WorldWideScience

Sample records for lhc upgrade detectors

  1. ALFA detector upgrade before LHC Run 2

    CERN Document Server

    Vorobel, Vit; The ATLAS collaboration

    2016-01-01

    The operation experience with ATLAS ALFA detectors in the LHC environment during the Run1 period has shown significant beam-induced heating. Subsequent comprehensive studies revealed that heating effects could be disastrous in the case of the larger beam intensities foreseen for higher luminosities in the LHC Run2. During the first LHC long shutdown (LS1) all ALFA detectors have been removed from the LHC tunnel and their covers - Roman Pots - underwent a geometry upgrade to minimize the impedance losses. It will be shown that this modification together with a system improving the internal heat transfer and an air cooling system, significantly shifted the temperatures of ALFA detectors away from the critical limits throughout the LHC Run2. Also ALFA trigger system was considerably upgraded to keep measured data safely inside the Run2 ATLAS latency budget and to minimize dead time. The needed hardware changes of the trigger system will be presented in the second part of the talk.

  2. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  3. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  4. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  5. The LHC Luminosity Upgrade and Related ATLAS Detector Plans

    CERN Document Server

    Hartjes, F; The ATLAS collaboration

    2009-01-01

    3rd draft of the proposed talk about Atlas Upgrade for MPGD2009 (Instrumentation conference on gaseous pixel detectors) on Friday June 12, 2009. I concentrated my presentation on the upgrade plans and schedule of the LHC and on detector technologies for the new Inner Tracker, putting less emphasis on other subdetectors. Compared to the 2nd draft I modified and clarified a few items about trigger, muon detection and calorimetry and did a number of cosmetic adaptions.

  6. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. The left part of figure 1 shows the simulated layout for the ATLAS tracker upgrade to be installed in the volume taken up by the current ATLAS pixel, strip and transition radiation detectors. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The...

  7. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Soldevila, U; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a...

  8. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Bernabeu, J; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of d...

  9. The CMS HGCAL detector for HL-LHC upgrade

    CERN Document Server

    Martelli, Arabella

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors wi...

  10. Silicon Strip Detectors for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called High Luminosity LHC (HL-LHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity up to 5 x 1034 cm-2 s-1. The ATLAS experiment will need to build a new tracker for HL operation, which would cope with the increase in pile-up backgrounds at the higher luminosity. A new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of different designs. The irradiated sensors were subsequently tested in order to study the radiation-induced degradation, and determine their performance after irradiation of up to ...

  11. Physics at HL-LHC with the upgraded ATLAS detector

    CERN Document Server

    Dell'Acqua, Andrea; The ATLAS collaboration

    2017-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  12. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379172; The ATLAS collaboration

    2016-01-01

    Run 1 at the LHC was very successful with the discovery of a new boson. The boson’s properties are found to be compatible with those of the Standard Model Higgs boson. It is now revealing the mechanism of electroweak symmetry breaking and (possibly) the discovery of physics beyond the Standard Model that are the primary goals of the just restarted LHC. The ultimate precision will be reached at the high-luminosity LHC run with a proton-proton centre-of-mass energy of 14 TeV. In this contribution physics prospects are presented for ATLAS for the integrated luminosities 300 and 3000 fb−1: the ultimate precision attainable on measurements of the Higgs boson couplings to elementary fermions and bosons, its trilinear self-coulping, as well as perspectives on the searches for partners associated with it. Benchmark studies are presented to show how the sensitivity improves at the future LHC runs. For all these studies, a parameterised simulation of the upgraded ATLAS detector is used and expected pileup condition...

  13. Strip Detector for the ATLAS Detector Upgrade for the High - Luminosity LHC

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1*10^35 cm2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000/fb, requiring the tracking detectors to withstand hadron fluencies to over 1*10^16 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  14. Strip Detector for the ATLAS Detector Upgrade for the High-Luminosity LHC

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1*10^35 cm2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000/fb, requiring the tracking detectors to withstand hadron fluencies to over 1*10^16 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  15. High rate resistive plate chamber for LHC detector upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Y., E-mail: haddad@llr.in2p3.fr [Laboratoire Leprince-Ringuet (LLR), École Polytechnique, 91120 Palaiseau (France); Laktineh, I.; Grenier, G.; Lumb, N. [IPNL, Villeurbanne 69622 Lyon (France); Cauwenbergh, S. [Ghent University, Ghent (Belgium)

    2013-08-01

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPCs) used as muon detectors in the LHC experiments has prevented the use of such detectors in the high rate regions in both CMS and ATLAS detectors. One alternative to these detectors is RPCs made with low resistivity glass plates (10{sup 10}Ωcm), a beam test at DESY has shown that such detectors can operate at few thousand Hz/cm{sup 2} with high efficiency (>90%)

  16. SUSY discovery potential of the ATLAS detector at an upgraded LHC

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The so-called high-luminosity upgrade of the LHC will impose new technological challenges to the ATLAS detector, requiring the partial upgrade of the detector. Scenarios of SUSY sparticle production, among others, have been used as benchmark to drive the design of the component upgrades, and to evaluate the sensitivity of the upgraded accelerator and detector. This talk will give an overview of the expected sensitivity that the ATLAS experiment will have to SUSY sparticle production with 3000 fb$^{-1}$ pf proton-proton collisions collected at a centre of mass energy of 14 TeV.

  17. Expected performance for an upgraded ATLAS detector at High-Luminosity LHC

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note summarises the expected performance of the ATLAS detector after the upgrades for the High-Luminosity LHC. The performance evaluations are based on full simulation of the upgraded Phase-II detector with in-time and out-of-time pile-up for luminosities up to $7.5\\times10^{34}$ cm$^{-2}$ s$^{-1}$ corresponding to an average of number of inelastic collisions per bunch crossing of up to 200. The simulation uses an updated and optimised design of the inner tracker upgrade and an improved reconstruction software, resulting in improved performance compared to previous studies for High-Luminosity LHC.

  18. Updates on Projections of Physics Reach with the Upgraded CMS Detector for High Luminosity LHC

    CERN Document Server

    CMS Collaboration

    2016-01-01

    This document contains updates on projections of physics reach with the upgraded CMS detector for HL-LHC. Selected measurements in Higgs Physics, Top Physics, Heavy Flavor physics, Searches for Dark Matter and new Heavy particles highlighting the performance of the planned upgrades of the CMS detector. The projections take into account the effects of high pileup conditions and detector performance, based on the CMS Phase II Technical Proposal (CMS-TDR-15-002). Some of the studies are performed using the Delphes fast simulation of the upgraded CMS detector.

  19. Radiation-hard Optoelectronics for LHC detector upgrades.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00375195; Newbold, Dave

    A series of upgrades foreseen for the LHC over the next decade will allow the proton-proton collisions to reach the design center of mass energy of 14 TeV and increase the luminosity to five times (High Luminosity-LHC) the design luminosity by 2027. Radiation-tolerant high-speed optical data transmission links will continue to play an important role in the infrastructure of particle physics experiments over the next decade. A new generation of optoelectronics that meet the increased performance and radiation tolerance limits imposed by the increase in the intensity of the collisions at the interaction points are currently being developed. This thesis focuses on the development of a general purpose bi-directional 5 Gb/s radiation tolerant optical transceiver, the Versatile Transceiver (VTRx), for use by the LHC experiments over the next five years, and on exploring the radiation-tolerance of state-of-the art silicon photonics modulators for HL-LHC data transmission applications. The compliance of the VTRx ...

  20. ATLAS LUCID detector upgrade for LHC Run 2

    CERN Document Server

    Viazlo, Oleksandr; The ATLAS collaboration

    2015-01-01

    During the 2009-2013 data taking period (Run I) LUCID was successfully providing information about the luminosity delivered to ATLAS by the LHC. Starting from 2015 (Run II) the LHC machine is expected to provide about twice larger peak instantaneous luminosity and the bunch spacing in the machine is decreased by factor of two (from 50 ns to 25 ns). The original LUCID design could not cope with the new running conditions which would lead to saturation of photomultipliers and the luminosity algorithms as well as problems with the lifetime of the photomultipliers. To address these problems a new LUCID detector was built and the readout electronic was redesigned. This article describe the design, the performance, new calibration system and the first results of 13 TeV proton-proton collisions recorded by the new LUCID detector.

  1. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  2. Upgrades for the Precision Proton Spectrometer at the LHC: Precision Timing and Tracking Detectors

    CERN Document Server

    Gallinaro, Michele

    2017-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) is an approved project to add tracking and timing information at approximately $\\pm$210~m from the interaction point around the CMS detector. It is designed to operate at high luminosity with up to 50 interactions per 25~ns bunch crossing to perform measurements of e.g. the quartic gauge couplings and search for rare exclusive processes. During 2016, CT-PPS took data in normal high-luminosity proton-proton LHC collisions. In the coming years, high radiation doses and large multiple-vertex interactions will represent difficult challenges that resemble those of the high-luminosity LHC program. A coordinated effort of detector upgrades with the goal of reaching the physics goals while mitigating the degradation effects is under way. Upgrades to the tracking and timing detectors are discussed.

  3. Upgrades for the Precision Proton Spectrometer at the LHC: Precision timing and tracking detectors

    Science.gov (United States)

    Gallinaro, Michele

    2017-03-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) is an approved project to add tracking and timing information at approximately ±210 m from the interaction point around the CMS detector. It is designed to operate at high luminosity with up to 50 interactions per 25 ns bunch crossing to perform measurements of e.g. the quartic gauge couplings and search for rare exclusive processes. During 2016, CT-PPS took data in normal high-luminosity proton-proton LHC collisions. In the coming years, high radiation doses and large multiple-vertex interactions will represent difficult challenges that resemble those of the high-luminosity LHC program. A coordinated effort of detector upgrades with the goal of reaching the physics goals while mitigating the degradation effects is under way. Upgrades to the tracking and timing detectors are discussed.

  4. Upgrades for the Precision Proton Spectrometer at the LHC: Fast Timing and Tracking Detectors

    CERN Document Server

    Gallinaro, Michele

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) is an approved project to add tracking and timing information at approximately $\\pm$210~m from the interaction point around the CMS detector. It is designed to operate at high luminosity with up to 50 interactions per 25~ns bunch crossing to perform measurements of e.g. the quartic gauge couplings and search for rare exclusive processes. During 2016, CT-PPS took data in normal high-luminosity proton-proton LHC collisions. In the coming years, high radiation doses and large multiple-vertex interactions will represent difficult challenges that resemble those of the high-luminosity LHC program. A coordinated effort of detector upgrades with the goal of reaching the physics goals while mitigating the degradation effects is under way. Upgrades to the tracking and timing detectors are discussed.

  5. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    Slawinska, Magdalena; The ATLAS collaboration

    2016-01-01

    Run-I at the LHC was very successful with the discovery of a new boson with properties compatible with those of the Higgs boson predicted by Standard Model. Precise measurements of the boson properties, and the discovery of physics beyond the Standard Model, are primary goals of the just restarted LHC running at 13 TeV collision energy and all future running at the LHC. The physics prospects with a pp centre-of-mass energy of 14 TeV are presented for 300 and 3000 fb-1 at the high-luminosity LHC. The ultimate precision attainable on measurements of the couplings of the 125 GeV boson to elementary fermions and bosons is discussed, as well as perspectives on the searches for partners associated with it. Supersymmetry is one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks and electro-weakinos in the hundreds of GeV mass range. Benchmark studies are presente...

  6. Upgrades of the CMS Outer Tracker detector for the HL-LHC

    CERN Document Server

    Sguazzoni, Giacomo

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about $5\\times10^{34}\\,{\\rm cm}^{-2}\\,{\\rm s}^{-1}$ around 2028, to possibly reach an integrated luminosity of 3000$\\,{\\rm fb}^{-1}$ in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D activities.

  7. The CMS HGCAL detector for HL-LHC upgrade arXiv

    CERN Document Server

    Martelli, Arabella

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1cm$^{2}$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors wil...

  8. LHC Upgrade Scenarios

    CERN Document Server

    Zimmermann, F

    2007-01-01

    The EU CARE-HHH and US-LARP studies for an LHC luminosity upgrade aim at increasing the peak luminosity by a factor of 10, to 1035 cm-2s-1. The luminosity can be raised by rebuilding the interaction regions (IRs) in combination with a consistent change of beam parameters. In addition to advanced low-beta quadrupoles, the upgraded IRs may accommodate other new elements such as slim s.c. dipoles or quadrupoles embedded deep inside the detectors, global low-angle crab cavities, and wire compensators of long-range beam-beam effects. Important constraints on the upgrade path are the maximum acceptable number of detector pile-up events, favoring many closely spaced bunches, and the heat load on the cold-magnet beam screens, pointing towards fewer and more intense bunches. In order to translate the increased peak luminosity into a correspondingly higher integrated luminosity, the upgrade of the LHC ring should be complemented by an upgrade of the injector complex. I will present preferred upgrade scenarios for the L...

  9. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  10. Performance of Drift-Tube Detectors at High Counting Rates for High-Luminosity LHC Upgrades

    CERN Document Server

    Bittner, Bernhard; Kortner, Oliver; Kroha, Hubert; Manfredini, Alessandro; Nowak, Sebastian; Ott, Sebastian; Richter, Robert; Schwegler, Philipp; Zanzi, Daniele; Biebel, Otmar; Hertenberger, Ralf; Ruschke, Alexander; Zibell, Andre

    2016-01-01

    The performance of pressurized drift-tube detectors at very high background rates has been studied at the Gamma Irradiation Facility (GIF) at CERN and in an intense 20 MeV proton beam at the Munich Van-der-Graaf tandem accelerator for applications in large-area precision muon tracking at high-luminosity upgrades of the Large Hadron Collider (LHC). The ATLAS muon drifttube (MDT) chambers with 30 mm tube diameter have been designed to cope with and neutron background hit rates of up to 500 Hz/square cm. Background rates of up to 14 kHz/square cm are expected at LHC upgrades. The test results with standard MDT readout electronics show that the reduction of the drift-tube diameter to 15 mm, while leaving the operating parameters unchanged, vastly increases the rate capability well beyond the requirements. The development of new small-diameter muon drift-tube (sMDT) chambers for LHC upgrades is completed. Further improvements of tracking e?ciency and spatial resolution at high counting rates will be achieved with ...

  11. The ATLAS Tracker Upgrade Short Strips Detectors for the sLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  12. Development of pixel detectors for the IBL and HL-LHC ATLAS experiment upgrade

    CERN Document Server

    Baselga Bacardit, Marta

    2016-03-18

    This thesis presents the development of advanced silicon technology detectors fabricated at CNM-Barcelona for High Energy Physics (HEP) experiments. The pixel size of the tracking silicon detectors for the upgrade of the HL-LHC will have to decrease in size in order to enhance the resolution in position for the measurements and they need to have lower occupancy for the electronics. The future experiments at CERN will cope with fuences up to 2 x 10^^16 neq/cm2, and the smaller 3D silicon detectors will have less trapping of the electron-holes generated in the bulk leading to a better performance under high radiation environment. This thesis studies silicon detectors fabricated at CNM-Barcelona applied to HEP experiments with two different kinds of novel technologies: 3D and Low Gain Avalanche Detectors (LGAD). The 3D detectors make it possible to reduce the size of the depleted region inside the detector and to work at lower voltages, whereas the LGAD detectors have an intrinsic gain which increases the collec...

  13. Academic Training Lectures | The Upgrade Programme of the LHC Detectors by Werner Riegler | 3-5 February

    CERN Multimedia

    2014-01-01

    This lecture programme will be in three parts: The Upgrade Programme of the LHC Detectors (1/3): Monday, 3 February 2014 from 11:00 to 12:00 at CERN (4-3-006 - TH Conference Room) The Upgrade Programme of the LHC Detectors (2/3): Tuesday, 4 February 2014 from 11:00 to 12:00 at CERN (4-3-006 - TH Conference Room) The Upgrade Programme of the LHC Detectors (3/3): Wednesday, 5 February 2014 from 11:00 to 12:00 at CERN (4-3-006 - TH Conference Room) Click here to view the event details on Indico.

  14. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  15. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  16. The ITk Strip Tracker for the phase-II upgrade of the ATLAS detector of the HL-LHC

    CERN Document Server

    Koutoulaki, Afroditi; The ATLAS collaboration

    2016-01-01

    The current Inner Detector in the ATLAS experiment does not meet the requirements of the High Luminosity-LHC upgrade. A new detector, known as the Inner Tracker, will be built in place of the current Inner Detector and will consist exclusively of silicon based sensors. This contribution summarizes the on-going R&D activities within the different institutes involved in the phase II upgrade of the Strip Tracker. An update on the current status of testing and prototyping is given as well as the next steps before the submission of the ITk Strips Technical Design Report by the end of 2016.

  17. Updates on Performance of Physics Objects with the Upgraded CMS detector for High Luminosity LHC.

    CERN Document Server

    CMS Collaboration

    2016-01-01

    This document contains a collection of performance plots obtained with the simulation of the upgrade Phase2 CMS detector for HL-LHC at the centre of mass energy of 14 TeV. Two pileup scenarios with and average = 140 and 200 collisions per event have been considered. We present updated results compared to the Technical Proposal (CMS-TDR-15-02) and Scope Document (CERN-LHCC-2015-019) for: track, muon, jet reconstruction and btagging performance. In addition, a set of plots containing studies of performance as a function of the linear pile up density along the beam axis are presented for tracking, vertexing, b-tagging, tau identification, muon isolation and missing $E_T$ resolution.

  18. The LHCb Detector Upgrade

    CERN Document Server

    Schindler, H

    2013-01-01

    The LHCb collaboration presented a Letter of Intent (LOI) to the LHCC in March 2011 for a major upgrading of the detector during Long Shutdown 2 (2018) and intends to collect a data sample of 50/fb in the LHC and High-Luminosity-LHC eras. The aim is to operate the experiment at an instantaneous luminosity 2.5 times above the present operational luminosity, which has already been pushed to twice the design value. Reading out the detector at 40MHz allows to increase the trigger efficiencies especially for the hadronic decay modes. The physics case and the strategy for the upgrade have been endorsed by the LHCC. This paper presents briefly the physics motivations for the LHCb upgrade and the proposed changes to the detector and trigger.

  19. The ITk strips tracker for the phase-II upgrade of the ATLAS detector of the HL-LHC

    CERN Document Server

    Koutoulaki, Afroditi; The ATLAS collaboration

    2016-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  20. ATLAS Detector Upgrade Prospects

    Science.gov (United States)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  1. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    CERN Document Server

    INSPIRE-00304438; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  2. ATLAS Detector : Performance and Upgrades

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2016-01-01

    Describe the ATLAS detector and summarize most relevant and recent information about the detector performance in 2016 with LHC colliding bunches at sqrt(s)=13 TeV with luminosity above the nominal value. Describe the different upgrade phases previewed for the detector and main activities already ongoing.

  3. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC is ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred f b −1 expected for LHC running to 3000 f b −1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of ext...

  4. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extens...

  5. Pixel Detector Developments for Tracker Upgrades of the High Luminosity LHC

    CERN Document Server

    Meschini, Marco; Dalla Betta, G. F; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Mendicino, R; Messineo, Alberto; Moroni, Luigi; Ronchin, S; Sultan, D.M.S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    and 3D devices. The results on the 3D pixel sensors before irradiation are very satisfactory and % make us confident support the conclusion that columnar devices are % 3D devices very good candidates for the inner layers of the upgrade pixel detectors.

  6. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00016406

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  7. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Daniel, E-mail: daniel.dobos@cern.ch

    2016-07-11

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  8. An Upgraded Front-End Switching Power Supply Design For the ATLAS TileCAL Detector of the LHC

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2011-01-01

    We present the design of an upgraded switching power supply brick for the front-end electronics of the ATLAS hadron tile calorimeter (TileCAL) at the LHC. The new design features significant improvement in noise, improved fault detection, and generally a more robust design, while retaining the compact size, water-cooling, output control, and monitoring features in this 300 KHz design. We discuss the improvements to the design, and the radiation testing that we have done to qualify the design. We also present our plans for the production of 2400 new bricks for installation on the detector in 2013.

  9. ATLAS Upgrades Towards the High Luminosity LHC

    CERN Document Server

    Zhu, H; The ATLAS collaboration

    2012-01-01

    After successful LHC operation at the center-of-mass energy of 7 TeV in 2011, the LHC is scheduled to deliver even more data in 2012 at 8 TeV. Meanwhile, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about 300fb-1 expected for LHC running to 3000 fb-1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon ...

  10. ATLAS Upgrades Towards the High Luminosity LHC

    CERN Document Server

    Elsing, M; The ATLAS collaboration

    2012-01-01

    After successful LHC operation at 7 TeV in 2011, the LHC is scheduled to deliver even more data in 2012. Meanwhile, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about 300 fb-1 expected for LHC running to 3000 fb-1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers...

  11. The INFN R\\&D: new pixel detector for the High Luminosity Upgrade of the LHC

    CERN Document Server

    Dinardo, Mauro

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few $10^{16}$~ particles/cm$^2$ at $\\sim$3~cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity, in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R\\&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planar sensors, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS and ATLAS readout chips have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  12. Studies of Vector Boson Scattering with an Upgraded ATLAS Detector at a High-Luminosity LHC

    CERN Document Server

    Anger, P; The ATLAS collaboration; Campanelli, M; Kobel, M; Kotwal, A; Nielsen, J; Pollard, C; Schnoor, U

    2012-01-01

    The Phase 2 upgrade of the ATLAS detector greatly increases the sensitivity to an extended electroweak symmetry-breaking sector beyond the Standard Model Higgs mechanism. A common feature of such an extended sector is the enhancement of longitudinal vector boson scattering at high energy. Using simplified detector performance parameterizations, we present the expected gain in sensitivity if the ATLAS dataset were increased from 300 fb−1 to 1 ab−1 and 3 ab−1 at a center-of-mass energy of 14 TeV .

  13. Studies of Vector Boson Scattering with an Upgraded ATLAS Detector at a High-Luminosity LHC

    CERN Document Server

    ATLAS-Collaboration, The; The ATLAS collaboration

    2012-01-01

    The Phase 2 upgrade of the ATLAS detector would greatly increase the sensitivity to an extended electroweak symmetry-breaking sector beyond the Standard Model Higgs mechanism. A common feature of such an extended sector is the enhancement of longitudinal vector boson scattering at high energy. Using simplified detector performance parameterizations, we present the expected gain in sensitivity if the ATLAS dataset were increased from 300 fb−1 to 1 ab−1 and 3 ab−1 at a center-of-mass energy of 14 TeV.

  14. Level-1 track trigger for the upgrade of the CMS detector at HL-LHC

    CERN Document Server

    Ahuja, Sudha

    2016-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) studies proton-proton collisions at a centre-of-mass energy of 13 TeV. With the LHC colliding proton bunches every 25 nanoseconds, the volume and rate of raw data produced by the detector are much larger than what can be read out, recorded, and reconstructed. Therefore, an efficient trigger system is required to identify events of interest in real time and to reduce the rate of events to a manageable level for later software reconstruction. The CMS trigger system consists of two processing stages, a level-1 (L1) hardware trigger and a high level software trigger. The current L1 trigger decision relies solely on calorimetric and muon system information. During the High Luminosity LHC (HL-LHC) era, the instantaneous luminosity of the collider is expected to increase by approximately an order of magnitude, resulting in a significantly larger number of collisions per bunch crossing than observed in the current run. In order to preserve ...

  15. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2 at the LHC

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130 nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented using collision data.

  16. Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC.

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron collider (HL-LHC) will have a peak luminosity of 5x10^34 cm-2s-1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow th...

  17. Upgrade of Tile Calorimeter of the ATLAS detector for the High Luminosity LHC.

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of $5 * 10^{34} cm^{-2} s ^{-1} $, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allo...

  18. ATLAS Upgrades Towards the High Luminosity LHC

    CERN Document Server

    Cinca, D; The ATLAS collaboration

    2014-01-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data a...

  19. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    ATLAS Pixel Collaboration; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  20. Alignment of the ATLAS Inner Detector upgraded for the LHC Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2015-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system, notably quality of its offline alignment. ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). Offline track alignment of the ATLAS tracking system has to deal with about 700,000 degrees of freedom (DoF) defining its geometrical parameters. The task requires using very large data sets and represents a considerable numerical challenge in terms of both CPU time and precision. The adopted strategy uses a hierarchical approach to alignment, combining local and global least squares techniques. An o...

  1. Alignment of the ATLAS Inner Detector Upgraded for the LHC Run II

    CERN Document Server

    Jimenez Pena, Javier

    2015-01-01

    ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable Barrel Layer (IBL). An outline of the track based alignment approach and its implementation within the ATLAS software will be presented. Special attention will be paid to integration to the alignment framework of the IBL, which plays the key role in precise reconstruction of the collider luminous region, interaction vertices and identification of long-lived heavy flavour states. In order to detect as soon as possible deformations and misalignments of the tracking system that may affect the data taking, a fast alignment chain was implemented at CERN’s Tier-0. Last upgrades and tests of this fast chain will be covered. Performance from Cosmic Ray commissioning run will be discussed.

  2. FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC

    CERN Document Server

    Barbero, M; The ATLAS collaboration

    2010-01-01

    A new ATLAS pixel chip FE-I4 has been developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. It is based on a two-stage architecture with a pre-amp AC-coupled to a second stage of amplification. It features leakage current compensation circuitry, local 4-bit pre-amp feedback tuning and a discriminator locally adjusted through 5 configuration bits. The digital architecture is based on a 4-pixel unit called Pixel Digital Region (PDR) allowing for local storage of hits in 5-deep data buffers at pixel level for the duratio...

  3. Development of the DAQ System of Triple-GEM Detectors for the CMS Muon Spectrometer Upgrade at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387583

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). After a long technical stop in 2019-2020, the LHC will restart and run at a luminosity of 2 × 1034 cm−2 s−1, twice its nominal value. This will in turn increase the rate of particles to which detectors in CMS will be exposed and affect their performance. The muon spectrometer in particular will suffer from a degraded detection efficiency due to the lack of redundancy in its most forward region. To solve this issue, the GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. Within the GEM collaboration, the Data Acquisition (DAQ) subgroup is in charge of the development of the electronics and software of the DAQ system of the detectors. This thesis presents th...

  4. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    CERN Document Server

    Miucci, A; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; Rosa, A.La; Muenstermann, D.; George, M.; Grosse-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J.C.; Liu, J; Barbero, M.; Rozanov, A

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. 1Corresponding author. c CERN 2014, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation and DOI. doi:10.1088/1748-0221/9/05/C050642014 JINST 9 C05064 A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation a...

  5. ATLAS Upgrade for the HL-LHC

    CERN Document Server

    Oakham, F G; The ATLAS collaboration

    2012-01-01

    With the LHC successfully collecting data at 7 TeV, plans are actively advancing for a series of upgrades leading eventually to about five times the LHC design-luminosity some 10 years from now in the high luminosity LHC (HL-LHC) project. The goal is to extend the data set from about 300 fb-1 proposed for LHC running to 3000 fb-1 by around 2030. Coping with the high instantaneous and integrated luminosity will require many changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, big changes in the calorimeter and muon systems, as well as improved triggers. This talk summarises the environment expected at the HL-LHC and the status of various improvements to the ATLAS detector.

  6. Development of enhanced double-sided 3D radiation sensors for pixel detector upgrades at HL-LHC

    CERN Document Server

    Povoli, Marco

    The upgrades of High Energy Physics (HEP) experiments at the Large Hadron Collider (LHC) will call for new radiation hard technologies to be applied in the next generations of tracking devices that will be required to withstand extremely high radiation doses. In this sense, one of the most promising approaches to silicon detectors, is the so called 3D technology. This technology realizes columnar electrodes penetrating vertically into the silicon bulk thus decoupling the active volume from the inter-electrode distance. 3D detectors were first proposed by S. Parker and collaborators in the mid ’90s as a new sensor geometry intended to mitigate the effects of radiation damage in silicon. 3D sensors are currently attracting growing interest in the field of High Energy Physics, despite their more complex and expensive fabrication, because of the much lower operating voltages and enhanced radiation hardness. 3D technology was also investigated in other laboratories, with the intent of reducing the fabrication co...

  7. Prospects of a search for $t\\bar{t}$ resonances at the High Luminosity LHC with an upgraded ATLAS Detector

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    A study of the expected mass reach of a search for new high-mass resonances decaying to a top quark pair using a simulation of the upgraded ATLAS experiment and using an integrated luminosity of 3000 fb$^{-1}$ from the High Luminosity LHC has been made. The simulation of the upgraded ATLAS experiment under HL-LHC conditions, including pileup, was done using parameterised estimates of the performance. Expected upper limits are set on the cross section of a $t\\bar{t}$ resonance in a benchmark model for several signal masses and show that particles with masses up to 4 TeV can be seen.

  8. Scenarios for the LHC Upgrade

    CERN Document Server

    Scandale, Walter

    2008-01-01

    The projected lifetime of the LHC low-beta quadrupoles, the evolution of the statistical error halving time, and the physics potential all call for an LHC luminosity upgrade by the middle of the coming decade. In the framework of the CARE-HHH network three principal scenarios have been developed for increasing the LHC peak luminosity by more than a factor of 10, to values above 1035 cm−2s−1. All scenarios imply a rebuilding of the high-luminosity interaction regions (IRs) in combination with a consistent change of beam parameters. However, their respective features, bunch structures, IR layouts, merits and challenges, and luminosity variation with β∗ differ substantially. In all scenarios luminosity leveling during a store would be advantageous for the physics experiments. An injector upgrade must complement the upgrade measures in the LHC proper in order to provide the beam intensity and brightness needed as well as to reduce the LHC turnaround time for higher integrated luminosity.

  9. Charged particle detection performance of gas electron multiplier detector for the upgrade of CMS endcap muon system at the CERN LHC

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The CMS detector is one of two general-purpose detectors at the CERN LHC. LHC will provide exceptional high instantaneous and integrated luminosities after second long shutdown. The forward region $\\mid \\eta \\mid \\geq 1.5$ of the CMS detector will face extremely high particle rates in 10s of kHz/cm2 and hence it will affect the momentum resolution and longevity of the muon detectors. To overcome these issues, the CMS-GEM collaboration has proposed to install new large size high rate capable triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The proposal has been approved recently. The first set of Triple GEM detectors will be installed in the GE1/1 region ($1.6 < \\mid \\eta \\mid < 2.2$) of muon endcap during phase-II upgrade of the LHC. Towards this goal, full size CMS Triple GEM prototype chambers have been fabricated and put under the test beam at the CERN SPS test beam facility. The GEM detectors were operated with two gas mixtures: Ar:CO2 (70:30) and Ar:CO2:CF4 (...

  10. The ALICE pixel detector upgrade

    Science.gov (United States)

    Reidt, F.

    2016-12-01

    The ALICE experiment at the CERN LHC is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma, using proton-proton, proton-nucleus and nucleus-nucleus collisions. The ALICE collaboration is preparing a major upgrade of the experimental apparatus to be installed during the second long LHC shutdown in the years 2019-2020. A key element of the ALICE upgrade is the new, ultra-light, high-resolution Inner Tracking System. With respect to the current detector, the new Inner Tracking System will significantly enhance the pointing resolution, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a Monolithic Active Pixel Sensor with a pixel pitch of about 30×30 μm2. A key feature of the new Inner Tracking System, which is optimised for high tracking accuracy at low transverse momenta, is the very low mass of the three innermost layers, which feature a material budget of 0.3% X0 per layer. This contribution presents the design goals and layout of the upgraded ALICE Inner Tracking System, summarises the R&D activities focussing on the technical implementation of the main detector components, and the projected detector performance.

  11. ALFA detector before LHC Run 2

    CERN Document Server

    Vorobel, Vit; The ATLAS collaboration

    2016-01-01

    The operation experience with ATLAS ALFA detectors in the LHC environment during the Run1 period has shown significant beam-induced heating. Subsequent comprehensive studies revealed that heating effects could be disastrous in the case of the larger beam intensities foreseen for higher luminosities in the LHC Run2. During the first LHC long shutdown (LS1) all ALFA detectors have been removed from the LHC tunnel and their covers - Roman Pots - underwent a geometry upgrade to minimize the impedance losses. It will be shown that this modification together with a system improving the internal heat transfer and an air cooling system, significantly shifted the temperatures of ALFA detectors away from the critical limits throughout the LHC Run2. Also ALFA trigger system was considerably upgraded to keep measured data safely inside the Run2 ATLAS latency budget and to minimize dead time. The needed hardware changes of the trigger system are also described

  12. ATLAS ITk Short Strip Prototype Module with Integrated DCDC Powering and Control Phase II Upgrade of the ATLAS Inner Tracker detector at the HL - LHC

    CERN Document Server

    Greenall, Ashley; The ATLAS collaboration

    2017-01-01

    The prototype Barrel module design, for the Phase II upgrade of the of the new Inner Tracker (ITk) detector at the LHC, has adopted an integrated low mass assembly featuring single-sided flexible circuits, with readout ASICs, glued to the silicon strip sensor. Further integration has been achieved by the attachment of module DCDC powering, HV sensor biasing switch and autonomous monitoring and control to the sensor. This low mass, integrated module approach benefits further in a reduced width stave structure to which the modules are attached. The results of preliminary electrical tests of such an integrated module will be presented.

  13. LHC Status and Upgrade Challenges

    Science.gov (United States)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  14. Upgrades of the CMS Outer Tracker for HL-LHC

    Science.gov (United States)

    Sguazzoni, Giacomo

    2017-02-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 ×1034cm-2s-1 around 2028, to possibly reach an integrated luminosity of 3000 fb-1 in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D activities.

  15. Upgrading the ATLAS Silicon Tracking for the HL-LHC

    CERN Document Server

    Barber, T; The ATLAS collaboration

    2012-01-01

    After successful operation of the LHC at a centre-of-mass energy of 8 TeV this year, the energy is expected to go up to 14 TeV in the next few years. A total integrated luminosity of 300 fb-1 foreseen to be reached by 2020. At that time, the LHC will undergo a major upgrade to the High Luminosity LHC (HL-LHC), which is designed to deliver of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set to 3000 fb-1 by around 2030. Current planning in ATLAS involves significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems...

  16. Construction and performance study of the new Micro Pattern Gaseous Detectors for future upgrades of the CMS muon high rate region at the LHC

    CERN Document Server

    Fallavollita, Francesco

    2015-01-01

    We have tested a new type position-sensitive gaseous proportional detector, called the Fast Timing Micropattern (FTM) detector, based on advanced printed circuit board technology, for fast timing applications. The construction feasibility has been demonstrated by building a first working prototype. We expect that this technique can be exploited for applications in high energy physics experiments, particularly for upgrades at LHC where sub nanosecond time resolutions are critical for particle identification and vertex separation. Other applications include X-ray diffraction studies and fast time-resolved measurements offer excellent medical imaging opportunities. In combination with an X-ray convertor and FTM and a visible photocathode shows great promise for use in digital mammography. Other applications include X-ray astronomy by exploiting time resolution of the FTM and selective sensitivity to soft X-rays.

  17. Submission of the first full scale prototype chip for upgraded ATLAS pixel detector at LHC, FE-I4A

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Marlon, E-mail: barbero@physik.uni-bonn.de [Physikalisches Institut Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Arutinov, David [Physikalisches Institut Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Beccherle, Roberto; Darbo, Giovanni [INFN Genova, via Dodecaseno 33, IT-16146 Genova (Italy); Dube, Sourabh; Elledge, David; Fleury, Julien [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Fougeron, Denis [CPPM Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Garcia-Sciveres, Maurice [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Gensolen, Fabrice [CPPM Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gnani, Dario [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Gromov, Vladimir [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands); Jensen, Frank [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Hemperek, Tomasz; Karagounis, Michael [Physikalisches Institut Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Kluit, Ruud [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands); Kruth, Andre [Physikalisches Institut Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Mekkaoui, Abderrezak [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 (United States); Menouni, Mohsine [CPPM Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Schipper, Jan David [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands); and others

    2011-09-11

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25{mu}m CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80x336 pixels, each 50x250{mu}m{sup 2}, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences between the FE-I4A IC and the final FE-I4 as envisioned for IBL.

  18. ATLAS detector upgrade plans and perspectives

    CERN Document Server

    Salzburger, A; The ATLAS collaboration

    2011-01-01

    With the LHC collecting first data at 7 TeV, plans are already advancing for a series of upgrades leading eventually to about five times the LHC design-luminosity some 10 years from now in the high luminosity LHC (HL-LHC) project. The goal is to extend the data set from about 300 fb-1 proposed for LHC running to 3000 fb-1 by around 2030. Coping with the high instantaneous and integrated luminosity will require many changes to the ATLAS detector. ATLAS is planning a multi-phase detector upgrade procedure, starting with initial modifications of the existing detector setup as early as 2013 towards large scale replacements of detector components during later shut down periods. The designs are developing rapidly for an all-new inner-tracker, big changes in the calorimeter and muon systems, as well as improved triggers. This talk summarises the environment expected at the HL-LHC and the status of the improvements to the ATLAS detector.

  19. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  20. Advanced Accelerator Magnets for Upgrading the LHC

    CERN Document Server

    Rossi, L; de Rijk, G; Todesco, E

    2012-01-01

    The Large Hadron Collider is working at about half its design value, limited by the defective splices of the magnet interconnections. While the full energy will be attained after the splice consolidation in 2014, CERN is preparing a plan for a Luminosity upgrade (High Luminosity LHC) around 2020 and has launched a pre-study for exploring an Energy upgrade (High Energy LHC) around 2030. Both upgrades strongly rely on advanced accelerator magnet technology, requiring dipoles and quadrupoles of accelerator quality and operating fields in the 11-13 T range for the luminosity upgrade and 16-20 T range for the energy upgrade. The paper will review the last ten year of Nb3Sn accelerator magnet R&D and compare it to the needs of the upgrades and will critically assess the results of the Nb3Sn and HTS technology and the planned R&D programs also based on the inputs of first year of LHC operation.

  1. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  2. Simulation of the upgraded Phase-1 Trigger Readout Electronics of the Liquid-Argon Calorimeter of the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00338138

    In the context of an intensive upgrade plan for the LHC in order to provide proton beams of increased luminosity, a revision of the data readout electronics of the Liquid-Argon-Calorimeter of the ATLAS detector is scheduled. This is required to retain the efficiency of the trigger at increased event rates despite its fixed bandwidth. The focus lies on the early digitization and finer segmentation of the data provided to the trigger. Furthermore, there is the possibility to implement new energy reconstruction algorithms which are adapted to the specific requirements of the trigger. In order to constitute crucial design decisions, such as the digitization scale or the choice of digital signal processing algorithms, comprehensive simulations are required. High trigger efficiencies are decisive at it for the successful continuation of the measurements of rare Standard Model processes as well as for a high sensitivity to new physics beyond the established theories. It can be shown that a significantly improved res...

  3. B-physics studies for HL-LHC ATLAS upgrade

    CERN Document Server

    Jakoubek, Tomas; The ATLAS collaboration

    2017-01-01

    Simulation studies were made to estimate ATLAS HL-LHC upgrade performance for B-physics. In particular, the decay of $B_s^0 \\to J/\\psi\\phi$ is studied in order to measures the $CP$ violating mixing phase and the width difference between the $B_s^0$ eigenstates. The increased sensitivity is related mainly to the improved decay time resolution obtained with the upgraded ITk inner tracking detector.

  4. Upgrade of the LHCb VELO detector

    Science.gov (United States)

    Williams, Mark

    2017-01-01

    The LHCb experiment is a single-arm forward spectrometer optimised for performing heavy-flavour physics analyses, using proton-proton collisions provided by the LHC machine. A major upgrade of the LHCb experiment will take place prior to the start of Run 3 operations in 2021. The upgraded Vertex Locator (VELO) is an essential component of this upgrade. Its main role is to enable high precision track and vertex reconstruction, with data-driven readout to the software trigger at 40 MHz, in the higher-luminosity environment of Run 3. To achieve this goal, significant improvements are planned with respect to the current detector, including a switch from microstrips to pixels, upgraded electronics, and a new cooling system. I will briefly motiviate the need for an upgrade, describe the main aspects of the VELO upgrade design, and show highlights of recent sensor characterisation studies using the CERN SPS test beam.

  5. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  6. The Upgrade of the ATLAS Inner Detector

    CERN Document Server

    Ferrere, D; The ATLAS collaboration

    2012-01-01

    With the Large Hadron Collider (LHC) successfully collecting data at 7 TeV and even at 8 TeV since April 2012, plans are actively advancing for a series of upgrades in phase with the three long shutdown periods leading to detector improvement. The ATLAS collaboration will upgrade at the next shutdown in 2013-2014 its semiconductor pixel tracking detector with a new Insertable BLayer (IBL) between the existing innermost pixel layer and the vacuum pipe of the LHC. The extreme operating conditions at this location led considering the development of new radiation hard pixel sensor technologies and a new front-end readout chip. The IBL community is currently working for producing modules with silicon planar and 3D technology towards the loading on 14 local stave structures as well as the integration around the beam pipe and in the ATLAS detector. The High-Luminosity LHC (HL-LHC) will eventually increase to about five times the LHC design-luminosity some 10-years from now requiring a complete Inner Detector replace...

  7. ATLAS Upgrade: meeting the challenges of the sLHC

    CERN Document Server

    Loginov, A; The ATLAS collaboration

    2011-01-01

    With the Large Hadron Collider (LHC) providing pp collisions data at sqrt(s)=7 TeV, plans are already advancing for a series of upgrades leading eventually to about 5 x 10^{34} cm-2 s-1 some ten years from now in the super-LHC (sLHC) project. The goal is to extend the dataset from about few hundreds fb-1 expected by 2020 to few thousands fb-1 by around 2030. High instantaneous and integrated luminosities are the challenge that will require many changes to the ATLAS detector. The designs are developing rapidly for a new tracking detector, significant changes in the calorimeter and muon systems, as well as improved triggers and data acquisition system. These proceedings summarise the environment expected at the sLHC and the status of the improvements to the ATLAS detector.

