WorldWideScience

Sample records for lhc power converter

  1. LHC Power Converters: A Precision Game

    CERN Multimedia

    2001-01-01

    The LHC test-bed, String 2, is close to commissioning and one important element to get a first chance to prove what it can do is the power converter system. In String 2 there are 16 converters, in the full LHC there will be almost 1800. This article takes a look at what is so special about the power converters for the LHC. The 13 000 Amps power converters with the watercooled cables going to the String 2 feedboxes. The LHC's superconducting magnets will be the pinnacle of high technology. But to work, they'll need the help of high-precision power converters to supply them with extremely stable DC current. Perfection will be the name of the game, with an accuracy of just 1-2 parts per million (ppm) required. LEP, for the sake of comparison, could live with 10-20 ppm. The LHC's power converters will be very different from those of LEP or the SPS since the new accelerator's magnets are mostly superconducting. That means that they require much higher currents at a lower voltage since superconductors have no re...

  2. High-precision performance testing of the LHC power converters

    CERN Document Server

    Bastos, M; Dreesen, P; Fernqvist, G; Fournier, O; Hudson, G

    2007-01-01

    The magnet power converters for LHC were procured in three parts, power part, current transducers and control electronics, to enable a maximum of industrial participation in the manufacturing and still guarantee the very high precision (a few parts in 10-6) required by LHC. One consequence of this approach was several stages of system tests: factory reception tests, CERN reception tests, integration tests , short-circuit tests and commissioning on the final load in the LHC tunnel. The majority of the power converters for LHC have now been delivered, integrated into complete converter and high-precision performance testing is well advanced. This paper presents the techniques used for high-precision testing and the results obtained.

  3. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  4. Evolution of the SPS Power Converter Controls towards the LHC Era

    CERN Document Server

    Brazier, J.C.L.; Semanaz, P.

    2001-01-01

    By the end of the nineties, the power converter control system (Mugef) of the CERN proton accelerator (SPS) had undergone a complete modernization. This resulted in newly developed hardware for function generation, measurement and I/O in a VME environment, under the LynxOS real-time operating system. This has provided a platform on which extensions can be developed for future operation in the Large Hadron Collider (LHC) era. This paper describes some of these extensions, in particular a fast Surveillance and Interlock system for monitoring the power converter output currents. This will be mandatory for the safe operation of the SPS transfer lines TI2 & TI8 to LHC and for similar applications in the future. The strategies employed to cope with various failure modes of the power converters and the timely activation of the interlock are outlined. The new SPS controls infrastructure now under development, will give rise to new modes of operation for the Mugef systems. Integration with the proposed middleware ...

  5. Review of the Initial Phases of the LHC Power Converter Commissioning

    CERN Document Server

    Nisbet, D

    2008-01-01

    The LHC requires more than 1700 power converter systems that supply between 60A and 13kA of precisely regulated current to the superconducting magnets. For the first time at CERN these converters have been installed underground in close proximity to many other accelerator systems. In addition to the power converters themselves, many utilities such as air and water cooling, electrical power, communication networks and magnet safety systems needed to be installed and commissioned as a single system. Due to the complexity of installing and commissioning such a large infrastructure, with inevitable interaction between the different systems, a three phase test strategy was developed. The first phase comprised the manufacture, integration and reception tests of all converter sub-systems necessary for powering. The second phase covered the commissioning of all the power converters installed in their final environment with the utilities. The third phase will add the superconducting magnets and will not be covered by ...

  6. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  7. Proposal for the Award of a Contract for the Supply of the Power Units for LHC Thyristor Power Converters

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the supply of 12 power units of thyristor power converters rated from 365 to 770 kW for the LHC. Following a market survey carried out among 98 firms in nineteen Member States, a call for tenders (IT-3003/SL/LHC) was sent on 25 October 2002 to six firms in four Member States. By the closing date, CERN had received five tenders from five firms in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with OCEM (IT), the lowest bidder, for the supply of 12 power units of thyristor power converters for a total amount of 981 484 Swiss francs not subject to revision, with options for three additional units of the power part of thyristor power converters, for an additional amount of 249 681 Swiss francs, subject to revision for inflation from 1 August 2006, bringing the total amount to 1 231 165 Swiss francs. The firm has indicated the following distribution by country of the contract value covered by this adjudication propos...

  8. LHC Power Distribution

    CERN Document Server

    Pedersen, J

    1999-01-01

    The power distribution for the LHC machine and its experiments will be realised making extensive use of the existing infrastructure for the LEP. The overall power requirement is approximately the same, about 125 MW. The load distribution will however change. The even points will loose in importance and the points 1 and 5 will, due to the installation of ATLAS and CMS, gain. A thorough reorganisation of the 18 kV distribution will thus be necessary. Due to the important cryogenic installations required for the LHC, the 3.3 kV distribution system, supplying mainly cryogenic compressors, will be extended with a number of new substations. The important number of new surface buildings, underground caverns and other underground structures all will receive general service installations: Lighting and power. The new injection tunnels will require complete installations: A.C. supplies for the power converters and for general service, and D.C. cabling for the magnets of the beam line. Special safe power installations ar...

  9. LHC Inner Triplet Powering Strategy

    CERN Document Server

    Bordry, Frederick

    2001-01-01

    In order to achieve a luminosity in excess of 10**34 cm**-2s**-1 at the Large Hadron Collider (LHC), special high gradient quadrupoles are required for the final focusing triplets. These low-b triplets, located in the four experimental insertions (ATLAS, CMS, ALICE, LHC-B), consist of four wide-aperture superconducting magnets: two outer quadrupoles, Q1 and Q3, with a maximum current of 7 kA and a central one divided into two identical magnets, Q2a and Q2b, with a maximum current of 11.5 kA. To optimise the powering of these mixed quadrupoles, it was decided to use two nested high-current power converters : [8kA, 8V] and [6kA, 8V]. This paper presents the consequence of the interaction between the two galvanically coupled circuits. A control strategy, using two independent, standard, LHC digital controllers, to decouple the two systems is proposed and described. The converter protection during the discharge of the magnet energy due to quenches or interlocks of the magnets are discussed. Simulation and experim...

  10. Powering and Machine Protection of the Superconducting LHC Accelerator

    OpenAIRE

    Zerlauth, M; Schmidt, R

    2004-01-01

    A very large number of magnets, both superconducting and conventional copper conductor magnets, are installed in the LHC (Large Hadron Collider) for the guidance of the two proton beams around the circumference. In total, the LHC counts 1614 different electrical circuits with 1712 power converters for DC powering of the superconducting and normal conducting magnets. Besides the electrical circuits connecting main magnets for bending and focusing of the two counter-rotating beams, the demandin...

  11. Powering and Machine Protection of the Superconducting LHC Accelerator

    CERN Document Server

    Zerlauth, M

    2004-01-01

    A very large number of magnets, both superconducting and conventional copper conductor magnets, are installed in the LHC (Large Hadron Collider) for the guidance of the two proton beams around the circumference. In total, the LHC counts 1614 different electrical circuits with 1712 power converters for DC powering of the superconducting and normal conducting magnets. Besides the electrical circuits connecting main magnets for bending and focusing of the two counter-rotating beams, the demanding requirements on the quality of the magnetic fields require a large number of circuits for corrector magnets distributed around the circumference. In total, more than 10000 magnets will need to be connected to the power converters via a large inventory of electrical components such as normal conducting cables and tubes, energy extraction systems, current feedthroughs and superconducting busbars. Depending on the complexity and importance of these electrical circuits and their components, various systems will interact for...

  12. Proposal for the Award of a Contract for the Supply of 13 kA and 20.5 kA, 18 V Switched-Mode Power Converters for the LHC

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the supply of 13 kA and 20.5 kA, 18 V switched-mode power converters using sub-converters of 3.25 kA. Following a market survey (MS-2866/SL/LHC) carried out among 81 firms in seventeen Member States and a call for tenders for prototypes (IT-2919/SL/LHC) sent on 11 June 2001, a call for tenders for the supply of the pre-series and series of 13 kA and 20.5 kA, 18 V switched-mode power converters both using sub-converters of 3.25 kA was sent to two firms on 17 September 2002. The Finance Committee is invited to agree to the negotiation of a contract with TRANSTECHNIK (DE), the only firm that has delivered a successfully qualifying prototype, for the supply of eighteen 13 kA and one 20.5 kA, 18 V switched-mode power converters and spares for a total amount of 4 607 731 euros (6 747 300 Swiss francs), not subject to revision. The rate of exchange used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract val...

  13. Proposal for the award of a contract for the supply of four-quadrant switched-mode power converters rated at ±60A, ±8V for the LHC

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the supply of 834 four-quadrant switched-mode power converters rated at ±60A, ±8V and 200 racks for the LHC. Following a market survey carried out among 154 firms in nineteen Member States, a call for tenders (IT-2944/AB/LHC) was sent on 2 May 2003 to 11 firms and three consortia in twelve Member States. By the closing date, CERN had received eight tenders from eight firms in six Member States. The Finance Committee is invited to agree to the negotiation of a contract with CEL (FR), the lowest bidder complying with the specification, for the supply of 834 four-quadrant switched-mode power converters and 200 racks for a total amount of 2 343 808 euros (3 580 629 Swiss francs), not subject to revision, with an option for additional four-quadrant switched-mode power converters and racks for a total amount of 215 301 euros (328 915 Swiss francs), subject to revision for inflation from 1 January 2006, bringing the overall total to 2 559 109 euros (3 909 544 Swis...

  14. Low voltage powering of on-detector electronics for HL-LHC experiments upgrades

    CERN Document Server

    Bobillier, Vincent; Vasey, Francois; Karmakar, Sabyasachi; Maity, Manas; Roy, Subhasish; Kundu, Tapas Kumar

    2018-01-01

    All LHC experiments will be upgraded during the next LHC long shutdowns (LS2 and LS3). The increase in resolution and luminosity and the use of more advanced CMOS technology nodes typically implies higher current consumption of the on-detector electronics. In this context, and in view of limiting the cable voltage drop, point-of-load DC-DC converters will be used on detector. This will have a direct impact on the existing powering scheme, implying new AC-DC and/or DC-DC stages as well as changes in the power cabling infrastructure. This paper presents the first results obtained while evaluating different LV powering schemes and distribution layouts for HL-LHC trackers. The precise low voltage power source requirements are being assessed and understood using the CMS tracker upgrade as a use-case.

  15. Single Event Burnout in DC-DC Converters for the LHC Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Claudio H. Rivetta et al.

    2001-09-24

    High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.

  16. RF Power Generation in LHC

    CERN Document Server

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  17. Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade

    CERN Document Server

    Dhawan, S; Chen, H; Khanna, R; Kierstead, J; Lanni, F; Lynn, D; Musso, C; Rescia, S; Smith, H; Tipton, P; M. Weber, M

    2009-01-01

    There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 μm process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with ×10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiatio...

  18. Performance of the Crowbar of the LHC High Power RF System

    CERN Document Server

    Ravidà, G; Valuch, D

    2012-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) are captured and accelerated to their final energies by two identical 400 MHz Radio Frequency (RF) systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell superconducting (SC) cavity. Each unit of four klystrons is powered by a -100kV/40A AC/DC power converter. A fast protection system (crowbar) protects the four klystrons in each of these units. Although the LHC RF system has shown has very good performance, operational experience has shown that the five-gap double-ended thyratrons used in the crowbar system suffer, from time to time, from auto-firing, which result in beam dumps. This paper presents the recent results obtained with an alternative solution based on solid state thyristors. Comparative measurements with the thyratron are shown.

  19. Keeping the LHC in power

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The critical safety equipment around the LHC, including the machine protection systems, is connected to Uninterruptible Power Supplies (UPS).  In case of mains failure, the UPS systems continue to power, for a limited time, these critical systems and ensure a safe shutdown of the accelerator. This week, work began to upgrade and replace over 100 UPS systems in the LHC.   The new UPS installations. For the LHC, even a perturbation on the mains is more than just an inconvenience: it often results in beam dumps and, in some cases, requires an energy extraction from superconducting circuits. When this occurs, machine protection systems, and in particular the Quench Protection System, must remain active to correctly carry out the shutdown procedure. With the UPS systems, 10 minutes of crucial power can be provided to the protection systems during this critical phase. There are currently two UPS systems in place in each one of the 32 LHC UPS zones. Originally one was used as a backup if ...

  20. Proposal for the award of a contract for the supply of four-quadrant switched-mode power converters rated at ± 120, ± 10V for the LHC

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the supply of power converters rated at ±120A, ±10V for the LHC. Following a market survey carried out among 147 firms in nineteen Member States, a call for tenders (IT-3037/AB/LHC) was sent on 5 May 2003 to 10 firms and three consortia, each consisting of two firms, in nine Member States. By the closing date, CERN had received nine tenders from nine firms in seven Member States. The Finance Committee is invited to agree to the negotiation of a contract with EFACEC (PT), the lowest conforming bidder after realignment, for the supply of 339 four-quadrant switched-mode power modules and 110 racks for a total amount of 1 652 128 euros (2 534 894 Swiss francs), not subject to revision, with an option for the supply of additional power modules and racks, for a total amount of 142 846 euros (219 171 Swiss francs), subject to revision for inflation from 1 January 2006, bringing the total amount to a maximum of 1 794 974 euros (2 754 065 Swiss francs). The rate of ...

  1. High Precision Current Control for the LHC Main Power Converters

    CERN Document Server

    Thiesen, H; Hudson, G; King, Q; Montabonnet, V; Nisbet, D; Page, S

    2010-01-01

    Since restarting at the end of 2009, the LHC has reached a new energy record in March 2010 with the two 3.5 TeV beams. To achieve the performance required for the good functioning of the accelerator, the currents in the main circuits (Main Bends and Main Quadrupoles) must be controlled with a higher precision than ever previously requested for a particle accelerator at CERN: a few parts per million (ppm) of nominal current. This paper describes the different challenges that were overcome to achieve the required precision for the current control of the main circuits. Precision tests performed during the hardware commissioning of the LHC illustrate this paper.

  2. Improving Power Converter Reliability

    DEFF Research Database (Denmark)

    Ghimire, Pramod; de Vega, Angel Ruiz; Beczkowski, Szymon

    2014-01-01

    of a high-power IGBT module during converter operation, which may play a vital role in improving the reliability of the power converters. The measured voltage is used to estimate the module average junction temperature of the high and low-voltage side of a half-bridge IGBT separately in every fundamental......The real-time junction temperature monitoring of a high-power insulated-gate bipolar transistor (IGBT) module is important to increase the overall reliability of power converters for industrial applications. This article proposes a new method to measure the on-state collector?emitter voltage...... is measured in a wind power converter at a low fundamental frequency. To illustrate more, the test method as well as the performance of the measurement circuit are also presented. This measurement is also useful to indicate failure mechanisms such as bond wire lift-off and solder layer degradation...

  3. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...

  4. Integrated power electronic converters and digital control

    CERN Document Server

    Emadi, Ali; Nie, Zhong

    2009-01-01

    Non-isolated DC-DC ConvertersBuck ConverterBoost ConverterBuck-Boost ConverterIsolated DC-DC ConvertersFlyback ConverterForward ConverterPush-Pull ConverterFull-Bridge ConverterHalf-Bridge ConverterPower Factor CorrectionConcept of PFCGeneral Classification of PFC CircuitsHigh Switching Frequency Topologies for PFCApplication of PFC in Advanced Motor DrivesIntegrated Switched-Mode Power ConvertersSwitched-Mode Power SuppliesThe Concept of Integrated ConverterDefinition of Integrated Switched-Mode Power Supplies (ISMPS)Boost-Type Integrated TopologiesGeneral Structure of Boost-Type Integrated T

  5. One-Quadrant Switched-Mode Power Converters

    CERN Document Server

    Petrocelli, R.

    2015-06-15

    This article presents the main topics related to one-quadrant power convert- ers. The basic topologies are analysed and a simple methodology to obtain the steady-state output–input voltage ratio is set out. A short discussion of dif- ferent methods to control one-quadrant power converters is presented. Some of the reported derived topologies of one-quadrant power converters are also considered. Some topics related to one-quadrant power converters such as syn- chronous rectification, hard and soft commutation, and interleaved converters are discussed. Finally, a brief introduction to resonant converters is given.

  6. Short Circuit Tests First Step of LHC Hardware Commissioning Completion

    CERN Document Server

    Barbero-Soto, E; Bordry, Frederick; Casas Lino, M P; Coelingh, G J; Cumer, G; Dahlerup-Petersen, K; Guillaume, J C; Inigo-Golfin, J; Montabonnet, V; Nisbet, D; Pojer, M; Principe, R; Rodríguez-Mateos, F; Saban, R; Schmidt, R; Thiesen, H; Vergara-Fernández, A; Zerlauth, M; Castaneda Serra, A; Romera Ramirez, I

    2008-01-01

    For the two counter rotating beams in the Large Hadron Collider (LHC) about 8000 magnets (main dipole and quadrupole magnets, corrector magnets, separation dipoles, matching section quadrupoles etc.) are powered in about 1500 superconducting electrical circuits. The magnets are powered by power converters that have been designed for the LHC with a current between 60 and 13000A. Between October 2005 and September 2007 the so-called Short Circuit Tests were carried-out in 15 underground zones where the power converters of the superconducting circuits are placed. The tests aimed to qualify the normal conducting equipments of the circuits such as power converters and normal conducting high current cables. The correct operation of interlock and energy extraction systems was validated. The infrastructure systems including AC distribution, water and air cooling and the control systems was also commissioned. In this paper the results of the two year test campaign are summarized with particular attention to problems e...

  7. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  8. A resonant dc-dc power converter assembly

    OpenAIRE

    Madsen, Mickey Pierre

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or fo...

  9. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  10. Bidirectional dc-to-dc Power Converter

    Science.gov (United States)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  11. Magnetic Frequency Response of HL-LHC Beam Screens

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, M. [CERN; Martino, M. [CERN; De Maria, R. [CERN; Fitterer, M. [Fermilab; Garion, C. [CERN

    2017-10-12

    Magnetic fields used to control particle beams in accelerators are usually controlled by regulating the electrical current of the power converters. In order to minimize lifetime degradation and ultimately luminosity loss in circular colliders, current-noise is a highly critical figure of merit of power converters, in particular for magnets located in areas with high beta-function, like the High Luminosity Large Hadron Collider (HL-LHC) insertions. However, what is directly acting upon the beam is the magnetic field and not the current of the power converter, which undergoes several frequency-dependent transformations until the desired magnetic field, seen by the beam, is obtained. Beam screens are very rarely considered when assessing or specifying the noise figure of merit, but their magnetic frequency response is such that they realize relatively effective low pass filtering of the magnetic field produced by the system magnet-power converter. This work aims at filling this gap by quantifying the expected impact of different beam screen layouts for the most relevant HL-LHC insertion magnets. A welldefined post-processing technique is used to derive the frequency response of the different multipoles from multi-physics Finite Element Method (FEM) simulation results. In addition, a well approximated analytical formula for the low-frequency range of multi-layered beam screens is presented.

  12. Estimation of the electrical power needed for LHC magnets and radiofrequency at 7 TeV

    CERN Document Server

    Thiesen, H; Burnet, J P

    2012-01-01

    The purpose of this paper is to provide the electrical power needed from the grid for the power converters feeding the magnets (superconducting, warm and experiments) and the radiofrequency of the LHC. At 4 TeV, the active power required for the magnets is 17.6MW and the estimation is 25.5MW at 7 TeV. The active power needed for the radiofrequency depends on the beam intensity and on the bunch spacing. It will grow from 7MW to 10MW with 25ns bunch spacing operation. This does not include the power needed for the cryogenic and magnet auxiliary systems. This paper gives also the instantaneous profile of the power needed from the grid during the ramp and the reactive power which needs to be compensated by the static VAR compensators.

  13. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  14. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding...

  15. Impact of the Voltage Transients after a Fast Power Abort on the Quench Detection System in the LHC Main Dipole Chain

    CERN Document Server

    Ravaioli, E; Formenti, F; Montabonnet, V; Pojer, M; Schmidt, R; Siemko, A; Solfaroli Camillocci, A; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    A Fast Power Abort in the LHC superconducting main dipole circuit consists in the switch-off of the power converter and the opening of the two energy-extraction switches. Each energy-extraction unit is composed of redundant electromechanical breakers, which are opened to force the current through an extraction resistor. When a switch is opened arcing occurs in the switch and a voltage of up to 1 kV builds up across the extraction resistor with a typical ramp rate of about 80 kV/s. The subsequent voltage transient propagates through the chain of 154 dipoles and superposes on the voltage waves caused by the switch-off of the power converter. The resulting effect caused intermittent triggering of the quench protection systems along with heater firings in the magnets when the transient occurred during a ramp of the current. A delay between power converter switch-off and opening of the energy-extraction switches was introduced to prevent this effect. Furthermore, the output filters of the power converters were mod...

  16. The High Luminosity LHC Project

    Science.gov (United States)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  17. Isolated and soft-switched power converter

    Science.gov (United States)

    Peng, Fang Zheng; Adams, Donald Joe

    2002-01-01

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  18. DC-DC power converter research for Orbiter/Station power exchange

    Science.gov (United States)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  19. Optimization of the powering tests of the LHC superconducting circuits

    CERN Document Server

    Bellesia, B; Denz, R; Fernandez-Robles, C; Pojer, M; Saban, R; Schmidt, R; Solfaroli Camillocci, M; Thiesen, H; Vergara Fernández, A

    2010-01-01

    The Large Hadron Collider has (LHC) 1572 superconducting circuits which are distributed along the eight 3.5 km LHC sectors [1]. Time and resources during the commissioning of the LHC technical systems were mostly consumed by the powering tests of each circuit. The tests consisted in carrying out several powering cycles at different current levels for each superconducting circuit. The Hardware Commissioning Coordination was in charge of planning, following up and piloting the execution of the test program. The first powering test campaign was carried out in summer 2007 for sector 7-8 with an expected duration of 12 weeks. The experience gained during these tests was used by the commissioning team for minimising the duration of the following powering campaigns to comply with the stringent LHC project deadlines. Improvements concerned several areas: strategy, procedures, control tools, automatization, and resource allocation led to an average daily test rate increase from 25 to 200 tests per day. This paper desc...

  20. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...

  1. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  2. Bi-directional power control system for voltage converter

    Science.gov (United States)

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  3. Power converters definitions, classification and converter topologies

    CERN Document Server

    Bordry, Frederick

    2006-01-01

    This paper introduces power conversion principles and defines the terminology. The concepts of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the notions of commutation cell and soft commutation are introduced and discussed.

  4. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  5. Powering the High-Luminosity Triplets

    Science.gov (United States)

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  6. Research on Compensating Power Converter used for Artillery

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2014-11-01

    Full Text Available Aiming at the low efficiency shortage of traditional power supply converter used for artillery, a novel compensating power converter used for artillery was proposed, and its work mode was analyzed. The current expression of inductor was given and work statuses under two working modes were analyzed. Finally an experimental prototype based on DSP was built, the results indicate that the compensating power converter own low current and voltage stress and high efficiency because only part of power pass through the converter, thus, the converter own large potential application value.

  7. Novel screening techniques for wind turbine power converters

    DEFF Research Database (Denmark)

    Jørgensen, Asger Bjørn; Sønderskov, Simon Dyhr; Christensen, Nicklas

    2016-01-01

    Power converters represent one of the highest failure rates in the wind turbine. Therefore converter manufacturers perform burn-in tests to prevent shipping of faulty converters. Recent developments in junction temperature estimation, based on accurate online IGBT collector-emitter voltage...... measurements, allow for thermal stress estimation of the IGBT modules. This is utilized to detect infant mortalities in power converters, by comparing thermal responses of IGBTs for faulty and non-faulty converters. The method proves to be a time and cost efficient candidate to replace burn-in tests of power...... converters for wind turbines applications....

  8. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  9. Magnetic Frequency Response of HL-LHC Beam Screens

    CERN Document Server

    Morrone, M; De Maria, R; Fitterer, M; Garion, C

    2017-01-01

    Magnetic fields used to control particle beams in accelerators are usually controlled by regulating the electrical current of the power converters. In order to minimize lifetime degradation and ultimately luminosity loss in circular colliders, current-noise is a highly critical figure of merit of power converters, in particular for magnets located in areas with high beta-function, like the High Luminosity Large Hadron Collider (HL-LHC) insertions. However, what is directly acting upon the beam is the magnetic field and not the current of the power converter, which undergoes several frequency-dependent transformations until the desired magnetic field, seen by the beam, is obtained. Beam screens are very rarely considered when assessing or specifying the noise figure of merit, but their magnetic frequency response is such that they realize relatively effective low pass filtering of the magnetic field produced by the system magnet-power converter. This work aims at filling this gap by quantifying the expected im...

  10. Conceptual study of the cryostats for the cold powering system for the triplets of the High Luminosity LHC

    Science.gov (United States)

    Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.

  11. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  12. Function generation and regulation libraries and their application to the control of the new main power converter (POPS) at the CERN CPS

    International Nuclear Information System (INIS)

    King, Q.; Page, S.T.; Thiesen, H.; Veenstra, M.

    2012-01-01

    Power converter control for the LHC is based on an embedded control computer called a Function Generator/Controller (FGC). Every converter includes an FGC with responsibility for the generation of the reference current as a function of time and the regulation of the circuit current, as well as control of the converter state. With many new converter controls software classes in development it was decided to generalize several key components of the FGC software in the form of C libraries: function generation in libfg, regulation, limits and simulation in libreg and DCCT, ADC and DAC calibration in libcal. These libraries were first used in the software class dedicated to controlling the new 60 MW main power converter (POPS) at the CERN Proton Synchrotron (CPS) where regulation of both magnetic field and circuit current is supported. This paper reports on the functionality provided by each library and in particular libfg and libreg. The libraries are already being used by software classes in development for the next generation FGC for Linac4 converters, as well as the CERN SPS converter controls (MUGEF) and MedAustron converter regulation board. (authors)

  13. CAS - CERN Accelerator School: Power Converters

    CERN Document Server

    2015-01-01

    These proceedings collate lectures given at the twenty-eighth specialized course organised by the CERN Accelerator School (CAS). The course was held at the Hotel du Parc, Baden, Switzerland from 7 - 14 May 2014, in collaboration with the Paul Scherrer Institute. Following introductory lectures on accelerators and the requirements on power converters, the course covered components and topologies of the different types of power converters needed for particle accelerators. Issues of design, control and exploitation in a sometimes-hostile environment were addressed. Site visits to ABB and PSI provided an insight into state-of-the-art power converter production and operation, while topical seminars completed the programme.

  14. A novel power converter for photovoltaic applications

    Science.gov (United States)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  15. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... estimation, more detailed information for the reliability performance of wind power converter can be obtained....

  16. The LHC and its electrotechnical challenges

    International Nuclear Information System (INIS)

    Bordry, F.

    2010-01-01

    After a brief presentation of the CERN, the European organization for nuclear research, this article presents the LHC, the Large Hadron Collider, the largest and most powerful particle accelerator in the world. The project somehow started in 1984 and relies on several technological challenges which are herein described: superconducting magnets (their characteristics and cryogenic operation), operation security with particularly high energies stored in magnets and beams, LHC electricity supply (electric circuits with high time constant, a required precision and reproducibility of the magnetic field during all the operation phases, importance of power converters). Then the author evokes the starting procedures, some serious damages which occurred, and the restart of the operation period with spectacular results in terms of beam energy. Future experiments and expected results are also evoked

  17. Demineralised water cooling in the LHC accelerator

    CERN Document Server

    Peón-Hernández, G

    2002-01-01

    In spite of the LHC accelerator being a cryogenic machine, it remains nevertheless a not negligible heat load to be removed by conventional water-cooling. About 24MW will be taken away by demineralised water cooled directly by primary water from the LHC cooling towers placed at the even points. This paper describes the demineralised water network in the LHC tunnel including pipe diameters, lengths, water speed, estimated friction factor, head losses and available supply and return pressures for each point. It lists all water cooled equipment, highlights the water cooled cables as the most demanding equipment followed by the radio frequency racks and cavities, and by the power converters. Their main cooling requirements and their positions in the tunnel are also presented.

  18. Radiated electromagnetic emissions of DC-DC converters

    International Nuclear Information System (INIS)

    Feld, L; Jussen, R; Karpinski, W; Klein, K; Sammet, J; Wlochal, M

    2010-01-01

    For the CMS tracker at SLHC a new powering scheme is considered to be mandatory to allow the detector to provide at least the same performance as today at the LHC. The baseline solution of CMS foresees the use of DC-DC converters to provide larger currents with smaller losses. An important component of most converters are inductors which, however, tend to radiate the switching noise generated by the converter. The emissions of different inductors have been measured and simulated, the coil design has been optimized and noise susceptibility measurements, with present CMS hardware, have been performed. This article summarizes the results.

  19. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  20. Multilevel push pull power converter

    DEFF Research Database (Denmark)

    2007-01-01

    A power converter for converting an input voltage (Vin) into an output voltage (Vout), comprising a first supply potential and a second supply potential established by the input voltage, and at least one primary winding having two terminals, a center tap arranged between the two terminals and con...

