous coding mutations in MyD88 to identify variants with altered function. In reporter assays, a

  5. Subgenomic reporter RNA system for detection of alphavirus infection in mosquitoes.

    Directory of Open Access Journals (Sweden)

    J Jordan Steel

    Full Text Available Current methods for detecting real-time alphavirus (Family Togaviridae infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes.

  6. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors

    Directory of Open Access Journals (Sweden)

    Pierre Danhier

    2015-12-01

    Full Text Available Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc and a variant of the enhanced green fluorescent protein (EGFP. Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE. The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2 for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies.

  7. Functional characterization of Arabidopsis thaliana transthyretin-like protein.

    Science.gov (United States)

    Pessoa, João; Sárkány, Zsuzsa; Ferreira-da-Silva, Frederico; Martins, Sónia; Almeida, Maria R; Li, Jianming; Damas, Ana M

    2010-02-18

    Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. The Arabidopsis thaliana transthyretin-like (TTL) protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  8. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed

    Directory of Open Access Journals (Sweden)

    Schininà Maria

    2010-09-01

    Full Text Available Abstract Background Several mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE combined with mass spectrometry. Results In our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible. Conclusions The analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the

  9. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Elmelund-Præstekær, Louise Cathrine Braun; Kurth, Caroline

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  10. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins.

    Science.gov (United States)

    Baindur-Hudson, Swati; Edkins, Adrienne L; Blatch, Gregory L

    2015-01-01

    The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.

  11. Preliminary structural characterization of human SOUL, a haem-binding protein

    International Nuclear Information System (INIS)

    Freire, Filipe; Romão, Maria João; Macedo, Anjos L.; Aveiro, Susana S.; Goodfellow, Brian J.; Carvalho, Ana Luísa

    2009-01-01

    This manuscript describes the overexpression, purification and crystallization of human SOUL protein (hSOUL). hSOUL is a 23 kDa haem-binding protein that was first identified as the PP23 protein isolated from human full-term placenta. Human SOUL (hSOUL) is a 23 kDa haem-binding protein that was first identified as the PP 23 protein isolated from human full-term placentas. Here, the overexpression, purification and crystallization of hSOUL are reported. The crystals belonged to space group P6 4 22, with unit-cell parameters a = b = 145, c = 60 Å and one protein molecule in the asymmetric unit. X-ray diffraction data were collected to 3.5 Å resolution at the ESRF. A preliminary model of the three-dimensional structure of hSOUL was obtained by molecular replacement using the structures of murine p22HBP, obtained by solution NMR, as search models

  12. Cadmium-binding proteins in midgut gland of freshwater crayfish Procambarus clarkii

    Energy Technology Data Exchange (ETDEWEB)

    Del Ramo, J.; Pastor, A.; Torreblanca, A.; Medina, J.; Diza-Mayans, J.

    1989-02-01

    Metallothioneins, metal binding proteins, were originally isolated and characterized by Margoshes and Vallee. These proteins have a high affinity for various heavy metals, particularly cadmium and mercury and have extensively been studied in mammals. Metal binding proteins have been observed in a variety of marine invertebrates; however, there is very little information available on metal binding proteins in freshwater invertebrates, and particularly in freshwater crustaceans. Cadmium is an ubiquitous non essential element which possesses high toxicity to aquatic organisms. Cadmium binding proteins observed in invertebrates have similar characteristics to mammalian metallothioneins. In 1978, the American red crayfish appeared in Albufera Lake and the surrounding rice fields (Valencia, Spain). Albufera Lake and the surrounding rice fields waters are subjected to very heavy loads of sewage and toxic industrial residues (including heavy metals) from the many urban and wastewaters in this area. In previous reports the authors studied the toxicity and accumulation of cadmium on Procambarus clarkii of Albufera Lake. This crayfish shows a high resistance to cadmium and a great accumulation rate of this metal in several tissues, including midgut gland. Since Procambarus clarkii shows a high resistance to cadmium, the presence of cadmium binding proteins (Cd-BP) in midgut gland of these crayfish would be expected. This report describes results on the characterization of Cd-BPs obtained from cadmium exposed crayfish Procambarus clarkii, demonstrating their presence in this freshwater crayfish.

  13. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    Science.gov (United States)

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Evolution, diversification and expression of KNOX proteins in plants

    Directory of Open Access Journals (Sweden)

    Jie eGao

    2015-10-01

    Full Text Available The KNOX (KNOTTED1-like homeobox transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification.