  8. Upgrade of the CMS Tracker for the High Luminosity LHC

    CERN Document Server

    Auzinger, Georg

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about $ 5 \\times 10^{34}$cm$^{-2}$s$^{-1}$ in 2028, possibly reaching an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker, including both inner pixel and outer strip systems, is already running beyond design specifications and will not be able to survive HL-LHC radiation conditions. CMS will need a completely new device in order to fully exploit the demanding operating conditions and the delivered luminosity. The upgrade plan includes extending the Pixel Detector in the forward region from the current coverage of $ \\lvert \\eta \\rvert < 2.4 $ to $ \\lvert \\eta \\rvert < 4$, where up to seven forward- and four extension disks will compose the new detector. Additionally, the new outer system should also have trigger capabilities. To achieve such goals, R\\&...

  9. Physics potential and experimental challenges of the LHC luminosity upgrade

    Science.gov (United States)

    Gianotti, F.; Mangano, M. L.; Virdee, T.; Abdullin, S.; Azuelos, G.; Ball, A.; Barberis, D.; Belyaev, A.; Bloch, P.; Bosman, M.; Casagrande, L.; Cavalli, D.; Chumney, P.; Cittolin, S.; Dasu, S.; de Roeck, A.; Ellis, N.; Farthouat, P.; Fournier, D.; Hansen, J.-B.; Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C. G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S. R.; Smith, W. H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; van der Bij, J.; Watson, A.; Wielers, M.

    2005-02-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 1035 cm-2s-1. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes.

  10. Physics potential of ATLAS upgrades at HL-LHC

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2017-01-01

    The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to pro- vide an integrated luminosity of 3000 fb−1 in ten years, a factor 10 more than what will be collected by 2023. This high statistics will allow ATLAS to perform precise measurements in the Higgs sector and improve searches for new physics at the TeV scale. The luminosity needed is L ∼ 7.51034 cm−2 s−1, corresponding to ∼200 additional proton-proton pile- up interactions. To face such harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted. The performances of the new or upgraded ATLAS sub-detectors are presented, focusing in particular on the new inner tracker and a proposed high granularity time device. The impact of those upgrades on crucial physics measurements for HL-LHC program is also shown.

  11. Physics potential of ATLAS upgrades at HL-LHC

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2017-01-01

    The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to provide an integrated luminosity of 3000 fb-1 in ten year, a factor 10 more than what will be collected by 2021. This high statistics will allow to perform precise measurements in the Higgs sector and improve searches of new physics at the TeV scale. The luminosity needed is L ~7.5 1034 cm-2 s-1, correspondent to ~200 additional proton-proton pile-up interactions. To face such harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted. In this poster, the performances of the new or upgraded ATLAS sub-detectors will be described, focusing in particular on the new inner tracker and a proposed high granularity time device. The poster will also show the impact of those upgrades on crucial physics measurements for HL-LHC program

  12. Upgrades of the CMS outer tracker for HL-LHC

    CERN Document Server

    Sguazzoni, Giacomo

    2015-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity up to or above $5\\times 10^{34}$cm$^{-2}$s$^{-1}$ sometimes after 2020, to possibly reach an integrated luminosity of 3000fb$^{-1}$ at the end of that decade. In this ultimate scenario, called Phase-2, when LHC will reach the High Luminosity (HL-LHC) phase, CMS will need a completely new Tracker detector, in order to fully exploit the high-demanding operating conditions and the delivered luminosity. The new Tracker should have also trigger capabilities. To achieve such goals, R and D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R and D activities.

  13. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  14. Upgrade of the ATLAS Central Trigger for LHC Run-2

    CERN Document Server

    Artz, Sebastian; The ATLAS collaboration; Boterenbrood, Hendrik; Buescher, Volker; Degele, Reinold; Dhaliwal, Saminder; Ellis, Nicolas; Farthouat, Philippe; Galster, Gorm Aske Gram; Ghibaudi, Marco; Glatzer, Julian Maximilian Volker; Haas, Stefan; Igonkina, Olga; Jakobi, Katharina Bianca; Jansweijer, Peter Paul Maarten; Kahra, Christian; Kaluza, Adam; Kaneda, Michiru; Marzin, Antoine; Ohm, Christian; Silva Oliveira, Marcos Vinicius; Pauly, Thilo; Poettgen, Ruth; Reiss, Andreas; Schaefer, Uli; Schaeffer, Jan; Schipper, Jan David; Schmieden, Kristof; Schreuder, Frans Philip; Simioni, Eduard; Spiwoks, Ralf; Stelzer, Harald Joerg; Tapprogge, Stefan; Vermeulen, Jos; Vogel, Adrian; Zinser, Markus

    2015-01-01

    The increased energy and luminosity of the LHC in the run-2 data taking period requires a more selective trigger menu in order to satisfy the physics goals of ATLAS. Therefore the electronics of the central trigger system is upgraded to allow for a larger variety and more sophisticated trigger criteria. In addition, the software controlling the central trigger processor (CTP) has been extended to allow the CTP to accommodate three freely configurable and separately operating sets of sub detectors, each independently using the almost full functionality of the trigger hardware. This new approach and its operational advantages are discussed as well as the hardware upgrades.

  15. B-physics studies for HL-LHC ATLAS upgrade

    CERN Document Server

    Jakoubek, Tomas; The ATLAS collaboration

    2017-01-01

    Performance studies are made to estimate the ATLAS potential in $B$-physics after upgrade for Run2 and HL-LHC. Real data as well as Monte Carlo simulations are used to study the decay of $B^0_s \\to J/\\psi\\phi$ in order to measure the $CP$ violating mixing phase and the width difference between the $B^0_s$ eigenstates. The increased sensitivity is expected mainly due to the improved decay time resolution obtained with the upgraded IBL and ITk inner tracking detector.

  16. Optical Link ASICs for the LHC Upgrade

    CERN Document Server

    Gan, K K; Kass, R D; Moore, J R; Smith, D S

    2009-01-01

    We have designed three ASICs for possible applications in the optical links of a new layer of pixel detector in the ATLAS experiment for the first phase of the LHC luminosity upgrade. The ASICs include a high-speed driver for the VCSEL, a receiver/decoder to decode the signal received at the PIN diode to extract the data and clock, and a clock multiplier to produce a higher frequency clock to serialize the data for transmission. These ASICs were designed using a 130 nm CMOS process to enhance the radiation-hardness. We have characterized the fabricated ASICs and the submission has been mostly successful. We irradiated the ASICs with 24 GeV/c protons at CERN to a dosage of 70 Mrad. We observed no significant degradation except the driver circuit in the VCSEL driver fabricated using the thick oxide process in order to provide sufficient voltage to drive a VCSEL. The degradation is due to a large threshold shifts in the PMOS transistors used.

  17. Upgrade of the CMS hadron calorimeter for an upgraded LHC

    Science.gov (United States)

    Anderson, Jacob; CMS Hcal Collaboration

    2012-12-01

    The CMS barrel and endcap hadron calorimeters (Hcal) upgrading the current photo-sensors are hybrid photodiodes (HPDs) to meet the demands of the upgraded luminosity of the LHC. A key aspect of the Hcal upgrade is to add longitudinal segmentation to improve background rejection, energy resolution, and electron isolation at L1 trigger. The increased segmentation can be achieved by replacing the HPD's with multi-pixel Geiger-mode avalanche photodiodes. The upgraded electronics are required to operate in a harsh environment and are constrained by the existing infrastructure. The proposed solutions span from chip level to system level. They include the development of a new ADC ASIC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design and improvements in the overall architecture.

  18. The Upgraded D0 Detector

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahmed, S N; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, J T; Anderson, S; Andrieu, B; Angstadt, R; Anosov, V; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Babukhadia, L; Bacon, Trevor C; Badaud, F; Baden, A; Baffioni, S; Bagby, L; Baldin, B; Balm, P W; Banerjee, P; Banerjee, S; Barberis, E; Bardon, O; Barg, W; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bhattacharjee, M; Baturitsky, M A; Bauer, D; Bean, A; Baumbaugh, B; Beauceron, S; Begalli, M; Beaudette, F; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Beutel, D; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Bishoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Bockenthein, E; Bodyagin, V; Böhnlein, A; Boeriu, O; Bolton, T A; Bonamy, P; Bonifas, D; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Bowden, M; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, D; Butler, J M; Cammin, J; Caron, S; Bystrický, J; Canal, L; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Chi, E; Chiche, R; Cho, D K; Choate, R; Choi, S; Choudhary, B; Chopra, S; Christenson, J H; Christiansen, T; Christofek, L; Churin, I; Cisko, G; Claes, D; Clark, A R; Clement, B; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; Da Motta, H; Das, M; Davies, B; Davies, G; Davis, G A; Davis, W; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; de La Taille, C; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Delsart, P A; Del Signore, K; De Maat, R; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doets, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dvornikov, O; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fagan, J; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferapontov, A V; Ferbel, T; Ferreira, M J; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fitzpatrick, T; Flattum, E; Fleuret, F; Flores, R; Foglesong, J; Fortner, M; Fox, H; Franklin, C; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Gao, M; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Gillberg, D; Geurkov, G; Ginther, G; Gobbi, B; Goldmann, K; Golling, T; Gollub, N; Golovtsov, V L; Gómez, B; Gómez, G; Gómez, R; Goodwin, R W; Gornushkin, Y; Gounder, K; Goussiou, A; Graham, D; Graham, G; Grannis, P D; Gray, K; Greder, S; Green, D R; Green, J; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Gris, P; Grivaz, J F; Groer, L; Grünendahl, S; Grünewald, M W; Gu, W; Guglielmo, J; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haggard, E; Haggerty, H; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hance, R; Hanagaki, K; Hanlet, P; Hansen, S; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hazen, E; Hebbeker, T; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Houben, P; Hu, Y; Huang, J; Huang, Y; Hynek, V; Huffman, D; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jacquier, Y; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jayanti, R; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Jouravlev, N I; Juárez, M; Juste, A; Kaan, A P; Kado, M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Kalmani, S D; Karmanov, D; Kasper, J; Katsanos, I; Kau, D; Kaur, R; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, H; Kim, K H; Kim, T J; Kirsch, N; Klima, B; Klute, M; Kohli, J M; Konrath, J P; Komissarov, E V; Kopal, M; Korablev, V M; Kostritskii, A V; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Kuznetsov, O; Krane, J; Kravchuk, N; Krempetz, K; Krider, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kubinski, R; Kuchinsky, N; Kuleshov, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Kuznetsov, V E; Kwarciany, R; Lager, S; Lahrichi, N; Landsberg, G L; Larwill, M; Laurens, P; Lavigne, B; Lazoflores, J; Le Bihan, A C; Le Meur, G; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leitner, R; Leonidopoulos, C; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Lindenmeyer, C; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Litmaath, M; Lizarazo, J; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lü, J; Lubatti, H J; Lucotte, A; Lueking, L; Luo, C; Lynker, M; Lyon, A L; Machado, E; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Maity, M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Manakov, V; Mao, H S; Maravin, Y; Markley, D; Markus, M; Marshall, T; Martens, M; Martin, M; Martin-Chassard, G; Mattingly, S E K; Matulik, M; Mayorov, A A; McCarthy, R; McCroskey, R; McKenna, M; McMahon, T; Meder, D; Melanson, H L; Melnitchouk, A S; Mendes, A; Mendoza, D; Mendoza, L; Meng, X; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miao, C; Miettinen, H; Mihalcea, D; Mikhailov, V; Miller, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Moulik, T; Muanza, G S; Mostafa, M; Moua, S; Mulders, M; Mundim, L; Mutaf, Y D; Nagaraj, P; Nagy, E; Naimuddin, M; Nang, F; Narain, M; Narasimhan, V S; Narayanan, A; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neuenschwander, R T; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nozdrin, A; Nunnemann, T; Nurczyk, A; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Olis, D; Oliveira, N; Olivier, B; Olsen, J; Oshima, N; Oshinowo, B O; Oteroy-Garzon, G J; Padley, P; Papageorgiou, K; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Pérez, E; Peters, O; Petroff, P; Petteni, M; Phaf, L; Piegaia, R; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Pompos, A; Polosov, P; Pope, B G; Popkov, E; Porokhovoy, S; Prado da Silva, W L; Pritchard, W; Prokhorov, I; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Ramberg, E; Ramirez-Gomez, R; Rani, K J; Ranjan, K; Rao, M V S; Rapidis, P A; Rapisarda, S; Raskowski, J; Ratoff, P N; Ray, R E; Reay, N W; Rechenmacher, R; Reddy, L V; Regan, T; Renardy, J F; Reucroft, S; Rha, J; Ridel, M; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Roco, M T; Rotolo, C; Royon, C; Rubinov, P; Ruchti, R; Rucinski, R; Rud, V I; Rusakovich, N; Russo, P; Sabirov, B; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Satyanarayana, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shankar, H C; Shary, V; Shchukin, A A; Sheahan, P; Shephard, W D; Shivpuri, R K; Shishkin, A A; Shpakov, D; Shupe, M; Sidwell, R A; Simák, V; Sirotenko, V I; Skow, D; Skubic, P L; Slattery, P F; Smith, D E; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sorin, V; Sosebee, M; Soustruznik, K; Souza, M; Spartana, N; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stefanik, A; Steinberg, J L; Steinbruck, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tentindo-Repond, S; Tamburello, P; Taylor, W; Telford, P; Temple, J; Terentyev, N K; Teterin, V; Thomas, E; Thompson, J; Thooris, B; Titov, M; Toback, D; Tokmenin, V V; Tolian, C; Tomoto, M; Tompkins, D; Toole, T; Torborg, J; Touze, F; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Trippe, T G; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Utes, M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van den Berg, P J; Van Gemmeren, P; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Vaz, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Vigneault, M; Villeneuve-Séguier, F; Vishwanath, P R; Vlimant, J R; Von Törne, E; Vorobyov, A; Vreeswijk, M; Vu-Anh, T; Vysotsky, V S; Wahl, H D; Walker, R; Wallace, N; Wang, L; Wang, Z M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; Wetstein, M; White, A; White, V; Whiteson, D; Wicke, D; Wijnen, T A M; Wijngaarden, D A; Wilcer, N; Willutzki, H; Wilson, G W; Wimpenny, S J; Wittlin, J; Wlodek, T; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Wu, Z; Xie, Y; Xu, Q; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yarema, R J; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Yoffe, F; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zanabria, M; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, B; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zheng, H; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zmuda, T; Zutshi, V; Zviagintsev, S; Zverev, E G; Zylberstejn, A

    2005-01-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  19. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  20. Physics potential and experimental challenges of the LHC luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, F.; Ball, A.; Bloch, P.; Casagrande, L.; Cittolin, S.; Roeck, A. de; Ellis, N.; Farthouat, P.; Hansen, J.-B. [CERN, Experimental Physics Division, Geneva (Switzerland); Mangano, M.L. [CERN, Theoretical Physics Division, Geneva (Switzerland); Virdee, T. [CERN, Experimental Physics Division, Geneva (Switzerland); Imperial College, London (United Kingdom); Abdullin, S. [University of Maryland (United States); Azuelos, G. [University of Montreal, Group of Particle Physics, Montreal (Canada); Barberis, D. [Universita di Genova, Dipartimento di Fisica and INFN (Italy); Belyaev, A. [Florida State University, Tallahassee, FL (United States); Bosman, M. [IFAE, Barcelona (Spain); Cavalli, D. [INFN, Milano (Italy); Chumney, P.; Dasu, S. [Univ. of Wisconsin, Madison, WI (United States); Fournier, D. [LAL, Orsay (France); Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; Bij, J. van der; Watson, A.; Wielers, M.

    2004-02-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10{sup 35} cm{sup -2}s{sup -1}. The detector R and D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes. (orig.)

  1. Big advance towards the LHC upgrade

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The LHC is currently the world’s most powerful accelerator. With its technical achievements it has already set world records. However, big science looks very far ahead in time and is already preparing already for the LHC’s magnet upgrade, which should involve a 10-fold increase of the collision rates toward the end of the next decade. The new magnet technology involves the use of an advanced superconducting material that has just started to show its potential.   The first Long Quadrupole Shell (LQS01) model during assembly at Fermilab. The first important step in the qualification of the new technology for use in the LHC was achieved at the beginning of December when the US LHC Accelerator Research Program (LARP) – a consortium of Brookhaven National Laboratory, Fermilab, Lawrence Berkeley National Laboratory and the SLAC National Accelerator Laboratory founded by US Department Of Energy (DOE) in 2003 – successfully tested the first long focussing magnet th...

  2. The ATLAS tracker Pixel detector for HL-LHC

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current Inner Detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLAS Pixel detector developments as well as the various layout options are reviewed.

  3. Upgrades to the CMS Cathode Strip Chambers for 2017 and the High Luminosity LHC

    Science.gov (United States)

    Morse, David; CMS Collaboration

    2017-01-01

    An overview will be given of upgrades to the CMS Cathode Strip Chambers (CSC) during the extended technical stop 2016-2017 and plans for future upgrades targeting the HL-LHC. HL-LHC conditions will surpass the physical capabilities of the present detector, and require novel hardware to cope with increased rates and maintain the high performance of the CSC achieved up to now.

  4. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    Science.gov (United States)

    Moon, C.-S.; Savoy-Navarro, A.

    2015-10-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC) . It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours (b and c quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their momentum. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC) . The special case here addressed is the CMS experiment. This document describes exercises focusing on the development of a fast pixel track reconstruction where the pixel track matches with a Level-1 electron object using a ROOT-based simulation framework.

  5. Beam Instrumentation and Diagnostics for the LHC Upgrade

    CERN Document Server

    Bravin, E; Jones, R; Lefevre, T

    2015-01-01

    The extensive array of beam instrumentation with which the LHC is equipped, has played a major role in its commissioning, rapid intensity ramp-up and safe and reliable operation. High Luminosity LHC (HL-LHC) brings with it a number of new challenges in terms of beam instrumentation that will be discussed in this chapter. The beam loss system will need significant upgrades in order to be able to cope with the demands of HL-LHC, with cryogenic beam loss monitors under investigation for deployment in the new inner triplet magnets to distinguish between primary beam losses and collision debris. Radiation tolerant integrated circuits are also being developed to allow the front-end electronics to sit much closer to the detector. Upgrades to other existing systems are also envisaged; including the beam position measurement system in the interaction regions and the addition of a halo measurement capability to synchrotron light diagnostics. Additionally, several new diagnostic systems are under investigation, such as ...

  6. Beam Instrumentation and Diagnostics for the LHC Upgrade

    Science.gov (United States)

    Bravin, E.; Dehning, B.; Jones, R.; Lefevre, T.

    The extensive array of beam instrumentation with which the LHC is equipped, has played a major role in its commissioning, rapid intensity ramp-up and safe and reliable operation. High Luminosity LHC (HL-LHC) brings with it a number of new challenges in terms of beam instrumentation that will be discussed in this chapter. The beam loss system will need significant upgrades in order to be able to cope with the demands of HL-LHC, with cryogenic beam loss monitors under investigation for deployment in the new inner triplet magnets to distinguish between primary beam losses and collision debris. Radiation tolerant integrated circuits are also being developed to allow the front-end electronics to sit much closer to the detector. Upgrades to other existing systems are also envisaged; including the beam position measurement system in the interaction regions and the addition of a halo measurement capability to synchrotron light diagnostics. Additionally, several new diagnostic systems are under investigation, such as very high bandwidth pick-ups and a streak camera installation, both able to perform intra-bunch measurements of transverse position on a turn by turn basis.

  7. ATLAS Upgrades Towards the High Luminosity LHC: extending the discovery potential

    CERN Document Server

    Loginov, A; The ATLAS collaboration

    2012-01-01

    After successful LHC operation at the center-of-mass energy of 7 TeV in 2011, the LHC is scheduled to deliver even more data in 2012 at 8 TeV. Meanwhile, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about 300 fb-1 expected for LHC running to 3000 fb-1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon...

  8. ATLAS Upgrades Towards the High Luminosity LHC: extending the discovery potential

    CERN Document Server

    Parzefall, U; The ATLAS collaboration

    2012-01-01

    After successful LHC operation at the center-of-mass energy of 7 TeV in 2011, the LHC is scheduled to deliver even more data in 2012 at 8 TeV. Meanwhile, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about 300fb-1 expected for LHC running to 3000 fb-1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon ...

  9. System Electronics for the ATLAS Upgraded Strip Detector

    CERN Document Server

    Affolder, T; The ATLAS collaboration; Clark, A; Dabrowskic, W; Dewitt, J; Diez Cornell, S; Dressdant, N; Fadeyev, V; Farthouat, P; Ferrere, D; Greenall, A; Grillo, A; Kaplon, J; Key-Charriere, M; La Marra, D; Lipeles, E; Lynn, D; Newcomer, M; Pereirab, F; Phillips, P; Spencer, E; Swientekc, K; Warren, M; Weidberg, A

    2013-01-01

    The basic concept of the front-end system of the Silicon Strip Detector in the Atlas Detector upgraded for the HL-LHC is being elaborated and proposed. The readout electronics of this new detector is based on front-end chips (ABC130), Hybrid Controller chips (HCC) and End of Stave Controller chips (EOSC). This document defines the basic functionality of the front-end system and of the different ASICs.

  10. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Todome, K., E-mail: todome@hep.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Takashima, R. [Department of Science Education, Kyoto University of Education, Kyoto 612-8522 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Tojo, J. [Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Kono, T. [Ochadai Academic Production, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); and others

    2016-09-21

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the “super-module” in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  11. Packaging and assembly technologies for the pixel detector upgrade and measurement of $\\tau\\tau$ final states with the CMS experiment at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00380602; Quast, Gunter; Husemann, Ulrich

    The work, performed in the context of the CMS experiment at the LHC, is related to the assembly of the future CMS pixel detector and to improvements in the identification of hadronically decaying tau leptons. The performance of the tau identification has been evaluated in the data collected by CMS in 2015 and a measurement of the inclusive Z production cross section at 13 TeV has been performed.

  12. LHC luminosity upgrades using closed-in magnets

    CERN Document Server

    Limon, Peter J

    2007-01-01

    Among luminosity upgrades presently being considered for the LHC are those that require changes to the insertion optics and magnet systems; changes to the existing inner triplets, quadrupoles placed closer to the detectors, and beam-splitting dipoles placed very close to and even inside the experiments at the high-luminosity interaction regions. The modifications of these magnet systems create challenges for both the experiments and for the magnets themselves. In this paper, we will discuss some of those issues and possible solutions and R&D paths.

  13. LHC Injectors Upgrade (LIU) Project at CERN

    CERN Document Server

    Shaposhnikova, Elena; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon; Meddahi, Malika; Mikulec, Bettina; Rumolo, Giovanni; Scrivens, Richard; Vretenar, Maurizio

    2016-01-01

    A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LI...

  14. Prospects for the study of vector boson scattering in same sign WW and WZ interactions at the HL-LHC with the upgraded CMS detector

    CERN Document Server

    CMS Collaboration

    2016-01-01

    Studies of the $pp \\rightarrow \\mathrm{\\mathrm{W}^{\\pm}Z} jj$ and $pp \\rightarrow\\mathrm{\\mathrm{W}^{\\pm}\\mathrm{W}^{\\pm}} jj$ vector boson scattering processes in 14 TeV pp collisions using the planned upgrades of the CMS detector are presented. These studies include assessments on the expected precision in measuring the electroweak cross sections, the discovery potential for observing longitudinal vector boson scattering and limits on partial unitarization scenarios between vector boson scattering and the Higgs boson. Beyond the standard model sensitivity is probed in the framework of the effective field theory by extracting expected limits on quartic gauge couplings for $\\mathrm{\\mathrm{W}^{\\pm}\\mathrm{W}^{\\pm}}$ scattering. All results are presented with a luminosity of $3~\\mathrm{ab}^{-1}$ and comparisons with the non upgraded CMS detector including its aging due to radiation are performed.

  15. ATLAS Upgrades Towards the High Luminosity LHC: Extending the Discovery Potential

    CERN Document Server

    Vankov, P; The ATLAS collaboration

    2013-01-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data a...

  16. ATLAS Upgrades Towards the High Luminosity LHC: extending the discovery potential

    CERN Document Server

    Valero, A; The ATLAS collaboration

    2013-01-01

    After successful LHC operation at the center-of-mass energy of 7 and 8TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data acquisi...

  17. ATLAS Upgrade Towards the High-Luminosity LHC: Extending the Discovery Potential

    CERN Document Server

    Gregor, IM; The ATLAS collaboration

    2013-01-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data acqui...

  18. ATLAS Upgrades Towards the High Luminosity LHC:extending the discovery potential

    CERN Document Server

    Vankov, P; The ATLAS collaboration

    2013-01-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data a...

  19. ATLAS Upgrades Towards the High Luminosity LHC: extending the discovery potential

    CERN Document Server

    Valero, A; The ATLAS collaboration

    2014-01-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, cul- minating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous lumi- nosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and inte- grated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and d...

  20. ATLAS Upgrades Towards the High Luminosity LHC: extending the discovery potential

    CERN Document Server

    Cinca, D; The ATLAS collaboration

    2014-01-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data acqui...

  1. CMS Pixel Detector design for HL-LHC

    CERN Document Server

    Migliore, Ernesto

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5$\\times$10$^{34}$cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation.In order to maintain its physics reach the CMS Collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimations.

  2. CMS Pixel Detector design for HL-LHC

    Science.gov (United States)

    Migliore, E.

    2016-12-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5×1034cm-2s-1 in 2028, to possibly reach an integrated luminosity of 3000 fb-1 by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation. In order to maintain its physics reach the CMS collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimation.

  3. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    Science.gov (United States)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm‑2s‑1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  4. Upgrade of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, M J; Baglin, V; Bregliozzi, G; Caspers, F; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Jimenez, J M; Magnin, N; Mertens, V; Métral, E; Salvant, B; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    Two LHC injection kicker systems, each comprising 4 magnets per ring, produce a kick of 1.3 T·m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns and an adequately low beam coupling impedance. Operation with increasingly higher intensity beams, stable for many hours at a time, has resulted in substantial heating of the ferrite yoke, sometimes requiring cool-down over several hours before the LHC can be refilled. During the long shutdown in 2013/2014 all eight kicker magnets will be upgraded with an improved beam screen and an increased emissivity of the vacuum tank. In addition equipment adjacent to the injection kickers and various vacuum components will be modified to...

  5. Diamond Detectors for the TOTEM Timing Upgrade

    CERN Document Server

    Antchev, G.; The TOTEM collaboration; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.;; Bozzo, M.; Broulim, P.; Buzzo, A.; Cafagna, F.S.; Campanella, C.E.; Catanesi, M.G.; Csanad, M.; Csorgo, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Hilden, T.; Karev, A.; Kavspar, J.; Kopal, J.; Kosinski, J.; Kundrat, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lokajivcek, M.V.; Losurdo, L; Lo Vetere, M.; Lucas-Rodriguez, F.; Lucsanyi, D.; Macri, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novak, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Palocko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Prochazka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sodzawiczny, T.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P; Zielinski, K

    2016-01-01

    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons’ TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed sampling the waveform. After introducing the physics studies that will most profit from the addition of...

  6. The Phase1 CMS Pixel detector upgrade

    CERN Document Server

    Tavolaro, Vittorio Raoul

    2016-01-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of $1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO$_{2}$ cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detect...

  7. Plans for the upgrade of the LHC injectors

    CERN Document Server

    Garoby, R; Goddard, B; Hanke, K; Meddahi, M; Vretenar, M

    2011-01-01

    The LHC injectors upgrade (LIU) project has been launched at the end of 2010 to prepare the CERN accelerator complex for reliably providing beam with the challenging characteristics required by the high luminosity LHC until at least 2030. Based on the work already started on Linac4, PS Booster, PS and SPS, the LIU project coordinates studies and implementation, and interfaces with the high luminosity LHC (HL-LHC) project which looks after the upgrade of the LHC itself, expected by the end of the present decade. The anticipated beam characteristics are described, as well as the status of the studies and the solutions envisaged for improving the injector performances.

  8. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2015-01-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC). It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours ($b$ and $c$ quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their impulsion. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (P...

  9. Upgrades to the CSC Cathode Strip Chamber Electronics for HL-LHC

    CERN Document Server

    Bravo, Cameron Bily

    2016-01-01

    The luminosity, latency, and trigger rate foreseen at the High Luminosity LHC (HL-LHC) present challenges to efficient readout of the Cathode Strip Chambers (CSCs) of the CMS end cap muon detector. Upgrades to the electronics are targeted for the inner rings of CSCs in each station, which have the highest flux of particles. The upgrades comprise digital cathode front end boards for nearly deadtimeless and long trigger latency operating capability, new DAQ boards that transmit data from the detectors with higher-bandwidth links, and a new data concentrator/interface to the central DAQ system that can receive the higher input rates.

  10. Upgrades to the CSC Cathode Strip Chamber electronics for HL-LHC

    Science.gov (United States)

    Bravo, C.

    2017-01-01

    The luminosity, latency, and trigger rate foreseen at the High Luminosity LHC (HL-LHC) present challenges to efficient readout of the Cathode Strip Chambers (CSCs, [1]) of the CMS end cap muon detector. Upgrades to the electronics are targeted for the inner rings of CSCs in each station, which have the highest flux of particles. The upgrades comprise digital cathode front end boards for nearly deadtimeless and long trigger latency operating capability, new DAQ boards that transmit data from the detectors with higher-bandwidth links, and a new data concentrator/interface to the central DAQ system that can receive the higher input rates.

  11. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00421104; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 \\times 10^{34} cm^{-2}s^{-1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture an...

  12. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    Balunas, William Keaton; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 × 10^{34}$ cm$^{−2}$s$^{−1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architectur...

  13. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    George, Simon; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 10^{34} cm^{−2}s^{−1}, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and ...

  14. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439268; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 1034 cm−2s−1, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and expected ...

  15. ATLAS IBL: a challenging first step for ATLAS Upgrade at the sLHC

    CERN Document Server

    La Rosa, Alessandro

    2011-01-01

    With the LHC collecting data at 7 TeV, plans are already advancing for a series of upgrades leading eventually to about five times the LHC design luminosity some 10 years from now in the High Luminosity LHC (HL-LHC) project. The upgrades for ATLAS detector will be staged in preparation for HL-LHC. The first upgrade for the Pixel detector will be the construction of a new pixel layer, which will be installed during the first shutdown of the LHC machine foreseen in 2013-14. The new detector, called the Insertable B-Layer (IBL) will be installed between the existing pixel detector and a new, smaller radius beam-pipe at the radius of 3.2 cm. The IBL will require the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and more stringent material budget. Two different and promising Silicon sensor technologies (planar n-in-n and 3D) are currently under investigation for the IBL. An overview of the...

  16. ATLAS IBL: a challenging first step for ATLAS Upgrade at the sLHC.

    CERN Document Server

    La Rosa, A; The ATLAS collaboration

    2011-01-01

    With the LHC collecting data at 7 TeV, plans are already advancing for a series of upgrades leading eventually to about five times the LHC design luminosity some 10 years from now in the high luminosity LHC (HL-LHC) project. The upgrades for the ATLAS detector will be staged in preparation for HL-LHC. The first upgrade for the pixel detector will be the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine foreseen in 2013-14. The new detector, called the Insertable B Layer (IBL) will be installed between the existing pixel detector and a new, smaller radius beam-pipe at a radius of 3.2 cm. The IBL will require the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. Two different and promising Silicon sensor technologies, planar n-in-n and 3D, are currently under investigation for the IBL. An overview of ...

  17. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Asensi Tortajada, Ignacio; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed (at a rate of maximum 100 kHz). The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and of...

  18. A study of materials used for muon chambers at the CMS Experiment at the LHC: interaction with gas, new materials and new technologies for detector upgrade

    CERN Document Server

    Colafranceschi, Stefano

    This thesis lays its foundation in both technological and theoretical stud- ies carried out between several aspects of applied engineering. There are several original contributions within the material science. The first is the detailed studies about the CMS RPC gas filters, which required an intense 3 years data-taking and ended up with a complete characterization of purifier materials. On top of this a stable ad − hoc setup (GGM) has been devel- oped for the CMS Experiment in order to monitor the RPC muon chamber working point. Finally a complete new detector has been designed, build and tested using new technology and new electronics establishing the word’s record in size for this kind of detector, which is taken under consideration for the upgrade of the high-η region of the CMS Experiment.

  19. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  20. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2083994

    2016-01-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  1. Scanning facility to irradiate mechanical structures for the LHC upgrade programme

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Parker, K; Wilson, J; Baca, M

    2015-01-01

    The existing luminosity of the LHC will be increased in stages to a factor of 10 above its current level (HL-LHC) by 2022. This planned increase in luminosity results in significantly higher levels of radiation inside the proposed ATLAS Upgrade detector. This means existing detector technologies together with new components and materials need to be re-examined to evaluate their performance and durability at these higher fluences. Of particular interest is the effect of radiation on the upgraded ATLAS tracker. To study these effects a new ATLAS irradiation scanning facility has been developed using the Medical Physics Cyclotron at the University of Birmingham. The intense cyclotron beams allow irradiated samples to receive in minutes fluences corresponding to years of operation at the HL-LHC. Since commissioning in early 2013, this facility has been used to irradiate silicon sensors, optical components and carbon fibre sandwiches for the ATLAS upgrade programme. Irradiations of silicon sensors and passive mate...

  2. VHMPID: a new detector for the ALICE experiment at LHC

    CERN Document Server

    Agócs, A Gu; Barnaföldi, G G; Bellwied, R; Bencze, Gy; Berényi, D; Boldizsár, L; Cuautle, E; De Cataldo, G; Di Bari, D; Di Mauro, A; Dominguez, I; Futó, E; García, E; Hamar, G; Harris, J; Harton, A; Kovács, L; Lévai, P; Lipusz, Cs; Markert, C; Martinengo, P; Martinez, M I; Mastromarco, M; Mayani, D; Molnár, L; Nappi, E; Ortiz, A; Paić, G; Pastore, C; Patino, M E; Perini, D; Perrino, D; Peskov, V; Pinsky, L; Piuz, F; Pochybová, S; Smirnov, N; Song, J; Timmins, A; Varga, D; Vargas, A; Vergara, S; Volpe, G; Yi, J; Yoo, I K

    2011-01-01

    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  3. VHMPID: a new detector for the ALICE experiment at LHC

    Directory of Open Access Journals (Sweden)

    Perini D.

    2011-04-01

    Full Text Available This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.

  4. An upgraded ATLAS Central Trigger for 2015 LHC luminosities

    CERN Document Server

    Ohm, C

    2014-01-01

    The LHC collides protons at a rate of 40 MHz and each collision produces $\\sim$1.5~MB of data from the ATLAS detector. The ATLAS trigger system is implemented in three levels and selects only the most interesting collision events to reduce the event storage rate to about 400 Hz. The first level is implemented in custom electronics and reduces the input rate to $\\sim$75 kHz with a decision latency of $\\sim$2.5 us. It is also responsible for initiating the read-out of data from all the sub-detectors in ATLAS. Based primarily on information from calorimeters and muon trigger detectors, the Central Trigger Processor (CTP) produces the Level-­1 trigger decision. After a very successful first run, the LHC is now being upgraded to operate with increased luminosity and a center-of-mass energy of up to 14 TeV. To cope with the higher luminosities, the Level-1 trigger system will have to perform a more refined selection in order to not lose interesting physics data while keeping the total Level-1 rate below 100~kHz. I...

  5. Thermal Grease Evaluation for ATLAS Upgrade Micro-Strip Detector.

    CERN Document Server

    Barbier, G; The ATLAS collaboration; Clark, A; Ferrère, D; Pernecker, S; Perrin, E; Streit, KP; Weber, M

    2010-01-01

    The ATLAS upgrade detector foreseen at the phase 2 upgrade of LHC requires a complete new inner detector using silicon pixel and strip detectors. For both technologies, a specific mechanical and thermal design is required. Such a design may use soft thermal interfaces such as grease between the various parts. One foreseeable use would be between the cooling pipe and the thermal block allowing the strip modules to be decoupled from the mechanical and cooling structure. This note describes the technique used and the results obtained when characterizing a few grease samples. The results have been compared with thermal FEA simulations. A thermal conductivity measurement for each sample could be extracted from the measurements, with a systematic uncertainty of less than 6%. Some samples were irradiated to the expected fluence at sLHC and their resulting thermal conductivity compared with the non-irradiated samples.

  6. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Hildebrand, Kevin; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade (2024-2025) will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals...

  7. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236332; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitized and then...

  8. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. Currently, an analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitiz...

  9. Measurement of Z boson production in association with jets at the LHC and study of a DAQ system for the Triple-GEM detector in view of the CMS upgrade

    CERN Document Server

    Léonard, Alexandre

    This PhD thesis presents the measurement of the differential cross section for the production of a Z boson in association with jets in proton-proton collisions taking place at the Large Hadron Collider (LHC) at CERN, at a centre-of-mass energy of 8 TeV. A development of a data acquisition (DAQ) system for the Triple-Gas Electron Multiplier (GEM) detector in view of the Compact Muon Solenoid (CMS) detector upgrade is also presented. The events used for the data analysis were collected by the CMS detector during the year 2012 and constitute a sample of 19.6/fb of integrated luminosity. The cross section measurements are performed as a function of the jet multiplicity, the jet transverse momentum and pseudorapidity, and the scalar sum of the jet transverse momenta. The results were obtained by correcting the observed distributions for detector effects. The measured differential cross sections are compared to some state of the art Monte Carlo predictions MadGraph 5, Sherpa 2 and MadGraph5_aMC@NLO. These measureme...

  10. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  11. Upgrades to the LHC Injection and Beam Dumping Systems for the HL-LHC Project

    CERN Document Server

    Uythoven, Jan; Goddard, Brennan; Hrivnak, Jan; Lechner, Anton; Maciariello, Fausto; Mereghetti, Alessio; Perillo Marcone, Antonio; Vittal Shetty, N; Shetty, Nikhil Vittal; Steele, Genevieve

    2014-01-01

    The HL-LHC project will push the performance of the LHC injection and beam dumping systems towards new limits. This paper describes the systems affected and presents the new beam parameters for these systems. It also describes the studies to be performed to determine which sub-components of these systems need to be upgraded to fulfil the new HL-LHC requirements. The results from the preliminary upgrade studies for the injection absorbers TDI are presented.

  12. A new strips tracker for the upgraded ATLAS ITk detector

    CERN Document Server

    David, Claire; The ATLAS collaboration

    2017-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  13. Injection Protection Upgrade for the HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067108; Biancacci, Nicolo; Bracco, Chiara; Frasciello, Oscar; Gentini, Luca; Goddard, Brennan; Lechner, Anton; Maciariello, Fausto; Perillo Marcone, Antonio; Salvant, Benoit; Shetty, Nikhil Vittal; Steele, Genevieve; Velotti, Francesco; Zobov, Mikhail

    2015-01-01

    The injector complex of the LHC is undergoing important changes in the light of the LIU project to provide brighter beams to the LHC. For this reason and as part of the High Luminosity LHC project the injection protection system of the LHC will be upgraded in the Long Shutdown 2 (2018 - 2019) to be able to protect downstream elements against injection failures with the high brightness, high intensity HL-LHC beams. The upgraded LHC injection protection system will consist of a segmented injection protection absorber TDIS, and auxiliary collimators and masks. The layout modifications are described, and the machine element protection and absorber jaw robustness studies are presented for the new systems.

  14. The TOTEM Detector at LHC

    CERN Document Server

    Ruggiero, G; Aspell, P; Atanassov, I; Avati, V; Berardi, V; Berretti, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Ciocci, M A; Csanád, M; Csörgö, T; Deile, M; Dénes, E; Dimovasili, E; Doubek, M; Eggert, K; Ferro, F; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Janda, M; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Minutoli, S; Niewiadomski, H; Notarnicola, G; Novak, T; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Palazzi, P; Pedreschi, E; Petäjäjärvi, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spearman, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Vacek, V; Vitek, M; Whitmore, J; Wu, J

    2010-01-01

    The TOTEM experiment, small in size compared to the others at the LHC, is dedicated to the measurement of the total proton–proton cross-sections with a luminosity-independent method and to the study of elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the IP5 interaction point, two tracking telescopes, T1 and T2, will be installed on each side in the pseudo-rapidity region between 3.1 and 6.5, and Roman Pot stations will be placed at distances of 147 and 220 m from IP5. The telescope closest to the interaction point (T1, centred at z=9 m) consists of Cathode Strip Chambers (CSC), while the second one (T2, centred at 13.5 m), makes use of Gas Electron Multipliers (GEM). The proton detectors in the Roman Pots are silicon devices designed by TOTEM with the specific objective of reducing down to a few tens of microns the insensitive area at the edge. High efficiency as close as possible to the physical detector boundary is an...

  15. Radiation hard silicon particle detectors for HL-LHC-RD50 status report

    Science.gov (United States)

    Terzo, S.

    2017-02-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors.

  16. Towards Optimum Material Choices for HL-LHC Collimator Upgrade

    CERN Document Server

    Quaranta, E.; Biancacci, N.; Bruce, R.; Carra, F.; Métral, E.; Redaelli, S.; Rossi, A.; Salvant, B.

    2016-01-01

    properties that address different limitations of the present collimation system, solutions have been found to fulfil various upgrade challenges. This paper describes the proposed staged approach to deploy new materials in the upgraded HL-LHC collimation system. Beam tests at the CERN HiRadMat facility were also performed to benchmark simulation methods and constitutive material models.

  17. Silicon strip staves and petals for the ATLAS Upgrade tracker of the HL-LHC

    CERN Document Server

    Diez, S; The ATLAS collaboration

    2012-01-01

    This paper describes the baseline integration structures for the silicon strip sensors to be used in the ATLAS detector for the Phase-II upgrade of the Large Hadron Collider (LHC) machine, the so-called High Luminosity LHC (HL-LHC). Highly modular structures have been developed for the integration of the silicon strips sensors, readout electronics, cooling, and support structures, called `staves' for the barrel region and `petals' for the end-caps of the ATLAS strips tracker. This work describes the status of the current prototypes, the building procedure, designed for mass production even at a prototyping stage, and their electrical performances.

  18. Silicon strip staves and petals for the ATLAS Upgrade tracker of the HL-LHC

    Science.gov (United States)

    Díez, Sergio; Atlas Collaboration

    2013-01-01

    This paper describes the baseline integration structures for the silicon strip sensors to be used in the ATLAS detector for the Phase-II upgrade of the Large Hadron Collider (LHC) machine, the so-called High Luminosity LHC (HL-LHC). Highly modular structures have been developed for the integration of the silicon strips sensors, readout electronics, cooling, and support structures, called 'staves' for the barrel region and 'petals' for the end-caps of the ATLAS strips tracker. This work describes the status of the current prototypes, the building procedure, designed for mass production even at a prototyping stage, and their electrical performances.