  1. Distance relay performance in future converter dominated power systems

    DEFF Research Database (Denmark)

    Sarkar, Moumita; Jia, Jundi; Yang, Guangya

    2017-01-01

    Increasing penetration of converter-based generations in power system has led to new system challenges. Short circuit power response from converter-based generations is different from that of traditional synchronous generators. Power electronic converters can be designed for over-current only up ...... of converter controls on fault current response of converter-based generations is also investigated. Index Terms—Converter control, distance relays, power system protection, system modelling....... to 1.1-1.25 times of its nominal value. Low availability of short circuit power can cause many challenges such as misoperation of distance relays. The aim of this paper is to investigate the effect of converter dominated systems on performance of distance relays. Backup functionality of the distance...... relay is major concern as miscoordination of backup relays in case of cascading faults can lead to severe stress in system, which can develop into blackout. In this paper, response of relays in traditional system is compared with response of relays in low short-circuit-current power systems. Impact...

  2. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    OpenAIRE

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power...

  3. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...

  4. Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Fang, Jingyang; Li, Hongchang; Tang, Yi

    2018-01-01

    Renewable energy sources (RESs), e.g. wind and solar photovoltaics, have been increasingly used to meet worldwide growing energy demands and reduce greenhouse gas emissions. However, RESs are normally coupled to the power grid through fast-response power converters without any inertia, leading...... to decreased power system inertia. As a result, the grid frequency may easily go beyond the acceptable range under severe frequency events, resulting in undesirable load-shedding, cascading failures, or even large-scale blackouts. To address the ever-decreasing inertia issue, this paper proposes the concept...... of distributed power system virtual inertia, which can be implemented by grid-connected power converters. Without modifications of system hardware, power system inertia can be emulated by the energy stored in the dc-link capacitors of grid-connected power converters. By regulating the dc-link voltages...

  5. Power electronic converters modeling and control with case studies

    CERN Document Server

    Bacha, Seddik; Bratcu, Antoneta Iuliana

    2014-01-01

    Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: ·        switched and averaged models; ·        small/large-signal models; and ·        time/frequency models. The second focuses on three groups of control methods: ·        linear control approaches normally associated with power converters; ·        resonant controllers b...

  6. Advanced Power Converter for Universal and Flexible Power Management in Future Electricity Network

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Bassett, R.

    2007-01-01

    converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents the overall structure and the control aspects of an advanced power converter for universal and flexible power......More "green" power provided by Distributed Generation will enter into the European electricity network in the near future. In order to control the power flow and to ensure proper and secure operation of this future grid, with an increased level of the renewable power, new power electronic...

  7. Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, M.

    2013-01-01

    The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model...

  8. Power Converters Maximize Outputs Of Solar Cell Strings

    Science.gov (United States)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  9. Definition of Power Converters

    CERN Document Server

    Bordry, F

    2015-01-01

    The paper is intended to introduce power conversion principles and to define common terms in the domain. The concept s of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the commutation cell and soft commuta tion are introduced and discussedd.

  10. Adaptive electrothermal protection of power converters

    Directory of Open Access Journals (Sweden)

    Baraniuk G. A.

    2017-06-01

    Full Text Available Thermal management for power converters during normal operation and transient modes when electrical components are warmed up is an actual problem. This can be particularly important for converters with intermittent duty operation, e.g. power supplies for resistance welding. According to some research, nearly 60% of failures are temperature-induced, and for every 10°C temperature rise in operating environment the failure rate nearly doubles. In this paper, thermal motion of state equations eigenvalue is analysed. It is shown, that in semiconductor converters with an output smoothing filter it is appropriate to use thermal protection devices based on thermal normalisation of the converter filter and, while for cases when short circuits are possible it is appropriate to use a soft start system with thermal adaptation for soft start time factor. Based on these results, two systems of thermal protections operating for semiconductor power converters are introduced. Simulation of combined electromagnetic and thermal processes in buck converter operating with both thermal management systems in overlapping environments MATLAB/Simulink and PLECS showed the possibility to significantly reduce thermal shock on semiconductor components. Using the system of filter parameters normalisation decreases the temperature of the crystal from 210°C to 85°C, using the adaptive soft start system decreases the temperature from 180°C to 80°C. The simulation results are confirmed by tests on real devices.

  11. Free-piston Stirling component test power converter

    Science.gov (United States)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  12. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  13. Optimizing design of converters using power cycling lifetime models

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Munk-Nielsen, Stig

    2015-01-01

    Converter power cycling lifetime depends heavily on converter operation point. A lifetime model of a single power module switched mode power supply with wide input voltage range is shown. A lifetime model is created using a power loss model, a thermal model and a model for power cycling capability...... with a given mission profile. A method to improve the expected lifetime of the converter is presented, taking into account switching frequency, input voltage and transformer turns ratio....

  14. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, H. [Fermilab; Flora, B. [Fermilab; Wolff, D. [Fermilab

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  15. Field Data Logger Prototype for Power Converters

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Ghimire, Pramod; Thøgersen, Paul Bach

    2014-01-01

    and subsequent analysis of the data. This paper presents the development of a low cost prototype field data logger prototype using Raspberry PI and industrial sensors. The functionalities of the data logger prototype are described. An online rainflow count algorithm has been implemented as well.......Mission profile data is very important for the cost effective and reliable design of power converters. The converter design can be improved on the basis of actual field data. Actual mission profile data can be collected for the power converters using field data loggers over a long period of time...

  16. Production LHC HTS power lead test results

    CERN Document Server

    Tartaglia, M; Fehér, S; Huang, Y; Orris, D F; Pischalnikov, Y; Rabehl, Roger Jon; Sylvester, C D; Zbasnik, J

    2005-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under "standard" and "extreme" operating conditions, and the stability of performance across thermal cycles.

  17. Production LHC HTS power lead test results

    International Nuclear Information System (INIS)

    Tartaglia, M.A.; Carcagno, R.H.; Feher, S.; Huang, Y.; Orris, D.F.; Pischalnikov, Y.; Rabehl, R.J.; Sylvester, C.; Zbasnik, J.

    2004-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under ''standard'' and ''extreme'' operating conditions, and the stability of performance across thermal cycles

  18. Wireless power charging using point of load controlled high frequency power converters

    Science.gov (United States)

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  19. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2014-08-01

    Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.

  20. Distance relay performance in future converter dominated power systems

    OpenAIRE

    Sarkar, Moumita; Jia, Jundi; Yang, Guangya

    2017-01-01

    Increasing penetration of converter-based generations in power system has led to new system challenges. Short circuit power response from converter-based generations is different from that of traditional synchronous generators. Power electronic converters can be designed for over-current only up to 1.1-1.25 times of its nominal value. Low availability of short circuit power can cause many challenges such as misoperation of distance relays. The aim of this paper is to investigate the effect of...

  1. A study of Schwarz converters for nuclear powered spacecraft

    Science.gov (United States)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  2. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  3. Machine Protection for the Experiments of the LHC

    CERN Document Server

    Appleby, R B

    2010-01-01

    The LHC stored beam contains 362 MJ of energy at the top beam energy of 7 TeV/c, presenting a significant risk to the components of the machine and the detectors. In response to this threat, a sophisticated system of machine protection has been developed to minimize the danger, and detect potentially dangerous situations. In this paper, the protection of the experiments in the LHC from the machine is considered, focusing on pilot beam strikes on the experiments during injection and on the dynamics of hardware failure with a circulating beam, with detailed time-domain calculations performed for LHC ring power converter failures and magnet quenches. The prospects for further integration of the machine protection and experimental protection systems are considered, along with the risk to nearbeam detectors from closed local bumps.

  4. Energy Extraction Resistors for the Main Dipole and Quadrupole Circuits of the LHC

    CERN Document Server

    Dahlerup-Petersen, K; Popov, V; Sytchev, V V; Vasilev, L B; Zubko, V G

    2000-01-01

    When the LHC will be operating at its maximum beam energy, its superconducting dipole chains store a total magnetic energy of more than 11 GJ. At the same time, the QF and QD quadrupole circuits store a total energy of 400 MJ. Even with the sectorisation of each of the three principal power circuits into eight individually powered segments, the stored energy of a single circuit is considerable. During normal operation the energy in the dipole circuits is safely returned to the mains grid, using the thyristor-based, 'booster' unit of the power converters, operating in inversion. For the quadrupole chains, where the converter is of a mono-polar topology, the stored energy is dissipated into the resistive part of the warm d.c. power lines (busbars and cables) in a slow, controlled run-down. When a magnet quenches, however, such a slow energy transfer, taking 20 minutes from the rated LHC current, will not be possible. The 'cold' diode, taking over the magnet current in case of a quench, will not survive this slo...

  5. High power density dc/dc converter: Selection of converter topology

    Science.gov (United States)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  6. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  7. Four-quadrant flyback converter for direct audio power amplification

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better...

  8. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  9. Sector 7-8 powered up

    CERN Document Server

    2007-01-01

    1. Frédéric Gicquel from the Cryogenics for Accelerators Group (AT/ACR) and Anupama Kulkarni from the Magnets and Electrical Systems Group (AT/MEL) at the CERN Control Centre during the powering-up of Sector 7-8. 2. Frédérick Bordry, leader of the Power Converter Group (AB/PO), and Roberto Saban, responsible for coordinating the LHC commissioning (TS/HDO), celebrate the end of the first powering-up of an entire LHC sector: Sector 7-8.

  10. Energy Deposition and DPA in the Superconducting Links for the HILUMI LHC Project at the LHC Interaction Points

    CERN Document Server

    AUTHOR|(CDS)2092158; Broggi, Francesco; Santini, C; Ballarino, Amalia; Cerutti, Francesco; Esposito, Luigi Salvatore

    2015-01-01

    In the framework of the upgrade of the LHC machine, the powering of the LHC magnets foresees the removal of the power converters and distribution feedboxes from the tunnel and its location at the surface[1]. The Magnesium Diboride (MgB2) connecting lines in the tunnel will be exposed to the debris from 7+7 TeV p-p interaction. The Superconducting (SC) Links will arrive from the surface to the tunnel near the separation dipole, at about 80 m from the Interaction Point at IP1 and IP5. The Connection Box (where the cables of the SC Links are connected to the NbTi bus bar) will be close to the beam pipe. The debris and its effect on the MgB2 SC links in the connection box (energy deposition and displacement per atom) are presented. The effect of thermal neutrons on the Boron consumption and the contribution of the lithium nucleus and the alpha particle on the DPA are evaluated. The results are normalized to an integrated luminosity of 3000 fb-1, value that represents the LHC High Luminosity lifetime. The dose de...

  11. Four-quadrant flyback converter for direct audio power amplification

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper presents a bidirectional, four-quadrant yback converter for use in direct audio power amplication. When compared to the standard Class-D switching-mode audio power amplier with separate power supply, the proposed four-quadrant flyback converter provides simple and compact solution with high efciency, higher level of integration, lower component count, less board space and eventually lower cost. Both peak and average current-mode control for use with 4Q flyback power converters are described and compared. Integrated magnetics is presented which simplies the construction of the auxiliary power supplies for control biasing and isolated gate drives. The feasibility of the approach is proven on audio power amplier prototype for subwoofer applications. (au)

  12. Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters

    CERN Document Server

    Cravero, Jean-Marc

    2013-01-01

    This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.

  13. Power flow controller with a fractionally rated back-to-back converter

    Science.gov (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  14. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability. ...

  15. From the LHC Reference Database to the Powering Interlock System

    CERN Document Server

    Dehavay, C; Schmidt, R; Veyrunes, E; Zerlauth, M

    2003-01-01

    The protection of the magnet powering system for the Large Hadron Collider (LHC) currently being built at CERN is a major challenge due to the unprecedented complexity of the accelerator. The Powering Interlock System of the LHC will have to manage more than 1600 DC circuits for magnet powering, different in their structure, complexity and importance to the accelerator. For the coherent description of such complex system, a Reference Database as unique source of the parameters of the electrical circuits has been developed. The information, introduced via a generic circuit description language, is first used for installing the accelerator and making all electrical connections. The data is then used for tests and commissioning. During operation, the Powering Interlock System manages all critical functions. It consists of 36 PLC based controllers dis tributed around the machine and requires a flexible and transparent way of configuration, since each controller manages different numbers and types of electrical ci...

  16. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  17. Multifunctional Converter Drive for Automotive Electric Power Steering Systems

    NARCIS (Netherlands)

    Hackner, T.J.

    2013-01-01

    In this thesis it is shown that in the case of an automotive electric power steering system, critical pulse power loads can be decoupled from the power net with a storage element and a multifunctional converter. A multifunctional converter system is proposed because it uses the motor drive system as

  18. A NOVEL THREE PHASE UNITY POWER FACTOR CONVERTER

    Directory of Open Access Journals (Sweden)

    Bekir Sami SAZAK

    1998-03-01

    Full Text Available The proposed unity power factor converter system which is able to operate from a 150V three-phase supply whilst delivering the required 200V DC voltage has been built and tested. This circuit functions as a high power factor low harmonic rectifier based on the concept that the peak capacitor voltages are proportional to the line input currents. Hence the low frequency components of the capacitor voltages are also approximately proportional to the line input currents. The system can be designed to achieve nearly sinusoidal supply input currents, when operated with discontinuous resonant capacitor voltages Output power control is achieved by variations of the IGBTs switching frequency. The converter is therefore able to compensate for any changes in the load resistance. The proposed topology offers advantages, including: a relatively simple power, control and protection circuits, high power capability, and high converter efficiencies.

  19. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  20. Four-quadrant flyback converter for direct audio power amplification

    OpenAIRE

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better efficiency, higher level of integration and lower component count.

  1. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  2. Unified Digital Periodic Signal Filters for Power Converter Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Xin, Zhen; Zhou, Keliang

    2017-01-01

    Periodic signal controllers like repetitive and resonant controllers have demonstrated much potential in the control of power electronic converters, where periodic signals (e.g., ac voltages and currents) can be precisely regulated to follow references. Beyond the control of periodic signals, ac...... signal processing (e.g., in synchronization and pre-filtering) is also very important for power converter systems. Hence, this paper serves to unify digital periodic signal filters so as to maximize their roles in power converter systems (e.g., enhance the control of ac signals). The unified digital...... periodic signal filters behave like a comb filter, but it can also be configured to selectively filter out the harmonics of interest (e.g., the odd-order harmonics in single-phase power converter systems). Moreover, a virtual variable-sampling-frequency unit delay that enables frequency adaptive periodic...

  3. Grid converters for photovoltaic and wind power systems

    CERN Document Server

    Teodorescu, Remus; Rodríguez, Pedro

    2011-01-01

    "Grid Converters for Photovoltaic and Wind Power Systems provides a comprehensive description of the control of grid converters for photovoltaic and wind power systems. The authors present a range of control methods for meeting the latest application, power quality and power conversion requirements and standards, as well as looking towards potential future control functions. Practical examples, exercises, and an accompanying website with simulation models using Matlab and Simulink environments, and PSIM software make this text a pragmatic resource for electrical engineers as well as students taking related courses"--

  4. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    A power converter is needed in almost all kinds of renewable energy systems and drive systems. It is used both for controlling the renewable source and for interfacing with the load, which can be grid-connected or working in standalone mode. Further, it drives the motors efficiently. Increasing...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...... frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...

  5. Design and Implementation of Battery Charger with Power Factor Correction using Sepic Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2013-12-01

    Full Text Available This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulator of output voltage and operates at continuous conduction mode. The experimental results show that the power factor of this converter system can be achieved up to 0.96.

  6. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  7. High-power converters and AC drives

    CERN Document Server

    Wu, Bin

    2017-01-01

    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  8. Power converters for ITER

    CERN Document Server

    Benfatto, I

    2006-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc.

  9. Design and evaluation of cellular power converter architectures

    Science.gov (United States)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  10. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  11. The 77 K operation of a multi-resonant power converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.

  12. Modular Power Converters for PV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need

  13. A new converter for improving efficiency of multi-actuators fluid power system

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yong; Shang, JianZhong; Yang, JunHong; Wang Zhuo [National University of Defense Technology, Changsha (China)

    2016-05-15

    This paper is concerned with the application of energy efficient fluid power in mobile robots system and proposes a new fluid power converter system which is analogous to a boost converter in power electronics. The fluid power converter system is based on the principle of pulse-width modulation. The fluid power converter has an effect akin to an electrical switched inductance transformer, wherein the output pressure or flow rate can be stepped up or down. Using an inductive reactance device (an inertia mass-block), the output flow and pressure can be varied to meet the load by a means that does not rely on dissipation of power (the resistance control). The simulation model based on the mathematics models of the components is built to analyse the performance of the fluid power converter. It is clearly shown that the fluid power converter has higher energy efficiency than conventional resistance control manners.

  14. A 25-kW Series-Resonant Power Converter

    Science.gov (United States)

    Frye, R. J.; Robson, R. R.

    1986-01-01

    Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.

  15. Power electronic converters and systems frontiers and applications

    CERN Document Server

    Trzynadlowski, Andrzej M

    2016-01-01

    Power electronics is a branch of electrical engineering dealing with conversion and control of electric power using semiconductor power switches. This book provides an overview of modern power electronic converters and systems, and their applications.

  16. Radiated EMI from power converters

    Directory of Open Access Journals (Sweden)

    Arnautovski-Toševa Vesna

    2005-01-01

    Full Text Available With the continuous increase of switching frequency together with the ongoing trend to higher complexity and functionality, power converters as a part of electronic systems have raised more and more electromagnetic energy pollution to the local system environment. In the same time, stringent demands are imposed on the designers of new circuits that electromagnetic interference (EMI has to be suppressed at its source before it is allowed to propagate into other circuits and systems. In this paper, the authors present a full-wave numerical method for calculation and simulation of electromagnetic field radiated by power converter circuitry. The main objective is to analyze the layout geometry in order to obtain competitive PCB layout that will enable suitably attenuated level of the radiated electric field to safe level. By this it would be possible to ensure reliable operation of the sensitive electronic components in the proximity.

  17. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  18. Status of NASA's Stirling Space Power Converter Program

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Program. This work is being conducted under NASA's Civil Space Technology Initiative. The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss Stirling experience in Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. This paper provides an update of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space

  19. The New Modular Control System for Power Converters at CERN

    CERN Document Server

    Di Cosmo, Matteo

    2015-01-01

    The CERN accelerator complex consists of several generations of particle accelerators, with around 5000 power converters supplying regulated current and voltage to normal and superconducting magnet circuits. Today around 12 generations of converter control platforms can be found in the accelerator complex, ranging in age and technology. The diversity of these platforms has a significant impact on operability, maintenance and support of power converters. Over the past few years a new generation of modular controls called RegFGC3 has been developed by CERN’s power conversion group, with a goal to provide a standardised control platform, supporting a wide variety of converter topologies. The aim of this project is to reduce maintenance costs by decreasing the variety and diversity of control systems whilst simultaneously improving the operability and reliability of power converters and their controls. This paper describes the state of the on-going design and realization of the RegFGC3 platform, focusing on fun...

  20. Design and Implementation of Battery Charger with Power Factor Correction Using Sepic Converter and Full-bridge DC-DC Converter

    OpenAIRE

    Efendi, Moh. Zaenal; Windarko, Novie Ayub; Amir, Moh. Faisal

    2013-01-01

    This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulato...

  1. Power electronic converters PWM strategies and current control techniques

    CERN Document Server

    Monmasson, Eric

    2013-01-01

    A voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.

  2. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... temperature mean value Tm and fluctuation amplitude ΔTj of power devices, are presented. With the proposed reliability-cost model, it is possible to enable future reliability-oriented design of the power switching devices for wind power converters, and also an evaluation benchmark for different wind power...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  3. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  4. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  5. Reliability metrics extraction for power electronics converter stressed by thermal cycles

    DEFF Research Database (Denmark)

    Ma, Ke; Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    Due to the continuous demands for highly reliable and cost-effective power conversion, the quantified reliability performances of the power electronics converter are becoming emerging needs. The existing reliability modelling approaches for the power electronics converter mainly focuses on the pr...... performance of power electronics system. The final predicted results showed good accuracy with much more reliability information compared to the existing approaches, and the quantified reliability correlation to the mission profiles of converter is mathematically established....

  6. Power to the LHC

    CERN Multimedia

    2016-01-01

    It’s March already, and time for the LHC to wake up from its short winter break. The first of 7000 powering tests began on 4 March: the first step on the way to the first beams of 2016. It’s a tight schedule, with the powering tests scheduled for just 12 days before moving on to machine checkout and then commissioning with beam around Easter.   Last year marked a great start to Run 2. The objective for the year was to establish proton-proton collisions at 13 TeV with 25 ns bunch spacing, and in that we were successful, delivering four inverse femtobarns (4 fb-1) of data to the experiments. This was a great result but, to put it into context, the goal for the whole of Run 2 is to deliver 100 fb-1 by the end of 2018, so we still have a long way to go. 2015 was a learning year, and by the time we switched off for the end-of-year break, we had learned a great deal about how to operate this superb machine at the new higher energy, with shorter bunch spacing allowing us to get many ...

  7. Comparison of multi-MW converters considering the determining factors in wind power application

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    converters are normally targeted to the industrial drive applications, and they did not take into account the special requirements in the case of wind power. This paper tries to unify and compare several promising wind power converters by a series new model and perspective. The evaluation criteria...... will mainly focus on the costeffectiveness of power semiconductors and the converter performances when complying with grid codes - which are more crucial for the wind power converters. It is concluded that the power converters with various voltage levels, topologies, and paralleling structures are possible...... to be unified for comparison. And the two-level low-voltage converter solution still shows cost advantage regarding power semiconductors, while some multi-level medium-voltage converter solutions can show better performance when complying with the grid codes....

  8. DC to DC power converters and methods of controlling the same

    Science.gov (United States)

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  9. Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency

    Directory of Open Access Journals (Sweden)

    Hsiou-Hsian Nien

    2014-05-01

    Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.

  10. Reliability of power electronic converter systems

    CERN Document Server

    Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael

    2016-01-01

    This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.

  11. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  12. Special Tests for the Power Electronic Converters of Wind Turbine Generators

    DEFF Research Database (Denmark)

    Helle, Lars; Senturk, Osman Selcuk; Teodorescu, Remus

    2011-01-01

    -level medium-voltage source converter topologies, of the 3L-ANPC-VSC and 3L-HB-VSC type, are considered in the paper. Both converters employ press-pack IGBT-diode pairs and interface a 6 MW wind turbine to a medium voltage grid. The power loss and thermal model data applicable for both grid and generator......Power electronic converters for wind turbines are characterized by high specific power density and high reliability. Special tests for such converters are performed in order to determine the power loss and thermal models, which are dependent of the load profile and converter structure. Two multi......-side VSCs is used to estimate the switch junction temperatures through the simulation of wind turbine grid interface operation. A discussion of the power density and reliability of the grid-side VSCs with respect to press-pack switches, gate driver, and cooling plate is included. A test set-up for a single...

  13. Power factor correction (PFC) converters feeding brushless DC ...

    African Journals Online (AJOL)

    This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...

  14. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  15. CAS course on Power Converters in Baden, Switzerland

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN Accelerator School (CAS) and the Paul Scherrer Institute (PSI) recently organised a specialised course on Power Converters, which was held at the Hotel du Parc in Baden, Switzerland from 7 to 14 May 2014.   Photo courtesy of Markus Fischer, Paul Scherrer Institut. Following some recapitulation lectures on accelerators and the requirements on power converters, the course covered a wide range of topics related to the different types of power converters needed for particle accelerators. Topical seminars completed the programme. The course was very successful, attended by 84 students representing 21 nationalities, mostly from European countries but also from America, Brazil, Canada, China, Iran, Jordan and Thailand. Feedback from the participants was very positive, reflecting the high standard of the lectures and teaching. In addition to the academic programme, the participants also had an opportunity to take part in a full-day site visit to ABB and PSI and an excursion to the Rhine Fall...

  16. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  17. Light weight, high power, high voltage dc/dc converter technologies

    Science.gov (United States)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  18. Efficiency limits of laser power converters for optical power transfer applications

    International Nuclear Information System (INIS)

    Mukherjee, J; Jarvis, S; Sweeney, S J; Perren, M

    2013-01-01

    We have developed III–V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m −2 ) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m −2 . (paper)

  19. Efficiency limits of laser power converters for optical power transfer applications

    Science.gov (United States)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  20. Comparison of VSC and Z-Source Converter: Power System Application Approach

    Directory of Open Access Journals (Sweden)

    Masoud Jokar Kouhanjani

    2017-01-01

    Full Text Available Application of equipment with power electronic converter interface such as distributed generation, FACTS and HVDC, is growing up intensively. On the other hand, various types of topologies have been proposed and each of them has some advantages. Therefore, appropriateness of each converter regarding to the application is a main question for designers and engineers. In this paper, a part of this challenge is responded by comparing a typical Voltage-Source Converter (VSC and Z-Source Converter (ZSC, through high power electronic-based equipment used in power systems. Dynamic response, stability margin, Total Harmonic Distortion (THD of grid current and fault tolerant are considered as assessment criteria. In order to meet this evaluation, dynamic models of two converters are presented, a proper control system is designed, a small signal stability method is applied and responses of converters to small and large perturbations are obtained and analysed by PSCAD/EMTDC.

  1. High-power three-port three-phase bidirectional DC-DC converter

    NARCIS (Netherlands)

    Tao, H.; Duarte, J.L.; Hendrix, M.A.M.

    2007-01-01

    This paper proposes a three-port three-phase bidirectional dc-dc converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy

  2. Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol; Sumper, Andreas [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Junyent-Ferre, Adria; Galceran-Arellano, Samuel [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain)

    2010-10-15

    The paper deals with the evaluation of power generated by variable and constant frequency offshore wind farms connected to a single large power converter. A methodology to analyze different wind speed scenarios and system electrical frequencies is presented and applied to a case study, where it is shown that the variable frequency wind farm concept (VF) with a single power converter obtains 92% of the total available power, obtained with individual power converters in each wind turbine (PC). The PC scheme needs multiple power converters implying drawbacks in terms of cost, maintenance and reliability. The VF scheme is also compared to a constant frequency scheme CF, and it is shown that a significant power increase of more than 20% can be obtained with VF. The case study considers a wind farm composed of four wind turbines based on synchronous generators. (author)

  3. Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Sen Song

    2018-06-01

    Full Text Available In high voltage direct current (HVDC power transmission of offshore wind power systems, DC/DC converters are applied to transfer power from wind generators to HVDC terminals, and they play a crucial role in providing a high voltage gain, high efficiency, and high fault tolerance. This paper introduces an innovative multi-port DC/DC converter with multiple modules connected in a scalable matrix configuration, presenting an ultra-high voltage step-up ratio and low voltage/current rating of components simultaneously. Additionally, thanks to the adoption of active clamping current-fed push–pull (CFPP converters as sub-modules (SMs, soft-switching is obtained for all power switches, and the currents of series-connected CFPP converters are auto-balanced, which significantly reduce switching losses and control complexity. Furthermore, owing to the expandable matrix structure, the output voltage and power of a modular converter can be controlled by those of a single SM, or by adjusting the column and row numbers of the matrix. High control flexibility improves fault tolerance. Moreover, due to the flexible control, the proposed converter can transfer power directly from multiple ports to HVDC terminals without bus cable. In this paper, the design of the proposed converter is introduced, and its functions are illustrated by simulation results.

  4. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    Science.gov (United States)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  5. A control strategy for multi-functional converter to improve grid power quality

    DEFF Research Database (Denmark)

    Li, Fei; Wang, Xiongfei; Chen, Zhe

    2011-01-01

    The extensive use of converter-interfacing distributed energy resources (DER), combined with a large amount of nonlinear and unbalanced loads connected to the distribution power system, has led to power quality problem. This paper proposes a control strategy for a three-phase four-leg multi-funct......) for multi-functional converter is described. Simulation and hardware in the loop real time test results carried on a three-phase four-wire distributed generation system illustrate the effectiveness of the proposed control strategy.......The extensive use of converter-interfacing distributed energy resources (DER), combined with a large amount of nonlinear and unbalanced loads connected to the distribution power system, has led to power quality problem. This paper proposes a control strategy for a three-phase four-leg multi......-functional converter which can compensate reactive power, harmonic currents, unbalance, and neutral current simultaneously under distorted voltage conditions, besides the active power exchange. The capacity of the converter is taken into account. The proposed control strategy based on synchronous reference frame (SRF...