  15. Protein Requirements and Recommendations for Older People: A Review

    Directory of Open Access Journals (Sweden)

    Caryl Nowson

    2015-08-01

    Full Text Available Declines in skeletal muscle mass and strength are major contributors to increased mortality, morbidity and reduced quality of life in older people. Recommended Dietary Allowances/Intakes have failed to adequately consider the protein requirements of the elderly with respect to function. The aim of this paper was to review definitions of optimal protein status and the evidence base for optimal dietary protein. Current recommended protein intakes for older people do not account for the compensatory loss of muscle mass that occurs on lower protein intakes. Older people have lower rates of protein synthesis and whole-body proteolysis in response to an anabolic stimulus (food or resistance exercise. Recommendations for the level of adequate dietary intake of protein for older people should be informed by evidence derived from functional outcomes. Randomized controlled trials report a clear benefit of increased dietary protein on lean mass gain and leg strength, particularly when combined with resistance exercise. There is good consistent evidence (level III-2 to IV that consumption of 1.0 to 1.3 g/kg/day dietary protein combined with twice-weekly progressive resistance exercise reduces age-related muscle mass loss. Older people appear to require 1.0 to 1.3 g/kg/day dietary protein to optimize physical function, particularly whilst undertaking resistance exercise recommendations.

  16. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  17. Protein-Anchoring Therapy of Biglycan for Mdx Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Ito, Mikako; Ehara, Yuka; Li, Jin; Inada, Kosuke; Ohno, Kinji

    2017-05-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by loss-of-function mutations in DMD encoding dystrophin. No rational therapy is currently available. Utrophin is a paralog of dystrophin and is highly expressed at the neuromuscular junction. In mdx mice, utrophin is naturally upregulated throughout the muscle fibers, which mitigates muscular dystrophy. Protein-anchoring therapy was previously reported, in which a recombinant extracellular matrix (ECM) protein is delivered to and anchored to a specific target using its proprietary binding domains. Being prompted by a report that intramuscular and intraperitoneal injection of an ECM protein, biglycan, upregulates expression of utrophin and ameliorates muscle pathology in mdx mice, protein-anchoring therapy was applied to mdx mice. Recombinant adeno-associated virus serotype 8 (rAAV8) carrying hBGN encoding human biglycan was intravenously injected into 5-week-old mdx mice. The rAAV8-hBGN treatment improved motor deficits and decreased plasma creatine kinase activities. In muscle sections of treated mice, the number of central myonuclei and the distribution of myofiber sizes were improved. The treated mice increased gene expressions of utrophin and β1-syntrophin, as well as protein expressions of biglycan, utrophin, γ-sarcoglycan, dystrobrevin, and α1-syntrophin. The expression of hBGN in the skeletal muscle of the treated mice was 1.34-fold higher than that of the native mouse Bgn (mBgn). The low transduction efficiency and improved motor functions suggest that biglycan expressed in a small number of muscle fibers was likely to have been secreted and anchored to the cell surface throughout the whole muscular fibers. It is proposed that the protein-anchoring strategy can be applied not only to deficiency of an ECM protein as previously reported, but also to augmentation of a naturally induced ECM protein.

  18. Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis.

    Science.gov (United States)

    He, Ding; Pengtao, Gong; Ju, Yang; Jianhua, Li; He, Li; Guocai, Zhang; Xichen, Zhang

    2017-04-01

    Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis , we detected 2 strains of T. vaginalis ; the virus-infected (V + ) and uninfected (V - ) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V + compared with V - isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V + isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V + and V - isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

  19. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1

    Science.gov (United States)

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  20. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.......Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...

  1. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Wellington C.; Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B.R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M. (UW); (UW-MED); (Ponta Grossa)

    2016-07-22

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. In conclusion, our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.

  2. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    Science.gov (United States)

    Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B. R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M.

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament. PMID:27447485

  3. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    Science.gov (United States)

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-05-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters.

  4. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    Science.gov (United States)

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system.

  5. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  6. Usher protein functions in hair cells and photoreceptors.

    Science.gov (United States)

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Dansyl labeling and bidimensional mass spectrometry to investigate protein carbonylation.

    Science.gov (United States)

    Palmese, Angelo; De Rosa, Chiara; Marino, Gennaro; Amoresano, Angela

    2011-01-15

    Carbonylation is a non-enzymatic irreversible post-translational modification. The adduction of carbonyl groups to proteins is due to the presence of excess of ROS in cells. Carbonylation of specific amino acid side chains is one of the most abundant consequences of oxidative stress; therefore, the determination of carbonyl groups content in proteins is regarded as a reliable way to estimate the cellular damage caused by oxidative stress. This paper reports a novel RIGhT (Reporter Ion Generating Tag) (A. Amoresano, G. Monti, C. Cirulli, G. Marino. Rapid Commun. Mass Spectrom. 2006, 20, 1400) approach for selective labeling of carbonyl groups in proteins using dansylhydrazide, coupled with selective analysis by bidimensional mass spectrometry. We first applied this approach to ribonuclease A and lysozyme as model proteins. According to the so-called 'gel-free procedures', the analysis is carried out at the level of peptides following tryptic digest of the whole protein mixture. Modified RNaseA was analyzed in combined MS(2) and MS(3) scan mode, to specifically select the dansylated species taking advantage of the dansyl-specific fragmentation pathways. This combination allowed us to obtain a significant increase in signal/noise ratio and a significant increase in sensitivity of analysis, due to the reduction of duty cycle of the mass spectrometer. The unique signal obtained was correlated to peptide 1-10 of RNaseA carbonylated and labeled by dansylhydrazide. This strategy represents the first method leading to the direct identification of the carbonylation sites in proteins, thus indicating the feasibility of this strategy to investigate protein carbonylation in a proteomic approach. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins.