  19. An early separation scheme for the LHC luminosity upgrade

    CERN Document Server

    Sterbini, G

    2010-01-01

    The present document is organized in five chapters. In the first chapter the framework of the study is described, developing the motivations, the goals and the requirements for the LHC Luminosity Upgrade. We analyze the need for the crossing angle and its impact on the peak luminosity of the collider. After having introduced the Early Separation Scheme, we explain how it may overcome some limitations of the present machine. We compare the nominal LHC crossing scheme with the proposed one underlining its potential in terms of performance and its issues with respect to the integration in the detectors. An analysis of the integrated magnetic field required is given. In the second chapter we introduce one of the most powerful aspect of the scheme: the luminosity leveling. After the description of the physical model adopted, we compare the results of its analytical and numerical solutions. All the potential improvement due to the Early Separation Scheme are shown on the luminosity plane (peak luminosity versus int...

  20. The TOTEM Detector at LHC

    CERN Document Server

    Ruggiero, G; Aspell, P; Atanassov, I; Avati, V; Berardi, V; Berretti, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Ciocci, M A; Csanád, M; Csörgö, T; Deile, M; Dénes, E; Dimovasili, E; Doubek, M; Eggert, K; Ferro, F; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Janda, M; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Minutoli, S; Niewiadomski, H; Notarnicola, G; Novak, T; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spearman, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Vacek, V; Vitek, M; Whitmore, J; Wu, J

    2010-01-01

    The TOTEM experiment, small in size compared to the others at the LHC, is dedicated to the measurement of the total proton-proton cross-section with the luminosity-independent method and to the study of elastic and diffractive scattering. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side in the pseudo-rapidity region between 3.1 and 6.5, and Roman Pot (RP) stations are placed at distances of 147m and 220m from IP5. The telescope closest to the interaction point (T1, centered at z = 9 m) consists of Cathode Strip Chambers (CSC), while the second one (T2, centered at 13.5 m), makes use of Gas Electron Multipliers (GEM). The proton detectors in the RPs are silicon devices designed by TOTEM with the specific objective of reducing down to a few tens of microns the insensitive area at the edge. High efficiency as close as possible to the physical detector boundary is an essential feature...

  1. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    Science.gov (United States)

    Kuehn, S.

    2016-07-01

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector.

  2. Near Future Upgrades for the CMS Pixel Detector

    CERN Document Server

    Kumar, Ashish

    2015-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The current pixel detector is designed to operate at a maximum luminosity of $1\\times10^{34}cm^{-2}s^{-1}$. Before 2018 the instantaneous luminosity of the LHC is expected to reach $2\\times10^{34}cm^{-2}s^{-1}$, which will significantly increase the number of interactions per bunch crossing. The performance of the current pixel detector in such high occupancy environment will be degraded due to substantial data-loss and effects of radiation damage of sensors, built up over the operational period. In order to maintain or exceed its current performance, the CMS pixel detector will be replaced by a new lightweight system with additional detection layers, better acceptance and improved readout electronics. The upgraded pixel detector will provide improved track and vertex reconstruction, standalone tracking capabilities, as well as identification of ...

  3. Nb$_{3}$Sn magnet development for LHC luminosity upgrade

    CERN Document Server

    Wanderer, P

    2009-01-01

    This paper presents the main points of magnet R&D for a LHC Luminosity Upgrade carried on through the LHC Accelerator Research Program (LARP) work on magnets at Berkeley, Fermilab, and BNL. Work on materials and on racetrack magnets is described in some detail. The others areas of LARP work are only outlined here and discussed in detail in other talks at this meeting.

  4. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    CERN Document Server

    Buchanan, Emma

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  5. The Fast Interaction Trigger Detector of ALICE at the LHC

    Science.gov (United States)

    Lambert, Keenan; Brown, Shanice; Powell, Calvin; Harton, Austin; Garcia-Solis, Edmundo; Alice-Fit Team

    2017-01-01

    CERN (European Center for Nuclear Research) is a global laboratory that studies proton and heavy ion collisions at the Large Hadron Collider (LHC). ALICE (A Large Ion Collider Experiment) is one of four large experiments at the LHC. ALICE is dedicated to the study of the transition of matter to Quark-Gluon Plasma in heavy ion collisions. The experiment is preparing for the LHC upgrade after the second long shutdown (LS2) in 2019-20. To this end, ALICE is undertaking a major initiative to extend its physics capabilities. Among these improvements is a new Fast Interaction Trigger (FIT). The FIT will be replacing the current T0 and V0 trigger detectors. The purpose of the FIT will be to determine multiplicity, centrality, and reaction plane. The FIT will also serve as the primary forward trigger, luminosity, and collision time detector. This presentation will discuss the FIT upgrade and the results from the performance of the FIT detectors in simulations and test beams that support the current design parameters. This material is based upon work supported by the National Science Foundation under grants NSF-PHY-1407051, NSF-PHY-1305280, NSF-PHY-1613118, and NSF-PHY-1625081.

  6. The CMS Silicon Pixel detector for HL-LHC

    CERN Document Server

    Steinbrueck, Georg

    2016-01-01

    The LHC is planning an upgrade program which will bring the luminosity to about 5~$\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with the goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges of higher data rates and increased radiation. To maintain its physics potential in this harsh environment, the CMS detector will undergo a major upgrade program known as the Phase II upgrade. The new Phase II pixel detector will require a high bandwidth readout system and highly radiation tolerant sensors and on-detector ASICs. Several technologies for the sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs with acceptance extended from $\\vert\\eta\\vert<2.4$ to $\\vert\\eta\\vert<4$, are presented together with performance estimates.

  7. The BABAR detector: Upgrades, operation and performance

    Science.gov (United States)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O'Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T'Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S.-J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P.-A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D'Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn'ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O'Grady, C. P.; O'Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BABAR detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  8. Small Angle Crab Compensation for LHC IR Upgrade

    CERN Document Server

    Akai, K; Dorda, U; Ohmi, K; Oide, K; Tomás, R; Zimmermann, T

    2007-01-01

    A small angle crab scheme is being considered for the LHC luminosity upgrade. In this paper we present a 400MHz superconducting cavity design and discuss the pertinent RF challenges. We also present a study on the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, with RF noise sources.

  9. ATLAS Upgrade for the sLHC: meeting the challenges of a five-fold increase in collision rate

    Energy Technology Data Exchange (ETDEWEB)

    Loginov, Andrey [Department of Physics, Yale University, New Haven, CT 06520 (United States)

    2010-07-01

    With the LHC collecting first data at 7 TeV, plans are already advancing for a series of upgrades leading eventually to about five times the LHC design-luminosity some 10 years from now in the super-LHC (sLHC) project. The goal is to extend the data set from about 500 fb{sup -1} proposed for the LHC to 3000 fb{sup -1} by around 2030. Coping with the high instantaneous and integrated luminosity will require many changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, big changes in the calorimeter and muon systems, as well as improved triggers. This talk summarises the environment expected at the sLHC and the status of the improvements to the ATLAS detector. (author)

  10. ATLAS Upgrade for the HL-LHC: meeting the challenges of a five-fold increase in collision rate.

    CERN Document Server

    Vankov, P; The ATLAS collaboration

    2011-01-01

    With the LHC successfully collecting data at 7 TeV, plans are actively advancing for a series of upgrades leading eventually to about five times the LHC design-luminosity some 10 years from now in the high luminosity LHC (HL-LHC) project. The goal is to extend the data set from about 300 fb-1 proposed for LHC running to 3000 fb-1 by around 2030. Coping with the high instantaneous and integrated luminosity will require many changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, big changes in the calorimeter and muon systems, as well as improved triggers. This talk summarises the environment expected at the HL-LHC and the status of various improvements to the ATLAS detector.

  11. Intensity Upgrade Plans for CERN-LHC Injectors

    CERN Document Server

    Shaposhnikova, Elena

    2008-01-01

    With LHC coming into operation very soon an upgrade plan for the whole CERN accelerator complex has been proposed to allow full exploitation of the LHC potential in the future as well as giving increased support to traditional and possible new experiments at lower beam energies. This plan foresees replacing during the period 2011 - 2017 all the accelerators in the LHC injector chain (Linac2,Booster, PS) by new machines (Linac4, SPL and PS2) except for the last - the SPS. In this scenario the SPS should be able to reliably accelerate twice higher beam intensity than achieved so far and therefore significant improvements to the machine performance, in addition to the increased injection energy due to PS2, should be found and implemented at the same time scale. The present status of proposals and ongoing studies for all accelerator injector chain is described with main emphasis on the SPS challenges and upgrade plans.

  12. An Achromatic Telescopic Squeezing (ATS) Scheme For The LHC Upgrade

    CERN Document Server

    Fartoukh, S

    2011-01-01

    A novel optics concept has been invented and developed in the context of the LHC Upgrade studies. It offers an incredibly powerful and flexible machinery in order to squeeze β* in a symmetric or asymmetric way (so-called “round” or “flat” optics, respectively), while perfectly controlling the chromatic aberrations induced (off-momentum beta-beating, non-linear chromaticity, spurious dispersion due to the crossing angles). The basic principles of the scheme are described and a specific path for the LHC upgrade is built accordingly, only relying on the existing and well-characterized LHC-like technology, and based on the production of flat collision optics with very small β* (7.5 cm) in the plane perpendicular to the crossing plane.

  13. Upgrade of the ATLAS Calorimeters for Higher LHC Luminosities

    CERN Document Server

    Carbone, Ryne Michael; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will bring instantaneous and total luminosities which are a factor 5-7 beyond the original design of the ATLAS Liquid Argon (LAr) and Tile Calorimeters and their read-out systems. Due to radiation requirements and a new hardware trigger concept the read-out electronics will be improved in two phases. In Phase-I, a dedicated read-out of the LAr Calorimeters will provide higher granularity input to the trigger, in order to mitigate pile-up effects and to reduce the background rates. In Phase-II, completely new read-out electronics will allow a digital processing of all LAr and Tile Calorimeter channels at the full 40 MHz bunch-crossing frequency and a transfer of calibrated energy inputs to the trigger. Results from system design and performance of the developed read-out components, including fully functioning demonstrator systems already operated on the detector, will be reported. Furthermore, the current Forward Calorimeter (FCal) may suffer from signal degradation and argon bubble form...

  14. Upgrade of the ATLAS Calorimeters for Higher LHC Luminosities

    CERN Document Server

    ATLAS Tile Collaboration; The ATLAS collaboration

    2015-01-01

    The upgrade of the LHC will bring instantaneous and total luminosities which are a factor 5-7 beyond the original design of the ATLAS Liquid Argon (LAr) and Tile Calorimeters and their read-out systems. Due to radiation requirements and a new two-level hardware trigger concept the read-out electronics will be improved in two phases. In Phase-I, a dedicated read-out of the LAr Calorimeters will provide higher granularity input to the trigger, in order to mitigate pile-up effects and to reduce the background rates. In Phase-II, completely new read-out electronics will allow a digital processing of all LAr and Tile Calorimeter channels at full 40 MHz bunch-crossing frequency and a transfer of calibrated energy inputs to the trigger. Results from system design and performance of the developed read-out components, including fully functioning demonstrator systems already operated on the detector, will be reported. Furthermore, the current Forward Calorimeter (FCal) may suffer from signal degradation and argon bubbl...

  15. Upgrade of the ATLAS Calorimeters for Higher LHC Luminosities

    CERN Document Server

    Carbone, Ryne Michael; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will bring instantaneous and total luminosities which are a factor 5-7 beyond the original design of the ATLAS Liquid Argon (LAr) and Tile Calorimeters and their read-out systems. Due to radiation requirements and a new hardware trigger concept the read-out electronics will be improved in two phases. In Phase-I, a dedicated read-out of the LAr Calorimeters will provide higher granularity input to the trigger, in order to mitigate pile-up effects and to reduce the background rates. In Phase-II, completely new read-out electronics will allow a digital processing of all LAr and Tile Calorimeter channels at the full 40 MHz bunch-crossing frequency and a transfer of calibrated energy inputs to the trigger. Results from system design and performance of the developed read-out components, including fully functioning demonstrator systems already operated on the detector, will be reported. Furthermore, the current Forward Calorimeter (FCal) may suffer from signal degradation and argon bubble form...

  16. Silicon strip prototypes for the Phase-II upgrade of the ATLAS tracker for the HL-LHC

    CERN Document Server

    INSPIRE-00474514

    2013-01-01

    This paper describes the integration structures for the silicon strips tracker of the ATLAS detector proposed for the Phase-II upgrade of the Large Hadron Collider (LHC), also referred to as High Luminosity LHC (HL-LHC). In this proposed detector Silicon strip sensors are arranged in highly modular structures, called `staves' and `petals'. This paper presents performance results from the latest prototype stave built at Berkeley. This new, double-sided prototype is composed of a specialized core structure, in which a shield-less bus tape is embedded in between carbon fiber lay-ups. A detailed description of the prototype and its electrical performance are discussed in detail.

  17. The ATLAS Tracker Upgrade: Short Strips Detectors for the SLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2009-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  18. Operation of the upgraded ATLAS Central Trigger Processor during the LHC Run 2

    CERN Document Server

    Bertelsen, H.; Deviveiros, P.O.; Eifert, T.; Galster, G.; Glatzer, J.; Haas, S.; Marzin, A.; Silva Oliveira, M.V.; Pauly, T.; Schmieden, K.; Spiwoks, R.; Stelzer, J.

    2016-01-01

    The ATLAS Central Trigger Processor (CTP) is responsible for forming the Level-1 trigger decision based on the information from the calorimeter and muon trigger processors. In order to cope with the increase of luminosity and physics cross-sections in Run 2, several components of this system have been upgraded. In particular, the number of usable trigger inputs and trigger items have been increased from 160 to 512 and from 256 to 512, respectively. The upgraded CTP also provides extended monitoring capabilities and allows to operate simultaneously up to three independent combinations of sub-detectors with full trigger functionality, which is particularly useful for commissioning, calibration and test runs. The software has also undergone a major upgrade to take advantage of all these new functionalities. An overview of the commissioning and the operation of the upgraded CTP during the LHC Run 2 is given.

  19. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  20. LHC detector status and early physics

    CERN Document Server

    Rousseau, D

    2007-01-01

    The current status of LHC machine, and ATLAS and CMS detectors are briefly stated. Expected performance for both detectors is then compared on the main physics objects. The detector understanding studies through combined test beam, cosmics, low energy running one one side, large scale accurate simulation on the other side, are described. Finally, a few physics topics for which the data collected in 2008 will be relevant are mentionned.

  1. LHCB : The upgraded LHCb RICH detector: status and perspectives

    CERN Multimedia

    Cardinale, Roberta

    2015-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and search for New Physics using the enormous flux of beauty and charmed hadrons produced at the Large Hadron Collider (LHC). The two RICH detectors installed in LHCb have performed successfully during the 2010-2012 data taking period. The data from these detectors were essential to most of the physics results published by LHCb. In order to extend its potential for discovery and study of new phenomena it is planned to upgrade the LHCb experiment in 2018 with a 40MHz readout and a much more flexible software-based triggering system. This would increase the readout rate and occupancies for the RICH detectors. The RICH detector will require new photon detectors and modifications of the optics of the upstream RICH detector. Tests of the complete opto-electronic chain have been performed during testbeam sessions in autumn 2014. The status and perspectives of the RICH upgrade project will be presented.

  2. A Forward Silicon Strip System for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Wonsak, S; The ATLAS collaboration

    2012-01-01

    The LHC is successfully accumulating luminosity at a centre-of-mass energy of 8 TeV this year. At the same time, plans are rapidly progressing for a series of upgrades, culminating roughly eight years from now in the High Luminosity LHC (HL-LHC) project. The HL-LHC is expected to deliver approximately five times the LHC nominal instantaneous luminosity, resulting in a total integrated luminosity of around 3000 fb-1 by 2030. The ATLAS experiment has a rather well advanced plan to build and install a completely new Inner Tracker (IT) system entirely based on silicon detectors by 2020. This new IT will be made from several pixel and strip layers. The silicon strip detector system will consist of single-sided p-type detectors with five barrel layers and six endcap (EC) disks on each forward side. Each disk will consist of 32 trapezoidal objects dubbed “petals”, with all services (cooling, read-out, command lines, LV and HV power) integrated into the petal. Each petal will contain 18 silicon sensors grouped in...

  3. Micromegas detectors for the upgrade of the ATLAS muon spectrometer

    Science.gov (United States)

    Zibell, A.

    2014-08-01

    The upcoming luminosity upgrades of the LHC accelerator up to an ultimate value of 5 × 1034 cm-2s-1 require a replacement of the innermost forward muon tracking stations (Small Wheels) of the ATLAS detector in 2018 and 2019. These New Small Wheels (NSW) will contain resistive strip micromegas and small-strip Thin Gap Chamber detectors. The resistive strip micromegas detector concept is presented, together with the μTPC (micro Time Projection Chamber) track reconstruction technique for a single plane track angle measurement. The mechanical layout of the NSW micromegas chambers is discussed as well, as the features of the specially designed front-end electronics. A pre-series micromegas chamber will be installed within ATLAS already in 2014. It will be integrated into the ATLAS data acquisition system with help of a custom micromegas Read Out Driver (ROD), based on the Scalable Readout System (SRS).

  4. Micromegas Detectors for the Upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    Zibell, A; The ATLAS collaboration

    2014-01-01

    The upcoming luminosity upgrades of the LHC accelerator up to an ultimate value of $5 \\times 10^{34}\\, \\text{cm}^{-2}\\text{s}^{-1}$ require a replacement of the innermost forward muon tracking stations (Small Wheels) of the ATLAS detector in 2018 and 2019. These New Small Wheels (NSW) will contain resistive strip micromegas and small-strip Thin Gap Chamber detectors. The resistive strip micromegas detector concept is presented, together with the $\\muup$TPC track reconstruction technique for a single plane track angle measurement. The mechanical layout of the NSW micromegas chambers is discussed as well, as the features of the specially designed frontend electronics. A pre-series micromegas chamber will be installed within ATLAS already in 2014. It will be integrated into the ATLAS data acquisition system with help of a custom micromegas Read Out Driver (ROD), based on the Scalable Readout System (SRS).

  5. Development of planar pixel modules for the ATLAS high luminosity LHC tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Allport, P.P. [Department of Physics, University of Liverpool (United Kingdom); Ashby, J.; Bates, R.L.; Blue, A. [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Burdin, S. [Department of Physics, University of Liverpool (United Kingdom); Buttar, C.M., E-mail: craig.buttar@glasgow.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Casse, G.; Dervan, P. [Department of Physics, University of Liverpool (United Kingdom); Doonan, K. [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Forshaw, D. [Department of Physics, University of Liverpool (United Kingdom); Lipp, J. [The Science and Technology Facilities Council, Rutherford Appleton Laboratory (United Kingdom); McMullen, T. [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Pater, J. [School of Physics and Astronomy, University of Manchester (United Kingdom); Stewart, A. [SUPA, School of Physics and Astronomy, University of Glasgow (United Kingdom); Tsurin, I. [Department of Physics, University of Liverpool (United Kingdom)

    2014-11-21

    The high-luminosity LHC will present significant challenges for tracking systems. ATLAS is preparing to upgrade the entire tracking system, which will include a significantly larger pixel detector. This paper reports on the development of large area planar detectors for the outer pixel layers and the pixel endcaps. Large area sensors have been fabricated and mounted onto 4 FE-I4 readout ASICs, the so-called quad-modules, and their performance evaluated in the laboratory and testbeam. Results from characterisation of sensors prior to assembly, experience with module assembly, including bump-bonding and results from laboratory and testbeam studies are presented.

  6. The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with the other calorimeters it is designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. It also assists in the muon identification.  A summary of the upgrades and performance results for TileCal using pp collisions from the initial LHC Run II at 13 TeV will be presented. For the high luminosity era a major upgrade of the TileCal electronics is planned, and the ongoing developments for on- and off-detector systems, together with expected performance characteristics and recent beam tests of prototypes, will be described.

  7. Performances and ageing study of resistive-anodes Micromegas detectors for HL-LHC environment

    CERN Document Server

    Jeanneau, F; Attié, D; Boyer, M; Derré, J; Fanourakis, G; Ferrer-Ribas, E; Galán, J; Gazis, E; Geralis, T; Giganon, A; Giomataris, I; Herlant, S; Manjarrés, J; Ntomari, E; Schune, Ph; Titov, M; Tsipolitis, G

    2012-01-01

    With the tenfold luminosity increase envisaged at the HL-LHC, the background (photons, neutrons, ...) and the event pile-up probability are expected to increase in proportion in the different experiments, especially in the forward regions like, for instance, the muons chambers of the ATLAS detector. Detectors based on the Micromegas principle should be good alternatives for the detector upgrade in the HL-LHC framework because of a good spatial ( 98%) can be achieved with resistive-anode micromegas detector. An X-rays irradiation has been also performed, showing no ageing effect after more than 21 days exposure and an integrated charge of almost 1C.

  8. Phase 1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  9. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    Science.gov (United States)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  10. On the Feasibility of a Tripler Upgrade for LHC

    CERN Document Server

    McIntyre, Peter M

    2005-01-01

    Recent developments in the performance of superconductors and the design of high-field superconducting dipoles have opened the possibility to extend dipole field strength to ~25 Tesla in the arc dipoles of a future hadron collider. Design issues are presented for a concept of a Tripler upgrade of LHC, in which a second dual ring would be installed over the LHC ring in the same tunnel. Proton beams from LHC would be transferred to the Tripler midway through the LHC cycle and accelerated to ~20 TeV/beam for collisions. A number of obvious issues are explored. Synchrotron radiation power would be 80 times greater, but the critical energy would come as soft X-rays rather than hard UV, and so could be absorbed locally on ~150 K photon stops following each dipole so that total refrigeration power could perhaps be no more than that for LHC. Synchrotron damping would be dramatically enhanced in the Tripler compared to LHC, with damping times of ~one hour. Alternatives for beam transfer and low-beta insertions will be...

  11. Tracking triggers for the upgraded DOe detector

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, S. [California Univ., Davis (United States); Bloom, P. [California Univ., Davis (United States); Mani, S. [California Univ., Davis (United States); Pellett, D. [California Univ., Davis (United States); Costa, J. [CBPF/LAFEX, Rio de Janeiro (Brazil); Moreira, L. [CBPF/LAFEX, Rio de Janeiro (Brazil); Baumbaugh, A. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Blazey, G. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Borcherding, F. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Johnson, M. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Wilcox, J. [Northeastern University, Boston, MA (United States)

    1995-06-01

    The high luminosity environment of the upgraded Tevatron will require not only the upgrade of various DOe subdetectors, but the trigger system as well. With respect to the present system, the upgraded trigger system must operate faster and provide a higher degree of background rejection while extending the physics acceptance beyond that of the current system. This will be accomplished in part by incorporating the scintillating fiber tracker and the preshower detector into the Level 1 trigger. Track logic, implemented in commercial FPGAs, will be used to identify tracks in the scintillating fiber tracker with P{sub T}>1.5 GeV/c and electron candidates in the preshower detector. Integration of the trigger logic and readout electronics permits the identification of all tracks in a few hundred nanoseconds. Here, preliminary designs for the readout and trigger electronics are presented along with simulation results for trigger efficiencies and rejection factors. (orig.).

  12. The LHC detectors and the first CMS data

    CERN Document Server

    Green, Dan

    2015-01-01

    This chapter describes the subsystems of a generic LHC detector and explains how the values of the detector parameters were selected. The design of the LHC detectors follows from the requirement of confronting electroweak symmetry breaking in a decisive fashion. The LHC accelerator also meets those requirements.

  13. LHC Vacuum Upgrade during LS1

    CERN Document Server

    Jimenez, J M; Chiggiato, P; Cruikshank, P; Gallilee, M; Garion, C; Gomes, P

    2012-01-01

    The last two years of LHC operation have highlighted concerns on the levels of the dynamic vacuum in the long straight sections in presence of high intensity beams. The analysis of the existing data has shown relationship between pressures spikes and beam screen temperature oscillations or micro-sparking in the RF fingers of the bellows on one side and coincidence of pressure bumps with stimulated desorption by electron cloud, beam losses and/or thermal out gassing stimulated by higher order modes (HOM) losses. The electron cloud mitigation solutions will be adapted to the different configurations: cold/warm transitions, non-coated surfaces in direct view of beams, photoelectrons, etc. All scenarios will be presented together with their efficiencies. Additional pumping and reengineering of components will reduce the sensitivity of the vacuum system to beam losses or HOM inducing out gassing. The expected margin at nominal intensity and energy resulting from these consolidations will be summarized. Finally, th...

  14. The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC

    CERN Document Server

    Gras, Philippe

    2015-01-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstatecrystals forming the barrel part of the CMS Electromagnetic Calorimeter (ECAL) will still perform well, even after theexpected 3000$\\,$fb$^{-1}$ at the end of HL-LHC. The scintillation light is measured with avalanche photodiodes (APDs).Although the APDs will continue to be operational, there will be some increase in noise due to radiation-induceddark-currents. Triggering on electromagnetic objects with $\\sim$140 pileup events necessitates a change of the front-endelectronics. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgradedoff-detector processors, allowing maximum flexibility and enhanced triggering possibilities. The very-front-end system willalso be upgraded, to provide improved rejection of anomalous signals in the APDs as well as to mitigate the increase in APDnoise. We are also considering lowering the ECAL barrel operating temperature...

  15. Silicon strip prototypes for the ATLAS Upgrade tracker of the HL-LHC

    CERN Document Server

    Díez, S; The ATLAS collaboration

    2012-01-01

    This paper describes the integration structures for the silicon strips tracker of the ATLAS detector for the Phase-II upgrade of the Large Hadron Collider (LHC), also referred to as High-Luminosity LHC (HL-LHC). Silicon strip sensors are arranged in highly modular structures, called `staves' and `petals'. This paper focuses on the prototyping effort developed by the strips tracker barrel community, as well as on the description of one of the latest stave prototypes. This new prototype is composed of a particular core structure, in which a shield-less bus tape is embedded in between carbon fiber lay-ups. Electrical and thermal performances of the prototype are presented, as well as a description of the assembly procedures and tools.

  16. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  17. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  18. GIF++: A new CERN Irradiation Facility to test large-area particle detectors for the High-Luminosity LHC program

    CERN Document Server

    Guida, Roberto

    2016-01-01

    The high-luminosity LHC (HL-LHC) upgrade is setting a new challenge for particle detector technologies. The increase in luminosity will produce a higher particle background with respect to present conditions. To study performance and stability of detectors at LHC and future HL-LHC upgrades, a new dedicated facility has been built at CERN: the new Gamma Irradiation Facility (GIF++). The GIF++ is a unique place where high energy charged particle beams (mainly muons) are combined with gammas from a 14 TBq 137Cesium source which simulates the background radiation expected at the LHC experiments. Several centralized services and infrastructures are made available to the LHC detector community to facilitate the different R&D; programs.

  19. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  20. Novel Materials for Collimators at LHC and its Upgrades

    CERN Document Server

    AUTHOR|(CDS)2108536; Dallocchio, Alessandro; Garlasche, Marco; Gentini, Luca; Gradassi, Paolo; Guinchard, Michael; Redaelli, Stefano; Rossi, Adriana; Sacristan De Frutos, Oscar; Carra, Federico; Quaranta, Elena

    2015-01-01

    Collimators for last-generation particle accelerators like the LHC, must be designed to withstand the close interaction with intense and energetic particle beams, safely operating over an extended range of temperatures in harsh environments, while minimizing the perturbing effects, such as instabilities induced by RF impedance, on the circulating beam. The choice of materials for collimator active components is of paramount importance to meet these requirements, which are to become even more demanding with the increase of machine performances expected in future upgrades, such as the High Luminosity LHC (HL-LHC). Consequently, a farreaching R&D program has been launched to develop novel materials with excellent thermal shock resistance and high thermal and electrical conductivity, replacing or complementing materials used for present collimators. Molybdenum Carbide - Graphite and Copper-Diamond composites have been so far identified as the most promising materials. The manufacturing methods, properties and...

  1. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00425747; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  2. ATLAS LAr calorimeters readout electronics upgrade R&D for sLHC

    CERN Document Server

    Chen, Hucheng

    2010-01-01

    The ATLAS Liquid Argon (LAr) calorimeters consist of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters. A total of 182,468 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the Level-1 trigger. A luminosity upgrade of the LHC will occur in the years 2018. The current readout electronics will need to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr Calorimeter Group is developing.

  3. Enabling technologies for silicon microstrip tracking detectors at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Feld, L.; Karpinski, W.; Klein, K. [RWTH Aachen Univ. (Germany). 1. Physikalisches Institut B; Collaboration: The PETTL Collaboration; and others

    2016-04-15

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative ''Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC'' (PETTL), which was supported by the Helmholtz Alliance ''Physics at the Terascale'' during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R and D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements.

  4. Radiation-hard semiconductor detectors for SuperLHC

    CERN Document Server

    Bruzzi, Mara; Al-Ajili, A A; Alexandrov, P; Alfieri, G; Allport, Philip P; Andreazza, A; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Baranova, E; Barcz, A; Basile, A; Bates, R; Belova, N; Betta, G F D; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Brukhanov, A; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Chilingarov, A G; Chren, D; Cindro, V; Citterio, M; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Cvetkov, V; Davies, G; Dawson, I; De Palma, M; Demina, R; Dervan, P; Dierlamm, A; Dittongo, S; Dobrzanski, L; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Franchenko, S; Fretwurst, E; Gamaz, F; García-Navarro, J E; García, C; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Gorelov, I; Goss, J; Gouldwell, A; Grégoire, G; Gregori, P; Grigoriev, E; Grigson, C; Grillo, A; Groza, A; Guskov, J; Haddad, L; Harding, R; Härkönen, J; Hauler, F; Hayama, S; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hruban, A; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Jin, T; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Kleverman, M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Kowalik, A; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lari, T; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Latushkin, S T; Lazanu, I; Lazanu, S; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Lindström, L; Linhart, V; Litovchenko, A P; Litovchenko, P G; Litvinov, V; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Mainwood, A; Makarenko, L F; Mandic, I; Manfredotti, C; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Meroni, C; Messineo, A; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Mozzanti, A; Murin, L; Naoumov, D; Nava, F; Nossarzhevska, E; Nummela, S; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piatkowski, B; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A I; Popule, J; Pospísil, S; Pucker, G; Radicci, V; Rafí, J M; Ragusa, F; Rahman, M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Roy, P; Ruzin, A; Ryazanov, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Sevilla, S G; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Spencer, N; Stahl, J; Stavitski, I; Stolze, D; Stone, R; Storasta, J; Strokan, N; Strupinski, W; Sudzius, M; Surma, B; Suuronen, J; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Troncon, C; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Vanni, P; Velthuis, J; Verbitskaya, E; Verzellesi, G; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N; de Boer, Wim

    2005-01-01

    An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10/sup 35/ cm-/sup 2/s-/sup 1/ has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 10 /sup 16/ cm-/sup 2/. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Flo...

  5. The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC

    CERN Document Server

    Obertino, Margherita Maria

    2014-01-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstate crystals forming the barrel part of the CMS Electromagnetic Calorimeter (ECAL) will still perform well, even after the expected 3000fb-1 at the end of HL-LHC. The avalanche photodiodes (APDs) used to detect the scintillation light have recently been exposed to the levels of radiation expected at the end of HL-LHC. Although they will continue to be operational, there will be some increase in noise due to radiation-induced dark-currents. Triggering CMS with ~140 pileup events necessitates a change of the front-end electronics. New developments in high-speed optical links will allow single-crystal readout at 40 MHz. This will provide maximum flexibility and enhanced triggering possibilities when used in conjunction with upgraded off-detector processors. The very-front-end system will also be upgraded, to provide improved rejection of anomalous signals in the APDs as well as to mitigate the incr...

  6. The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC

    CERN Document Server

    Planer, Michael David

    2014-01-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstate crystals forming the barrel part of the CMS Electromagnetic Calorimeter (ECAL) will still perform well, even after the expected 3000 fb-1 at the end of HL-LHC. The avalanche photodiodes (APDs) used to detect the scintillation light have recently been exposed to the levels of radiation expected at the end of HL-LHC. Although they will continue to be operational, there will be some increase in noise due to radiation-induced dark-currents. Triggering on electromagnetic objects with ~140 pileup events necessitates a change of the front-end electronics. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgraded off-detector processors, allowing maximum flexibility and enhanced triggering capabilities. The very-front-end system will also be upgraded, to provide improved rejection of anomalous signals in the APDs as well as to mitigate the increase in APD n...

  7. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    Science.gov (United States)

    Lehmann, N.; Karagounis, M.; Kersten, S.; Zeitnitz, C.

    2016-11-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  8. Diamond Detectors for the TOTEM Timing Upgrade arXiv

    CERN Document Server

    Antchev, G.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Broulím, P.; Buzzo, A.; Cafagna, F.S.; Catanesi, M.G.; Csanád, M.; Csörgő, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lokajíček, M.V.; Losurdo, L.; Lo Vetere, M.; Rodríguez, F. Lucas; Lucsányi, D.; Macrí, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novák, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Österberg, K.; Palazzi, P.; Paločko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Procházka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P.; Zielinski, K.

    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of...

  9. The BABAR detector: Upgrades, operation and performance

    OpenAIRE

    Barate, R.; Boutigny, D.; Couderc, F; Sanchez, PDA; Gaillard, J-M; Hicheur, A.; Karyotakis, Y; Lees, JP; Poireau, V.; Prudent, X.; Wogsland, BJ; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.

    2013-01-01

    This article is the Preprint version of the final published article which can be accessed at the link below. The BaBar detector operated successfully at the PEP-II asymmetric e+e− collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking. This work has b...

  10. Pixel Sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernieri, Caterina [Fermilab; Bolla, Gino [Fermilab; Rivera, Ryan [Fermilab; Uplegger, Lorenzo [Fermilab; Zoi, Irene [Fermilab

    2016-01-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2x1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  11. Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    Science.gov (United States)

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo; Zoi, Irene

    2017-02-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2×1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  12. Upgrade Plans for ATLAS Forward Calorimetry for the HL-LHC

    CERN Document Server

    Krieger, P; The ATLAS collaboration

    2013-01-01

    The upgrade of the LHC Collider foresees increased instantaneous luminosity 3-7 times the original design value of 10$^{34}$ cm$^{-2}$ s$^{-1}$. The increased particle flux at this high luminosity phase of the LHC (HL-LHC) will have an impact on many sub-systems of the ATLAS detector. In particular, in the LAr forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities poses a number of problems that can degrade its performance, related to beam heating, space charge effects in the LAr gaps and HV drop due to increased current draws over the HV current-limiting resistors. One solution to these problems, which would require the opening of both ATLAS endcap cryostats, is the construction and installation of a new FCal, with cooling loops, narrower LAr gaps, and lower value protection resistors. The signal performance of the current FCal and of a possible narrow-gap FCal has been measured in a dedicated test-beam campaign ...

  13. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  14. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2016-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  15. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    Science.gov (United States)

    Jiménez Peña, J.

    2016-11-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL) . ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~ 6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  16. Upgrade of the LHC magnet interconnections thermal shielding

    Energy Technology Data Exchange (ETDEWEB)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Michał [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  17. Upgrade of the LHC magnet interconnections thermal shielding

    Science.gov (United States)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  18. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    CMS Collaboration

    2016-01-01

    We present feasibility studies to investigate the performances and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on the real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC).

  19. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  20. Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    CERN Document Server

    Barth, C; Bloch, I.; Bögelspacher, F.; de Boer, W.; Daniels, M.; Dierlamm, A.; Eber, R.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Erfle, J.; Feld, L.; Garutti, E.; Gregor, I. -M.; Guthoff, M.; Hartmann, F.; Hauser, M.; Husemann, U.; Jakobs, K.; Junkes, A.; Karpinski, W.; Klein, K.; Kuehn, S.; Lacker, H.; Mahboubi, K.; Müller, Th.; Mussgiller, A.; Nürnberg, A.; Parzefall, U.; Poehlsen, T.; Poley, L.; Preuten, M.; Rehnisch, L.; Sammet, J.; Schleper, P.; Schuwalow, S.; Sperlich, D.; Stanitzki, M.; Steinbrück, G.; Wlochal, M.

    2016-01-01

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Phys...

  1. Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2015-01-01

    The beam monitoring and luminosity systems of the CMS experiment are enhanced by several new and upgraded sub-detectors to match the challenges of the LHC operation and physics program at increased energy and higher luminosity. A dedicated pixelated luminosity telescope is installed for a fast and precise luminosity measurement. This detector measures coincidences between several three-layer telescopes of silicon pixel detectors to arrive at luminosity for each colliding LHC bunch pair. An upgraded fast beam conditions monitor measures the particle flux using single crystalline diamond sensors. It is equipped with a dedicated front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background, thus serving as online luminosity measurement. A new beam-halo monitor at larger radius exploits Cerenkov light from fused silica to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles....

  2. submitter Search for Dark Matter in the Upgraded High Luminosity LHC at CERN: Sensitivity of ATLAS phase II upgrade to dark matter production

    CERN Document Server

    Hallsjö, Sven-Patrik; Johansson, Magnus

    The LHC at CERN is now undergoing a set of upgrades to increase the center of mass energy for the colliding particles to be able to explore new physical processes. The focus of this thesis lies on the so called phase II upgrade which will preliminarily be completed in 2023. After the upgrade the LHC will be able to accelerate proton beams to such a velocity thateach proton has a center of mass energy of 14 TeV. One disadvantage of the upgrade is that it will be harder for the atlas detector to isolate unique particle collisions since more and more collisions will occur simultaneously, so called pile-up. For 14 TeV there does not exist a full simulation of the atlas detector. This thesis instead uses data from Monte Carlo simulations for the particle collisions and then uses so called smearing functions to emulate the detector responses. This thesis focuses on how a mono-jet analysis looking for different wimp models of dark matter will be affected by this increase in pile-up rate. The signal models which are ...

  3. The phase-1 upgrade of the CMS vertex detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The operation of the present pixel detector has started in 2010 with LHC operating at a center of mass (CM) energy of 7\\,TeV. At the beginning of 2012 the CM energy was increased to 8\\,TeV and within December 2012 a total of 19\\,fb$^{-1}$ integrated luminosity has been delivered, with instantaneous peak luminosities approaching $7\\times 10^{33}$\\,cm$^{-2}$s$^{-1}$. The present pixel detector was originally designed for a luminosity of $1\\times 10^{34}$\\,cm$^{-2}$s$^{-1}$ and a pileup (number of inelastic interaction per bunch crossing) of 25 for 25\\,ns bunch spacing. These beam parameters will be reached in the middle of the data taking period 2015-2017 (with an additional increase in the center of mass energy up to the value of 13-14\\,TeV) and then the peak luminosity will keep increasing until 2017, when it will reach the value of $1.5\\times 10^{34}$\\,cm$^{-2}$s$^{-1}$. The present detector will remain operative until the end of 2016 and will be replaced with an upgraded detector before Long Shutdown 2 (LS2...

  4. Phase 1 upgrade of the CMS Pixel Detector

    CERN Document Server

    Saha, Anirban

    2016-01-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of $\\rm 1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to $\\rm 2\\times10^{34} cm^{-2}s^{-1}$, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are the a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with hi...

  5. The COMPASS RICH-1 detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Colantoni, M.L.; Panzieri, D. [Univ E Piemonte, Alessandria (Italy); Joosten, R.; Naehle, O. [Univ Bonn, Helmholtz Inst Strahlen and Kernphys, D-5300 Bonn (Germany); Kolosov, V.N. [CERN, European Org Nucl Res, CH-1211 Geneva (Switzerland); Eyrich, W.; Lehmann, A.; Schroeder, W.; Teufel, A. [Univ Erlangen Nurnberg, Inst Phys, D-8520 Erlangen (Germany); Fischer, H.; Hagemann, R.; Heinsius, F.H.; Konigsmann, K.; Mutter, A.; Nerling, F.; Schill, C.; Wollny, H. [Univ Freiburg, Inst Phys, Freiburg (Germany); Kramer, D.; Polak, J.; Sulc, M.; Svec, M. [Tech Univ Liberec, Liberec (Czech Republic); Silva, L. [LIP, P-1000 Lisbon (Portugal); Von Harrach, D. [Johannes Gutenberg Univ Mainz, Inst Kernphys, D-6500 Mainz (Germany); Angerer, H.; Gerassimov, S.; Ketzer, B.; Konorov, I.; Mann, A.; Paul, S. [Tech Univ Munich, Dept Phys, D-8046 Garching (Germany); Finger, M.; Finger, M. Jr.; Slunecka, M.; Steiger, L. [Joint Inst Nucl Res Dubna, Dubna, (Russian Federation); Finger, M.; Finger, M. Jr.; Slunecka, M.; Steiger, L. [Charles Univ Prague, Prague (Czech Republic); Abbon, P.; Dafni, T.; Delagnes, E.; Deschamps, H.; Kunne, F.; Magnon, A.; Neyret, D.; Panebianco, S.; Rebourgeard, P.; Robinet, F. [CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette (France); Alekseev, M.; Busso, L.; Chiosso, M.; Costa, S.; Dibiase, N.; Faso, D.; Ferrero, A.; Maggiora, A. [Univ Turin, Turin (Italy); Alekseev, M.; Busso, L.; Chiosso, M.; Costa, S.; Dibiase, N.; Faso, D.; Ferrero, A.; Maggiora, A. [Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, (Italy); Apollonio, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Ciliberti, P.; Torre, S. Dalla; Diaz, V.; Duic, V.; Giorgi, M.; Gobbo, B.; Levorato, S.; Martin, A.; Menon, G.; Pagano, P.; Pesaro, G.; Rocco, E.; Schiavon, P.; Sozzi, F.; Tessarotto, F. [Univ Trieste, Trieste (Italy); Apollonio, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Ciliberti, P.; Torre, S. Dalla; Diaz, V.; Duic, V.; Giorgi, M.; Gobbo, B.; Levorato, S.; Martin, A. [and others

    2008-07-01

    The COMPASS experiment at CERN provides hadron identification in a wide momentum range employing a large size gaseous Ring Imaging Cherenkov detector (RICH). The presence of large uncorrelated background in the COMPASS environment was limiting the efficiency of COMPASS RICH-1 in the very forward regime. A major upgrade of RICH-1 required a new technique for Cherenkov photon detection at count rates of several 10{sup 6}/s per channel in the central detector part, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors of the central region have been replaced with a fast photon detection system described here, while, in the peripheral regions, the existing multi-wire proportional chambers with CsI photo-cathodes have been equipped with a new read-out system based on APV preamplifiers and flash ADC chips. The new system consists of multi-anode photo-multiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes, and fast read-out electronics based on the MAD4 amplifier-discriminator and the dead-time free F1 TDC chip. The project was completely designed and implemented in less than two years: The upgraded detector is in operation since the 2006 CERN SPS run. We present the photon detection design, constructive aspects and test studies to characterise the single photon response of the MAPMTs coupled to the read-out system as well as the detector performance based on the 2006 data. (authors)

  6. The BRAN luminosity detectors for the LHC

    Science.gov (United States)

    Matis, H. S.; Placidi, M.; Ratti, A.; Turner, W. C.; Bravin, E.; Miyamoto, R.