  6. A review on DC/DC converter architectures for power fuel cell applications

    International Nuclear Information System (INIS)

    Kolli, Abdelfatah; Gaillard, Arnaud; De Bernardinis, Alexandre; Bethoux, Olivier; Hissel, Daniel; Khatir, Zoubir

    2015-01-01

    Highlights: • Different DC/DC power converter topologies for Fuel Cell systems are presented. • Advantages and drawbacks of the DC/DC power converter topologies are detailed. • Wide-BandGap semiconductors are attractive candidates for design of converters. • Wide-BandGap semiconductors improve efficiency and thermal limits of converters. • Different semiconductor technologies are assessed. - Abstract: Fuel cell-based power sources are attractive devices. Through multi-stack architecture, they offer flexibility, reliability, and efficiency. Keys to accessing the market are simplifying its architecture and each components. These include, among others, the power converter enabling the output voltage regulation. This article focuses on this specific component. The present paper gives a comprehensive overview of the power converter interfaces potentially favorable for the automotive, railways, aircrafts and small stationary domains. First, with respect to the strategic development of a modular design, it defines the specifications of a basic interface. Second, it inventories the best architecture opportunities with respect to these requirements. Based on this study, it fully designs a basic module and points out the outstanding contribution of the new developed silicon carbide switch technology. In conclusion, this review article exhibits the importance of choosing the right power converter architecture and the related technology. In this context it is highlighted that the output power interface can be efficient, compact and modular. In addition, its features enable a thermal compatibility with many ways of integrating this component in the global fuel cell based power source.

  7. ST/EL and ST/CV services for TI2 & TI8 LHC injection tunnels

    CERN Document Server

    Akhtar, S; CERN. Geneva. ST Division

    2002-01-01

    This paper describes the ST/EL and ST/CV services for TI2 & TI8 LHC injection tunnels. The cooling and ventilation part describes the requirements for design and installation of more than 10 km of pipeline that is going to be laid down in the tunnels. Main operating parameters as well as manufacture procedures are explained. Preliminary work schedule with the cost estimate is also presented. Electrical power will be distributed from the LHC side and the SPS side for the machine and the general services. All power converters will be installed on surface buildings. The link between the main bend converters and the main bend magnets will be realised with water-cooled cables. Rest of the magnets will be cabled by using conventional copper and aluminium cables. Due to long lengths of the injection tunnels a dry 18kV transformer will be installed in TJ8 to serve the general services for TI8. The same will apply to TI2 by installing a transformer at the bottom of the PMI2 shaft.

  8. Complex-Vector Time-Delay Control of Power Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P. C.; Tang, Y.

    2008-01-01

    Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation...... since only a small amount of memory space for storing time-delayed values and simple arithmetic computations are needed for its physical realization. In addition to that, other advantages of the scheme include its abilities to compensate for negative-sequence, load and grid harmonic components using...

  9. Modular Power Electronic Converters in the Power Range 1 to 10 kW

    DEFF Research Database (Denmark)

    Klimczak, Pawel

    Thanks to CO2 emission reduction policies and increasing prices of fossil fuels a significant growth in field of sustainable energy sources (SES) is being observed during last decade. A government support and take-off projects in Europe and US shall ensure an increasing trend in future too. Some...... of SES based plants , like hydro-, geothermal-, biofuel-plants, use synchronous generators directly connected to the grid. But some other SES technologies, like fuel cell or photovoltaic, require a power electronic converter between the energy source and the load or the grid. Work presented...... in this thesis concentrates on dc-dc non-isolated converters suitable for high voltage gain applications, like uninterruptible power supply (UPS) and some of sustainable energy sources. A special attention is on reduction of power losses and efficiency improvements in non-isolated dc-dc step-up converters...

  10. Converter Monitoring Unit for Retrofit of Wind Power Converters

    DEFF Research Database (Denmark)

    Rannestad, Bjorn; Maarbjerg, Anders Eggert; Frederiksen, Kristian

    2018-01-01

    A Converter Monitoring Unit (CMU), which will enable condition monitoring of wind turbine converters is presented in this paper. Reducing the cost of corrective maintenance by means of condition monitoring is a way of lowering Operation & Maintenance (O&M) costs for wind turbine systems....... The CMU must be able to detect a broad range of failure modes related to Insulated Gate Bipolar Transistor (IGBT) power modules and associated gate drives. IGBT collector-emitter on-state voltage (vceon) and current (ic) is sampled in the CMU and used for detection of emerging failures. A new method...... for compensation of unwanted inductive voltage drop in the vceon measurement path is presented, enabling retrofitting of CMUs in existing wind turbines. Finally, experimental results obtained on a prototype CMU are presented. Experimentally the vceon dependency to IGBT junction temperature and deterioration...

  11. PV power system using hybrid converter for LED indictor applications

    International Nuclear Information System (INIS)

    Tseng, Sheng-Yu; Wang, Hung-Yuan; Chen, Chien-Chih

    2013-01-01

    Highlights: • This paper presents a LED indictor driving circuit with a PV arrays as its power source. • The perturb-and-observe method is adopted to extract the maximum power of PV arrays. • The proposed circuit structure has a less component counts and higher conversion efficiency. • A prototype of LED indictor driving circuit has been implemented to verify its feasibility. • The proposed hybrid converter is suitable for LED inductor applications. - Abstract: This paper presents a LED indictor driving circuit with a PV arrays as its power source. The LED indictor driving circuit includes battery charger and discharger (LED driving circuit). In this research, buck converter is used as a charger, and forward converter with active clamp circuit is adopted as a discharger to drive the LED indictor. Their circuit structures use switch integration technique to simplify them and to form the proposed hybrid converter, which has a less component counts, lighter weight, smaller size, and higher conversion efficiency. Moreover, the proposed hybrid converter uses a perturb-and-observe method to extract the maximum power from PV arrays. Finally, a prototype of an LED indictor driving circuit with output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the LED inductor applications

  12. Power converter with maximum power point tracking MPPT for small wind-electric pumping systems

    International Nuclear Information System (INIS)

    Lara, David; Merino, Gabriel; Salazar, Lautaro

    2015-01-01

    Highlights: • We implement a wind electric pumping system of small power. • The power converter allowed to change the operating point of the electro pump. • Two control techniques were implemented in the power converter. • The control V/f variable allowed to increase the power generated by the permanent magnet generator. - Abstract: In this work, an AC–DC–AC direct-drive power converter was implemented for a wind electric pumping system consisting of a permanent magnet generator (PMG) of 1.3 kW and a peripheral single phase pump of 0.74 kW. In addition, the inverter linear V/f control scheme and the maximum power point tracking (MPPT) algorithm with variable V/f were developed. MPPT algorithm seeks to extract water in a wide range of power input using the maximum amount of wind power available. Experimental trials at different pump pressures were conducted. With a MPPT tracking system with variable V/f, a power value of 1.3 kW was obtained at a speed of 350 rpm and a maximum operating hydraulic head of 50 m. At lower operating heads pressures (between 10 and 40 m), variable V/f control increases the power generated by the PMG compared to the linear V/f control. This increase ranged between 4% and 23% depending on the operating pressure, with an average of 13%, getting close to the maximum electrical power curve of the PMG. The pump was driven at variable frequency reaching a minimum speed of 0.5 times the rated speed. Efficiency of the power converter ranges between 70% and 95% with a power factor between 0.4 and 0.85, depending on the operating pressure

  13. Active energy recovery clamping circuit to improve the performance of power converters

    Science.gov (United States)

    Whitaker, Bret; Barkley, Adam

    2017-05-09

    A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.

  14. Testing Quality and Metrics for the LHC Magnet Powering System throughout Past and Future Commissioning

    OpenAIRE

    Anderson, D; Audrain, M; Charifoulline, Z; Dragu, M; Fuchsberger, K; Garnier, JC; Gorzawski, AA; Koza, M; Krol, K; Rowan, S; Stamos, K; Zerlauth, M

    2014-01-01

    The LHC magnet powering system is composed of thousands of individual components to assure a safe operation when operating with stored energies as high as 10GJ in the superconducting LHC magnets. Each of these components has to be thoroughly commissioned following interventions and machine shutdown periods to assure their protection function in case of powering failures. As well as having dependable tracking of test executions it is vital that the executed commissioning steps and applied anal...

  15. Power factor correction (PFC) converters feeding brushless DC ...

    African Journals Online (AJOL)

    DR OKE

    1Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA ... Hence, power factor correction (PFC) converters are used for achieving a unity ...... He is currently working as a Systems Engineer (Power IC) in AvantGarde ...

  16. Development of a current-type PWM converter with high power factor. 1

    International Nuclear Information System (INIS)

    Miura, Yushi; Matsukawa, Makoto; Miyachi, Kengo; Kimura, Toyoaki

    1998-01-01

    A power supply system for superconducting poloidal field coils of a next generation tokamak-type fusion device can be operated on the relatively low voltage for the duration of discharge except the plasma initiation. In the case of the conventional phase-controlled thyristor converters are adopted in such a system, the input power factor would be low in average, and a reactive power fluctuation caused by the change of DC output voltage may produce serious effects on the commercial transmission line. From the above viewpoint, a current-type PWM (Pulse Width Modulation) converter, which can work with the power factor of unity for the input power, is regarded as one of the promising candidates of the converters for the power supplies of next generation fusion devices. Hence, a 100kW-class current-type PWM converter has been developed by using IGBT (Insulated Gate Bipolar Transistor) as switching devices. In this development, the basic performance has been preliminary investigated whether this converter is applicable to the power supply for the next generation fusion device. In addition, two different PWM control methods were examined whether these methods can realize a unit power factor and suppress the transient oscillation of converter input current at the same time in case that the reference of DC output current is changed rapidly. (author)

  17. Converter Power Density Increase using Low Inductive Integrated DC-link Capacitor/Bus

    DEFF Research Database (Denmark)

    Trintis, Ionut; Franke, Toke; Rannested, Bjørn

    2015-01-01

    The power losses in switching devices have a direct effect on the maximum converter power. For a voltage source converter, the DC-link bus has a major influence on the power loss and safe operating area of the power devices. The Power Ring Film CapacitorTM integrated with an optimized bus structu...

  18. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters

    Directory of Open Access Journals (Sweden)

    Amir Ghorbani

    2018-05-01

    Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter

  19. Modeling the full-bridge series-resonant power converter

    Science.gov (United States)

    King, R. J.; Stuart, T. A.

    1982-01-01

    A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.

  20. Modeling of the Voltage Waves in the LHC Main Dipole Circuits

    CERN Document Server

    Ravaioli, E; Formenti, F; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    When a fast power abort is triggered in the LHC main dipole chain, voltage transients are generated at the output of the power converter and across the energy-extraction switches. The voltage waves propagate through the chain of 154 superconducting dipoles and can have undesired effects leading to spurious triggering of the quench protection system and firing of the quench heaters. The phase velocity of the waves travelling along the chain changes due to the inhomogeneous AC behavior of the dipoles. Furthermore, complex phenomena of reflection and superposition are present in the circuit. For these reasons analytical calculations are not sufficient for properly analyzing the circuit behavior after a fast power abort. The transients following the switch-off of the power converter and the opening of the switches are analyzed by means of a complete electrical model, developed with the Cadence© suite (PSpice© based). The model comprises all the electrical components of the circuit, additional components simula...

  1. Switching transients in high-frequency high-power converters using power MOSFET's

    Science.gov (United States)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  2. TID and Displacement Damage Effects in Vertical and Lateral Power MOSFETs for Integrated DC-DC Converters

    CERN Document Server

    Faccio, F; Michelis, S; Faccio, Federico; Fuentes, C; Allongue, B; Sorge, R; Orlandi, S

    2010-01-01

    TID and displacement damage effects are studied for vertical and lateral power MOSFETs in five different technologies in view of the development of radiation-tolerant fully integrated DC-DC converters. Investigation is pushed to the very high level of radiation expected for an upgrade to the LHC experiments. TID induces threshold voltage shifts and, in n-channel transistors, source-drain leakage currents. Wide variability in the magnitude of these effects is observed. Displacement damage increases the on-resistance of both vertical and lateral high-voltage transistors. In the latter case, degradation at high particle fluence might lead to a distortion of the output characteristics curve. HBD techniques to limit or eliminate the radiation-induced leakage currents are successfully applied to these high-voltage transistors, but have to be used carefully to avoid consequences on the breakdown voltage.

  3. Laboratory manual for pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2015-01-01

    Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters.  Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program

  4. The LHC Lead Injector Chain

    CERN Document Server

    Beuret, A; Blas, A; Burkhardt, H; Carli, Christian; Chanel, M; Fowler, A; Gourber-Pace, M; Hancock, S; Hourican, M; Hill, C E; Jowett, John M; Kahle, K; Küchler, D; Lombardi, A M; Mahner, E; Manglunki, Django; Martini, M; Maury, S; Pedersen, F; Raich, U; Rossi, C; Royer, J P; Schindl, Karlheinz; Scrivens, R; Sermeus, L; Shaposhnikova, Elena; Tranquille, G; Vretenar, Maurizio; Zickler, T

    2004-01-01

    A sizeable part of the LHC physics programme foresees lead-lead collisions with a design luminosity of 1027 cm-2 s-1. This will be achieved after an upgrade of the ion injector chain comprising Linac3, LEIR, PS and SPS machines [1,2]. Each LHC ring will be filled in 10 min by almost 600 bunches, each of 7×107 lead ions. Central to the scheme is the Low Energy Ion Ring (LEIR) [3,4], which transforms long pulses from Linac3 into high-brilliance bunches by means of multi-turn injection, electron cooling and accumulation. Major limitations along the chain, including space charge, intrabeam scattering, vacuum issues and emittance preservation are highlighted. The conversion from LEAR (Low Energy Antiproton Ring) to LEIR involves new magnets and power converters, high-current electron cooling, broadband RF cavities, and a UHV vacuum system with getter (NEG) coatings to achieve a few 10-12 mbar. Major hardware changes in Linac3 and the PS are also covered. An early ion scheme with fewer bunches (but each at nominal...

  5. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  6. Application of digital control techniques for satellite medium power DC-DC converters

    Science.gov (United States)

    Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman

    2010-09-01

    The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.

  7. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    Science.gov (United States)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  8. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Chen, Wenjie; Liserre, Marco

    2015-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrent problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zerosequence components are proposed to enhance the power control ability under this adverse condition. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC voltage....

  9. Regulation of the output power at the resonant converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefanov, Goce G.; Sarac, Vasilija J. [University Goce Delecev-Stip, Faculty of Electrical Engineering, Radovis (Macedonia, The Former Yugoslav Republic of); Karadzinov, Ljupco V., E-mail: goce.stefanov@ugd.edu.mk [University Kiril and Methodyus-Skopje, FEIT Skopje(Macedonia, The Former Yugoslav Republic of)

    2011-07-01

    In this paper a method for regulating an alternating current voltage source with pair of IGBT transistor’s modules, in a full bridge configuration with series resonant converter is given. With the developed method a solution is obtained which can regulate the phase difference between output voltage and current through the inductor, in order to maintain maximum output power. Control electronic via feedback signals regulates the energy transfer to the tank by changing the pulse width of signals which are used as inputs to the gates of the IGBTs. By increasing or decreasing the pulse width transmitted to the various gates of the IGBT the energy transfer to the tank is increased or decreased . PowerSim simulations program is used for development of controlling methodology. Developed method is practically implemented in a prototype of the device for phase control of resonant converter with variable the resonant load. Key words: pulse width method, phase regulation , power converter.

  10. Optimal trajectory control of a CLCC resonant power converter

    NARCIS (Netherlands)

    Huisman, H.; Visser, de I.; Duarte, J.L.

    2015-01-01

    A CLCC resonant converter to be used in an isolated power supply is operated using optimal trajectory control (OTC). As a consequence, the converter's inner loop behavior is changed to that of a controlled current source. The controller is implemented in an FPGA. Simulation results and recorded

  11. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  12. Multi-timescale modelling for the loading behaviours of power electronics converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2015-01-01

    The thermal dynamics of power device, referred as “thermal cycling”, are closely related to the reliability as well as the cost of the power electronics converter. However, the device loading is disturbed by many factors of the converter system which present at various times-constants from micro...

  13. Large-signal stability analysis of two power converters solutions for DC shipboard microgrid

    NARCIS (Netherlands)

    Bosich, Daniele; Gibescu, Madeleine; Sulligoi, Giorgio

    2017-01-01

    Bus voltage stability is an essential requirement in DC shipboard microgrids. In presence of Constant Power Loads, voltage instability is strictly dependent on RLC filters. This paper evaluates two power converter solutions (Thyristor Converters, TCs, and diode rectifiers + DC-DC Converters, DCs)

  14. Real Time In-circuit Condition Monitoring of MOSFET in Power Converters

    Directory of Open Access Journals (Sweden)

    Shakeb A. Khan

    2015-03-01

    Full Text Available Abstract:This paper presents simple and low-cost, real time in-circuit condition monitoring of MOSFET in power electronic converters. Design metrics requirements like low cost, small size, high power factor, low percentage of total harmonic distortion etc. requires the power electronic systems to operate at high frequencies and at high power density. Failures of power converters are attributed largely by aging of power MOSFETs at high switching frequencies. Therefore, real time in-circuit prognostic of MOSFET needs to be done before their selection for power system design. Accelerated aging tests are performed in different circuits to determine the wear out failure of critical components based on their parametric degradation. In this paper, the simple and low-cost test beds are designed for real time in-circuit prognostics of power MOSFETs. The proposed condition monitoring scheme helps in estimating the condition of MOSFETs at their maximum rated operating condition and will aid the system designers to test their reliability and benchmark them before selecting in power converters.

  15. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    In this paper, the case of symmetrical grid fault when using the multi-MW wind turbine of partial-scale and full-scale two-level power converter are designed and investigated. Firstly, the different operation behaviors of the relevant power converters under the voltage dip will be described......) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...

  16. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    Science.gov (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  17. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Performance testing of self-powered detector signal converters at Dukovany nuclear power plant - stage 1

    International Nuclear Information System (INIS)

    Erben, O.; Hajek, P.; Zerola, L.; Karsulin, M.

    1990-11-01

    The converters were manufactured at the Institute of Nuclear Research, Rez. Dynamic functions of the converters were tested during the start-up of reactor unit 4, Dukovany nuclear power plant, and their stability during its normal operation. The results and evaluation of the measurements show a good performance of converters. They have a low offset, good stability and the values of current are in a good agreement with the values obtained using other methods. The values of insulation resistance are in a good agreement with the values obtained manually using the method of additional resistance. These converters are planned to be used in the upgraded in-service inspection system in WWER-440 nuclear power plants. (Z.S.) 9 tabs., 22 figs., 1 ref

  19. Solar fed DC-DC single ended primary inductance converter for low power applications

    Science.gov (United States)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  20. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrentt problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zero-sequence components are proposed to enhance the power control ability under this adverse conditions. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC sources....

  1. Maximum wind energy extraction strategies using power electronic converters

    Science.gov (United States)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  2. CCLIBS: The CERN Power Converter Control Libraries

    CERN Document Server

    AUTHOR|(SzGeCERN)404953; Lebioda, Krzysztof Tomasz; Magrans De Abril, Marc; Martino, Michele; Murillo Garcia, Raul; Nicoletti, Achille

    2015-01-01

    Accurate control of power converters is a vital activity in large physics projects. Several different control scenarios may coexist, including regulation of a circuit’s voltage, current, or field strength within a magnet. Depending on the type of facility, a circuit’s reference value may be changed asynchronously or synchronously with other circuits. Synchronous changes may be on demand or under the control of a cyclic timing system. In other cases, the reference may be calculated in real-time by an outer regulation loop of some other quantity, such as the tune of the beam in a synchrotron. The power stage may be unipolar or bipolar in voltage and current. If it is unipolar in current, it may be used with a polarity switch. Depending on the design, the power stage may be controlled by a firing angle or PWM duty-cycle reference, or a voltage or current reference. All these cases are supported by the CERN Converter Control Libraries (CCLIBS). These open-source C libraries include advanced reference generati...

  3. High-Repeatable Data Acquisition Systems for Pulsed Power Converters in Particle Accelerator Structures

    CERN Document Server

    AUTHOR|(CDS)2087245; Martino, Michele; Zinno, Raffaele

    In this Ph.D. thesis, the issues related to the metrological characterization of high-performance pulsed power converters are addressed. Initially, a background and a state of the art on the measurement systems needed to correctly operate a high-performance power converter are presented. As a matter of fact, power converters usually exploits digital control loops to enhance their performance. In this context the final performance of a power converter has to be validated by a reference instrument with higher metrological characteristics. In addition, an on-line measurement systemis also needed to digitize the quantity to be controlled with high accuracy. Then, in industrial applications of power converters metrology, specifications are given in terms of Worst-Case Uncertainty (WCU). Therefore, an analytical model for predicting the Worst-Case Uncertainty (WCU) of a measurement system is discussed and detailed for an instrument affected by Gaussian noise. Furthermore, the study and the design of a Reference Acq...

  4. A Review on Direct Power Control for Applications to Grid Connected PWM Converters

    Directory of Open Access Journals (Sweden)

    T. A. Trivedi

    2015-08-01

    Full Text Available The Direct Power Control strategy has become popular as an alternative to the conventional vector oriented control strategy for grid connected PWM converters. In this paper, Direct Power Control as applied to various applications of grid connected converters is reviewed. The Direct Power Control for PWM rectifiers, Grid Connected DC/AC inverters applications such as renewable energy sources interface, Active Power Filters, Doubly Fed Induction Generators and AC-DC-AC converters are discussed. Control strategies such as Look-Up table based control, predictive control, Virtual Flux DPC, Model based DPC and DPC-Space Vector Modulation are critically reviewed. The effects of various key parameters such as selection of switching vector, sampling time, hysteresis band and grid interfacing on performance of direct power controlled converters are presented.

  5. Short term braking capability during power interruptions for integrated matrix converter

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    attractive. Sinusoidal input currents and bi-directional power flow are other advantages of the matrix converter, but it is less immune to power grid disturbances compared to a standard ASD. In hoisting applications, short-term braking capability during a power outage is needed until the mechanical brake...... engages or to perform more effective a combined braking. This paper proposes a new method to provide short-term braking capability during a power outage for matrix converters. A braking chopper is needed in the clamp circuit, which allows for a drastically reduction of the capacitor size. The power flow...

  6. Stirling converters for space dynamic power concepts with 2 to 130 We output

    International Nuclear Information System (INIS)

    Ross, B.A.

    1995-01-01

    Three innovative Stirling converter concepts are described. Two concepts are based on Pluto Fast Flyby (PFF) mission requirements, where two General Purpose Heat Source (GPHS) modules provide the thermal input. The first concept (PFF2) considers a power system with two opposed Stirling converters; the second concept (PFF4) considers four opposed Stirling converters. For both concepts the Stirling converters are designed to vary their power production capability to compensate for the failure of one Stirling converter. While the net thermal efficiency of PFF4 is a few percentage points lower than PFF2, the total Stirling converter mass of PFF4 is half that for PFF2. The third concept (ITTI) is designed to supply 2 watts of power for weather stations on the Martian surface. The predicted thermal performance of the ITTI is low compared to PFF2 and PFF4, yet the ITTI concept offers significant advantages compared to currently available power systems at the 2-watt power level. All three concepts are based on long-life technology demonstrated by an 11-watt output Stirling generator that as of March 1995 has accumulated over 15,000 operating hours without maintenance

  7. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-08-01

    Full Text Available It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  8. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    Science.gov (United States)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  9. AC-DC PFC Converter Using Combination of Flyback Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2014-06-01

    Full Text Available This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2. Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.

  10. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature is dec...

  11. Passive components used in power converters

    CERN Document Server

    Rufer, A; Barrade, P

    2006-01-01

    In power converters, passive components play an important role, and have in general specific nature and properties. The goal of this tutorial is to give an overview, first on inductive components for power conversion, and second on dedicated power capacitors. In a third part, new components— supercapacitors—will be presented. Generally, inductors for power applications must be custom designed. In this tutorial, the most important effects encountered when realising inductive components will be presented in the first part, without entering into the detailed design of such components. For that purpose, the referenced documents that have served as a base for this tutorial must be consulted [1], [2], and mainly [3]. The second part of this tutorial (Capacitors used in power electronics) is dedicated to power capacitors. Unlike inductors, capacitors cannot be specifically designed, but must be selected from a manufacturer’s list of components. Here, the documentation corresponds to a subset of Ref. [4] that h...

  12. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  13. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-10-15

    This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn. (author)

  14. Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications

    Directory of Open Access Journals (Sweden)

    Jukka Viinamäki

    2017-07-01

    Full Text Available The application of constant power control and inclusion of energy storage in grid-connected photovoltaic (PV energy systems may increase the use of two-stage system structures composed of DC–DC-converter-interfaced PV generator and grid-connected inverter connected in cascade. A typical PV-generator-interfacing DC–DC converter is a boost-power-stage converter. The renewable energy system may operate in three different operation modes—grid-forming, grid-feeding, and grid-supporting modes. In the last two operation modes, the outmost feedback loops are taken from the input terminal of the associated power electronic converters, which usually does not pose stability problems in terms of their input sources. In the grid-forming operation mode, the outmost feedback loops have to be connected to the output terminal of the associated power electronic converters, and hence the input terminal will behave as a negative incremental resistor at low frequencies. This property will limit the operation of the PV interfacing converter in either the constant voltage or constant current region of the PV generator for ensuring stable operation. The boost-power-stage converter can be applied as a voltage or current-fed converter limiting the stable operation region accordingly. The investigations of this paper show explicitly that only the voltage-fed mode would provide feasible dynamic and stability properties as a viable interfacing converter.

  15. Mission-profile based multi-objective optimization of power electronics converter for wind turbines

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh; Teodorescu, Remus; Kerekes, Tamas

    2017-01-01

    -objective optimization approach for designing power converter is presented. The objective is to minimize the energy loss for a given load profile as against the conventional approach of minimizing power loss at specific loading conditions. The proposed approach is illustrated by designing a grid-side power converter...

  16. LHC beam stability and feedback control

    International Nuclear Information System (INIS)

    Steinhagen, Ralph

    2007-01-01

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a proportional

  17. Powering CERN and the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN's electricity network is denser than that of the Canton of Geneva, is powered by two different national grids and has to provide users with an availability rate as close to 100% as possible. To ensure the smooth running of the machines throughout the period of LHC physics operation, the teams from the EN Department are implementing a continuous programme of consolidation and modernisation on all the Laboratory's sites, but the biggest projects will have to wait until the long technical shutdown scheduled for 2013.   An electrical installation at CERN. CERN's annual electricity consumption is around one terawatt hour (TWh), which roughly corresponds to a fifth of the consumption of the Canton of Geneva. However, during periods when all the machines are operating at the same time, our demand can reach the equivalent of a third of Geneva's total consumption. While the grid of the Geneva public utility company SIG (Services Industriels de Genève) covers distances of around 50 km, the ...

  18. Wind-driven SEIG supplying DC microgrid through a single-stage power converter

    Directory of Open Access Journals (Sweden)

    Vellapatchi Nayanar

    2016-09-01

    Full Text Available Nowadays, there is an increased emphasis on utilizing the renewable energy sources and selection of suitable power converters for supplying dc microgrid. Among the various renewable energy sources, wind energy stands first in terms of installed capacity. So, an attempt is made in this paper for supplying dc microgrid utilizing wind energy. A self-excited induction generator has been used in the proposed wind energy conversion system (WECS. A single-stage power converter, namely, semi-converter is connected between the SEIG and dc grid terminals for closed-loop control of the proposed system. A perturb and observe (P&O based maximum power point tracking (MPPT algorithm has been developed and implemented using a dsPIC30F4011 digital controller. In this MPPT algorithm, the firing angle of the converter is adjusted by continuously monitoring the dc grid current for a given wind velocity. For analyzing the proposed system, a MATLAB/Simulink model has been developed by selecting the various components starting from wind-turbine model to the power converter supplying dc microgrid. Successful working of the proposed WECS has also been shown through experimental results obtained on a prototype model developed in the laboratory.

  19. A High-Efficient Low-Cost Converter for Capacitive Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Il-Oun Lee

    2017-09-01

    Full Text Available Growth of the Internet of Things (IoT spurs need for new ways of delivering power. Wireless power transfer (WPT has come into the spotlight from both academia and industry as a promising way to power the IoT devices. As one of the well-known WPT techniques, the capacitive power transfer (CPT has the merit of low electromagnetic radiation and amenability of combined power and data transfer over a capacitive interface. However, applying the CPT to the IoT devices is still challenging in reality. One of the major issues is due to the small capacitance of the capacitive interface, which results in low efficiency of the power transfer. To tackle this problem, we present a new step-up single-switch quasi-resonant (SSQR converter for the CPT system. To enhance the CPT efficiency, the proposed converter is designed to operate at low frequency and drive small current into the capacitive interfaces. In addition, by eliminating resistor-capacitor-diode (RCD snubber in the converter, we reduce the implementation cost of the CPT system. Based on intensive experimental work with a CPT system prototype that supports maximum 50 W (100 V/0.5 A power transfer, we demonstrate the functional correctness of the converter that achieves up to 93% efficiency.

  20. 4-13 kA DC current transducers enabling accurate in-situ calibration for a new particle accelerator project, LHC

    CERN Document Server

    Hudson, G

    2005-01-01

    CERN's next generation particle accelerator, the large hadron collider (LHC) requires accurate current measurement up to 13 kA to enable current tracking between individual power converters. DC current transducers (DCCTs) have been developed to allow in-situ calibrations to 10/sup -6/ uncertainty. This paper describes the principle, design and initial evaluations.

  1. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  2. Design and development of bipolar 4-quadrant switch-mode power converter for superconducting magnets

    International Nuclear Information System (INIS)

    Yashwant Kumar; Thakur, S.K.; Ghosh, M.K.; Tiwari, T.P.; De, Anirban; Kumari, S.; Saha, S.