    Science.gov (United States)

    Wani, Ali Abas; Sogi, Dalbir Singh; Singh, Preeti; Wani, Idrees Ahmed; Shivhare, Uma S

    2011-01-15

    People in developing countries depend largely on non-conventional protein sources to augment the availability of proteins in their diets. Watermelon seed meal is reported to contain an adequate amount of nutritional proteins that could be extracted for use as nutritional ingredients in food products. Osborne classification showed that globulin was the major protein (≥500 g kg (-1)) present in watermelon seed meal, followed by albumin and glutelin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that the polypeptides had low molecular weights ranging from 35 to 47 kDa. Isoelectric focusing revealed that the isoelectric point of most proteins was in the acidic range 4-6. These proteins are rich in aspartic acid, glutamic acid and serine. An increase in pH (5-9) significantly (P watermelon protein fractions respectively, while surface hydrophobicity ranged from 126.4 to 173.2 and from 125.8 to 169.3 respectively. The foaming and emulsifying properties of albumin were better than those of the other proteins studied. The good nutritional and functional properties of watermelon seed meal proteins suggest their potential use in food formulations. Copyright © 2010 Society of Chemical Industry.

  9. Self-Reported Appetite and Intake Adequacy In Patients With Non-dialysis Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Maria Chan

    2012-06-01

    The positive predictive value (95%CI of appetite rating for energy and protein were 0.37 (0.32–0.41 and 0.90 (0.86–0.93 respectively. In conclusion, while self-reported appetite scores were useful in ranking energy and protein intakes, subjective reporting of good appetite was associated with adequate protein but not energy intake. Report of a good appetite does not always mean adequate intake in non-dialysis ESKD patients with high symptom burden.

  10. Systematic identification of proteins that elicit drug side effects

    DEFF Research Database (Denmark)

    Kuhn, Michael; Al Banchaabouchi, Mumna; Campillos, Monica

    2013-01-01

    Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large-scale analysis to systematically predict and characterize proteins...... that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug-target relations to identify overrepresented protein-side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause......) is responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side effects are mediated by individual proteins and create a reference for such relations....

  11. Problems with multiple use of transfer buffer in protein electrophoretic transfer.

    Science.gov (United States)

    Dorri, Yaser; Kurien, Biji T; Scofield, R Hal

    2010-04-01

    Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al. claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150-200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.

  12. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  13. Production of a soluble recombinant prion protein fused to blue fluorescent protein without refolding or detergents in Escherichia coli cells.

    Science.gov (United States)

    Arii, Yasuhiro; Yamaguchi, Hidenori; Fukuoka, Shin-Ichi

    2007-10-01

    The physiological function of prion proteins (PrP) remains unclear. To investigate the physiological relevance of PrP, we constructed a fusion protein of PrP with enhanced blue fluorescent protein (PrP-EBFP) to quantify the interaction of PrP with other molecules. Production of soluble PrP-EBFP was achieved by lowering the expression temperature in Escherichia coli (E. coli) cells to 15 degrees C. Soluble PrP-EBFP was purified on cation exchange and heparin-affinity columns to yield high purity protein. This is the first report of the preparation of soluble recombinant PrP without refolding following solubilization using denaturants or disruption using detergents. To confirm the integrity of PrP-EBFP, anisotropy was estimated under physiological conditions in the presence of heparin, which interacts with PrP. The dissociation constant was determined to be 0.88+/-0.07 microM. PrP-EBFP should be useful in the quantification of PrP interactions with other molecules.

  14. Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins

    Science.gov (United States)