    2017-03-01

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×1034 cm-2 s-1 with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  7. Upgrades to the CMS Cathode Strip Chamber Electronics for HL-LHC

    CERN Document Server

    Morse, David Michael

    2016-01-01

    Cathode strip chambers (CSCs) are used to detect muons in theend cap region of the CMS detector. The chambers are arrangedin rings in four planes on each end of the detector. The innerrings of CSCs in each station have the highest flux ofparticles and this presents challenges to efficient readout atthe luminosity, latency, and trigger rate foreseen at theHL-LHC.The existing front end electronics in Stations 2, 3, and 4 arebased on switched capacitor arrays with limited bufferingcapability. Queuing models have shown that significantsaturation of the buffers would occur for the luminosity, Level1 trigger rates, and required Level 1 latency for running atthe HL-LHC. In addition, the expected output rate of data isexpected to exceed the 1 Gbps bandwidth of the optical linksthat carry data to the back end, resulting in loss of eventsynchronization.The upgrade of the inner ring of CSCs addresses these problemsby replacing some types of electronics boards in these ringswith upgraded boards. In particular, the existi...

  8. Future proton and mixed-field irradiation facilities with slow extraction for LHC operation phase and for LHC upgrades

    CERN Document Server

    Assmann, Ralph Wolfgang; Brugger, Markus; Efthymiopoulos, Ilias; Feldbaumer, Eduard; Garrido, Mar Capeans; Glaser, Maurice; Kramer, Daniel; Linssen, Lucie; Losito, Roberto; Moll, Michael; Rembser, Christoph; Silari, Marco; Thurel, Yves; Tsesmelis, Emmanuel; Vincke, Helmut; CERN. Geneva. The LHC experiments Committee; LHCC

    2010-01-01

    In the present proposal we present the need for improved proton and mixed-field irradiation facilities with slow beam extraction at CERN. Strong needs are expressed by both the detector and accelerator communities and concern the LHC operation era as well as the upgrades of machine and experiments. The current facilities and test areas have a number of limitations and drawbacks. Preliminary studies indicate that there are possibilities for a coherent and cost-effective approach towards improved facilities for the future. The aim of this document is to inform the LHCC and seek its recognition for the need of such facilities. In addition we would appreciate the support of the LHCC for pursuing further implementation studies at a PS East Hall location.

  9. MPX Detectors as LHC Luminosity Monitor

    CERN Document Server

    AUTHOR|(CDS)2086061; Asbah, Nedaa; Bergmann, Benedikt; Bekhouche, Khaled; Caforio, Davide; Campbell, Michael; Heijne, Erik; Leroy, Claude; Lipniacka, Anna; Nessi, Marzio; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Soueid, Paul; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek

    2015-01-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at sqrt(s) = 8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX lum...

  10. MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Bergmann, Benedikt; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel [IEAP CTU in Prague (Czech Republic); Ashba, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Bekhouche, Khaled [Biskra University (Algeria); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Lipniacka, Anna [Bergen University (Norway)

    2016-07-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s) =8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX luminosity measurements are below 0.3% for one minute intervals.

  11. Qualification of Barrel Pixel Detector Modules for the Phase 1 Upgrade of the CMS Vertex Detector

    CERN Document Server

    Kudella, Simon

    2016-01-01

    To withstand the higher particle rates of LHC Runs 2 and 3, with expected luminosities of up to $2\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$, the current CMS pixel detector at the LHC will be replaced as part of the CMS Phase I Upgrade during the extended winter shutdown in 2016/17. The new pixel detector features a new geometry with one additional detector layer in the barrel region~(BPIX) and one pair of additional disks in the forward region~(FPIX), new digital readout chips as well as a new CO$_{2}$-based cooling system for both the barrel and forward region. The BPIX detector module production is summarized, with special focus on the different stages of quality assurance. The quality tests as well as the calibrations which all produced modules undergo in a temperature and humidity controlled environment are described. Exemplarily, the KIT/Aachen production line and its subprocesses are presented together with its quality and yields.

  12. LHCb: FPGA-based, radiation-tolerant on-detector electronics for the upgrade of the LHCb Outer Tracker Detector

    CERN Multimedia

    Vink, W

    2013-01-01

    The LHCb experiment studies B-decays at the LHC. The Outer Tracker straw tubes detects charged decay particles. The on-detector electronics will be upgraded to be able to digitize and transmit drift-times at every LHC crossing without the need for a hardware trigger. FPGAs have been preferred to application-specific integrated circuits to implement dead-time free TDCs, able to transmit data volumes of up to 36 Gbits/s per readout unit, including the possibility of performing zero suppression. Extensive irradiation tests have been carried out to validate the usage of field-programmable devices in the hostile environment of the LHCb tracking system.

  13. Upgrade of the ATLAS Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Dandoy, Jeffrey Rogers; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter is undergoing preparations for the high luminosity program of the LHC beginning in 2026, requiring a major replacement of on- and off-detector electronics. All digitized signals will be transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. The planned upgrade will also contribute to the reliability and redundancy of the system. A hybrid demonstrator module has been developed using the new electronics while conserving compatibility with the current system. The Demonstrator is undergoing extensive testing and validation is planned through a testbeam study in October 2015 and insertion in ATLAS during Phase I.

  14. Upgrade of the ATLAS Tile hadronic calorimeter for high-luminosity LHC run

    CERN Document Server

    Spoor, Matthew; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics for the high luminosity program of the LHC in 2024. All signals will be digitized and transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade and will be chosen after extensive test beam studies. A hybrid demonstrator module has been developed. The demonstrator is undergoing extensive testing and is planned for insertion in ATLAS.

  15. A Time-Multiplexed Track-Trigger for the CMS HL-LHC upgrade

    CERN Document Server

    Hall, Geoffrey

    2015-01-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trig...

  16. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  17. The COMPASS RICH-1 detector upgrade

    CERN Document Server

    Abbon, P; Angerer, H; Apollonio, M; Birsa, R; Bordalo, P; Bradamante, F; Bressan, A; Busso, L; Chiosso, M; Ciliberti, P; Colantoni, M L; Costa, S; Dalla Torre, S; Dafni, T; Delagnes, E; Deschamps, H; Díaz, V; Dibiase, N; Duic, V; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; Von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K C; Kolosov, V N; Konorov, I; Kramer, Daniel; Kunne, F; Lehmann, A; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nähle, O; Nerling, F; Neyret, D; Pagano, P; Panebianco, S; Panzieri, D; Paul, S; Pesaro, G; Polak, J; Rebourgeard, P; Robinet, F; Rocco, E; Schiavon, P; Schill, C; Schröder, W; Silva, L; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2008-01-01

    The COMPASS experiment at CERN provides hadron identification in a wide momentum range employing a large size gaseous Ring Imaging CHerenkov detector (RICH). The presence of large uncorrelated background in the COMPASS environment was limiting the efficiency of COMPASS RICH-1 in the very forward regime. A major upgrade of RICH-1 required a new technique for Cherenkov photon detection at count rates of several 10$^{6}$/s per channel in the central detector part, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors of the central region have been replaced with a fast photon detection system described here, while, in the peripheral regions, the existing multi-wire proportional chambers with CsI photo-cathodes have been equipped with a new read-out system based on APV preamplifiers and flash ADC chips. The new system consists of multi-anode photomultiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes, and fast read-out electr...

  18. Experiment protection at the LHC and damage limits in LHC(b) silicon detectors

    CERN Document Server

    Ferro-Luzzi, M

    2009-01-01

    The Large Hadron Collider (LHC), once in operation, will represent approximately a 200-fold increase in stored beam energy with respect to previous high energy colliders. Safe operation will critically rely on machine and experiment protection systems. A review is given of possible beam failure modes at the LHC and of the strategy adopted in the LHC experiments to protect the detectors against such events. Damage limits for the detectors are discussed.

  19. First test beam results of prototype modules for the upgrade of the ATLAS strip tracking detector

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2016-01-01

    The LHC is foreseen to be upgraded to the High-Luminosity LHC (HL-LHC). This will result in higher particle rates and radiation doses. The ATLAS experiment plans to replace its inner tracking detector by a new all-silicon tracker which is based on the concept of modularity. For the new silicon strip tracker a large prototyping and evaluation campaign is ongoing. Many modules of different types were built and tested both in the laboratories and in test beams. In the following first results obtained in test beams are presented. Both mini and full-size modules for the central and forward regions were tested before and after irradiation to fluences as expected at the HL-LHC.

  20. CARE-HHH-APD Workshop on Interaction Regions for the LHC Upgrade, DAFNE, and SuperB

    CERN Document Server

    Zimmermann, Frank; IR'07; IR 2007

    2008-01-01

    This report contains the Proceedings of the CARE-HHH-APD Mini-Workshop “IR’07,” which was held in Frascati, Italy, from 7 to 9 November 2007. The central theme of the IR’07 Mini-Workshop was the upgrade of the LHC interaction region (IR). A second topic was the experience with the upgraded DAFNE IR as well as the ongoing plans and studies for SuperB, plus possible applications of crab-waist collisions for the LHC upgrade. Discussions during the workshop addressed the performance and limitations of the IR-upgrade optics performance, the optimization of new LHC triplet magnets, the US-LARP magnet strategy (response to Lucio Rossi’s “challenge”), heat deposition, earlyseparation dipoles, detector-integrated quadrupoles, strategy for crab cavities, beam–beam wire compensators, and crab-waist collisions. At IR’07 all auxiliary systems, e.g. wires and crab cavities, received a strong boost. Energy deposition was shown to add an important criterion to the optics requirements—in a first attempt a ...

  1. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  2. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC arXiv

    CERN Document Server

    McCarthy, Thomas G.

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  3. A proposal to upgrade the ATLAS RPC system for the High Luminosity LHC

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2015-01-01

    The architecture of the present trigger system in the ATLAS Muon Barrel was designed according to a reference luminosity of 10^34 cm-2 s-1 with a safety factor of 5, with respect to the simulated background rates, now confirmed by LHC Run-1 data. HL-LHC will provide a luminosity 5 times higher and an order of magnitude higher background. As a result, the performance demand increases, while the detector being susceptible to ageing effects. Moreover, the present muon trigger acceptance in the barrel is just above 70%, due to the presence of the barrel toroid structures. This scenario induced the ATLAS muon Collaboration to propose an appropriate upgrade plan, involving both detector and trigger-readout electronics, to guarantee the performance required by the physics program for the 20 years scheduled. This consists in installing a layer of new generation RPCs in the inner barrel, to increase the redundancy, the selectivity, and provide almost full acceptance. The first 10% of the system, corresponding to the e...

  4. An upgraded ATLAS Central Trigger for post-2014 LHC luminosities

    CERN Document Server

    Anders, G; The ATLAS collaboration; Bertelsen, H; Childers, T; Dam, M; Dobson, E; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Kaneda, M; Maettig, S; Messina, A; Ohm, C; Pauly, T; Poettgen, R; Spiwoks, R; Wengler, T; Xella, S

    2012-01-01

    During 2011, the LHC reached instantaneous luminosities of 6.7 · 10^33 cm−2s−1 and produced events with up to 40 interactions per colliding proton bunch. This places stringent operational and physical requirements on the ATLAS trigger in order to reduce the 40 MHz collision rate to a manageable event storage rate of 400 Hz without discarding those events considered interesting. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger, with an output rate of 75 kHz and a decision latency of less than 2.5 μ s. It is primarily composed of the Calorimeter Trigger, Muon Trigger, and the Central Trigger Processor which are implemented in custom built VME electronics. The Central Trigger Processor collects trigger information from all Level-1 systems and produces a Level-1 trigger decision that initiates the readout of all ATLAS detectors. After 2014, the LHC will run at a center of mass energy of up to 14 TeV, compared to the current 8 TeV, and the luminosity will exceed 10^34 cm−2s−1. Wit...

  5. An Upgraded ATLAS Central Trigger for 2014 LHC Luminosities

    CERN Document Server

    Kaneda, M; The ATLAS collaboration

    2012-01-01

    During 2011, the LHC reached instantaneous luminosities of 4*10^33 cm^-1*s^-1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of ~400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and a decision latency of less than 2.5us. It is primarily composed of the Calorimeter Trigger, Muon Trigger, and the Central Trigger Processor which are implemented in custom built VME electronics. The Central Trigger Processor collects trigger information from all Level-1 systems and produces a Level-1 trigger decision that initiates the readout of all ATLAS sub-detectors. In 2014, the LHC will run at a center of mass energy of 14 TeV, compared to the current 8 TeV, and the luminosity will exceed 10^34 cm^-1*s^-1. With h...

  6. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2016-01-01

    We present feasibility studies to investigate the performance and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of rare physics events from the large pile-up of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total Level-1 trigger rate while keeping a high selection capability. This is quite an innovative and challenging objective for the upgrade of the experiments for the High Luminosity LHC.

  7. Upgrades to the SPS-to-LHC Transfer Line Beam Stoppers for the LHC High-Luminosity Era

    CERN Document Server

    Kain, Verena; Fraser, Matthew; Goddard, Brennan; Meddahi, Malika; Perillo Marcone, Antonio; Steele, Genevieve; Velotti, Francesco

    2016-01-01

    Each of the 3 km long transfer lines between the SPS and the LHC is equipped with two beam stoppers (TEDs), one at the beginning of the line and one close to the LHC injection point, which need to absorb the full transferred beam. The beam stoppers are used for setting up the SPS extractions and transfer lines with beam without having to inject into the LHC. Energy deposition and thermo-mechanical simulations have, however, shown that the TEDs will not be robust enough to safely absorb the high intensity beams foreseen for the high-luminosity LHC era. This paper will summarize the simulation results and limitations for upgrading the beam stoppers. An outline of the hardware upgrade strategy for the TEDs together with modifications to the SPS extraction interlock system to enforce intensity limitations for beam on the beam stoppers will be given.

  8. Performance and track-based alignment of the Phase-1 upgraded CMS pixel detector

    CERN Document Server

    Botta, Valeria

    2017-01-01

    The Compact Muon Solenoid (CMS) detector is a multi-purpose detector constructed in order to study high-energy particle collisions at the Large Hadron Collider (LHC) at CERN. The all-silicon design of the tracking system of the CMS experiment provided excellent resolution for charged tracks and an efficient tagging of jets during Run 1 and Run 2 of the LHC. After the pixel detector of the CMS experiment was upgraded and installed during the shutdown in the beginning of 2017, the positions and orientations of the tracker modules needed to be determined with a precision of several micrometers. The alignment also needs to be quickly recalculated each time the state of the CMS magnet is changed between 0 T and 3.8 T. The latest results of the CMS tracker performance in the 2017 run are presented, with a special focus on alignment and resolution performance using several million reconstructed tracks from cosmic rays and collision data.

  9. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Zhu, Junjie; The ATLAS collaboration

    2017-01-01

    The planned Phase-I and Phase-II upgrades of the LHC accelerator drastically impacts the ATLAS trigger and trigger rates. A replacement of the ATLAS innermost endcap muon station with a new small wheel (NSW) detector is planned for the second long shutdown period of 2019 - 2020. This upgrade will allow us to maintain a low pT threshold for single muon and excellent tracking capability even after the High-Luminosity LHC upgrade. The NSW detector will feature two new detector technologies, Resistive Micromegas and small-strip Thin Gap Chambers. Both detector technologies will provide trigger and tracking primitives. The total number of trigger and readout channels is about 2.4 millions, and the overall power consumption is expected to be about 75 kW. The electronics design will be implemented in some 8000 front-end boards including the design of four custom front-end ASICs capable to drive trigger and tracking primitives with high speed sterilizers to drive trigger candidates to the backend trigger processor sy...

  10. Silicon strip tracking detector development and prototyping for the Phase-2 Upgrade of the ATLAS experiment

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2015-01-01

    In about ten years from now, the Phase-2 upgrade of the LHC is planned. This will result in a severe radiation dose and high particle rates for the multipurpose exeperiments because of a foreseen luminosity of ten times higher the LHC design luminosity. Several detector components will have to be upgraded in the experiments. In the ATLAS experiment the current inner detector will be replaced by an all silicon tracking detector aiming for high performance. The poster will present the development and the latest prototyping of the upgrade silicon strip tracking detector. Its layout foresees low mass and modular double-sided structures for the barrel and forward region. Silicon sensors and readout electronics, so-called modules, are planned to be assembled double-sided on larger carbon-core structures. The modularity allows assembly and testing at multiple sites. Many components need to be developed and their prototyping towards full-size components is ongoing. New developments and test results will be presented....

  11. Testbeam Studies with Silicon Strip Module Prototypes for the ATLAS-Detector towards the HL-LHC

    CERN Document Server

    Moser, Brian

    2016-01-01

    In this report I give a brief overview about my studies as a summer student at CERN from July to September 2016. I worked on testbeam studies with prototype modules for the High-Luminosity LHC (Phase-II) upgrade of the silicon strip tracker of the ATLAS detector.

  12. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J.

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  13. 3D silicon pixel detectors for the High-Luminosity LHC

    Science.gov (United States)

    Lange, J.; Carulla Areste, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.; Vázquez Furelos, D.

    2016-11-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50 × 250 μm2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12-15 mW/cm2 at a fluence of about 1016 neq/cm2, measured at -25°C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50 × 50 and 25 × 100 μm2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1-2 V before irradiation.

  14. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    Science.gov (United States)

    Solodkov, A.

    2017-08-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 × 1034 cm-2s-1, five times higher than the design luminosity of the LHC . TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module was developed using the new electronics while conserving compatibility with the current system. The demonstrator undergoes extensive testing and will be installed in ATLAS during one of the next winter maintenance periods.

  15. The CMS calorimeter trigger upgrade for the LHC Run II

    CERN Document Server

    Zabi, Alexandre

    2014-01-01

    The CMS experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 10e5. The first level (L1) is based on coarse information coming from the calorimeters and the muon detectors while the High-Level Trigger combines fine-grain information from all sub-detectors. During Run II, the LHC will increase its centre of mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2e34 cm-2s-1. In order to guarantee a successful and ambitious physics program under this intense environment, the CMS Trigger and Data acquisition system must be consolidated. In particular the L1 calorimeter Trigger hardware and architecture will be modified. The goal is to maintain the current thresholds (e.g., for electrons and photons) and improve the performance for the selection of tau leptons. This can only be achieved by designing an updated trigger architecture based on the recent microTCA technology. Racks can be equipped with fast optical links and latest...

  16. Characterisation of the Photon Detection System for the LHCb RICH Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2097582; D'Ambrosio, Carmelo; Easo, Sajan

    The LHCb Experiment will be upgraded during Long Shutdown II of the Large Hadron Collider (LHC) in 2019 and 2020. The goal of the upgrade is to efficiently use the increased instantaneous luminosity in LHC Run 3 and to collect data at the proton collision rate of 40 MHz. The Ring Imaging Cherenkov (RICH) particle identification detectors will be upgraded to perform in the new operating conditions with continuing reliability. The photon detection system will be replaced using multi-anode photomultiplier tubes (MaPMTs) and associated read-out electronics. The photon detection chain was studied at CERN using a pulsed laser to test the system under high event rates and high photon intensities. The behaviour of two types of MaPMTs which are foreseen for the upgrade is presented for varying rates and intensities, and different applied bias voltages. A simulation was created to model the photon detection chain using the Geant4 simulation toolkit. The RICH Upgrade test beam using 180 GeV positive hadrons from CERN SP...

  17. UPGRADES

    CERN Multimedia

    Didier Contardo

    2012-01-01

      The CMS Upgrade Programme is making good progress on the LS1 and Phase 1 projects, in the planning for Phase 2. The construction of the ME4/2 muon chambers to be installed during LS1 has started and the two first CSC production chambers have been fully qualified. The three muon groups have recently established a set of milestones towards the completion of their project, that will be integrated in the detailed planning and scheduling for the shutdown work established by Technical Coordination. The project to replace the photo-detectors in the HF and HO calorimeters is also well advanced and at the validation stage. The operation of an HF slice with new multi-anode PMTs and back-end electronics has already been demonstrated in 2012. For the Phase 1 data-taking, as discussed in the Chamonix workshop, it is likely that the LHC performance will exceed the nominal luminosity and pile-up before the second shutdown, still scheduled in 2018. The collaboration is therefore pursuing a strategy to upgrade ...

  18. The phase-1 upgrade of the CMS pixel detector

    CERN Document Server

    Weber, Hannsjorg Artur

    2016-01-01

    The pixel detector of the CMS experiment will be upgraded during the extended end of year shutdown during winter 2016/2017. The upgraded detector will operate at full efficiency at an instantaneous luminosity of ${2\\times10^{34}}$\\,cm$^{{-2}}$s$^{{-1}}$ with increased detector acceptance and additional redundancy for the tracking, while at the same time reducing the material budget. The design and technological choices will be reviewed, and the status of the construction of the detector and the performance of its components as measured in system tests are discussed.

  19. The detector safety system for LHC experiments

    CERN Document Server

    Schmeling, Sascha; Lüders, S; Morpurgo, Giulio

    2004-01-01

    The Detector Safety System (DSS), currently being developed at CERN under the auspices of the Joint Controls Project (JCOP), will be responsible for assuring the protection of equipment for the four Large Hadron Collider (LHC)**1 experiments. Thus, the DSS will require a high degree of both availability and reliability. After evaluation of various possible solutions, a prototype is being built based on a redundant Siemens PLC**2 front-end, to which the safety- critical part of the DSS task is delegated. This is then supervised by a PVSS**3 SCADA**4 system via an OPC**5 server. The PLC front-end is capable of running autonomously and of automatically taking predefined protective actions whenever required. The supervisory layer provides the operator with a status display and with limited online reconfiguration capabilities. Configuration of the code running in the PLCs will be completely data driven via the contents of a "configuration database." Thus, the DSS can easily adapt to the different and constantly ev...

  20. Silicon microstrip detectors in 3D technology for the sLHC

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne; Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris; Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-08-01

    The projected luminosity upgrade of the large hadron collider (LHC), the sLHC, will constitute a challenging radiation environment for tracking detectors. Massive improvements in radiation hardness are required with respect to the LHC. In the layout for the new ATLAS tracker, silicon strip detectors (SSDs) with short strips cover the region from 28 to 60 cm distance to the beam. These SSDs will be exposed to fluences up to 10{sup 15}N{sub eq}/cm{sup 2}, hence radiation resistance is the major concern. It is advantageous to fuse the superior radiation hardness of the 3D design originally conceived for pixel-style applications with the benefits of the well-known planar technology for strip detectors. This is achieved by ganging rows of 3D columns together to form strips. Several prototype sLHC detector modules using 3D SSD with short strips, processed on p-type silicon, and LHC-speed front-end electronics from the present ATLAS semi-conductor tracker (SCT) were built. The modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency (CCE), a Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particles (MIPs), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the performance of these 3D modules, and draws conclusions about options for using 3D strip sensors as tracking detectors at the sLHC.

  1. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and transmitted to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronics are based on the Advanced Telecommunications Computing Architecture (ATCA) standard and are equipped with high performance optical connectors. The system is designed to operate in a high radiation envi...

  2. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS cover-ing the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronic is based on the Advanced Telecommunications Computing Architecture (ATCA) standard and is equipped with high performance optical connectors. The system is designed to operate in a high radiation environmen...

  3. Electronics for CMS Endcap Muon Level-1 Trigger System Phase-1 and HL LHC upgrades

    Science.gov (United States)

    Madorsky, A.

    2017-07-01

    To accommodate high-luminosity LHC operation at a 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide robust track reconstruction, the trigger system must now import all available trigger primitives generated by the Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The μ TCA architecture (adopted by CMS) was used for this design. The talk presents the details of the hardware and firmware design of the production system based on Xilinx Virtex-7 FPGA family. The next round of LHC and CMS upgrades starts in 2019, followed by a major High-Luminosity (HL) LHC upgrade starting in 2024. In the course of these upgrades, new Gas Electron Multiplier (GEM) detectors and more RPC chambers will be added to the Endcap Muon system. In order to keep up with all these changes, a new Advanced Processor unit is being designed. This device will be based on Xilinx UltraScale+ FPGAs. It will be able to accommodate up to 100 serial links with bit rates of up to 25 Gb/s, and provide up to 2.5 times more logic resources than the device used currently. The amount of PTLUT memory will be significantly increased to provide more flexibility for the Pt assignment algorithm. The talk presents preliminary details of the hardware design program.

  4. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Ma, Hong; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34/cm^2/s. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger chan...

  5. Upgrade of the ATLAS Monitored Drift Tube Frontend Electronics for the HL-LHC

    CERN Document Server

    Zhu, Junjie; The ATLAS collaboration

    2017-01-01

    The ATLAS monitored drift tube (MDT) chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT system is capable of measuring the sagitta of muon tracks to an accuracy of 60 μm, which corresponds to a momentum accuracy of about 10% at pT=1 TeV. To cope with large amount of data and high event rate expected from the High-Luminosity LHC (HL-LHC) upgrade, ATLAS plans to use the MDT detector at the first-trigger level to improve the muon transverse momentum resolution and reduce the trigger rate. The new MDT trigger and readout system will have an output event rate of 1 MHz and a latency of 6 us at the first-level trigger. The signals from MDT tubes are first processed by an Amplifier/Shaper/Discriminator (ASD) ASIC, and the binary differential signals output by the ASDs are then router to the Time-to-Digital Converter (TDC) ASIC, where the arrival times of leading and trailing edges are digitized in a time bin of 0.78 ns which leads to an RMS timing error of 0.25 n...

  6. Upgraded Trigger Readout Electronics for the ATLAS LAr Calorimeters for Future LHC Running

    CERN Document Server

    Ma, H; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that are digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first- level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34cm^−2s^−1. In order to retain the capability to trigger on low energy electrons and photons when the LHC is upgraded to higher luminosity, an improved LAr calorimeter trigger readout is proposed and being constructed. The new trigger readout system makes available the fine segmentation of the calorimeter at the L1 trigger with high precision in order to reduce the QCD jet background in electron, photon and tau triggers, and to improve jet and missing ET trigger performance. The new LAr Trigger Digitizer Board is designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a...

  7. Upgrade readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  8. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  9. Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN

    CERN Document Server

    Gomez Marzoa, Manuel

    The Phase-1 upgrade of the LHC to full design luminosity, planned for 2019 at CERN, requires the modernisation of the experiments around the accelerator. The Inner Tracking System (ITS), the innermost detector at the ALICE experiment, will be upgraded by replacing the current apparatus by new silicon pixels arranged in 7 cylindrical layers. Each layer is composed by multiple independent modules, named staves, which provide mechanical support and cooling to the chips. This thesis aims to develop and validate experimentally an ultra-lightweight stave cooling system for the ITS Upgrade. The moderate thermal requirements, with a nominal power density of 0.15 W/cm^2 and a maximum chip temperature of 30ºC, are counterweighted by extreme low-mass restrictions, obliging to resort to lightweight, non-metallic materials, such as carbon fibre-reinforced polymers and plastics. Novel lightweight stave concepts were developed and experimentally validated, meeting the thermal requirements with minimal material inventory. T...

  10. Performance studies of resistive Micromegas detectors for the upgrade of the ATLAS Muon spectrometer

    Science.gov (United States)

    Kuger, Fabian

    2017-02-01

    With the high luminosity upgrade of the LHC the ATLAS Muon spectrometer will face increased particle rates, requiring an upgrade of the innermost end-cap detectors with a high-rate capable technology. Micromegas have been chosen as main tracking technology for this New Small Wheel upgrade. In an intense R&D and prototype phase the technology has proven to meet the stringent performance requirements of highly efficient particle detection with better than 100 μm spatial resolution, independent of the track incidence angle up to 32°, in a magnetic field B ≤ 0.3 T and at background hit rate of up to 15 kHz/cm2.

  11. Development of DC-DC converters for the upgrade of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Sammet, Jan; Wlochal, Michael [RWTH Aachen University (Germany)

    2012-07-01

    Around 2017, the pixel detector of the CMS experiment at LHC will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the available supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing to provide the power at higher voltages and thereby to facilitate the supply of the required currents with the present cable plant. The talk introduces the foreseen powering scheme of the pixel upgrade and summarizes the results of system test measurements with CMS pixel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, measurements of the converter efficiency and performance before, after and during thermal cycling are presented.

  12. Readout board upgrade for the Pixel Detectors: reasons, status and results in ATLAS

    CERN Document Server

    Giangiacomi, Nico; The ATLAS collaboration

    2017-01-01

    The increase of luminosity in the LHC accelerator at CERN constitutes a challenge for the data readout since the rate of data to be transmitted depends on both pileup and trigger frequency. In the ATLAS experiment, the effect of the increased luminosity is most evident in the Pixel Detector, which is the detector closest to the beam pipe. In order to face the difficult experimental challenges, the readout system was upgraded during the last few years. The main purpose of the upgrade was to provide a higher bandwidth by exploiting more recent technologies. The new readout system is composed by two paired electronic boards named Back Of Crate (BOC) and ReadOut Driver (ROD). In this work the main readout limitation related to increased luminosity will be discussed as well as the strategy and the technological solutions adopted in order to cope with the future operational challenges. In addition the general progresses and achievements will be presented.

  13. Technical Proposal for the Phase-II Upgrade of the CMS Detector

    CERN Document Server

    CMS Collaboration; Contardo, D; Klute, M; Mans, J; Silvestris, L; Butler, J; CERN. Geneva. The LHC experiments Committee; LHCC

    2015-01-01

    This Technical Proposal presents the upgrades foreseen to prepare the CMS experiment for the High Luminosity LHC. In this second phase of the LHC physics program, the accelerator will provide to CMS an additional integrated luminosity of about 2500 fb-1 over 10 years of operation, starting in 2025. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented p-p luminosity, the CMS collaboration will need to address the aging of the present detector and to improve the ability of the apparatus to isolate and precisely measure the products of the most interesting collisions. This document describes the conceptual designs and the expected performance of the upgrades, along with the plans to develop the appropriate experimental techniques. The infrastructure upgrades and the logistics of the installation in the experim...

  14. The phase 1 upgrade of the CMS pixel detector

    CERN Document Server

    Verzocchi, Marco

    2016-01-01

    The CMS collaboration is building a replacement for the pixel detector that will be installed in the extended end of year shutdown 2016-2017. This contribution reviews the motivations for the upgrade, the technological choices made, the status of the construction of this new detector and the plans for installation and commissioning.

  15. The BaBar detector: Upgrades, operation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; del Amo Sanchez, P.; Gaillard, J. -M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Robbe, P.; Tisserand, V.; Zghiche, A.; Grauges, E.; Garra Tico, J.; Lopez, L.; Martinelli, M.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, G. P.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Clark, A. R.; Day, C. T.; Furman, M.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; LeClerc, C.; Levi, M. E.; Lynch, G.; Merchant, A. M.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Osipenkov, I. L.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Suzuki, A.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Zisman, M.; Barrett, M.; Bright-Thomas, P. G.; Ford, K. E.; Harrison, T. J.; Hart, A. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; O' Neale, S. W.; Penny, R. C.; Smith, D.; Soni, N.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Kunze, M.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Schroeder, T.; Steinke, M.; Fella, A.; Antonioli, E.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Foster, B.; Mackay, C.; Walker, D.; Abe, K.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; McKemey, A. K.; Randle-Conde, A.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Telnov, V. I.; Todyshev, K. Yu.; Yushkov, A. N.; Best, D. S.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; McMahon, S.; Mommsen, R. K.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Hartfiel, B. L.; Weinstein, A. J. R.; Atmacan, H.; Foulkes, S. D.; Gary, J. W.; Layter, J.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Wang, K.; Yasin, Z.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Kuznetsova, N.; Levy, S. L.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Flacco, C. J.; Grillo, A. A.; Grothe, M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Nesom, G.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spencer, E.; Spradlin, P.; Turri, M.; Walkowiak, W.; Wang, L.; Wilder, M.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Dorsten, M. P.; Dvoretskii, A.; Echenard, B.; Erwin, R. J.; Fang, F.; Flood, K.; Hitlin, D. G.; Metzler, S.; Narsky, I.; Oyang, J.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Zhu, R. Y.; Andreassen, R.; Devmal, S.; Geld, T. L.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Abe, T.; Antillon, E. A.; Barillari, T.; Becker, J.; Blanc, F.; Bloom, P. C.; Chen, S.; Clifton, Z. C.; Derrington, I. M.; Destree, J.; Dima, M. O.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hachtel, J.; Hirschauer, J. F.; Johnson, D. R.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; van Hoek, W. C.; Wagner, S. R.; West, C. G.; Zhang, J.; Ayad, R.; Blouw, J.; Chen, A.; Eckhart, E. A.; Harton, J. L.; Hu, T.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q. L.; Altenburg, D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Brandt, T.; Brose, J.; Colberg, T.; Dahlinger, G.; Dickopp, M.; Eckstein, P.; Futterschneider, H.; Kaiser, S.; Kobel, M. J.; Krause, R.; Müller-Pfefferkorn, R.; Mader, W. F.; Maly, E.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Wilden, L.; Bernard, D.; Brochard, F.; Cohen-Tanugi, J.; Dohou, F.; Ferrag, S.; Latour, E.; Mathieu, A.; Renard, C.; Schrenk, S.; T' Jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Clark, P. J.; Lavin, D. R.; Muheim, F.; Playfer, S.; Robertson, A. I.; Swain, J. E.; Watson, J. E.; Xie, Y.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Carassiti, V.; Cecchi, A.; Cibinetto, G.; Cotta Ramusino, A.; Evangelisti, F.; Fioravanti, E.; Franchini, P.; Garzia, I.; Landi, L.; Luppi, E.; Malaguti, R.; Negrini, M.; Padoan, C.; Petrella, A.; Piemontese, L.; Santoro, V.; Sarti, A.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; de Sangro, R.; Santoni, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M. M.; Minutoli, S.; Monge, M. R.; Musico, P.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Pia, M. G.; Robutti, E.; Santroni, A.; Tosi, S.; Bhuyan, B.; Prasad, V.; Bailey, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Lee, C. L.; Morii, M.; Won, E.; Wu, J.; Adametz, A.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Aspinwall, M. L.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Gaillard, J. R.; Gunawardane, N. J. W.; Morton, G. W.; Nash, J. A.; Nikolich, M. B.; Panduro Vazquez, W.; Sanders, P.; Smith, D.; Taylor, G. P.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Grenier, G. J.; Hamilton, R.; Lee, S. -J.; Mallik, U.; Meyer, N. T.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Fischer, P. -A.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Schott, G.; Albert, J. N.; Arnaud, N.; Beigbeder, C.; Breton, D.; Davier, M.; Derkach, D.; Dû, S.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Nief, J. Y.; Petersen, T. C.; Plaszczynski, S.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Tocut, V.; Trincaz-Duvoid, S.; Wang, L. L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Hutchcroft, D. E.; Kay, M.; Parry, R. J.; Payne, D. J.; Schofield, K. C.; Sloane, R. J.; Touramanis, C.; Azzopardi, D. E.; Bellodi, G.; Bevan, A. J.; Clarke, C. K.; Cormack, C. M.; Di Lodovico, F.; Dixon, P.; George, K. A.; Menges, W.; Potter, R. J. L.; Sacco, R.; Shorthouse, H. W.; Sigamani, M.; Strother, P.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Hopkins, D. A.; Jackson, P. S.; Kurup, A.; Marker, C. E.; McGrath, P.; McMahon, T. R.; Paramesvaran, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Allison, J.; Alwyn, K. E.; Bailey, D. S.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Forti, A. C.; Fullwood, J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Jackson, G.; Kelly, M. P.; Kolya, S. D.; Lafferty, G. D.; Lyon, A. J.; Naisbit, M. T.; Savvas, N.; Weatherall, J. H.; West, T. J.; Williams, J. C.; Yi, J. I.; Anderson, J.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Simi, G.; Tuggle, J. M.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Staengle, H.; Willocq, S. Y.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Koeneke, K.; Lang, M. I.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Yi, M.; Zhao, M.; Zheng, Y.; Klemetti, M.; Lindemann, D.; Mangeol, D. J. J.; Mclachlin, S. E.; Milek, M.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Cerizza, G.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Pellegrini, R.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Godang, R.; Brunet, S.; Cote, D.; Nguyen, X.; Simard, M.; Taras, P.; Viaud, B.; Nicholson, H.; Cavallo, N.; De Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Onorato, G.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Allmendinger, T.; Benelli, G.; Brau, B.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Smith, D. S.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Iwasaki, M.; Kolb, J. A.; Lu, M.; Potter, C. T.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Borsato, E.; Castelli, G.; Colecchia, F.; Crescente, A.; Dal Corso, F.; Dorigo, A.; Fanin, C.; Furano, F.; Gagliardi, N.; Galeazzi, F.; Margoni, M.; Marzolla, M.; Michelon, G.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Solagna, P.; Stevanato, E.; Stroili, R.; Tiozzo, G.; Voci, C.; Akar, S.; Bailly, P.; Ben-Haim, E.; Bonneaud, G.; Briand, H.; Chauveau, J.; Hamon, O.; John, M. J. J.; Lebbolo, H.; Leruste, Ph.; Malclès, J.; Marchiori, G.; Martin, L.; Ocariz, J.; Perez, A.; Pivk, M.; Prendki, J.; Roos, L.; Sitt, S.; Stark, J.; Thérin, G.; Vallereau, A.; Biasini, M.; Covarelli, R.; Manoni, E.; Pennazzi, S.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Morsani, F.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J. J.; Haire, M.; Judd, D.; Biesiada, J.; Danielson, N.; Elmer, P.; Fernholz, R. E.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Lopes Pegna, D.; Sands, W. R.; Smith, A. J. S.; Telnov, A. V.; Tumanov, A.; Varnes, E. W.; Baracchini, E.; Bellini, F.; Bulfon, C.; Buccheri, E.; Cavoto, G.; D' Orazio, A.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Lamanna, E.; Leonardi, E.; Li Gioi, L.; Lunadei, R.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; del Re, D.; Renga, F.; Safai Tehrani, F.; Serra, M.; Voena, C.; Bünger, C.; Christ, S.; Hartmann, T.; Leddig, T.; Schröder, H.; Wagner, G.; Waldi, R.; Adye, T.; Bly, M.; Brew, C.; Condurache, C.; De Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.; Xella, S. M.; Aleksan, R.; Bourgeois, P.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; Giraud, P. -F.; Georgette, Z.; Graziani, G.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Micout, P.; Serfass, B.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Akre, R.; Aston, D.; Azemoon, T.; Bard, D. J.; Bartelt, J.; Bartoldus, R.; Bechtle, P.; Becla, J.; Benitez, J. F.; Berger, N.; Bertsche, K.; Boeheim, C. T.; Bouldin, K.; Boyarski, A. M.; Boyce, R. F.; Browne, M.; Buchmueller, O. L.; Burgess, W.; Cai, Y.; Cartaro, C.; Ceseracciu, A.; Claus, R.; Convery, M. R.; Coupal, D. P.; Craddock, W. W.; Crane, G.; Cristinziani, M.; DeBarger, S.; Decker, F. J.; Dingfelder, J. C.; Donald, M.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Ecklund, S.; Erickson, R.; Fan, S.; Field, R. C.; Fisher, A.; Fox, J.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Gaponenko, I.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hadig, T.; Halyo, V.; Haller, G.; Hamilton, J.; Hanushevsky, A.; Hasan, A.; Hast, C.; Hee, C.; Himel, T.; Hryn' ova, T.; Huffer, M. E.; Hung, T.; Innes, W. R.; Iverson, R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kharakh, D.; Kocian, M. L.; Krasnykh, A.; Krebs, J.; Kroeger, W.; Kulikov, A.; Kurita, N.; Langenegger, U.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Libby, J.; Lindquist, B.; Luitz, S.; Lüth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; McCulloch, M.; McDonald, J.; Melen, R.; Menke, S.; Metcalfe, S.; Messner, R.; Moss, L. J.; Mount, R.; Muller, D. R.; Neal, H.; Nelson, D.; Nelson, S.; Nordby, M.; Nosochkov, Y.; Novokhatski, A.; O' Grady, C. P.; O' Neill, F. G.; Ofte, I.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Piemontese, M.; Pierson, S.; Pulliam, T.; Ratcliff, B. N.; Ratkovsky, S.; Reif, R.; Rivetta, C.; Rodriguez, R.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwarz, H.; Schwiening, J.; Seeman, J.; Smith, D.; Snyder, A.; Soha, A.; Stanek, M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Tanaka, H. A.; Teytelman, D.; Thompson, J. M.; Tinslay, J. S.; Trunov, A.; Turner, J.; van Bakel, N.; van Winkle, D.; Va' vra, J.; Wagner, A. P.; Weaver, M.; Weinstein, A. J. R.; Weber, T.; West, C. A.; Wienands, U.; Wisniewski, W. J.; Wittgen, M.; Wittmer, W.; Wright, D. H.; Wulsin, H. W.; Yan, Y.; Yarritu, A. K.; Yi, K.; Yocky, G.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Singh, H.; Weidemann, A. W.; White, R. M.; Wilson, J. R.; Yumiceva, F. X.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Meyer, T. I.; Miyashita, T. S.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Liu, J.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Gorodeisky, R.; Guttman, N.; Peimer, D.; Soffer, A.; De Silva, A.; Lund, P.; Krishnamurthy, M.; Ragghianti, G.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Borean, C.; Bosisio, L.; Cossutti, F.; Della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Rashevskaya, I.; Vitale, L.; Vuagnin, G.; Manfredi, P. F.; Re, V.; Speziali, V.; Frank, E. D.; Gladney, L.; Guo, Q. H.; Panetta, J.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Agarwal, A.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Brown, C. M.; Choi, H. H. F.; Fortin, D.; Fransham, K. B.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hollar, J. J.; Hu, H.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Mellado, B.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Pierini, M.; Prepost, R.; Scott, I. J.; Tan, P.; Vuosalo, C. O.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Yu, Z.; Greene, M. G.; Kordich, T. M. B.