    2011-01-01

    A uniform zero crossing magnetic field in a magnet can be achieved by using bipolar power converter with four quadrant operation. A high current bipolar switch-mode power converter (rated ±27 V max , ±7V flat top, ±300A, 100 ppm) has been designed and developed indigenously at VECC Kolkata. Four quadrants operation is accomplished by using power IGBTs in an H-bridge configuration with switching frequency around 20 kHz. The switch-mode power converter is used because of high dynamic response, low output ripple, high efficiency and low input current harmonics. In this paper, circuit topology, function of system components and key system specifications of high current bipolar switch mode power converter is discussed. (author)

  3. A Two-Phase Buck Converter with Optimum Phase Selection for Low Power Applications

    OpenAIRE

    Yeago, Taylor Craig

    2015-01-01

    Power consumption of smart cameras varies significantly between sleep mode and active mode, and a smart camera operates in sleep mode for 80 ��" 90% of time for typical use. To prolong the battery life of smart cameras, it is essential to increase the power converter efficiency for light load, while being able to manage heavy load. The power stage of traditional buck converter is optimized for maximum load, at the cost of light-load efficiency. Wei proposed a multiphase buck converter incorpo...

  4. A highly efficient Micro-Power Converter between a Solar Cell and a Rechargable Lithium-ion Battery

    NARCIS (Netherlands)

    Woerd, van der A.C.; Bais, M.A.; Jong, de L.P.; Roermund, van A.H.M.; Varandan, V.K.; Singer, R.A.; Vellekoop, M.J.

    1998-01-01

    This paper describes the design of a low-power photo-voltaic power converter which will be used in a directional hearing aid. It is argued, that the use of a switched-capacitor converter is needed when integration on a chip is demanded. This converter combined with a parallel power converter has an

  5. Multi-megawatt inverter/converter technology for space power applications

    Science.gov (United States)

    Myers, Ira T.; Baumann, Eric D.; Kraus, Robert; Hammoud, Ahmad N.

    1992-01-01

    Large power conditioning mass reductions will be required to enable megawatt power systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. Phase 1 of a proposed two phase interagency program has been completed to develop an 0.1 kg/kW DC/DC converter technology base for these future space applications. Three contractors, Hughes, General Electric (GE), and Maxwell were Phase 1 contractors in a competitive program to develop a megawatt lightweight DC/DC converter. Researchers at NASA Lewis Research Center and the University of Wisconsin also investigated technology in topology and control. All three contractors, as well as the University of Wisconsin, concluded at the end of the Phase 1 study, which included some critical laboratory work, that 0.1-kg/kW megawatt DC/DC converters can be built. This is an order of magnitude lower specific weight than is presently available. A brief description of each of the concepts used to meet the ambitious goals of this program are presented.

  6. A Design Methodology for Power-efficient Continuous-time Sigma-Delta A/D Converters

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Bruun, Erik

    2003-01-01

    In this paper we present a design methodology for optimizing the power consumption of continuous-time (CT) ΣΔ A/D converters. A method for performance prediction for ΣΔ A/D converters is presented. Estimation of analog and digital power consumption is derived and employed to predict the most power...... bits performance. Expected power consumption for the prototype is approx. 170 μW....

  7. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  8. Optimization of Modulation Waveforms for Improved EMI Attenuation in Switching Frequency Modulated Power Converters

    Directory of Open Access Journals (Sweden)

    Deniss Stepins

    2015-01-01

    Full Text Available Electromagnetic interference (EMI is one of the major problems of switching power converters. This paper is devoted to switching frequency modulation used for conducted EMI suppression in switching power converters. Comprehensive theoretical analysis of switching power converter conducted EMI spectrum and EMI attenuation due the use of traditional ramp and multislope ramp modulation waveforms is presented. Expressions to calculate EMI spectrum and attenuation are derived. Optimization procedure of the multislope ramp modulation waveform is proposed to get maximum benefits from switching frequency modulation for EMI reduction. Experimental verification is also performed to prove that the optimized multislope ramp modulation waveform is very useful solution for effective EMI reduction in switching power converters.

  9. Free-piston Stirling component test power converter test results and potential Stirling applications

    Science.gov (United States)

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  10. Thermoelectric converter for SP-100 space reactor power system

    Science.gov (United States)

    Terrill, W. R.; Haley, V. F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.

  11. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  12. The Impact of a Power Electronics Converter in Phase Failure Work on the Power System Network

    Directory of Open Access Journals (Sweden)

    Dariusz Zieliński

    2016-09-01

    Full Text Available The paper presents the impact of phase failure work on power converters. The study includes a three-level NPC inverter (Neutral Point Clamped, controlled by Voltage Oriented Control (VOC. The NPC converter integrates renewable energy sources with the power grid. The article includes a discussion about the causes of phase failure work and an analysis of the converter’s failure and its impact on the power grid. The simulations were performed in MATLAB/Simulink. The study also includes the concept of an integrated protection for IGBTs, controlled by the DSP microprocessor system.

  13. CAS CERN Accelerator School: Power converters for particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    This volume presents the proceedings of the fifth specialized course organized by the CERN Accelerator School, the subject on this occasion being power converters for particle accelerators. The course started with lectures on the classification and topologies of converters and on the guidelines for achieving high performance. It then went on to cover the more detailed aspects of feedback theory, simulation, measurements, components, remote control, fault diagnosis and equipment protection as well as systems and grid-related problems. The important topics of converter specification, procurement contract management and the likely future developments in semiconductor components were also covered. Although the course was principally directed towards DC and slow-pulsed supplies, lectures were added on fast converters and resonant excitation. Finally the programme was rounded off with three seminars on the related fields of Tokamak converters, battery energy storage for electric vehicles, and the control of shaft generators in ships. (orig.)

  14. Remote Power Control Injection of Grid-Connected Power Converters Based on Virtual Flux

    Directory of Open Access Journals (Sweden)

    Nurul Fazlin Roslan

    2018-02-01

    Full Text Available Renewable Energy Source (RES-based power plants need to control the active and reactive power at the Point of Common Connection (PCC with the grid, in order to comply with the requirements of the Transmission System Operators (TSOs. This point is normally far away from the power converter station, and the cables and step-up transformers have a non-neglectable influence on the delivered power. In order to overcome this drawback, this paper presents a control algorithm that permits one to control remotely the power injected at the PCC, by adjusting the local controller of the Voltage Source Converters (VSCs. In this work, the synchronization with the grid is done based on the Virtual Flux (VF concept. The results reveals that the VF estimation is able to produce a reliable estimation of the grid voltage in any point of the network, and makes it possible to calculate the necessary current reference for injecting a desired active and reactive power at a point that can be some kilometres away. In this paper the main principle for this remote power control is presented. Likewise, the simulation and experimental results will be shown in order to analyse the effectiveness of the proposed system.

  15. Selection of DC/DC converter for offshore wind farms with MVDC power collection

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2017-01-01

    Four DC/DC converters are analyzed and compared with respects to availability, efficiency, ratings, repair costs and power density. Intended application is offshore wind farms with MVDC power collection. The selected topology is a new series resonant converter, which offers 99% efficiency across...

  16. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    Directory of Open Access Journals (Sweden)

    Anders Hedegaard Hansen

    2018-03-01

    Full Text Available Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on the presented results it is concluded that power extraction algorithms based on model predictive control principles are both feasible and favorable for use in a discrete fluid power power take-off system for point absorber wave energy converters.

  17. A Hamiltonian viewpoint in the modeling of switching power converters : A systematic modeling procedure of a large class of switching power converters using the Hamiltonian approach

    NARCIS (Netherlands)

    Escobar, Gerardo; Schaft, Arjan J. van der; Ortega, Romeo

    1999-01-01

    In this paper we show how, using the Hamiltonian formalism, we can systematically derive mathematical models that describe the behaviour of a large class of switching power converters, including the "Boost", "Buck", "Buck-Boost", "Čuk" and "Flyback" converters. We follow the approach earlier

  18. Design of the Trap Filter for the High Power Converters with Parallel Interleaved VSCs

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2014-01-01

    The power handling capability of the state-of-the-art semiconductor devices is limited. Therefore, the Voltage Source Converters (VSCs) are often connected in parallel to realize high power converter. The switching frequency semiconductor devices, used in the high power VSCs, is also limited...

  19. A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Gimara Rajapakse

    2017-10-01

    Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.

  20. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  1. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  2. Reconfiguring grid-interfacing converters for power quality improvement

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.; Encica, L.; Gysen, B.L.J.; Jansen, J.W.; Krop, D.C.J.

    2008-01-01

    In this paper reconfiguration of grid-interfacing converters is proposed for power quality improvement. In addition to the traditional function of delivering energy between distributed sources and the utility grid, more flexible ancillary functions can be integrated into the control of

  3. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2012-07-01

    Full Text Available Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid connected inverter. It is concluded that the thermal performances of the 3L-NPC wind power converter can be significantly changed by the power device technology as well as their parallel configurations.

  4. Digital control of grid connected converters for distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Skjellnes, Tore

    2008-07-01

    Pulse width modulated converters are becoming increasingly popular as their cost decreases and power rating increases. The new trend of small scale power producers, often using renewable energy sources, has created new demands for delivery of energy to the grid. A major advantage of the pulse width modulated converter is the ability to control the output voltage at any point in the voltage period. This enables rapid response to load changes and non-linear loads. In addition it can shape the voltage in response to the output current to create an outward appearance of a source impedance. This is called a virtual impedance. This thesis presents a controller for a voltage controlled three phase pulse width modulated converter. This controller enables operation in standalone mode, in parallel with other converters in a micro grid, and in parallel with a strong main grid. A time varying virtual impedance is presented which mainly attenuates reactive currents. A method of investigating the overall impedance including the virtual impedance is presented. New net standards have been introduced, requiring the converter to operate even during severe dips in the grid voltage. Experiments are presented verifying the operation of the controller during voltage dips. (Author). 37 refs., 65 figs., 10 tabs

  5. Optimized Reactive Power Flow of DFIG Power Converters for Better Reliability Performance Considering Grid Codes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2015-01-01

    . In order to fulfill the modern grid codes, over-excited reactive power injection will further reduce the lifetime of the rotor-side converter. In this paper, the additional stress of the power semiconductor due to the reactive power injection is firstly evaluated in terms of modulation index...

  6. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Yüksel Oğuz

    2013-01-01

    Full Text Available The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  7. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    Science.gov (United States)

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  8. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  9. Model predictive control for Z-source power converter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P.C.; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...

  10. Implementation of Power Efficient Flash Analogue-to-Digital Converter

    Directory of Open Access Journals (Sweden)

    Taninki Sai Lakshmi

    2014-01-01

    Full Text Available An efficient low power high speed 5-bit 5-GS/s flash analogue-to-digital converter (ADC is proposed in this paper. The designing of a thermometer code to binary code is one of the exacting issues of low power flash ADC. The embodiment consists of two main blocks, a comparator and a digital encoder. To reduce the metastability and the effect of bubble errors, the thermometer code is converted into the gray code and there after translated to binary code through encoder. The proposed encoder is thus implemented by using differential cascade voltage switch logic (DCVSL to maintain high speed and low power dissipation. The proposed 5-bit flash ADC is designed using Cadence 180 nm CMOS technology with a supply rail voltage typically ±0.85 V. The simulation results include a total power dissipation of 46.69 mW, integral nonlinearity (INL value of −0.30 LSB and differential nonlinearity (DNL value of −0.24 LSB, of the flash ADC.

  11. Design of a high power, resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...

  12. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  13. An overview of power electronic converter technology for renewable energy systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic technology which is an enabling tool for modern wind and marine energy conversion systems. In this chapter, the main power electronic devices are described. Various power electronic converter topologies are represented, and commonly used modulation schemes...

  14. LHC beam stability and feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Ralph

    2007-07-20

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  15. Mission profile resolution effects on lifetime estimation of doubly-fed induction generator power converter

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Zhou, Dao; Blaabjerg, Frede

    2017-01-01

    , and the corresponding thermal modeling of power semiconductors are discussed. Accordingly, effects of different mission profiles on the consumed lifetime of the power converter are evaluated. In the above three thermal cycles, the IGBT of the grid-side converter and the diode of the rotor-side converter are more...... fragile, and the total consumed lifetimes are higher. Moreover, the short-term thermal cycles with milliseconds resolution induce the unbalance of the lifetime between the diode and IGBT of the grid-side converter, while thermal cycles with hour, second, and millisecond resolution consumes the similar......In the wind energy generation system, mission profiles are complicated, which range from seconds to years. In order to estimate the consumed lifetime of the power converter, wind speed profiles with the time resolution of 1 hour, 1 second and 0.5 millisecond are studied in this paper...

  16. A Transformer-less Partial Power Boost Converter for PV Applications Using a Three-Level Switching Cell

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed; Harfman-Todorovic, Maja; Elasser, Ahmed; Essakiappan, Somasundaram

    2013-03-01

    Photovoltaic architectures with distributed power electronics provide many advantages in terms of energy yield as well as system level optimization. As the power level of the solar farm increases it becomes more beneficial to increase the dc collection network voltage, which requires the use of power devices with higher voltage ratings, and thus making the design of efficient, low cost, distributed power converters more challenging. In this paper a simple partial power converter topology is proposed. The topology is implemented using a three-level switching cell, which allows the use of semiconductor devices with lower voltage rating; thus improving design and performance and reducing converter cost. This makes the converters suitable for use for medium to high power applications where dc-link voltages of 600V~1kV may be needed without the need for high voltage devices. Converter operation and experimental results are presented for two partial power circuit variants using three-level switching cells.

  17. Power converter for raindrop energy harvesting application: Half-wave rectifier

    Science.gov (United States)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  18. Luminosity Optimization for a Higher-Energy LHC

    CERN Document Server

    Dominguez, O

    2011-01-01

    A Higher-Energy Large Hadron Collider (HE-LHC) is an option to further push the energy frontier of particle physics beyond the present LHC. A beam energy of 16.5 TeV would require 20 T dipole magnets in the existing LHC tunnel, which should be compared with 7 TeV and 8.33 T for the nominal LHC. Since the synchrotron radiation power increases with the fourth power of the energy, radiation damping becomes significant for the HE-LHC. It calls for transverse and longitudinal emittance control vis-a-vis beam-beam interaction and Landau damping. The heat load from synchrotron radiation, gas scattering, and electron cloud also increases with respect to the LHC. In this paper we discuss the proposed HE-LHC beam parameters; the time evolution of luminosity, beam-beam tune shifts, and emittances during an HE-LHC store; the expected heat load; and luminosity optimization schemes for both round and flat beams.

  19. Modular Multi-level converter based HVDC System for Grid Connection of Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Gnanarathna, U.N.; Chaudhary, Sanjay Kumar; Gole, A.M.

    2010-01-01

    This paper explores the application of modular multi-level converters (MMC) as a means for harnessing the power from off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter (VSC) submodules that can be easily assembled into a converter for high......-voltage and high power. The paper shows that the MMC converter has a fast response and low harmonic content in comparison with a two-level VSC option. The paper discusses the modeling approach used, including a solution to the modeling challenge imposed by the very large number of switching devices in the MMC....

  20. LHC Report: Beams are back in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The LHC has shaken itself awake after the winter break, and, as the snow melts on the lower slopes, the temperature in the magnets has dropped to a chilly 1.9 K once more.   Following the cool-down, the last few weeks have seen an intense few tests of the magnets, power supplies and associated protection systems. These tests, referred to as hardware commissioning, have been completed in record time. At the same time the other accelerator systems have been put through the preparatory machine checkout. In parallel, the injectors (LINAC2, Booster, PS and SPS) have also come out of the technical stop in order to prepare to deliver beam to the LHC very early in the season. Of particular note here was the remarkably seamless transition to POPS, the PS's new main power supply system. All this work culminated in the LHC taking beam again for the first time in 2011 on Saturday, 19 February. The careful preparation paid off, with circulating beams being rapidly re-established. There then followed a programme ...

  1. Resonant converter topologies for constant-current power supplies and their applications

    International Nuclear Information System (INIS)

    Borage, Mangesh

    2013-01-01

    Power electronics, in general, and power supplies, in particular, is an important field of accelerator technology due to its widespread use, for instance in dc, ramp or pulse magnet power supplies, high voltage power supplies for electrostatic accelerators and RF amplifies, power supplies for vacuum pumps, vacuum gauges, beam diagnostic devices etc. It has been possible to meet stringent performance requirements with the continuing advancement in the field of power electronics. Resonant converters have been an active area of research in power electronics field due to variety of topologies, diverse, peculiar and useful characteristics. While the majority of the previous work on resonant converters has been directed towards developing methods of analysis and control techniques for the mentioned applications, very little has been done to explore their suitability for application as a constant-current power supply, which is either inherently required or can be advantageously applied in power supplies for various accelerator subsystems and other industrial applications such as electric arc welding, laser diode drivers, magnet illumination systems, battery charging, electrochemical processes etc.

  2. Power converters for medium voltage networks

    CERN Document Server

    Islam, Md Rabiul; Zhu, Jianguo

    2014-01-01

    This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book's individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration te

  3. Simulation of wind power with front-end converter into interconnected grid system

    Directory of Open Access Journals (Sweden)

    Sharad W. Mohod

    2009-09-01

    Full Text Available In the growing electricity supply industry and open access market for electricity worldwide, renewable sources are getting added into the grid system. This affects the grid power quality. To assess the impact on grid due to wind energy integration, the knowledge of electrical characteristic of wind turbine and associated control equipments are required. The paper presents a simulation set-up for wind turbine in MATLAB / SIMULINK, with front end converter and interconnected system. The presented control scheme provides the wind power flow to the grid through a converter. The injected power in the system at the point of common coupling is ensured within the power quality norms.

  4. A Reliability-Oriented Design Method for Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    Reliability is a crucial performance indicator of power electronic systems in terms of availability, mission accomplishment and life cycle cost. A paradigm shift in the research on reliability of power electronics is going on from simple handbook based calculations (e.g. models in MIL-HDBK-217F h...... and reliability prediction models are provided. A case study on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical component IGBT modules....

  5. Design and experiment of a cross-shaped mode converter for high-power microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shengren, E-mail: 785751053@qq.com; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2013-12-15

    A compact mode converter, which is capable of converting a TM{sub 01} mode into a circularly polarized TE{sub 11} mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  6. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance

    Directory of Open Access Journals (Sweden)

    Jaime Wladimir Zapata

    2018-02-01

    Full Text Available This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.

  7. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  8. Piezoelectric transformer based power converters; design and control

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler

    The last two decades of research into piezoelectric transformer (PT) based power converters have led to some extensive improvements of the technology, but it still struggles to get its commercial success. This calls for further research and has been the subject of this work, in order to enable...

  9. Topology and Technology Survey on Medium Voltage Power Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Sztykiel, Michal; Teodorescu, Remus; Munk-Nielsen, Stig

    2011-01-01

    Based on state-of-the-art within generator and power converter designs, this paper presents and justifies the most promising converter circuitries and concepts for future 10 MW wind turbines. In order to reduce losses and increase efficiency of the turbine, it is assumed that the bulky step...... by various circuit configurations of previously defined power modules....

  10. Short term Braking Capability during Power Interruptions for Integrated Matrix Converter-Motor Drives

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2002-01-01

    attractive. Sinusoidal input currents and bi-directional power flow are other advantages of the matrix converter but it is less immune to power grid disturbances compared to a standard ASD. In hoisting applications, short-term braking capability during a power outage is needed until the mechanical brake...... engages or to perform more effective a combined braking.This paper proposes a new method to provide short-term braking capability during a power outage for matrix converters. A braking chopper is needed in the clamp circuit, which allows for a drastically reduction of the capacitor size. The power flow...

  11. A novel powering scheme based on DC-DC conversion for the luminosity upgrades of the CMS tracking system at CERN

    International Nuclear Information System (INIS)

    Sammet, Jan

    2014-01-01

    The instantaneous luminosity of the LHC is expected to reach 2 x 10 34 s -1 cm -2 and 5 x 10 34 s -1 cm -2 around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 10 15 n eq /cm 2 . With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in several tests, including system test

  12. Robust sigma delta converters : and their application in low-power highly-digitized flexible receivers

    NARCIS (Netherlands)

    Veldhoven, van R.H.M.; Roermund, van A.H.M.

    2011-01-01

    Sigma Delta converters are a very popular choice for the A/D converter in multi-standard, mobile and cellular receivers. Key A/D converter specifications are high dynamic range, robustness, scalability, low-power and low EMI. Robust Sigma Delta Converters presents a requirement derivation of a Sigma

  13. Design of power converter in DFIG wind turbine with enhanced system-level reliability

    DEFF Research Database (Denmark)

    Zhou, Dao; Zhang, Guanguan; Blaabjerg, Frede

    2017-01-01

    With the increasing penetration of wind power, reliable and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the doubly-fed induction generator based partial-scale wind power converter is still dominating in the existing wind farms...... margin. It can be seen that the B1 lifetime of the grid-side converter and the rotor-side converter deviates a lot by considering the electrical stresses, while they become more balanced by using an optimized reliable design. The system-level lifetime significantly increases with an appropriate design...

  14. Characterization of a High-Power, High-Frequency, Soft-Switching Power Converter for EMC Considerations

    National Research Council Canada - National Science Library

    Li, S

    2001-01-01

    This report presents the setup, experimental techniques, and results of the radiated emissions tests on the PCM-3 soft-switching power converter using the Gigahertz Transverse Electromagnetic (GTEM) facility...

  15. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia...... control strategies are effective means for providing ancillary frequency control of variable speed wind turbines with full-scale back-to-back power converters....... emulation, primary frequency control and secondary frequency control, are proposed in order to improve the frequency stability of power systems. The modified IEEE 39-bus test system with a large-scale wind power penetration is chosen as the studied power system. Simulation results show that the proposed...

  16. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    Science.gov (United States)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  17. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    Science.gov (United States)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  18. Variable frequency iteration MPPT for resonant power converters

    Science.gov (United States)

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  19. Study of matrix converter as a current-controlled power supply in QUEST tokamak

    International Nuclear Information System (INIS)

    Liu, Xiaolong; Jiang, Yi; Nakamura, Kazuo

    2011-01-01

    Because QUEST tokamak has a divertor configuration with a higher κ and a negative n-index, a precise power supply with a rapid response is needed to control the vertical position of the plasma. A matrix converter is a direct power conversion device that uses an array of controlled bidirectional switches as the main power elements for creating a variable-output current system. This paper presents a novel three-phase to two-phase topological matrix converter as a proposed power supply that stabilizes the plasma vertical position and achieves unity input power factor. An indirect control strategy in which the matrix converter is split into a virtual rectifier stage and a virtual inverter stage is adopted. In the virtual rectifier stage, the instantaneous active power and reactive power are decoupled on the basis of system equations derived from the DQ transformation; hence, unity power factor is achieved. Space vector pulse width modulation is adopted to determine the switching time of each switch in the virtual rectifier; the output voltage of the virtual rectifier is adjusted by the virtual inverter stage to obtain the desired load current. Theoretical analyses and simulation results are provided to verify its feasibility. (author)

  20. Thermoelectric converter for SP-100 space reactor power system

    International Nuclear Information System (INIS)

    Terrill, W.R.; Haley, V.F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested. The manufacturing plan showed that the chosen materials and processes are compatible with today's production techniques, that the production volume can readily be achieved and that the costs are reasonable

  1. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    Science.gov (United States)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  2. Design of a Rad-Hard eFuse Trimming Circuit for Bandgap Voltage Reference for LHC Experiments Upgrades

    CERN Document Server

    Besirli, Mustafa; Koukab, Adil; Michelis, Stefano

    A precise and stable reference voltage is required to generate a stable output voltage in DC/DC converters. This reference voltage must be independent of temperature, power supply, radiation, intrinsic technology mismatch and process variation. This master's thesis reports the development of a rad-hard bandgap voltage reference with electrical fuse (eFuse) based analog calibration circuit in a commercial 130nm technology. According to the test results, the maximum error in the bandgap voltage (300mV in this application) was reduced from ±30mV to less than ±0.6mV thanks to the eFuse trimming. A temperature, power supply, radiation, mismatch and process-independent reference voltage was generated to provide reference voltage to first (bPOL12V) and second (bPOL2V5) stage DC/DC converters. This circuit will be integrated in bPOL12V and bPOL2V5 converters for high-luminosity LHC upgrades.

  3. The LHC

    CERN Multimedia

    2002-01-01

    The LHC will use the latest technologies on an enormous scale. 8000 superconducting magnets will keep the beams on track. The entire 27 km ring will be cooled by 700 000 litres of liquid helium to a temperature of -271 degrees Celsius , making the LHC the world's largest superconducting installation. Conventional superconducting wire will form the magnet coils, while high-temperature superconductors will carry a total of 2 300 000 amperes from the power supplies into the magnet cryostat

  4. Optimizing the design of very high power, high performance converters

    International Nuclear Information System (INIS)

    Edwards, R.J.; Tiagha, E.A.; Ganetis, G.; Nawrocky, R.J.

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met

  5. Design of resonant converter based DC power supply for RF amplifier

    International Nuclear Information System (INIS)

    Mohan, Kartik; Suthar, Gajendra; Dalicha, Hrushikesh; Agarwal, Rohit; Trivedi, R.G.; Mukherjee, Aparajita

    2017-01-01

    ITER require 20 MW of RF power to a large variety of plasmas in the Ion Cyclotron frequency range for heating and driving plasma current. Nine RF sources of 2.5MW RF power level each collectively will accomplish the above requirement. Each RF source consists of SSPA, driver and end stage, above which driver and end stage amplifier are tube (Tetrode/Diacrode) based which requires auxiliary DC power source viz. filament, screen grid and control grid DC power supply. DC power supply has some stringent requirements like low stored energy, fast turn off, and low ripple value, etc. This paper will focus only on Zero Current Switching (ZCS) resonant converter based buck converter. This can serve the purpose of control grid and screen grid DC power supply for above requirement. IGBT switch will be used at 20 kHz so as to lower the filter requirement hence low stored energy and ripple in the output voltage. ZCS operation will also assist us in reducing EMI/EMC effect. Design of resonant tank circuit is important aspect of the converter as it forms the backbone of the complete system and basis of selection of other important parameters as well hence mathematical model analysis with the help of circuit equations for various modes have been shown as a part of selection criteria. Peak current through the switch, duty cycle, switching frequency will be the design parameters for selecting resonant tank circuit

  6. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  7. Computer-aided analysis of power-electronic systems simulation of a high-voltage power converter

    International Nuclear Information System (INIS)

    Bordry, F.; Isch, H.W.; Proudlock, P.

    1987-01-01

    In the study of semiconductor devices, simulation methods play an important role in both the design of systems and the analysis of their operation. The authors describe a new and efficient computer-aided package program for general power-electronic systems. The main difficulty when taking into account non-linear elements, such as semiconductors, lies in determining the existence and the relations of the elementary sequences defined by the conduction or nonconduction of these components. The method does not require a priori knowledge of the state sequences of the semiconductor nor of the commutation instants, but only the circuit structure, its parameters and the commands to the controlled switches. The simulation program computes automatically both transient and steady-state waveforms for any circuit configuration. The simulation of a high-voltage power converter is presented, both for its steady-state and transient overload conditions. This 100 kV power converter (4 MW) will feed two klystrons in parallel

  8. Performance Evaluation and Quality Assurance Management during the Series Power Tests of LHC Main Lattice Magnets

    CERN Document Server

    Siemko, A

    2008-01-01

    Within the LHC magnet program a series production of superconducting dipoles and quadrupoles has recently been completed in industry and all magnets were cold tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, two layer coils wound from 15.1 mm wide Nb-Ti cables, and all-polyimide insulation. This paper reviews the process of the power test quality assurance and performance evaluation, which was applied during the LHC magnet series tests. The main test results of magnets tested in both supercritical and superfluid helium, including the quench training, the conductor performance, the magnet protection efficiency and the electrical integrity are presented and discussed in terms of the design parameters and the requirements of the LHC project.

  9. Four-junction AlGaAs/GaAs laser power converter

    Science.gov (United States)

    Huang, Jie; Sun, Yurun; Zhao, Yongming; Yu, Shuzhen; Dong, Jianrong; Xue, Jiping; Xue, Chi; Wang, Jin; Lu, Yunqing; Ding, Yanwen

    2018-04-01

    Four-junction AlGaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-Al0.37Ga0.63As heterostructure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) for converting the power of 808 nm lasers. A maximum conversion efficiency η c of 56.9% ± 4% is obtained for cells with an aperture of 3.14 mm2 at an input laser power of 0.2 W, while dropping to 43.3% at 1.5 W. Measured current–voltage (I–V) characteristics indicate that the performance of the LPC can be further improved by increasing the tunneling current density of TJs and optimizing the thicknesses of sub-cells to achieve current matching in LPC. Project financially supported by the National Natural Science Foundation of China (No. 61376065) and Zhongtian Technology Group Co. Ltd.

  10. Observer design for DC/DC power converters with bilinear averaged model

    NARCIS (Netherlands)

    Spinu, V.; Dam, M.C.A.; Lazar, M.