    Günther, Tobias J.; Raff, Johannes; Pollmann, Katrin

    2016-01-01

    Genomic analyses of Viridibacillus arvi JG-B58 that was previously isolated from heavy metal contaminated environment identified three different putative surface layer (S-layer) protein genes namely slp1, slp2, and slp3. All three genes are expressed during cultivation. At least two of the V. arvi JG-B58 S-layer proteins were visualized on the surface of living cells via atomic force microscopy (AFM). These S-layer proteins form a double layer with p4 symmetry. The S-layer proteins were isolated from the cells using two different methods. Purified S-layer proteins were recrystallized on SiO2 substrates in order to study the structure of the arrays and self-assembling properties. The primary structure of all examined S-layer proteins lack some features that are typical for Bacillus or Lysinibacillus S-layers. For example, they possess no SLH domains that are usually responsible for the anchoring of the proteins to the cell wall. Further, the pI values are relatively high ranging from 7.84 to 9.25 for the matured proteins. Such features are typical for S-layer proteins of Lactobacillus species although sequence comparisons indicate a close relationship to S-layer proteins of Lysinibacillus and Bacillus strains. In comparison to the numerous descriptions of S-layers, there are only a few studies reporting the concomitant existence of two different S-layer proteins on cell surfaces. Together with the genomic data, this is the first description of a novel type of S-layer proteins showing features of Lactobacillus as well as of Bacillus-type S-layer proteins and the first study of the cell envelope of Viridibacillus arvi. PMID:27285458

  15. Bioreducible Lipid-like Nanoparticles for Intracellular Protein Delivery

    Science.gov (United States)

    Arellano, Carlos Luis

    Protein-based therapy is one of the most direct ways to manipulate cell function and treat human disease. Although protein therapeutics has made its way to clinical practice, with five of the top fifteen global pharmaceuticals being peptide or protein-based drugs, one common limitation is that the effects of protein therapy are only achieved through the targeting of cell surface receptors and intracellular domains. Due to the impermeability of the cell membrane to most foreign materials, entire classes of potentially therapeutic proteins cannot thoroughly be studied without a safe and efficient method of transporting proteins into the cytosol. We report the use of a combinatorially-designed bioreducible lipid-like material (termed "lipidoid") - based protein delivery platform for the transfection of human cancer cell lines. Lipidoid nanoparticles are synthesized through a thin film dispersion method. The degradation of the bioreducible nanoparticles was observed when exposed to glutathione, a highly reductive compound present in the cytosol. We demonstrate that the nanoparticles are capable of transfecting a dose-dependent concentration of our model protein, beta-galactosidase into HeLa cells. Furthermore, formulations of the lipidoid containing the cytotoxic proteins saporin and RNase-A are both capable of inhibiting tumor cell proliferation as observed in in vitro treatment of different human cancer cell lines. There was no observed loss in protein activity after lyophilization and long--term storage, indicating the potential of pre-clinical applications. Overall, we demonstrate an effective approach to protein formulation and intracellular delivery. We believe that our formulations will lead to the study of a whole class of previously untapped therapeutics that may generate new solutions for previously untreatable diseases.

  16. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  17. Multidimensional protein fractionation using ProteomeLab PF 2D™ for profiling amyotrophic lateral sclerosis immunity: A preliminary report

    Directory of Open Access Journals (Sweden)

    Mosley R Lee

    2008-09-01

    Full Text Available Abstract Background The ProteomeLab™ PF 2D platform is a relatively new approach to global protein profiling. Herein, it was used for investigation of plasma proteome changes in amyotrophic lateral sclerosis (ALS patients before and during immunization with glatiramer acetate (GA in a clinical trial. Results The experimental design included immunoaffinity depletion of 12 most abundant proteins from plasma samples with the ProteomeLab™ IgY-12 LC10 column kit as first dimension separation, also referred to as immuno-partitioning. Second and third dimension separations of the enriched proteome were performed on the PF 2D platform utilizing 2D isoelectric focusing and RP-HPLC with the resulting fractions collected for analysis. 1D gel electrophoresis was added as a fourth dimension when sufficient protein was available. Protein identification from collected fractions was performed using nano-LC-MS/MS approach. Analysis of differences in the resulting two-dimensional maps of fractions obtained from the PF 2D and the ability to identify proteins from these fractions allowed sensitivity threshold measurements. Masked proteins in the PF 2D fractions are discussed. Conclusion We offer some insight into the strengths and limitations of this emerging proteomic platform.

  18. TorsinA and the torsinA-interacting protein printor have no impact on endoplasmic reticulum stress or protein trafficking in yeast.

    Directory of Open Access Journals (Sweden)

    Julie S Valastyan

    Full Text Available Early-onset torsion dystonia is a severe, life-long disease that leads to loss of motor control and involuntary muscle contractions. While the molecular etiology of the disease is not fully understood, a mutation in an AAA+ ATPase, torsinA, has been linked to disease onset. Previous work on torsinA has shown that it localizes to the endoplasmic reticulum, where there is evidence that it plays roles in protein trafficking, and potentially also protein folding. Given the high level of evolutionary conservation among proteins involved in these processes, the ability of human such proteins to function effectively in yeast, as well as the previous successes achieved in examining other proteins involved in complex human diseases in yeast, we hypothesized that Saccharomyces cerevisiae might represent a useful model system for studying torsinA function and the effects of its mutants. Since torsinA is proposed to function in protein homeostasis, we tested cells for their ability to respond to various stressors, using a fluorescent