    2013-11-01

    The BaBar detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

  16. A full-acceptance detector at the LHC (FELIX)

    CERN Document Server

    Ageev, A N; Alvero, L; Amelino-Camelia, G; Avati, V; Baier, R; Bartels, Julius; Baur, G; Beneke, Martin; Berera, A; Bjorken, James D; Bondila, M; Britvich, G I; Capella, A; Close, Francis Edwin; Collins, J; Costa, C; Cudell, J R; Derevshchikov, A A; Dick, Louis; Dzhordzhadze, V; Dokshitzer, Y; Dormachie, A; Eggert, Karsten; Engel, R; Frankfurt, L L; Kinder-Geiger, Klaus; Giovannini, Alberto; Goloskokov, S V; Goulianos, K; Gridasov, V I; Gustafson, H R; Halzen, Francis; Hencken, K; Inyakin, A V; Islam, M M; Jones, L; Kaidalov, A B; Karapetian, G V; Karapetian, V V; Karpushov, I D; Kashtanov, E; Kharlov, Yu V; Khoze, V; Klein, S; Klimenko, E Y; Kozlov, O; Kowalski, K L; Kubarovsky, A V; Landshoff, Peter V; Leflat, A; Lippmaa, E; Manankov, V M; Marchesini, G; Medvedkov, A M; Mokhnatuk, V A; Müller, A H; Murzin, V S; Myznikov, K P; Nikitin, V A; Nomokonov, V P; Novikov, S I; Orava, Risto; Ostonen, R; Uvarov, V; Papageorgiou, E; Polyakov, V; Raidal, Martti; Rainwater, D L; Ranft, J; Riege, H; Rufanov, I A; Rubin, N; Sadovsky, S A; Salam, Gavin P; Sauli, Fabio; Schiff, D; Selyugin, O V; Shabalina, E K; Shabratova, G; Shuvalov, R S; Smirnov, V; Strikman, M I; Subbi, J; Sytnik, V V; Taylor, C; Tikhonova, L A; Toukhtarov, A; Treleani, D; Ugoccioni, R; Vasilchenko, V G; Vasilev, A; Vasiliev, L; White, A; Whitmore, J; Wlodarczyk, Z; Yakovlev, V; Yushchenko, O P; Zeppenfeld, Dieter; Zhalov, M B; Zinchenko, S I; Zotov, N P

    2002-01-01

    The FELIX collaboration had proposed the construction of a full- acceptance detector for the LHC. The primary mission of FELIX was the study of QCD: to provide comprehensive and definitive observations of a very broad range of strong-interaction processes. This document contains an extensive discussion of this physics menu. In a further paper the FELIX detector will be reviewed. (172 refs).

  17. A full-acceptance detector at the LHC (FELIX)

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, A.; Akhobadze, K.; Alvero, L.; Amelino-Camelia, G.; Avati, V.; Baier, R.; Bartels, J.; Baur, G.; Beneke, M.; Berera, A.; Bjorken, J.D.; Bondila, M.; Britvich, I.; Capella, A.; Close, F.; Collins, J.; Costa, C.; Cudell, J.-R.; Derevschikov, A.; Dick, L.; Djordjadze, V.; Dokshitzer, Yu; Donnachie, A.; Eggert, K.; Engel, R.; Frankfurt, L.; Geiger, K.; Giovannini, A.; Goloskokov, S.; Goulianos, K.; Gridasov, V.; Gustafson, H.R.; Halzen, F.; Hencken, K.; Inyakin, A.; Islam, M.M.; Jones, L.; Kaidalov, A.B.; Karapetian, G.; Karapetian, V.; Karpushov, I.D.; Kashtanov, E.; Kharlov, Y.; Khoze, V.; Klein, S.; Klimenko, E.Yu; Kozlov, O.; Kowalski, K.; Kubarovsky, A.V.; Landshoff, P.V.; Leflat, A.K.; Lippmaa, E.; Manankov, V.M.; Marchesini, G.; Medvedkov, A.; Mokhnatuk, V.A.; Mueller, A.H.; Murzin, V.S.; Myznikov, K.; Nikitin, V.; Nomokonov, P.; Novikov, S.I.; Orava, R.; Ostonen, R.; Ouvarov, V.; Papageorgiou, E.; Polyakov, V.; Raidal, M.; Rainwater, D.; Ranft, J.; Riege, H.; Roufanov, I.; Rubin, N.; Sadovsky, S.; Salam, G.P.; Sauli, F.; Schiff, D.; Selyugin, O.; Shabalina, E.K.; Shabratova, G.; Shuvalou, S.; Smirnov, V.; Strikman, M.; Subbi, J.; Sytnik, V.; Taylor, C.; Tikhonova, L.A.; Toukhtarov, A.; Treleani, D.; Ugoccioni, R.; Vasilchenko, V.; Vasiliev, A.; Vasiliev, L.; White, A.; Whitmore, J.; Wlodarczyk, Z.; Yakovlev, V.; Yushchenko, O.; Zeppenfeld, D.; Zhalov, M.; Zinchenko, S.; Zotov, N.P.

    2002-01-02

    The FELIX collaboration had proposed the construction of a full-acceptance detector for the LHC. The primary mission of FELIX was the study of QCD: to provide comprehensive and definitive observations of a very broad range of strong-interaction processes. This document contains an extensive discussion of this physics menu. In a further paper the FELIX detector will be reviewed.

  18. Study of a Tracking/Preshower Detector for the LHC

    CERN Multimedia

    2002-01-01

    % RD-2 Study of a Tracking/Preshower Detector for the LHC \\\\ \\\\An important goal in the design of a detector to operate with high machine luminosity at the LHC is the detection of electrons at either the trigger or analysis level as a signature of rare physics processes. The purpose of this R~\\&~D activity is the study of track-stub/preshower techniques in electron identification. Activities include the study of radiation tolerance for silicon pad counters of the preshower detector, with the associated development of fast, low-noise, radiation hard and low-power electronics readout for the counters. The final aim is the construction of a prototype detector capable of operating at LHC.

  19. The Triple GEM Detector Control System for CMS forward muon spectrometer upgrade

    Science.gov (United States)

    Ahmed, W.; Abbaneo, D.; Abbrescia, M.; Abdelalim, A. A.; Abi. Akl, M.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Holme, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Khan, S. A.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; Lentdecker, G. De.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Shah, A. H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig. Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, R.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2017-02-01

    The CMS experiment at LHC will upgrade its forward muon spectrometer by incorporating Triple-GEM detectors. This upgrade referred to as GEM Endcap (GE1/1), consists of adding two back-to-back Triple-GEM detectors in front of the existing Cathode Strip Chambers (CSC) in the innermost ring of the endcap muon spectrometer. Before the full installation of 144 detectors in 2019-2020, CMS will first install ten single chamber prototypes during the early 2017. This pre-installation is referred as the slice test. These ten detectors will be read-out by VFAT2 chips [1]. On-detector there is also a FPGA mezzanine card which sends VFAT2 data optically to the μTCA back-end electronics. The correct and safe operation of the GEM system requires a sophisticated and powerful online Detector Control System, able to monitor and control many heterogeneous hardware devices. The DCS system developed for the slice test has been tested with CMS Triple-GEM detectors in the laboratory. In this paper we describe the newly developed DCS system and present the first results obtained in the GEM assembly and quality assurance laboratory.

  20. The Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    Klein, Katja

    2016-01-01

    The CMS experiment features a pixel detector with three barrel layers and two disks per side, corresponding to an active silicon area of 1\\,m$^2$. The detector delivered high-quality data during LHC Run~1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of $1\\cdot 10^{34}\\,$cm$^{-2}$s$^{-1}$. It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to~16\\,\\%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  1. The Phase-1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Klein, Katja

    2017-02-01

    The CMS experiment features a pixel detector with three barrel layers and two discs per side, corresponding to an active silicon area of 1 m2. The detector delivered high-quality data during LHC Run 1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of 1 ·1034cm-2s-1 . It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to 16%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  2. Performance of the ATLAS Liquid Argon Calorimeter After Three Years of LHC Operation and Plans for a Future Upgrade

    CERN Document Server

    Ilic, N; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment is a multi-purpose detector built for analyzing LHC collision data. In July 2012, ATLAS announced the discovery of the Higgs boson, the last undiscovered particle in the Standard Model of particle physics. The ATLAS Liquid Argon (LAr) Calorimeter played a crucial role in the discovery by providing accurate measurements of Higgs final states such as photons, electrons and jets. The LAr detector is a sampling calorimeter consisting of four subsystems: an electromagnetic barrel (EMB), electromagnetic end-caps (EMEC), hadronic end-caps (HEC), and forward calorimeters (FCAL). The liquid argon purity, temperature and time stability remained well above the required levels throughout the data-taking period. Overall the calorimeter performed very well, with over 99% of data it collected in 2012 proton-proton collisions being suitable for physics analysis. In order to maintain good LAr detector performance, several upgrades are currently being implemented and planned.

  3. Radiation-hard ASICs for optical data transmission in the first phase of the LHC upgrade

    CERN Document Server

    Gan, K K; Kagan, H P; Kass, R D; Moore, J R; Smith, D S; Wiese, A; Ziolkowskic, M; 10.1088/1748-0221/5/12/C12006

    2010-01-01

    We have designed two ASICs for possible applications in the optical links of a new layer of the pixel detector to be install inside the ATLAS Pixel detector for the first phase of the LHC luminosity upgrade. The ASICs include a high-speed driver for the VCSEL and a receiver/decoder to decode the signal received at the PIN diode to extract the data and clock. Both ASICs contain 4 channels for operation with a VCSEL or PIN array. The ASICs were designed using a 130 nm CMOS process to enhance the radiation-hardness. We have characterized the fabricated ASICs and the performance of the ASICs is satisfactory. The receiver/decoder can properly decode the bi-phase marked input stream with low PIN current and the driver can operate a VCSEL up to ~ 5 Gb/s. The added functionalities are also successful, including redundancy to bypass a broken VCSEL or PIN channel, individual control of VCSEL current, and power-on reset circuit to set all VCSEL currents to a nominal value. The ASICs were irradiated to a dose of 46 Mrad ...

  4. The Upgrade of the CMS RPC System during the First LHC Long Shutdown

    CERN Document Server

    Tytgat, M.; Verwilligen, P.; Zaganidis, N.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Shopova, M.; Sultanov, G.; Assran, Y.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Pugliese, G.; Benussi, L.; Bianco, S.; Caponero, M.; Colafranceschi, S.; Felli, F.; Piccolo, D.; Saviano, G.; Carrillo, C.; Berzano, U.; Gabusi, M.; Vitulo, P.; Kang, M.; Lee, K.S.; Park, S.K.; Shin, S.; Sharma, A.

    2012-01-01

    The CMS muon system includes in both the barrel and endcap region Resistive Plate Chambers (RPC). They mainly serve as trigger detectors and also improve the reconstruction of muon parameters. Over the years, the instantaneous luminosity of the Large Hadron Collider gradually increases. During the LHC Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the experiments for this, two long shutdown periods are scheduled for 2013-2014 and 2018-2019. The CMS Collaboration is planning several detector upgrades during these long shutdowns. In particular, the muon detection system should be able to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high particle rates. One of the measures to ensure this, is to extend the present RPC system with the addition of a 4th layer in both endcap regions. During the first long shutdown, these two new stations will be equipped in the region |eta|<1.6 with...

  5. A time-multiplexed track-trigger for the CMS HL-LHC upgrade

    Science.gov (United States)

    Hall, G.; CMS TMTT Team

    2016-07-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trigger concept is explained, the potential benefits for processing future tracker data are described and a feasible design based on currently existing hardware is outlined.

  6. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2024 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  7. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2023 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  8. Upgrade of the protection system for superconducting circuits in the LHC

    CERN Document Server

    Denz, R; Formenti, F; Meß, K H; Siemko, A; Steckert, J; Walckiers, L; Strait, J

    2010-01-01

    Prior to the re-start of the Large Hadron Collider LHC in 2009 the protection system for superconducting magnets and bus-bars QPS will be substantially upgraded. The foreseen modifications will enhance the capability of the system in detecting problems related to the electrical interconnections between superconducting magnets as well as the detection of so-called aperture symmetric quenches in the LHC main magnets.

  9. Energy Reconstruction and high-speed Data Transmission with FPGAs for the Upgrade of the ATLAS Liquid Argon Calorimeter at LHC

    CERN Document Server

    Stärz, Steffen

    The Liquid Argon calorimeter of the ATLAS detector at CERN near Geneva is equipped with improved readout and trigger electronics for the operation at higher luminosity LHC in the frame of several upgrades (Phase-0, I, and II). Special attention is given to an early digitisation of detector raw data and their following digital data transmission and processing via FPGAs already for the Level-1 trigger. The upgrades additionally foresee to provide higher spatial granularity information for the Level-1 trigger in order to improve its performance for low momentum single particles at increased collision rates. The first part of this dissertation contains the development and implementation of a modular detector simulation framework, AREUS, which allows to analyse different filter algorithms for the energy reconstruction as well as their performance with respect to the expected digitised detector raw data. In this detector simulation framework the detailed algorithmic functionality of the FPGAs has been taken into ac...

  10. Beam test measurements with planar and 3D silicon strip detectors irradiated to sLHC fluences

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Michael; Wiik, Liv; /Freiburg U.; Bates, Richard; /Glasgow U.; Dalla Betta, Gian-Franco; /INFN, Trento /Trento U.; Fleta, Celeste; /Barcelona, Inst. Microelectron.; Harkonen, Jaakko; /Helsinki Inst. of Phys.; Jakobs, Karl; /Freiburg U.; Lozano, Manuel; /Barcelona, Inst. Microelectron.; Maenpaa, Teppo; Moilanen, Henri; /Helsinki Inst. of Phys.; Parkes, Chris; /Glasgow U. /Freiburg U. /Barcelona, Inst. Microelectron. /Fermilab

    2011-01-01

    The planned luminosity upgrade of the CERN LHC to the super LHC (sLHC) requires investigation of new radiation hard tracking detectors. Compared to the LHC, tracking detectors must withstand a 5-10 times higher radiation fluence. Promising radiation hard options are planar silicon detectors with n-side readout and silicon detectors in 3D technology, where columnar electrodes are etched into the silicon substrate. This article presents beam test measurements per formed with planar and 3D n-in-p silicon strip detectors. The detectors were irradiated to different fluences, where the maximum fluence was 3 x 10{sup 15} 1 MeV neutron equivalent particles per square centimeter (n{sub eq}/cm{sup 2}) for the planar detectors and 2 x 10{sup 15} n{sub eq}/cm{sup 2} for the 3D detectors. In addition to signal measurements, charge sharing and resolution of both detector technologies are compared. An increased signal from the irradiated 3D detectors at high bias voltages compared to the signal from the unirradiated detector indicates that charge multiplication effects occur in the 3D detectors. At a bias voltage of 260 V, the 3D detector irradiated to 2 x 10{sup 15} n{sub eq}/cm{sup 2} yields a signal almost twice as high as the signal of the unirradiated detector. Only 30% of the signal of an unirradiated detector could be measured with the planar detector irradiated to 3 x 10{sup 15} n{sub eq}/cm{sup 2} at a bias voltage of 600 V, which was the highest bias voltage applied to this sensor.

  11. The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC

    CERN Document Server

    Marinelli, Nancy

    2017-01-01

    The Compact Muon Solenoid Experiment (CMS) is operating at the Large Hadron Collider (LHC) with proton-proton collisions at 13 TeV center-of-mass energy and at a bunch spacing of 25 ns. New further challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL--LHC). The CMS electromagnetic calorimeter (ECAL) will need to be upgraded to substain the hardned environment.The design and R\\ and D studies for the ECAL upgrade are presented together with first test beam studies. Particular challenges at HL--LHC are the harsh radiation environment, the increasing data rates and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. Precision timing can be exploited to reduce the effect of the pile-up. Time resolution measurementscarried out during test-beams are shown. Plans are also shown for R\\ and D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL--LHC

  12. Prototype Active Silicon Sensor in 150 nm HR-CMOS Technology for ATLAS Inner Detector Upgrade

    CERN Document Server

    Rymaszewski, Piotr; Breugnon, Patrick; Godiot, Stépahnie; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Hügging, Fabian; Krüger, Hans; Liu, Jian; Pangaud, Patrick; Peric, Ivan; Rozanov, Alexandre; Wang, Anqing; Wermes, Norbert

    2016-01-01

    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.

  13. The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC

    CERN Document Server

    Barria, Patrizia

    2017-01-01

    The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) is operating at the Large Hadron Collider (LHC) in 2016 with proton-proton collisions at 13 TeV center-of-mass energy and at a bunch spacing of 25 ns. Challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC). We review the design and R and D studies for the CMS ECAL crystal calorimeter upgrade and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO crystals up to fluences expected at the HL-LHC. We also report on the R and D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  14. UPGRADES

    CERN Multimedia

    J. Spalding and D. Contardo

    2012-01-01

      The CMS Upgrade Programme consists of four classes of projects: (a) Detector and Systems upgrades which are ongoing and largely (though not entirely) target LS1. (b) Full system upgrades for three projects that are preparing TDRs: Pixels, HCAL and L1 Trigger. The projects target completion by LS2. (c) Infrastructure consolidation and upgrades to improve operational robustness and to support the above projects. (d) Phase 2 replacement of the Tracker and major upgrades of the Trigger and Forward Detectors. For (a) and (c), detailed costing exists and is being integrated into a common reporting system. The schedule milestones for each project will be linked into the overall schedule planning for LS1. For the three TDR projects, the designs have progressed significantly since the Technical Proposal in 2010. Updated detailed cost estimates and schedules will be prepared with the TDRs to form the basis for tracking the projects through completion. To plan the upgrades and the supporting simulati...

  15. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  16. Physics prospects with the upgraded ATLAS detector

    CERN Document Server

    Volpi, Guido; The ATLAS collaboration

    2015-01-01

    Run-I at the LHC has been very successful, including the discovery of a new particle with a mass of about 125 GeV and with properties compatible with those of the Standard Model Higgs boson within uncertainties. Precise measurements of the properties of this boson, and the discovery of new physics beyond the Standard Model, are primary goals of future running at the LHC. The physics prospects based on 300/fb and 3000/fb proton-proton collision data to be collected at 14 TeV are presented. The ultimate precision attainable on measurements of the couplings of the 125 GeV particle to elementary fermions and bosons is discussed, as well as perspectives on the searches for partners associated with this new object, predicted by several extensions of the standard theory. Supersymmetry is one of the best motivated and well-studied extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks and ...

  17. ATLAS UPGRADES

    CERN Document Server

    Lacasta, C; The ATLAS collaboration

    2014-01-01

    After the successful LHC operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. In parallel the experiments need to be keep lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Current planning in ATLAS envisions significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for ...

  18. Silicon Strip detectors for the ATLAS End-Cap Tracker at the HL-LHC

    CERN Document Server

    Soldevila Serrano, Urmila

    Inside physics programme of the LHC different experiment upgrades are foreseen. After the phase-II upgrade of the ATLAS detector the luminosity will be increased up to 5-7.5x10E34 cm-2s-1. This will mean a considerable increase in the radiation levels, above 10E16 neq/cm2 in the inner regions. This thesis is focused on the development of silicon microstrip detectors enough radiation hard to cope with the particle fluence expected at the ATLAS detector during HL-LHC experiment. In particular on the electrical characterization of silicon sensors for the ATLAS End-Caps. Different mechanical and thermal tests are shown using a Petal core as well as the electrical characterization of the silicon sensors that will be used with the Petal structure. Charge collection efficiency studies are carried out on sensors with different irradiation fluences using the ALiBaVa system and two kinds of strips connection are also analized (DC and AC ganging) with a laser system. The Petalet project is presented and the electrical c...

  19. Large area thinned planar sensors for future high-luminosity-LHC upgrades

    Science.gov (United States)

    Wittig, T.; Lawerenz, A.; Röder, R.

    2016-12-01

    Planar hybrid silicon sensors are a well proven technology for past and current particle tracking detectors in HEP experiments. However, the future high-luminosity upgrades of the inner trackers at the LHC experiments pose big challenges to the detectors. A first challenge is an expected radiation damage level of up to 2ṡ 1016 neq/cm2. For planar sensors, one way to counteract the charge loss and thus increase the radiation hardness is to decrease the thickness of their active area. A second challenge is the large detector area which has to be built as cost-efficient as possible. The CiS research institute has accomplished a proof-of-principle run with n-in-p ATLAS-Pixel sensors in which a cavity is etched to the sensor's back side to reduce its thickness. One advantage of this technology is the fact that thick frames remain at the sensor edges and guarantee mechanical stability on wafer level while the sensor is left on the resulting thin membrane. For this cavity etching technique, no handling wafers are required which represents a benefit in terms of process effort and cost savings. The membranes with areas of up to ~ 4 × 4 cm2 and thicknesses of 100 and 150 μm feature a sufficiently good homogeneity across the whole wafer area. The processed pixel sensors show good electrical behaviour with an excellent yield for a suchlike prototype run. First sensors with electroless Ni- and Pt-UBM are already successfully assembled with read-out chips.

  20. Upgrade project and plans for the ATLAS detector and first level trigger.

    CERN Document Server

    della Volpe, D; The ATLAS collaboration

    2012-01-01

    In the coming years, the LHC complex will be upgraded to extend the physics potential of the experiments. The average luminosity will be increased by a factor 5 to 10 above the original design one. The planned upgrades require, among other detector and DAQ system improvements, a significant higher selectivity of the trigger system, to cope with the increased radiation level and particle rates. In this paper we describe the changes to the ATLAS detector and its trigger system currently under study. The calorimetry--‐based trigger detectors will improve their selectivity by benefiting from the increased granularity available at the trigger level, which will allow for a higher energy resolution. In the muon detector, the momentum resolution of the trigger can be improved by using the precision muon tracking detectors, the Monitored Drift Tuber chambers (MDT). An MDT--‐based trigger scheme has been developed and validated, based on new radiation--‐hard readout chips currently under development. The use of t...

  1. Upgrade project and plans for the ATLAS detector and first level trigger

    CERN Document Server

    della Volpe, D; The ATLAS collaboration

    2012-01-01

    In the coming years, the LHC complex will be upgraded to extend the physics potential of the experiments. The average luminosity will be increased by a factor 5 to 10 above the original design one. The planned upgrades require, among other detector and DAQ system improvements, a significant higher selectivity of the trigger system, to cope with the increased radiation level and particle rates. In this paper we describe the changes to the ATLAS detector and its trigger system currently under study. The calorimetry-­‐based trigger detectors will improve their selectivity by benefiting from the increased granularity available at the trigger level, which will allow for a higher energy resolution. In the muon detector, the momentum resolution of the trigger can be improved by using the precision muon tracking detectors, the Monitored Drift Tuber chambers (MDT). An MDT-­‐based trigger scheme has been developed and validated, based on new radiation-­‐hard readout chips currently under development. The use o...

  2. Cryogenic Test of Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade

    CERN Document Server

    Xiao, B; Belomestnykh, S; Ben-Zvi, I; Calaga, Rama; Cullen, C; Capatina, Ofelia; Hammons, L; Li, Z; Marques, C; Skaritka, J; Verdú-Andres, S; Wu, Q

    2015-01-01

    A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109 . We report the test results of this design.

  3. Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    Science.gov (United States)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Garcia, A. Conde; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Stenis, M. Van; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2017-02-01

    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6 R&D is ongoing for additional regions.

  4. A Proposal for the Upgrade of the Muon Drift Tubes Trigger for the CMS Experiment at the HL-LHC

    Science.gov (United States)

    Pozzobon, Nicola; Zotto, Pierluigi; Montecassiano, Fabio

    2016-11-01

    A major upgrade of the readout and trigger electronics of the CMS Drift Tubes muon detector is foreseen in order to allow its efficient operation at the High Luminosity LHC. A proposal for a new L1 Trigger Primitives Generator for this detector is presented, featuring an algorithm operating on the time of charge collection measurements provided by the asynchronous readout of the new TDC system being developed. The algorithm is being designed around the implementation in state-of-the-art FPGA devices of the original development of a Compact Hough Transform (CHT) algorithm combined with a Majority Mean-Timer, to identify both the parent bunch crossing and the muon track parameters. The current state of the design is presented along with the performance requirements, focusing on the future developments.

  5. Timing, Trigger and Control Systems for LHC Detectors

    CERN Multimedia

    2002-01-01

    \\\\ \\\\At the LHC, precise bunch-crossing clock and machine orbit signals must be broadcast over distances of several km from the Prevessin Control Room to the four experiment areas and other destinations. At the LHC experiments themselves, quite extensive distribution systems are also required for the transmission of timing, trigger and control (TTC) signals to large numbers of front-end electronics controllers from a single location in the vicinity of the central trigger processor. The systems must control the detector synchronization and deliver the necessary fast signals and messages that are phased with the LHC clock, orbit or bunch structure. These include the bunch-crossing clock, level-1 trigger decisions, bunch and event numbers, as well as test signals and broadcast commands. A common solution to this TTC system requirement is expected to result in important economies of scale and permit a rationalization of the development, operational and support efforts required. LHC Common Project RD12 is developi...

  6. Background studies on the H→ZZ*→4l channel at LHC Run 1. Prospects of the bbH(→γγ) mode and studies for an improved pixel detector system for the ATLAS upgrade towards HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00380163; Lounis, Abdenour

    The discovery of a scalar boson, known as the Higgs boson, marked the first LHC data period (2010 - 2012). Using mainly di-photon and di-Z decays, with the latest leading to a four lepton final state, the mass of the boson was measured with a precision of < 0.2 %. Relevant couplings were estimated by combining several final states, while corresponding uncertainties would largely benefit from the increased statistics expected during coming LHC data periods (Run 2, Phase II). The H→ZZ*→4l channel, in spite of its suppressed brunching ratio, benefits from a weak background, making it a prime choice for the investigation of the new boson’s properties. In this thesis, the analysis aimed to the observation of this mode with the ALTAS detector is presented, with a focus on the measurement and control of the reducible electron background. In the context of preparation for future high luminosity data periods, foreseen from 2025 onward, two distinct studies are conducted: 1. The first concerns the observabilit...

  7. Towards a new LHC Interaction Region design for a luminosity upgrade

    CERN Document Server

    Strait, J; Limon, P; Mokhov, N V; Sen, T; Zlobin, A V; Brüning, Oliver Sim; Ostojic, R; Rossi, L; Ruggiero, F; Taylor, T; ten Kate, H; Devred, A; Gupta, R; Harrison, M; Peggs, S; Pilat, F; Caspi, S; Gourlay, S; Sabbi, G

    2003-01-01

    After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the low-beta insertions with a higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. Preliminary studies show that, with magnet technology that is expected to be developed by early in the next decade, a factor of 2 to 5 reduction in beta* could be achieved with new insertions, as part of an upgrade aimed at a factor of 10 luminosity increase. In this paper we survey several possible second generation LHC interaction regions designs, which address the expected limitations on LHC performance imposed by the baseline insertions.

  8. Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project

    CERN Document Server

    Huffman, B T; Arndt, K; Bates, R; Benoit, M; Di Bello, F; Blue, A; Bortoletto, D; Buckland, M; Buttar, C; Caragiulo, P; Das, D; Dopke, J; Dragone, A; Ehrler, F; Fadeyev, V; Galloway, Z; Grabas, H; Gregor, I M; Grenier, P; Grillo, A; Hoeferkamp, M; Hommels, L B A; John, J; Kanisauskas, K; Kenney, C; Kramberger, J; Liang, Z; Mandic, I; Maneuski, D; Martinez-McKinney, F; McMahon, S; Meng, L; Mikuž, M; Muenstermann, D; Nickerson, R; Peric, I; Phillips, P; Plackett, R; Rubbo, F; Segal, J; Seidel, S; Seiden, A; Shipsey, I; Song, W; Stanitzki, M; Su, D; Tamma, C; Turchetta, R; Vigani, L; olk, J; Wang, R; Warren, M; Wilson, F; Worm, S; Xiu, Q; Zhang, J; Zhu, H

    2016-01-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with theAMSH35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper.

  9. LHC physics debris collimation studies and their impact on AFP detectors acceptance

    CERN Document Server

    Roncarolo, F; Potter, K; Bussey, P; Bracco, C

    2011-01-01

    The ATLAS Forward Proton (AFP) group is proposing to upgrade the forward region of ATLAS by installing forward proton detectors at 220 m and 420 m from the interaction point on both sides of the LHC ATLAS experiment. For this purpose, at both the 420 m and 220 m locations, it is proposed to install movable beam pipes which will host silicon tracking and fast timing detectors (i.e. four independent detector stations). The experimental acceptance at 220 m is dependent upon the setting of two collimators designed to protect the LHC straight section and dispersion suppressor around ATLAS (and CMS) from the physics debris generated at the two high luminosity experiments. This note presents the result of tracking studies showing that the installation of a new collimator in front of the Q6 magnet (or the displacement at this of location of the second of the already existing collimators) would ensure an improved protection of the LHC machine while allowing the AFP experiment at 220m.

  10. Study of Diffraction with the ATLAS detector at the LHC

    CERN Document Server

    Rafal, Staszewski; Royon, Christophe

    The thesis is devoted to the study of diffractive physics with the ATLAS detector at the LHC. After a short introduction to diffractive physics including soft and hard diffraction, we discuss diffractive exclusive production at the LHC whichis particularly interesting for Higgs and jet production. The QCD mechanism described by the Khoze Martin Ryskin and the CHIDe models are elucidated in detail. The uncertainties on these models are still large and a new possible exclusive jetmeasurement at the LHC will allow to reduce the uncertainty on diffarctive Higgs boson production to a factor 2 to 3. An additional measurement of exclusive pion production pp ! p_+_−p allows to constrain further exclusive model relying on theuse of the ALFA stations, which are used in the ATLAS Experiment for detection of protons scattered in elastic and diffractive interactions. In the last part of the thesis, the AFP detectors, aiming at measuring the protons scattered in diffractive interactions, are presented. They allow to exte...

  11. Nb$_3$Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    CERN Document Server

    AUTHOR|(CDS)2075881

    2015-01-01

    The high luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11-T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11-T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets. Collaboration between the US LARP (LHC Accelerator Research Program) and CERN is developing the MQXF magnets, whereas the 11-T dipole magnets are being developed by CERN and Fermilab. This paper reviews the status of Nb3Sn technology for accelerator magnets, discusses its main challenges, and discusses how the MQXF and 11-T...

  12. The Control and Configuration Software of the ATLAS Data Acquisition System: Upgrades for LHC Run 2

    CERN Document Server

    Aleksandrov, Igor; The ATLAS collaboration; Avolio, Giuseppe; Caprini, Mihai; Corso-Radu, Alina; D'ascanio, Matteo; De Castro Vargas Fernandes, Julio; Kazarov, Andrei; Kolobara, Bernard; Lankford, Andrew; Laurent, Florian; Lehmann Miotto, Giovanna; Magnoni, Luca; Papaevgeniou, Lykourgos; Ryabov, Yury; Santos, Alejandro; Seixas, Jose; Soloviev, Igor; Unel, Gokhan; Yasu, Yoshiji

    2016-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS detector at the Large Hadron Collider (LHC) at CERN is composed of a large number of distributed hardware and software components which in a coordinated manner provide the data-taking functionality of the overall system. The Controls and Configuration (CC) software offers services to configure, control and monitor the TDAQ system. It is a framework which provides essentially the glue that holds the various sub-systems together. While the overall architecture, established at the end of the 90’s, has proven to be solid and flexible, many software components (from core services, like the Run Control and the error management system, to end- user tools) have undergone a complete redesign or re-implementation during the LHC’s Long Shutdown I period. The upgrades were driven by the need to fold-in the additional requirements that appeared in the course of LHC’s Run 1, to profit from new technologies and to re-factorize and cleanup the code. This paper...

  13. Silicon strip prototypes for the ATLAS Upgrade tracker of the HL-LHC

    CERN Document Server

    Diez, S; The ATLAS collaboration

    2012-01-01

    We present the development of a low mass, highly modular structure for the strip tracker region of the upgraded ATLAS detector of the HL-LHC. The design of this double-sided structure, called “stavelet”, has been modified with respect to the baseline design in order to reduce significantly the amount of material, keeping the same electrical and thermal performances of previous single-sided stave prototypes. The aluminium shielding layers of the bus tapes that constitute the power and data traces have been removed, allowing an effective reduction of the percentage radiation length approximately equal to 15 % with respect to the previous prototypes. A new co-curing process for the bus tapes and carbon fibre facings has been investigated. In this process, the bus tapes are embedded in between the carbon fibre facings, acting as an effective shielding for the sensor modules. Precision mechanical assembly tools have also been developed, allowing for controlled placement and gluing of the silicon modules onto t...

  14. Development of radiation tolerant semiconductor detectors for the Super-LHC

    CERN Document Server

    Moll, M; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Betta, G F D; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Fretwurst, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Sevilla, S G; Gorelov, I; Goss, J; Bates, A G; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, Roland Paul; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V; Kierstead, J A; Klaiber Lodewigs, J; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, S; Lazanu, I; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li Z; Lindström, G; Linhart, V; Litovchenko, A P; Litovchenko, P G; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, P; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Garcia, S Mi; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; OShea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Popule, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The envisaged upgrade of the Large Hadron Collider (LHC) at CERN towards the Super-LHC (SLHC) with a 10 times increased luminosity of 10challenges for the tracking detectors of the SLHC experiments. Unprecedented high radiation levels and track densities and a reduced bunch crossing time in the order of 10ns as well as the need for cost effective detectors have called for an intensive R&D program. The CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" is working on the development of semiconductor sensors matching the requirements of the SLHC. Sensors based on defect engineered silicon like Czochralski, epitaxial and oxygen enriched silicon have been developed. With 3D, Semi-3D and thin detectors new detector concepts have been evaluated and a study on the use of standard and oxygen enriched p-type silicon detectors revealed a promising approach for radiation tolerant cost effective devices. These and other most recent advancements of the RD50 ...

  15. Strategy and issues for the LHC upgrades and fair, including longer-term prospects

    CERN Document Server

    Zimmermann, F

    2013-01-01

    This report discusses the time line, goals and key ingredients for the next ten years of LHC operation, including injector upgrade, for the following High Luminosity LHC (HL-LHC), and for the FAIR project. Results from pertinent EuCARD-WP4 workshops on optics, space charge, crab cavities, crystal collimation, and electron cloud are summarized in this context. A Large Hadron electron Collider, LHeC, would be an additional upgrade, further expanding the physics scope of the LHC, to eventually include both ep and γγ Higgs factories (LHeC-HF and SAPPHiRE). Results from relevant topical WP4 workshops are highlighted. The development of magnet and cable technology based on Nb3Sn, and HTS, for the HL-LHC prepares the ground for a future higher-energy hadron collider, either in the LHC tunnel, “HELHC” (33 TeV c.m.), or in a new 80- or 100-km tunnel, “VHE-LHC” (100 TeV c.m.). A large new tunnel could also host an ultimate highest-precision e+e- Higgs factory collider, “TLEP,” exhibiting many synergies an...

  16. Readout board upgrade for the Pixel Detectors: reasons, status and results in ATLAS

    CERN Document Server

    Giangiacomi, Nico; The ATLAS collaboration

    2017-01-01

    At LHC the design luminosity, 1034 cm -2 s -1 , has already been reached during Summer 2016. LHC is planning, in the short term future, to further enhance the luminosity, resulting in a higher trigger frequency and an increased pileup. These factors constitute a challenge for the data readout since the rate of data to be transmitted depends on both pileup and trigger frequency. In the ATLAS experiment, the effect of the increased luminosity is most evident in the Pixel Detector, which is the detector closest to the beam pipe. In order to face the difficult experimental challenges, the readout system was upgraded during the last few years. The main purpose of the upgrade was to provide a higher bandwidth by exploiting recent technologies. The new readout system is composed by two paired electronic boards, Back Of Crate (BOC) and ReadOut Driver (ROD). In this presentation the main readout limitation related to increased luminosity will be discussed as well as the strategy and the technological solutions adopted...

  17. Expression of Interest for a Phase-II LHCb Upgrade Opportunities in flavour physics, and beyond, in the HL-LHC era

    CERN Document Server

    LHCb, Collaboration

    2017-01-01

    A Phase-II Upgrade is proposed for the LHCb experiment in order to take full advantage of the flavour-physics opportunities at the HL-LHC, and other topics that can be studied with a forward spectrometer. This Upgrade, which would be installed in Long Shutdown 4 of the LHC (2030), will build on the strengths of the current experiment and the Phase-I Upgrade, but will consist of re-designed sub-systems that can operate at a luminosity of 2×10$^{34}$cm$^{-2}s{^-1}$, ten times that of the Phase-I Upgrade detector. New and improved detector components will increase the intrinsic performance of the experiment in certain key areas. In particular the installation of a tungsten sampling electromagnetic calorimeter will widen LHCb's capabilities for decays involving $\\pi{^0}$ and η mesons, and photons from loop-level penguin processes. The physics motivation is presented, and the prospects for operating the LHCb Interaction Point at high luminosity are assessed. The challenges for the detector are described and poss...

  18. Physics motivations and expected performance of the CMS muon system upgrade with triple-GEM detectors

    CERN Document Server

    Venditti, Rosamaria; Abbrescia, Marcello; Aleksandrov, Andrey B; Benussi, Luigi; Beni, Noemi; Bianco, Stefano; Calabria, Cesare; Caponero, Michele; Hernandez, Alfredo Martin Castaneda; Cavallo, Francesca; Colafranceschi, Stefano; Lentdecker, Gilles De; Oliveira, R; Guiducci, Luigi; Hoepfner, Kerstin; Iaydjiev, P S; Korytov, Andrey; Krutelyov, Slava; Kumar, A; Lee, Jason; Litov, L; Loddo, F; Maggi, M; Marchioro, Alessandro; Mitselmakher, Guenakh; Mohanty, Ajit Kumar; Molnar, J; Naimuddin, Md; Nuzzo, S; Pant, Lalit; Paolucci, Pierluigi; Pavlov, Borislav; Piccolo, Davide; Postema, Hans; Raffaella, Radogna; Ranieri, A; Riccardi, C; Rodozov, Mircho; Safonov, Alexei; Saviano, Giovanna; Sharma, Archana; Tytgat, Michael; Vitulo, Paolo; Colaleo, Anna; Caputo, Claudio; Errico, Filippo; Dildick, Sven; Vai, Ilaria; Magnani, Alice; Verwilligen, Piet; Altieri, Palma; Aspell, Paul; Giacomelli, Paolo; Braibant, Sylvie; Buontempo, S; Kamon, Teruki; Tatarinov, A; Celik, Ali; Gilmore, Jason; Flanagan, Will; Khotilovich, Vadim; Czellar, S; Fenyvesi, A; Jozsef Molnar@Cern Ch, Jozsef; Barria, P; Korntheuer, Michael; Lenzi, T; Maerschalk, T; Verhagen, E; Yang, Yifan; Yonamine, R; Zenoni, F; Merlin, J; Dorney, B; Garcia, A Conde; Dabrowski, M; Marinov, A; Oliveri, E; Baranac, A Puig; Ropelewski, Leszek; Bos, J; Bally, S; Stenis, M Van; Ferry, S; Rodrigues, A; Robertis, G De; Christiansen, J; Hohlmann, M; Bhopatkar, V; Mohapatra, A; Zhang, A; Hauser, J; Tuuva, Tuure; Talvitie, J; Passeggio, G; Cassese, F; Banerjee, S; Majumdar, N; Mukhopadhyay, Supratik; Roychowdhur, S; Salva, S; Zaganidis, N; Cimmino, A; Cauwenbergh, S; Bouhali, O; Akl, M Abi; Sturdy, J; Karchin, P; Gutierrez, A; Hadjiiska, R; Aleksandrov, Aleksandar; Rashevski, G; Rodozov, M; Shopova, M; Sultanov, G; Acosta, D; Barashko, V; Furic, I; Madorsky, A; Korytov, A; Mitselmakher, G; Raffone, G; Radi, A; Assran, Y; Aboamer, O; Ahmad, A; Ahmed, W; Awan, I; Hoorani, H; Muhammad, S; Sharma, R; Geonmo, R; Ryu, M S; Park, I; Jeng, Y C; Choi, M; Golovtsov, V; Volkov, S; Vorobyev, A; Choi, S; Guilloux, F; Philipps, B

    2015-01-01

    For the LHC High Luminosity phase (HL-LHC) the CMS GEM Collaboration is planning to in- stall new large size triple-GEM detectors in the forward region of the muon system (1.5< j h |<2.2) of the CMS detector. The muon reconstruction with triple-GEM chambers information included have been successfully integrated in the official CMS software, allowing physics studies to be carried out. The new sub-detector will be able to cope the extreme particle rates expected in this region along with a high spatial resolution. The resulting benefit in terms of triggering and tracking capabilities has been studied: the expected improvement in the performance of the muon identification and track reconstruction as well as the expected improvement coming from the low- ering of the muon p T trigger tresholds will be presented. The contribution will review the status of the CMS upgrade project with the usage of GEM detector, discussing the trigger, the muon reconstruction performance and the impact on the physics analyses.

  19. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking regi...