    2012-01-01

    Increased demand for high bandwidth and high efficiency made full state-feedback control solutions very attractive to power-electronics community. However, full state measurement is economically prohibitive for a large range of applications. Moreover, state measurements in switching power converters

  11. Multiple second order generalized integrators for harmonic synchronization of power converters

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Etxeberría, Ion

    2009-01-01

    This paper presents a new frequency-adaptive synchronization method for grid-connected power converters which allows estimating not only the positive- and negativesequence components of the power signal at the fundamental frequency, but also other sequence components at multiple frequencies. The ...

  12. Soft switching buck-boost converter for photovoltaic power generation; Taiyoko hatsuden no tame no soft switching shokoatsu converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. [Kyungnam University (Korea, Republic of)

    1996-10-27

    A soft switching method with small switching loss was proposed for the purpose of increasing the efficiency of a DC-DC boost converter which converted a DC current generated by solar cells to a variable DC current. Existing current converters are supplemented by using a snubber circuit around the switch so as to protect the switch by a hard switching action. However, with an increase of the output current, snubber loss is increased, reducing the efficiency. In order to solve this problem, the partial resonant switch method was applied to the converter; with this method of partially forming a resonant circuit only at the time of turning on/off of the switch, the switching loss was reduced through the soft switching, thereby making the proposed converter operate with high efficiency. Moreover, the resonant element of the partial resonant circuit using a snubber condenser, the energy accumulated in the condenser was regenerated on the power supply side without loss of snubber. With the regenerated energy, the proposed converter was provided with a smaller ratio of switching to use than the conventional converter. 4 refs., 7 figs., 1 tab.

  13. A new DC/AC boost transformerless converter in application of photovoltaic power generation

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing......, and then converts the DC into AC to supply the load. A special modulation technique is proposed to eliminate the leakage current which is commonly presents in PV transformerless power generation, helps to increase the system efficiency and output performance....

  14. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  15. The Application of Stationary VOC-PR with PLL for Grid side Converter-based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2010-01-01

    Voltage oriented control PR is combined with space vector modulation and phase locked loop to control the grid side converter in wind power generation system in this paper. First the mathematical models of grid side converter and LCL filter as well as grid are given. Then the control strategy...... of grid side converter-based wind power generation system is given in detail. Finally the simulation model consisting of the grid side converter wind power generation system is set up. The simulation results have verified that the control strategy is feasible to be used for control of gird currents......, active power, reactive power and DC-link voltage in wind power generation system. It has laid a good basis for the real system development....

  16. Grid Synchronization of Power Converters using Multiple Second Order Generalized Integrators

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Candela, Ignacio

    2008-01-01

    This paper presents a new frequency-adaptive synchronization method for grid-connected power converters which allows estimating not only the positive- and negative- sequence components of the power signal at the fundamental frequency, but also other sequence components at higher frequencies. The ...

  17. Series Resonant Power Converter for Contactless Energy Transfer with Improved Efficiency

    NARCIS (Netherlands)

    Valtchev, S.S.

    2008-01-01

    The development of more efficient power converters is the most important and challenging task for Power Electronics specialists. In the same time, many currently existing or yet to appear future applications require full mechanical independence between the transmitter and receiver of the electrical

  18. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  19. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  20. Shallow water effects on wave energy converters with hydraulic power take-off system

    Directory of Open Access Journals (Sweden)

    Ashank Sinha

    2016-12-01

    Full Text Available The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum. The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.

  1. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...

  2. Space Vector Modulation for an Indirect Matrix Converter with Improved Input Power Factor

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Tuyen

    2017-04-01

    Full Text Available Pulse width modulation strategies have been developed for indirect matrix converters (IMCs in order to improve their performance. In indirect matrix converters, the LC input filter is used to remove input current harmonics and electromagnetic interference problems. Unfortunately, due to the existence of the input filter, the input power factor is diminished, especially during operation at low voltage outputs. In this paper, a new space vector modulation (SVM is proposed to compensate for the input power factor of the indirect matrix converter. Both computer simulation and experimental studies through hardware implementation were performed to verify the effectiveness of the proposed modulation strategy.

  3. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    Science.gov (United States)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  4. Three-phase electronic power converter for photovoltaic system connected to power line; Conversor eletronico de potencia trifasico para sistema fotovoltaico conectado a rede eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Villalva, Marcelo Gradella

    2010-10-15

    This work is a contribution to the study of power converters for photovoltaic distributed generation systems. The main objective is to present the development and results of a three phase power converter for a grid-connected photovoltaic plant. The work presents experimental results and theoretical studies on the modeling and simulation of photovoltaic devices, regulation of the photovoltaic voltage, maximum power point tracking, and the modeling and control of a two-stage grid-connected power converter. (author)

  5. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  6. Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter

    Directory of Open Access Journals (Sweden)

    Tao Lei

    2018-05-01

    Full Text Available With the development of More Electrical Aircraft (MEA, the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB converter is the power interface for the energy storage system with the high voltage direct current (HVDC bus in aircraft electrical power systems. In this paper, a DAB DC-DC converter is designed to meet aviation requirements. The extended dual phase shifted control strategy is adopted, and a multi-objective genetic algorithm is applied to optimize its operating performance. Considering the three indicators of inductance current root mean square root (RMS value, negative reverse power and direct current (DC bias component of the current for the high frequency transformer as the optimization objectives, the DAB converter’s optimization model is derived to achieve soft switching as the main constraint condition. Optimized methods of controlling quantity for the DAB based on the evolution and genetic algorithm is used to solve the model, and a number of optimal control parameters are obtained under different load conditions. The results of digital, hard-in-loop simulation and hardware prototype experiments show that the three performance indexes are all suppressed greatly, and the optimization method proposed in this paper is reasonable. The work of this paper provides a theoretical basis and researching method for the multi-objective optimization of the power converter in the aircraft electrical power system.

  7. Design and development of microcontroller based programmable ramp generator for AC-DC converter for simulating decay power transient in experimental facility for nuclear power plants

    International Nuclear Information System (INIS)

    Srivastava, Gaurava Deep; Kulkarni, R.D.

    2015-01-01

    In nuclear power plants, fuel is subjected to a wide range of power and temperature transients during normal and abnormal conditions. The reactor setback and step-back power pattern, fast temperature profile occurred during Loss of Coolant Accident and decay power followed by shutdown of power plant are the typical transients in nuclear power plant. For a variety of reactor engineering and reactor safety related study, one needs to simulate these transients in experimental facility. In experimental facilities, high response AC-DC converters are used to handle these power and temperature transients safely in a controlled manner for generating a database which is utilized for design of thermal hydraulic system, development of computer codes, study of reliability of reactor safety system, etc. for nuclear power plants. The paper presents the methodology developed for simulating the typical reactor decay power transient in an experimental facility. The design and simulation of AC-DC power electronic converter of 3 MW capacity is also presented. The microcontroller based programmable ramp generator is designed and hardware implemented for feeding reference voltage to the closed loop control system of AC-DC converter for obtaining the decay power profile at the converter output. The typical decay power transient of the nuclear power plant is divided into several small power ramps for simulating the transient. The signal corresponding to each power ramp is generated by programmable ramp generator and fed to the comparator for generating control signal for the converter. The actual decay power transient obtained from the converter is compared with the theoretical decay power transient. (author)

  8. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  9. Examples of digital simulation of AC-DC power converter with the Electromagnetic Transients Program

    International Nuclear Information System (INIS)

    Tanahashi, Shugo; Yamada, Shuichi; Mugishima, Mituo; Kitagawa, Shiro.

    1989-03-01

    This article gives a practical guidance for analysis of power converter circuits using the Electromagnetic Transients Program (EMTP). First how to use the program is shown with two simple examples; (1) a power supply with three-phase diode bridge and (2) a feedback system for current control. Then its application to more complicated system is shown with an example of a power supply for Compact Helical System (CHS), where a hybrid power supply with multi-phase diode and thyristor bridges, and two three-phase thyristor converters are driven by an AC generator. (author)

  10. Operation and thermal loading of three-level Neutral-Point-Clamped wind power converter under various grid faults

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2012-01-01

    In order to fulfill the continuous growing grid-side demands, the full-scale power converters are becoming more and more popular in the wind power application. Nevertheless, the more severe loading of the power semiconductor devices in the full-scale power converters, especially during Low Voltage...... Ride Through (LVRT) operation under grid faults, may compromise the reliability of the system and consequently further increase its cost. In this paper, the impact of various grid faults on a three-level Neutral-Point-Clamped (3L-NPC) grid-converter in terms of thermal loading of power semiconductor...

  11. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Zhaoan

    2009-01-01

    /EMTDC. Flicker emission of this system is investigated. Reactive power compensation is mostly adopted for flicker mitigation. However, the flicker mitigation technique shows its limits, when the grid impedance angle is low in some distribution networks. A new method of flicker mitigation by controlling active...... power is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the dc-link voltage of the full-scale converter. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation controller...... is an effective means for flicker mitigation of variable-speed wind turbines with full-scale back-to-back power converters during continuous operation....

  12. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    Science.gov (United States)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  13. Enhanced static ground power unit based on flying capacitor based h-bridge hybrid active-neutral-point-clamped converter

    DEFF Research Database (Denmark)

    Abarzadeh, Mostafa; Madadi Kojabadi, Hossein; Deng, Fujin

    2016-01-01

    Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages of the p......Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages...

  14. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...

  15. LHC Report: Back in operation

    CERN Multimedia

    2016-01-01

    With the machine back in their hands since Friday, 4 March, the LHC operators are now performing the powering tests on the magnets. This is a crucial step before receiving the first beams and restarting Run 2 for physics.   A Distribution Feed-Box (DFB) brings power to the LHC magnets and maintains the stability of the current in the superconducting circuits. The LHC was the last machine to be handed back to operators after the completion of maintenance work carried out during the Year-End Technical Stop (YETS) that had started on 14 December 2015. During the eleven weeks of scheduled maintenance activities, several operations took place in all the accelerators and beam lines. They included the maintenance in several points of the cryogenic system, the replacement of 18 magnets in the Super Proton Synchrotron; an extensive campaign to identify and remove thousands of obsolete cables; the replacement of the LHC beam absorbers for injection (TDIs) that are used to absorb the SPS b...

  16. A Control Method of Current Type Matrix Converter for Plasma Control Coil Power Supply

    International Nuclear Information System (INIS)

    Shimada, K.; Matsukawa, M.; Kurihara, K.; Jun-ichi Itoh

    2006-01-01

    In exploration to a tokamak fusion reactor, the control of plasma instabilities of high β plasma such as neoclassical tearing mode (NTM), resistive wall mode (RWM) etc., is the key issue for steady-state sustainment. One of the proposed methods to avoid suppressing RWM is that AC current having a phase to work for reduction the RWM growth is generated in a coil (sector coil) equipped spirally on the plasma vacuum vessel. To stabilize RWM, precise and fast real-time feedback control of magnetic field with proper amplitude and frequency is necessary. This implies that an appropriate power supply dedicated for such an application is expected to be developed. A matrix converter as one of power supply candidates for this purpose could provide a solution The matrix converter, categorized in an AC/AC direct converter composed of nine bi-directional current switches, has a great feature that a large energy storage element is unnecessary in comparison with a standard existing AC/AC indirect converter, which is composed of an AC/DC converter and a DC/AC inverter. It is also advantageous in cost and size of its applications. Fortunately, a voltage type matrix converter has come to be available at the market recently, while a current type matrix converter, which is advantageous for fast control of the large-inductance coil current, has been unavailable. On the background above mentioned, we proposed a new current type matrix converter and its control method applicable to a power supply with fast response for suppressing plasma instabilities. Since this converter is required with high accuracy control, the gate control method is adopted to three-phase switching method using middle phase to reduce voltage and current waveforms distortion. The control system is composed of VME-bus board with DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) for high speed calculation and control. This paper describes the control method of a current type matrix converter

  17. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  18. Power loss benchmark of nine-switch converters in three-phase online-UPS application

    DEFF Research Database (Denmark)

    Qin, Zian; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    Three-phase online-UPS is an appropriate application for the nine-switch converter, where its high voltage stress of the power device caused by the reduced switch feature can be relieved significantly. Its power loss and loss distribution still have the flexibility from the control point of view...... as parameters like modulation index and phase angle of the load are taken into account. The benchmark of power loss will become a guidance for the users to make best use of the advantages and bypass the disadvantages of nine-switch converters. The results are finally verified on a 1.5 kW prototype....

  19. The LHC test string first operational experience

    CERN Document Server

    Bézaguet, Alain-Arthur; Casas-Cubillos, J; Coull, L; Cruikshank, P; Dahlerup-Petersen, K; Faugeras, Paul E; Flemsæter, B; Guinaudeau, H; Hagedorn, Dietrich; Hilbert, B; Krainz, G; Kos, N; Lavielle, D; Lebrun, P; Leo, G; Mathewson, A G; Missiaen, D; Momal, F; Parma, Vittorio; Quesnel, Jean Pierre; Richter, D; Riddone, G; Rijllart, A; Rodríguez-Mateos, F; Rohmig, P; Saban, R I; Schmidt, R; Serio, L; Skiadelli, M; Suraci, A; Tavian, L; Walckiers, L; Wallén, E; Van Weelderen, R; Williams, L; McInturff, A

    1996-01-01

    CERN operates the first version of the LHC Test String which consists of one quadrupole and three 10-m twin aperture dipole magnets. An experimental programme aiming at the validation of the LHC systems started in February 1995. During this programme the string has been powered 100 times 35 of which at 12.4 kA or above. The experiments have yielded a number of results some of which, like quench recovery for cryogenics, have modified the design of subsystems of LHC. Others, like controlled helium leaks in the cold bore and quench propagation bewteen magnets, have given a better understanding on the evolution of the phenomena inside a string of superconducting magnets cooled at superfluid helium temperatures. Following the experimental programme, the string will be powered up and powered down in one hour cycles as a fatigue test of the structure thus simulating 20 years of operation of LHC.

  20. Electric converters of electromagnetic strike machine with battery power

    Science.gov (United States)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.

  1. The 25 kW resonant dc/dc power converter

    Science.gov (United States)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  2. Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology

    International Nuclear Information System (INIS)

    Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S.

    2010-01-01

    This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn.

  3. Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-06-15

    This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn. (author)

  4. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.

  5. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study...

  6. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface

    Energy Technology Data Exchange (ETDEWEB)

    Vural, B.; Erdinc, O.; Uzunoglu, M. [Department of Electrical Engineering, Yildiz Technical University, Istanbul 34349 (Turkey)

    2010-12-15

    Fuel cells (FC) are widely recognized as one of the most promising technologies to meet future power requirements of vehicular applications. However, a FC system combined with an energy storage system (ESS) can perform better for vehicle propulsion as considering several points. As the additional ESS can fulfill the transient power demand fluctuations, the FC system can be downsized to fit the base power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. Interfacing of traction drive requirements with characteristics and modes of operation of on-board generation units and ESSs calls for suitable power electronic converter configuration. In this paper, a FC/UC hybrid vehicular power system using a multi-input converter-based power interface is proposed. The applied power interface topology ensures the active power sharing and DC link voltage stabilization for the hybrid vehicular system. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB registered, Simulink registered and SimPowerSystems registered environments. (author)

  7. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface

    International Nuclear Information System (INIS)

    Vural, B.; Erdinc, O.; Uzunoglu, M.

    2010-01-01

    Fuel cells (FC) are widely recognized as one of the most promising technologies to meet future power requirements of vehicular applications. However, a FC system combined with an energy storage system (ESS) can perform better for vehicle propulsion as considering several points. As the additional ESS can fulfill the transient power demand fluctuations, the FC system can be downsized to fit the base power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. Interfacing of traction drive requirements with characteristics and modes of operation of on-board generation units and ESSs calls for suitable power electronic converter configuration. In this paper, a FC/UC hybrid vehicular power system using a multi-input converter-based power interface is proposed. The applied power interface topology ensures the active power sharing and DC link voltage stabilization for the hybrid vehicular system. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB (registered) , Simulink (registered) and SimPowerSystems (registered) environments.

  8. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    Science.gov (United States)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  9. Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications

    OpenAIRE

    James Dunia; Bakari M. M. Mwinyiwiwa

    2013-01-01

    Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converter...

  10. Testing Quality and Metrics for the LHC Magnet Powering System throughout Past and Future Commissioning

    CERN Document Server

    Anderson, D; Charifoulline, Z; Dragu, M; Fuchsberger, K; Garnier, JC; Gorzawski, AA; Koza, M; Krol, K; Rowan, S; Stamos, K; Zerlauth, M

    2014-01-01

    The LHC magnet powering system is composed of thousands of individual components to assure a safe operation when operating with stored energies as high as 10GJ in the superconducting LHC magnets. Each of these components has to be thoroughly commissioned following interventions and machine shutdown periods to assure their protection function in case of powering failures. As well as having dependable tracking of test executions it is vital that the executed commissioning steps and applied analysis criteria adequately represent the operational state of each component. The Accelerator Testing (AccTesting) framework in combination with a domain specific analysis language provides the means to quantify and improve the quality of analysis for future campaigns. Dedicated tools were developed to analyse in detail the reasons for failures and success of commissioning steps in past campaigns and to compare the results with newly developed quality metrics. Observed shortcomings and discrepancies are used to propose addi...

  11. Distributed Generation Using Indirect Matrix Converter in Reverse Power Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Chiang Loh, Poh; Wang, Peng

    2013-01-01

    Indirect matrix converter (IMC) is an alternative for ac/ac energy conversion, usually operated with a voltage stepped-down gain of only 0.866. For applications like distribution generation where voltage-boost functionality is required, the traditional style of operating the IMC is therefore...... not appropriate. Like most power converters, the operation of the IMC can surely be reversed to produce a boosted gain, but so far its relevant control principles have not been discussed. These challenges are now addressed in this paper with distributed generation suggested as a potential application. Simulation...

  12. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller

    2018-01-01

    Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how...... the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how...

  13. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  14. Press Conference: LHC Restart, Season 2

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    PRESS BRIEFING ON THE LARGE HADRON COLLIDER (LHC) RE-START, SEASON 2 AT CERN, GLOBE OF SCIENCE AND INNOVATION Where :   http://cern.ch/directions   at the Globe of Science and Innovation When : Thursday, 12 March from 2.30 to 3.30pm - Open seating as from 2.15pm Speakers : CERN’s Director General, Rolf Heuer and Director of Accelerators, Frédérick Bordry, and representatives of the LHC experiments Webcast : https://webcast.web.cern.ch/webcast/ Dear Journalists, CERN is pleased to invite you to the above press briefing which will take place on Thursday 12 March, in the Globe of Science and Innovation, 1st floor, from 2.30 to 3.30pm. The Large Hadron Collider (LHC) is ready to start up for its second three-year run. The 27km LHC is the largest and most powerful particle accelerator in the world operating at a temperature of -217 degrees Centigrade and powered to a current of 11,000 amps. Run 2 of the LHC follows a two-year technical s...

  15. Design, operation and control of series-connected power converters for offshore wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Alejandro Garces

    2012-07-01

    Offshore wind farms need to develop technologies that fulfill three main objectives:Efficiency, power density and reliability. The purpose of this thesis is to study an HVDC transmission system based on series connection of the turbines which theoretically meet these three objectives. A new topology of matrix converter operated at high frequency is proposed. This converter is studied using different modulation algorithms. Simulation and experimental results demonstrated that the converter can be operated as a current source converter with high efficiency. An optimal control based on a linear quadratic regulator is propose dto control the matrix converter as well as the converter placed on shore. Results demonstrated the high performance of this type of control and its simplicity for implementation. An stationary state study based on non-linear programming and Montecarlo simulation was carried out to determine the performance of the concept for long-term operation. Series connection is an efficient technology if and only if the differences in the effective wind velocity are small. This aspect limits the number of wind turbines that can be connected in series, since a numerous number of turbines will lead to high covariances in the distribution of the wind. A complementary study about active filter and reactive power compensation was carried out using an optimization-based algorithm. (Author)

  16. Using mathematical software to design power electronic converters

    Science.gov (United States)

    Hinov, Nikolay; Hranov, Tsveti

    2017-12-01

    In the paper is presented mathematical software, which was used for design of power electronic devices. Examined to different example, which are applied to designing electronic converters. In this way, it is possible to play different combinations of the circuit elements by simple means, thus optimizing according to certain criteria and limitations. Free software with a simple and intuitive interface is selected. No special user training is required to work with it and no further training is required. The use of mathematical software greatly facilitates the design, assists and makes it attractive and accessible to a wider range of students and specialists in power electronics training.

  17. Lifetime Estimation of Electrolytic Capacitors in Fuel Cell Power Converter at Various Confidence Levels

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of the power density and the reliability. In this paper, according to the degradation data of tested capacitors, the lifetime model of the component is analyzed at various confidence levels. Then, the mission profile...... based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in a fuel cell backup power converter operating in both standby mode and operation mode. The lifetime prediction of the capacitor banks at different confidence levels is also obtained....

  18. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.

    2012-01-01

    The Transmission System Operators are specially concerned about the Low Voltage Ride Through requirements of distributed generation power plants. Solutions based on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters have contrib...

  19. Electrical performance characteristics of high power converters for space power applications. Final report, 1 January 1988-30 September 1989

    International Nuclear Information System (INIS)

    Stuart, T.A.; King, R.J.

    1989-09-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice

  20. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2014-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters...... from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics......-of-failure. This review serves to provide a clear picture of the state-of-the-art research in this area and to identify the corresponding challenges and future research directions for capacitors and their dc-link applications....

  1. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Scherpen, Jacquelien M.A.

    2004-01-01

    Nonlinear passivity-based control (PBC) algorithms for power converters have proved to be an interesting alternative to other, mostly linear, control techniques. The control objective is usually achieved through an energy reshaping process and by injecting damping to modify the dissipation structure

  2. HL-LHC updates in Japan

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    At a recent meeting in Japan, updates on the High Luminosity LHC (HL-LHC) project were presented, including the progress made so far and the deadlines still to be met for the upgraded machine to be operational from 2020.   New magnets made with advanced superconductor Nb3Sn in the framework of the HL-LHC project. These magnets are currently under construction at CERN by the TE-MSC group. The LHC is the world’s most powerful particle accelerator, and in 2015 it will reach yet another new record for the energy of its colliding beams. One key factor of its discovery potential is its ability to produce collisions described in mathematical terms by the parameter known as “luminosity”. In 2025, the HL-LHC project will allow the total number of collisions in the LHC to increase by a factor of 10. The first step in this rich upgrade programme is the delivery of the Preliminary Design Report (PDR), which is also a key milestone of the HiLumi LHC Design Study partly fund...

  3. Power Flow Control through a Multi-Level H-Bridge-based Power Converter for Universal and Flexible Power Management in Future Electrical Grids

    DEFF Research Database (Denmark)

    Iov, Florin; Bifaretti, Steffano; Zanchetta, Pericle

    2008-01-01

    The paper proposes a novel power conversion system for Universal and Flexible Power Management (UNIFLEX-PM) in Future Electricity Network. The structure is based on three AC-DC converters each one connected to a different grid, (representing the main grid and/or various distributed generation...... systems) on the AC side, and linked together at DC side by suitable DC isolation modules. Each port of the UNIFLEX-PM system employs a conversion structure based on a three-phase 7-level AC-DC cascaded converter. Effective and accurate power flow control is demonstrated through simulation in Matlab...... and Simulink environment on a simplified model based on a two-port structure and using a Stationery Reference Frame based control solution. Control of different Power flow profiles has been successfully tested in numerous network conditions such as voltage unbalance, frequency excursions and harmonic...

  4. A novel wireless power and data transmission AC to DC converter for an implantable device.

    Science.gov (United States)

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  5. Model based design of efficient power take-off systems for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2011-01-01

    The Power Take-Off (PTO) is the core of a Wave Energy Converter (WECs), being the technology converting wave induced oscillations from mechanical energy to electricity. The induced oscillations are characterized by being slow with varying frequency and amplitude. Resultantly, fluid power is often...... an essential part of the PTO, being the only technology having the required force densities. The focus of this paper is to show the achievable efficiency of a PTO system based on a conventional hydro-static transmission topology. The design is performed using a model based approach. Generic component models...

  6. Catastrophic Failure and Fault-Tolerant Design of IGBT Power Electronic Converters - An Overview

    DEFF Research Database (Denmark)

    Wu, Rui; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    Reliability is one of the key issues for the application of Insulated Gate Bipolar Transistors (IGBTs) in power electronic converters. Many efforts have been devoted to the reduction of IGBT wear out failure induced by accumulated degradation and catastrophic failure triggered by single-event ove......Reliability is one of the key issues for the application of Insulated Gate Bipolar Transistors (IGBTs) in power electronic converters. Many efforts have been devoted to the reduction of IGBT wear out failure induced by accumulated degradation and catastrophic failure triggered by single...

  7. Changes to the LHC Beam Dumping System for LHC Run 2

    CERN Document Server

    Uythoven, Jan; Borburgh, Jan; Carlier, Etienne; Gabourin, Stéphane; Goddard, Brennan; Magnin, Nicolas; Senaj, Viliam; Voumard, Nicolas; Weterings, Wim

    2014-01-01

    The LHC beam dumping system performed according to expectations during Run 1 of the LHC (2009 – 2013). A brief overview of the experience is given, including a summary of the observed performance by comparison to expectations. An important number of changes are applied to the beam dumping system during the present Long Shutdown in order to further improve its safety and performance. They include the addition of a direct link between the Beam Interlock System and the re-triggering system of the dump kickers, the modification of the uninterrupted electrical power distribution architecture, the upgrade of the HV generators, the consolidation of the trigger synchronisation system, the modifications to the triggering system of the power switches and the changes to the dump absorbers TCDQ.

  8. The Lhc beam commissioning

    International Nuclear Information System (INIS)

    Redarelli, S.; Bailey, R.

    2008-01-01

    The plans for the Lhc proton beam commissioning are presented. A staged commissioning approach is proposed to satisfy the request of the Lhc experiments while minimizing the machine complexity in early commissioning phases. Machine protection and collimation aspects will be tackled progressively as the performance will be pushed to higher beam intensities. The key parameters are the number of bunches, k b , the proton intensity pe bunch, N, and the β in the various interaction points. All together these parameters determine the total beam power and the complexity of the machine. We will present the proposed trade off between the evolution of these parameters and the Lhc luminosity performance.

  9. 1 GHz GaAs Buck Converter for High Power Amplifier Modulation Applications

    NARCIS (Netherlands)

    Busking, E.B.; Hek, A.P. de; Vliet, F.E. van

    2012-01-01

    A fully integrated 1 GHz buck converter output stage, including on-chip inductor and DC output filtering has been realized, in a standard high-voltage breakdown GaAs MMIC technology. This is a significant step forward in designing highspeed power control of supply-modulated HPAs (high power

  10. Loss Performance Analysis of an Isolated Power Supply for Ultrafast Tracking Converters

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the loss performance analysis of an isolated power supply that is designed for ultra-fast tracking converters. The results of the analysis provide insights into the operation of the proposed power supply, how each physical component contributes to the total loss, and how its...

  11. Design and control of a class of multiphase series-resonant power converters

    NARCIS (Netherlands)

    Huisman, H.

    1992-01-01

    Starting in the early sixties, resonant power converters have been developed in order to overcome the restrictions caused by switching losses in power semiconductors. Due to the presence of a resonant circuit, values for the di/dt applied to the semiconductors can be limited. Consequently, switching

  12. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    Science.gov (United States)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  13. Development of a time-to-digital converter ASIC for the upgrade of the ATLAS Monitored Drift Tube detector

    Science.gov (United States)

    Wang, Jinhong; Liang, Yu; Xiao, Xiong; An, Qi; Chapman, John W.; Dai, Tiesheng; Zhou, Bing; Zhu, Junjie; Zhao, Lei

    2018-02-01

    The upgrade of the ATLAS muon spectrometer for the high-luminosity LHC requires new trigger and readout electronics for various elements of the detector. We present the design of a time-to-digital converter (TDC) ASIC prototype for the ATLAS Monitored Drift Tube (MDT) detector. The chip was fabricated in a GlobalFoundries 130 nm CMOS technology. Studies indicate that its timing and power dissipation characteristics meet the design specifications, with a timing bin variation of ±40 ps for all 48 TDC slices and a power dissipation of about 6.5 mW per slice.