  20. The LHCb RICH system: current detector performance and status of the upgrade program

    CERN Document Server

    Fiorini, Massimiliano

    2016-01-01

    LHCb is a precision experiment devoted to the study of CP violation and rare decays of b and c quarks, and to the search for new physics beyond the Standard Model at the Large Hadron Collider (LHC) at CERN. The Ring-Imaging Cherenkov (RICH) system is a key component of the LHCb experiment: it consists of two RICH detectors that provide charged particle identification over a wide momentum range (2-100 GeV/c) and angular acceptance (15-300 mrad). The LHCb RICH system has been performing extremely well during Run 1 and is providing the LHCb experiment also in Run 2 with a robust, reliable and precise particle identification system. Performance of the RICH detectors measured from data will be presented, with special reference to its dependence on calibration parameters and event multiplicities. The LHCb experiment is preparing for an upgrade during the second LHC long shutdown (2019-2020) in order to fully exploit the LHC flavour physics potential. A five-fold increase in instantaneous luminosity is foreseen reac...

  1. On-detector Electronics for the LHCb VELO Upgrade

    Science.gov (United States)

    Naik, S.

    2017-02-01

    The LHCb Experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. The experiment will be upgraded to a trigger-less system reading out the full detector at a 40 MHz event rate with all selection algorithms executed in a CPU farm. The upgraded Vertex Locator will be a hybrid pixel detector read out by the VeloPix ASIC with on-chip zero-suppression. The overview of the system and the design of the VELO on-detector electronics that include the front-end hybrid, the opto-conversion and power distribution boards will be summarised. The results from the evaluation of these prototypes and further enhancement techniques will be discussed.

  2. Test Beam Performance Measurements for the Phase I Upgrade of the CMS Pixel Detector

    CERN Document Server

    Dragicevic, M.; Hrubec, J.; Steininger, H.; Gädda, A.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Winkler, A.; Eerola, P.; Tuuva, T.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Donckt, M.Vander; Viret, S.; Bonnin, C.; Charles, L.; Gross, L.; Hosselet, J.; Tromson, D.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Pierschel, G.; Preuten, M.; Rauch, M.; Wlochal, M.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garcia, J.Garay; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schütze, P.; Sola, V.; Spannagel, S.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Lapsien, T.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; Boer, W.De; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Simonis, H.J.; Steck, P.; Weber, M.; Weiler, Th.; Kiss, T.; Siklér, F.; Tölyhi, T.; Veszprémi, V.; Cariola, P.; Creanza, D.; Palma, M.De; Robertis, G.De; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Costa, S.; Mattia, A.Di; Giordano, F.; Potenza, R.; Saizu, M.A.; Tricomi, A.; Tuve, C.; Focardi, E.; Dinardo, M.E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R.A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; Solestizi, L.Alunni; Biasini, M.; Bilei, G.M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ceccanti, M.; Ciocci, M.A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M.T.; Ligabue, F.; Magazzu, G.; Mammini, P.; Mariani, F.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Profeti, A.; Raffaelli, F.; Ragonesi, A.; Rizzi, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P.G.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bonnaud, J.; Daguin, J.; D'Auria, A.; Detraz, S.; Dondelewski, O.; Engegaard, B.; Faccio, F.; Frank, N.; Gill, K.; Honma, A.; Kornmayer, A.; Labaza, A.; Manolescu, F.; McGill, I.; Mersi, S.; Michelis, S.; Onnela, A.; Ostrega, M.; Pavis, S.; Peisert, A.; Pernot, J.F.; Petagna, P.; Postema, H.; Rapacz, K.; Sigaud, C.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Verlaat, B.; Vichoudis, P.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Arbol, P.Martinez Ruiz del; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.S.; Lu, R.S.; Moya, M.; Tsai, J.F.; Tzeng, Y.M.; Cussans, D.; Goldstein, J.; Grimes, M.; Newbold, D.; Hobson, P.; Reid, I.D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Hall, G.; James, T.; Magnan, A.M.; Pesaresi, M.; Raymond, D.M.; Uchida, K.; Durkin, T.; Harder, K.; Shepherd-Themistocleous, C.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B.R.; Dominguez, A.; Bartek, R.; Bentele, B.; Cumalat, J.P.; Ford, W.T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S.R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J.N.; Canepa, A.; Cheung, H.W.K.; Christian, D.; Cooper, W.E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Kwan, S.; Lei, C.M.; Lipton, R.; Sá, R.Lopes De; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Siehl, K.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D.R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Gerber, C.E.; Makauda, S.; Mills, C.; Gonzalez, I.D.Sandoval; Alimena, J.; Antonelli, L.J.; Francis, B.; Hart, A.; Hill, C.S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D.H.; Shi, X.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Schmitz, E.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J.G.; Cremaldi, L.M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D.R.; Fangmeier, C.; Suarez, R.Gonzalez; Monroy, J.; Siado, J.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Vargas, J.E.Ramirez; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K.M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; D'Angelo, P.; Johns, W.; Rose, K.

    2017-05-30

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These upgrades allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. In this paper, comprehensive test beam studies are presented which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency has been determined to be ($99.95 \\pm 0.05$) \\%, while the intrinsic spatial resolution has been measured to be ($4.80 \\pm 0.25$) $\\mu$m and ($7.99 \\pm 0.21$...

  3. Luminosity measurement method for the LHC: The detector requirement studies

    Energy Technology Data Exchange (ETDEWEB)

    Krasny, M.W., E-mail: Mieczyslaw.Krasny@cern.ch [LPNHE, Pierre and Marie Curie University, CNRS-IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris (France); Chwastowski, J. [Institute of Teleinformatics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-115 Kraków (Poland); Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Cyz, A.; Słowikowski, K. [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland)

    2013-11-21

    In our earlier paper [1] we have proposed a new luminosity measurement method for the LHC collider. It is based on the detection of lepton pairs produced in the peripheral collisions of the LHC beam particles and allows to reach better than 1% accuracy of the theoretical control of the event rate. In order to implement this method a new, specialized luminosity detector must be incorporated within the fiducial volume of one of the existing LHC detectors. In this paper the requirement studies for such a detector are presented. They are driven, almost exclusively, by its capacity to identify, within the level 1 trigger latency of the host detector, the bunch crossings with exclusive, coplanar pairs of opposite charge particles. It is shown that a tracking detector with the azimuthal hit resolution of 2 mrad allows us to reduce the rate of background events to the requisite O(1kHz) level while retaining a sufficiently large fraction of the signal events for the precise luminosity measurement.

  4. Arc detector system for extraction switches in LHC CERN

    CERN Document Server

    Dahlerup-Petersen, K; Kuper, E; Ovchar, V; Zverev, S

    2006-01-01

    The opening switches, which will be used in case of quenches or other failures in CERN’s future LHC collider to extract the large amounts of energy stored in the magnetic field of the superconducting chains of main dipoles (8 chains with 1350 MJ each) and main quadrupoles (16 chains with about 24 MJ each) consist of an array of series/parallel connected, electro-mechanical D.C. breakers, specifically designed for this particular application. During the opening process the magnet excitation current is transferred from the cluster of breakers to extraction resistors for rapid de-excitation of the magnet chain. An arc detector has been developed in order to facilitate the determination of the need for maintenance interventions on the switches. The paper describes the arc detector and highlight results from operation of the detector with a LHC pilot extraction...

  5. Study of ZZ to four leptons events in ATLAS at the LHC and upgrade of the ATLAS Muon Spectrometer

    CERN Multimedia

    Kouskoura, V

    2014-01-01

    The study of the ZZ and ZZ* production in proton-proton collisions at the Large Hadron Collider (LHC) at CERN is presented. The data analyzed in this study were recorded by the ATLAS experiment at a centre-of-mass energy of 7 TeV and of 8 TeV. The selected events are consistent with fully leptonic ZZ decays, in particular to electrons and muons. The total ZZ production cross section is measured and is found to be in agreement with the Standard Model (SM) prediction. The ZZ production allows the study of the anomalous neutral Triple Gauge Couplings. No deviation from the SM prediction is found that could indicate the presence of New Physics. In view of the forthcoming increase of the instantaneous luminosity of the LHC, the ATLAS Collaboration foresees upgrades of the detector. An upgrade of the Muon Spectrometer is presented. The integration of the new detection elements in the ATLAS Geometry is illustrated, as well as the increase in the total Barrel acceptance.

  6. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  7. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  8. Physics validation of detector simulation tools for LHC

    CERN Document Server

    Beringer, J

    2004-01-01

    Extensive studies aimed at validating the physics processes built into the detector simulation tools Geant4 and Fluka are in progress within all Large Hadron Collider (LHC) experiments, within the collaborations developing these tools, and within the LHC Computing Grid (LCG) Simulation Physics Validation Project, which has become the primary forum for these activities. This work includes detailed comparisons with test beam data, as well as benchmark studies of simple geometries and materials with single incident particles of various energies for which experimental data is available. We give an overview of these validation activities with emphasis on the latest results.

  9. Performance of the LHCb RICH detector at the LHC.

    Science.gov (United States)

    Adinolfi, M; Aglieri Rinella, G; Albrecht, E; Bellunato, T; Benson, S; Blake, T; Blanks, C; Brisbane, S; Brook, N H; Calvi, M; Cameron, B; Cardinale, R; Carson, L; Contu, A; Coombes, M; D'Ambrosio, C; Easo, S; Egede, U; Eisenhardt, S; Fanchini, E; Fitzpatrick, C; Fontanelli, F; Forty, R; Frei, C; Gandini, P; Gao, R; Garra Tico, J; Giachero, A; Gibson, V; Gotti, C; Gregson, S; Gys, T; Haines, S C; Hampson, T; Harnew, N; Hill, D; Hunt, P; John, M; Jones, C R; Johnson, D; Kanaya, N; Katvars, S; Kerzel, U; Kim, Y M; Koblitz, S; Kucharczyk, M; Lambert, D; Main, A; Maino, M; Malde, S; Mangiafave, N; Matteuzzi, C; Mini', G; Mollen, A; Morant, J; Mountain, R; Morris, J V; Muheim, F; Muresan, R; Nardulli, J; Owen, P; Papanestis, A; Patel, M; Patrick, G N; Perego, D L; Pessina, G; Petrolini, A; Piedigrossi, D; Plackett, R; Playfer, S; Powell, A; Rademacker, J H; Ricciardi, S; Rogers, G J; Sail, P; Sannino, M; Savidge, T; Sepp, I; Sigurdsson, S; Soler, F J P; Solomin, A; Soomro, F; Sparkes, A; Spradlin, P; Storaci, B; Thomas, C; Topp-Joergensen, S; Torr, N; Ullaland, O; Vervink, K; Voong, D; Websdale, D; Wilkinson, G; Wotton, S A; Wyllie, K; Xing, F; Young, R

    The LHCb experiment has been taking data at the Large Hadron Collider (LHC) at CERN since the end of 2009. One of its key detector components is the Ring-Imaging Cherenkov (RICH) system. This provides charged particle identification over a wide momentum range, from 2-100 GeV/c. The operation and control, software, and online monitoring of the RICH system are described. The particle identification performance is presented, as measured using data from the LHC. Excellent separation of hadronic particle types (π, K, p) is achieved.

  10. Performance of the LHCb RICH detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Brook, N.H.; Coombes, M.; Hampson, T.; Rademacker, J.H.; Solomin, A.; Voong, D. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Aglieri Rinella, G.; Albrecht, E.; D' Ambrosio, C.; Forty, R.; Frei, C.; Gys, T.; Kanaya, N.; Koblitz, S.; Mollen, A.; Morant, J.; Piedigrossi, D.; Storaci, B.; Ullaland, O.; Vervink, K.; Wyllie, K. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Bellunato, T.; Calvi, M.; Fanchini, E.; Giachero, A.; Gotti, C.; Kucharczyk, M.; Maino, M.; Matteuzzi, C.; Perego, D.L.; Pessina, G. [Sezione INFN di Milano Bicocca, Milano (Italy); Benson, S.; Eisenhardt, S.; Fitzpatrick, C.; Kim, Y.M.; Lambert, D.; Main, A.; Muheim, F.; Playfer, S.; Sparkes, A.; Young, R. [University of Edinburgh, School of Physics and Astronomy, Edinburgh (United Kingdom); Blake, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Imperial College London, London (United Kingdom); Blanks, C.; Cameron, B.; Carson, L.; Egede, U.; Owen, P.; Patel, M.; Plackett, R.; Savidge, T.; Sepp, I.; Soomro, F.; Websdale, D. [Imperial College London, London (United Kingdom); Brisbane, S.; Contu, A.; Gandini, P.; Gao, R.; Harnew, N.; Hill, D.; Hunt, P.; John, M.; Johnson, D.; Malde, S.; Muresan, R.; Powell, A.; Thomas, C.; Topp-Joergensen, S.; Torr, N.; Wilkinson, G.; Xing, F. [University of Oxford, Department of Physics, Oxford (United Kingdom); Cardinale, R.; Fontanelli, F.; Mini' , G.; Petrolini, A.; Sannino, M. [Sezione INFN di Genova, Genova (Italy); Easo, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Garra Tico, J.; Gibson, V.; Gregson, S.; Haines, S.C.; Jones, C.R.; Katvars, S.; Kerzel, U.; Mangiafave, N.; Rogers, G.J.; Sigurdsson, S.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Mountain, R. [Syracuse University, Syracuse, NY (United States); Morris, J.V.; Nardulli, J.; Papanestis, A.; Patrick, G.N.; Ricciardi, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Sail, P.; Soler, F.J.P.; Spradlin, P. [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Collaboration: The LHCb RICH Collaboration

    2013-05-15

    The LHCb experiment has been taking data at the Large Hadron Collider (LHC) at CERN since the end of 2009. One of its key detector components is the Ring-Imaging Cherenkov (RICH) system. This provides charged particle identification over a wide momentum range, from 2-100 GeV/c. The operation and control, software, and online monitoring of the RICH system are described. The particle identification performance is presented, as measured using data from the LHC. Excellent separation of hadronic particle types ({pi}, K, p) is achieved. (orig.)

  11. Performance of the Aleph Upgraded Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Creanza, D.; De Palma, M.; Girone, M.; Maggi, G.; Selvaggi, G.; Silvestris, L.; Raso, G.; Tempesta, P.; Burns, M.; Coyle, P.; Engster, C.; Frank, M.; Moneta, L.; Wachnik, M.; Wagner, A.; Zaslavsky, J.; Focardi, E.; Sguazzoni, G.; Parrini, G.; Scarlini, E.; Halley, A.; O`Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Blanc, P.E.; Destelle, J.J.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Moser, H.-G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bettarini, S.; Bosi, F.; Dell`Orso, R.; Messineo, A.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Walsh, J.; Bizzell, J.P.; Maley, P.D.; Thompson, J.C.; Wright, A.E.; Black, S.; Kim, H.Y.; Bosisio, L.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Elmer, P. [Bari Univ. (Italy). Dipt. di Fisica]|[INFN, Bari (Italy)]|[European Laboratory for Particle Physics (CERN), 1211 Geneva 23 (Switzerland)]|[Dipartimento di Fisica, Universita di Firenze, INFN Sezione di Firenze, 50125 Firenze (Italy)]|[Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)]|[Department of Physics, Imperial College, London SW7 2BZ (United Kingdom)]|[Department of Physics, University of Lancaster, Lancaster LA1 4YB (United Kingdom)]|[Centre de Physique des Particules, Faculte des Sciences de Luminy, IN2P3-CNRS, 13288 Marseille (France)]|[Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, 80805 Muenchen (Germany)]|[Dipartimento di Fisica dell`Universita e INFN Sezione di Pisa, 56010 Pisa (Italy)]|[Particle Physics Dept., Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)]|[Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    1997-03-01

    The ALEPH Vertex Detector (VDET) has been upgraded for the second phase of LEP running. The new version still uses double sided silicon strip detectors, fabricated with the same technology as the previous one, but the upgraded one is twice as long and has about half passive material in the tracking volume. Furthermore the readout electronics is now radiation hard (MX7-RH chips). An almost complete version of the upgraded VDET was installed in ALEPH during a three week LEP technical stop and took data in November 1995 during the LEP run at 130 GeV. The new detector worked well showing high signal over noise ratio and good efficiency. The point resolution measured during this run, using high momentum muons, 13 {mu}m in the r-{phi} view and 21 {mu}m in the r-z view, is dominated by the alignment precision, due to the low statistics available for this short LEP run. This result is however acceptable, since for lower momentum charged particle, the multiple scattering gives a significant contribution to the final impact parameter resolution. A better resolution has been achieved in the next run, when an initial period at the Z peak has been foreseen to calibrate and align the whole detector. (orig.).

  12. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Apollinari, G. [Fermilab; Auchmann, B. [CERN; Barzi, E. [Fermilab; Izquierdo Bermudez, S. [CERN; Bossert, R. [Fermilab; Buehler, M. [Fermilab; Chlachidze, G. [Fermilab; DiMarco, J. [Fermilab; Karppinen, M. [CERN; Nobrega, F. [Fermilab; Novitski, I. [CERN; Rossi, L. [CERN; Smekens, D. [CERN; Tartaglia, M. [Fermilab; Turrioni, D. [Fermilab; Velev, Genadi [Fermilab

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  13. The construction of the phase 1 upgrade of the CMS pixel detector

    CERN Document Server

    Weber, Hannsjorg Artur

    2017-01-01

    The innermost layers of the original CMS tracker were built out of pixel detectors arranged in three barrel layers and two forward disks in each endcap. The original CMS detector was designed for the nominal instantaneous LHC luminosity of $1\\times10^{34}\\,\\text{cm}^{-2}\\text{s}^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two of the instantaneous luminosity, the CMS pixel detector would have seen a dynamic inefficiency caused by data losses due to buffer overflows. For this reason the CMS collaboration has installed during the recent extended end of year shutdown a replacement pixel detector. The phase-1 upgrade of the CMS pixel detector will operate at high efficiency at an instantaneous luminosity of $2\\times10^{34}\\,\\text{cm}^{-2}\\text{s}^{-1}$ with increased detector acceptance and additional redundancy for the tracking, while at the same time reducing the material budget. These goals are achieved using a new read-out chip and modified powering and rea...

  14. Performance verification of the CMS Phase 1 Upgrade pixel detector with collision data

    CERN Document Server

    Veszpremi, Viktor

    2017-01-01

    The CMS tracker consists of two tracking systems utilizing semiconductor technology: the inner pixel and the outer strip detectors. The tracker detectors occupy the volume around the beam interaction region between 3\\,cm and 110\\,cm in radius and up to 280\\,cm along the beam axis. The pixel detector consists of 124 million pixels, corresponding to about 2\\,m$^2$ total area. It plays a vital role in the seeding of the track reconstruction algorithms and in the reconstruction of primary interactions and secondary decay vertices. It is surrounded by the strip tracker with 10 million read-out channels, corresponding to 200\\,m$^2$ total area. The tracker is operated in a high-occupancy and high-radiation environment established by particle collisions in the LHC. The performance of the silicon strip detector continues to be of high quality. The pixel detector that has been used in Run 1 and in the first half of Run 2 was, however, replaced with the so-called Phase-1 Upgrade detector. The new system is better suite...

  15. Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade

    Science.gov (United States)

    King, Robert; CMS Muon group Team

    2017-01-01

    The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.

  16. Design and Performance of the Upgraded LHC Synchrotron Light Monitor

    CERN Document Server

    Goldblatt, A; Roncarolo, F; Trad, G

    2013-01-01

    The LHC is equipped with two synchrotron radiation systems, one per beam, used to measure the transverse bunch distributions. The light emitted by a superconducting undulator and/or by a dipole magnet (depending on beam energy) is intercepted by an extraction mirror in vacuum and sent through a viewport to the imaging Beam Synchrotron Radiation Telescope (BSRT). The first version of the telescope, used from 2009 to mid 2012, was based on spherical focusing mirrors in order to minimize chromatic aberrations. However, this required a very complicated delay line in order to switch the focus between the two different light sources as a function of beam energy. A new system based on optical lenses was designed and installed in mid 2012 in order to simplify the optical line and thus reduce misalignment and focusing errors. The first results with LHC beam using this new system showed a significant reduction in the correction factor required to match the emittance as measured by wire scanners. This contribution discu...

  17. An Upgraded ATLAS Central Trigger for 2014 LHC Luminosities

    CERN Document Server

    Kaneda, M; The ATLAS collaboration

    2012-01-01

    During 2011, the LHC reached instantaneous luminosities of 4*10^33 cm-2*s-1 and produced events with up to 24 interactions per colliding proton bunch. Thisplaces stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of ~400Hz and, atthe same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and adecision latency of less than 2.5us. It is primarily composed of the Calorimeter Trigger, Muon Trigger, and the Central Trigger Processor which are implemented in custom builtVME electronics. The Central Trigger Processor collects trigger information from all Level-1 systems and produces a Level-1 trigger decision that initiates the readout of all ATLAS subdetectors. In 2014, the LHC will run at a center of mass energy of 14 TeV, compared to the current 8 TeV, and the luminosity will exceed 10^34 cm^-2*s^-1. With higher l...

  18. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  19. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237541; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will al...

  20. ATLAS pixel detector design for the HL-LHC

    Science.gov (United States)

    Smart, B.

    2017-02-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector is called the Inner Tracker (ITk). The ITk will cover an extended η-range: at least to |η|<3.2, and likely up to 0|η|<4.. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into `extended' and `inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will also be discussed.

  1. Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Anelli, Mario; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Balla, Alessandro; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Bordyuzhin, Igor; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carletti, Maurizio; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Casu, Luigi; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Citterio, Mauro; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Coelli, Simone; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Su{á}rez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; D{é}l{é}age, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Felici, Giulietto; Ferguson, Dianne; Fernandez, Gerard; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fresch, Paolo; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; F{ä}rber, Christian; Gallas Torreira, Abraham

    2017-01-01

    A Phase-II Upgrade is proposed for the LHCb experiment in order to take full advantage of the flavour-physics opportunities at the HL-LHC, and other topics that can be studied with a forward spectrometer. This Upgrade, which will be installed in Long Shutdown 4 of the LHC (2030), will build on the strengths of the current experiment and the Phase-I Upgrade, but will consist of re-designed sub-systems that can operate at a luminosity of $2 \\times 10^{34}\\,{\\rm cm}^{-2} s^{-1}$, ten times that of the Phase-I Upgrade detector. New and improved detector components will increase the intrinsic performance of the experiment in certain key areas. In particular the installation of a tungsten sampling electromagnetic calorimeter will widen LHCb's capabilities for decays involving $\\pi^0$ and $\\eta$ mesons, electrons, and photons from loop-level penguin processes. The physics motivation is presented, and the prospects for operating the LHCb Interaction Point at high luminosity are assessed. The challenges for the detect...

  2. UPGRADES

    CERN Multimedia

    J. Butler and J. Nash

    2011-01-01

    Recent progress on the CMS upgrades was summarised, in a workshop held at Fermilab between 7th and 10th November, attended by more than 150 people, many of whom came from Europe and Asia. Important goals of the workshop were to begin to formulate a schedule for the upgrades and to determine project interdependencies. Input was received from all the upgrade working groups and will be combined into a first-pass schedule over the next several weeks. In addition, technical progress on each of the major subtasks was presented and plans for the near-term future were established. Slides from the more than 100 talks are located at: https://indico.cern.ch/conferenceDisplay.py?confId=153564 In the opening plenary session, Frank Zimmermann, of the CERN Beams Department, gave his view of the LHC luminosity evolution. The luminosity will increase faster than we assumed in designing the upgrades. CMS will need to re-evaluate the current upgrade plans and revise them if necessary. CMS Upgrade Physics coordinator...

  3. Silicon vertex detector upgrade in the ALPHA experiment

    CERN Document Server

    Amole, C; Ashkezari, M.D; Baquero-Ruiz, M; Bertsche, W; Burrows, C; Butler, E; Capra, A; Cesar, C.L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M.C; Gill, D.R; Gutierrez, A; Hangst, J.S; Hardy, W.N; Hayden, M.E; Humphries, A.J; Isaac, C.A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J.T.K; Menary, S; Napoli, S.C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C.Ø; Robicheaux, F; Sacramento, R.L; Sampson, J.A; Sarid, E; Seddon, D; Silveira, D.M; So, C; Stracka, S; Tharp, T; Thompson, R.I; Thornhill, J; Tooley, M.P; Van Der Werf, D.P; Wells, D

    2013-01-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA ' s analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA ' s new neutral atom trap.

  4. Silicon vertex detector upgrade in the ALPHA experiment

    Science.gov (United States)

    Amole, C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Burrows, C.; Butler, E.; Capra, A.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Stracka, S.; Sampson, J. A.; Sarid, E.; Seddon, D.; Silveira, D. M.; So, C.; Thompson, R. I.; Tharp, T.; Thornhill, J.; Tooley, M. P.; van der Werf, D. P.; Wells, D.

    2013-12-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  5. Silicon vertex detector upgrade in the ALPHA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, WA4 4AD Warrington (United Kingdom); Burrows, C. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Fujiwara, M.C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); and others

    2013-12-21

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  6. Achromatic telescopic squeezing scheme and application to the LHC and its luminosity upgrade

    CERN Document Server

    Fartoukh, S

    2013-01-01

    A novel optics concept, the achromatic telescopic squeezing (ATS) scheme has been invented in the context of the Large Hadron Collider (LHC) upgrade studies, and chosen as the baseline scheme for the optics and layout of the recently approved high luminosity LHC project (HL-LHC). This scheme offers an extremely powerful and flexible machinery in order to strongly reduce Beta* in a symmetric or asymmetric way (i.e. without necessarily imposing the same Beta* in both planes), while perfectly controlling the chromatic aberrations induced, namely the linear and nonlinear chromaticities, the off-momentum Beta beating, and the spurious dispersion from the large crossing angle which is required at small Beta* in the particular case of the (HL)-LHC. The initial motivations of the scheme will be reviewed, followed by a detailed description of its fundamental theoretical foundations. An effective construction of ATS optics will be given and its main features illustrated in the case of the LHC and HL-LHC.

  7. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Bianco, Michele; The ATLAS collaboration

    2015-01-01

    Large area Micromegas (MM) detectors will be employed for the Muon Spectrometer upgrade of the ATLAS experiment at the LHC. A total surface of about 150 m2 of the forward regions of the Muon Spectrometer will be equipped with 8 layers of MM modules. Each module covers a surface area of approximately 2 to 3 m$^{2}$ for a total active area of 1200 m$^{2}$. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the planned 2018/19 shutdown. This upgrade will maintain a low pt threshold for single muons and provides excellent tracking capabilities for the HL- LHC phase. The NSW project requires fully efficient MM chambers with spatial resolution down to 100 $ \\mu m$, a rate capability up to about 15 kHz/cm$^{2}$ and operation in a moderate (highly inhomogeneous) magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic spatial resolution combined with a cha...

  8. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211509

    2015-01-01

    Large area Micromegas (MM) detectors will be employed for the Muon Spectrometer upgrade of the ATLAS experiment at the LHC. A total surface of about $150m^2$ of the forward regions of the Muon Spectrometer will be equipped with 8 layers of MM modules. Each module covers a surface area of approximately 2 to $3 m^2$ for a total active area of $1200 m^2$. Together with the small- strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the planned 2018/19 shutdown. This upgrade will mantain a low pt threshold for single muons and provides excellent tracking capabilities for the HL-LHC phase. The NSW project requires fully efficient MM chambers with spatial resolution down to $100 \\mu m$, at rate capability up to about $15kHz/cm^2$ and operation in a moderate (highly inhomogeneous) magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic spatial resolution combined with a challengi...

  9. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    CERN Document Server

    Bilki, Burak

    2010-01-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of $10^{34} cm^{-2} s^{-1}$, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4\\% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm x 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R\\&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  10. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    Science.gov (United States)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 1034cm-2s-1, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm × 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  11. Cryogenic test of double quarter wave crab cavity for the LHC High luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alberty, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Calaga, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cullen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Capatina, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Marques, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109. We report the test results of this design.

  12. LHC IR upgrade dipole first with chromaticity and dynamic aperture issues

    CERN Document Server

    de Maria, R

    2007-01-01

    A dipole first layout for the LHC interaction region upgrade, while offering a potential reduction of the limitations due the long range beam-beam collisions, charged debris with respect to the quadrupole first layout, presents an enhancement of the chromatic and geometric aberration due large values in the triplet. These two effects are studied in the following for the dipole first option presented in [1].

  13. Performance of the ALEPH upgraded silicon vertex detector

    CERN Document Server

    Creanza, D; Girone, M.; Maggi, G.; Selvaggi, G.; Silvestris, L.; Raso, G.; Tempesta, P.; Burns, M.; Coyle, P.; Engster, C.; Frank, M.; Moneta, L.; Wachnik, M.; Wagner, A.; Zaslavsky, J.; Focardi, E.; Sguazzoni, G.; Parrini, G.; Scarlini, E.; Halley, A.; O'Shea, V.; Raine, C.; Barber, G.; Cameron, W.; Dornan, P.; Gentry, D.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Price, D.; Stacey, A.; Toudup, L.W.; Williams, M.I.; Billault, M.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Blanc, P.E.; Destelle, J.J.; Karst, P.; Payre, P.; Rousseau, D.; Thulasidas, M.; Dietl, H.; Moser, H.G.; Settles, R.; Seywerd, H.; Waltermann, G.; Bettarini, S.; Bosi, F.; Dell'Orso, R.; Messineo, A.; Profeti, A.; Rizzo, G.; Verdini, P.G.; Walsh, J.; Bizzell, J.P.; Maley, P.D.; Thompson, J.C.; Wright, A.E.; Black, S.; Kim, H.Y.; Bosisio, L.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Elmer, P.

    1997-01-01

    The ALEPH Vertex Detector (VDET) has been upgraded for the second phase of LEP running. The new version still uses double sided silicon strip detectors, fabricated with the same technology as the previous one, but the upgraded one is twice as long and has about half passive material in the tracking volume. Furthermore the readout electronics is now radiation hard (MX7-RH chips). An almost complete version of the upgraded VDET was installed in ALEPH during a three week LEP technical stop and took data in November 1995 during the LEP run at 130 GeV. The new detector worked well showing high signal over noise ratio and good efficiency. The point resolution measured during this run, using high momentum muons, 13 μm in the τ - φ view and 21 μm in the τ - z view, is dominated by the alignment precision, due to the low statistics available for this short LEP run. This result is however acceptable, since for lower momentum charged particle, the multiple scattering gives a significant contribution to the final im...

  14. ATLAS IBL Pixel Upgrade

    CERN Document Server

    La Rosa, A

    2011-01-01

    The upgrade for ATLAS detector will undergo different phase towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on pixel module is presented in this paper

  15. Current Lead Design for the Accelerator Project for Upgrade of LHC

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor; Kaducak, Marc; Nobrega, Fred; Peterson, Tom

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchange section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.

  16. Upgrade of the LHC Schottky Monitor, Operational Experience and First Results

    CERN Document Server

    Betz, Michael; Lefèvre, Thibaut; Wendt, Manfred

    2016-01-01

    The LHC Schottky system allows the measurement of beam parameters such as tune and chromaticity in an entirely non-invasive way by extracting information from the statistical fluctuations in the incoherent motion of particles. The system was commissioned in 2011 and provided satisfactory beam-parameter measurements during LHC run 1 for lead-ions. However, for protons its usability was substantially limited due to strong interfering signals originating from the coherent motion of the particle bunch. The system has recently been upgraded with optimized travelling-wave pick-ups and an improved 4.8~GHz microwave signal path, with the front-end and the triple down-mixing chain optimized to reduce coherent signals. Design and operational aspects for the complete system are shown and the results from measurements with LHC beams in Run II are presented and discussed.

  17. Energy Deposition Studies for the LHC Insertion Region Upgrade Phase-I

    CERN Document Server

    Cerutti, F; Ferrari, A; Mereghetti, A; Wildner, E

    2010-01-01

    While the Large Hadron Collider (LHC) at CERN is starting operation with beam, aiming to achieve nominal performance in the shortest term, the upgrade of the LHC interaction regions is actively pursued in order to enhance the physics reach of the machine. Its first phase, with the target of increasing the LHC luminosity to 2-3 1034cm-2s-1, relies on the mature Nb-Ti superconducting magnet technology and is intended to maximize the use of the existing infrastructure. The impact of the increased power of the collision debris has been investigated through detailed energy deposition studies, considering the new aperture requirements for the low-ß quadrupoles and a number of other elements in the insertions. Effective solutions in terms of shielding options and design/layout optimization have been envisaged and the crucial factors have been pointed out.

  18. D11.2.2: Study of an IR design for LHC upgrade

    CERN Document Server

    Abelleira, J L

    2013-01-01

    A conceptual novel optics was developed for a future upgrade of the LHC interaction regions (IR). Applying the collision scheme with a large Piwinski angle and crab waist, originating from e+e- colliders, to an existing pp collider requires fairly unequal IP beta functions, while the transverse proton emittances are naturally equal. The extremely small vertical IP beta function calls for a novel final magnetic focusing element, a so-called double half quadrupole. At least a partial local chromatic correction is mandatory. Similar, simpler optics designs were explored for the LHeC electron beam. Possible benefits were also studied for higher-energy proton collisions at the HE-LHC, for which the proposed scheme appears quite attractive. Pertinent beam experiments were performed, analysed and prepared at DAPHNE and LHC.

  19. Quench Protection Studies of the 11-T $Nb_3Sn$ Dipole for LHC Upgrades

    CERN Document Server

    Izquierdo Bermudez, Susana; BAJAS, Hugues; Bajko, Marta; Bordini, Bernardo; Bottura, Luca; Chlachidze, Guram; Karppinen, Mikko; Rysti, Juho; Savary, Frederic; Willering, Gerard; Zlobin, Alexander

    2016-01-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data from the 2-m-long Nb3Sn dipole models. The validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.

  20. Recent advancements in the development of radiation hard semiconductor detectors for S-LHC

    CERN Document Server

    Fretwurst, E; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A G; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, L; Dalla Betta, G F; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; González-Sevilla, S; Gorelov,I; Goss, J; Gouldwell-Bates, A; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, I; Lazanu, S; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Linhart, V; Litovchenko, P G; Litovchenko, A P; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Populea, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidela, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 1016 hadrons/cm2. Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Furthe...

  1. Past Experiences and Future Trends on Vertex Detector Cooling at LHC

    CERN Document Server

    Petagna, Paolo

    2014-01-01

    Substantially different approaches have been ad opted for the refrigeration plants of the first generation of vertex detectors at LHC: those of ALICE, ATLAS and CMS use PFC fluids, either in single phase or in a traditional Joule-Thomson cycle, while carbon dioxide in a pumped two-phase loop has been selected for the LHCb VELO. For what concerns the on-board thermal management of the sensors and related electronics, a traditional design has been followed, based on a common general approach and only differing in the specific choices related to the local configuration. Although the global performance of the detectors in this first phase of LHC operation can be claimed as fully satisfactory, it appears that the additional challenges posed by the coming upgrade phases can only be tackled through an effort on technology innovation and, in particular on much stronger and earlier integration of all the cooling-related aspects in the detector conception. Carbon dioxide seems to be the preferred choice for the refrige...

  2. Physics with the collider detectors at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.; Hallman, T. [eds.

    1995-07-15

    On January 8, 1995, over 180 participants gathered to hear the QM95 preconference workshop on `Physics with the Collider Detectors at RHIC and the LHC`. The goal was to bring together the experimentalists from a wide community of hadron and heavy ion collider detector collaborations. The speakers were encouraged to present the current status of their detectors, with all the blemishes, and the audience was encouraged to share their successes and failures in approaching similar detector design issues. The presentations were excellent and the discussions were lively and stimulating. The editors hope that the reader will find these proceedings to be equally stimulating. Separate abstracts have been submitted to the energy database from articles in this report.

  3. Characterization and Performance of Silicon n-in-p Pixel Detectors for the ATLAS Upgrades

    CERN Document Server

    Weigell, Philipp; Gallrapp, Christian; La Rosa, Alessandro; Macchiolo, Anna; Nisius, Richard; Pernegger, Heinz; Richter, Rainer

    2011-01-01

    The existing ATLAS Tracker will be at its functional limit for particle fluences of 10^15 neq/cm^2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. N-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 \\mu m thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current the ATLAS read-out chip FE-I3. The characterisation has been performed with the ATL...

  4. Optimization of Open Midplane Dipole Design for LHC IR Upgrade

    CERN Document Server

    Gupta, Ramesh C; Ghosh, Arup; Harrison, Michael; Mokhov, Nikolai V; Schmalzle, Jesse D; Wanderer, Peter

    2005-01-01

    The proposed ten-fold increase in Large Hadron Collider (LHC) luminosity requires high field (~15 T) magnets that are subjected to the high radiation power of ~9 kW/per beam directed towards each interaction region. This has a major impact in the design of first dipole in the "Dipole First" optics. The proposed design allows sufficient clear space between coils so that most of the particle showers from the interaction points (concentrated at the midplane due to strong magnetic field) can be transported outside the coil region to a warm absorber thus drastically reducing the peak power density in the coils and removing heat at a higher (nitrogen) temperature. The concept, however, presents several new technical challenges: (a) obtaining good field quality despite a large midplane gap, (b) minimizing peak fields on coil, (c) dealing with large vertical forces with no structure between the coils, (d) minimizing heat deposition in the cold region, (e) designing a support structure. Designs with different horizont...

  5. CMS Tracker Upgrade for HL-LHC: R\\&D Plans, Present Status and Perspectives

    CERN Document Server

    Ravera, Fabio

    2015-01-01

    During the high luminosity phase of the LHC (HL-LHC), the machine is expected to deliver an instantaneous luminosity of $5 \\times 10^{34}$ cm$^{-2}$s$^{-1}$. A total of $3000$ fb$^{-1}$ of data is foreseen to be delivered, with the opening of new physics potential for the LHC experiments, but also new challenges from the point of view of both detector and electronics capabilities and radiation hardness. In order to maintain its physics reach, CMS will build a new Tracker, comprising completely new pixel detector and outer tracker. The ongoing R\\&D activities on both pixel and strip sensors will be presented. The present status of the Inner and Outer Tracker projects will be illustrated, and the possible perspectives will be discussed.

  6. Upgraded VIRGO detector(s) and stochastic gravitational waves backgrounds

    CERN Document Server

    Babusci, D

    1999-01-01

    The sensitivity achievable by a pair of VIRGO detectors to stochastic and isotropic gravitational wave backgrounds of cosmological origin is discussed in view of the development of a second VIRGO interferometer. We describe a semi-analytical technique allowing to compute the signal-to-noise ratio for (monotonic or non-monotonic) logarithmic energy spectra of relic gravitons of arbitrary slope. We apply our results to the case of two correlated and coaligned VIRGO detectors and we compute their achievable sensitivities. The maximization of the overlap reduction function is discussed. We focus our attention on a class of models whose expected sensitivity is more promising, namely the case of string cosmological gravitons. We perform our calculations both for the case of minimal string cosmological scenario and in the case of a non-minimal scenario where a long dilaton dominated phase is present prior to the onset of the ordinary radiation dominated phase. In this framework, we study possible improvements of the...

  7. Detector Modules for the CMS Pixel Phase 1 Upgrade

    CERN Document Server

    Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul

    2017-01-01

    The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.

  8. Precision of MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Benes, Petr; Bergmann, Benedikt; Biskup, Bartolomej; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek [IEAP CTU in Prague (Czech Republic); Asbah, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Kladiva, Edward [IEP SAS Kosice (Slovakia)

    2015-07-01

    A network consisting of MPX detectors based on Medipix2 silicon pixel devices were originally adapted for measuring the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. We demonstrate that the MPX network, which consists of 16 MPX detectors, is a self-contained luminosity monitor system. As the MPX detectors are collecting data independently of the ATLAS data-recording chain, they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors close enough to the primary interaction point are used to perform van der Meer calibration scans with good precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s)=8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The variations of the MPX luminosity measurements around the fitted curve lead to a relative uncertainty on the luminosity measurement below 0.3% for one minute time intervals.

  9. Upgrade of the ATLAS Muon Barrel Trigger for HL-LHC.

    CERN Document Server

    Biondi, Silvia; The ATLAS collaboration

    2015-01-01

    The present ATLAS muon trigger in the barrel region (|η | < 1.05) is based on three layers of RPC chambers. It was designed to run for 10 years at the LHC luminosity of 1034cm−2s−1 and operated successfully and with high selectivity during the first run of the LHC. In order to ensure a stable performance of the RPCs until 2035 at the higher rates and at luminosities of 5−7x1034cm−2s−1 provided by HL-LHC, the chambers will have to be operated with reduced gas gain to respect the original design limits on currents and integrated charge. The ATLAS muon collaboration proposes an upgrade of the system by installing an inner layer of new generation RPCs during the LHC shutdown expected for the year 2023. This new layer will increase the system redundancy and therefore allow operation with high efficiency and high selectivity during the HL-LHC phase. The insertion of this new layer will also increase the geometrical acceptance in the barrel region from 75% to 95%. Moreover, the additional measurements ...

  10. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  11. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Testsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany); Havranek, Miroslav [University of Bonn, Bonn (Germany); Institute of Physics of the Academy of Sciences, Prague (Czech Republic)

    2015-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges coming from the higher hit rate will have to be solved by designing faster and more complex circuits, while at the same time keeping in mind very high radiation hardness requirements. Therefore matching the specification set by the high luminosity upgrade requires a large R and D effort. Our group is participating in such a joint development * namely the RD53 collaboration * which goal is to design a new pixel chip using an advanced 65 nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology will be shown together with a comparison with older technologies (130 nm, 250 nm). Most of the talk is allocated to presenting some of the circuits designed by our group, along with their performance measurement results.

  12. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Tetsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2016-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges arising from the increased hit rate will have to be solved by designing faster and more complex readout electronics that will also have to withstand unprecedented radiation doses. Developing such integrated circuit requires a significant R and D effort and resources, therefore a joint development project between several institutes (including ours) was started. This collaboration, named RD53, aims to develop a pixel readout chip suitable for ATLAS' and CMS' upgrades using a 65nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology are discussed. Most of the talk is allocated to presenting some of the circuits designed by our group (focusing on developments connected to RD53 collaboration), along with their performance measurement results.

  13. A DC-DC converter based powering scheme for the upgrade of the CMS pixel detector

    Science.gov (United States)

    Feld, L.; Karpinski, W.; Klein, K.; Merz, J.; Sammet, J.; Wlochal, M.