  14. Optical data transmission ASICs for the high-luminosity LHC (HL-LHC) experiments

    International Nuclear Information System (INIS)

    Li, X; Huang, G; Sun, X; Liu, G; Deng, B; Gong, D; Guo, D; Liu, C; Liu, T; Xiang, A C; Ye, J; Zhao, X; Chen, J; You, Y; He, M; Hou, S; Teng, P-K; Jin, G; Liang, H; Liang, F

    2014-01-01

    We present the design and test results of two optical data transmission ASICs for the High-Luminosity LHC (HL-LHC) experiments. These ASICs include a two-channel serializer (LOCs2) and a single-channel Vertical Cavity Surface Emitting Laser (VCSEL) driver (LOCld1V2). Both ASICs are fabricated in a commercial 0.25-μm Silicon-on-Sapphire (SoS) CMOS technology and operate at a data rate up to 8 Gbps per channel. The power consumption of LOCs2 and LOCld1V2 are 1.25 W and 0.27 W at 8-Gbps data rate, respectively. LOCld1V2 has been verified meeting the radiation-tolerance requirements for HL-LHC experiments

  15. Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies

    Energy Technology Data Exchange (ETDEWEB)

    Enrique, J.M.; Duran, E.; Andujar, J.M. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain); Sidrach-de-Cardona, M. [Departamento de Fisica Aplicada, II, Universidad de Malaga (Spain)

    2007-01-15

    The operating point of a photovoltaic generator that is connected to a load is determined by the intersection point of its characteristic curves. In general, this point is not the same as the generator's maximum power point. This difference means losses in the system performance. DC/DC converters together with maximum power point tracking systems (MPPT) are used to avoid these losses. Different algorithms have been proposed for maximum power point tracking. Nevertheless, the choice of the configuration of the right converter has not been studied so widely, although this choice, as demonstrated in this work, has an important influence in the optimum performance of the photovoltaic system. In this article, we conduct a study of the three basic topologies of DC/DC converters with resistive load connected to photovoltaic modules. This article demonstrates that there is a limitation in the system's performance according to the type of converter used. Two fundamental conclusions are derived from this study: (1) the buck-boost DC/DC converter topology is the only one which allows the follow-up of the PV module maximum power point regardless of temperature, irradiance and connected load and (2) the connection of a buck-boost DC/DC converter in a photovoltaic facility to the panel output could be a good practice to improve performance. (author)

  16. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy

    2016-12-01

    Various examples are provided related to radio frequency (RF) to direct current (DC) power conversion. In one example, a RF-to-DC converter includes a fully cross-coupled rectification circuit including a pair of forward rectifying transistors and a feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a fully cross-coupled rectification circuit including a pair of forward rectifying transistors; and providing a DC output voltage from an output connection of the fully cross-coupled rectification circuit, where gating of the pair of forward rectifying transistors is controlled by feedback bias signals provided to gates of the pair of forward rectifying transistors via feedback branch elements.

  17. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  18. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  19. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    Science.gov (United States)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  20. An active trap filter for high-power voltage source converters

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    This paper proposes a power electronic based device to actively trap the switching current ripples for highpower converters. Control principle and system design of the active trap filter are discussed first. Comparisons of the active trap filter with LCL and LLCL filters are then carried out...

  1. Guest Editorial Special Section on Systems of Power Converters: Design, Modeling, Control, and Implementation

    DEFF Research Database (Denmark)

    Liu, Wenxin; Guerrero, Josep M.; Kim, Jang Mok

    2017-01-01

    In this Special Section on Systems of Power Converters: Design, Modeling, Control, and Implementation, we have 11 high-quality papers approved for publication that cover the following three topics. 1) Converter Design and Operation. 2) Subsystem-Level Applications. 3) System-Level Applications...

  2. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    Science.gov (United States)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  3. Ultra-Low-Power Analog-to-Digital Converters for Medical Applications

    OpenAIRE

    Zhang, Dai

    2014-01-01

    Biomedical systems are commonly attached to or implanted into human bodies, and powered by harvested energy or small batteries. In these systems, analog-to-digital converters (ADCs) are key components as the interface between the analog world and the digital domain. Conversion of the low frequency bioelectric signals does not require high speed, but ultralow- power operation. This combined with the required conversion accuracy makes the design of such ADCs a major challenge. Among prevalent A...

  4. Harmonics in power systems of ships with electrical propulsion drives. Comparison between different converters

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M [VTT Energy, Espoo (Finland). Energy Systems

    1996-11-01

    In this report the effects of harmonics in marine power systems is discussed and a comparison is given between the most typical converter types, including pulse width modulated drives, load commutated inverters and cycloconverters. The effect of harmonic distortion on the power system equipment and loads is first briefly discussed. Special attention is given to the circumstances in the low voltage distribution system, where general load equipment is connected. In addition to the total harmonic distortion the effect of voltage deviation to the supply quality is also considered. The origin of harmonics in the load currents of the three converter types is then considered. The differences between the converters are outlined, and the most typical spectra are presented. The possible means for reducing the harmonic distortion are also studied. The solutions considered are the increasing of the short circuit level, the use of harmonic filters and the increasing of the pulse number. In the case of cycloconverters, the optimization of the phase shift between the parallel operating bridges is also presented. Finally the effects of different converter types on the voltage quality are compared using calculations made for a typical marine power system. (author)

  5. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  6. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  7. Effect of full converter wind turbines on inter-area oscillation of power systems

    DEFF Research Database (Denmark)

    Askari, Hanieh Hajizadeh; Hashemi Toghroljerdi, Seyedmostafa; Eriksson, Robert

    2015-01-01

    By increasing in the penetration level of wind turbines, the influence of these new added generation units on the power system oscillations specifically inter-area oscillations has to be thoroughly investigated. In this paper, the impact of increasing in the penetration of full rate converter wind...... turbines (FRC-WTs) on the inter-area oscillations of power system is examined. In order to have a comprehensive evaluation of the effects of FRC-WT on the inter-area oscillations, different scenarios associated with the wind power penetration levels, wind farm locations, strength of interconnection line......, and different operating conditions of synchronous generators are investigated. The synchronous generators, exciter systems and power system stabilizers (PSSs) as well as the FRC-WT grid-side converter and its related controllers are modelled in detail in Matlab in order to evaluate the effects of FRC...

  8. A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor

    OpenAIRE

    Funabiki, Shigeyuki

    1990-01-01

    A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command

  9. Analysis and design of a parallel-connected single active bridge DC-DC converter for high-power wind farm applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2013-01-01

    This paper presents a parallel-connected Single Active Bridge (SAB) dc-dc converter for high-power applications. Paralleling lower-power converters can lower the current rating of each modular converter and interleaving the outputs can significantly reduce the magnitudes of input and output curre...

  10. A stationary reference frame current control for a multi-level H-bridge power converter for universal and flexible power management in future electricity network

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Iov, Florin; Zanchetta, Pericle

    2008-01-01

    converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper assesses a control method based on the stationary reference frame with Proportional-Resonant current controllers...

  11. Synchronous Buck Converter with Perturb and Observe Maximum Power Point Tracking Implemented on a Low-Cost Arduino-microcontroller

    Directory of Open Access Journals (Sweden)

    Emad Talib Hashim

    2018-02-01

    Full Text Available Maximum power point tracking (MPPT is used in photovoltaic (PV systems to enhance efficiency and maximize the output power of PV module, regardless the variation of temperature, irradiation, and the electrical characteristics of the load. A new MPPT system has been presented in this research, consisting of a synchronous DC-DC step-down Buck converter controlled by an Arduino microcontroller based unit. The MPPT process with Perturb and Observe method is performed with a DC-DC converter circuit to overcome the problem of voltage mismatch between the PV modules and the loads. The proposing system has high efficiency, lower cost and can be easily modified to handle more energy sources. The test results indicate that the use of the proposed MPPT control with the designed synchronous Buck converter increases the PV output power; hence increases the overall solar system efficiency. The synchronous Buck converter test results used in this design showed high converter efficiency up to 95% of the power produced from the solar module, leading to reduce power loss caused by the power transfer process from PV module to the loads.

  12. Advanced Control Strategy of Back-to-Back PWM Converters in PMSG Wind Power System

    Directory of Open Access Journals (Sweden)

    Tan Luong Van

    2015-01-01

    Full Text Available This paper proposes a control scheme of back-to-back PWM converters for the permanent magnet synchronous generator (PMSG wind turbine system. The DC-link voltage can be controlled at the machine-side converter (MSC, while the grid-side converter (GSC controls the grid active power for a maximum power point tracking (MPPT. At the grid fault condition, the DC-link voltage controller is designed using a feedback linearization (FL theory. For the MPPT, a proportional control loop is added to the torque control to reduce the influence of the inertia moment in the wind turbines, which can improve its dynamic performance. The validity of this control algorithm has been verified by the simulation of the 2-MW PMSG wind turbine system.

  13. New method for designing serial resonant power converters

    Science.gov (United States)

    Hinov, Nikolay

    2017-12-01

    In current work is presented one comprehensive method for design of serial resonant energy converters. The method is based on new simplified approach in analysis of such kind power electronic devices. It is grounded on supposing resonant mode of operation when finding relation between input and output voltage regardless of other operational modes (when controlling frequency is below or above resonant frequency). This approach is named `quasiresonant method of analysis', because it is based on assuming that all operational modes are `sort of' resonant modes. An estimation of error was made because of the a.m. hypothesis and is compared to the classic analysis. The `quasiresonant method' of analysis gains two main advantages: speed and easiness in designing of presented power circuits. Hence it is very useful in practice and in teaching Power Electronics. Its applicability is proven with mathematic modelling and computer simulation.

  14. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  15. Simplified Thermal Modeling for IGBT Modules with Periodic Power Loss Profiles in Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Zhang, Yi; Wang, Huai; Wang, Zhongxu

    2018-01-01

    One of the future challenges in Modular Multilevel Converters (MMCs) is how to size key components with compromised costs and design margins while fulfilling specific reliability targets. It demands better thermal modeling compared to the state-of-the-art in terms of both accuracy and simplicity....... Different from two-level power converters, MMCs have inherent dc-bias in arm currents and the power device conduction time is affected by operational parameters. A time-wise thermal modeling for the power devices in MMCs is, therefore, an iteration process and time-consuming. This paper thus proposes...

  16. Thermal Modelling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Z.; Zhang, Z.; Pittini, R.

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area. The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... by numerical modelling techniques. Therefore, thermal design through thermal modelling and simulation is becoming an integral part of the design process as less expensive compared to the experimental cut-and-try approach. Here the investigation is performed using finite element method-based modelling, and also...

  17. Thermal Modeling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area . The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... by numerical modeling techniques. Therefore, thermal design through thermal modeling and simulation is becoming an integral part of the design process as less expensive compared to the experimenta l cut - and - try approach. Here the investigation is performed using finite element method - based modeling...

  18. LHC Olympics flex physicists' brains

    CERN Multimedia

    2006-01-01

    Physicists from around the world met at CERN to strengthen their data-deciphering skills at the second LHC Olympics workshop. Physicists gather for the second LHC Olympics workshop. Coinciding with the kick-off of the winter Olympics in Turin, more than 70 physicists gathered at CERN from across the globe for the second LHC Olympics workshop on 9-10 February. Their challenge, however, involved brains rather than brawn. As the switch-on date for the LHC draws near, scientists excited by the project want to test and improve their ability to decipher the unprecedented amount of data that the world's biggest and most powerful particle accelerator is expected to generate. The LHC Olympics is a coordinated effort to do just that, minus the gold, silver and bronze of the athletics competition. 'In some ways, the LHC is not a precision instrument. It gives you the information that something is there but it's hard to untangle and interpret what it is,' said University of Michigan physicist Gordy Kane, who organiz...

  19. LHC Report: focus on luminosity

    CERN Document Server

    Reyes Alemany Fernandez for the LHC team

    2016-01-01

    The intensity ramp-up of the LHC beams resumed last Friday after the main powering system of the PS accelerator was put back in service.    The image above shows the last twenty four hours of fill #4947 in the machine. The LHC operations team kept the beams of this fill in the machine for a record 35 and a half hours.  Beams are back in the LHC. On Friday, the accelerator resumed the intensity ramp-up, reaching 1752 bunches per beam last week-end. The intensity ramp-up was interrupted on 20 May because of a problem with the PS’s main power supply (see box). A steady increase in the total number of bunches per beam is required to check out all aspects of beam operation and make sure the LHC is fully safe before the nominal number of bunches per beam can be brought into collision. At present, four intensity steps have been completed: 313, 601, 889, and 1177 bunches per beam. The qualification of the next step with 1752 bunches is in progress. At every s...

  20. CERN LHC dipole prototype success

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields

  1. A novel method for predicting the power outputs of wave energy converters

    Science.gov (United States)

    Wang, Yingguang

    2018-03-01

    This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

  2. The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications

    Directory of Open Access Journals (Sweden)

    Alexandros Kordonis

    2015-04-01

    Full Text Available A power router has been recently developed for both AC and DC applications that has the potential for smart-grid applications. This study focuses on three-phase power switching through the development of an experimental setup which consists of a three-phase direct AC/AC matrix converter with a power router attached to its output. Various experimental switching scenarios with the loads connected to different input sources were investigated. The crescent introduction of decentralized power generators throughout the power-grid obligates us to take measurements for a better distribution and management of the power. Power routers and matrix converters have great potential to succeed this goal with the help of power electronics devices. In this paper, a novel experimental three-phase power switching was achieved and the advantages of this operation are presented, such as on-demand and constant power supply at the desired loads.

  3. Control of a Two-Stage Direct Power Converter with a Single Voltage Sensor Mounted in the Intermediary Circuit

    DEFF Research Database (Denmark)

    Klumpner, Christian; Wheeler, P.; Blaabjerg, Frede

    2004-01-01

    Controlling a converter requires not only a powerful processors but also accurate voltage and current sensors and fast and precise analogue-digital converters, which increase the cost per kW of the assembly, especially in the low power range. A matrix converter requires less transducers than a back...... converters but in two stages (AC/DC/AC) without using energy storage in the intermediary circuit. They also offer the possibility to reduce the number of switches compared to the standard single-stage matrix converter. This paper presents a new method to control a two-stage DPC providing sine-wave in sine...

  4. LHC magnet string in 1994

    CERN Multimedia

    1994-01-01

    On 6-7 December 1994, a string of powerful superconducting magnets for CERN's next particle accelerator, the Large Hadron Collider (LHC), ran successfully at 8.36 tesla for 24 hours. This magnetic field is 100 000 times that of the Earth and is required to keep beams of protons travelling on the correct circular path over 27 km at 7 TeV in the new LHC accelerator.

  5. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  6. Reliability Models Applied to a System of Power Converters in Particle Accelerators

    OpenAIRE

    Siemaszko, D; Speiser, M; Pittet, S

    2012-01-01

    Several reliability models are studied when applied to a power system containing a large number of power converters. A methodology is proposed and illustrated in the case study of a novel linear particle accelerator designed for reaching high energies. The proposed methods result in the prediction of both reliability and availability of the considered system for optimisation purposes.

  7. Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2016-12-01

    Full Text Available Quasi-resonant flyback (QRF converters have been widely applied as the main circuit topology in power converters because of their low cost and high efficiency. Conventional QRF converters tend to generate higher average conducted electromagnetic interference (EMI in the low-frequency domain due to the switching noise generated by power switches, resulting in the fact they can exceed the EMI standards of the European Standard 55022 Class-B emission requirements. The presented paper develops a novel frequency swapping control method that spreads spectral energy to reduce the amplitude of sub-harmonics, thereby lowering average conducted EMI in the low-frequency domain. The proposed method is implemented in a control chip, which requires no extra circuit components and adds zero cost. The proposed control method is verified using a 24 W QRF converter. Experimental results reveals that conducted EMI has been reduced by approximately 13.24 dBμV at 498 kHz compared with a control method without the novel frequency swapping technique. Thus, the proposed method can effectively improve the flyback system to easily meet the CISPR 22/EN55022 standards.

  8. Study and Handling Methods of Power IGBT Module Failures in Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Lee, Kyo-Beum

    2015-01-01

    Power electronics plays an important role in a wide range of applications in order to achieve high efficiency and performance. Increasing efforts are being made to improve the reliability of power electronics systems to ensure compliance with more stringent constraints on cost, safety......, and availability in different applications. This paper presents an overview of the major failure mechanisms of IGBT modules and their handling methods in power converter systems improving reliability. The major failure mechanisms of IGBT modules are presented first, and methods for predicting lifetime...... and estimating the junction temperature of IGBT modules are then discussed. Subsequently, different methods for detecting open- and short-circuit faults are presented. Finally, fault-tolerant strategies for improving the reliability of power electronic systems under field operation are explained and compared...

  9. Introduction to the HL-LHC Project

    CERN Document Server

    Rossi , L

    2015-01-01

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11–12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federa...

  10. Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters

    DEFF Research Database (Denmark)

    Qin, Zian

    . The approaches for improving their performance, in terms of the voltage stress, efficiency, power density, cost, loss distribution, and temperature, will be studied. The structure of the thesis is as follows, Chapter 1 presents the introduction and motivation of the whole project as well as the background...... becomes a emerging challenge. Accordingly, installation of sustainable power generators like wind turbines and solar panels has experienced a large increase during the last decades. Meanwhile, power electronics converters, as interfaces in electrical system, are delivering approximately 80 % electricity...... back-to-back, and meanwhile improve the harmonics, control flexibility, and thermal distribution between the switches. Afterwards, active power decoupling methods for single-phase inverters or rectifiers that are similar to the single-phase ac-dc-ac converter, are studied in Chapter 4...

  11. The electrical, thermal and spatial integration of a converter in a power electronic module

    NARCIS (Netherlands)

    Gerber, M.B.

    2005-01-01

    This thesis is concerned with the design and implementation of a power electronic system (14/42V DC/DC converter) that is implemented in the automotive environment, specifically the engine compartment. The power electronic system must have a high power density while operating in a high temperature

  12. Optimization of Combined Thermal and Electrical Behavior of Power Converters Using Multi-Objective Genetic Algorithms

    NARCIS (Netherlands)

    Malyna, D.V.; Duarte, J.L.; Hendrix, M.A.M.; Horck, van F.B.M.

    2007-01-01

    A practical example of power electronic converter synthesis is presented, where a multi-objective genetic algorithm, namely non-dominated sorting genetic algorithm (NSGA-II) is used. The optimization algorithm takes an experimentally-derived thermal model for the converter into account. Experimental

  13. A novel synthetic test system for thyristor level in the converter valve of HVDC power transmission

    Directory of Open Access Journals (Sweden)

    Liu Longchen

    2016-01-01

    Full Text Available The converter valve is the core equipment in the HVDC power transmission system, a+-nd its performance has a direct effect on the reliability, stability and efficiency of the whole power system. As the basic unit of HVDC converter valve, the thyristor level needs to be test routinely in order to grasp the state of the converter valve equipment. Therefore, it is urgent to develop a novel synthetic test system for the thyristor level with thyristor control unit (TCU. However, currently there is no specific test scheme for the thyristor level of HVDC converter valve. In this paper, the synthetic test principle, content and methods for the thyristor level with TCU are presented based on the analysis of the thyristor reverse recovery characteristic and the IEC technology standard. And a transient high-voltage pulse is applied to the thyristor level during its reverse recovery period in order to test the characteristics of thyristor level. Then, the synthetic test system for the thyristor level is applied to the converter valve test of ±800 kV HVDC power transmission project, and the practical test result verifies the reasonability and validity of the proposed synthetic test system.

  14. A novel Modulation Topology for Power Converters utilizing Multiple Carrier Signals

    DEFF Research Database (Denmark)

    Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael Andreas E.

    2008-01-01

    Power converters are known to generate spectral components in the range of interest of electromagnetic compatibility measurements. Common approaches to manipulate some selected components in these frequency ranges are shown here. These approaches add components to the input signal of the modulato...

  15. Microfabricated Air-core Toroidal Inductor In Very High Frequency Power Converters

    DEFF Research Database (Denmark)

    Lê Thanh, Hoà; Nour, Yasser; Han, Anpan

    2018-01-01

    Miniaturization of power supplies is required for future intelligent electronic systems e.g. internet of things devices. Inductors play an essential role, and they are by far the most bulky and expensive components in power supplies. This paper presents a miniaturized microelectromechanical systems...... (MEMS) inductor and its performance in a very high frequency (VHF) power converter. The MEMS inductor is a siliconembedded air-core toroidal inductor, and it is constructed with through-silicon vias, suspended copper windings, silicon fixtures, and a silicon support die. The air-core inductors...

  16. Impact of modulation strategies on power devices loading for 10 MW multilevel wind power converter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Isidori, Andrea; Rossi, Fabio Mario

    2012-01-01

    This paper focuses on the control and modulation of a three-level Neutral Point Clamped (3L-NPC) back-to-back full scale converter for a 10 MW direct-drive wind turbine, equipped with a Permanent Magnet Synchronous Generator (PMSG). Emphasis is oriented towards the investigation of the power losses...

  17. A study of DC-DC converters with MCT's for arcjet power supplies

    Science.gov (United States)

    Stuart, Thomas A.

    1994-01-01

    Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.

  18. Simple Power Control for Sensorless Induction Motor Drives Fed by a Matrix Converter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo Beum

    2008-01-01

    This paper presents a new and simple method for sensorless control of matrix converter drives using a power flowing to the motor. The proposed control algorithm is based on controlling the instantaneous real and imaginary powers into the induction motor. To improve low-speed sensorless performance...

  19. Requirements for the LHC collimation system

    CERN Document Server

    Assmann, R W; Brugger, M; Bruno, L; Burkhardt, H; Burtin, G; Dehning, Bernd; Fischer, C; Goddard, B; Gschwendtner, E; Hayes, M; Jeanneret, J B; Jung, R; Kain, V; Kaltchev, D I; Lamont, M; Schmidt, R; Vossenberg, Eugène B; Weisse, E; Wenninger, J

    2002-01-01

    The LHC requires efficient collimation during all phases of the beam cycle. Collimation plays important roles in prevention of magnet quenches from regular beam diffusion, detection of abnormal beam loss and subsequent beam abort, radiation protection, and passive protection of the superconducting magnets in case of failures. The different roles of collimation and the high beam power in the LHC impose many challenges for the design of the collimation system. In particular, the collimators must be able to withstand the expected particle losses. The requirements for the LHC collimation system are presented.

  20. Distributed Low Voltage Ride-Through Operation of Power Converters in Grid-Connected Microgrids under Voltage Sags

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Dragicevic, Tomislav

    2015-01-01

    it can make the MG a contributor in smooth ride through the faults. In this paper, a reactive power support strategy using droop controlled converters is proposed to aid MG riding through three phase symmetrical voltage sags. In such a case, the MGs should inject reactive power to the grid to boost...... the voltage in all phases at AC common bus. However, since the line admittances from each converter to point of common coupling (PCC) are not identical, the injected reactive power may not be equally shared. In order to achieve low voltage ride through (LVRT) capability along with a good power sharing...

  1. Beam Dynamics Requirements for the Powering Scheme of the HL-LHC Triplet

    CERN Document Server

    AUTHOR|(CDS)2075212; Fartoukh, Stephane; Giovannozzi, Massimo

    2015-01-01

    For the HL-LHC, β ∗ values as small as 15 cm are envisaged as baseline scenario for the high luminosity insertions IR1 and IR5, thus leading to an increase of the maximum β- functions in the inner triplet (IT). The larger beta-functions in the IT result in a higher sensitivity of the beam to any linear or non-linear, static or dynamic, field imperfections in the IT region. In this paper, we summarize accordingly the tolerances of the triplet power supplies in terms of current ripple, stability and reproducibility. Both the baseline IT powering scheme and other alternative schemes will be presented, the later reducing the tune shift caused by a current modulation and thus weakening its possible impact on the long term stability.

  2. Resonant power converter with dead-time control of synchronous rectification circuit

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising a synchronous rectifier for supplying a DC output voltage. The synchronous rectifier is configured for alternatingly connecting a resonant output voltage to positive and negative DC output nodes via first and second ...

  3. A power conditioning system for thermoelectric generator based on interleaved Boost converter with MPPT control

    DEFF Research Database (Denmark)

    Ni, L.-X; Sun, K.; Zhang, L.

    2011-01-01

    The thermoelectric generation (TEG) system has its special charactristics of high stablility, low voltage and high current output, which is different from PV modules. The power conditioning system and control schemes used in PV applications cannot be directly applied to TEG applications. A power...... conditioning system for TEG based on interleaved Boost converter with maximum power point tracking (MPPT) control is investigated in this paper. Since an internal resistance exists inside TEG modules, an improved perturbation and observation (P&O) MPPT control scheme with power limit is proposed to extract...... maximum power from TEG by matching the load with internal resistance. Since the battery is usually employed as the load for TEG systems, the interleaved Boost converter operates in two different modes for battery charging: before the battery is fully charged, the system outputs the maximum power (MPPT...

  4. A high efficiency photovoltaic module integrated converter with the asymmetrical half-bridge flyback converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heeje; Kim, Jongrak; Shin, Dongsul [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); Kim, Hosung; Lee, Kyungjun [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Jonghyun; Yoo, Dongwook [New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea)

    2010-08-15

    A module integrated converter (MIC) for a photovoltaic (PV) cell is important part of power conditioning system (PCS). It performs maximum power point tracking of a PV cell to generate the power as much as possible from solar energy. There are several methods for connection between the PV modules and the MICs. In order to avoid partial shading effects, converter-per-module approach was proposed. The MIC that performs maximum power point tracking (MPPT), if it is low efficiency, is no use. The MIC whose output is connected to the output of PV module was proposed for high efficiency. However, there are some problems. In this study, an asymmetrical half-bridge flyback converter is proposed instead of the original flyback converter with same method to solve the problems. The proposed MIC was built to verify the performance. The new topology using soft switching technique showed good performance for the efficiency. At the higher power, the efficiency of the proposed converter is higher than existing converter. (author)

  5. Deadbeat control of power leveling unit with bidirectional buck/boost DC/DC converter

    OpenAIRE

    Hamasaki, Shin-ichi; Mukai, Ryosuke; Yano, Yoshihiro; Tsuji, Mineo

    2014-01-01

    As a distributed generation system increases, a stable power supply becomes difficult. Thus control of power leveling (PL) unit is required to maintain the balance of power flow for irregular power generation. The unit is required to respond to change of voltage and bidirectional power flow. So the bidirectional buck/boost DC/DC converter is applied for the control of PL unit in this research. The PL unit with Electric double-layer capacitor (EDLC) is able to absorb change of power, and it is...

  6. Transient Angle Stability Analysis of Grid-Connected Converters with the First-order Active Power Loop

    DEFF Research Database (Denmark)

    Wu, Heng; Wang, Xiongfei

    2018-01-01

    . To tackle this challenge, this paper employs the phase portrait to analyze the transient stability of power converters, and it is found that the better transient stability performance can be achieved if the grid-connected converters are controlled as the first-order nonlinear system. Simulations...

  7. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    OpenAIRE

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede; Wheeler, Patrick; Siano, Pierluigi; Hammami, Manel

    2017-01-01

    Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned defic...

  8. Single Event Upset Energy Dependence In a Buck-Converter Power Supply Design

    CERN Document Server

    Drake, G; The ATLAS collaboration; De Lurgio, P; Stanek, R; Mellado, B; Gopalakrishnan, A; Mahadik, S; Reed, R; Senthilkumaran, A

    2012-01-01

    We present a study of Single Event Upsets performed on a commercial pulse-width modulator controller chip that we are using for a switching power supply design for the Atlas Tile Calorimeter at the LHC. We performed tests to study the probability of an SEU occurring as a function of incident particle (hadron) energy. We compare the results with prediction from theory. We discuss the performance of the circuit, and perform an analysis using Bendel parameters. We also present a solution that we found using external circuitry that eliminates the effect.

  9. Iaverage current mode (ACM) control for switching power converters

    OpenAIRE

    2014-01-01

    Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.

  10. Analog Fixed Maximum Power Point Control for a PWM Step-downConverter for Water Pumping Installations

    DEFF Research Database (Denmark)

    Beltran, H.; Perez, E.; Chen, Zhe

    2009-01-01

    This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around....... The proposed Optimal Power Point fix voltage control system is analyzed in comparison to other complex controls....... their maximum power point, with a fixed operating voltage value. The control circuit implementation is not only simple and cheap, but also robust and reliable. System protections and adjustments are also proposed. Simulations and hardware are reported in the paper for a 150W water pumping application system...

  11. Enhancing the Frequency Adaptability of Periodic Current Controllers for Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2015-01-01

    It is mandatory for grid-connected power converters to synchronize the feed-in currents with the grid. Moreover, the power converters should produce feed-in currents with low total harmonic distortions according to the demands, by employing advanced current controllers, e.g., Proportional Resonant...... deviations. Experiments on a single-phase grid-connected inverter system are presented, which have verified the proposals and also the effectiveness of the frequency adaptive current controllers....... (PR) and Repetitive Controllers (RC). The synchronization is actually to detect the instantaneous grid information (e.g., frequency and phase of the grid voltage) for the current control, which is commonly performed by a Phase-Locked-Loop (PLL) system. As a consequence, harmonics and deviations...

  12. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Sergio Ignacio Serna-Garcés

    2016-03-01

    Full Text Available Stand-alone power systems based on renewable energy sources are used to replace generators based on fossil fuels. Those renewable power systems also require Energy Storage Devices (ESD interfaced by a charger/discharger power converter, which consist of a bidirectional DC/DC converter, and a DC bus. This paper proposes a single sliding-mode controller (SMC for the charger/discharger DC/DC converter to provide a stable DC bus voltage in any operation condition: charging or discharging the ESD, or even without any power exchange between the ESD and the DC bus. Due to the non-linear nature of the power converter, the SMC parameters are adapted on-line to ensure global stability in any operation condition. Such stability of the adaptive SMC is mathematically demonstrated using analytical expressions for the transversality, reachability and equivalent control conditions. Moreover, a design procedure for the adaptive SMC parameters is provided in order to ensure the dynamic response required for the correct operation of the load. Finally, simulations and experimental tests validate the proposed controller and design procedure.

  13. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  14. HL-LHC kicker magnet (MKI)

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    HL-LHC kicker magnet (MKI): last vacuum test, preparation for transport to LHC transfer line in underground tunnel.The LHC injection kicker systems (MKIs) generate fast field pulses to inject the clockwise rotating beam at Point 2 and the anti-clockwise rotating beam at Point 8: there are eight MKI magnets installed in total. Each MKI magnet contains a high purity alumina tube: if an MKI magnet is replaced this tube requires conditioning with LHC beam: until it is properly conditioned, there can be high vacuum pressure due to the beam. This high pressure can also cause electrical breakdowns in the MKI magnets. A special coating (Cr2O3) has been applied to the inside of the alumina tube of an upgraded MKI magnet – this is expected to greatly reduce the pressure rise with beam. In addition, HL-LHC beam would result in excessive heating of the MKI magnets: the upgraded design includes modifications that will reduce heating, and move the power deposition to parts that will be easier to cool. Experience during 2...

  15. The LHC and its successors

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Not too long before the first long technical stop of the LHC, engineers and physicists are already working on the next generation of accelerators: HL-LHC and LHeC. The first would push proton-proton collisions to an unprecedented luminosity rate; the second would give a second wind to electron-proton collisions.   The ring-ring configuration of the LHeC would need this type of magnets, currently being studied for possible future use. In one year, the LHC will begin to change. During the first long shutdown, from December 2012 to late 2014, the machine will go through a first phase of major upgrades, with the objective of running at 7 TeV per beam at the beginning of 2015. With this long technical stop and the two others that will follow (in 2018 and 2022), a new project will see the light of day. Current plans include the study of something that looks more like a new machine rather than a simple upgrade: the High Luminosity LHC (HL-LHC). Much more powerful than the current machine, the HL-...

  16. Technological challenges for the LHC

    CERN Multimedia

    CERN. Geneva; Rossi, Lucio; Lebrun, Philippe; Bordry, Frederick; Mess, Karl Hubert; Schmidt, Rüdiger

    2003-01-01

    For the LHC to provide particle physics with proton-proton collisions at the centre of mass energy of 14 TeV with a luminosity of 1034 cm-2s-1, the machine will operate with high-field dipole magnets using NbTi superconductors cooled to below the lambda point of helium. In order to reach design performance, the LHC requires both, the use of existing technologies pushed to the limits as well as the application of novel technologies. The construction follows a decade of intensive R&D and technical validation of major collider sub-systems. The first lecture will focus on the required LHC performance, and on the implications on the technologies. In the following lectures several examples for LHC technologies will be discussed: the superconducting magnets to deflect and focus the beams, the cryogenics to cool the magnets to a temperature below the lambda point of helium along most of the LHC circumference, the powering system supplying about 7000 magnets connected in 1700 electrical circuits with a total curr...

  17. Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

    CERN Document Server

    Wanzenberg, Rainer; CERN. Geneva. ATS Department

    2016-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) project was started with the goal to extend the discovery potential of the Large Hadron Collider (LHC). The HL-LHC study implies also an upgraded dimensions of the ALICE beam pipe. The trapped monopole and dipole Higher Order Modes (HOMs) and the short range wakefields for the new design of the ALICE vacuum chamber were calculated with help of the computer codes MAFIA and ECHO2D. The results of the short range wakefields calculations and the HOMs calculations for the ALICE vacuum chamber with new dimensions are presented in this report. The short range wakefields are presented in terms of longitudinal and transverse wake potentials and also in terms of loss and kick parameters. The frequency, the loss parameter, the R/Q and the Qvalues and also power loss parameters are presented as result of the HOMs calculations and can be converted into impedance values.

  18. Modern power converter drives. Drive systems, power electronics, machines, mechatronics and motion control. 5. rev. and enl. ed.; Moderne Stromrichterantriebe. Antriebssystem, Leistungselektronik, Maschinen, Mechatronik und Motion Control, Arbeitsweise drehzahlveraenderbarer Antriebe mit Stromrichtern und Antriebsvernetzung

    Energy Technology Data Exchange (ETDEWEB)

    Brosch, P.F.

    2008-07-01

    This book informs students and practicians on variable-speed drives. Constructional engineers, technicians and others are given a practical tool for their daily work. - Fundamentals of motive power engineering - power converter components - electric machines - power converter drives with commutator motors - power converter drives with induction machines - integrated drive systems - motion control and mechatronics - selection and dimensioning of variable-speed drives converter measuring engineering - electromagnetic compatibility, with examples - measurements on power converter drives with variable speed adjustment - electromagnetic compatibility. (orig./GL)

  19. Singularities of projection of an active power in frequency converter

    Directory of Open Access Journals (Sweden)

    Є.К. Батуревич

    2005-03-01

    Full Text Available  The level of security of static single-phase watt-hour meters of an electric energy concerning a possibility of unauthorized takeoff of an electric energy by electric methods is analyses. The shortages of an active power in a pulse frequency converter are marked which are used in such watt-hour meters. The solutions on their refinement are offered.

  20. Impact of Wind Power Plants with Full Converter Wind Turbines on Power System Small-Signal Stability

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nygaard Nielsen, Jørgen; Dixon, Andrew

    Wind power is being developed in power systems all around the world, and already today wind power covers more than 20 % of the electricity consumption in some countries. As the size of each wind power plant (WPP) increases and as the levels of penetration reaches certain magnitudes, the inclusion...... of the dynamic properties of the WPPs in the power system stability studies become important. The work presented in this report deal with the impact of WPPs based on full converter wind turbines (WTs) on the power system small-signal rotor angle stability. During small disturbances in the power system, the rotor...... speed of the synchronous machines will eventually return to its steady state if the power system is small-signal stable. The dynamic properties of a WPP are fundamentally dierent from those of a synchronous machine, and the interaction of WPPs with the synchronous machines in power system oscillations...

  1. LHC brochure (French version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which started up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  2. LHC brochure (English version)

    CERN Multimedia

    AUTHOR|(CDS)2070305

    2014-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which started up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  3. LHC brochure (Italian version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which started up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  4. LHC brochure (French version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which started up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  5. LHC brochure (Danish version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which started up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  6. LHC brochure (English version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which started up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  7. LHC brochure (German version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which started up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  8. Multiresonant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Distorted Grid Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Candela, Ignacio

    2011-01-01

    This paper presents a new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmoni...

  9. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2018-02-01

    Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

  10. The Feasibility Study on Thermal Loading Control of Wind Power Converters with a Flexible Switching Frequency

    DEFF Research Database (Denmark)

    Qin, Zian; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Thermal loading of wind power converters is critical to their reliability performance. Especially for IGBT modules applied in a converter, both of the mean value and variation of the junction temperature have significant impact on the lifetime. Besides other strategies to reduce the thermal loadi...... the temperature fluctuations due to wind speed variations. The trade-off between the reduced amplitude of temperature fluctuations and the additional power losses that may be introduced is quantitatively studied....

  11. Probing electroweak symmetry braking mechanism at the LHC: A guideline from power counting analysis

    International Nuclear Information System (INIS)

    He Hongjian; Virginia Polytechnic Inst. and State Univ., Blacksburg, VA; Virginia Polytechnic Inst. and State Univ., Blacksburg, VA; Kuang, Y.P.; Tsinghua Univ., Beijing, BJ; Yuan, C.P.

    1996-01-01

    We formulate the equivalence theorem as a criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting rule for chiral Lagrangian formulated electroweak theories (CLEWT). With these we give a systematic analysis on the sensitivities of the scattering processes W ± W ± →W ± W ± and q anti q'→W ± Z to probing all possible effective bosonic operators in the CLEWT at the CERN Large Hadron Collider (LHC). (orig.)

  12. Maximum Power Point Tracking for Cascaded PV-Converter Modules Using Two-Stage Particle Swarm Optimization.

    Science.gov (United States)

    Mao, Mingxuan; Duan, Qichang; Zhang, Li; Chen, Hao; Hu, Bei; Duan, Pan

    2017-08-24

    The paper presents a novel two-stage particle swarm optimization (PSO) for the maximum power point tracking (MPPT) control of a PV system consisting of cascaded PV-converter modules, under partial shading conditions (PSCs). In this scheme, the grouping method of the shuffled frog leaping algorithm (SFLA) is incorporated with the basic PSO algorithm, ensuring fast and accurate searching of the global extremum. An adaptive speed factor is also introduced to improve its convergence speed. A PWM algorithm enabling permuted switching of the PV sources is applied. The method enables this PV system to achieve the maximum power generation for any number of PV and converter modules. Simulation studies of the proposed MPPT scheme are performed on a system having two chained PV buck-converter modules and a dc-ac H-bridge connected at its terminals for supplying an AC load. The results show that this type of PV system allows each module to achieve the maximum power generation according its illumination level without affecting the others, and the proposed new control method gives significantly higher power output compared with the conventional P&O and PSO methods.

  13. LHC Brochure (german version)

    CERN Multimedia

    Vanoli, C.

    2006-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which will start-up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  14. LHC brochure (German version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which will start-up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  15. LHC brochure (German version)

    CERN Multimedia

    Lefevre, Christiane

    2011-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which will start-up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  16. LHC brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A presentation of the largest and the most powerful particle accelerator in the world, the Large Hadron Collider (LHC), which will start-up in 2008. Its role, characteristics, technologies, etc. are explained for the general public.

  17. A Hamiltonian viewpoint in the modelling of switching power converters, Special Issue on Hybrid Systems

    NARCIS (Netherlands)

    Escobar, Gerardo; van der Schaft, Arjan; Ortega, Romeo

    1999-01-01

    In this paper we show how, using the Hamiltonian formalism, we can systematically derive mathematical models that describe the behaviour of a large class of switching power converters, including the “Boost”, “Buck”, “Buck-Boost”, “ uk” and “Flyback” converters. We follow the approach proposed by van

  18. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    Science.gov (United States)

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  19. The application of standardized control and interface circuits to three dc to dc power converters.

    Science.gov (United States)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  20. Design of practical sliding-mode controllers with constant switching frequency for power converters

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Lopez, Eva M. [School of Computer Science, Centre for Interdisciplinary Computational and Dynamical Analysis, The University of Manchester, Oxford Road, Kilburn Building, Manchester M13 9PL (United Kingdom); Cortes, Domingo [Seccion de Mecatronica, Departamento de Ingenieria Electrica, CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Mexico City (Mexico); Castro, Christian [Centro de Investigacion en Computacion del IPN, Av. Jose Othon de Mendizabal s/n, Col. Nueva Industrial Vallejo, 07738 Mexico City (Mexico)

    2009-05-15

    A novel experimentally motivated method in order to design a family of easy-to-implement sliding-mode controllers for power converters is proposed. Two main results are presented. First, the relation between sliding-mode control and average control is reinterpreted so that the limitation of the switching frequency for the closed-loop system is achieved in a more direct way than other methods so far reported in the literature. For this purpose, a class of sliding surfaces which makes the associated equivalent control be the system average control is proposed. Second, the achievement of a constant switching frequency in the controlled system is assured without requiring the sliding-mode-based controller to be modified, unlike most previous works. As a result, the proposed sliding surfaces-type can be directly implemented via a pulse-width modulator. The control methodology is implemented for the voltage control in a boost converter prototype in which the load is considered unknown. Experimental results confirm high performance and robustness under parameters variation. Furthermore, the solution proposed is easy to implement and well-suited for other power converters. (author)

  1. Reduction of DC-link Capacitor in Case of Cascade Multilevel Converters by means of Reactive Power Control

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Wang, Huai; Liserre, Marco

    2014-01-01

    A method to selectively control the amount of dc link voltage ripple by processing desired reactive power by a DC/DC converter in isolated AC/DC or AC/DC/AC system is proposed. The concept can reduce the dc link capacitors used for balancing the input and output power and thereby limiting...... the voltage ripple. It allows the use of smaller dc link capacitor and hence a longer lifetime and at the same time high power density and low cost can be achieved. The isolated DC/DC converter is controlled to process the desired reactive power in addition to the active power. The control system to achieve...

  2. Warmer amps for the LHC

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    CERN is working together with an Italian company to develop superconducting cables that can function at temperatures of up to 25 K (-248°C). This will make it possible to move LHC magnet power supplies out of the tunnel, protecting them from exposure to the showers of very high-energy particles produced by the accelerator.   Figure 1: devices of this type, which measure approximately 10 metres in length, are inserted between the accelerating magnets at different points along the LHC. When it comes to consuming electricity, the magnets that steer particles through large accelerators can be characterised with just one word: greedy. For the LHC, the total current can reach 1.5 million amps. At the present time, this current is brought in via copper cables of up to 10 cm in diameter. In the tunnel, these cables connect the current leads - which provide the transition between the ambient-temperature cables and the magnets in their bath of superfluid helium - to the power supply. In the a...

  3. LHC Highlights, from dream to reality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The idea of the Large Hadron Collider (LHC) was born in the early 1980s. Although LEP (CERN’s previous large accelerator) was still under construction at that time, scientists were already starting to think about re-using the 27-kilometre ring for an even more powerful machine. Turning this ambitious scientific plan into reality proved to be an immensely complex task. Civil engineering work, state-of-the-art technologies, a new approach to data storage and analysis: many people worked hard for many years to accomplish all this.   Here are some of the highlights: 1984. A symposium organized in Lausanne, Switzerland, is the official starting point for the LHC. LHC prototype of the two beam pipes (1992). 1989. The first embryonic collaborations begin. 1992. A meeting in Evian, France, marks the beginning of the LHC experiments. 1994. The CERN Council approves the construction of the LHC accelerator. 1995. Japan becomes an Observer of CERN and announces a financial contribution to ...

  4. Study and Analysis of a Natural Reference Frame Current Controller for a Multi-Level H-Bridge Power Converter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Iov, Florin; Zanchetta, P.

    2008-01-01

    will be needed in order to control the power flow and to ensure proper and secure operation of this future grid with an increased level of renewable power. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents an analysis of the natural...... reference frame controller, based on proportional-resonant (PR) technique, for a multi-level H-bridge power converter for Universal and Flexible Power Management in Future Electricity Network. The proposed method is tested in terms of harmonic content in the Point of Common Coupling (PCC), voltage...

  5. Multilevel Converter by Cascading Two-Level Three-Phase Voltage Source Converter

    Directory of Open Access Journals (Sweden)

    Abdullrahman A. Al-Shamma’a

    2018-04-01

    Full Text Available This paper proposes a topology using isolated, cascaded multilevel voltage source converters (VSCs and employing two-winding magnetic elements for high-power applications. The proposed topology synthesizes 6 two-level, three-phase VSCs, so the power capability of the presented converter is six times the capability of each VSC module. The characteristics of the proposed topology are demonstrated through analyzing its current relationships, voltage relationships and power capability in detail. The power rating is equally shared among the VSC modules without the need for a sharing algorithm; thus, the converter operates as a single three-phase VSC. The comparative analysis with classical neutral-point clamped, flying capacitor and cascaded H-bridge exhibits the superior features of fewer insulated gate bipolar transistors (IGBTs, capacitor requirement and fewer diodes. To validate the theoretical performance of the proposed converter, it is simulated in a MATLAB/Simulink environment and the results are experimentally demonstrated using a laboratory prototype.

  6. Cost on Reliability and Production Loss for Power Converters in the Doubly Fed Induction Generator to Support Modern Grid Codes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2016-01-01

    As wind farms are normally located in remote areas, many grid codes have been issued especially related to the reactive power support. Although the Doubly-Fed Induction Generator (DFIG) based power converter is able to control the active power and reactive power independently, the effects...... of providing reactive power on the lifetime of the power converter and the cost-of-energy of the whole system are seldom evaluated, even though it is an important topic. In this paper, the loss models of the DFIG system are established at various conditions of the reactive power injection. If the mission...... profile is taken into account, the lifespan of the power semiconductors as well as the cost of the reactive power can be calculated. It is concluded that an over-excited reactive power injection significantly reduces the power converter lifetime, only 1/4 of the case that there is no reactive power...

  7. A three-phase to three-phase series-resonant power converter with optimal input current waveforms, Part I: control strategy

    NARCIS (Netherlands)

    Huisman, H.

    1988-01-01

    A control strategy for multiphase-input multiphase-output AC to AC series-resonant (SR) power converters is presented. After reviewing some basics in SR power converters, a hierarchy of control mechanisms is presented, together with their respective theoretical backgrounds and practical limitations.

  8. Electrical performance of a string of magnets representing a half-cell of the LHC machine

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Coull, L.; Dahlerup-Petersen, K.; Hagedorn, D.; Krainz, G.; Rijllart, A.; McInturff, A.

    1996-01-01

    Tests have been carried out on a string of prototype superconducting magnets, consisting of one double-quadrupole and two double-dipoles forming the major part of a half-cell of the LHC machine. The magnets are protected individually by cold diodes and quench heaters. The electrical aspects of these tests are described here. The performance during quench of the protection diodes and the associated interconnections was studied. Tests determined the magnet quench performance in training and at different ramp-rates, and investigated the inter-magnet propagation of quenches. Current lead and inter-magnet contact resistances were controlled and the performance of the power converter and the dump switches assessed

  9. Electrical performance of a string of magnets representing a half-cell of the LHC machine

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Coull, L.; Dahlerup-Petersen, K.; Hagedorn, D.; Krainz, G.; Rijllart, A.; McInturff, A.

    1995-01-01

    Tests have been carried out on a string prototype superconducting magnets, consisting of one double-quadrupole and two double-dipoles forming the major part of a half-cell of the LHC machine. The magnets are protected individually by ''cold diodes'' and quench heaters. The electrical aspects of these tests are described here. The performance during quench of the protection diodes and the associated interconnections was studied. Tests determined the magnet quench performance in training and at different ramp-rates, and investigated the inter-magnet propagation of quenches. Current lead and inter-magnet contact resistances were controlled and the performance of the power converter and the dump switches assessed

  10. LHC Computing Grid Project Launches intAction with International Support. A thousand times more computing power by 2006

    CERN Multimedia

    2001-01-01

    The first phase of the LHC Computing Grid project was approved at an extraordinary meeting of the Council on 20 September 2001. CERN is preparing for the unprecedented avalanche of data that will be produced by the Large Hadron Collider experiments. A thousand times more computer power will be needed by 2006! CERN's need for a dramatic advance in computing capacity is urgent. As from 2006, the four giant detectors observing trillions of elementary particle collisions at the LHC will accumulate over ten million Gigabytes of data, equivalent to the contents of about 20 million CD-ROMs, each year of its operation. A thousand times more computing power will be needed than is available to CERN today. The strategy the collabortations have adopted to analyse and store this unprecedented amount of data is the coordinated deployment of Grid technologies at hundreds of institutes which will be able to search out and analyse information from an interconnected worldwide grid of tens of thousands of computers and storag...

  11. A 99%-efficiency GaN converter for 6.78 MHz magnetic resonant wireless power transfer system

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Akuzawa

    2014-10-01

    Full Text Available The authors developed a high-efficiency gallium-nitride (GaN Class-E converter for a 6.78 MHz magnetic resonant wireless power transfer system. A negative-bias gate driver circuit made it possible to use a depletion mode GaN high-electron-mobility transistor (HEMT, and simplified the converter circuit. As the depletion mode GaN HEMT with very small gate–source capacitance provided almost ideal zero-voltage switching, the authors attained a drain efficiency of 98.8% and a total efficiency of 97.7%, including power consumption of a gate driver circuit, at a power output of 33 W. In addition, the authors demonstrated a 6.78 MHz magnetic resonant wireless power transfer system that consisted of the GaN Class-E converter, a pair of magnetic resonant coils 150 mm in diameter with an air-gap distance of 40 mm, and a full-bridge rectifier using Si Schottky barrier diodes. The system achieved a dc–dc efficiency of 82.8% at a power output of 25 W. The efficiencies of coil coupling and the rectifier were estimated to be ∼ 94 and 90%, respectively.

  12. Resonant power converter driving and inductive load like a discharge lamp

    NARCIS (Netherlands)

    2010-01-01

    A resonant power converter (1) for driving an inductive load as, e.g. an inductively coupled gas- discharge lamp, is designed for operation at an operational frequency (Fop) of 13.56 MHz and comprises: a series arrangement of a first inductor (L1) and a first controllable switch (Q1) connected to a

  13. A Review on Grid-connected Converter Control for Short Circuit Power Provision under Grid Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    behave significantly different from the traditional alternators under grid faults. In order to evaluate the potential impact of future converter-based power systems on protective relays, it is necessary to consider diverse current control strategies of voltage source converters (VSC) under unbalanced...

  14. Enhanced Control for Improving the Operation of Grid-Connected Power Converters under Faulty and Saturated Conditions

    Directory of Open Access Journals (Sweden)

    Mahdi Shahparasti

    2018-02-01

    Full Text Available In renewable energy based systems Grid-Connected Voltage Source Converters (GC-VSC are used in many applications as grid-feeding converters, which transfer the power coming from the renewable energy sources to the grid. In some cases, the operation of GC-VSC may become unstable or uncontrollable due to, among others: a grid fault or an inappropriate current-power reference, that give rise to fast electrical transients or a saturation of the controller. In this paper, an improved control scheme is proposed to enhance the controllability of GC-VSC in all these situations. This solution consists of two parts, on the one hand a new Proportional-Resonant (PR controller with anti-windup capability to be used as current controller, and secondly a new current/power reference modifier, which defines the suitable reactive current/power reference to keep the system stable. It is worth to mention that the proposed scheme does not need information about the grid parameters as it only uses the converter current, and the voltage at the capacitors of Inductor-Capacitor (LC output filter.

  15. Modular Power System Configured with Standard Product Hybrid DC-DC Converters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter and...

  16. Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid

    Directory of Open Access Journals (Sweden)

    Robert Antonio Salas-Puente

    2018-03-01

    Full Text Available In this paper, a centralized control strategy for the efficient power management of power converters composing a hybrid AC/DC microgrid is explained. The study is focused on the converters connected to the DC bus. The proposed power management algorithm is implemented in a microgrid central processor which is based on assigning several operation functions to each of the generators, loads and energy storage systems in the microgrid. The power flows between the DC and AC buses are studied in several operational scenarios to verify the proposed control. Experimental and simulation results demonstrate that the algorithm allows control of the power dispatch inside the microgrid properly by performing the following tasks: communication among power converters, the grid operator and loads; connection and disconnection of loads; control of the power exchange between the distributed generators and the energy storage system and, finally, supervision of the power dispatch limit set by the grid operator.

  17. Power Control at Grid Connected Converters and Analytical Solution of Steady States

    Czech Academy of Sciences Publication Activity Database

    Valouch, Viktor; Škramlík, Jiří; Muller, Z.; Švec, J.; Tlustý, J.

    2015-01-01

    Roč. 2015, September (2015), s. 1-12 ISSN 1024-123X Institutional support: RVO:61388998 Keywords : power control * converter * grid Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.644, year: 2015 http://downloads.hindawi.com/journals/mpe/2015/601916.pdf

  18. Estimates of power generated from synchrotron radiation in the HL-LHC experimental insertion regions

    CERN Document Server

    Rossi, Adriana; CERN. Geneva. ATS Department

    2017-01-01

    The power generated in single magnets of the HL-LHC experimental regions is estimated for collision optics HLLHCV1.2 β*=15 cm Round and HLLHCV1.2 Flat. Note that the layout used for the computations presented here is that before the recent change of baseline. These values should serve as input to Monte-Carlo codes (i.e., PHOTON [ ], Synrad [ ] or others), able to calculate the heat load distribution along the machine and in particular the Long Straight Sections (LSS).

  19. Reliability and Energy Loss in Full-scale Wind Power Converter Considering Grid Codes and Wind Classes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    With the increasing penetration of the wind power, reliable operation and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the cost on reliability and production losses of permanent-magnet synchronous generator based full-scale wind......, if the specific designed wind turbine system operates at different wind classes, it can be seen that higher wind class level results in lower lifetime of the power converter. In respect to the cost of the reactive power, either the OE or the UE reactive power increases the energy loss per year significantly...... power converter is studied considering the grid code with reactive power production as well as the annual wind profile. Regarding the reliability, it is found that either the Over-Excited (OE) or the Under-Excited (UE) reactive power injection threatens the lifespan under all wind classes. Meanwhile...

  20. A New Very-High-Efficiency R4 Converter for High-Power Fuel Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael Andreas E.

    2009-01-01

    of fullbridge switching stages and power transformers, operate in parallel on primary side and in series on secondary side. Current sharing is guaranteed by series connection of transformer secondary windings and three small cascaded current balancing transformers on primary side. The detailed design of a 10 k......W prototype converter is presented. Input voltage range is 30-60 V and output voltage is 800 V. Test results, including voltage- and current waveforms and efficiency measurements, are presented. A record high converter efficiency of 98.2 % is achieved. The proposed R4 boost converter thus constitutes a low...

  1. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    Science.gov (United States)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  2. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    Energy Technology Data Exchange (ETDEWEB)

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (λ = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  3. Analysis and control of a hybrid vehicle powered by free-piston energy converter

    OpenAIRE

    Hansson, Jörgen

    2006-01-01

    The introduction of hybrid powertrains has made it possible to utilise unconventional engines as primary power units in vehicles. The free-piston energy converter (FPEC) is such an engine. It is a combination of a free-piston combustion engine and a linear electrical machine. The main features of this configuration are high efficiency and a rapid transient response. In this thesis the free-piston energy converter as part of a hybrid powertrain is studied. One issue of the FPEC is the generati...

  4. Introduction to the HL-LHC Project

    Science.gov (United States)

    Rossi, L.; Brüning, O.

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11-12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federates efforts and R&D of a large community in Europe, in the US and in Japan, which will facilitate the implementation of the construction phase as a global project.

  5. Analytical Performance Verification of FCS-MPC Applied to Power Electronic Converters

    DEFF Research Database (Denmark)

    Novak, Mateja; Dragicevic, Tomislav; Blaabjerg, Frede

    2017-01-01

    Since the introduction of finite control set model predictive control (FCS-MPC) in power electronics the algorithm has been missing an important aspect that would speed up its implementation in industry: a simple method to verify the algorithm performance. This paper proposes to use a statistical...... model checking (SMC) method for performance evaluation of the algorithm applied to power electronics converters. SMC is simple to implement, intuitive and it requires only an operational model of the system that can be simulated and checked against properties. Device under test for control algorithm...

  6. The Large Hadron Collider (LHC): The Energy Frontier

    Science.gov (United States)

    Brianti, Giorgio; Jenni, Peter

    The following sections are included: * Introduction * Superconducting Magnets: Powerful, Precise, Plentiful * LHC Cryogenics: Quantum Fluids at Work * Current Leads: High Temperature Superconductors to the Fore * A Pumping Vacuum Chamber: Ultimate Simplicity * Vertex Detectors at LHC: In Search of Beauty * Large Silicon Trackers: Fast, Precise, Efficient * Two Approaches to High Resolution Electromagnetic Calorimetry * Multigap Resistive Plate Chamber: Chronometry of Particles * The LHCb RICH: The Lord of the Cherenkov Rings * Signal Processing: Taming the LHC Data Avalanche * Giant Magnets for Giant Detectors

  7. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    Science.gov (United States)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  8. A High-Voltage Low-Power Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices for LED Drivers

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    Previous research on switched-capacitor DC-DC converters has focused on low-voltage and/or high-power ranges where the efficiencies are dominated by conduction loss. Switched-capacitor DC-DC converters at high-voltage (> 100 V) low-power (high efficiency and high power density...... are anticipated to emerge. This paper presents a switched-capacitor converter with an input voltage up to 380 V (compatible with rectified European mains) and a maximum output power of 10 W. GaN switches and SiC diodes are analytically compared and actively combined to properly address the challenges at high......-voltage low-current levels, where switching loss becomes significant. Further trade-off between conduction loss and switching loss is experimentally optimized with switching frequencies. Three variant designs of the proposed converter are implemented, and the trade-off between the efficiency and the power...

  9. Chaos control in solar fed DC-DC boost converter by optimal parameters using nelder-mead algorithm powered enhanced BFOA

    Science.gov (United States)

    Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.

    2017-11-01

    The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.

  10. Evaluation and Design Tools for the Reliability of Wind Power Converter System

    DEFF Research Database (Denmark)

    Ma, Ke; Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    grid. As a result, the correct assessment of reliable performance for power electronics is a crucial and emerging need; the assessment is essential for design improvement, as well as for the extension of converter lifetime and reduction of energy cost. Unfortunately, there still exists a lack...

  11. Control Strategy of Active Power Filter Based on Modular Multilevel Converter

    Science.gov (United States)

    Xie, Xifeng

    2018-03-01

    To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.