    2011-11-01

    Around 2016, the pixel detector of the CMS experiment will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the currently installed supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing the provision of power at higher voltages, thereby facilitating the supply of the required currents with the present cable plant. This conference report introduces the foreseen powering scheme of the pixel upgrade. For the first time, system tests have been conducted with pixel barrel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, studies of the stability of different powering schemes under various conditions are summarized. In particular the impact of large and fast load variations, which are related to the bunch structure of the LHC beam, has been studied.

  14. Performance studies of resistive Micromegas detectors for the upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2016-01-01

    Resistive Micromegas (Micro MEsh Gaseous Structure) detectors have proven along the years to be a reliable high rate capable detector techno- logy characterised by an excellent spatial resolution. The ATLAS colla- boration at LHC has chosen the resistive Micromegas technology (mainly for tracking), along with the small-strip Thin Gap Chambers (sTGC, mainly for triggering), for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW) upgrade project. The NSW requires fully efficient Micromegas chambers with spatial resolution better than 100μm independent of the track inci- dence angle and the magnetic field (B < 0.3 T), with a rate capability up to ∼ 10kHz/cm2. Along with the precise tracking the Micromegas chambers should be able to provide a trigger signal, complementary to the sTGC, thus a decent timing resolution is required. Several tests have been performed on small (10×10cm2) and medium size (1×0.5m2) resistive Micromegas chambers (b...

  15. Performance studies of resistive Micromegas detectors for the upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    Ntekas, Konstantinos; The ATLAS collaboration

    2015-01-01

    Resistive Micromegas (Micro MEsh Gaseous Structure) detectors have proven along the years to be a reliable high rate capable detector technology characterised by an excellent spatial resolution. The ATLAS collaboration at LHC has chosen the resistive Micromegas technology (mainly for tracking), along with the small-strip Thin Gap Chambers (sTGC, mainly for triggering), for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW) upgrade project. The NSW requires fully efficient Micromegas chambers with spatial resolution better than $100\\,\\mu\\mathrm{m}$ independent of the track incidence angle and the magnetic field ($B<0.3\\,\\mathrm{T}$), with a rate capability up to $\\sim10\\,\\mathrm{kHz/cm^2}$. Moreover, together with the precise tracking capability the Micromegas chambers should be able to provide a trigger signal, complementary to the sTGC, thus a decent timing resolution is required. Several tests have been performed on small ($10\\times10\\,\\...

  16. Research and Development in Micromegas Detector for the ATLAS Upgrade

    CERN Document Server

    Iakovidis, Georgios

    My candidacy as a Ph.D student begun officially on September 2010. It was at the time that the MAMMA collaboration performed R&D on micromegas detectors transforming them spark resistant. This was done by adding a foil of resistive strips on top of the readout strips. Joining the collaboration I started to be active in the test beam periods dedicating time to understand the detector behaviour. In parallel I developed simulation procedures to understand further the detector and finally describe the physical processes taking place when a charged particle traverses the detector. Moreover, the unexplored at that time μTPC method was studied. In late 2011 the micromegas technology was a candidate for the ATLAS New Small Wheel (NSW) upgrade to which I dedicated most of my time in order satisfy the requirements and prove that the detector will work in the ATLAS environment including the magnetic field conditions. Most of the work at that time was dedicated to understand the spatial resolution of the detector an...

  17. Fast Timing Detector R&D for Forward Proton Detectors at LHC

    Science.gov (United States)

    Snyder, Christina

    2017-01-01

    Quartz Timing Cherenkov (QUARTIC) detectors were tested at Fermilab Test Beam Facility in order to determine the timing resolution of very forward protons from collisions at the Large Hadron Collider (LHC). The active media of the detectors are quartz and sapphire, which are radiation hard and high light-yield materials. These detectors are constructed of 20 L-shaped bars that enable one to differentiate and detect more than one proton from the same LHC bunch crossing. The QUARTIC detectors have a small active area of 4cm2, which is well-matched to the acceptance of the scattered protons. Our experimental results will be presented and further testing of this design is planned.

  18. Performance of the Totem Detectors at the LHC

    CERN Document Server

    Antchev, G; Atanassov, I; Avati, V; Baechler, J; Bagliesi, M G; Berardi, V; Berretti, M; Bossini, E; Bottigli, U; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F S; Catanesi, M G; Cecchi, R; Covault, C; Csanád, M; Csörgő, T; Deile, M; Doubek, M; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Karev, A; Kašpar, J; Kopal, J; Kundrát, V; Lami, S; Latino, G; Lauhakangas, R; Leszko, T; Lippmaa, E; Lippmaa, J; Lokajíček, M; Losurdo, L; Lo Vetere, M; Lucas Rodríguez, F; Macrí, M; Mäki, T; Mercadante, A; Minafra, N; Minutoli, S; Nemes, F; Niewiadomski, H; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Palazzi, P; Pedreschi, E; Procházka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Ruggiero, G; Saarikko, H; Scribano, A; Smajek, J; Snoeys, W; Spinella, F; Sziklai, J; Taylor, C; Thys, A; Turini, N; Vacek, V; Vítek, M; Welti, J; Whitmore, J; Wyszkowski, P

    2013-01-01

    The TOTEM Experiment is designed to measure the total proton-proton cross-section with the luminosity-independent method and to study elastic and diffractive pp scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side of the IP in the pseudorapidity region 3.1 $\\le |\\eta| \\le $6.5, and special movable beam-pipe insertions – called Roman Pots (RP) – are placed at distances of ±147m and ±220m from IP5. This article describes in detail the working of the TOTEM detector to produce physics results in the first three years of operation and data taking at the LHC.

  19. Performance and description of the upgraded readout with the new back-end electronics for the ATLAS Pixel detector

    CERN Document Server

    Yajima, Kazuki; The ATLAS collaboration

    2017-01-01

    LHC increased drastically its performance during the RUN2 data taking, starting from a peak instantaneous luminosity of up to $5\\times10^{33} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$ in 2015 to conclude with the record value of $1.4\\times10^{34} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$ in November 2016. The concurrent increase of the trigger rate and event size forced the ATLAS experiment to exploit its sub-detectors to the maximum, approaching and possibly overcoming the design parameters. The ATLAS Pixel data acquisition system was upgraded to avoid possible bandwidth limitations. Two upgrades of the read-out electronics have been done. The first one during 2015/16 YETS, when the outermost pixel layer (Layer-2) was upgraded and its bandwidth was doubled. This upgrade partly contributed to maintain the data taking efficiency of the Pixel detector at a relatively high level ($\\sim$99%) during the 2016 run. A similar upgrade of the read-out system for the middle layer (Layer-1) is ongoing during 2016/17 EYETS. The details o...

  20. LHCb RICH Upgrade: an overview on the photon detector and the electronics system

    CERN Multimedia

    Cassina, Lorenzo

    2015-01-01

    The LHCb experiment is one of the four detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and the search for new physics in beauty and charm hadrons rare decays. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. Up to now the luminosity has reached up to 4 . $10^{32}$ cm$^{-2}$s$^{-1}$ with 50 ns bunch spacing and 3 fb$^{-1}$ have been collected since 2010. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 . $10^{33}$ cm$^{-2}$s$^{-1}$ with 25 ns bunch spacing are planned, with the goal of collecting 5 fb$^{-1}$ of data per year. In order to avoid degradation of the RICH detectors particle identification performance at such high rate (40 MHz), a detector upgrade is necessary. The present photodetectors (HPDs equipped with encapsulated 1 MHz readout chips) will be replaced with flat panel MaPMTs read out by external chips, designed for this purpose. The 25.4x25.4 m...

  1. Upgrade Plans for ATLAS Forward Calorimetry for the HL-LHC

    CERN Document Server

    Turner, J

    2012-01-01

    Even though data-taking has just started with the LHC, plans are being developed to operate the machine and its detectors at up to 10 times the original design luminosity. This has a major impact on the Forward Calorimeter (FCal), which is exposed to some of the highest radiation rates in ATLAS. The FCal detector and its associated components were designed for operation at the maximum LHC luminosity of \\(\\text{10}^{\\text{34}} \\text{ cm}^{-2}\\text{s}^{-1}\\). However at the higher luminosities projected for the HL-LHC, operation of the FCal may be compromised. Beam heating in the FCal could lead to the formation of argon bubbles in the detector, the ionization rate will result in space charge effects that will reduce the signal and the current draw will result in a voltage drop across the HV current limiting resistors. Two possible solutions are being considered to maintain FCal operation at HL-LHC. One is a complete replacement of the FCal system. A replacement FCal would have a similar design to the current c...

  2. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    CERN Document Server

    Novgorodova, O; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, plans for a High Luminosity LHC (HL-LHC) are already being developed for operation of the collider and associated detectors at luminosities of up to (5-7)×1034 cm-2s-1, with the goal of accumulating an integrated luminosity of 3000 fb-1. The proposed instantaneous and integrated luminosities are both well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two solutions for this are un...

  3. Operation and Performance of the Upgraded CMS Calorimeter Trigger in LHC Run 2

    CERN Document Server

    AUTHOR|(CDS)2071552

    2015-01-01

    The Large Hadron Collider (LHC) at CERN is preparing for the physics program for Run 2. The center-of-mass energy has risen from 8 to 13 TeV and the instantaneous luminosity will increase for both proton and heavy-ion running. This will make it more challenging to trigger on interesting events since the number of interactions per crossing (pile-up) and the overall trigger rate will be significantly larger than LHC Run 1. The Compact Muon Solenoid (CMS) experiment has installed a two-stage upgrade to their Calorimeter Trigger to ensure that the trigger rates can be controlled and the thresholds can stay low, so that physics data collection will not be compromised. The first-stage upgrade is installed and includes new electronics and duplicated optical links so that the LHC Run 1 CMS calorimeter trigger is still functional and algorithms can be developed while data taking continues. The second-stage will fully replace the calorimeter trigger at CMS with AMC form-factor boards and an optical link system, and...

  4. Upgraded Readout and Trigger Electronics for the ATLAS Liquid Argon Calorimeter at the LHC at the Horizons 2018-2022

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2013-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Board (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies...

  5. The ATLAS Trigger Core Configuration and Execution System in Light of the ATLAS Upgrade for LHC Run 2

    CERN Document Server

    Heinrich, Lukas; The ATLAS collaboration

    2015-01-01

    During the 2013/14 shutdown of the Large Hadron Collider (LHC) the ATLAS first level trigger (L1T) and the data acquisition system (DAQ) were substantially upgraded to cope with the increase in luminosity and collision multiplicity, expected to be delivered by the LHC in 2015. To name a few, the L1T was extended on the calorimeter side (L1Calo) to better cope with pile-up and apply better-tuned isolation criteria on electron, photon, and jet candidates. The central trigger (CT) was widened to analyze twice as many inputs, provide more trigger lines, and serve multiple sub-detectors in parallel during calibration periods. A new FPGA-based trigger, capable of analyzing event topologies at 40 MHz, was added to provide further input to forming the level 1 trigger decision (L1Topo). On the DAQ side the dataflow was completely remodeled, merging the two previously existing stages of the software-based high level trigger into one. Partially because of these changes, partially because of the new trigger paradigm to h...

  6. A New Readout Electronics for the LHCb Muon Detector Upgrade

    CERN Multimedia

    Cadeddu, Sandro

    2016-01-01

    The 2018/2019 upgrade of LHCb Muon System foresees a 40 MHz readout scheme and requires the development of a new Off Detector Electronics (nODE) board that will be based on the nSYNC, a radiation tolerant custom ASIC developed in UMC 130 nm technology. Each nODE board has 192 input channels processed by 4 nSYNCs. The nSYNC is equipped with fully digital TDCs and it implements all the required functionalities for the readout: bunch crossing alignment, data zero suppression, time measurements. Optical interfaces, based on GBT and Versatile link components, are used to communicate with DAQ, TFC and ECS systems.

  7. FELIX: the detector readout upgrade of the ATLAS experiment

    CERN Document Server

    Ryu, Soo; The ATLAS collaboration

    2015-01-01

    After the Phase-I upgrade and onward, the Front-End Link eXchange(FELIX) system will be the interface between the readout system and the detector front-end electronics and trigger electronics at the ATLAS experiment. FELIX will function as a gateway to a commodity switched network which will use standard technologies (Ethernet or Infiniband) to communicate with data collecting and processing components. In this talk the system architecture of FELIX will be described and the testing results of the FELIX demonstrator will be presented

  8. A Solution for Phase-one Upgrade of the LHC Low-beta Quadrupoles Based on Nb-Ti

    CERN Document Server

    Koutchouk, Jean-Pierre; Todesco, E

    2007-01-01

    We discuss the possibilities of upgrading the LHC triplet quadrupoles by significantly increasing their aperture (and length), using the Nb-Ti cable of the main dipoles. The goal of this first phase in upgrading the triplet is to allow a rapid improvement of the luminosity mostly by removing limitations related to the triplet aperture. Neither the experimental area, including the TAS, nor the basic optics are modified. By the same token, steps are made to allow a moderate increase of the luminosity within the capabilities of the existing detectors. The triplet aperture is sized to decrease the collimator impedance below significance, allow a potential increase of the luminosity by some 50% or up to a factor of 2 with an external ancillary system acting on the geometrical loss factor. Some extra aperture is foreseen to lower the power deposition, to improve field quality and/or to allow a stronger focusing in the event some baseline beam parameters would not be reached. In this way, the proposed phase-one upgr...

  9. Pile-up Rejection in the High Granularity Time Detector for the High Luminosity LHC

    CERN Document Server

    McNulty, Paul

    2016-01-01

    The High Granularity Timing Detector, a proposed upgrade to the Liquid Argon Calorimeter during the transition to the High Luminosity LHC, will provide increased resolution in the time domain and offer an avenue for efficiently mitigating the expected increase in pile-up jets. This study analyzes how effectively current algorithms are using a signal jet peak calculation to disentangle desired information from other events. Two samples, one with only hard-scattering events and another that also included pile-up events, were used. A transverse momentum range of 30GeV to 70GeV and pseudo-rapidity range of 2.4 to 4.8 divided the sample to see how the HGTD performed when calculating the signal peak for each jet and how many cells had detections in and out of that peak for each sample.

  10. Software management of the LHC Detector Control Systems

    CERN Multimedia

    Varela, F

    2007-01-01

    The control systems of each of the four Large Hadron Collider (LHC) experiments will contain of the order of 150 computers running the back-end applications. These applications will have to be maintained and eventually upgraded during the lifetime of the experiments, ~20 years. This paper presents the centralized software management strategy adopted by the Joint COntrols Project (JCOP) [1], which is based on a central database that holds the overall system configuration. The approach facilitates the integration of different parts of a control system and provides versioning of its various software components. The information stored in the configuration database can eventually be used to restore a computer in the event of failure.

  11. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  12. Upgrade plans for ATLAS Forward Calorimetry for the HL-LHC

    CERN Document Server

    Randrianarivony, K; The ATLAS collaboration

    2011-01-01

    Even though data taking has just started with the LHC, plans are being developed to operate the machine and its detectors at up to 10 times the original design luminosity. This has an impact on many components of the ATLAS detector, particularly the Forward calorimeter, which is exposed to some of the highest radiation rates in ATLAS. The FCal detector and its associated components were designed for operation at the maximum LHC luminosity of 1034 cm2s-1. However at the higher luminosities (HL), which are projected for the HL-LHC, operation of the FCal will be compromised. Beam heating in the FCal which is located on a liquid argon filled cryostat could lead to the formation of argon bubbles in the detector, the ionization rate will result in space charge effects that will reduce the signal and the current draw will result in a voltage drop across the HV current limiting resistors. The space charge and ionization rates will result in the FCal becoming insensitive to particles at its inner edge and the insensit...

  13. Flat bunch creation and acceleration: a possible path for the LHC luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2009-05-01

    Increasing the collider luminosity by replacing bunches having Gaussian line-charge distribution with flat bunches, but with same beam-beam tune shift at collision, has been studied widely in recent years. But, creation of 'stable' flat bunches (and their acceleration) using a multiple harmonic RF system has not been fully explored. Here, we review our experience with long flat bunches in the barrier RF buckets at Fermilab.We presentsome preliminary results from beam dynamics simulations and recent beam studies in the LHC injectors to create stable flat bunches using double harmonic RF systems. The results deduced from these studies will be used to model the necessary scheme for luminosity upgrade in the LHC. We have also described a viable (and economical) way for creation and acceleration of flat bunches in the LHC. The flat bunch scheme may have many advantages over the LHC baseline scenario, particularly because of the reduced momentum spread of the bunch for increased intensities.

  14. Upgrade of the ATLAS Muon Spectrometer for Operation at the HL-LHC

    CERN Document Server

    Kortner, Oliver; The ATLAS collaboration

    2016-01-01

    The High-Luminosity Large Hadron Collider (HL-LHC) will increase the sensitivity of the ATLAS experiment to low-rate high-energy physics processes. In order to cope with the 10 times higher instantaneous luminosity compared to the LHC, the trigger system of ATLAS needs to be upgraded. The ATLAS experiment plans to increase the maximum rate capability of the first two trigger levels to 1 MHz at 6 µs latency. This requires new on- and off-chamber electronics for its muon spectrometer. The replacement of the precision chamber read-out electronics will make it possible to include their data in the first level trigger decision and thus to increase the selectivity of the first level muon trigger. The acceptance of the present RPC trigger system in the barrel will be increased from 75% to 95% by the installation of additional thin-gap RPC with a substantially increased high-rate capability compared to the current RPCs.

  15. Quench Protection Studies of 11T Nb$_3$Sn Dipole Models for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Chlachidze, Guram [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Karppinen, Mikko [CERN

    2014-07-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  16. ATLAS Fact Sheet : To raise awareness of the ATLAS detector and collaboration on the LHC

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    Facts on the Detector, Calorimeters, Muon System, Inner Detector, Pixel Detector, Semiconductor Tracker, Transition Radiation Tracker,, Surface hall, Cavern, Detector, Magnet system, Solenoid, Toroid, Event rates, Physics processes, Supersymmetric particles, Comparing LHC with Cosmic rays, Heavy ion collisions, Trigger and Data Acquisition TDAQ, Computing, the LHC and the ATLAS collaboration. This fact sheet also contains images of ATLAS and the collaboration as well as a short list of videos on ATLAS available for viewing.

  17. LHCb RICH Upgrade: an overview of the photon detector and electronics system

    CERN Document Server

    Cassina, L

    2016-01-01

    The LHCb experiment is one of the four large detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and to the search for new physics in rare decays of beauty and charm hadrons. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. From 2019 onwards 14 TeV collisions with luminosities reaching up to $2\\cdot10^{33}$ cm$^{-2}$ s$^{-1}$ with 25 ns bunch spacing are planned, with the goal of collecting 5 fb$^{-1}$ of data per year. In order to avoid degradation of the PID performance at such high rate (40 MHz), the RICH detector has to be upgraded. New photodetectors (Multi-anode photomultiplier tubes, MaPMTs) have been chosen and will be read out using a 8-channels chip, named CLARO, designed to sustain a photon counting rate up to 40 MHz, while minimizing the power consumption and the cross-talk. A 128-bit digital register allows selection of thresholds and attenuation values and provides featu...

  18. LHCb RICH Upgrade: an overview of the photon detector and electronic system

    Science.gov (United States)

    Cassina, L.

    2016-01-01

    The LHCb experiment is one of the four large detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and to the search for new physics in rare decays of beauty and charm hadrons. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 × 1033 cm-2s-1 with 25 ns bunch spacing are planned, with the goal of collecting 5 fb-1 of data per year. In order to avoid degradation of the PID performance at such high rate (40 MHz), the RICH detector has to be upgraded. New photodetectors (Multi-anode photomultiplier tubes, MaPMTs) have been chosen and will be read out using an 8-channel chip, named CLARO, designed to sustain a photon counting rate up to 40 MHz, while minimizing the power consumption and the cross-talk. A 128-bit digital register allows selection of thresholds and attenuation values and provides features useful for testing and debugging. Photosensors and electronics are arranged in basic units, the first prototypes of which have been tested in charged particle beams in autumn 2014. An overview of the CLARO features and of the readout electronics is presented.

  19. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  20. A proposal to study a tracking/preshower detector for the LHC

    CERN Document Server

    Munday, D J; Anghinolfi, Francis; Bonino, R; Campbell, M; Fassò, A; Gildemeister, O; Heijne, Erik H M; Jarron, Pierre; Mapelli, Livio P; Pentney, J M; Poppleton, Alan; Stevenson, Graham Roger; Gössling, C; Pollmann, D; Sondermann, V; Tsesmelis, E; Clark, A G; Kienzle-Focacci, M N; Martin, M; Rosselet, L; Fretwurst, E; Lindström, G; Reich, V; Bardos, R A; Gorfine, G W; Taylor, G; Tovey, Stuart N; Stapnes, Steinar; Weidberg, A R; Lubrano, P; Pepé, M; Grayer, Geoffrey H; Sharp, P; Bakich, A M; Peak, L S; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    We describe a program of studies aimed at determining whether the track stub/preshower technique of electron identification can be used at the highest operating luminosities of the proposed LHC collider. The proposal covers detector and electronics developments required for the construction of a track-stub and preshower detector preceding the electromagnetic calorimeter of an LHC experiment.

  1. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    Science.gov (United States)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  2. Active Pixel Sensors in ams H18/H35 HV-CMOS Technology for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Ristic, Branislav

    2016-01-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement amplifier and discriminator stages directly in insulating deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150V leading to a depletion depth of several 10um. Prototype sensors in the ams H18 180nm and H35 350nm HV-CMOS processes have been manufactured, acting as a potential drop-in replacement for the current ATLAS Pixel sensors, thus leaving higher level processing such as trigger handling to dedicated read-out chips. Sensors were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiation with X-rays and protons revealed a tolerance to ionizing doses o...

  3. The VELO Upgrade

    CERN Document Server

    Jans, Eddy

    2015-01-01

    A significant upgrade of the LHCb detector is scheduled to be installed in 2018-2019. Afterwards all sub-detectors will be read out at the LHC bunch crossing frequency of 40 MHz and the trigger will be fully implemented in software. The silicon strip vertex detector will be replaced by a hybrid pixel detector. In these proceedings the following items are discussed: frontend ASIC, data rates, data transmission, cooling, radiation hard sensors, module design and simulated performance.

  4. Performance characterization of the Micromegas detector for the New Small Wheel upgrade and Development and improvement of the Muon Spectrometer Detector Control System in the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349891

    The ATLAS, an abbreviation for A Toroidal LHC ApparatuS, detector is one of the two general purpose high luminosity experiments (along with CMS) that have been built for probing p-p and Pb-Pb or p-Pb collisions in the LHC. The muon spectrometer encircles the rest of the ATLAS detector subsystems defining the ATLAS overall dimensions. Its principle of operation is based on the magnetic deflection of muon tracks by a system of superconducting air-core toroid magnets providing high resolution muon momentum measurement. The upgrade of the ATLAS muon spectrometer is primarily motivated by the high background radiation expected during Run-3 (2021) and ultimately at $\\mathcal{L}=7\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$ in HL-LHC (2026). Owing to this the detectors that occupy the innermost muon station called Small Wheel (SW), MDT, CSC \\& TGC, will go beyond their design luminosity limit. In addition, the muon trigger rate will exceed the available bandwidth because of the fake endcap muon triggers ($90\\%$ is c...

  5. Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC

    CERN Document Server

    AUTHOR|(CDS)2093638

    Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC Master of Science Thesis, 110 pages, 12 Appendix pages September 2013 Major: Design of machines and systems Examiner: Professor Reijo Kouhia Keywords: CERN, LHC, High Luminosity LHC project, superconductive dipole magnet, welding press, Nb3Sn, pre-stress, Ar-inert gas furnace This thesis work has been carried out as a contribution to the development program of superconductive magnets within the LHC High Luminosity study. The thesis provides an insight to the steps that need to be taken in order to produce a superconductive magnet mainly focusing on mechanical assembly. Tooling upgrade is necessary for the production of the superconductive dipole magnet prototypes in near future. Major attention is given by the introduction of the welding assembly in chapter three. The structural compression is given by the so called shell stress defined by the thermal shrinkage of the weld. The associated ...

  6. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run I and planned upgrades

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale was transferred to the rest of the detector via the response to radioactive sources. The calibrated scale was validated in situ with muons and single hadrons and the timing performance with muons and jets as detailed in this contribution. The data quality procedures used during the LHC data-taking and the evolution of the detector status are exposed. The energy and the time reconstruction performance...

  7. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal...

  8. Micromegas detectors for the muon spectrometer upgrade of the ATLAS experiment

    Science.gov (United States)

    Bianco, M.

    2016-07-01

    Large area Micromegas (MM) detectors will be employed for the Muon Spectrometer upgrade of the ATLAS experiment at the LHC. A total surface of about 150 m2of the forward regions of the Muon Spectrometer will be equipped with 8 layers of MM modules. Each module covers a surface area of approximately 2-3 m2 for a total active area of 1200 m2. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the planned 2018/2019 shutdown. This upgrade will maintain a low pT threshold for single muons and provide excellent tracking capabilities for the HL-LHC phase. The New Small Wheel (NSW) project requires fully efficient MM chambers with spatial resolution down to 100 μm, at rate capability up to about 15 kHz/cm2 and operation in a moderate (highly inhomogeneous) magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic spatial resolution combined with a challenging mechanical precision. The design, recent progress in the construction and results from the substantial R& D phase (with a focus on novel technical solutions) is presented. In the R& D phase, small and medium size single layer prototypes have been built, along with, more recently, the first two MM quadruplets in a configuration very close to the final one chosen for the NSW. Several tests have been performed on these prototypes at a high-energy test-beam at CERN, to demonstrate that the achieved performances fulfil the requirements. Recent tests applying various configuration and operating conditions are presented.

  9. Development of Micro-Pattern Gas Detectors for the Upgrade of the Muon System of the CMS experiment at the Large Hadron Collider

    CERN Document Server

    Bouhali, Othmane

    2017-01-01

    After the discovery of the long awaited Higgs boson in 2012, the Large hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) and its two general purpose experiments (ATLAS and CMS) are preparing to break new grounds in High Energy Physics (HEP). The international HEP collaboration has established a rigorous research program of exploring new physics at the high energy frontiers. The program includes substantial increase in the luminosity of the LHC putting detectors into a completely new and unprecedented harsh environment. In order to maintain their excellent performance, an upgrade of the existing detectors is mandatory. In this work we will describe ongoing efforts for the upgrade of the CMS muon detection system, in particular the addition of detection layers based on the Gas Electron Multiplier (GEM) technology. We will summarize the past 5-year R\\ and D program and the future installation and operation plans.

  10. Field Quality and Mechanical Analysis of the Beam Separation Dipole for HL-LHC Upgrade

    CERN Document Server

    AUTHOR|(CDS)2086334; Nakamoto, Tatsushi; Xu, Q; Kawamata, H; Todesco, Ezio

    2015-01-01

    High luminosity upgrade of the Large Hadron Collider (HL-LHC) project has been launched to attain a ten times higher integrated luminosity than the current LHC that has been in operation for over ten years. For this goal, the quadruple and dipole magnets around two interaction points, the ATLAS and the CMS, will be upgraded. High Energy Accelerator Research Organization (KEK) is in charge of developing the new superconducting beam separation dipole magnet (D1). The main dipole field of 5.6 T in a large aperture of 150 mm is generated using a cos-theta coil wound with Nb-Ti cables at nominal operating current of 12.0 kA at 1.9 K corresponding to 75% of the load line ratio. The main challenges for the D1 are larger aperture, a high level of iron saturation, radiation resistance, and tight constraints on field quality. This article summarizes the results of a detailed analysis on field error. Electromagnetic simulation with ROXIE was carried out for the 2-D model of the new D1. As possible design changes, a diam...

  11. Upgrade and Tests of the SPS Fast Extraction Kicker System for LHC and CNGS

    CERN Document Server

    Gaxiola, E; Burkel, P; Carlier, E; Castronuovo, F; Ducimetière, L; Sillanoli, Y; Timmins, M; Uythoven, J

    2004-01-01

    A fast extraction kicker system has been installed in the SPS and successfully used in extraction tests in 2003. It will serve to send beam to the anticlockwise LHC ring and the CNGS neutrino facility. The magnets and pulse generators have been recuperated from an earlier installation and upgraded to fit the present application. Hardware improvements include diode stacks as replacement of the previous dump thyratron switches, a cooling system of the magnets, sensors for its ferrite temperatures and magnetic field quality assessment. In preparation of the future use for 450 GeV/c transfer to LHC and double batch extraction at 400 GeV/c for CNGS the tests comprised extractions of single bunches, twelve bunches in a single extraction and single bunches in a double extraction. The measured kick characteristics of the upgraded system are presented, along with a discussion of Pspice simulation results. Further improvements will be discussed which are intended to make the system comply with the specifications for CN...

  12. A Nb-Ti 90 mm Double-Aperture Quadrupole for the High Luminosity LHC Upgrade

    CERN Document Server

    Segreti, M; Todesco, E

    2015-01-01

    The luminosity upgrade of the LHC requires replacing the magnets around the ATLAS and CMS experiments with larger aperture dipoles, quadrupoles and correctors. The goal is to have a magnetic lattice that can allow to halve the beam size in the collision points with respect to present baseline. Within the framework of HiLumi LHC, CEA-Saclay studied the replacement of the 70-mm double aperture quadrupole Q4, with a 90-mm magnet based on Nb-Ti technology. The main challenges are due to the distance between the beams of 194 mm, giving a non-negligible magnetic coupling between the two apertures. The coil chosen to be the baseline is a single layer with 15-mm-width cable of the LHC MQ quadrupole. The mechanical structure is based on stainless steel collars to withstand the Lorentz forces. The iron yoke has a magnetic function, and guarantees the alignment of the two apertures. Electromagnetic and mechanical aspects and effects of unbalanced regimes on the field quality have been analyzed. A 3-D design of the coil ...

  13. Serial powering Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    CERN Document Server

    Ta, D B; Hugging, F; Fischer, P; Grosse-Knetter, J; Runólfsson, O; Wermes, N

    2006-01-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensive...

  14. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5x10ˆ34 cm-2s-1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will a...

  15. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00127668; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 1034cm2s1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow ...

  16. Development and performance of Triple-GEM detectors for the Upgrade of the Muon System of the CMS experiment

    CERN Document Server

    AUTHOR|(CDS)2088078

    2015-01-01

    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R and D performed on chambers design features and will discuss the performance of the upgraded detector.

  17. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  18. Optoelectronic~Analogue~Signal~Transfer~for~LHC~Detectors

    CERN Multimedia

    Stefanini, G; Reinhart, F K; Batten, J C

    2002-01-01

    % RD23 \\\\ \\\\ \\\\ \\\\The main goal of the RD23 project is to develop optical fiber links for volume application in the analog signal transfer of tracking detectors at LHC. Key requirements were radiation hardness, low power dissipation and affordable cost. The technique proposed initially was based on external modulation, and the project was targeted at the development of electro-optic intensity modulators as transmitters. In 1996, this approach was abandoned in favor of a system based on directly modulated semiconductor laser transmitters. This configuration was subsequently adopted as baseline choice by the CMS experiment for its tracker readout system. \\\\ \\\\In view of qualifying the radiation hardness of all optical link components to be installed at LHC front-ends, extensive validation tests took place in 1997 and 1998. Irradiations of lasers, pin-diodes, optical fibers and connectors were carried out with neutrons ($\\sim$6MeV) and $^{60}$Co gamma rays. In addition, lasers and pin-diodes in die as well as pa...

  19. The CERN Detector Safety System for the LHC Experiments

    CERN Document Server

    Lüders, S; Morpurgo, G; Schmeling, S

    2003-01-01

    The Detector Safety System (DSS), currently being developed at CERN under the auspices of the Joint Controls Project (JCOP), will be responsible for assuring the protection of equipment for the four LHC experiments. Thus, the DSS will require a high degree of both availability and reliability. After evaluation of various possible solutions, a prototype is being built based on a redundant Siemens PLC front-end, to which the safety-critical part of the DSS task is delegated. This is then supervised by a PVSS SCADA system via an OPC server. The PLC front-end is capable of running autonomously and of automatically taking predefined protective actions whenever required. The supervisory layer provides the operator with a status display and with limited online reconfiguration capabilities. Configuration of the code running in the PLCs will be completely data driven via the contents of a "Configuration Database". Thus, the DSS can easily adapt to the different and constantly evolving requirements of the LHC experimen...

  20. Networks for the ATLAS LHC Detector Requirements, Design and Validation

    CERN Document Server

    Stancu, S N

    2005-01-01

    ATLAS (A Toroidal LHC ApparatuS) is one of the four experiments approved for operation on the LHC (Large Hadron Collider) accelerator at CERN. Inside the ATLAS detector, the proton-proton bunch crossings will occur at approximately 40 MHz, generating about 1.6 Mbyte data for each event. The handling of the resulting data rate (64 Tbyte/s) is a serious challenge. As most of the collisions are "ordinary" (i.e. contain irrelevant physics data) a three layer Trigger and Data Acquisition system (TDAQ) is used to select the interesting events in real-time before recording them on mass storage. The total data rate which needs to be permanently stored is thus reduced to approximately 320 Mbyte/s. The second level trigger is a distributed system, implemented using approximately 1000 end-nodes interconnected by a high speed Ethernet network (the DataFlow network). It receives event data at a rate of up to 100 kHz, analyzes it, and reduces the rate to 3.3 kHz; a cross-sectional network bandwidth of approximately 10 Gbyt...

  1. Design of FPGA-based radiation tolerant quench detectors for LHC

    Science.gov (United States)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  2. Operation, performance and upgrade of the CMS Resistive Plate Chamber system at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, Marcello, E-mail: Marcello.Abbrescia@ba.infn.it

    2013-12-21

    The Resistive Plate Chambers are used in CMS as dedicated muon trigger detectors in both barrel and endcap regions. They also contribute to the identification, reconstruction and tracking of the muons, together with Drift Tubes in the barrel and Cathode Strip Chambers in the endcaps. In this paper a detailed report about the operation and performance of the system after three years of LHC activities with increasing instantaneous luminosity is given. This period allowed to accumulate enough statistics to measure the detector performance with an unprecedented accuracy on such a large amount of chambers. This provided new insights both on the detector fundamentals and on the related operational aspects. Special attention was devoted to the working point calibration procedures and to the stability of the system. A comparison between the initial and present performance is made, and an overview is given of what has been learned in almost three years of operation of one of the largest systems based on RPCs.

  3. High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers

    CERN Document Server

    Maciariello, Fausto; Butcher, Mark; Calviani, Marco; Folch, Ramon; Kain, Verena; Karagiannis, Konstantinos; Lamas Garcia, Inigo; Lechner, Anton; Nuiry, Francois-Xavier; Steele, Genevieve; Uythoven, Jan

    2016-01-01

    In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the resul...

  4. ATLAS Upgrade Plans

    CERN Document Server

    Hopkins, W; The ATLAS collaboration

    2014-01-01

    After the successful LHC operation at the center-of-mass energies of 7 and 8 TeV in 2010-2012, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000/fb by around 2035 for ATLAS and CMS. In parallel, the experiments need to be keep lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Current planning in ATLAS envisions significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new...

  5. LHCb : A Scintillating Fibre Trackind Detector for the LHCb Upgrade

    CERN Multimedia

    Lindner, Rolf

    2014-01-01

    LHCb is preparing the upgrade which is scheduled to be installed in 2018/19. The Scintillating Fibre (SciFi) Tracker will be designed to replace the current tracking system downstream of the magnet, required to run at an increased luminosity of 1 - 2 10$^{33}$ cm$^{-2}$s$^{-1}$ and to collect a total of 50fb$^{-1}$ of data. The readout of the detector will be at 40MHz, applying a full software based trigger for every single bunch crossing. The SciFi Tracker consists of 12 planes covering a total surface of 350 m2. Modules are based on 2.5 m long multilayer ribbons made of 250 um diameter scintillating fibres as the active medium and signal transport. Silicon photomultiplier (SiPM) arrays with 128 channels at a width of 250 um are used for the readout. The signals from the SiPMS are digitized on an ASIC chip before reconstructing the track hit position within an FPGA on the front-end board. Several challenges facing this detector and the significant progress over the last year will be presented regarding the p...

  6. PACIFIC: the readout ASIC for the SciFi Tracker of the upgraded LHCb detector

    Science.gov (United States)

    Mazorra, J.; Chanal, H.; Comerma, A.; Gascón, D.; Gómez, S.; Han, X.; Pillet, N.; Vandaele, R.

    2016-02-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and will switch to a 40 MHz readout rate using a trigger-less software based system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with the higher detector occupancy and radiation damage. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed and a custom ASIC, called the low-Power ASIC for the sCIntillating FIbres traCker (PACIFIC), will be used to digitise the signals from the SiPMs. This article presents an overview of the R&D for the PACIFIC. It is a 64-channel ASIC implemented in 130 nm CMOS technology, aiming at a radiation tolerant design with a power consumption below 10 mW per channel. It interfaces directly with the SiPM anode through a current mode input, and provides a configurable non-linear 2-bit per channel digital output. The SiPM signal is acquired by a current conveyor and processed with a fast shaper and a gated integrator. The digitization is performed using a three threshold non-linear flash ADC operating at 40 MHz. Simulation and test results show the PACIFIC chip prototypes functioning well.

  7. Higher Order Mode Filter Design for Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade

    CERN Document Server

    Xiao, B P; Ben-Zv, I; Burt, Graeme Campbell; Calaga, Rama; Capatina, Ofelia; Hall, B; Jones, T; Skaritka, J; Verdú-Andrés, S; Wu, Q

    2015-01-01

    A Double Quarter Wave Crab Cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multi-physics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described.

  8. Higher order mode filter design for double quarter wave crab cavity for the LHC high luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Burt, G. [Lancaster Univ. (United Kingdom); Calaga, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Capatina, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hall, B. [Lancaster Univ. (United Kingdom); Jones, T. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A Double Quarter Wave Crab Cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multiphysics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described.

  9. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  10. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Science.gov (United States)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  11. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Rodriguez Bosca, Sergi; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The High-Luminosity phase of LHC (HL-LHC)expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under higher pileup. All the TileCal on- and off-detector electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes...

  12. Proposal for the award of a contract for the upgrade of clean and waste water systems for the LHC

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the upgrade of clean and waste water systems for the LHC. Following a market survey carried out among 61 firms in thirteen Member States, a call for tenders (IT-3176/ST/LHC) was sent on 28 May 2003 to four firms and four consortia in six Member States. By the closing date, CERN had received six tenders from two firms and four consortia in five Member States. The Finance Committee is invited to agree to the negotiation of a contract with ABB (CH), the lowest bidder, for the upgrade of clean and waste water systems for the LHC for a total amount of 920 000 Swiss francs, not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: DE - 35%; FR - 31%; CH - 17%; SE - 13%; DK - 4%.

  13. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Terzo, Stefano; Nisius, R.; Paschen, B.

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The perfo...

  14. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  15. Absolute luminosity measurements with the LHCb detector at the LHC

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  16. Engineering Study of Crab Cavity HOM Couplers for LHC High Luminosity Upgrade

    CERN Document Server

    Park, Hyekyung; Delayen, Jean Roger; De Silva, S U; Li, Z; Nicol, T H; Capelli, Teddy; Templeton, Niklas John

    2015-01-01

    The LHC is planning to employ crab cavities for the high luminosity upgrade. Old Dominion University and SLAC National Laboratory are developing a crab cavity completed with the HOM damping couplers [1]. The HOM couplers are coaxial type and perform over broadband up to 2 GHz. The amount of extracted power requires active cooling using liquid helium. The electromagnetic study has provided expected power dissipation on the coupler. Correlations between the fabrication tolerance and its damping performance have been studied and the results are providing guidelines on how to manufacture the HOM couplers. This paper summarizes the engineering studies; mechanical strength as a part of pressure system, thermal stability, and fabrication method to ensure the required tolerance.

  17. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey Claiborne; /SLAC; Keller, Lewis; /SLAC; Lundgren, Steven; /SLAC; Markiewicz, Thomas; /SLAC; Young, Andrew; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

  18. The Upgrade of the ATLAS Electron and Photon Triggers towards LHC Run 2 and their Performance

    CERN Document Server

    Kahn, Sebastien Jonathan

    2015-01-01

    Electron and photon triggers are essential for a wide variety of ATLAS physics analyses. For example, final states including leptons and photons had key role in the discovery and measurement of the Higgs particle properties. Dedicated triggers are also used for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based (L1) and a software-based High Level Trigger (HLT). Both were upgraded during the long shutdown of the LHC in preparation for data taking in 2015 to cope with the increasing luminosity, the more challenging pile-up conditions and higher center-of-mass energy. The trigger selection has also been optimised to further control the rates while keeping efficiencies high. Performance of the the run~2 triggers measured with early run~2 data are shown.

  19. Upgrade of the ATLAS muon spectrometer for operation at the HL-LHC

    Science.gov (United States)

    Kortner, Oliver

    2017-02-01

    The High-Luminosity Large Hadron Collider will increase the sensitivity of the ATLAS experiment to rare physics processes. In order to cope with a 10 times higher instantaneous luminosity compared to the LHC, the trigger system of ATLAS needs to be upgraded. The ATLAS experiment plans to increase the maximum rate capability of the 1st trigger level to 1 MHz at 6 μ s latency. This requires new on- and off-chamber electronics for its muon spectrometer. The replacement of the precision chamber read-out electronics will make it possible to include their data in the 1st level trigger decision and thus to increase the selectivity of the 1st level muon trigger. The acceptance of the present RPC trigger system in the barrel region will be increased from 75% to 95% by the installation of additional thin-gap RPC with a substantially increased high-rate capability compared to the current RPCs.

  20. Commissioning of the Absolute Luminosity For ATLAS Detector at the LHC

    DEFF Research Database (Denmark)

    Jakobsen, Sune

    To determine the total cross section and absolute luminosity in the ATLAS detector at the LHC via pp scattering under very small angles, a dedicated sub-detector called ALFA has been made. Several performance evaluation tests including a test beam campaign lead to improvements of the detector...... system capabilities both before and after the installation at the LHC in winter 2010-2011. The ALFA detector system was commissioned, optimized and integrated into ATLAS making it possible to trigger full ATLAS detector with ALFA. Already In 2011 this allowed for a measurement of the total cross section...

  1. Enhanced scope of a Phase 2 CMS detector for the study of exotic physics signatures at the HL-LHC

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The high luminosity LHC (HL-LHC) run, which is due to start in 2025, is expected to collect an integrated luminosity of approximately $3000~\\mathrm{fb}^{-1}$ at $\\sqrt{s}=14~\\mathrm{TeV}$. The discovery and study of physics beyond the standard model will remain one of the major goals of the CMS collaboration during this period. Such physics can yield exotic signatures, whose observation places unusual demands on the performance and capabilities of the detector. For a few selected exotic physics models, we present studies of what can be achieved using CMS data during the HL-LHC run. We look at how this potential is influenced by the design of the upgraded CMS detector, as documented in the $\\mathrm{phase~2}$ technical proposal. This document provides supplementary material for a deeper level of understanding of these studies. In the case of a high mass resonance decaying to leptons, we explore the hypothesis that this is discovered prior to 2025, and examine what would be learned about the resonance's properti...

  2. Upgrade of the ATLAS Muon Spectrometer for Operation at the HL-LHC

    CERN Document Server

    Kortner, Oliver; The ATLAS collaboration

    2016-01-01

    The High-Luminosity Large Hadron Collider (HL-LHC) will increase the sensitivity of the ATLAS experiment to low-rate high-energy physics processes. In order to cope with the 10 times higher instantaneous luminosity compared to the LHC, the trigger system of ATLAS needs to be upgraded. The ATLAS experiment plans to increase the maximum rate capability of the first two trigger levels to 1 MHz at 6 $\\mu$s latency and 400 kHz at 30 $\\mu$s latency, respectively. This requires new trigger and read-out electronics for the RPC (resistive plate) and TGC (thin gap) trigger chambers, and the replacement of the read-out electronics of the MDT (monitored drift tube) precision chambers. The replacement of the MDT read-out electronics will make it possible to include their data in the first level trigger decision and thus to increase the selectivity of the first level muon trigger. The RPC trigger system in the barrel will have to be reinforced by the installation of additional thin-gap RPC with a substantially increased hi...

  3. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    Meuter, Florian

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb3Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrical res...

  4. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    CERN Document Server

    INSPIRE-00517212; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2016-01-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 um. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 um and a novel design with the optimized biasing structure and small pixel cells (50 um x 50 um and 25 um x 100 um). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represen...

  5. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Savic, N.; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-02-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm2). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm2 pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  6. Radiation background simulation and verification at the LHC and its upgrades.

    CERN Document Server

    Dawson, I; The ATLAS collaboration

    2012-01-01

    The high collision rates at the new energy regime of the LHC gives rise to unprecedented radiation environments, especially in the inner regions of the experiments. Deleterious effects of radiation on the experiments include: damage to detectors and electronics; fake backgrounds in the selection and reconstruction of interesting physics events; single event upsets causing disruption in the data readout; radio-activation of components making access for maintenance difficult. High fidelity codes such as FLUKA and GEANT4 are necessary for simulating the complex radiation backgrounds in detail. The results can then be used for predicting detector system behaviour and performance over the lifetime of the project. In this talk the following will be covered: First the Monte Carlo tools used to simulate the radiation backgrounds will be discussed, which include the transport codes FLUKA and GEANT4, as well as the collision event generators PHOJET and PYTHIA. Examples of the predictions at the ATLAS experiment will be...

  7. Steady State Heat Deposits Modeling in the Nb3Sn Quadrupole Magnets for the Upgrade of the LHC Inner Triplet

    CERN Document Server

    Bocian, D; Barzi, E; Bossert, R; Caspi, S; Chlachidze, G; Dietderich, D; Feher, S; Felice, H; Ferracin, P; Hafalia, R; Kashikhin, V V; Lamm, M; Sabbi, G L; Turrioni, D; Wanderer, P; Zlobin, A V

    2012-01-01

    In hadron colliders such as the LHC, the energy deposited in the superconductors by the particles lost from the beams or coming from the collision debris may provoke quenches detrimental to the accelerator operation. In previous papers, a Network Model has been used to study the thermodynamic behavior of magnet coils and to calculate the quench levels in the LHC magnets for expected beam loss profiles. This model was subsequently used for thermal analysis and design optimization of Nb3Sn quadrupole magnets, which LARP (US LHC Accelerator Research Program) is developing for possible use in the LHC luminosity upgrade. For these new magnets, the heat transport efficiency from the coil to the helium bath needs to be determined and optimized. In this paper the study of helium cooling channels and the heat evacuation scheme are presented and discussed.

  8. Steady State Heat Deposits Modeling in the Nb3Sn Quadrupole Magnets for the Upgrade of the LHC Inner Triplet

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, D.; Ambrosio, G.; Felice, H.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Hafalia, R.; /Fermilab /Lawrence Berkeley Lab /Brookhaven

    2011-09-01

    In hadron colliders such as the LHC, the energy deposited in the superconductors by the particles lost from the beams or coming from the collision debris may provoke quenches detrimental to the accelerator operation. In previous papers, a Network Model has been used to study the thermodynamic behavior of magnet coils and to calculate the quench levels in the LHC magnets for expected beam loss profiles. This model was subsequently used for thermal analysis and design optimization of Nb{sub 3}Sn quadrupole magnets, which LARP (US LHC Accelerator Research Program) is developing for possible use in the LHC luminosity upgrade. For these new magnets, the heat transport efficiency from the coil to the helium bath needs to be determined and optimized. In this paper the study of helium cooling channels and the heat evacuation scheme are presented and discussed.

  9. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  10. Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System

    CERN Document Server

    INSPIRE-00317764; Abbas, M.; Abbrescia, M.; Abdelalim, A.A.; Abi Akl, M.; Ahmed, W.; Ahmed, W.; Altieri, P.; Aly, R.; Asawatangtrakuldee, C.; Ashfaq, A.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barria, P.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F.R.; Celik, A.; Choi, M.; Choi, K.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Dabrowski, M.M.; De Lentdecker, G.; de Oliveira, R.; De Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Fabrice, G.; Ferrini, M.; Ferry, S.; Giacomelli, P.; Gilmore, J.; Guiducci, L.; Gutierrez, A.; Hadjiiska, R.M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Jeng, Y.G.; Kamon, T.; Karchin, P.E.; Kim, H.S.; Krutelyov, S.; Kumar, A.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Maerschalk, T.; Magazzu, G.; Maggi, M.; Maghrbi, Y.; Magnani, A.; Majumdar, N.; Mal, P.K.; Mandal, K.; Marchioro, A.; Marinov, A.; Merlin, J.A.; Mohanty, A.K.; Mohapatra, A.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L.M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Phipps, M.; Piccolo, D.; Postema, H.; Pugliese, G.; Baranac, A.Puig; Radi, A.; Radogna, R.; Raffone, G.; Ramkrishna, S.; Ranieri, A.; Riccardi, C.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, M.S.; Ryu, G.; Safonov, A.; Sakharov, A.; Salva, S.; Saviano, G.; Sharma, A.; Swain, S.K.; Talvitie, J.P.; Tamma, C.; Tatarinov, A.; Turini, N.; Tuuva, T.; Twigger, J.; Tytgat, M.; Vai, I.; van Stenis, M.; Venditi, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-03-14

    Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the $1.5 < \\mid\\eta\\mid < 2.2$ region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 $\\mu$rad pitch arranged in eight $\\eta$-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO$_{2}$ 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 $\\mu$rad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 $\\pm...

  11. UPGRADES

    CERN Multimedia

    D. Contardo and J. Spalding

    2012-01-01

      Good progress is being made on the projects that will be installed during LS1. CSC chamber production for ME4/2 is progressing at a rate of four chambers per month, with 25 built so far, and the new electronics for ME1/1 is undergoing a pre-production integration testing. For the RPC chambers, gap production is underway with first deliveries to the chamber assembly sites at CERN and Ghent. The third site at Mumbai will begin production next month. For the PMT replacement in the forward hadron calorimeters (HF), the 1728 PMTs are all characterised and ready to be installed. Testing of the electronics boards is going well. Preparations to replace the HPDs in the outer calorimeter (HO) with SiPMs are also on-track. All components are at CERN and burn-in of the new front-end electronics is proceeding. There are three major upgrade projects targeting the period from LS1 through LS2: a new pixel detector, upgraded photo-detectors and electronics for HCAL, and development of a new L1 Trigger. The new ...

  12. Upgrades of the SPS, Transfer Line and LHC Injection Protection Devices for the HL-LHC Era

    CERN Document Server

    Mete, O; Cerutti, F; Cornelis, K; Gianfelice-Wendt, E; Godard, B; Kain, V; Losito, R; Maciariello, F L; Meddahi, M; Mereghetti, A; Uythoven, J; Velotti, F M

    2013-01-01

    The challenging High Luminosity LHC (HL-LHC) beam requirements will lead in the future to unprecedented beam parameters along the LHC injector chain. In the SPS accelerator these requests translate into about a factor two higher intensity and brightness than the present design performance. In addition to the challenge of producing and accelerating such beams, these parameters affect the resistance of the existing equipment against beam impact. Most of the protection devices in the SPS ring, its transfer lines and the LHC injection areas will be put under operational constraints which are beyond their design specification. The equipment concerned has been reviewed and their resistance to the HL-LHC beams checked. Theoretical and simulation studies have been performed for the SPS beam scraping system, the protection devices and the dump absorbers of the SPS-to-LHC transfer lines, as well as for the LHC injection protection devices. The first results of these studies are reported, together with the future prospe...

  13. Upgrade of the ATLAS Tile hadronic calorimeter for high-luminosity LHC run

    Science.gov (United States)

    Spoor, Matthew

    2017-02-01

    The ATLAS Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics for the Long Shutdown 3 that is planned for 2024 and 2025. All signals will be digitised and transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade and will be chosen after extensive test beam studies. A Hybrid Demonstrator module has been developed. The demonstrator is undergoing extensive testing and is planned for insertion in ATLAS.

  14. The upgrade for the data acquisition system of the KOTO detector

    Energy Technology Data Exchange (ETDEWEB)

    Tecchio, M., E-mail: tecchio@umich.edu [University of Michigan, Ann Arbor, MI (United States); Beechert, J.; Campbell, M. [University of Michigan, Ann Arbor, MI (United States); Huff, M. [Kenyon College, Gambier, OH (United States); Micallef, J.; Rymph, C.; Schamis, H.; Su, S. [University of Michigan, Ann Arbor, MI (United States); Xu, J. [Apple Inc., Cupertino, CA (United States)

    2016-07-11

    A major upgrade to the KOTO detector data acquisition system based on the ATCA standard is being considered. The ATCA standard provides a natural solution to the current KOTO constraints, including communication between boards and higher input and output bandwidth.

  15. The CERN Detector Safety System for LHC Experiments

    CERN Document Server

    Lüders, S; Morpurgo, G; Schmeling, S M

    2003-01-01

    The Detector Safety System (DSS), developed at CERN in common for the four LHC experiments under the auspices of the Joint Controls Project (JCOP), will be responsible for assuring the equipment protection for these experiments. Therefore, the DSS requires a high degree of both availability and reliability. It is composed of a Front-end and a Back-end part. The Front-end is based on a redundant Siemens PLC, to which the safety-critical part of the DSS task is delegated. The PLC Front-end is capable of running autonomously and of automati-cally taking predefined protective actions whenever re-quired. It is supervised and configured by the CERN-cho-sen PVSS SCADA system via a Siemens OPC server. The supervisory layer provides the operator with a status display and with limited online reconfiguration capabili-ties. Configuration of the code running in the PLCs is completely data driven via the contents of a ?Configura-tion Database?. Thus, the DSS can easily adapt to the different and constantly evolving require...

  16. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Marzocchi, Badder

    2017-01-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies on the timing properties of PbWO crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies on the timing performance of PbWO crystals with various photosensors and readout electronics will be shown.

  17. Design and Prototyping of a 400 MHz RF-dipole Crabbing Cavity for the LHC High-Luminosity Upgrade

    CERN Document Server

    De Silva, S U; Delayen, J R; Li, Z; Nicol, T H

    2015-01-01

    LHC High Luminosity Upgrade is in need of two crabbing systems that deflects the beam in both horizontal and vertical planes. The 400 MHz rf-dipole crabbing cavity system is capable of crabbing the proton beam in both planes. At present we are focusing our efforts on a complete crabbing system in the horizontal plane. Prior to LHC installation the crabbing system will be installed for beam test at SPS. The crabbing system consists of two rfdipole cavities in the cryomodule. This paper discusses the electromagnetic design and mechanical properties of the rf-dipole crabbing system for SPS beam test.

  18. Determination of the event collision time with the ALICE detector at the LHC

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Iga Buitron, Sergio Arturo; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Duggal, Ashpreet Kaur; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Espagnon, Bruno; Esumi, Shinichi; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Garg, Prakhar; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hladky, Jan; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lazaridis, Lazaros; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Lonne, Per-ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Ohlson, Alice Elisabeth; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Jonghan; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Rana, Dhan Bahadur; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Anjali; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Vigolo, Sonia; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Witt, William Edward; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann

    2017-01-01

    Particle identification is an important feature of the ALICE detector at the LHC. In particular, for particle identification via the time-of-flight technique, the precise determination of the event collision time represents an important ingredient of the quality of the measurement. In this paper, the different methods used for such a measurement in ALICE by means of the T0 and the TOF detectors are reviewed. Efficiencies, resolution and the improvement of the particle identification separation power of the methods used are presented for the different LHC colliding systems (pp , p-Pb and Pb-Pb) during the first period of data taking of LHC (Run 1).

  19. Determination of the event collision time with the ALICE detector at the LHC

    CERN Document Server

    ALICE, CERN; The ALICE collaboration

    2016-01-01

    Particle identification is an important feature of the ALICE detector at the LHC. In particular, for particle identification via the time-of-flight technique, the precise determination of the event collision time represents an important ingredient of the quality of the measurement. In this paper, the different methods used for such a measurement in ALICE by means of the T0 and the TOF detectors are reviewed. Efficiencies, resolution and the improvement of the particle identification separation power of the methods used are presented for the different LHC colliding systems (pp, p–Pb and Pb–Pb) during the first period of data taking of LHC (R UN 1).

  20. CMS RPC muon detector performance with 2010-2012 LHC data

    CERN Document Server

    INSPIRE-00316302; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J.W.; Kang, M.; Kwon, J.H.; Lee, K.S.; Lee, S.K.; Park, S.K.; Pant, L.M.; Mohanty, A.K.; Chudasama, R.; Singh, J.B.; Bhatnagar, V.; Mehta, A.; Kumar, R.; Cauwenbergh, S.; Costantini, S.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Ocampo, A.; Poyraz, D.; Salva, S.; Thyssen, F.; Tytgat, M.; Zaganidis, N.; Doninck, W.V.; Cabrera, A.; Chaparro, L.; Gomez, J.P.; Gomez, B.; Sanabria, J.C.; Avila, C.; Ahmad, A.; Muhammad, S.; Shoaib, M.; Hoorani, H.; Awan, I.; Ali, I.; Ahmed, W.; Asghar, M.I.; Shahzad, H.; Sayed, A.; Ibrahim, A.; Aly, S.; Assran, Y.; Radi, A.; Elkafrawy, T.; Sharma, A.; Colafranceschi, S.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Nuzzo, S.; Radogna, R.; Venditti, R.; Verwilligen, P.; Benussi, L.; Bianco, S.; Piccolo, D.; Paolucci, P.; Buontempo, S.; Cavallo, N.; Merola, M.; Fabozzi, F.; Iorio, O.M.; Braghieri, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Vai, I.; Magnani, A.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Sultanov, G.; Vutova, M.; Stoykova, S.; Hadjiiska, R.; Ibargüen, H.S.; Morales, M.I.P.; Bernardino, S.C.; Bagaturia, I.; Tsamalaidze, Z.; Crotty, I.; Kim, M.S.

    2014-12-05

    The muon spectrometer of the CMS (Compact Muon Solenoid) experiment at the Large Hadron Collider (LHC) is equipped with a redundant system made of Resistive Plate Chambers and Drift Tube in barrel and RPC and Cathode Strip Chamber in endcap region. In this paper, the operations and performance of the RPC system during the first three years of LHC activity will be reported. The integrated charge was about 2 mC/cm$^{2}$, for the most exposed detectors. The stability of RPC performance, with particular attention on the stability of detector performance such as efficiency, cluster size and noise, will be reported. Finally, the radiation background levels on the RPC system have been measured as a function of the LHC luminosity. Extrapolations to the LHC design conditions and HL-LHC are also discussed.

  1. Development of a detector (ALFA) to measure the absolute LHC luminosity at ATLAS

    CERN Document Server

    Mapelli, A; Ask, S; Barrillon, P; Blanchot, G; Blin, S; Braem, André; Cheiklali, C; de La Taille, C; Di Girolamo, B; Efthymiopoulos, I; Faustino, J; Fournier, D; Franz, S; Grafström, P; Gurriana, L; Haguenauer, M; Hedberg, V; Heller, M; Hoffmann, S; Iwanski, W; Joram, C; Kocnar, A; Lavigne, B; Lundberg, B; Maio, A; Maneira, M J P; Marques, C; Mjörnmark, U; Conde-Muíño, P; Puzo, P; Rijssenbeeck, M; Santos, J P; Saraiva, J G; Seguin-Moreau, N; Soares, S; Stenzel, H; Thioye, M; Valladolid-Gallego, E; Vorobel, V; 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications

    2008-01-01

    The ATLAS collaboration plans to determine the absolute luminosity of the CERN LHC at Interaction Point 1 by measuring the trajectory of protons elastically scattered at very small angles ($\\mu rad$). A scintillating fibre tracker system called ALFA (Absolute Luminosity For ATLAS) is proposed for this measurement. Detector modules will be placed above and below the LHC beam axis in roman pot units at a distance of 240 m on each side of the ATLAS interaction point. They allow the detectors to approach the beam axis to millimeter distance. Overlap detectors also based on the scintillating fibre technology, will measure the precise relative position of the two detector modules. Results obtained during beam tests at DESY and at CERN validate the detectors design and demonstrate the achievable resolution. We also report about radiation hardness studies of the scintillating fibres to estimate the lifetime of the ALFA system at different operating conditions of the LHC.

  2. Prospects for measuring Higgs pair production in the channel $H(\\rightarrow\\gamma\\gamma)H(\\rightarrow b\\overline{b}) $ using the ATLAS detector at the HL-LHC

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    Studies are presented on the prospects for the observation of Higgs pair production in the channel $H(\\rightarrow\\gamma\\gamma)H(\\rightarrow b\\overline{b})$ using an upgraded ATLAS detector, assuming a dataset comprising 3000~fb$^{-1}$ of 14~TeV proton-proton collisions at the High-Luminosity LHC (HL-LHC). Generator-level Monte Carlo events are used to perform this study, with parameterised efficiencies and resolution applied to approximate the expected performance of the upgraded ATLAS detector under HL-LHC conditions. After event selection, a signal yield of around $8$ events is obtained for the Standard Model scenario, corresponding to a signal significance of 1.3 $\\sigma$.

  3. The CMS muon system: status and upgrades for LHC Run-2 and performance of muon reconstruction with 13 TeV data

    Science.gov (United States)

    Battilana, C.

    2017-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV centre-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  4. The CMS muon system status and upgrades for LHC run-2 and performance of muon reconstruction with 13 TeV data

    CERN Document Server

    Battilana, Carlo

    2016-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV center-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  5. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  6. CMS muon system towards LHC Run 2 and beyond

    CERN Document Server

    AUTHOR|(CDS)2073611

    2016-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run 1 data. The LHC will increase the beam energy as well as progressively increase the peak instantaneous luminosity in Run 2 and in the following years. Significant consolidation and upgrade activities are ongoing, in order to improve the CMS muon detectors and trigger performance and robustness.With LHC and then HL-LHC running beyond 2030, the large accumulated radiation dose, the high pileup environment, and the ageing of several detector and electronics components become challenges that can only be met with further development and upgrade work.We will introduce the CMS muon system and present the consolidation work in preparation for LHC Run 2. We will then describe the main constraints and the solutions proposed for the upgrade of the muon detector system towards HL-LHC.

  7. CMS muon system towards LHC Run 2 and beyond

    CERN Document Server

    Guiducci, Luigi

    2014-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run 1 data. The LHC will increase the beam energy as well as progressively increase the peak instantaneous luminosity in Run 2 and in the following years. Significant consolidation and upgrade activities are ongoing, in order to improve the CMS muon detectors and trigger performance and robustness.With LHC and then HL-LHC running beyond 2030, the large accumulated radiation dose, the high pileup environment, and the ageing of several detector and electronics components become challenges that can only be met with further development and upgrade work.We will introduce the CMS muon system and present the consolidation work in preparation for LHC Run 2. We will then describe the main constraints and the solutions proposed for the upgrade of the muon detector system towards HL-LHC.

  8. Commissioning of the Silicon Drift Detectors of the ALICE experiment at the LHC

    CERN Document Server

    Biolcati, Emanuele

    2009-01-01

    Silicon Drift Detectors (SDD) equip the two central layers of the Inner Tracking System of the ALICE experiment at the LHC. Main results of systematic studies of detector performance including noise, gain, drift speed and charge collection measurements will be reported

  9. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    Science.gov (United States)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  10. FELIX: A Full Acceptance Detector at the LHC. Letter of Intent

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, James

    2003-08-20

    The FELIX Collaboration proposes the construction of a full acceptance detector for the LHC, to be located at Intersection Region 4, and to be commissioned concurrently with the LHC. The primary mission of FELIX is the study of QCD: to provide comprehensive and definitive observations of a very broad range of strong-interaction processes. This document contains a description of the detector concept including details of the individual detector elements and their performance characteristics, an extensive discussion of the physics menu, and the plans for integration of FELIX into the collider lattice and physical environment.

  11. Installation of the last piece of LHC beam pipe and ATLAS detector called LUCID

    CERN Multimedia

    CERN Audiovisual Service

    2008-01-01

    This film is spoken in English and text in French. The film will show you the descending and installation of the last element of the LHC beam pipe. Around the beam pipe is installed an ATLAS detector called LUCID. The same kind of element is on both sides of ATLAS. This detector measures the rate of the collisions in ATLAS. You can also get more information about LUCID detector by watching the part where Vincent Hedberg is interviewed. Almost at the end of the film there is the interview of the Raymond Veness. He tells about the delicate operations of finishing the vacuum system and the LHC.

  12. FE-I4, the new ATLAS pixel chip for upgraded LHC luminosities

    Energy Technology Data Exchange (ETDEWEB)

    Arutinov, David; Barbero, Marlon; Gronewald, Markus; Hemperek, Tomasz; Karagounis, Michael; Krueger, Hans; Kruth, Andre; Wermes, Norbert [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany)

    2010-07-01

    The new ATLAS pixel chip FE-I4 is being developed for use in upgraded luminosity environments, in the framework of the Insertable B-Layer (IBL) project and the outer pixel layers of Super-LHC. FE-I4 is designed in a 130 nm CMOS technology and is based on an array of 80 x 336 pixels, each 50 x x250 {mu}m2 and consisting of analog and digital sections. The analog pixel section is designed for low power consumption. The digital architecture is based on a 4 pixel unit called region, which allows for a power-efficient, low recording inefficiency design, and provides a handle to the problem of timewalk. The chip periphery contains a digital control block, a command decoder, powering blocks, a data reformatting unit, an 8b10b coder and a clock multiplier unit, which handles data transmission up to 160 Mb/s for the IBL. Increased power consumption in the inner layers of ATLAS translates into more material for cooling and power routing, which degrades the tracking and the b-tagging quality. As a consequence the FE-I4 collaboration places severe constraints on the power consumption of all blocks. First full scale FE-I4 submission will occur beginning 2010.

  13. The behaviour of copper in view of radiation damage in the LHC luminosity upgrade

    CERN Document Server

    Flukiger, R

    2013-01-01

    In view of the safe operation of the quadrupoles in the luminosity upgrade of the LHC accelerator, the response of the copper stabilizer at low temperatures to the various high energy radiation sources is of primary importance. The present study takes into account the expected high energy spectrum of the simultaneous radiation by neutrons, protons, pions, electrons and photons, calculated using the FLUKA code by F. Cerutti (CERN) as well as on literature values. It was found that proton irradiation causes a considerably higher damage than neutron irradiation: in spite of a 3.8% proton fraction, the measured damage is of the order of 20%, which fits with the calculations of N. Mokhov (Fermilab) on the contribution of protons to the dpa. The same calculations indicate that the total effect of protons, pions and electrons is at least as high as that of neutrons. Since recent neutron experiments of Nakamoto et al. show that the RRR of Cu is reduced from 200 to 50-120 for a fluence of 10^{21} n/cm^{2}, it follows ...

  14. The Upgrade of the ATLAS Electron and Photon Triggers for LHC Run 2 and their Performance

    CERN Document Server

    Monticelli, Fernando; The ATLAS collaboration

    2016-01-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs particle. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based (Level 1) and a software based high level trigger (HLT), both of which were upgraded during the long shutdown of the LHC in preparation for data taking at $\\sqrt{s}$ = 13TeV. The increasing luminosity and more challenging pile-up conditions as well as the planned higher center-of-mass energy demanded the optimisation of the trigger selections at each level, to control the rates and keep efficiencies high. To improve the performance multivariate analysis techniques are introduced at the HLT. Th...

  15. Layout and Optics Solution for the LHC Insertion Upgrade Phase I

    CERN Document Server

    Fartoukh, S

    2010-01-01

    The main guidelines of the LHC IR upgrade Phase I project are the development of wider aperture (120 mm) and lower gradient (120 T/m) quadrupoles using the wellcharacterized Nb-Ti technology in order to build new inner triplets (IT) for the ATLAS and CMS experimental insertions, while minimizing the hardware modifications in the other parts of these insertions, in particular leaving unchanged the so-called "matching section" (MS) and "dispersion suppressor" (DS). While one of the initial goal was to squeeze the optics down to a B* of 25 cm, optics solutions with a B* of 30 cm are already at the edge of feasibility, both in terms of the IT and MS mechanical acceptance, gradients of the MS and DS quadrupole magnets, and correctability by the arc sextupoles of the huge chromatic aberrations generated at low B*. The layout of the new inner triplet and the corresponding injection and collision optics will be presented and analyzed in terms of aperture and chromatic correction.

  16. The Upgrade of the ATLAS Electron and Photon Triggers towards LHC Run 2 and their Performance

    CERN Document Server

    Kahn, Sebastien Jonathan; The ATLAS collaboration

    2015-01-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs particle. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based (Level 1) and a software based high level trigger, both of which were upgraded during the long shutdown of the LHC in preparation for data taking in 2015. The increasing luminosity and more challenging pile-up conditions as well as the planned higher center-of-mass energy demanded the optimisation of the trigger selections at each level to control the rates and keep efficiencies high. The evolution of the ATLAS electron and photon triggers and their performance will be presented, including ini...

  17. The Upgrade of the ATLAS Electron and Photon Triggers towards LHC Run 2 and their Performance

    CERN Document Server

    White, Ryan Mackenzie; The ATLAS collaboration

    2015-01-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs particle. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based (Level 1) and a software based high level trigger (HLT), both of which were upgraded during the long shutdown of the LHC in preparation for data taking in 2015. The increasing luminosity and more challenging pile-up conditions as well as the planned higher center-of-mass energy demanded the optimisation of the trigger selections at each level, to control the rates and keep efficiencies high. To improve the performance multivariate analysis techniques are introduced at the HLT. The evolution of...

  18. FE-I4, the New ATLAS Pixel Chip for Upgraded LHC Luminosities

    CERN Document Server

    "Barbero, M; The ATLAS collaboration

    2009-01-01

    The new ATLAS pixel chip FE-I4 is being developed for use in upgraded luminosity environments, in the framework of the Insertable B-Layer (IBL) project but also for the outer pixel layers of Super-LHC. FE-I4 is designed in a 130 nm technology and is based on an array of 80 by 336 pixels, each 50×250 μm2 and consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. The digital architecture is based on a 4 pixel unit called region, which allows for a power-efficient, low recording inefficiency design, and provides an elegant solution to the problem of timewalk. The chip periphery contains a control block, powering blocks, a data reformatting unit, an asynchronous storage FIFO, an 8b10b coder and a clock multiplier unit, which handles data transmission up to 160 Mb/s for the IBL.

  19. The Upgrade of the ATLAS Electron and Photon Triggers towards LHC Run 2 and their Performance

    CERN Document Server

    INSPIRE-00115001

    2015-01-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs particle. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based (Level 1) and a software based High-Level Trigger (HLT), both of which were upgraded during the long shutdown of the LHC in preparation for data taking in 2015. The increasing luminosity and more chal- lenging pile-up conditions as well as the higher center-of-mass energy demanded the optimisation of the trigger selections at each level, to control the rates and keep efficiencies high. To improve the performance, multivariate analysis techniques were introduced at the HLT. The evolution of the...

  20. UPGRADES

    CERN Multimedia

    D. Contardo and J. Spalding

    2013-01-01

      LS1 and Phase 1 The detector projects targeting LS1 are progressing well, and a fully integrated schedule developed by Technical Coordination includes installation milestones and a detailed work-plan. The first chambers of the RPC system were produced and are being qualified. Production will ramp up this year to a rate of 20 chambers per month. 32 chambers of the CSC system have been fabricated for the ME4/2 CSC stations, and production proceeds at a rate of 4 per month. The new ME1/1 Front-End Board is in production and the off-detector electronics integration tests are ongoing. The new Theta Trigger Boards for the DT readout production is started and the relocation of the Sector Collector boards with new Optical Links as been successfully tested. All the components for the upgrade of the Forward Hadron Calorimeter PMTs have been received at CERN and assemblies are being qualified. The situation is similar for the Hadron Outer Calorimeter new SiPMs and readout modules. Three projects are plan...

  1. Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers

    Energy Technology Data Exchange (ETDEWEB)

    Bochenek, M; Faccio, F; Michelis, S [CERN, CH-1211 Geneve 23 (Switzerland); Dabrowski, W, E-mail: Michal.Bochenek@cern.ch [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30 30-059 Krakow (Poland)

    2010-12-15

    The High Luminosity Upgrade of the ATLAS Inner Tracker puts demanding requirements on the powering system of the silicon strip detector modules due to 10-fold increase of the channel count compared to the existing SemiConductor Tracker. Therefore, new solutions for the powering scheme must be elaborated. Currently two possible approaches, the serial powering and the parallel powering scheme using the DC-DC conversion technique, are under development. This paper describes two switched capacitor DC-DC converters designed in a 130 nm technology. For the optimized step-down converter, foreseen for the parallel powering scheme, power efficiency of 97% has been achieved, while for the charge pump, designed for the serial powering scheme, power efficiency of 85% has been achieved.

  2. Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers

    CERN Document Server

    Bochenek, M; Faccio, F; Michelis, S

    2010-01-01

    The High Luminosity Upgrade of the ATLAS Inner Tracker puts demanding requirements on the powering system of the silicon strip detector modules due to 10-fold increase of the channel count compared to the existing SemiConductor Tracker. Therefore, new solutions for the powering scheme must be elaborated. Currently two possible approaches, the serial powering and the parallel powering scheme using the DC-DC conversion technique, are under development. This paper describes two switched capacitor DC-DC converters designed in a 130 nm technology. For the optimized step-down converter, foreseen for the parallel powering scheme, power efficiency of 97% has been achieved, while for the charge pump, designed for the serial powering scheme, power efficiency of 85% has been achieved

  3. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  4. Upgrade of the SPS Injection Kicker System for the LHC High Luminosity Operation with Heavy Ion Beam

    CERN Document Server

    Kramer, T; Goddard, B; Ducimetière, L; Sermeus, L; Uythoven, J; Velotti, FM

    2014-01-01

    In the context of the LHC High Luminosity Upgrade project a performance upgrade for heavy ions is envisaged. One of the performance limitations is the rise time of the present SPS injection kicker system MKP. A reduction of the rise time for lead ions was studied in line with a modification of the whole injection system. This paper briefly describes the different rise time options studied for an initially proposed dedicated ion kicker system MKP-I, focuses however on a cost effective alternative using the presently installed 12 MKPS magnets connected to a new fast pulse forming line. As only 12 out of the 16 injection kicker magnets would be fast enough to be used in an upgraded system, additional deflection has to be provided by the septa. The beam optics for that variant is highlighted and first requirements for the septum elements are stipulated. The paper concludes with a failure analysis of the proposed scheme.

  5. Development of GaAs Detectors for Physics at the LHC

    CERN Multimedia

    Chu, Zhonghua; Krais, R; Rente, C; Syben, O; Tenbusch, F; Toporowsky, M; Xiao, Wenjiang; Cavallini, A; Fiori, F; Edwards, M; Geppert, R; Goppert, R; Haberla, C; Hornung, M F; Irsigler, R; Rogalla, M; Beaumont, S; Raine, C; Skillicorn, I; Margelevicius, J; Meshkinis, S; Smetana, S; Jones, B; Santana, J; Sloan, T; Zdansky, K; Alexiev, D; Donnelly, I J; Canali, C; Chiossi, C; Nava, F; Pavan, P; Kubasta, J; Tomiak, Z; Tchmil, V; Tchountonov, A; Tsioupa, I; Dogru, M; Gray, R; Hou, Yuqian; Manolopoulos, S; Walsh, S; Aizenshtadt, G; Budnitsky, D L; Gossen, A; Khludkov, S; Koretskaya, O B; Okaevitch, L; Potapov, A; Stepanov, V E; Tolbanov, O; Tyagev, A; Matulionis, A; Pozela, J; Kavaliauskiene, G; Kazukauskas, V; Kiliulis, R; Rinkevicius, V; Slenys, S; Storasta, J V

    2002-01-01

    % RD-8 Development of GaAs Detectors for Physics at the LHC \\\\ \\\\The aims of the collaboration are to investigate the available material options, performance and limitations of simple pad, pixel and microstrip GaAs detectors for minimum ionising particles with radiation hardness and speed which are competitive with silicon detectors. This new technology was originally developed within our university laboratories but now benefits from increasing industrial interest and collaboration in detector fabrication. Initial steps have also been taken towards the fabrication of GaAs preamplifiers to match the detectors in radiation hardness. The programme of work aims to construct a demonstration detector module for an LHC forward tracker based on GaAs.

  6. CMS upgrades for SLHC

    CERN Document Server

    Palla, Fabrizio

    2006-01-01

    I will discuss the impact of the LHC luminosity upgrade on CMS detector. While most of the CMS can possibly cope with the increased luminosity, the Tracker must undergo a major redesign in technology both in terms of detector substrates as well as in the data transfer links. I will show the impact on CMS of reduced bunch length and machine elements close to the interaction point.

  7. Radiation loads of the detectors for the central region of the LHCb experiment at LHC

    CERN Document Server

    Talanov, V V

    2002-01-01

    The formation of the secondary-radiation field in the central region of the future LHCb experiment at LHC (CERN) was numerically simulated. The specific features of the field characteristics were revealed for different configurations of detectors in the experiment. The radiation loads governing the detector operation in a given radiation environment were evaluated. Methods for optimizing the design of the detectors and the accelerator vacuum chamber were proposed. (15 refs).

  8. Beam Splashes seen by the CMS detector #RestartLHC 2017 (end of April 2017)

    CERN Multimedia

    Mc Cauley, Thomas; Zevi Della Porta, Giovanni

    2017-01-01

    CMS event display from LHC beam splash on Saturday, 29th April 2017. This is the first time the full detector has seen particles produced since the beginning of the Extended Year-End Technical Stop (EYETS) 2017. In contrast to proton-proton collisions where the particles come from the center of the detector, in splash events, particles traverse the detector horizontally from one side to the other.

  9. Proposal to develop GaAs detectors for physics at the LHC

    CERN Document Server

    Beaumont, S P; Booth, C N; Buttar, C M; Carraresi, L; Colocci, M; Combley, F; D'Auria, S D; del Papa, C; Dogru, M; Edwards, M; Fiori, F; Francescato, A; Hou, Y; Lynch, J G; Lisowski, B; Matheson, J; Newett, S; Nuti, M; O'Shea, V; Pelfer, P G; Raine, P H; Sharp, P H; Skillicorn, Ian O; Smith, K M; Tartoni, N; ten Have, I; Turnbull, R M; Vanni, U; Vinattieri, A; Zichichi, Antonino; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    The present proposal first describes the results obtained using GaAs Schottky diode detectors which we have constructed, and the initial steps which we have taken towards the design of a GaAs preamplifier to match the detectors. We then propose a continuation of the programme of work towards a demonstration detector module for an LHC pre-shower tracker detector based on GaAs, within a time-scale of two years. The module will be compatible with the design of the proposed pre-shower tracker using silicon detectors (DRDC/P3), and should allow direct substitution for comparison purposes.

  10. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  11. Imaging the LHC beams with silicon and scintillating fibre vertex detectors

    Science.gov (United States)

    Rihl, M.

    2017-02-01

    The LHCb Vertex Locator (VELO) is used to reconstruct beam-gas interaction vertices which allows one to obtain precise profiles of the LHC beams. In LHCb, this information is combined with the profile of the reconstructed beam-beam collisions and with the LHC beam currents to perform precise measurements of the luminosity. This beam-gas imaging (BGI) method also allows one to study the transverse beam shapes, beam positions and angles in real time. Therefore, a demonstrator beam-gas vertex detector (BGV) based on scintillating fibre modules has been built and installed in LHC Ring 2 at point 4.

  12. Imaging the LHC beams with silicon and scintillating fibre vertex detectors

    CERN Document Server

    Rihl, M

    2016-01-01

    The LHCb Vertex Locator (VELO) is used to reconstruct beam–gas interaction vertices which allows one to obtain precise profiles of the LHC beams. In LHCb, this information is combined with the profile of the reconstructed beam–beam collisions and with the LHC beam currents to perform precise measurements of the luminosity. This beam–gas imaging (BGI) method also allows one to study the transverse beam shapes, beam positions and angles in real time. Therefore, a demonstrator beam–gas vertex detector (BGV) based on scintillating fibre modules has been built and installed in LHC Ring 2 at point 4.

  13. Searches for new physics with bosons at the ATLAS detector in LHC Run 2

    CERN Document Server

    Marsden, Stephen Philip; The ATLAS collaboration

    2016-01-01

    Searches for new physics beyond the Standard Model at LHC Run II with the ATLAS detector are presented in this talk. The 13 TeV center of mass energy at LHC Run II will significantly increase sensitivity to new physics at high-energy/high-mass regime compared to Run I. This talk will highlight results on Exotics physics searches in LHC Run II as well as selected results from Run I.

  14. Imaging the LHC beams with silicon and scintillating fibre vertex detectors

    CERN Document Server

    Rihl, M

    2016-01-01

    The LHCb Vertex Locator (VELO) is used to reconstruct beam–gas interaction vertices which allows one to obtain precise profiles of the LHC beams. In LHCb, this information is combined with the profile of the reconstructed beam–beam collisions and with the LHC beam currents to perform precise measurements of the luminosity. This beam–gas imaging (BGI) method also allows one to study the transverse beam shapes, beam positions and angles in real time. Therefore, a demonstrator beam–gas vertex detector (BGV) based on scintillating fibre modules has been built and installed in LHC Ring 2 at point 4.

  15. Tracking and vertexing performance of the ATLAS Inner Detector at the LHC

    CERN Document Server

    Marti, S; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, while the performance was only slightly degraded in the extremely dense heavy ion collisions. New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions.

  16. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, M., E-mail: malte.backhaus@cern.ch

    2016-09-21

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO{sub 2} based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  17. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    CERN Document Server

    INSPIRE-00407830; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid M.; Jones, T; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2016-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigatio...

  18. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Bloch, Ingo [DESY, Zeuthen (Germany); Edwards, Sam [Birmingham Univ. (United Kingdom); and others

    2016-04-15

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  19. Dynamic aperture studies and field quality specifications for the triplet quadrupoles of the LHC phase 1 upgrade

    CERN Document Server

    Holzer, B

    2010-01-01

    The layout of the interaction region for the LHC upgrade project is based on a number of new magnets that will provide the required strengths to focus the colliding beams as well as to separate them after the collision. As in the nominal LHC, a triplet of quadrupole magnets is foreseen for the upgrade optics and in addition a separation dipole to limit the parasitic bunch crossings of the two counter-rotating bunch trains. Due to the smaller beta function at the IP however, the requirements for the free aperture of these IR magnets are more demanding and the effect of the higher order multipoles is more severe than under the nominal LHC conditions. Using tracking simulations to study these effects, target values for the multipole coefficients of the new magnets have been defined as well as a multipole correction scheme that will be used to compensate those field errors which cannot be avoided due to design and construction tolerances. Based on these considerations, specifications are defined for the multipole...

  20. Implementation of a 66 MHz analog memory as a front end for LHC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Munday, D.J.; Parker, M.A. (Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE (United Kingdom)); Anghinolfi, F.; Aspell, P.; Campbell, M.; Chilingarov, A.; Gros, J.; Jarron, P.; Heijne, E.H.M.; Meddeler, G.; Pollet, L.; Santiard, J.C.; Verweij, H. (CERN, CH-1211 Geneva 23 (Switzerland)); Goessling, C.; Lisowsky, B. (Institut fuer Physik, Universitaet Dortmund, D-4600 Dortmund (Germany)); Bonino, R.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; La Marra, D.; Wu, X. (DPNC, Geneva University, CH-1211, Geneva 4 (Switzerland)); Moorhead, G. (School of Physics, University of Melbourne, Parkville, Victoria 3052 (Australia)); Weidberg, A. (Department of Nuclear Physics, Oxford University, Oxford (United Kingdom)); Campbell, D.; Murray, P.; Seller, P.; Stevens, R. (Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)); Beuville, E.; Rouger, M.; Teiger, J. (Centre d' Etudes Nucleaires de Saclay, F-91191 Gif-sur-Yvette (France))

    1992-02-05

    We describe the front end signal processing chip (HARP) being developed by the RD2 collaboration for LHC detectors. The HARP chip, based around an analog memory, will provide data storage at LHC rates for 2 [mu]sec and allow stored data to be accessed for trigger rates of up to 50--100 KHz. We have tested two different prototypes of the final chip as front end for silicon detectors, using a Sr90 source and high energy pions and electrons from the CERN-SPS test beam.