  12. Impute DC link (IDCL) cell based power converters and control thereof

    Science.gov (United States)

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  13. The New Control and Interlock System for the SPS Main Power Converters

    CERN Document Server

    Denis, B; Mugnier, C; Varas, J

    1999-01-01

    The Control and Interlock System (CIS) of the SPS main power converters was designed in the mid-70s and became increasingly difficult to maintain. A new system based on Programmable Logic Controllers has been developed by an external contractor in close collaboration with CERN. The system is now operational and fully integrated in the SPS/LEP control infrastructure. The CIS is the first major contracted industrial solution used to control accelerator equipment directly involved in the production of particle beams at CERN. This paper gives an overview of the SPS main power converter installation and describes both the contractual and technical solution adopted for the CIS. It first explains how the system was specified and how the contractual relationship was defined to respect CERN’s purchasing rules and the operational requirements of the SPS accelerator. The architectural design of the new system is presented with special emphasis on how the conflict between safety and availability has been addressed.

  14. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  15. Prototype HL-LHC magnet undergoes testing

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A preliminary short prototype of the quadrupole magnets for the High-Luminosity LHC has passed its first tests.   The first short prototype of the quadrupole magnet for the High Luminosity LHC. (Photo: G. Ambrosio (US-LARP and Fermilab), P. Ferracin and E. Todesco (CERN TE-MSC)) Momentum is gathering behind the High-Luminosity LHC (HL-LHC) project. In laboratories on either side of the Atlantic, a host of tests are being carried out on the various magnet models. In mid-March, a short prototype of the quadrupole magnet underwent its first testing phase at the Fermilab laboratory in the United States. This magnet is a pre-prototype of the quadrupole magnets that will be installed near to the ATLAS and CMS detectors to squeeze the beams before collisions. Six quadrupole magnets will be installed on each side of each experiment, giving a total of 24 magnets, and will replace the LHC's triplet magnets. Made of superconducting niobium-tin, the magnets will be more powerful than their p...

  16. DESIGN OPTIMIZATION OF RESONANT DC-DC CONVERTERS

    OpenAIRE

    Belqasem Aljafari

    2016-01-01

    Resonant DC/DC converters are the class of converters, which have L-C resonant tank serving as a major part of the power conversion process. The fundamental concept of the resonant converter is that the circulating energy in an L-C resonant circuit is manageable by changing the operating frequency, and therefore the converter can condition the input power to the desired output voltage. The development in power conversion technology is steady demand for high power efficiency and high power den...

  17. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    Science.gov (United States)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  18. Modelling, simulation and construction of a dc/dc boost power converter: a school experimental system

    International Nuclear Information System (INIS)

    Silva-Ortigoza, R; Marciano-Melchor, M; Silva-Ortigoza, G; Hernández-Guzmán, V M; Saldaña-González, G; Marcelino-Aranda, M

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders the feasible introduction of this equipment in undergraduate laboratories. (paper)

  19. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    Science.gov (United States)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  20. Universal and inductorless DC/DC converter for multi-output power supplies in sensor and actuator networks

    Science.gov (United States)

    Saponara, Sergio; Ciarpi, Gabriele

    2017-05-01

    This work proposes a universal and inductorless DC/DC converter that can be used for a wide input range, from few V to 60 V, to regulate output voltages from 5 V down to 1 V in Sensor and Actuator Network nodes. The proposed converter has been developed within the Athenis3D European project. It is composed by a cascade of multiple switching capacitor stages, with a proper skip-mode control to implement both step-down and step-up converting ratios, thus regulating all input sources to a voltage of about 6 V. These switching stages are further cascaded with linear regulators, which can provide stable output voltages down to 1 V. The multi-output regulator has been realized as a single-chip in a low-cost 0.35 μm CMOS technology. It is available as a naked die or in a ceramic package. The only needed external components are surface mount capacitors, which can be integrated on top of the naked chip die, creating a 3D structure, using trench capacitors embedded in a passive interposing layer. This way the size of the power management unit is further minimized. An advantage of the proposed converter is that it isn't optimized for a particular input voltage, therefore it can be used with no constant input power, like power harvesting systems (e.g. solar cells, wind and water turbines) and very disturbed power supplies.

  1. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    power transmission options with HVDC systems are under consideration. In this paper, a comparison between a conventional HVAC transmission system and a HVDC system equipped with modular voltage source converters is provided. The comparison is based on the total energy transmission capability...

  2. Development of Field Data Logger for Recording Mission Profile of Power Converters

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay Kumar; Ghimire, Pramod; Blaabjerg, Frede

    2015-01-01

    Mission profile data provides useful data for a cost effective and reliable design of future power converters. The development of a field data logger using a Raspberry Pi (RBPI) and temperature and humidity sensors is presented. The collected data is analyzed and classified for the purpose of data...

  3. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  4. Power Devices Loading in Multilevel Converters for 10 MW Wind Turbines

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Xu, Dehong

    2011-01-01

    Several promising multilevel converter solutions for 10 MW wind turbines using permanent magnet synchronous generators are proposed, designed and compared both with one-stage gear-box drive and direct drive systems. The current and loss distributions, as well as the utilization of power devices......-level NeutralPoint-Clamped topology with both the direct-drive and one-stage gear box drive systems....

  5. Static converters power supply: transient regimes; Alimentation par convertisseurs statiques: regimes transitoires

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, G. [Ecole Superieure d`Electricite (France)

    1997-08-01

    Direct current motors, asynchronous and variable speed synchronous motors are generally supplied with static converters. Speed variation is obtained by voltage variation in DC motors and by frequency variation in AC motors. In these conditions, these motors are running continuously in transient regimes: the DC motors current is not direct and the AC motors current is not sinusoidal. This situation leads to pulsing couples in the shaft line and to an increase of Joule effect losses. The aim of this paper is to present the methods of study of the electric motors functioning using the shape of the power voltages given by converters and mathematical models of these machines. The synchronous machines are rapidly described while the asynchronous machines are studied using Ku`s transformation instead of Park`s transformation for simplification. For each type of machine, calculation methods allow to determine their current, additional losses and couple characteristics. The transient regimes considered are those remaining when the motor is running at a constant speed and defined regime (supply voltages are periodical functions of time). These transient regimes are identically reproducing with a frequency which is a multiple of the converters supply frequency. Transient regimes due to functioning changes of the motor, such as resisting couple or power supply frequency variations, are not considered in this study. (J.S.) 9 refs.

  6. Power Converter Control Algorithm Design and Simulation for the NREL Next-Generation Drivetrain: July 8, 2013 - January 7, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Blodgett, Douglas [DNV KEMA Renewables, Inc., San Ramon, CA (United States); Behnke, Michael [DNV KEMA Renewables, Inc., San Ramon, CA (United States); Erdman, William [DNV KEMA Renewables, Inc., San Ramon, CA (United States)

    2016-08-01

    The National Renewable Energy Laboratory (NREL) and NREL Next-Generation Drivetrain Partners are developing a next-generation drivetrain (NGD) design as part of a Funding Opportunity Announcement award from the U.S. Department of Energy. The proposed NGD includes comprehensive innovations to the gearbox, generator, and power converter that increase the gearbox reliability and drivetrain capacity, while lowering deployment and operation and maintenance costs. A key task within this development effort is the power converter fault control algorithm design and associated computer simulations using an integrated electromechanical model of the drivetrain. The results of this task will be used in generating the embedded control software to be utilized in the power converter during testing of the NGD in the National Wind Technology Center 2.5-MW dynamometer. A list of issues to be addressed with these algorithms was developed by review of the grid interconnection requirements of various North American transmission system operators, and those requirements that presented the greatest impact to the wind turbine drivetrain design were then selected for mitigation via power converter control algorithms.

  7. Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Gooi, Hoay Beng; Guerrero, Josep M.

    2018-01-01

    This paper deals with development of a versatile and compact control strategy for voltage source converters in grid-connected and islanded microgrids using synchronous current converters technology. The key feature is its new integrated high-order controller/synchronizer with applicability to both...... and automated current-based grid synchronization. Moreover, the controller realizes a power-source current-controlled microgrid with minimum control loops, as compared to widely adopted voltage controlled microgrids in the literature, with advantages such as fault-ride-through and inherent droop-less power...... sharing capabilities. Adaptive current-based synchronization and smooth switching to islanding mode provides high flexibility, reliability and only-plug operation capability. Extensive simulation and experimental results are presented to demonstrate performance of the proposed control and management...

  8. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  9. Electrical Quality Assurance of the Superconducting Circuits during LHC Machine Assembly

    CERN Document Server

    Bozzini, D; Desebe, O; Mess, K H; Russenschuck, Stephan; Bednarek, M; Dworak, D; Górnicki, E; Jurkiewicz, P; Kapusta, P; Kotarba, A; Ludwin, J; Olek, S; Talach, M; Zieblinski, M; Klisch, M; Prochal, B

    2008-01-01

    Based on the LHC powering reference database, all-together 1750 superconducting circuits were connected in the various cryogenic transfer lines of the LHC machine. Testing the continuity, magnet polarity, and the quality of the electrical insulation were the main tasks of the Electrical Quality Assurance (ELQA) activities during the LHC machine assembly. With the assembly of the LHC now complete, the paper reviews the work flow, resources, and the qualification results including the different types of electrical non-conformities.

  10. Turning the LHC Ring into a New Physics Search Machine

    CERN Document Server

    Kalliokoski, Matti; Mieskolainen, Mikael; Orava, Risto

    2016-01-01

    By combining the LHC Beam Loss Monitoring (BLM) system with the LHC experiments, a powerful search machine for new physics beyond the standard model can be realised. The pair of final state protons in the central production process, exit the LHC beam vacuum chamber at locations determined by their fractional momentum losses and will be detected by the BLM detectors. By mapping out the coincident pairs of the BLM identified proton candidates around the four LHC interaction regions, a scan for centrally produced particle states can be made independently of their decay modes.

  11. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  12. Quench Performance of the LHC Insertion Magnets

    CERN Document Server

    Lasheras, N C; Siemko, A; Ostojic, R; Kirby, G

    2009-01-01

    After final installation in the LHC tunnel, the MQM and MQY quadrupole magnets of the LHC insertions are now being commissioned to their nominal currents. These two types of magnets operate at 1.9 K and 4.5 K and with nominal currents ranging from 3600 A to 5390 A. From the very first acceptance tests of the bare magnets coming from the manufacturers, they have been powered using different cycles, in different configurations, at different temperatures and in different tests facilities. In this paper we present the global results of these powering tests. We aim at separating common from individual features of these groups of magnets. Temperature dependence of the training, temperature margin, and ultimate current can be extracted from these tests. As these magnets are used to match the optics and the dispersion in the machine, the projected ultimate current at which they can be operated is critical in view of operation of LHC.

  13. LHC an unprecedented technological challenge

    International Nuclear Information System (INIS)

    Baruch, J.O.

    2002-01-01

    This article presents the future LHC (large hadron collider) in simple terms and gives some details concerning radiation detectors and supra-conducting magnets. LHC will take the place of the LEP inside the 27 km long underground tunnel near Geneva and is scheduled to operate in 2007. 8 years after its official launching the LHC project has piled up 2 year delay and has exceeded its initial budget (2 milliard euros) by 18%. Technological challenges and design difficulties are the main causes of these shifts. The first challenge has been carried out successfully, it was the complete clearing out of the LEP installation. In order to release 14 TeV in each proton-proton collision, powerful magnetic fields (8,33 Tesla) are necessary. 1248 supra-conducting 15 m-long bipolar magnets have to be built. 30% of the worldwide production of niobium-titanium wires will be used each year for 5 years in the design of these coils. The global cryogenic system will be gigantic and will use 94 tons of helium. 4 radiation detectors are being built: ATLAS (a toroidal LHC apparatus), CMS (compact muon solenoid), ALICE (a large ion collider experiment) and LHC-b (large hadron collider beauty). The 2 first will search after the Higgs boson, ALICE will be dedicated to the study of the quark-gluon plasma and LHC-b will gather data on the imbalance between matter and anti-matter. (A.C.)

  14. Design and development of repetitive capacitor charging power supply based on series-parallel resonant converter topology.

    Science.gov (United States)

    Patel, Ankur; Nagesh, K V; Kolge, Tanmay; Chakravarthy, D P

    2011-04-01

    LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications. © 2011 American Institute of Physics

  15. A New Control Strategy Based Multi Converter UPQC Using Fuzzy Logic Controller to Improve the Power Quality Issues

    Directory of Open Access Journals (Sweden)

    Chandra Babu Paduchuri

    2014-01-01

    Full Text Available A design of multiconverter unified power quality conditioner to improve the power quality issues is presents in this paper. Modified SRF theory and fuzzy logic controller technique are incorporated in this modelling. This newly designed controller is connected to a source in order to compensate voltage and current in the two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has two series voltage source converter (VSC and one shunt VSC connected back to back. In the proposed system, the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter-UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The transient response of the fuzzy logic controller in dc-link voltage controller will be very fast. The relevant simulation and compensation performance analysis of multi converter-UPQC with fuzzy logic controller is performed using MATLAB/Simulink software.

  16. The LHC AC Dipole system: an introduction

    CERN Document Server

    Serrano, J; CERN. Geneva. BE Department

    2010-01-01

    The LHC AC Dipole is an instrument to study properties of the LHC lattice by inducing large transverse displacements in the beam. These displacements are generated by exciting the beam with an oscillating magnetic field at a frequency close to the tune. This paper presents the system requirements and the technical solution chosen to meet them, based of high-power audio amplifiers and a resonant parallel RLC circuit.

  17. On investigation of the antenna converters of solar energy into electric power

    International Nuclear Information System (INIS)

    Karimov, Kh.S.; Akhmedov, Kh.M.; Shakh, M.

    2009-01-01

    In this work the current-voltage characteristics of the diode on the base of organic semiconductor nickel phthalocyanine were investigated. The diode was built in the dipole antenna. Potentialities of fabrication of solar energy converters into electric power and the design of the rectennas on the base of spiral antennas were discussed

  18. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  19. Impact of distributed generation units with power electronic converters on distribution network protection

    NARCIS (Netherlands)

    Morren, J.; Haan, de S.W.H.

    2008-01-01

    An increasing number of distributed generation units (DG units) are connected to the distribution network. These generators affect the operation and coordination of the distribution network protection. The influence from DG units that are coupled to the network with a power electronic converter

  20. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WEC’s), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...

  1. First beam splashes at the LHC

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    After a two-year shutdown, the first beams of Run 2 circulated in the LHC last Sunday. On Tuesday, the LHC operators performed dedicated runs to allow some of the experiments to record their first signals coming from particles splashed out when the circulating beams hit the collimators. Powerful reconstruction software then transforms the electronic signals into colourful images.     “Splash” events are used by the experiments to test their numerous subdetectors and to synchronise them with the LHC clock. These events are recorded when the path of particles travelling in the LHC vacuum pipe is intentionally obstructed using collimators – one-metre-long graphite or tungsten jaws that are also used to catch particles that wander too far from the beam centre and to protect the accelerator against unavoidable regular and irregular beam losses. The particles sprayed out of the collision between the beam and the collimators are mostly muons. ATLAS and CMS&...

  2. Predicting Harmonic Distortion of Multiple Converters in a Power System

    Directory of Open Access Journals (Sweden)

    P. M. Ivry

    2017-01-01

    Full Text Available Various uncertainties arise in the operation and management of power systems containing Renewable Energy Sources (RES that affect the systems power quality. These uncertainties may arise due to system parameter changes or design parameter choice. In this work, the impact of uncertainties on the prediction of harmonics in a power system containing multiple Voltage Source Converters (VSCs is investigated. The study focuses on the prediction of harmonic distortion level in multiple VSCs when some system or design parameters are only known within certain constraints. The Univariate Dimension Reduction (UDR method was utilized in this study as an efficient predictive tool for the level of harmonic distortion of the VSCs measured at the Point of Common Coupling (PCC to the grid. Two case studies were considered and the UDR technique was also experimentally validated. The obtained results were compared with that of the Monte Carlo Simulation (MCS results.

  3. 13{sup th} Kassel symposium energy systems technology. Power converters in grids. Proceedings; 13. Kasseler Symposium Energie-Systemtechnik. Stromrichter in Netzen. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Increasingly static converters are used for the integration of distributed power generators into the grid, e.g. photovoltaic systems and speed-variable wind energy converters. Also other power generators, storage systems and electrical loads are integrated via power electronics. A variety of product specific standards had been developed for integrating converters into the grid. These standards had emerged parallel to each other as a result of the demands of different forms of energy for the feed-in and consumption of electrical power. Meanwhile it became clear that applications which are sometimes very similar are determined differently by these standards. A further demand for harmonisation arises naturally in the international standardisation. In the run-up to the Symposium the second DERlab workshop 'European DERlab Workshop on Grid Inverters' will be held to prepare an international white book. The white book will be titled 'International White Book on Grid Inverters' and will describe medium to long-term tasks for the standardisation of grid-coupled converters. The 13th Kassel Symposium will give an overview of the wide range of applications of power electronic converters in the grid. Hereby similarities and differences should be disclosed, which will create a basis for further expert talks about the transition of our power supply to an increasing share of grid-coupled converters. Questions which will be discussed include: - What does a high share of converters mean for stability, safety and quality of the grid? - Is it necessary to adapt power system protection technology and safety regulations? - How shall converters act in the future, what is technically feasible, what is economically reasonable? - Are all converter-coupled systems able to provide ancillary services? - How will the grid codes change? Most of the presentations will be in German, simultaneous interpretation will be available. This book is prepared to give you a survey on

  4. Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Scott Beatty

    2017-07-01

    Full Text Available Small scale testing in controlled environments is a key stage in the development of potential wave energy conversion technology. Furthermore, it is well known that the physical design and operational quality of the power-take off (PTO used on the small scale model can have vast effects on the tank testing results. Passive mechanical elements such as friction brakes and air dampers or oil filled dashpots are fraught with nonlinear behaviors such as static friction, temperature dependency, and backlash, the effects of which propagate into the wave energy converter (WEC power production data, causing very high uncertainty in the extrapolation of the tank test results to the meaningful full ocean scale. The lack of quality in PTO simulators is an identified barrier to the development of WECs worldwide. A solution to this problem is to use actively controlled actuators for PTO simulation on small scale model wave energy converters. This can be done using force (or torque-controlled feedback systems with suitable instrumentation, enabling the PTO to exert any desired time and/or state dependent reaction force. In this paper, two working experimental PTO simulators on two different wave energy converters are described. The first implementation is on a 1:25 scale self-reacting point absorber wave energy converter with optimum reactive control. The real-time control system, described in detail, is implemented in LabVIEW. The second implementation is on a 1:20 scale single body point absorber under model-predictive control, implemented with a real-time controller in MATLAB/Simulink. Details on the physical hardware, software, and feedback control methods, as well as results, are described for each PTO. Lastly, both sets of real-time control code are to be web-hosted, free for download, modified and used by other researchers and WEC developers.

  5. A three-phase to three-phase series-resonant power converter with optimal input current waveforms, Part II: implementation and results

    NARCIS (Netherlands)

    Huisman, H.

    1988-01-01

    For pt.I see ibid., vol.35, no.2, p.263-8 (1988). A 15 kW three-phase prototype series-resonant power converter is constructed. The converter features sinusoidal output voltage and sinusoidal input currents. The control concepts and necessary electronics, as well as the layout of the power circuit,

  6. Comparison of three different Modulators for Power Converters with Respect to EMI Optimization

    DEFF Research Database (Denmark)

    Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael Andreas E.

    2008-01-01

    Switch-mode Power Converters are well known for emissions in the band of electromagnetic interference (EMI) interest. The spectrum shape depends on the type of modulator and its purpose. This paper gives design guidelines to choose the optimum topology depending on requirements of different appli...

  7. A Learning Aid Tool for Power Electronics Converters

    Directory of Open Access Journals (Sweden)

    O. Bouketir

    2005-06-01

    Full Text Available It is known that power electronics and its related subjects are not easy to understand for students taking them for first time. This is due to nature of the subjects which involve many areas and disciplines. The introduction of general purpose simulation package has helped the student a step further in understanding this subject. However, because of the generality of these tools and their drag-and drop and ad-hoc features, the students still face problems in designing a converter circuit. In this paper, the problem above is addressed by introducing a learning aid tool that guides the student over prescribed steps to design a power electronics circuit. The tool is knowledge-based system where its knowledge base encompasses two types of knowledge; topologies and switching devices. The first step in the design procedure is the selection of the application of the desired circuit. Then few steps are to be followed to come out with the appropriate topology with the optimum switching devices and parameters. System structure, its different modules and the detailed design procedure are explained in this paper

  8. Digital regulation of a phase controlled power converter

    International Nuclear Information System (INIS)

    Schultheiss, C.; Haque, T.

    1995-01-01

    The Relativistic Heavy Ion Collider, now in construction at Brookhaven National Laboratory, will use phase controlled power converters for the main dipole and quadrupole magnet strings. The rectifiers in these power supplies will be controlled by a digital regulator based on the TI 320C30 Digital Signal Processor (DSP). The DSP implements the current loop, the voltage loop, and a system to actively reduce the sub-harmonic ripple components. Digital firing circuits consisting of a phase locked lop and counters are used to fire the SCRs. Corrections for the sub-harmonic reduction are calculated by the DSP and stored in registers in the firing circuit. These corrections are added in hardware, to the over-all firing count provided by the DSP. the resultant count is compared to a reference counter to fire the SCRs. This combination of a digital control system and the digital firing circuits allows the correction of the sub-harmonics in a real-time sense. A prototype of the regulator has been constructed, and the preliminary testing indicates a sub-harmonic reduction of 60 dB

  9. High-Feedback Operation of Power Electronic Converters

    Directory of Open Access Journals (Sweden)

    Gennady Y. Mikhal'chenko

    2013-03-01

    Full Text Available The purpose of this review is to provide a survey of some of the most important bifurcation phenomena that one can observe in pulse-modulated converter systems when operating with high corrector gain factors. Like other systems with switching control, electronic converter systems belong to the class of piecewise-smooth dynamical systems. A characteristic feature of such systems is that the trajectory is “sewed” together from subsequent discrete parts. Moreover, the transitions between different modes of operation in response to a parameter variation are often qualitatively different from the bifurcations we know for smooth systems. The review starts with an introduction to the concept of border-collision bifurcations and also demonstrates the approach by which the full dynamics of the piecewise-linear, time-continuous system can be reduced to the dynamics of a piecewise-smooth map. We describe the main bifurcation structures that one observes in three different types of converter systems: (1 a DC/DC converter; (2 a multi-level DC/DC converter; and (3 a DC/AC converter. Our focus will be on the bifurcations by which the regular switching dynamics becomes unstable and is replaced by ergodic or resonant periodic dynamics on the surface of a two-dimensional torus. This transition occurs when the feedback gain is increased beyond a certain threshold, for instance in Electronics 2013, 2 114 order to improve the speed and accuracy of the output voltage regulation. For each of the three converter types, we discuss a number of additional bifurcation phenomena, including the formation and reconstruction of multi-layered tori and the appearance of phase-synchronized quasiperiodicity. Our numerical simulations are compared with experimentally observed waveforms.

  10. Final design of the Korean AC/DC converters for the ITER coil power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Seok, E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, Jungwan; Suh, Jae-Hak; Choi, Jihyun [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lee, Lacksang; Kim, Changwoo; Park, Hyungjin; Jo, Seongman; Lee, Seungyun; Hwang, Kwangcheol; Liu, Hyoyol [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Hong, Ki-Don; Sim, Dong-Joon; Lee, Jang-Soo [Hyosung Corp., Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); Lee, Eui-Jae; Kwon, Yang-Hae; Lee, Dae-Yeol; Ko, Ki-Won; Kim, Jong-Min [Mobiis Corp., Yangjae-dong, Seoul 137-888 (Korea, Republic of); Song, Inho [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); and others

    2015-10-15

    The final design of the ITER TF, CS, CC and VS AC/DC converters has been completed to implement ITER requirements following the detailed design and refinements of the preliminary design. The number of parallel thyristors and the rating of fuses are coordinated to keep those devices within the explosion limit even under most severe fault conditions. The impedance of the converter transformer has been optimized taking into account the energization inrush current, short circuit current, reactive power consumption and the available DC voltage. To ensure system integrity, AC/DC converters are mechanically divided into transformers, AC busbars, 6-pulse bridges, DC interconnecting busbars and DC reactors, and then all subsystems are decoupled by flexible links. To provide stable real time network communication down to the converters, a one GbE link is deployed between master controllers and local controllers. IEEE 1588 is implemented to the embedded controllers for precision time synchronization. This paper describes the detailed solutions implemented in the final design for the ITER AC/DC converters with R&D results of converter prototypes.

  11. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    International Nuclear Information System (INIS)

    Averous, Nurhan Rizqy; Berthold, Anica; Monti, Antonello; De Doncker, Rik W.; Schneider, Alexander; Schwimmbeck, Franz

    2016-01-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids. (paper)

  12. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    Science.gov (United States)

    Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.

    2016-09-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.

  13. Design of a 300-Watt Isolated Power Supply for Ultra-Fast Tracking Converters

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Ouyang, Ziwei; Petersen, Lars Press

    2015-01-01

    This paper presents the design of a medium-powerrating isolated power supply for ultra-fast tracking converters and MOS-gate driver circuits in medium and high voltage applications. The key feature of the design is its very low circuit input-to-output parasitic capacitance, which maximizes its...

  14. A High Power Boost Converter for PV Systems Operating up to 300 kHz using SiC Devices

    DEFF Research Database (Denmark)

    Anthon, Alexander; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    In this paper, a 3kW boost converter for PV applications using SiC devices is introduced. Main focus is to operate the converter over a wide range of switching frequency and to analyze the main loss distributors as well as the efficiency. The switching element is a recently introduced normally...... be operated at full power for a switching frequency of 100 kHz using natural cooling. At 200 kHz the boost converter is capable of operating at full power when forced air cooling is applied having a JFET case temperature of less than 90 C. The case temperature of the JFET increases up to 110 C at a switching...

  15. Snapshots to shed light on LHC performance

    CERN Multimedia

    2006-01-01

    With the impressive size and unprecedented power of the LHC, it is all too easy to overlook the smaller devices that have the difficult task of monitoring the new accelerator. You don't have to stand too far back from the big picture to see examples of clever technology inside the LHC. One of the undulators installed in the LHC tunnel can be seen on the right of the photo. From right to left, back row: Lucio Rossi (group leader, MCS), Davide Tommasini (conceptual design, MCS), Thierry Tenaglia (integration design,TS-MME), Remo Maccaferri (project leader, MCS) and Hans Kummer (MCS/ME); front row: Gilles Trachez (MCS-ME) and Bruno Meunier (FSU-AT12). In contrast to the usual articles about the LHC's big number statistics, examples of clever problem-solving found in beam monitoring machinery show that smaller things can be beautiful too. The design of the LHC accelerator brought new challenges for monitoring the shape of the particle beam, known as the beam profile. The size of the beam shrinks as higher energi...

  16. Control and operation of wind turbine converters during faults in an offshore wind power plant grid with VSC-HVDC connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    Voltage source converter (VSC) based high voltage dc (HVDC) transmission is an attractive technique for large offshore wind power plants, especially when long cable transmission is required for connection to the onshore grid. New multi-MW wind turbines are likely to be equipped with full scale...... converters to meet the stringent grid code requirements. In such a scenario, the offshore grid is terminated to the power electronic converters on all the ends. This paper presents a control scheme for the synchronization and control of the grid side converters (GSC) of the wind turbine generators (WTG......). Current limit control enables the GSC to sustain the fault currents during short circuits in the offshore wind collector system grid. However, power transmission is affected, and the fault has to be isolated. It can be resynchronized after the fault has been cleared and the breaker reclosed. Healthy WTG...

  17. Serial powering optimization for CMS and ATLAS pixel detectors within RD53 collaboration for HL-LHC: system level simulations and testing

    CERN Document Server

    Orfanelli, Stella; Hamer, Matthias; Hinterkeuser, F; Karagounis, M; Pradas Luengo, Alvaro; Marconi, Sara; Ruini, Daniele

    2017-01-01

    Serial powering is the baseline choice for low mass power distribution for the CMS and ATLAS HL-LHC pixel detectors. Two 2.0 A Shunt-LDO regulators are integrated in a prototype pixel chip implemented in 65-nm CMOS technology and used to provide constant supply voltages to its power domains from a constant input current. Performance results from testing prototype Shunt-LDO regulators are shown, including their behaviour after x-ray irradiation. The system level simulation studies, which had been performed with a detailed regulator design in a serially powered topology, have been validated.

  18. Degradation Effect on Reliability Evaluation of Aluminum Electrolytic Capacitor in Backup Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of power density as well as reliability. In this paper, according to the degradation data of electrolytic capacitors through the accelerated test, the time-to-failure of the capacitor cell is acquired and it can...... be further extended to lower stress levels. Then, in a case study of a fuel cell backup power application, the mission profile based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in terms of the standby mode and operation mode. The lifetime prediction of the capacitor...

  19. Working on an LHC superconducting cavity

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The delicate superconducting equipment for CERN’s LHC collider has to be assembled in ultra-clean conditions to safeguard performance. Here we see the power supply being installed on one of the superconducting cavities.

  20. Modulation and control of matrix converter for aerospace application

    Science.gov (United States)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix