WorldWideScience

Sample records for lhc luminosity upgrade

  1. LHC luminosity upgrade detector challenges

    CERN Multimedia

    CERN. Geneva; de Roeck, Albert; Bortoletto, Daniela; Wigmans, Richard; Riegler, Werner; Smith, Wesley H

    2006-01-01

    LHC luminosity upgrade: detector challenges The upgrade of the LHC machine towards higher luminosity (1035 cm -2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: • Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) • Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector developments (lectures 2-4) • Electronics, trigger and data acquisition challenges (lecture 5) Note: the much more ambitious LHC energy upgrade will not be covered

  2. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  3. Upgrade of the CMS Tracker for the High Luminosity LHC

    CERN Document Server

    Auzinger, Georg

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about $ 5 \\times 10^{34}$cm$^{-2}$s$^{-1}$ in 2028, possibly reaching an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker, including both inner pixel and outer strip systems, is already running beyond design specifications and will not be able to survive HL-LHC radiation conditions. CMS will need a completely new device in order to fully exploit the demanding operating conditions and the delivered luminosity. The upgrade plan includes extending the Pixel Detector in the forward region from the current coverage of $ \\lvert \\eta \\rvert < 2.4 $ to $ \\lvert \\eta \\rvert < 4$, where up to seven forward- and four extension disks will compose the new detector. Additionally, the new outer system should also have trigger capabilities. To achieve such goals, R\\&...

  4. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2024 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  5. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2023 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  6. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase 0 occurs during 2013-2014 and prepares the LHC to reach peak luminosities of 1034 cm2s-1; Phase 1, foreseen for 2018-1019, prepares the LHC for peak luminosity up to 2-3 x 1034 cm2s-1, corresponding to 55 to 80 interactions per bunch-crossing with 25 ns bunch interval; and Phase 2 is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 1034 cm2s-1 (HL-LHC). With luminosity leveling, the average luminosity will increase with a factor 10. The main TileCal upgrade is focused on the HL-LHC period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased rad...

  7. Towards a new LHC Interaction Region design for a luminosity upgrade

    CERN Document Server

    Strait, J; Limon, P; Mokhov, N V; Sen, T; Zlobin, A V; Brüning, Oliver Sim; Ostojic, R; Rossi, L; Ruggiero, F; Taylor, T; ten Kate, H; Devred, A; Gupta, R; Harrison, M; Peggs, S; Pilat, F; Caspi, S; Gourlay, S; Sabbi, G

    2003-01-01

    After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the low-beta insertions with a higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. Preliminary studies show that, with magnet technology that is expected to be developed by early in the next decade, a factor of 2 to 5 reduction in beta* could be achieved with new insertions, as part of an upgrade aimed at a factor of 10 luminosity increase. In this paper we survey several possible second generation LHC interaction regions designs, which address the expected limitations on LHC performance imposed by the baseline insertions.

  8. Towards a new LHC interaction region design for a luminosity upgrade

    International Nuclear Information System (INIS)

    James Strait et al.

    2003-01-01

    After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the low-β insertions with a higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. Preliminary studies show that, with magnet technology that is expected to be developed by early in the next decade, a factor of 2 to 5 reduction in β* could be achieved with new insertions, as part of an upgrade aimed at a factor of 10 luminosity increase. In this paper we survey several possible second generation LHC interaction regions designs, which address the expected limitations on LHC performance imposed by the baseline insertions

  9. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    CERN Document Server

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  10. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Hildebrand, Kevin; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade (2024-2025) will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals...

  11. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Hildebrand, Kevin; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). . The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade (2024-2025) will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. ...

  12. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Asensi Tortajada, Ignacio; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed (at a rate of maximum 100 kHz). The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and of...

  13. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236332; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitized and then...

  14. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. Currently, an analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitiz...

  15. An early separation scheme for the LHC luminosity upgrade

    CERN Document Server

    Sterbini, G

    2010-01-01

    The present document is organized in five chapters. In the first chapter the framework of the study is described, developing the motivations, the goals and the requirements for the LHC Luminosity Upgrade. We analyze the need for the crossing angle and its impact on the peak luminosity of the collider. After having introduced the Early Separation Scheme, we explain how it may overcome some limitations of the present machine. We compare the nominal LHC crossing scheme with the proposed one underlining its potential in terms of performance and its issues with respect to the integration in the detectors. An analysis of the integrated magnetic field required is given. In the second chapter we introduce one of the most powerful aspect of the scheme: the luminosity leveling. After the description of the physical model adopted, we compare the results of its analytical and numerical solutions. All the potential improvement due to the Early Separation Scheme are shown on the luminosity plane (peak luminosity versus int...

  16. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    Science.gov (United States)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  17. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379172; The ATLAS collaboration

    2016-01-01

    Run 1 at the LHC was very successful with the discovery of a new boson. The boson’s properties are found to be compatible with those of the Standard Model Higgs boson. It is now revealing the mechanism of electroweak symmetry breaking and (possibly) the discovery of physics beyond the Standard Model that are the primary goals of the just restarted LHC. The ultimate precision will be reached at the high-luminosity LHC run with a proton-proton centre-of-mass energy of 14 TeV. In this contribution physics prospects are presented for ATLAS for the integrated luminosities 300 and 3000 fb−1: the ultimate precision attainable on measurements of the Higgs boson couplings to elementary fermions and bosons, its trilinear self-coulping, as well as perspectives on the searches for partners associated with it. Benchmark studies are presented to show how the sensitivity improves at the future LHC runs. For all these studies, a parameterised simulation of the upgraded ATLAS detector is used and expected pileup condition...

  18. The CMS Pixel Detector Upgrade and R\\&D for the High Luminosity LHC

    CERN Document Server

    Viliani, Lorenzo

    2017-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) at CERN is expected to collide protons at a centre-of-mass energy of 14\\,TeV and to reach an unprecedented peak instantaneous luminosity of $5 \\times 10^{34}\\,{\\rm cm}^{-2} {\\rm s}^{-1}$ with an average number of pileup events of 140. This will allow the ATLAS and CMS experiments to collect integrated luminosities of up to $3000\\,{\\rm fb}^{-1}$ during the project lifetime. To cope with this extreme scenario the CMS detector will be substantially upgraded before starting the HL-LHC, a plan known as CMS Phase-2 Upgrade. In the upgrade the entire CMS silicon pixel detector will be replaced and the new detector will feature increased radiation hardness, higher granularity and capability to handle higher data rate and longer trigger latency. In this report the Phase-2 Upgrade of the CMS silicon pixel detector will be reviewed, focusing on the features of the detector layout and on the development of new pixel devices.

  19. Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

    International Nuclear Information System (INIS)

    Testa, M.

    2017-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) is expected to start providing proton-proton collisions by 2026. In the following 10 years it will deliver about 3000 fb −1 of integrated luminosity, more than a factor 10 of the data that will be collected by the end of Run3 at LHC in 2023. For such amount of data, an instantaneous luminosity of ∼ 7.5 × 10 34 cm −2 s −1 is needed. At this luminosity an unprecedented average number of pile-up collision per bunch crossing of 200 is expected. The ATLAS and CMS detectors will be upgraded to fully exploit the HL-LHC potential in this harsh environment. In this document the performances of the ATLAS and CMS upgraded detectors will be described. Their impact on crucial measurements of the Higgs boson sector, of the vector boson fusion process and on new physics searches, will be reported as well.

  20. Scenarios for the LHC Upgrade

    CERN Document Server

    Scandale, Walter

    2008-01-01

    The projected lifetime of the LHC low-beta quadrupoles, the evolution of the statistical error halving time, and the physics potential all call for an LHC luminosity upgrade by the middle of the coming decade. In the framework of the CARE-HHH network three principal scenarios have been developed for increasing the LHC peak luminosity by more than a factor of 10, to values above 1035 cm−2s−1. All scenarios imply a rebuilding of the high-luminosity interaction regions (IRs) in combination with a consistent change of beam parameters. However, their respective features, bunch structures, IR layouts, merits and challenges, and luminosity variation with β∗ differ substantially. In all scenarios luminosity leveling during a store would be advantageous for the physics experiments. An injector upgrade must complement the upgrade measures in the LHC proper in order to provide the beam intensity and brightness needed as well as to reduce the LHC turnaround time for higher integrated luminosity.

  1. Scenarios and Technological Challenges for a LHC Luminosity Upgrade: Introduction to the LHC Upgrade Program and Summary of Physics Motivations (1/5)

    CERN Multimedia

    CERN. Geneva; Michelangelo Mangano

    2009-01-01

    After a general introduction to the motivations for a LHC upgrade, the lectures will discuss the beam dynamics and technological challenges of the increase of the LHC luminosity, and the possible scenarios. Items such as a stronger final focus with larger aperture magnets, crab cavities, electron cloud issues, beam-beam interaction, machine protection and collimation will be discussed.

  2. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  3. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439268; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 1034 cm−2s−1, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and expected ...

  4. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00421104; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 \\times 10^{34} cm^{-2}s^{-1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture an...

  5. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    George, Simon; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 10^{34} cm^{−2}s^{−1}, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and ...

  6. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    Balunas, William Keaton; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 × 10^{34}$ cm$^{−2}$s$^{−1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architectur...

  7. Investigations on a Q0 Doublet Optics for the LHC Luminosity Upgrade

    CERN Document Server

    Laface, E; Scandale, Walter; Wildner, E

    2008-01-01

    The Q0 scheme of the LHC insertion region is based on the introduction of a doublet of quadrupoles at 13 m from the IP. We present here the doublet optics and the magnets layout such as gradients, lengths, positions and apertures. In this scheme we show the gain in luminosity and chromaticity, with respect to a nominal layout with $\\beta^{*}$ = 0.25 m (i.e. LHC phase 1 upgrade) and $\\beta^{*} = 0.15 m, due to a smaller beta-max. We show the alignment tolerance and the energy deposition issues, in Q0A-Q0B. We also consider shielding the magnets with liners. The capability of Q0 optics to limit the b function could be exploited after the LHC Phase 1 upgrade in order to reduce the $\\beta^{*}$ below 0.25 m, leaving the upgraded triplet unchanged

  8. High Luminosity LHC (HL-LHC) general infographics

    CERN Multimedia

    Landua, Fabienne

    2016-01-01

    The High-Luminosity LHC, which is expected to be operational after 2025, will increase the LHC’s luminosity by a factor of 10. To achieve this major upgrade, several technologies, some of which are completely innovative, are being developed.

  9. Upgrades to the SPS-to-LHC Transfer Line Beam Stoppers for the LHC High-Luminosity Era

    CERN Document Server

    Kain, Verena; Fraser, Matthew; Goddard, Brennan; Meddahi, Malika; Perillo Marcone, Antonio; Steele, Genevieve; Velotti, Francesco

    2016-01-01

    Each of the 3 km long transfer lines between the SPS and the LHC is equipped with two beam stoppers (TEDs), one at the beginning of the line and one close to the LHC injection point, which need to absorb the full transferred beam. The beam stoppers are used for setting up the SPS extractions and transfer lines with beam without having to inject into the LHC. Energy deposition and thermo-mechanical simulations have, however, shown that the TEDs will not be robust enough to safely absorb the high intensity beams foreseen for the high-luminosity LHC era. This paper will summarize the simulation results and limitations for upgrading the beam stoppers. An outline of the hardware upgrade strategy for the TEDs together with modifications to the SPS extraction interlock system to enforce intensity limitations for beam on the beam stoppers will be given.

  10. High-Luminosity LHC moves to the next phase

    CERN Multimedia

    2015-01-01

    This week saw several meetings vital for the medium-term future of CERN.    From Monday to Wednesday, the Resource Review Board, RRB, that oversees resource allocation in the LHC experiments, had a series of meetings. Thursday then saw the close-out meeting for the Hi-Lumi LHC design study, which was partially funded by the European Commission. These meetings focused on the High Luminosity upgrade for the LHC, which responds to the top priority of the European Strategy for Particle Physics adopted by the CERN Council in 2013. This upgrade will transform the LHC into a facility for precision studies, the logical next step for the high-energy frontier of particle physics. It is a challenging upgrade, both for the LHC and the detectors. The LHC is already the highest luminosity hadron collider ever constructed, generating up to a billion collisions per second at the heart of the detectors. The High Luminosity upgrade will see that number rise by a factor of five from 2025. For the detectors...

  11. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase~0 occurs during 2013-2014, Phase~1 during 2018-1019 and finally Phase~2, which is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 10$^{34}$ cm$^2$s$^{-1}$ (HL-LHC). The main TileCal upgrade is focused on the Phase~2 period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased radiation levels. An ambitious upgrade development program is pursued to study different electronics options. Three options are presently being investigated for the front-end electronic upgrade. The first option is an improved version of the present system built using comm...

  12. Physics potential and experimental challenges of the LHC luminosity upgrade

    CERN Document Server

    Gianotti, F.; Virdee, T.; Abdullin, S.; Azuelos, G.; Ball, A.; Barberis, D.; Belyaev, A.; Bloch, P.; Bosman, M.; Casagrande, L.; Cavalli, D.; Chumney, Pamela R.K.; Cittolin, S.; Dasu, S.; De Roeck, A.; Ellis, N.; Farthouat, P.; Fournier, D.; Hansen, J.B.; Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; van der Bij, J.; Watson, A.; Wielers, M.

    2005-01-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10**35 cm-2s-1. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes

  13. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  14. Flat bunch creation and acceleration: a possible path for the LHC luminosity upgrade

    International Nuclear Information System (INIS)

    Bhat, C.M.

    2009-01-01

    Increasing the collider luminosity by replacing bunches having Gaussian line-charge distribution with flat bunches, but with same beam-beam tune shift at collision, has been studied widely in recent years. But, creation of 'stable' flat bunches (and their acceleration) using a multiple harmonic RF system has not been fully explored. Here, we review our experience with long flat bunches in the barrier RF buckets at Fermilab.We presentsome preliminary results from beam dynamics simulations and recent beam studies in the LHC injectors to create stable flat bunches using double harmonic RF systems. The results deduced from these studies will be used to model the necessary scheme for luminosity upgrade in the LHC. We have also described a viable (and economical) way for creation and acceleration of flat bunches in the LHC. The flat bunch scheme may have many advantages over the LHC baseline scenario, particularly because of the reduced momentum spread of the bunch for increased intensities.

  15. The CMS Tracker upgrade for HL-LHC

    CERN Document Server

    Ahuja, Sudha

    2017-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 $\\times$ $10^{34} $cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running beyond design specifications, and CMS Phase1 Pixel Detector will not be able to survive HL-LHC radiation conditions and CMS will need completely new devices, in order to fully exploit the high-demanding operating conditions and the delivered luminosity. The new Outer Tracker should have also trigger capabilities. To achieve such goals, R$\\&$D activities are ongoing to explore options both for the Outer Tracker, and for the pixel Inner Tracker. Solutions are being developed that would allow including tracking information at Level-1. The design choices for the Tracker upgrades are discussed along with some highlights...

  16. High Luminosity LHC Studies with ATLAS

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000fb$^{-1}$ from proton-proton collisions at $\\sqrt{s}$ = 14 TeV over the course of $\\sim$ 10 years, reaching instantaneous luminosities of up to L = 7.5 $\\times$ 1034cm$^{-2}s$^{-1}$, corresponding to an average of 200 inelastic p-p collisions per bunch crossing ($\\mu$ = 200). Fast simulation studies have been carried out to evaluate the prospects of various benchmark physics analyses to be performed using the upgraded ATLAS detector with the full HL-LHC dataset. The performance of the upgrade has been estimated in full simulation studies, assuming expected HL-LHC conditions. This talk will focus on the results of physics prospects studies for benchmark analyses involving in particular boosted hadronic objects (e.g. ttbar resonances, HH resonances), and on results of Jet/EtMiss studies of jet performance and pileup mitigation techniques that will be critical in HL-LHC analyses.

  17. Physics potential and experimental challenges of the LHC luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, F.; Ball, A.; Bloch, P.; Casagrande, L.; Cittolin, S.; Roeck, A. de; Ellis, N.; Farthouat, P.; Hansen, J.-B. [CERN, Experimental Physics Division, Geneva (Switzerland); Mangano, M.L. [CERN, Theoretical Physics Division, Geneva (Switzerland); Virdee, T. [CERN, Experimental Physics Division, Geneva (Switzerland); Imperial College, London (United Kingdom); Abdullin, S. [University of Maryland (United States); Azuelos, G. [University of Montreal, Group of Particle Physics, Montreal (Canada); Barberis, D. [Universita di Genova, Dipartimento di Fisica and INFN (Italy); Belyaev, A. [Florida State University, Tallahassee, FL (United States); Bosman, M. [IFAE, Barcelona (Spain); Cavalli, D. [INFN, Milano (Italy); Chumney, P.; Dasu, S. [Univ. of Wisconsin, Madison, WI (United States); Fournier, D. [LAL, Orsay (France); Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; Bij, J. van der; Watson, A.; Wielers, M.

    2004-02-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10{sup 35} cm{sup -2}s{sup -1}. The detector R and D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes. (orig.)

  18. Superconducting magnet development for the LHC upgrades

    International Nuclear Information System (INIS)

    Rossi, Lucio

    2012-01-01

    LHC is now delivering proton and heavy ion collisions at the highest energy. Upgrading the LHC beyond its design performance is a long term program that started during the LHC construction, with some fundamental R and D programs. The upgrade program is based on a vigorous superconductor and magnet R and D, aimed at increasing the field in accelerator magnets from 8 T to 12 T for the luminosity upgrade, with the scope of increasing the collider luminosity by a factor 5 to 10 from 2022. The upgrade program might continue with the LHC energy upgrade, which would require magnets producing field in the range of 16-20 T. The results obtained so far and the future challenges are discussed together with the possible plan to reach the goals. (author)

  19. EU supports the LHC high-luminosity study

    CERN Document Server

    CERN Bulletin

    2011-01-01

    The design collision energy and luminosity of the LHC are already at record numbers, making the machine one of the most complex scientific instruments ever built. However, to extend its discovery potential even further, a major upgrade of the LHC will be required around 2020. This will increase its average luminosity by a factor of 5 to 10 beyond its design value. Fifteen worldwide institutions and the European Union are supporting the initial design phase of the project through the HiLumi LHC programme, whose kick-off meeting will take place on 16-18 November.   The CERN team that has successfully built and tested the Short Magnet Coil – a small 40 cm long magnet capable of producing a 12.5 T magnetic field. The upgrade of the LHC will require about 10 years of design, construction and implementation. The new machine configuration will be called “High Luminosity LHC” (HL-LHC). The similarly named “HiLumi LHC” is the EU programme that supports...

  20. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  1. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    International Nuclear Information System (INIS)

    Gonella, Laura

    2013-10-01

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  2. SLHC, the High-Luminosity Upgrade (public event)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  3. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    Science.gov (United States)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  4. ATLAS Plans for the High-Luminosity LHC

    CERN Document Server

    Walkowiak, Wolfgang; The ATLAS collaboration

    2018-01-01

    Despite the excellent performance of the Large Hadron Collider (LHC) at CERN an upgrade to a High-Luminosity LHC (HL-LHC) with a peak instantaneous luminosity of up to $7.5\\times 10^{34}$ fb$^{-1}$ will be required after collecting a total dataset of approximately 300 fb$^{-1}$ by the end of Run 3 (in 2023). The upgrade will substantially increase the statistics available to the experiments for addressing the remaining open puzzles of particle physics. The HL-LHC is expected to start operating in 2026 and to deliver up to 4000 fb$^{-1}$ within twelve years. The corresponding upgrades of the ATLAS detector and the ATLAS beauty physics program at the HL-LHC are being discussed. As examples, preliminary results on the expected sensitivities for the search for CP-violation in the decay channel $B^0_s \\to J/\\psi \\,\\phi$ using the parameters $\\Delta\\Gamma_s$ and $\\phi_s$ as well as projections for the branching fractions of the rare decays $B^0_s \\to \\mu^+\\mu^-$ and $B^0\\to\\mu^+\\mu^-$ are provided.

  5. Performance of Drift-Tube Detectors at High Counting Rates for High-Luminosity LHC Upgrades

    CERN Document Server

    Bittner, Bernhard; Kortner, Oliver; Kroha, Hubert; Manfredini, Alessandro; Nowak, Sebastian; Ott, Sebastian; Richter, Robert; Schwegler, Philipp; Zanzi, Daniele; Biebel, Otmar; Hertenberger, Ralf; Ruschke, Alexander; Zibell, Andre

    2016-01-01

    The performance of pressurized drift-tube detectors at very high background rates has been studied at the Gamma Irradiation Facility (GIF) at CERN and in an intense 20 MeV proton beam at the Munich Van-der-Graaf tandem accelerator for applications in large-area precision muon tracking at high-luminosity upgrades of the Large Hadron Collider (LHC). The ATLAS muon drifttube (MDT) chambers with 30 mm tube diameter have been designed to cope with and neutron background hit rates of up to 500 Hz/square cm. Background rates of up to 14 kHz/square cm are expected at LHC upgrades. The test results with standard MDT readout electronics show that the reduction of the drift-tube diameter to 15 mm, while leaving the operating parameters unchanged, vastly increases the rate capability well beyond the requirements. The development of new small-diameter muon drift-tube (sMDT) chambers for LHC upgrades is completed. Further improvements of tracking e?ciency and spatial resolution at high counting rates will be achieved with ...

  6. RF upgrade program in LHC injectors and LHC machine

    International Nuclear Information System (INIS)

    Jensen, E.

    2012-01-01

    The main themes of the RF upgrade program are: the Linac4 project, the LLRF-upgrade and the study of a tuning-free wide-band system for PSB, the upgrade of the SPS 800 MHz amplifiers and beam controls and the upgrade of the transverse dampers of the LHC. Whilst LHC Splice Consolidation is certainly the top priority for LS1, some necessary RF consolidation and upgrade is necessary to assure the LHC performance for the next 3- year run period. This includes: 1) necessary maintenance and consolidation work that could not fit the shorter technical stops during the last years, 2) the upgrade of the SPS 200 MHz system from presently 4 to 6 cavities and possibly 3) the replacement of one LHC cavity module. On the longer term, the LHC luminosity upgrade requires crab cavities, for which some preparatory work in SPS Coldex must be scheduled during LS1. (author)

  7. Upgrade plans for the Hadronic-Endcap Calorimeter of ATLAS for the high luminosity stage of the LHC

    CERN Document Server

    Ahmadov, F; The ATLAS collaboration; Cheplakov, A; Dominguez, R; Fischer, A; Habring, J; Hambarzumjan, A; Javadov, N; Kiryunin, A; Kurchaninov, L; Menke, S; Molinas Conde, I; Nagel, M; Oberlack, H; Reimann, O; Schacht, P; Strizenec, P; Vogt, S; Wichmann, G; Cadabeschi, Mircea Ioan; Langstaff, Reginald Roy; Lenckowski, Mark Stanley

    2015-01-01

    The expected increase of the instantaneous luminosity of a factor seven and of the total integrated luminosity by a factor 3-5 at the second phase of the upgraded high luminosity LHC compared to the design goals for LHC makes it necessary to re-evaluate the radiation hardness of the read-out electronics of the ATLAS Hadronic Endcap Calorimeter. The current cold electronics made of GaAs ASICs have been tested with neutron and proton beams to study their degradation under irradiation and the effect it would have on the ATLAS physics programme. New, more radiation hard technologies which could replace the current amplifiers have been studied as well: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons and protons with fluences up to ten times the total expected fluences for ten years of running of the high luminosity LHC. The performance measurements of the current read-out electronics and potential future technologies and expected performance degradations under high luminosity ...

  8. Prospects of a search for $t\\bar{t}$ resonances at the High Luminosity LHC with an upgraded ATLAS Detector

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    A study of the expected mass reach of a search for new high-mass resonances decaying to a top quark pair using a simulation of the upgraded ATLAS experiment and using an integrated luminosity of 3000 fb$^{-1}$ from the High Luminosity LHC has been made. The simulation of the upgraded ATLAS experiment under HL-LHC conditions, including pileup, was done using parameterised estimates of the performance. Expected upper limits are set on the cross section of a $t\\bar{t}$ resonance in a benchmark model for several signal masses and show that particles with masses up to 4 TeV can be seen.

  9. Beam-Beam Simulation of Crab Cavity White Noise for LHC Upgrade

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    High luminosity LHC upgrade will improve the luminosity of the current LHC operation by an order of magnitude. Crab cavity as a critical component for compensating luminosity loss from large crossing angle collision and also providing luminosity leveling for the LHC upgrade is being actively pursued. In this paper, we will report on the study of potential effects of the crab cavity white noise errors on the beam luminosity lifetime based on strong-strong beam-beam simulations.

  10. Upgrades of the CMS Outer Tracker for HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5×1034cm$^{−2}$s$^{−1}$ around 2028, to possibly reach an integrated luminosity of 3000 fb$^{−1}$ in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D; activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D; activities.

  11. LHC Interaction Region Upgrade Phase I

    CERN Document Server

    Ostojic, R

    2009-01-01

    The LHC is starting operation with beam in 2008. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently, maximizing its physics reach, and to achieve the nominal performance in the shortest term. Since several years the community has been discussing the directions for upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex. A well substantiated and coherent scenario for the first phase of the upgrade, which is foreseen in 2013, is now approved by CERN Council. In this paper, we present the goals and the proposed conceptual solution for the Phase-I upgrade of the LHC interaction regions. This phase relies on the mature Nb-Ti superconducting magnet technology, with the target of increasing the luminosity by a factor of 2-3 with respect to the nominal luminosity of 1034 cm-2s-1, while maximising the use of the existing infrastructure.

  12. Plans for the upgrade of the LHC injectors

    CERN Document Server

    Garoby, R; Goddard, B; Hanke, K; Meddahi, M; Vretenar, M

    2011-01-01

    The LHC injectors upgrade (LIU) project has been launched at the end of 2010 to prepare the CERN accelerator complex for reliably providing beam with the challenging characteristics required by the high luminosity LHC until at least 2030. Based on the work already started on Linac4, PS Booster, PS and SPS, the LIU project coordinates studies and implementation, and interfaces with the high luminosity LHC (HL-LHC) project which looks after the upgrade of the LHC itself, expected by the end of the present decade. The anticipated beam characteristics are described, as well as the status of the studies and the solutions envisaged for improving the injector performances.

  13. High-field Magnet Development toward the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio [Fermilab

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  14. Upgraded readout electronics for the ATLAS LAr Calorimeter at the High Luminosity LHC

    CERN Document Server

    Andeen, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background ejection rates. For the first upgrade phase [1] in 2018, new digital tower builder boards (sTBB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies a digital filtering and identifies sig...

  15. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M; The ATLAS collaboration

    2010-01-01

    To extend the physics potential of the Large Hadron Colider (LHC) at CERN, upgrades of the accelerator complex and the detectors towards the Super-LHC (sLHC) are foreseen. The upgrades, separated in Phase-1 and Phase-2, aim at increasing the luminosity while leaving the energy of the colliding particles (7 TeV per proton beam) unchanged. After the Phase-2 upgrade the instantaneous luminosity will be a factor of 5-10 higher than the design luminosity of the LHC. Due to the increased track rate and extreme radiation levels for the tracking detectors, upgrades of the detectors are necessary. At ATLAS, one of the two general purpose detectors at the LHC, the current inner detector will be replaced by an all-silicon tracker. This article describes the plans for the Phase-2 upgrade of the silicon strip detector of ATLAS. Radiation hard n-in-p silicon detectors with shorter strips than currently installed in ATLAS are planned. Results of measurements with these sensors and plans for module designs will be discussed.

  16. TileCal Trigger Tower studies considering additional segmentation on the ATLAS upgrade for high luminosity at LHC

    CERN Document Server

    March, L; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels and provides a compact information, called trigger towers (around 2000 signals), to the ATLAS first level online event selection system. The ATLAS upgrade program is divided in three phases: Phase 0 occurs during 2013- 2014 and prepares the LHC to reach peak luminosities of 10^34 cm2s-1; Phase 1, foreseen for 2018-1019, prepares the LHC for peak luminosity up to 2-3 x 10^34 cm2s-1, corresponding to 55 to 80 interactions per bunch-crossing with 25 ns bunch interval; and Phase 2 is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 1034 cm2s-1 (HL-LHC). The ATLAS experiment is operating very well since 2009 providing large amount of data for physics analysis. The online event selection system (trigger system) was designed to reject the huge amount of background noise generated at LHC and is one of the main systems re...

  17. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. The left part of figure 1 shows the simulated layout for the ATLAS tracker upgrade to be installed in the volume taken up by the current ATLAS pixel, strip and transition radiation detectors. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The...

  18. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    CERN Document Server

    Gonella, Laura; Desch, Klaus

    2013-11-11

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are dis...

  19. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Apollinari, G; Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...

  20. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    Science.gov (United States)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  1. A proposal to upgrade the ATLAS RPC system for the High Luminosity LHC

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2015-01-01

    The architecture of the present trigger system in the ATLAS Muon Barrel was designed according to a reference luminosity of 10^34 cm-2 s-1 with a safety factor of 5, with respect to the simulated background rates, now confirmed by LHC Run-1 data. HL-LHC will provide a luminosity 5 times higher and an order of magnitude higher background. As a result, the performance demand increases, while the detector being susceptible to ageing effects. Moreover, the present muon trigger acceptance in the barrel is just above 70%, due to the presence of the barrel toroid structures. This scenario induced the ATLAS muon Collaboration to propose an appropriate upgrade plan, involving both detector and trigger-readout electronics, to guarantee the performance required by the physics program for the 20 years scheduled. This consists in installing a layer of new generation RPCs in the inner barrel, to increase the redundancy, the selectivity, and provide almost full acceptance. The first 10% of the system, corresponding to the e...

  2. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    CERN Document Server

    Andeen, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background ejection rates. For the first upgrade phase cite{pahse1loi} in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies a digital filtering and id...

  3. Detector Developments for the High Luminosity LHC Era (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  4. Upgrade of the ATLAS Calorimeters for Higher LHC Luminosities

    CERN Document Server

    Carbone, Ryne Michael; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will bring instantaneous and total luminosities which are a factor 5-7 beyond the original design of the ATLAS Liquid Argon (LAr) and Tile Calorimeters and their read-out systems. Due to radiation requirements and a new hardware trigger concept the read-out electronics will be improved in two phases. In Phase-I, a dedicated read-out of the LAr Calorimeters will provide higher granularity input to the trigger, in order to mitigate pile-up effects and to reduce the background rates. In Phase-II, completely new read-out electronics will allow a digital processing of all LAr and Tile Calorimeter channels at the full 40 MHz bunch-crossing frequency and a transfer of calibrated energy inputs to the trigger. Results from system design and performance of the developed read-out components, including fully functioning demonstrator systems already operated on the detector, will be reported. Furthermore, the current Forward Calorimeter (FCal) may suffer from signal degradation and argon bubble form...

  5. Upgrade of the CMS hardron calorimeter for an upgraded LHC

    OpenAIRE

    Anderson, Jake

    2012-01-01

    The CMS barrel and endcap hadron calorimeters (Hcal) upgrading the current photo-sensors are hybrid photodiodes (HPDs) to meet the demands of the upgraded luminosity of the LHC. A key aspect of the Hcal upgrade is to add longitudinal segmentation to improve background rejection, energy resolution, and electron isolation at L1 trigger. The increased segmentation can be achieved by replacing the HPD's with multi-pixel Geiger-mode avalanche photodiodes. The upgraded electron...

  6. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    Science.gov (United States)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  7. Injection Protection Upgrade for the HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067108; Biancacci, Nicolo; Bracco, Chiara; Frasciello, Oscar; Gentini, Luca; Goddard, Brennan; Lechner, Anton; Maciariello, Fausto; Perillo Marcone, Antonio; Salvant, Benoit; Shetty, Nikhil Vittal; Steele, Genevieve; Velotti, Francesco; Zobov, Mikhail

    2015-01-01

    The injector complex of the LHC is undergoing important changes in the light of the LIU project to provide brighter beams to the LHC. For this reason and as part of the High Luminosity LHC project the injection protection system of the LHC will be upgraded in the Long Shutdown 2 (2018 - 2019) to be able to protect downstream elements against injection failures with the high brightness, high intensity HL-LHC beams. The upgraded LHC injection protection system will consist of a segmented injection protection absorber TDIS, and auxiliary collimators and masks. The layout modifications are described, and the machine element protection and absorber jaw robustness studies are presented for the new systems.

  8. Physics potential of ATLAS upgrades at HL-LHC

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2017-01-01

    The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to pro- vide an integrated luminosity of 3000 fb−1 in ten years, a factor 10 more than what will be collected by 2023. This high statistics will allow ATLAS to perform precise measurements in the Higgs sector and improve searches for new physics at the TeV scale. The luminosity needed is L ∼ 7.51034 cm−2 s−1, corresponding to ∼200 additional proton-proton pile- up interactions. To face such harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted. The performances of the new or upgraded ATLAS sub-detectors are presented, focusing in particular on the new inner tracker and a proposed high granularity time device. The impact of those upgrades on crucial physics measurements for HL-LHC program is also shown.

  9. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  10. Upgrade of the ATLAS Silicon Tracker for the sLHC

    CERN Document Server

    Minano, M; The ATLAS collaboration

    2009-01-01

    While the CERN Large Hadron Collider (LHC) will start taking data this year, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2016 by about an order of magnitude, with the upgraded muchine dubbed Super-LHC or SLHC. As radiation damage scales with integrated luminosity, the particle physics experiments at the SLHC will need to be equipped with a new generation of radiation-hard detectors. This is of particular importance for the semiconductor tracking detectors located close to the LHC interaction region, where the higest radiation doses occur. The ATLAS experiment will require a new particle tracking system for SLHC operation. In order to cope with the increase in background events by about one order of magnitude at the higher luminosity, an all silicon detector with enhanced radiation hardness is being designed. The new silicon strip detector will use significantly shorter stri...

  11. High Luminosity LHC: challenges and plans

    Science.gov (United States)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  12. High Luminosity LHC: Challenges and plans

    International Nuclear Information System (INIS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.

    2016-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3 Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  13. Performance Limits and IR Design Challenges of a Possible LHC Luminosity Upgrade Based on Nb-Ti SC Magnet Technology

    CERN Document Server

    Brüning, Oliver Sim; Ostojic, R; Rossi, L; Ruggiero, F; Scandale, Walter; Taylor, T

    2004-01-01

    We investigate the maximum LHC performance for a standard IR design based on classical NbTi insertion magnets. We include in our analysis a ternary Nb-based ductile allow such as NbTi(Ta), a less developed but relatively cheap superconducting material which may allow to gain about 1 T in the peak field in the coils, and discuss the corresponding luminosity reach for a possible LHC upgrade compared to that based on Nb$_{3}$Sn magnets.

  14. Selected issues for the LHC luminosity upgrade

    International Nuclear Information System (INIS)

    Laface, E.

    2008-12-01

    The Large Hadron Collider started its operations on September 10. 2008. In a realistic forecast it is supposed to demonstrate (or confute) the existence of the Higgs boson for the year 2014. After this date the physics of rare events will be explored more in details and an upgrade of the luminosity can make an important difference in the program of experiments at CERN. This thesis proposes several ideas to increase the luminosity of ATLAS and CMS experiments and the acceptance of TOTEM experiment. The main object of study is the Interaction Region, that consists in the set of magnets in charge to provide the final beam focalization for the collisions. The Interaction Region is studied with the methods of beam optics and beam dynamics to design new layouts for the upgrade. These layouts are also explored from the point of view of integrability in the existing experiments developing the analysis of energy deposition and misalignment tolerances. This study was performed with the use of analytical methods for the general considerations and numerical methods for the parameters optimization. (author)

  15. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High-Luminosity LHC upgrade

    CERN Document Server

    Chlachidze, G; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D; DiMarco, J; Felice, H; Ferracin, P; Ghosh, A; Grosclaude, P; Guinchard, M; Hafalia, A R; Holik, E; Izquierdo Bermudez, S; Krave, S; Marchevsky, M; Nobrega, F; Orris, D; Pan, H; Perez, J C; Prestemon, S; Ravaioli, E; Sabbi, G L; Salmi, T; Schmalzle, J; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Vallone, G; Velev, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb$_{3}$Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb$_{3}$Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb$_{3}$Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  16. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  17. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Béjar Alonso, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Brüning, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lamont, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2015-12-17

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  18. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    International Nuclear Information System (INIS)

    Apollinari, G.; Béjar Alonso, I.; Brüning, O.; Lamont, M.; Rossi, L.

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  19. ATLAS Plans for the High-Luminosity LHC

    CERN Document Server

    Walkowiak, Wolfgang; The ATLAS collaboration

    2018-01-01

    In this talk for BEAUTY 2018 the ATLAS upgrade plans for the high-luminosity phase of the LHC are presented. Especially, prospects for the flagship B physics analyses $B_s^0 \\to J/\\psi \\phi$ (with $J/\\psi \\to \\mu^+\\mu^-$) and $B_{(s)}^0 \\to \\mu^+\\mu^-$ analyses are discussed.

  20. LHC Luminosity Performance

    CERN Document Server

    AUTHOR|(CDS)2091107; Fuchsberger, Kajetan; Papotti, Giulia

    This thesis adresses several approaches with the common goal of assessing, understanding and improving the luminosity of the Large Hadron Collider (LHC). To better exploit existing margins for maximum luminosity while fulfilling the requirements of the LHC experiments, new techniques for luminosity levelling are studied and developed to an operational state, such as changing the crossing angle or $\\beta^*$ (beam size) at the interaction points with the beams in collisions. In 2017 LHC operation, the crossing angle reduction in collisions improved the integrated luminosity by $\\mathrm{\\sim} 2\\,\\mathrm{fb^{-1}}$ ($\\mathrm{\\sim} 4\\,\\mathrm{\\%}$ of the yearly production). For additional diagnostics, a new method for measuring beam sizes and orbits for each circulating bunch using the luminosity measurement during beam separation scans is shown. The results of these Emittance Scans improved the understanding of the LHC luminosity reach and of the orbit offsets introduced by beam-beam long-range effects.

  1. Optics Designs of Final-Focus Systems for Future LHC Upgrades

    CERN Document Server

    Abelleira, J L; Zimmermann, Frank; Rivkin, Leonid

    2014-01-01

    The main topic of the thesis is the study of a novel option for the high-luminosity upgrade of the Large Hadron Collider (LHC) comprising a large Piwinski angle, flat beams, and crab waists. Flat beams and crab waists are not only pre-requisites for a crab-waist scheme, but, even by themselves; each of these two elements alone could boost the luminosity of the existing collider as built. The new optics involves an upgrade of the interaction region of the two high-luminosity experiments, ATLAS and CMS, in order to provide them with a substantially higher luminosity. To this end, a flat-beam optics scenario has been explored for the High Luminosity LHC (HL-LHC), with a much reduced vertical beta function at the interaction point (IP), $\\beta_y^*$. In addition, a large Piwinski angle is considered. Advantages of a large Piwinski angle include a reduction in the hourglass effect over the length of the collision area, which allows for the significant $\\beta_y^*$ decrease. In addition there is a reduction of the be...

  2. Summary of Test Results of MQXFS1—The First Short Model 150 mm Aperture Nb$_3$Sn Quadrupole for the High-Luminosity LHC Upgrade

    CERN Document Server

    Stoynev, S; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D; DiMarco, J; Felice, H; Ferracin, P; Chlachidze, G; Ghosh, A; Grosclaude, P; Guinchard, M; Hafalia, A R; Holik, E; Izquierdo Bermudez, S; Krave, S; Marchevsky, M; Nobrega, F; Orris, D; Pan, H; Perez, J C; Prestemon, S; Ravaioli, E; Sabbi, G; Salmi, T; Schmalzle, J; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Vallone, G; Velev, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    The development of $Nb_3Sn$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb$_{3}$Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also sum...

  3. An Upgraded ATLAS Central Trigger for 2015 Luminosities

    International Nuclear Information System (INIS)

    Poettgen, Ruth; Gutenberg, Johannes

    2013-06-01

    The Central Trigger Processor (CTP) is a core unit of the first of three levels that constitute the ATLAS trigger system. Based on information from calorimeter and muon trigger processors as well as from some additional systems it produces the level-1 trigger decision and prompts the read-out of the sub-detectors. The increase in luminosity at the LHC has pushed the CTP operation to its design limits. In order to still satisfy the physics goals of the experiment after the shutdown of the LHC of 2013/2014 the CTP will be upgraded during this period. This article discusses the current Central Trigger Processor, the motivation for the upgrade, and the changes foreseen to meet the requirements of the post-2014 physics runs at the LHC. (authors)

  4. Radiation-hard Optoelectronics for LHC detector upgrades.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00375195; Newbold, Dave

    A series of upgrades foreseen for the LHC over the next decade will allow the proton-proton collisions to reach the design center of mass energy of 14 TeV and increase the luminosity to five times (High Luminosity-LHC) the design luminosity by 2027. Radiation-tolerant high-speed optical data transmission links will continue to play an important role in the infrastructure of particle physics experiments over the next decade. A new generation of optoelectronics that meet the increased performance and radiation tolerance limits imposed by the increase in the intensity of the collisions at the interaction points are currently being developed. This thesis focuses on the development of a general purpose bi-directional 5 Gb/s radiation tolerant optical transceiver, the Versatile Transceiver (VTRx), for use by the LHC experiments over the next five years, and on exploring the radiation-tolerance of state-of-the art silicon photonics modulators for HL-LHC data transmission applications. The compliance of the VTRx ...

  5. The LHC Luminosity Upgrade and Related ATLAS Detector Plans

    CERN Document Server

    Hartjes, F; The ATLAS collaboration

    2009-01-01

    3rd draft of the proposed talk about Atlas Upgrade for MPGD2009 (Instrumentation conference on gaseous pixel detectors) on Friday June 12, 2009. I concentrated my presentation on the upgrade plans and schedule of the LHC and on detector technologies for the new Inner Tracker, putting less emphasis on other subdetectors. Compared to the 2nd draft I modified and clarified a few items about trigger, muon detection and calorimetry and did a number of cosmetic adaptions.

  6. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00127668; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 1034cm2s1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow ...

  7. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5x10ˆ34 cm-2s-1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will a...

  8. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and transmitted to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronics are based on the Advanced Telecommunications Computing Architecture (ATCA) standard and are equipped with high performance optical connectors. The system is designed to operate in a high radiation envi...

  9. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS cover-ing the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronic is based on the Advanced Telecommunications Computing Architecture (ATCA) standard and is equipped with high performance optical connectors. The system is designed to operate in a high radiation environmen...

  10. Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2015-01-01

    The beam monitoring and luminosity systems of the CMS experiment are enhanced by several new and upgraded sub-detectors to match the challenges of the LHC operation and physics program at increased energy and higher luminosity. A dedicated pixelated luminosity telescope is installed for a fast and precise luminosity measurement. This detector measures coincidences between several three-layer telescopes of silicon pixel detectors to arrive at luminosity for each colliding LHC bunch pair. An upgraded fast beam conditions monitor measures the particle flux using single crystalline diamond sensors. It is equipped with a dedicated front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background, thus serving as online luminosity measurement. A new beam-halo monitor at larger radius exploits Cerenkov light from fused silica to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles....

  11. How to implement all HL-LHC upgrades

    CERN Document Server

    Rossi, L; Ballarino, A; Brüning, O; Jensen, E; Redaelli, S; Tavian, L; Todesco, E

    2014-01-01

    The luminosity upgrade will require major changes in the LHC machine layout : about 1.2 km of the machine will undergo major renova tion or modification. In the paper we will review the list of main equipment foreseen to be replaced or to be added. We will review the upgrade plan that should start already in the Long Shutdown (LS) 2 (with the installation of the first dispersion suppressor 11T dipole – collimator unit , the superconducting link in Point 7 and the cryo-plant in Point 4), through to the major works in LS3, synchronized with an upgrade of the LHC detectors. Best estimates of the required duration of the various shutdowns will be discussed, and also the main risks and their mitigation.

  12. The INFN R\\&D: new pixel detector for the High Luminosity Upgrade of the LHC

    CERN Document Server

    Dinardo, Mauro

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few $10^{16}$~ particles/cm$^2$ at $\\sim$3~cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity, in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R\\&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planar sensors, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS and ATLAS readout chips have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  13. ATLAS Physics Prospects at the High-Luminosity LHC

    CERN Document Server

    Bindi, Marcello; The ATLAS collaboration

    2017-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  14. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    Slawinska, Magdalena; The ATLAS collaboration

    2016-01-01

    Run-I at the LHC was very successful with the discovery of a new boson with properties compatible with those of the Higgs boson predicted by Standard Model. Precise measurements of the boson properties, and the discovery of physics beyond the Standard Model, are primary goals of the just restarted LHC running at 13 TeV collision energy and all future running at the LHC. The physics prospects with a pp centre-of-mass energy of 14 TeV are presented for 300 and 3000 fb-1 at the high-luminosity LHC. The ultimate precision attainable on measurements of the couplings of the 125 GeV boson to elementary fermions and bosons is discussed, as well as perspectives on the searches for partners associated with it. Supersymmetry is one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks and electro-weakinos in the hundreds of GeV mass range. Benchmark studies are presente...

  15. High-Luminosity Large Hadron Collider (HL-LHC) Technical Design Report V. 0.1

    CERN Document Server

    Béjar Alonso I.; Brüning O.; Fessia P.; Lamont M.; Rossi L.; Tavian L.

    2017-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a newenergy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists work-ing in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. Tosustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase itsinstantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integratedluminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely opti-mised machine so this upgrade must be carefully conceived and will require about ten years to implement. Thenew configuration, known as High Luminosity LHC (HL-LHC), relies on a number of key innovations that pushaccelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting mag-nets, compact superconduc...

  16. Parametric study on the thermal performance of beam screen samples of the High-Luminosity LHC upgrade

    Science.gov (United States)

    Borges de Sousa, P.; Morrone, M.; Hovenga, N.; Garion, C.; van Weelderen, R.; Koettig, T.; Bremer, J.

    2017-12-01

    The High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) will increase the accelerator’s luminosity by a factor 10 beyond its original design value, giving rise to more collisions and generating an intense flow of debris. A new beam screen has been designed for the inner triplets that incorporates tungsten alloy blocks to shield the superconducting magnets and the 1.9 K superfluid helium bath from incoming radiation. These screens will operate between 60 K and 80 K and are designed to sustain a nominal head load of 15 Wm-1, over 10 times the nominal heat load for the original LHC design. Their overall new and more complex design requires them and their constituent parts to be characterised from a thermal performance standpoint. In this paper we describe the experimental parametric study carried out on two principal thermal components: a representative sample of the beam screen with a tungsten-based alloy block and thermal link and the supporting structure composed of an assembly of ceramic spheres and titanium springs. Results from both studies are shown and discussed regarding their impact on the baseline considerations for the thermal design of the beam screens.

  17. Conceptual Design of the LHC Interaction Region Upgrade Phase-I

    CERN Document Server

    Ostojic, R; Baglin, V; Ballarino, A; Cerutti, F; Denz, R; Fartoukh, S; Fessia, P; Foraz, K; Fürstner, M; Herr, Werner; Karppinen, M; Kos, N; Mainaud-Durand, H; Mereghetti, A; Muttoni, Y; Nisbet, D; Prin, H; Tock, J P; Van Weelderen, R; Wildner, E

    2008-01-01

    The LHC is starting operation with beam. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently and that it achieves nominal performance in the shortest term. Since several years the community has been discussing the directions for maximizing the physics reach of the LHC by upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex, in a phased approach. The first phase of the LHC interaction region upgrade was approved by Council in December 2007. This phase relies on the mature Nb-Ti superconducting magnet technology with the target of increasing the LHC luminosity to 2 to 3 10^34 cm^-2s^-1, while maximising the use of the existing infrastructure. In this report, we present the goals and the proposed conceptual solutions for the LHC IR Upgrade Phase-I which include the recommendations of the conceptual design review.

  18. The High Luminosity LHC Project

    Science.gov (United States)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  19. GIF++: A new CERN Irradiation Facility to test large-area particle detectors for the High-Luminosity LHC program

    CERN Document Server

    Guida, Roberto

    2016-01-01

    The high-luminosity LHC (HL-LHC) upgrade is setting a new challenge for particle detector technologies. The increase in luminosity will produce a higher particle background with respect to present conditions. To study performance and stability of detectors at LHC and future HL-LHC upgrades, a new dedicated facility has been built at CERN: the new Gamma Irradiation Facility (GIF++). The GIF++ is a unique place where high energy charged particle beams (mainly muons) are combined with gammas from a 14 TBq 137Cesium source which simulates the background radiation expected at the LHC experiments. Several centralized services and infrastructures are made available to the LHC detector community to facilitate the different R&D; programs.

  20. The CMS Outer Tracker Upgrade for the High Luminosity LHC

    CERN Document Server

    Luetic, Jelena

    2017-01-01

    The era of the High Luminosity Large Hadron Collider will pose unprecedented challenges for detector design and operation. The planned luminosity of the upgraded machine is $5$x$10^{34} $ cm$^{-2}$s$^{-1}$, reaching an integrated luminosity of more than 3000 fb$^{-1}$ by the end of 2037. The CMS Tracker detector will have to be replaced in order to fully exploit the delivered luminosity and cope with the demanding operating conditions. The new detector will provide robust tracking as well as input for the first level trigger. This report is focusing on the replacement of the CMS Outer Tracker system, describing the new layout and technological choices together with some highlights of research and development activities.

  1. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    AUTHOR|(CDS)2132435; Seifert, Thomas

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb$_{3}$Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrica...

  2. Expected performance of the upgrade ATLAS experiment for HL-LHC

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) has been successfully delivering proton-proton collision data at the unprecedented center of mass energy of 13 TeV. An upgrade is planned to increase the instantaneous luminosity delivered by the LHC in what is called the HL-LHC, aiming to deliver a total of up 3000/fb to 4000/fb of data per experiment. To cope with the expected data-taking conditions ATLAS is planning major upgrades of the detector. It is now a critical time for these upgrade projects and during the last year and a half, six Technical Design Reports (TDR) were produced by the ATLAS Collaboration. In these TDRs the physics motivation and benefits of such upgrades are discussed together with details on the upgrade project itself. In this contribution we review the expected performance of the upgraded ATLAS detector and the expected reach for physics measurements as well as the discovery potential for new physics that is expected by the end of the HL-LHC data-taking. The performance of object reconstruction under...

  3. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The LHC upgrade is foreseen to increase the ATLAS design luminosity by a factor ten, implying the need to build a new tracker suited to the harsh HL-LHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. We give an overview of the ATLAS tracker upgrade project, in particular focusing on the crucial innermost silicon strip layers. Results from a wide range of irradiated silicon detectors for the strip region of the future ATLAS tracker are presented. Layout concepts for lightweight yet mechanically very rigid detector modules with high service integration are shown.

  4. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  5. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  6. ATLAS Tile Calorimeter Upgrades for HL-LHC

    CERN Document Server

    Angelidakis, Stylianos; The ATLAS collaboration

    2018-01-01

    The High-Luminosity phase of the Large Hadron Collider (LHC) at CERN is expected to begin in 2026, delivering a luminosity of ~5×10^34 cm −2 s −1 , with up to 200 interactions per 25 ns bunch crossing. In order to cope with the expected high trigger rates and intense radiation conditions, the ATLAS Tile Calorimeter will be upgraded with readout architectures that will allow to maintain an optimal performance in its future operation.

  7. Physics prospects at the high luminosity LHC with ATLAS

    CERN Document Server

    Simioni, Eduard; The ATLAS collaboration

    2016-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  8. Upgrade Plans for ATLAS Forward Calorimetry for the HL-LHC

    CERN Document Server

    Krieger, P; The ATLAS collaboration

    2013-01-01

    The upgrade of the LHC Collider foresees increased instantaneous luminosity 3-7 times the original design value of 10$^{34}$ cm$^{-2}$ s$^{-1}$. The increased particle flux at this high luminosity phase of the LHC (HL-LHC) will have an impact on many sub-systems of the ATLAS detector. In particular, in the LAr forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities poses a number of problems that can degrade its performance, related to beam heating, space charge effects in the LAr gaps and HV drop due to increased current draws over the HV current-limiting resistors. One solution to these problems, which would require the opening of both ATLAS endcap cryostats, is the construction and installation of a new FCal, with cooling loops, narrower LAr gaps, and lower value protection resistors. The signal performance of the current FCal and of a possible narrow-gap FCal has been measured in a dedicated test-beam campaign ...

  9. Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project

    CERN Document Server

    Huffman, B T; Arndt, K; Bates, R; Benoit, M; Di Bello, F; Blue, A; Bortoletto, D; Buckland, M; Buttar, C; Caragiulo, P; Das, D; Dopke, J; Dragone, A; Ehrler, F; Fadeyev, V; Galloway, Z; Grabas, H; Gregor, I M; Grenier, P; Grillo, A; Hoeferkamp, M; Hommels, L B A; John, J; Kanisauskas, K; Kenney, C; Kramberger, J; Liang, Z; Mandic, I; Maneuski, D; Martinez-McKinney, F; McMahon, S; Meng, L; Mikuž, M; Muenstermann, D; Nickerson, R; Peric, I; Phillips, P; Plackett, R; Rubbo, F; Segal, J; Seidel, S; Seiden, A; Shipsey, I; Song, W; Stanitzki, M; Su, D; Tamma, C; Turchetta, R; Vigani, L; olk, J; Wang, R; Warren, M; Wilson, F; Worm, S; Xiu, Q; Zhang, J; Zhu, H

    2016-01-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with theAMSH35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper.

  10. The CMS High Granularity Calorimeter for the High Luminosity LHC

    CERN Document Server

    Sauvan, Jean-baptiste

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities...

  11. The CMS Tracker Upgrade for HL-LHC\\\\ Sensor R$\\&$D

    CERN Document Server

    Naseri, Mohsen

    2014-01-01

    At an instantaneous luminosity of 5~$\\times10^{34}~cm^{-2}~s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000~fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. Focusing on the upgrade of the outer tracker region, the CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future track...

  12. High Luminosity LHC Project Description

    CERN Document Server

    Apollinari, Giorgio; Rossi, Lucio

    2014-01-01

    The High Luminosity LHC (HL-LHC) is a novel configuration of the Large Hadron Collider, aiming at increasing the luminosity by a factor five or more above the nominal LHC design, to allow increasing the integrated luminosity, in the high luminosity experiments ATLAS and CMS, from the 300 fb-1 of the LHC original design up to 3000 fb-1 or more. This paper contains a short description of the main machine parameters and of the main equipment that need to be developed and installed. The preliminary cost evaluation and the time plan are presented, too. Finally, the international collaboration that is supporting the project, the governance and the project structure are discussed, too.

  13. High precision electromagnetic calorimetry with 40 MHz readout: the CMS crystal ECAL for the High-Luminosity LHC

    CERN Document Server

    Orimoto, Toyoko Jennifer

    2017-01-01

    The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) will be upgraded to meet the challenging running conditions expected after the High-Luminosity upgrade of the LHC (HL-LHC). Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. The detector will have to sustain an instantaneous luminosity of above $5 \\times 10^{34} cm^2 s^{-1}$, maintaining a performance similar to the one of LHC Run I for an integrated luminosity of 3 to 5 $ab^{-1}$. This poses stringent requirements on the radiation resistance of detector components, the readout and data transfer from the front end to the back end electronics, as well as the latency of the trigger system. The barrel region of the CMS ECAL will be able to retain the current lead tungstate crystals and avalanche photodiode detectors which will meet the energy measurement performance requirements throughout t...

  14. A Forward Silicon Strip System for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Wonsak, S; The ATLAS collaboration

    2012-01-01

    The LHC is successfully accumulating luminosity at a centre-of-mass energy of 8 TeV this year. At the same time, plans are rapidly progressing for a series of upgrades, culminating roughly eight years from now in the High Luminosity LHC (HL-LHC) project. The HL-LHC is expected to deliver approximately five times the LHC nominal instantaneous luminosity, resulting in a total integrated luminosity of around 3000 fb-1 by 2030. The ATLAS experiment has a rather well advanced plan to build and install a completely new Inner Tracker (IT) system entirely based on silicon detectors by 2020. This new IT will be made from several pixel and strip layers. The silicon strip detector system will consist of single-sided p-type detectors with five barrel layers and six endcap (EC) disks on each forward side. Each disk will consist of 32 trapezoidal objects dubbed “petals”, with all services (cooling, read-out, command lines, LV and HV power) integrated into the petal. Each petal will contain 18 silicon sensors grouped in...

  15. The CMS HGCAL detector for HL-LHC upgrade

    CERN Document Server

    Martelli, Arabella

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors wi...

  16. A 120 mm Bore Quadrupole for the Phase 1 LHC Upgrade

    CERN Document Server

    Fessia, P; Borgnolutti, F; Regis, F; Richter, D; Todesco, E

    2010-01-01

    The phase I LHC upgrade foresees the installation of a new final focusing for the high luminosity experiences in order to be able to focus the beams in the interaction points to b*~ 0.25 cm. Key element of this upgrade is a large bore (120 mm) superconducting quadrupole. This article proposes a magnet design that will make use of the LHC main dipole superconducting cable. Due to the schedule constraints and to the budget restrictions, it is mandatory to integrate in the design the maximum number of features successfully used during the LHC construction. This paper presents this design option and the rationales behind the several technical choices.

  17. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00425747; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  18. The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC

    CERN Document Server

    Petyt, David Anthony

    2018-01-01

    The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) is operating at the Large Hadron Collider (LHC) in 2016 with proton-proton collisions at 13 TeV center-of-mass energy and at a bunch spacing of 25 ns. Challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC). We review the design and R and D studies for the CMS ECAL crystal calorimeter upgrade and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO$_{4}$ crystals up to fluences expected at the HL-LHC. We also report on the R and D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  19. The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC

    CERN Document Server

    Jofrehei, Arash

    2017-01-01

    The Compact Muon Solenoid Experiment (CMS) is operating at the Large Hadron Collider (LHC) with proton-proton collisions at 13 TeV center-of-mass energy and at a bunch spacing of 25 ns. Challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC). We review the CMS ECAL crystal calorimeter upgrade and present results from the first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. Precision timing can be exploited to reduce the effect of the pile-up. We report on the timing resolution studies performed with test-beams. We discuss the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  20. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    Science.gov (United States)

    Zhang, Zhicai

    2018-04-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run II. We will show performance results from the 2015-2016 data taking periods and provide an outlook on the expected Run II performance in the years to come. Beyond the LHC, challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC) . We review the design and R&D studies for the CMS ECAL and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates, and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO crystals up to fluences expected at the HL-LHC . We also report on the R&D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  1. SLHC, the high-luminosity upgrade (public event)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    In the morning of February 26th a public event is organised in CERN's main auditorium with the aim of informing the particle physics community about the current status of preparation work for the future LHC luminosity upgrade (Phase 1 and Phase 2). The presentations will provide an overview of the various accelerator sub-projects, the physics potential and the experiment upgrade plans. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the SLHC project. Informing the public about the overall status of SLHC is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  2. The High Luminosity Challenge: potential and limitations of High Intensity High Brightness in the LHC and its injectors

    CERN Document Server

    De Maria, R; Banfi, D; Barranco, J; Bartosik, H; Benedetto, E; Bruce, R; Brüning, O; Calaga, R; Cerutti, F; Damerau, H; Esposito, L; Fartoukh, S; Fitterer, M; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Gorini, B; Hanke, K; Iadarola, G; Lamont, M; Meddahi, M; Métral, E; Mikulec, B; Mounet, N; Papaphilippou, Y; Pieloni, T; Redaelli, S; Rossi, L; Rumolo, G; Shaposhnikova, E; Sterbini, G; Todesco, E; Tomás, R; Zimmermann, F; Valishev, A

    2014-01-01

    High-intensity and high-brightness beams are key ingredients to maximize the LHC integrated luminosity and to exploit its full potential. This contribution describes the optimization of beam and machine parameters to maximize the integrated luminosity as seen by the LHC experiments, by taking into account the expected intensity and brightness reach of LHC itself and its injector chain as well as the capabilities of the detectors for next run and foreseen upgrade scenarios.

  3. The CMS High Granularity Calorimeter for the High Luminosity LHC

    Science.gov (United States)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  4. Tevatron energy and luminosity upgrades beyond the Main Injector

    International Nuclear Information System (INIS)

    Amidei, D.; Kamon, T.; Lopez, J.; McIntyre, P.; White, J.

    1994-08-01

    The Fermilab Tevatron will be the world's highest energy hadron collider until the LHC is commissioned, it has the world's highest energy fixed target beams, and Fermilab will be the leading high energy physics laboratory in the US for the foreseeable future. Following the demise of the SSC, a number of possible upgrades to the Tevatron complex, beyond construction of the Main Injector, are being discussed. Using existing technology, it appears possible to increase the luminosity of the bar pp Collider to at least 10 33 cm -2 sec -1 (Tevatron-Star) and to increase the beam energy to 2 TeV (DiTevatron). Fixed target beam of energy about 1.5 TeV could also be delivered. Leaving the existing Tevatron in the tunnel and constructing bypasses around the collider halls would allow simultaneous 800 GeV fixed target and √s = 4 TeV collider operation. These upgrades would give Fermilab an exciting physics program which would be complementary to the LHC, and they would lay the groundwork for the construction of a possible post-LHC ultra-high energy hadron collider

  5. Conceptual design of the cryostat for the new high luminosity (HL-LHC) triplet magnets

    Science.gov (United States)

    Ramos, D.; Parma, V.; Moretti, M.; Eymin, C.; Todesco, E.; Van Weelderen, R.; Prin, H.; Berkowitz Zamora, D.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project to upgrade the LHC collider after 2020-2025 to increase the integrated luminosity by about one order of magnitude and extend the physics production until 2035. An upgrade of the focusing triplets insertion system for the ATLAS and CMS experiments is foreseen using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. This will require the design and construction of four continuous cryostats, each about sixty meters in length and one meter in diameter, for the final beam focusing quadrupoles, corrector magnets and beam separation dipoles. The design is constrained by the dimensions of the existing tunnel and accessibility restrictions imposing the integration of cryogenic piping inside the cryostat, thus resulting in a very compact integration. As the alignment and position stability of the magnets is crucial for the luminosity performance of the machine, the magnet support system must be carefully designed in order to cope with parasitic forces and thermo-mechanical load cycles. In this paper, we present the conceptual design of the cryostat and discuss the approach to address the stringent and often conflicting requirements of alignment, integration and thermal aspects.

  6. The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC

    CERN Document Server

    Marinelli, Nancy

    2017-01-01

    The Compact Muon Solenoid Experiment (CMS) is operating at the Large Hadron Collider (LHC) with proton-proton collisions at 13 TeV center-of-mass energy and at a bunch spacing of 25 ns. New further challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL--LHC). The CMS electromagnetic calorimeter (ECAL) will need to be upgraded to substain the hardned environment.The design and R\\ and D studies for the ECAL upgrade are presented together with first test beam studies. Particular challenges at HL--LHC are the harsh radiation environment, the increasing data rates and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. Precision timing can be exploited to reduce the effect of the pile-up. Time resolution measurementscarried out during test-beams are shown. Plans are also shown for R\\ and D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL--LHC

  7. The CMS HGCAL detector for the HL-LHC upgrade

    CERN Document Server

    Steen, Arnaud

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors wi...

  8. B Physics at the HL-LHC with the upgraded CMS detector

    CERN Document Server

    Fiorendi, Sara

    2018-01-01

    The high luminosity LHC (HL-LHC) run, which is due to start in 2026, is expected to deliver an integrated luminosity of approximately 3000 fb$^-1$ at a pp center of mass value of 14 TeV. Significant upgrades of the CMS detector are foreseen to withstand the highly-demanding operating conditions and to fully exploit the delivered luminosity. More precise investigations of rare decays in the flavour sector will be possible thanks to the large collected data sample. The perspectives for the measurements of the $B^0_s \\to \\mu^+\\mu^-$ and $B^0 \\to \\mu^+\\mu^-$ branching fractions are reported, together with the projections for the exclusion limit on the $\\tau \\to 3\\mu$ branching fraction.

  9. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. A key issue ...

  10. ATLAS Upgrade Plans

    CERN Document Server

    Hopkins, W; The ATLAS collaboration

    2014-01-01

    After the successful LHC operation at the center-of-mass energies of 7 and 8 TeV in 2010-2012, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000/fb by around 2035 for ATLAS and CMS. In parallel, the experiments need to be keep lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Current planning in ATLAS envisions significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new...

  11. Physics at HL-LHC with the upgraded ATLAS detector

    CERN Document Server

    Dell'Acqua, Andrea; The ATLAS collaboration

    2017-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  12. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  13. LHCb Upgrades and operation at 1034 cm-2 s-1 luminosity –A first study

    CERN Document Server

    Efthymiopoulos, Ilias; Baglin, Vincent; Burkhardt, Helmut; Cerutti, Francesco; Claudet, Serge; Di Girolamo, Beniamino; De Maria, Riccardo; Esposito, Luigi Salvatore; Karastathis, Nikos; Lindner, Rolf; Papaphilippou, Yannis; Pellegrini, Dario; Redaelli, Stefano; Roesler, Stefan; Sanchez Galan, Francisco; Thomas, Eric; Tsinganis, Andrea; Wollmann, Daniel; Wilkinson, Guy; Schwarz, Philip; CERN. Geneva. ATS Department

    2018-01-01

    Presently, the LHCb experiment at IP8 operates at reduced luminosity (~4.0 1032 cm-2 s-1) compared to ATLAS and CMS experiments. The LHCb collaboration is proposing an Upgrade II during HL-LHC operation, where the beams at IP8 will collide at high-luminosity (~1-2 1034 cm-2 s-1), comparable to the present high-luminosity regions IP1&IP5. The LHCb experiment aims to collect more than 300 fb-1 by the end of the HL-LHC operation. A feasibility study of operating IP8 at high-luminosity whilst preserving the performance at IP1 and IP5 and on the impact to the LHC machine and experimental cavern was done. Optics studies shows that solutions allowing to reach an integrated luminosity of 40 to 50 fb-1 per year to LHCb/IP8 at the cost of a reduction of about 5% in the integrated luminosity of the main experiments ATLAS and CMS, under the assumption that there are no lifetime limitations besides burn-off, are feasible. Energy deposition in the machine elements of the IR straight section 8 and LHC infrastructure and...

  14. Dynamic Aperture Studies for the LHC High Luminosity Lattice

    CERN Document Server

    De Maria, R; Giovannozzi, Massimo; Mcintosh, Eric; Cai, Y; Nosochkov, Y; Wang, M H

    2015-01-01

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  15. Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Adriana; et al.

    2017-05-01

    Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.

  16. Progress on the Development of the $Nb_3Sn$ 11T Dipole for the High Luminosity Upgrade of LHC

    CERN Document Server

    Savary, Frederic; Bordini, Bernardo; Bottura, Luca; Fiscarelli, Lucio; Fleiter, Jerome; Foussat, Arnaud; Izquierdo Bermudez, Susana; Karppinen, Mikko; Lackner, Friedrich; Loffler, Christian H; Nilsson, Emelie; Perez, Juan Carlos; Prin, Herve; Principe, Rosario; Ramos, Delio; de Rijk, Gijs; Rossi, Lucio; Smekens, David; Sequeira Tavares, Sandra; Willering, Gerard; Zlobin, Alexander V

    2017-01-01

    The high-luminosity large hadron collider (LHC) project at CERN entered into the production phase in October 2015 after the completion of the design study phase. In the meantime, the development of the 11 T dipole needed for the upgrade of the collimation system of the machine made significant progress with very good performance of the first two-in-one magnet model of 2-m length made at CERN. The 11 T dipole, which is more powerful than the current main dipoles of LHC, can be made shorter with an equivalent integrated field. This will allow creating space for the installation of additional collimators in specific locations of the dispersion suppressor regions. Following tests carried out during heavy ions runs of LHC in the end of 2015, and a more recent review of the project budget, the installation plan for the 11 T dipole was revised. Consequently, one 11 T dipole full assembly containing two 11 T dipoles of 5.5-m length will be installed on either side of interaction point 7. These two units shall be inst...

  17. Study with one global crab cavity at IR4 for LHC Upgrade

    CERN Document Server

    Barranco, J; Morita, A; Ralph Assmann, R; Sun, Y; Tomás, R; Weiler, T; Zimmermann, F; CERN. Geneva. BE Department

    2009-01-01

    In this note, we discuss the possible installation and impact on the beam of a single global crab cavity (CC) for both nominal LHC optics and one upgrade LHC optics (Lowbetamax). We also summarize the results on dynamic aperture tracking, luminosity, expected closed orbits, preliminary studies on collimation cleaning efficiency, and the emittance growth due to crab cavity ramping and other sources.

  18. Detector Developments for the High Luminosity LHC Era (2/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  19. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the sLHC

    International Nuclear Information System (INIS)

    Lefebvre, Michel; Minano Moya, Mercedes

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. (authors)

  20. LHC Status and Upgrade Challenges

    Science.gov (United States)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  1. Upgrading the ATLAS barrel tracker for the super-LHC

    International Nuclear Information System (INIS)

    Bates, Richard L.

    2009-01-01

    It has been proposed to increase the luminosity of the large hadron collider (LHC) at CERN by an order of magnitude, with the upgraded machine dubbed super-LHC. The ATLAS experiment will require a new tracker for this high-luminosity operation due to radiation damage and event density. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all-silicon tracker is being designed. The new strip detector will use significantly shorter strips than the current silicon tracker in order to minimize the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation-hard silicon detectors is required. An R and D program is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges facing the sensors and the cooling and mechanical support will be discussed. A possible tracker layout will be described.

  2. The ATLAS Tracker Upgrade Short Strips Detectors for the sLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  3. Upgrade of the ATLAS Muon Barrel Trigger for HL-LHC

    CERN Document Server

    Romano, Marino; The ATLAS collaboration

    2015-01-01

    The present ATLAS muon trigger in the barrel region (|eta|<1.05) is based on three layers of RPC chambers. It was designed to run for 10 years at the LHC luminosity of 10^{34} cm^{-2}s^{-1} and operated successfully and with high selectivity during the first run of the LHC. In order to ensure a stable performance of the RPCs until 2035 at the higher rates and at luminosities of 5-7x10^{34} cm^{-2}s^{-1} provided by HL-LHC, the chambers will have to be operated with reduced gas gain to respect the original design limits on currents and integrated charge. The ATLAS muon collaboration proposes an upgrade of the system by installing an inner layer of new generation RPCs during the LHC shutdown expected for the year 2023. This new layer will increase the system redundancy and therefore allow operation with high efficiency and high selectivity during the HL-LHC phase. The insertion of this new layer will also increase the geometrical acceptance in the barrel region from 75% to 95%. Moreover, the additional measu...

  4. Upgrade of the ATLAS Muon Barrel Trigger for HL-LHC.

    CERN Document Server

    Biondi, Silvia; The ATLAS collaboration

    2015-01-01

    The present ATLAS muon trigger in the barrel region (|η | < 1.05) is based on three layers of RPC chambers. It was designed to run for 10 years at the LHC luminosity of 1034cm−2s−1 and operated successfully and with high selectivity during the first run of the LHC. In order to ensure a stable performance of the RPCs until 2035 at the higher rates and at luminosities of 5−7x1034cm−2s−1 provided by HL-LHC, the chambers will have to be operated with reduced gas gain to respect the original design limits on currents and integrated charge. The ATLAS muon collaboration proposes an upgrade of the system by installing an inner layer of new generation RPCs during the LHC shutdown expected for the year 2023. This new layer will increase the system redundancy and therefore allow operation with high efficiency and high selectivity during the HL-LHC phase. The insertion of this new layer will also increase the geometrical acceptance in the barrel region from 75% to 95%. Moreover, the additional measurements ...

  5. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    INSPIRE-00052711; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  6. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Beccherle, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste (Italy); INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2016-09-21

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  7. ATLAS physics prospects with the High-Luminosity LHC

    CERN Document Server

    Khanov, Alexander; The ATLAS collaboration

    2016-01-01

    Run-I at the LHC was very successful with the discovery of a new boson of about 125 GeV mass with properties compatible with those of the Higgs boson predicted by Standard Model.Precise measurements of the properties of this new boson, and the search for new physics beyond the Standard Model, are primary goals of the just restarted LHC running at 13 TeV collision energy and all future running at the LHC, including its luminosity upgrade, HL-LHC, that should allow the collection of 3000 fb-1 of data per experiment. The physics prospects with a pp centre-of-mass energy of 14 TeV are presented for 300 and 3000 fb-1. The ultimate precision attainable on measurements of the couplings of the 125 GeV boson to elementary fermions and bosons is discussed, as well as perspectives on the searches for partners associated with it. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions. Supersymmetry is one of the best motivated extensions of the Standard Mode...

  8. ATLAS upgrades for the next decades

    CERN Document Server

    Hopkins, Walter; The ATLAS collaboration

    2014-01-01

    After the successful LHC operation at the center-of-mass energies of 7 and 8 TeV in 2010-2012, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the dataset from about few hundred \\ifb\\ expected for LHC running to 3000 fb$^{-1}$ by around 2035 for ATLAS and CMS. In parallel, the experiments need to be keep lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Current planning in ATLAS envisions significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for...

  9. The CMS High-Granularity Calorimeter (HGCAL) for Operation at the High-Luminosity LHC

    CERN Document Server

    Pitters, Florian Michael

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm^2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors will...

  10. Evolution of the CMS ECAL Performance and R&D Studies for Calorimetry Options at High Luminosity LHC

    CERN Document Server

    Lucchini, Marco Toliman; Auffray, Etiennette

    During the past years the Large Hadron Collider (LHC) at CERN operated with a maximum center-of-mass energy of $\\sqrt{s} = 8$~TeV, a peak luminosity of around $7\\times 10^{33}$~cm$^{-2}$s$^{-1}$ and collected about $23$~fb$^{-1}$ of data which lead to the discovery of a Higgs Boson in July 2012. To further constrain the properties of the newly discovered Higgs boson, the decision to extend the LHC program has recently been made. In this framework, a major upgrade of the beam optics in the interaction region will take place around 2022 to achieve a leveled peak luminosity of $\\mathcal{L} = 5\\times10^{34}$~cm$^{-2}$s$^{-1}$. These will be the operating conditions during the High Luminosity LHC (HL-LHC) which is expected to deliver an integrated luminosity of 3000~fb$^{-1}$ by 2035. During HL-LHC phase the radiation levels will become much higher with respect to the nominal values for which the CMS detector was designed. Therefore it is of crucial importance to identify and quantify the effects ofradiation damag...

  11. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  12. HL-LHC Accelerator

    CERN Document Server

    Zimmermann, F

    2013-01-01

    The tentative schedule, key ingredients, as well as progress of pertinent R&D and component prototypes for the LHC luminosity upgrade, "HL-LHC," are reviewed. Also alternative scenarios based on performance-improving consolidations (PICs) instead of a full upgrade are discussed. Tentative time schedules and expected luminosity evolutions for the different scenarios are sketched. The important role of HL-LHC development as a step towards a future HE-LHC or VHE-LHC is finally highlighted. Presented at "Higgs & Beyond" Conference Tohoku University, Sendai 7 June 2013.

  13. Performance of the ATLAS Liquid Argon Calorimeter After Three Years of LHC Operation and Plans for a Future Upgrade

    CERN Document Server

    Ilic, N; The ATLAS collaboration

    2013-01-01

    Performance of the Liquid Argon Calorimeter during three years of LHC operation is presented. Upgrades and plans for future upgrades in order to prepare the LAr calorimeter for higher luminosity are presented.

  14. Low voltage powering of on-detector electronics for HL-LHC experiments upgrades

    CERN Document Server

    Bobillier, Vincent; Vasey, Francois; Karmakar, Sabyasachi; Maity, Manas; Roy, Subhasish; Kundu, Tapas Kumar

    2018-01-01

    All LHC experiments will be upgraded during the next LHC long shutdowns (LS2 and LS3). The increase in resolution and luminosity and the use of more advanced CMOS technology nodes typically implies higher current consumption of the on-detector electronics. In this context, and in view of limiting the cable voltage drop, point-of-load DC-DC converters will be used on detector. This will have a direct impact on the existing powering scheme, implying new AC-DC and/or DC-DC stages as well as changes in the power cabling infrastructure. This paper presents the first results obtained while evaluating different LV powering schemes and distribution layouts for HL-LHC trackers. The precise low voltage power source requirements are being assessed and understood using the CMS tracker upgrade as a use-case.

  15. Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC

    Science.gov (United States)

    Campana, P.; Klute, M.; Wells, P. S.

    2016-10-01

    The completion of Run 1 of the Large Hadron Collider (LHC) at CERN has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, and Run 2 has begun to provide the first data at higher energy. The high-luminosity upgrade of the LHC (HL-LHC) and the four experiments (ATLAS, CMS, ALICE, and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. We review the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC.

  16. Performance Evaluation of the SPS Scraping System in View of the High Luminosity LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)659273; Cerutti, Francesco

    Injection in the LHC is a delicate moment, since the LHC collimation system cannot offer adequate protection during beam transfer. For this reason, a complex chain of injection protection devices has been put in place. Among them, the SPS scrapers are the multi-turn cleaning system installed in the SPS aimed at halo removal immediately before injection in the LHC. The upgrade in luminosity of the LHC foresees beams brighter than those currently available in machine, posing serious problems to the performance of the existing injection protection systems. In particular, the integrity of beam-intercepting devices is challenged by unprecedented beam parameters, leading to interactions potentially destructive. In this context, a new design of scrapers has been proposed, aimed at improved robustness and performance. This thesis compares the two scraping systems, i.e. the existing one and the one proposed for upgrade. Unlike any other collimation system for regular halo cleaning, both are "fast" systems, characteris...

  17. High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers

    CERN Document Server

    Maciariello, Fausto; Butcher, Mark; Calviani, Marco; Folch, Ramon; Kain, Verena; Karagiannis, Konstantinos; Lamas Garcia, Inigo; Lechner, Anton; Nuiry, Francois-Xavier; Steele, Genevieve; Uythoven, Jan

    2016-01-01

    In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the resul...

  18. LHC Injectors Upgrade (LIU) Project at CERN

    CERN Document Server

    Shaposhnikova, Elena; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon; Meddahi, Malika; Mikulec, Bettina; Rumolo, Giovanni; Scrivens, Richard; Vretenar, Maurizio

    2016-01-01

    A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LI...

  19. The Cryogenic Design of the Phase I Upgrade Inner Triplet Magnets for LHC

    CERN Document Server

    van Weelderen, R; Peterson, T

    2011-01-01

    The LHC is operating with beam since end 2009. However, with the present interaction region magnets it cannot reach its nominal performance and a phased approach to upgrading them to reach that nominal performance is taken. The first phase of the LHC interaction region upgrade was approved by Council in December 2007. This phase relies on the mature Nb-Ti superconducting magnet technology with the target of increasing the LHC luminosity to 2 to 3×1034 cm-2s-1, while relying on the existing infrastructure which limits the total heat removal capacity at 1.9 K to 500 W. The Phase I Upgrade LHC interaction region final focus magnets will include four superconducting quadrupoles (low-β triplets) and one superconducting dipole (D1) cooled with pressurized, static superfluid helium (HeII) at 1.9 K. The heat absorbed in pressurized HeII, which may be more than 30 W/m due to dynamic heating from the particle beam halo, will be conducted to saturated He II at about 1.9 K and removed by the low pressure vapour. This p...

  20. Large area thinned planar sensors for future high-luminosity-LHC upgrades

    International Nuclear Information System (INIS)

    Wittig, T.; Lawerenz, A.; Röder, R.

    2016-01-01

    Planar hybrid silicon sensors are a well proven technology for past and current particle tracking detectors in HEP experiments. However, the future high-luminosity upgrades of the inner trackers at the LHC experiments pose big challenges to the detectors. A first challenge is an expected radiation damage level of up to 2⋅ 10 16 n eq /cm 2 . For planar sensors, one way to counteract the charge loss and thus increase the radiation hardness is to decrease the thickness of their active area. A second challenge is the large detector area which has to be built as cost-efficient as possible. The CiS research institute has accomplished a proof-of-principle run with n-in-p ATLAS-Pixel sensors in which a cavity is etched to the sensor's back side to reduce its thickness. One advantage of this technology is the fact that thick frames remain at the sensor edges and guarantee mechanical stability on wafer level while the sensor is left on the resulting thin membrane. For this cavity etching technique, no handling wafers are required which represents a benefit in terms of process effort and cost savings. The membranes with areas of up to ∼ 4 × 4 cm 2 and thicknesses of 100 and 150 μm feature a sufficiently good homogeneity across the whole wafer area. The processed pixel sensors show good electrical behaviour with an excellent yield for a suchlike prototype run. First sensors with electroless Ni- and Pt-UBM are already successfully assembled with read-out chips.

  1. Large area thinned planar sensors for future high-luminosity-LHC upgrades

    Science.gov (United States)

    Wittig, T.; Lawerenz, A.; Röder, R.

    2016-12-01

    Planar hybrid silicon sensors are a well proven technology for past and current particle tracking detectors in HEP experiments. However, the future high-luminosity upgrades of the inner trackers at the LHC experiments pose big challenges to the detectors. A first challenge is an expected radiation damage level of up to 2ṡ 1016 neq/cm2. For planar sensors, one way to counteract the charge loss and thus increase the radiation hardness is to decrease the thickness of their active area. A second challenge is the large detector area which has to be built as cost-efficient as possible. The CiS research institute has accomplished a proof-of-principle run with n-in-p ATLAS-Pixel sensors in which a cavity is etched to the sensor's back side to reduce its thickness. One advantage of this technology is the fact that thick frames remain at the sensor edges and guarantee mechanical stability on wafer level while the sensor is left on the resulting thin membrane. For this cavity etching technique, no handling wafers are required which represents a benefit in terms of process effort and cost savings. The membranes with areas of up to ~ 4 × 4 cm2 and thicknesses of 100 and 150 μm feature a sufficiently good homogeneity across the whole wafer area. The processed pixel sensors show good electrical behaviour with an excellent yield for a suchlike prototype run. First sensors with electroless Ni- and Pt-UBM are already successfully assembled with read-out chips.

  2. Study of Quench Protection for the Nb$_3$Sn Low-β Quadrupole for the LHC Luminosity Upgrade (HiLumi-LHC)

    CERN Document Server

    Todesco, E; Bellomo, G; Sorbi, M; Ambrosio, G; Chlachidze, G; Felice, H; Marchevsky, M; Salmi, T

    2015-01-01

    The HiLumi program is aiming to develop and build new Nb$_{3}$Sn, high-field (12 T) and large aperture (150 mm) superconducting quadrupoles, which will be inserted in the LHC interaction regions and will provide the final focusing of the beam, in the program of the luminosity upgrade. The quench protection of these magnets is one of the most challenging aspects, mainly because of the large value of the magnet inductance (160 mH for the configuration with two 8 m long magnets in series), of the large value of the stored magnetic energy density in the coils (0.12 J/mm3, a factor 2 larger than in the conventional NbTi quadrupoles) and of the use of Nb$_{3}$Sn as conductor, which has never been used for large accelerator magnets. Previous works have demonstrated that a “standard” conservative analysis, assuming quench heaters only on the coils outer layer, gives high hot spot temperature, close to the design limit (350 K). In this paper, a new study of quench protection is presented. The benefic effects of la...

  3. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  4. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  5. Designing the Four Rod Crab Cavity for the High-Luminosity LHC upgrade.

    CERN Document Server

    Hall, Ben

    2014-01-01

    This thesis presents the design for a novel compact crab cavity for the HL-LHC upgrade at CERN, Geneva. The LHC requires 400MHz RF cavities that can provide up to 10MV transverse gradient across two to three cavities with suit- ably low surface fields for continual operation. As a result, a cavity design was required that would be optimised to these new parameters. From initial design studies based on Jefferson Laboratory’s CEBAF deflector, extensive optimiza- tion was carried out to design a superconducting crab cavity, dubbed the Four Rod Crab Cavity (4RCC). The design underwent several iterations throughout the course of the project due to changing requirements from CERN, particularly space requirements inside the LHC. In addition, it was decided that a focus on field flatness was required. An aluminium prototype was then constructed from the finalised and computer-simulated design to confirm the designed field flat- ness. Additional computer simulation studies using CST were performed to en-...

  6. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  7. Performance of the CMS precision electromagnetic calorimeter at the LHC Run II and prospects for high-luminosity LHC

    CERN Document Server

    Negro, Giulia

    2017-01-01

    The Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) is a high-performance calorimeter wich will operate also at the High Luminosity Large Hadron Collider (HL-LHC). This talk will describe the strategies that have been employed to maintain the excellent performance of the CMS ECAL throughout Run 2. Performance results from the 2015-2016 data taking periods will be shown and an outlook on the expected Run 2 performance in the years to come will be provided. The status and plans for the upgraded ECAL barrel electronics for the HL-LHC will be presented, based on recent results from simulations, laboratory tests, and test beam measurements of prototype devices.

  8. Strategy and issues for the LHC upgrades and fair, including longer-term prospects

    CERN Document Server

    Zimmermann, F

    2013-01-01

    This report discusses the time line, goals and key ingredients for the next ten years of LHC operation, including injector upgrade, for the following High Luminosity LHC (HL-LHC), and for the FAIR project. Results from pertinent EuCARD-WP4 workshops on optics, space charge, crab cavities, crystal collimation, and electron cloud are summarized in this context. A Large Hadron electron Collider, LHeC, would be an additional upgrade, further expanding the physics scope of the LHC, to eventually include both ep and γγ Higgs factories (LHeC-HF and SAPPHiRE). Results from relevant topical WP4 workshops are highlighted. The development of magnet and cable technology based on Nb$_{3}$Sn, and HTS, for the HL-LHC prepares the ground for a future higher-energy hadron collider, either in the LHC tunnel, “HELHC” (33 TeV c.m.), or in a new 80- or 100-km tunnel, “VHE-LHC” (100 TeV c.m.). A large new tunnel could also host an ultimate highest-precision e+e- Higgs factory collider, “TLEP,” exhibiting many synergi...

  9. Tracking detectors for the sLHC, the LHC upgrade

    CERN Document Server

    Sadrozinski, Hartmut F W

    2005-01-01

    The plans for an upgrade of the Large Hadron Collider (LHC) to the Super-LHC (sLHC) are reviewed with special consideration of the environment for the inner tracking system. A straw-man detector upgrade for ATLAS is presented, which is motivated by the varying radiation levels as a function of radius, and choices for detector geometries and technologies are proposed, based on the environmental constraints. A few promising technologies for detectors are discussed, both for sensors and for the associated front-end electronics. On-going research in silicon detectors and in ASIC technologies will be crucial for the success of the upgrade.

  10. Heavy-ion operation of HL-LHC

    CERN Document Server

    Jowett, J M; Versteegen, R

    2015-01-01

    The heavy-ion physics programme of the LHC will continue during the HL-LHC period with upgraded detectors capable of exploiting several times the design luminosity for nucleus–nucleus (Pb–Pb) collisions. For proton–nucleus (p–Pb) collisions, unforeseen in the original design of the LHC, a comparable increase beyond the 2013 luminosity should be attainable. We present performance projections and describe the operational strategies and relatively modest upgrades to the collider hardware that will be needed to achieve these very significant extensions to the physics potential of the High Luminosity LHC.

  11. Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC

    CERN Document Server

    Campana, Pierluigi; Wells, Pippa

    2016-01-01

    The completion of Run 1 of the CERN Large Hadron Collider has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, while Run 2 operation has just started to provide first data at higher energy. Upgrades of the LHC to high luminosity (HL-LHC) and the experiments (ATLAS, CMS, ALICE and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. In this article, the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC are reviewed.

  12. ATLAS Upgrade Programme

    CERN Document Server

    Hillier, S J; The ATLAS collaboration

    2012-01-01

    With the already outstanding LHC luminosity performance, and planned LHC upgrades in the upcoming shutdowns, it is expected that within a short time-scale, the general purpose LHC experiments will have to cope with luminosities beyond their original design. In order to maintain detector performance and sensitivity to expected and new physics processes, ATLAS has defined a continuous upgrade programme which foresees staged enhancements during the next 10 years of operation, and then more widespread changes before the transition to the highest luminosities after 2022. This talk will describe several components of the ATLAS upgrade, focusing in particular on the Inner Detector and Trigger. The Inner Detector faces two challenges in the higher luminosity environment: high particle multiplicities and increased radiation dose. These will be addressed in the short term by a new layer of Pixel detectors, and in the long term by a complete replacement. The Trigger faces an increasingly difficult task of distinguishing...

  13. FLUKA studies of hadron-irradiated scintillating crystals for calorimetry at the High-Luminosity LHC

    CERN Document Server

    Quittnat, Milena Eleonore

    2015-01-01

    Calorimetry at the High-Luminosity LHC (HL-LHC) will be performed in a harsh radiation environment with high hadron fluences. The upgraded CMS electromagnetic calorimeter design and suitable scintillating materials are a focus of current research. In this paper, first results using the Monte Carlo simulation program FLUKA are compared to measurements performed with proton-irradiated LYSO, YSO and cerium fluoride crystals. Based on these results, an extrapolation to the behavior of an electromagnetic sampling calorimeter, using one of the inorganic scintillators above as an active medium, is performed for the upgraded CMS experiment at the HL-LHC. Characteristic parameters such as the induced ambient dose, fluence spectra for different particle types and the residual nuclei are studied, and the suitability of these materials for a future calorimeter is surveyed. Particular attention is given to the creation of isotopes in an LYSO-tungsten calorimeter that might contribute a prohibitive background to the measu...

  14. Robust Tracking at the High Luminosity LHC

    CERN Document Server

    Woods, Natasha Lee; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of 7.5×10^34cm^-2s^-1 which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  15. Removing Known SPS Intensity Limitations for High Luminosity LHC Goals

    CERN Document Server

    Shaposhnikova, Elena; Bohl, Thomas; Cruikshank, Paul; Goddard, Brennan; Kaltenbacher, Thomas; Lasheen, Alexandre; Perez Espinos, Jaime; Repond, Joël; Salvant, Benoit; Vollinger, Christine

    2016-01-01

    In preparation of the SPS as an LHC injector its impedance was significantly reduced in 1999 - 2000. A new SPS impedance reduction campaign is planned now for the High Luminosity (HL)-LHC project, which requires bunch intensities twice as high as the nominal one. One of the known intensity limitations is a longitudinal multi-bunch instability with a threshold 3 times below this operational intensity. The instability is presently cured using the 4th harmonic RF system and controlled emittance blow-up, but reaching the HL-LHC parameters cannot be assured without improving the machine impedance. Recently the impedance sources responsible for this instability were identified and implementation of their shielding and damping is foreseen during the next long shutdown (2019 - 2020) in synergy with two other important upgrades: amorphous carbon coating of (part of) the vacuum chamber against the e-cloud effect and rearrangement of the 200 MHz RF system. In this paper the strategy of impedance reduction is presented t...

  16. Luminosity Optimization for a Higher-Energy LHC

    CERN Document Server

    Dominguez, O

    2011-01-01

    A Higher-Energy Large Hadron Collider (HE-LHC) is an option to further push the energy frontier of particle physics beyond the present LHC. A beam energy of 16.5 TeV would require 20 T dipole magnets in the existing LHC tunnel, which should be compared with 7 TeV and 8.33 T for the nominal LHC. Since the synchrotron radiation power increases with the fourth power of the energy, radiation damping becomes significant for the HE-LHC. It calls for transverse and longitudinal emittance control vis-a-vis beam-beam interaction and Landau damping. The heat load from synchrotron radiation, gas scattering, and electron cloud also increases with respect to the LHC. In this paper we discuss the proposed HE-LHC beam parameters; the time evolution of luminosity, beam-beam tune shifts, and emittances during an HE-LHC store; the expected heat load; and luminosity optimization schemes for both round and flat beams.

  17. Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC

    CERN Document Server

    AUTHOR|(CDS)2093638

    Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC Master of Science Thesis, 110 pages, 12 Appendix pages September 2013 Major: Design of machines and systems Examiner: Professor Reijo Kouhia Keywords: CERN, LHC, High Luminosity LHC project, superconductive dipole magnet, welding press, Nb$_{3}$Sn, pre-stress, Ar-inert gas furnace This thesis work has been carried out as a contribution to the development program of superconductive magnets within the LHC High Luminosity study. The thesis provides an insight to the steps that need to be taken in order to produce a superconductive magnet mainly focusing on mechanical assembly. Tooling upgrade is necessary for the production of the superconductive dipole magnet prototypes in near future. Major attention is given by the introduction of the welding assembly in chapter three. The structural compression is given by the so called shell stress defined by the thermal shrinkage of the weld. The associ...

  18. Sensor R&D for the CMS Tracker Upgrade for the HL-LHC

    CERN Document Server

    Behnamian, Hadi

    2014-01-01

    At an instantaneous luminosity of $5\\times 10^{34} cm^{-2} s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000 $fb^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future tracker. The measurements performed on the structures inc...

  19. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Scuri, Fabrizio; The ATLAS collaboration

    2018-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMTs). The analogue signals from the PMTs are amplified, shaped, digitized by sampling the signal every 25 ns and stored on detector until a trigger decision is received. The High-Luminosity phase of LHC (HL-LHC) expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under high pileup. Both the on- and off-detector TileCal electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precis...

  20. The ATLAS Fast Tracker and Tracking at the High-Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236423; The ATLAS collaboration

    2016-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. These procedings describe the electronics system used for the FTK’s massive parallelization. An overview of the installation, commissioning and running of the system is given. The ATLAS upgrades planned to enable tracking at the High Luminosity LHC are also discussed.

  1. Novel Materials for Collimators at LHC and its Upgrades

    CERN Document Server

    AUTHOR|(CDS)2108536; Dallocchio, Alessandro; Garlasche, Marco; Gentini, Luca; Gradassi, Paolo; Guinchard, Michael; Redaelli, Stefano; Rossi, Adriana; Sacristan De Frutos, Oscar; Carra, Federico; Quaranta, Elena

    2015-01-01

    Collimators for last-generation particle accelerators like the LHC, must be designed to withstand the close interaction with intense and energetic particle beams, safely operating over an extended range of temperatures in harsh environments, while minimizing the perturbing effects, such as instabilities induced by RF impedance, on the circulating beam. The choice of materials for collimator active components is of paramount importance to meet these requirements, which are to become even more demanding with the increase of machine performances expected in future upgrades, such as the High Luminosity LHC (HL-LHC). Consequently, a farreaching R&D program has been launched to develop novel materials with excellent thermal shock resistance and high thermal and electrical conductivity, replacing or complementing materials used for present collimators. Molybdenum Carbide - Graphite and Copper-Diamond composites have been so far identified as the most promising materials. The manufacturing methods, properties and...

  2. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extens...

  3. ATLAS detector upgrade prospects

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00184940; The ATLAS collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC is ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb$^{-1}$ expected for LHC running to 3000 fb $^{-1}$ by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of ...

  4. Keeping HL-LHC accountable

    CERN Multimedia

    2015-01-01

    This week saw the cost and schedule of the High Luminosity LHC (HL-LHC) and LHC Injectors Upgrade (LIU) projects come under close scrutiny from the external review committee set up for the purpose.    HL-LHC, whose implementation requires an upgrade to the CERN injector complex, responds directly to one of the key recommendations of the updated European Strategy for Particle Physics, which urges CERN to prepare for a ‘major luminosity upgrade’, a recommendation that is also perfectly in line with the P5 report on the US strategy for the field. Responding to this recommendation, CERN set up the HL-LHC project in 2013, partially supported by FP7 funding through the HiLumi LHC Design Study (2011-2015), and coordinated with the American LARP project, which oversees the US contribution to the upgrade. A key element of HL-LHC planning is a mechanism for receiving independent expert advice on all aspects of the project.  To this end, several technical reviews h...

  5. MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Bergmann, Benedikt; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel [IEAP CTU in Prague (Czech Republic); Ashba, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Bekhouche, Khaled [Biskra University (Algeria); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Lipniacka, Anna [Bergen University (Norway)

    2016-07-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s) =8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX luminosity measurements are below 0.3% for one minute intervals.

  6. The CMS Outer Tracker for HL-LHC

    CERN Document Server

    Dierlamm, Alexander Hermann

    2018-01-01

    The LHC is planning an upgrade program, which will bring the luminosity to about $5-7\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with a goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker is already running beyond design specifications and will not be able to cope with the HL-LHC radiation conditions. CMS will need a completely new Tracker in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Outer Tracker system is designed to provide robust tracking as well as Level-1 trigger capabilities using closely spaced modules composed of silicon macro-pixel and/or strip sensors. Research and development activities are ongoing to explore options and develop module components and designs for the HL-LHC environment. The design choices for the CMS Outer Tracker Upgrade are discussed along with some highlig...

  7. A novel powering scheme based on DC-DC conversion for the luminosity upgrades of the CMS tracking system at CERN

    International Nuclear Information System (INIS)

    Sammet, Jan

    2014-01-01

    The instantaneous luminosity of the LHC is expected to reach 2 x 10 34 s -1 cm -2 and 5 x 10 34 s -1 cm -2 around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 10 15 n eq /cm 2 . With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in several tests, including system test

  8. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  9. MPX Detectors as LHC Luminosity Monitor

    CERN Document Server

    Sopczak, Andre; Asbah, Nedaa; Bergmann, Benedikt; Bekhouche, Khaled; Caforio, Davide; Campbell, Michael; Heijne, Erik; Leroy, Claude; Lipniacka, Anna; Nessi, Marzio; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Soueid, Paul; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek

    2015-01-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at sqrt(s) = 8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX lum...

  10. The BRAN luminosity detectors for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Matis, H.S.; Placidi, M.; Ratti, A.; Turner, W.C. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bravin, E. [CERN, 1211 Geneva 23 (Switzerland); Miyamoto, R. [European Spallation Source, ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2017-03-11

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×10{sup 34} cm{sup −2} s{sup −1} with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  11. submitter Search for Dark Matter in the Upgraded High Luminosity LHC at CERN: Sensitivity of ATLAS phase II upgrade to dark matter production

    CERN Document Server

    Hallsjö, Sven-Patrik; Johansson, Magnus

    The LHC at CERN is now undergoing a set of upgrades to increase the center of mass energy for the colliding particles to be able to explore new physical processes. The focus of this thesis lies on the so called phase II upgrade which will preliminarily be completed in 2023. After the upgrade the LHC will be able to accelerate proton beams to such a velocity thateach proton has a center of mass energy of 14 TeV. One disadvantage of the upgrade is that it will be harder for the atlas detector to isolate unique particle collisions since more and more collisions will occur simultaneously, so called pile-up. For 14 TeV there does not exist a full simulation of the atlas detector. This thesis instead uses data from Monte Carlo simulations for the particle collisions and then uses so called smearing functions to emulate the detector responses. This thesis focuses on how a mono-jet analysis looking for different wimp models of dark matter will be affected by this increase in pile-up rate. The signal models which are ...

  12. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  13. Upgrades of the ATLAS trigger system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221618; The ATLAS collaboration

    2018-01-01

    In coming years the LHC is expected to undergo upgrades to increase both the energy of proton-proton collisions and the instantaneous luminosity. In order to cope with these more challenging LHC conditions, upgrades of the ATLAS trigger system will be required. This talk will focus on some of the key aspects of these upgrades. Firstly, the upgrade period between 2019-2021 will see an increase in instantaneous luminosity to $3\\times10^{34} \\rm{cm^{-2}s^{-1}}$. Upgrades to the Level 1 trigger system during this time will include improvements for both the muon and calorimeter triggers. These include the upgrade of the first-level Endcap Muon trigger, the calorimeter trigger electronics and the addition of new calorimeter feature extractor hardware, such as the Global Feature Extractor (gFEX). An overview will be given on the design and development status the aforementioned systems, along with the latest testing and validation results. \\\\ By 2026, the High Luminosity LHC will be able to deliver 14 TeV collisions ...

  14. Development of Muon Drift-Tube Detectors for High-Luminosity Upgrades of the Large Hadron Collider

    CERN Document Server

    Bittner, B; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.

    2016-01-01

    The muon detectors of the experiments at the Large Hadron Collider (LHC) have to cope with unprecedentedly high neutron and gamma ray background rates. In the forward regions of the muon spectrometer of the ATLAS detector, for instance, counting rates of 1.7 kHz/square cm are reached at the LHC design luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher background rates are expected which require replacement of the muon chambers in the critical detector regions. Tests at the CERN Gamma Irradiation Facility showed that drift-tube detectors with 15 mm diameter aluminum tubes operated with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns provide e?cient and high-resolution muon tracking up to the highest expected rates. For 15 mm tube diameter, space charge e?ects deteriorating the spatial resolution at high rates are strongly suppressed. The sense wires have to be positioned in the chamber with an accuracy of better than 50 ?micons in order to achieve the desired spatial...

  15. LHC challenges and upgrade options

    Energy Technology Data Exchange (ETDEWEB)

    Bruning, O [CERN AB/ABP, Y03600, 1211 Geneva 23 (Switzerland)], E-mail: Oliver.Bruning@cern.ch

    2008-05-15

    The presentation summarizes the key parameters of the LHC collider. Following a discussion of the main challenges for reaching the nominal machine performance the presentation identifies options for increasing the operation tolerances and the potential performance reach of the LHC by means of future hardware upgrades of the LHC and its injector complex.

  16. LHC challenges and upgrade options

    International Nuclear Information System (INIS)

    Bruning, O

    2008-01-01

    The presentation summarizes the key parameters of the LHC collider. Following a discussion of the main challenges for reaching the nominal machine performance the presentation identifies options for increasing the operation tolerances and the potential performance reach of the LHC by means of future hardware upgrades of the LHC and its injector complex

  17. Luminosity measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The measurement of the luminosity delivered by the LHC is pivotal for several key physics analyses. During the first three years of running, tremendous steps forwards have been made in the comprehension of the subtleties related to luminosity monitoring and calibration, which led to an unprecedented accuracy at a hadron collider. The detectors and corresponding algorithms employed to estimate online and offline the luminosity in CMS are described. Details are given concerning the procedure based on the Van der Meer scan technique that allowed a very precise calibration of the luminometers from the determination of the LHC beams parameters. What is being prepared in terms of detector and online software upgrades for the next LHC run is also summarized.

  18. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Rodriguez Bosca, Sergi; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The High-Luminosity phase of LHC (HL-LHC) expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under higher pileup. All the TileCal on- and off-detector electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Change...

  19. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Rodriguez Bosca, Sergi; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The High-Luminosity phase of LHC (HL-LHC)expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under higher pileup. All the TileCal on- and off-detector electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes...

  20. Physics potential of precision measurements of the LHC luminosity

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The uncertainty in the determination of the LHC luminosity is rapidly becoming a limiting factor for the analysis and interpretation of many important LHC processes. In this talk first of all we discuss the theoretical accuracy of total cross sections and examine in which cases the luminosity error is or will be dominant. We then review the impact of LHC data in PDF determinations, with enphasis on the effects of the luminosity uncertainty. We explore the requirements for the accuracy of the 2011 luminosity determination from the point of view of standard candle cross section and other important processes. Finally we discuss what we can learn from the accurate measurement of cross section ratios at different center of mass energies for processes like W, ttbar and dijet production.

  1. submitter Optimization of Nb$_{3}$Sn Rutherford Cables Geometry for the High Luminosity LHC

    CERN Document Server

    Fleiter, Jerome; Bonasia, Angelo; Bordini, Bernardo; Richter, David

    2017-01-01

    The quadrupole and dipole magnets for the LHC High Luminosity (HL-LHC) upgrade will be based on Nb$_{3}$Sn Rutherford cables that operate at 1.9 K and experience magnetic fields of up to about 12 T. An important step in the design of these magnets is the development of the high aspect ratio Nb$_{3}$Sn cables to achieve the nominal field with sufficient margin. The strong plastic deformation of unreacted $Nb_3Sn$ strands during the Rutherford cabling process may induce non negligible $I_c$ and RRR degradation. In this paper, the cabling degradation is investigated as a function of the cable geometry for both PIT and RRP conductors. Based on this analysis, new baseline geometries for both 11 T and QXF magnets of HL-LHC are proposed.

  2. submitter Optimization of Nb$_{3}$Sn Rutherford Cables Geometry for the High Luminosity LHC

    CERN Document Server

    Fleiter, Jerome; Bonasia, Angelo; Bordini, Bernardo; Richter, David

    2017-01-01

    The quadrupole and dipole magnets for the LHC High Luminosity (HL-LHC) upgrade will be based on Nb3Sn Rutherford cables that operate at 1.9 K and experience magnetic fields of up to about 12 T. An important step in the design of these magnets is the development of the high aspect ratio Nb3Sn cables to achieve the nominal field with sufficient margin. The strong plastic deformation of unreacted $Nb_3Sn$ strands during the Rutherford cabling process may induce non negligible $I_c$ and RRR degradation. In this paper, the cabling degradation is investigated as a function of the cable geometry for both PIT and RRP conductors. Based on this analysis, new baseline geometries for both 11 T and QXF magnets of HL-LHC are proposed.

  3. New Physics at HL-LHC with ATLAS

    CERN Document Server

    Rosten, Rachel; The ATLAS collaboration

    2018-01-01

    The prospects for new physics at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1, simulated in the upgrade ATLAS detector, are presented and discussed. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp collisions are explored, as well as the sensitivity of searches for anomalous top decays. For all these studies, a parameterised simulation of the upgraded ATLAS detector response is used, taking into account the expected pileup conditions.

  4. Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Anelli, Mario; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Balla, Alessandro; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Bordyuzhin, Igor; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carletti, Maurizio; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Casu, Luigi; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Citterio, Mauro; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Coelli, Simone; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Su{á}rez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; D{é}l{é}age, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Felici, Giulietto; Ferguson, Dianne; Fernandez, Gerard; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fresch, Paolo; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; F{ä}rber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; Garc{í}a Pardi{ñ}as, Juli{á}n; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gatta, Maurizio; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gian{ì}, Sebastiana; Gibson, Valerie; Girard, Olivier G{ö}ran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graug{é}s, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Gr{ü}nberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; G{ö}bel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adl{è}ne; Hill, Donal; Hombach, Christoph; Hopchev, P H; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Leflat, Alexander; Lefran{ç}ois, Jacques; Lef{è}vre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Tenglin; Li, Yiming; Li, Zhuoming; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean Fran{ç}ois; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, J{ö}rg; Marras, Davide; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, Andr{é}; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; M{ü}ller, Dominik; M{ü}ller, Janine; M{ü}ller, Katharina; M{ü}ller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, C{é}dric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Chen; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Gonzalo, David; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Saputi, Alessandro; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevens, Holger; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh T{â}m; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Van Dijk, Maarten; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; V{á}zquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano; CERN. Geneva. The LHC experiments Committee; LHCC

    2017-01-01

    A Phase-II Upgrade is proposed for the LHCb experiment in order to take full advantage of the flavour-physics opportunities at the HL-LHC, and other topics that can be studied with a forward spectrometer. This Upgrade, which will be installed in Long Shutdown 4 of the LHC (2030), will build on the strengths of the current experiment and the Phase-I Upgrade, but will consist of re-designed sub-systems that can operate at a luminosity of $2 \\times 10^{34}\\,{\\rm cm}^{-2} s^{-1}$, ten times that of the Phase-I Upgrade detector. New and improved detector components will increase the intrinsic performance of the experiment in certain key areas. In particular the installation of a tungsten sampling electromagnetic calorimeter will widen LHCb's capabilities for decays involving $\\pi^0$ and $\\eta$ mesons, electrons, and photons from loop-level penguin processes. The physics motivation is presented, and the prospects for operating the LHCb Interaction Point at high luminosity are assessed. The challenges for the detect...

  5. Energy Deposition Studies for the LHC Insertion Region Upgrade Phase-I

    CERN Document Server

    Cerutti, F; Ferrari, A; Mereghetti, A; Wildner, E

    2010-01-01

    While the Large Hadron Collider (LHC) at CERN is starting operation with beam, aiming to achieve nominal performance in the shortest term, the upgrade of the LHC interaction regions is actively pursued in order to enhance the physics reach of the machine. Its first phase, with the target of increasing the LHC luminosity to 2-3 1034cm-2s-1, relies on the mature Nb-Ti superconducting magnet technology and is intended to maximize the use of the existing infrastructure. The impact of the increased power of the collision debris has been investigated through detailed energy deposition studies, considering the new aperture requirements for the low-ß quadrupoles and a number of other elements in the insertions. Effective solutions in terms of shielding options and design/layout optimization have been envisaged and the crucial factors have been pointed out.

  6. NbTi Superferric Corrector Magnets for the LHC Luminosity Upgrade

    CERN Document Server

    Volpini, G; Bellomo, G; Broggi, F; Paccalini, A; Pedrini, D; Leone, A; Quadrio, M; Somaschini, L; Sorbi, M; Todero, M; Uva, C; Fessia, P; Todesco, E; Toral, F

    2015-01-01

    CERN and INFN, Italy, have signed an agreement for R&D activities relating to high-luminosity LHC superconducting magnets, which include the design, construction, and cryogenic test of a set of five prototypes, one for each type foreseen, from the skew quadrupole to the dodecapole. The reference layout of these magnets is based on a superferric design type, which allows reaching the required integrated field strength with a relatively simple design. Since the number of magnets of all the types required for the series is 36, emphasis has been put on modularity, reliability, ease of construction, and on the use of an available superconducting wire. This paper presents the status of the development work being performed at INFN, LASA Laboratory, and at CERN, focusing on the following issues: the electromagnetic 2- and 3-D design including harmonic component study; the fringe field analysis; the magnet powering and quench protection; mechanical and construction main choices.

  7. Silicon Strip Detectors for ATLAS at the HL-LHC Upgrade

    CERN Document Server

    Hara, K; The ATLAS collaboration

    2012-01-01

    The present ATLAS silicon strip (SCT) and transition radiation (TRT) trackers will be replaced with new silicon strip detectors, as part of the Inner Tracker System (ITK), for the Phase-2 upgrade of the Large Hadron Collider, HL-LHC. We have carried out intensive R&D programs to establish radiation harder strip detectors that can survive in a radiation level up to 3000 fb-1 of integrated luminosity based on n+-on-p microstrip detector. We describe main specifications for this year’s sensor fabrication, followed by a description of possible module integration schema

  8. Fibre optics cabling design for LHC detectors upgrade using variable radiation induced attenuation model

    CERN Document Server

    Shoaie, Mohammad Amin; Machado, Simao; Ricci, Daniel

    2018-01-01

    Foreseen upgrades over the next decades enable LHC to operate at a higher luminosity (HL-LHC). Accordingly, the optical links designed to transmit particle collision data need to be hardened against increased radiation level, allowing for a reliable communication. In this paper we study the fibre cabling design of a link between the transceiver optical front-end and the data control room. The radiation penalty calculation takes temperature drop down to ‒30°C into account. The proposed solution concatenates radiation-resistance and conventional fibres using multi-fibre interconnections. The end-to-end link loss during HL-LHC lifetime is estimated strictly less than 3.5 dB complying with predefined margin.

  9. Future of LHC

    CERN Document Server

    Dova, Maria-Teresa; The ATLAS collaboration

    2018-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000 fb-1 from p-p collisions at  14 TeV over the course of 10 years. The upgraded ATLAS detector must be able to cope well with increased occupancies and data rates. The large data samples at the High-Luminosity LHC will enable precise measurements of the Higgs boson and other Standard Model particles, as well as searches for new phenomena BSM.

  10. ATLAS Detector Upgrade Prospects

    International Nuclear Information System (INIS)

    Dobre, M

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb −1 expected for LHC running by the end of 2018 to 3000 fb −1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV. (paper)

  11. Operational results from the LHC luminosity monitors

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, R.; Ratti, A.; Matis, H.S.; Stezelberger, T.; Turner, W.C.; Yaver, H.; Bravin, E.

    2011-03-28

    The luminosity monitors for the high luminosity regions in the LHC have been operating to monitor and optimize the luminosity since 2009. The device is a gas ionization chamber inside the neutral particle absorber 140 m from the interaction point and monitors showers produced by high energy neutral particles from the collisions. It has the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. We present operational results of the device during proton and lead ion operations in 2010 and make comparisons with measurements of experiments. The Large Hadron Collider (LHC) at CERN can accelerate proton and lead ion beams to 7 TeV and 547 TeV and produce collisions of these particles. Luminosity measures performance of the LHC and is particularly important for experiments in high luminosity interaction points (IPs), ATLAS (IP1) and CMS (IP5). To monitor and optimize the luminosities of these IPs, BRAN (Beam RAte Neutral) detectors [1, 2] have been installed and operating since the beginning of the 2009 operation [3]. A neutral particle absorber (TAN) protects the D2 separation dipole from high energy forward neutral particles produced in the collisions [4]. These neutral particles produce electromagnetic and hadronic showers inside the TAN and their energy flux is proportional to the collision rate and hence to the luminosity. The BRAN detector is an Argon gas ionization chamber installed inside the TANs on both sides of the IP1 and IP5 and monitors the relative changes in the luminosity by detecting the ionization due to these showers. When the number of collisions per bunch crossing (multiplicity) is small, the shower rate inside the TAN is also proportional to the luminosity. Hence, the detector is designed to operate by measuring either the shower rate (counting mode for low and intermediate luminosities) or the average shower flux (pulse height mode for high luminosities). The detector is

  12. ATLAS Higgs and Supersymmetry Physics Prospects at the High-Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00225111; The ATLAS collaboration

    2018-01-01

    The Higgs physics prospects at the high-luminosity LHC are presented, assuming an energy of sqrt(s) = 14 TeV and a data sample of 3000-4000 fb-1. In particular, the ultimate precision attainable on the couplings measurements of the 125 GeV Higgs boson with SM fermions and bosons is discussed, as well as perspectives on the search for the Standard Model di-Higgs production, which could lead to the measurement of the Higgs boson self-coupling. Scenarios of SUSY sparticle production, among others, have been used as benchmark to drive the design of the component upgrades, and to evaluate the sensitivity of the upgraded accelerator and detector. This talk will also overview the expected sensitivity that the ATLAS experiment will have to SUSY sparticle production with 3000 fb-1 pf proton-proton collisions collected at a centre of mass energy of 14 TeV.

  13. Upgrade readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  14. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  15. Introduction to the HL-LHC Project

    CERN Document Server

    Rossi , L

    2015-01-01

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11–12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federa...

  16. Architecture of the upgraded BCM1F Backend Electronics for Beam Conditions and Luminosity measurement - hardware and firmware

    CERN Document Server

    Zagozdzinska, Agnieszka Anna; Przyborowski, D.; Leonard, J.L.; Pozniak, K.T.; Miraglia, M.; Walsh, R.; Lange, W.; Lohmann, W.; Ryjov, V.

    2015-01-01

    The Beam Radiation Instrumentation and Luminosity Project of the CMS experiment, consists of several beam monitoring systems. One system, the upgraded Fast Beams Condition Monitor, is based on 24 single crystal CVD diamonds with a double-pad sensor metallization and a custom designed readout. Signals for real time monitoring are transmitted to the counting room, where they are received and processed by new back-end electronics designed to extract information on LHC collision, beam induced background and activation products. Data in the form of histograms is transmitted to the DAQ. The system architecture and the signal processing algorithms will be presented.SummaryThe Fast Beam Conditions Monitor (BCM1F) detector is a part of the CMS Beam Radiation Instrumentation and Luminosity Project (BRIL). The increased performance expected of the LHC with energy of up to 14 TeV, higher luminosity and 25 ns bunch spacing is a challenge for the detector systems and increase the importance of real-time beam monitoring at ...

  17. Upgrades to the ATLAS trigger system   

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221618; The ATLAS collaboration

    2017-01-01

    In coming years the LHC is expected to undergo upgrades to increase both the energy of proton-proton collisions and the instantaneous luminosity. In order to cope with these more challenging LHC conditions, upgrades of the ATLAS trigger system will be required. This talk will focus on some of the key aspects of these upgrades. Firstly, the upgrade period between 2019-2021 will see an increase in instantaneous luminosity to $3\\times10^{34} \\rm{cm^{-2}s^{-1}}$. Upgrades to the Level 1 trigger system during this time will include improvements for both the muon and calorimeter triggers. These include the upgrade of the first-level Endcap Muon trigger, the calorimeter trigger electronics and the addition of new calorimeter feature extractor hardware, such as the Global Feature Extractor (gFEX). An overview will be given on the design and development status the aforementioned systems, along with the latest testing and validation results. By 2026, the High Luminosity LHC will be able to deliver 14 TeV collisions wit...

  18. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    International Nuclear Information System (INIS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020–2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented

  19. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    CERN Document Server

    INSPIRE-00304438; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  20. Commissioning of the Absolute Luminosity For ATLAS detector at the LHC

    CERN Document Server

    Jakobsen, Sune; Hansen, Peter; Hansen, Jørgen Beck

    The startup of the LHC (Large Hadron Collider) has initialized a new era in particle physics. The standard model of particle physics has for the last 40 years with tremendous success described all measurements with phenomenal precision. The experiments at the LHC are testing the standard model in a new energy regime. To normalize the measurements and understand the potential discoveries of the LHC experiments it is often crucial to know the interaction rate - the absolute luminosity. The ATLAS (A Toroidal LHC ApparatuS) detector will measure luminosity by numerous methods. But for most of the methods only the relative luminosity is measured with good precision. The absolute scale has to be provided from elsewhere. ATLAS is like the other LHC experiments mainly relying of absolute luminosity calibration from van der Meer scans (beam separation scans). To cross check and maybe even improve the precision; ATLAS has built a sub-detector to measure the flux of protons scattered under very small angles as this flux...

  1. Physics Prospects at the HL-LHC with ATLAS

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000 fb-1 from p-p collisions at $\\sqrt{s}$ = 14 TeV over the course of $\\sim$ 10 years, reaching instantaneous luminosities of up to L = 7.5 $\\times$ 1034cm$^{-2}$s$^{-1}$, corresponding to an average ($\\mu$) of 200 inelastic p-p collisions per bunch crossing. The upgraded ATLAS detector must be able to cope well with increased occupancies and data rates. The performance of the upgrade has been estimated in full simulation studies, assuming expected HL-LHC conditions and a detector configuration intended to maximise physics performance and discovery potential at the HL-LHC. The performance is expected to be similar to what we have now. Simulation studies have been carried out to evaluate the prospects of various benchmark physics analyses to be performed using the upgraded ATLAS detector with the full HL-LHC dataset.

  2. A new record peak luminosity for the LHC

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Two weeks of dedicated machine development paid off last weekend when the LHC ran for physics with three nominal intensity (∼1011 protons) bunches in each beam.   This brought a new record peak luminosity of around 8×1029 cm-2 s-1, and allowed the LHC to double the integrated luminosity delivered to the experiments since 30 March from 16 to 32 inverse nanobarns over the weekend. After a few more fills in this configuration, the number of bunches will be raised to six per beam, which will in turn allow the peak luminosity to break the 1030 cm-2 s-1 barrier for the first time, well on the way to achieving the 2010 objective of 1032 cm-2 s-1. This peak luminosity goal requires 800 nominal bunches per beam squeezed to a beta of 3.5 metres. The plan for 2011 is to run the LHC in this configuration over about 10 months, thus achieving the objective of recording one inverse femtobarn of data in total. The machine development period also allowed the TOTEM detectors to be set up with 45...

  3. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    International Nuclear Information System (INIS)

    Felice, Helene

    2008-01-01

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb 3 Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  4. Precision of MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Benes, Petr; Bergmann, Benedikt; Biskup, Bartolomej; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek [IEAP CTU in Prague (Czech Republic); Asbah, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Kladiva, Edward [IEP SAS Kosice (Slovakia)

    2015-07-01

    A network consisting of MPX detectors based on Medipix2 silicon pixel devices were originally adapted for measuring the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. We demonstrate that the MPX network, which consists of 16 MPX detectors, is a self-contained luminosity monitor system. As the MPX detectors are collecting data independently of the ATLAS data-recording chain, they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors close enough to the primary interaction point are used to perform van der Meer calibration scans with good precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s)=8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The variations of the MPX luminosity measurements around the fitted curve lead to a relative uncertainty on the luminosity measurement below 0.3% for one minute time intervals.

  5. LHC Report: A new luminosity record

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    After about one month of operation, the LHC has already accumulated an integrated luminosity of 28 pb-1, which corresponds to over 50% of the total delivered to the experiments in 2010. This impressive start to the LHC run in 2011 bodes well for the rest of year.   Following careful collimator set-up and validation, the first phase of beam commissioning 2011 has come to an end. The first stable beams were declared on Sunday 13 March with a moderate 3 bunches per beam and an initial luminosity of 1.6 × 1030 cm-2s-1. Machine protection tests continued during the following week as the commissioning team made absolutely sure that all critical systems (beam dumps, beam interlock system, etc.) were functioning properly. When these tests had finished, the way was opened to increased intensity and the LHC quickly moved through the first part of its planned, staged intensity increase. Fills with increasing numbers of bunches were delivered to the experiments, culminating in a fill with 200...

  6. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    CERN Document Server

    Ambrosio, G; Wanderer, P; Ferracin, P; Sabbi, G

    2017-01-01

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb$_{3}$Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  7. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermilab; Chlachidze, G. [Fermilab; Wanderer, P. [Brookhaven; Ferracin, P. [CERN; Sabbi, G. [LBNL, Berkeley

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  8. Conceptual study of the cryostats for the cold powering system for the triplets of the High Luminosity LHC

    Science.gov (United States)

    Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.

  9. A proposed Drift Tubes-seeded muon track trigger for the CMS experiment at the High Luminosity-LHC

    CERN Document Server

    AUTHOR|(CDS)2070813; Lazzizzera, Ignazio; Vanini, Sara; Zotto, Pierluigi

    2016-01-01

    The LHC program at 13 and 14 TeV, after the observation of the candidate SM Higgs boson, will help clarify future subjects of study and shape the needed tools. Any upgrade of the LHC experiments for unprecedented luminosities, such as the High Luminosity-LHC ones, must then maintain the acceptance on electroweak processes that can lead to a detailed study of the properties of the candidate Higgs boson. The acceptance of the key lepton, photon and hadron triggers should be kept such that the overall physics acceptance, in particular for low-mass scale processes, can be the same as the one the experiments featured in 2012.In such a scenario, a new approach to early trigger implementation is needed. One of the major steps will be the inclusion of high-granularity tracking sub-detectors, such as the CMS Silicon Tracker, in taking the early trigger decision. This contribution can be crucial in several tasks, including the confirmation of triggers in other subsystems, and the improvement of the on-line momentum mea...

  10. Analysis of the Stability Margin of the High Luminosity LHC Superconducting Cables with a Multi-Strand Model

    CERN Document Server

    AUTHOR|(CDS)2096257; Bottura, Luca

    At CERN (European Organization for Nuclear Research), between 1998 and 2008, the world’s largest and most powerful particle collider has been built. The LHC (Large Hadron Collider) is the biggest scientific instrument ever built to explore the new high-energy physic frontiers and it gathers a global user community of 7,000 scientists from all over 60 countries. The accelerated particles are made to collide together approaching the speed of light. This process allows to understand how the particles interact and provides insights into the fundamental laws of nature. After the latest amazing discoveries concerning the Higgs boson and the penta-quarks, another step forward is needed. To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond the original design value (from 300 to 3000 $fb^{−1})$. As a highly complex and optimised machine, such an upgrade of the LHC must be carefully studied and requires about 10 yea...

  11. Muon Physics at Run-I and its upgrade plan

    Directory of Open Access Journals (Sweden)

    Benekos Nektarios Chr.

    2015-01-01

    Full Text Available The Large Hadron Collider (LHC and its multi-purpose Detector, ATLAS, has been operated successfully at record centre-of-mass energies of 7 and TeV. After this successful LHC Run-1, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2030. To cope with the corresponding rate increase, the ATLAS detector needs to be upgraded. The upgrade will proceed in two steps: Phase I in the LHC shutdown 2018/19 and Phase II in 2023-25. The largest of the ATLAS Phase-1 upgrades concerns the replacement of the first muon station of the highrapidity region, the so called New Small Wheel. This configuration copes with the highest rates expected in Phase II and considerably enhances the performance of the forward muon system by adding triggering functionality to the first muon station. Prospects for the ongoing and future data taking are presented. This article presents the main muon physics results from LHC Run-1 based on a total luminosity of 30 fb^-1. Prospects for the ongoing and future data taking are also presented. We will conclude with an update of the status of the project and the steps towards a complete operational system, ready to be installed in ATLAS in 2018/19.

  12. Radiation protection issues after 20 years of LHC operation

    CERN Document Server

    Forkel-Wirth, D.; Roesler, S.; Theis, C.; Ulrici, L.; Vincke, H.; Vincke, Hz.

    2011-01-01

    Since November 2009, the LHC commissioning progresses very well, both with proton and lead beams. It will continue in 2011 and nominal LHC operation is expected to be attained in 2013. In parallel, plans for various LHC upgrades are under discussion, suggesting a High-Luminosity (HL) upgrade first and a High-Energy (HE) upgrade in a later state. Whereas the upgrade in luminosity would require the modification of only some few key accelerator components like the inner triplets, the upgrade in beam energy from 7 TeV to 16.5 TeV would require the exchange of all dipoles and of numerous other accelerator components. The paper gives an overview of the radiation protection issues related to the dismantling of LHC components prior to the installation of the HE-LHC components, i.e. after about 20 years of LHC operation. Two main topics will be discussed: (i) the exposure of workers to ionizing radiation during the dismantling of dipoles, inner triplets or collimators and experiments and (ii) the production, condition...

  13. Physics prospects at the HL-LHC with ATLAS

    CERN Document Server

    Duncan, Anna Kathryn

    2017-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000 fb$^{-1}$ from proton-proton collisions at $\\sqrt{s}$ = 14 TeV over the course of $\\sim$ 10 years, reaching instantaneous luminosities of up to $L = 7.5 \\times 10^{34} cm^{-2} s^{-1}$, corresponding to an average of 200 inelastic p-p collisions per bunch crossing ($\\mu = 200)$. The upgraded ATLAS detector and trigger system must be able to cope well with increased occupancies and data rates. The performance of the upgrade has been estimated in full simulation studies, assuming expected HL-LHC conditions and a detector configuration intended to maximise physics performance and discovery potential at the HL-LHC, and is expected to be similar to current performance. Fast simulation studies have been carried out to evaluate the prospects of various benchmark physics analyses to be performed using the upgraded ATLAS detector with the full HL-LHC dataset.

  14. The design of a fast Level-1 track trigger for the high luminosity upgrade of ATLAS.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00413032; The ATLAS collaboration

    2016-01-01

    The high/luminosity upgrade of the LHC will increase the rate of the proton-proton collisions by approximately a factor of 5 with respect to the initial LHC-design. The ATLAS experiment will upgrade consequently, increasing its robustness and selectivity in the expected high radiation environment. In particular, the earliest, hardware based, ATLAS trigger stage ("Level 1") will require higher rejection power, still maintaining efficient selection on many various physics signatures. The key ingredient is the possibility of extracting tracking information from the brand new full-silicon detector and use it for the process. While fascinating, this solution poses a big challenge in the choice of the architecture, due to the reduced latency available at this trigger level (few tens of micro-seconds) and the high expected working rates (order of MHz). In this paper, we review the design possibilities of such a system in a potential new trigger and readout architecture, and present the performance resulting from a d...

  15. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5x compared to the design luminosity (10^34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade is expected to happen around 2023. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 ...

  16. LHC Report: Boost in bunches brings record luminosity

    CERN Multimedia

    2011-01-01

    Having hit a luminosity of around 8.4x1032 cm-2 s-1 with 768 bunches per beam, the LHC went into a 5-day machine development (MD) program on Wednesday 4 May. Operators are now working on increasing the number of particle bunches in the machine towards a 2011 maximum of around 1380 bunches. The team is already hitting major milestones, recording another record-breaking peak luminosity on Monday 23 May.   Former LHC Project Leader Lyn Evans (to the right) and Laurette Ponce, the engineer-in-charge when the recent luminosity record was achieved. The MD periods improve our understanding of the machine, with the aim of increasing its short- and long-term performance. This one also included tests of the machine’s configurations for special physics runs and a future high luminosity LHC. It was an intense program and overall it went very well, with most measurements carried out successfully. Highlights included: commissioning a dedicated machine setup for TOTEM and ALFA; succe...

  17. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    International Nuclear Information System (INIS)

    Cerri, Alessandro

    2016-01-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage (“Level 1”) will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed. - Highlights: • HL-LH requires highly performing event selection. • ATLAS is studying the implementation of tracking at the very first trigger level. • Low latency and high-quality seem to be achievable with dedicated hardware and adequate detector readout architecture.

  18. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (P hase - II ) where the pea k luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expe cted to happen around 202 4 . The TileCal upgrade aims at replacing the majority of the on - and off - detector electronics to the extent that all calorimeter signals will be digitized and sent to the off - detector electronics in the counting room. To achieve th e required reliability, redundancy has been introduced at different levels. Three different options are presently being investiga...

  19. Silicon Strip Detectors for ATLAS at the HL-LHC Upgrade

    CERN Document Server

    Hara, K; The ATLAS collaboration

    2012-01-01

    present ATLAS silicon strip tracker (SCT) and transition radiation tracker(TRT) are to be replaced with new silicon strip detectors as part of the Inner Tracker System (ITK) for the Phase-II upgrade of the Large Hadron Collider, HL-LHC. We have carried out intensive R&D programs based on n+-on-p microstrip detectors to fabricate improved radiation hard strip detectors that can survive the radiation levels corresponding to the integrated luminosity of up to 3000 fb−1. We describe the main specifications for this year’s sensor fabrication and the related R&D results, followed by a description of the candidate schema for module integration.

  20. A Level 1 Tracking Trigger for the CMS Experiment at the LHC Phase 2 Luminosity Upgrade

    CERN Document Server

    Pozzobon, Nicola

    2011-01-01

    The second decade of Large Hadron Collider operations, from about 2020 onwards, envisages a remarkable increase in collider instantaneous luminosity, one order of magnitude above the project one. This luminosity increase presents several challenges to the LHC experiments. The present tracker of the Compact Muon Solenoid experiment must be replaced with a system providing excellent tracking quality at higher luminosities, as well as Tracking Trigger inputs to the existing “Level 0” CMS trigger system at the full 40 MHz bunch-crossing rate. The minimal requirements for a Tracking Trigger would be the capability to confirm the presence of high-pT tracks associated with Calorimeter and/or Muon Level 0 triggers. The ability to provide eective isolation criteria may also be required, and would in any case substantially improve the Trigger performance. Maintaining the data rates generated by Tracking Trigger inputs within a manageable bandwidth requires sensor modules able to locally sparsify the data. Measuring...

  1. Powering the High-Luminosity Triplets

    Science.gov (United States)

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  2. Silicon Sensors for High-Luminosity Trackers - RD50 Collaboration Status Report

    CERN Document Server

    Kuehn, Susanne

    2014-01-01

    The revised schedule for the Large Hadron Collider (LHC) upg rade foresees a significant increase of the luminosity of the LHC by upgrading towards the HL-LHC ( High Luminosity-LHC). The final upgrade is planned for around the year 2023, followed by the HL-LHC running. This is motivated by the need to harvest the maximum physics potenti al from the machine. It is clear that the high integrated luminosity of 3000 fb − 1 will result in very high radiation levels, which manifest a serious challenge for the detectors. This is espe cially true for the tracking detectors installed close to the interaction point. For HL-LHC, all-s ilicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silico n sensors to be employed in the innermost layers. Within the RD50 Collaboration, a massive R&D; program is underway, with an open cooperation across experimental boundaries to deve lop silicon sensors with sufficient radiation tolerance. This report presents several researc h topics...

  3. SLC-2000: A luminosity upgrade for the SLC

    International Nuclear Information System (INIS)

    Breidenbach, M.; Decker, F.-J.; Helm, R.; Napoly, O.; Phinney, N.; Raimondi, P.; Raubenheimer, T.O.; Siemann, R.; Zimmermann, F.; Hertzbach, S.

    1996-01-01

    We discuss a possible upgrade to the Stanford Linear Collider (SLC), whose objective is to increase the SLC luminosity by at least a factor 7, to an average Z production rate of more than 35,000 per week. The centerpiece of the upgrade is the installation of a new superconducting final doublet with a field gradient of 240 T/m, which will be placed at a distance of only 70 cm from the interaction point. In addition, several bending magnets in each final focus will be lengthened and two octupole correctors are added. A complementary upgrade of damping rings and bunch compressors will allow optimum use of the modified final focus and can deliver, or exceed, the targeted luminosity. The proposed upgrade will place the SLC physics program in a very competitive position, and will also enable it to pursue its pioneering role as the first and only linear collider. (author)

  4. Expected Performance of the ATLAS Inner Tracker at the High Luminosity LHC

    CERN Document Server

    Mansour, Jason Dhia; The ATLAS collaboration

    2017-01-01

    The large data samples at the High-Luminosity LHC will enable precise measurements of the Higgs boson and other Standard Model particles, as well as searches for new phenomena such as supersymmetry and extra dimensions. To cope with the experimental challenges presented by the HL-LHC such as large radiation doses and high pileup, the current Inner Detector will be replaced with a new all-silicon Inner Tracker for the Phase II upgrade of the ATLAS detector. The current tracking performance of two candidate Inner Tracker layouts with an increased tracking acceptance (compared to the current Inner Detector) of |η|<4.0, employing either an ‘Extended’ or ‘Inclined’ Pixel barrel, is evaluated. New pattern recognition approaches facilitated by the detector designs are discussed, and ongoing work in optimising the track reconstruction for the new layouts and experimental conditions are outlined. Finally, future approaches that may improve the physics and/or technical performance of the ATLAS track reconst...

  5. Models and experimental results from the wide aperture Nb-Ti magnets for the LHC upgrade

    CERN Document Server

    Kirby, G.; Bajko, M.; Charrondiere, M.; Bourcey, N.; Datskov, V.I.; Fessia, P.; Feuvrier, J.; Galbraith, P.; Tabares, A. Garcia; Garcia-Perez, J.; Granieri, P.; Hagen, P.; Lorin, C.; Perez, J.C.; Russenschuck, S.; Sahner, T.; Segreti, M.; Todesco, E.; Willering, G.

    2013-01-01

    MQXC is a Nb-Ti quadrupole designed to meet the accelerator quality requirements needed for the phase-1 LHC upgrade, now superseded by the high luminosity upgrade foreseen in 2021. The 2-m-long model magnet was tested at room temperature and 1.9 K. The technology developed for this magnet is relevant for other magnets currently under development for the high-luminosity upgrade, namely D1 (at KEK) and the large aperture twin quadrupole Q4 (at CEA). In this paper we present MQXC test results, some of the specialized heat extraction features, spot heaters, temperature sensor mounting and voltage tap development for the special open cable insulation. We look at some problem solving with noisy signals, give an overview of electrical testing, look at how we calculate the coil resistance during at quench and show that the heaters are not working We describe the quench signals and its timing, the development of the quench heaters and give an explanation of an Excel quench calculation and its comparison including the ...

  6. Future Plans of the ATLAS Collaboration for the HL-LHC

    CERN Document Server

    Hristova, Ivana; The ATLAS collaboration

    2018-01-01

    These proceedings report the current plans to upgrade the ATLAS detector at CERN for the High Luminosity LHC (HL-LHC). The HL-LHC is expected to start operations in the middle of 2026, aiming to reach an ultimate peak instantaneous luminosity of 7.5$\\times10^{34}$cm$^{-2}$s$^{-1}$, corresponding to approximately 200 inelastic proton-proton collisions per bunch crossing, and to deliver over a period of twelve years more than ten times the integrated luminosity of the large hadron collider (LHC) Runs 1-3 combined (up to $4000$ fb$^{-1}$). This is a huge challenge to all sub-systems of the detector which will need extensive upgrades to allow the experiment to pursue a rich and interesting physics programme in the future.

  7. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Testsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany); Havranek, Miroslav [University of Bonn, Bonn (Germany); Institute of Physics of the Academy of Sciences, Prague (Czech Republic)

    2015-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges coming from the higher hit rate will have to be solved by designing faster and more complex circuits, while at the same time keeping in mind very high radiation hardness requirements. Therefore matching the specification set by the high luminosity upgrade requires a large R and D effort. Our group is participating in such a joint development * namely the RD53 collaboration * which goal is to design a new pixel chip using an advanced 65 nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology will be shown together with a comparison with older technologies (130 nm, 250 nm). Most of the talk is allocated to presenting some of the circuits designed by our group, along with their performance measurement results.

  8. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Souza, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5-fold compared to the design luminosity (10exp34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2023. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. The smallest independent on-detector electronics module has been reduced from 45 channels to 6, greatly reducing the consequences of a failure in the on-detector electronics. The size of t...

  9. A Readout Driver for the ATLAS LAr Calorimeter at a High Luminosity LHC

    CERN Document Server

    Kielburg-Jeka, A

    2011-01-01

    A new readout driver (ROD) is being developed as a central part of the signal processing of the ATLAS liquid-argon calorimeters for operation at the High Luminosity LHC (HL-LHC). In the architecture of the upgraded readout system, the ROD modules will have several challenging tasks: receiving of up to 1.4 Tb/s of data per board from the detector front-end on multiple high-speed serial links, low-latency data processing, data buffering, and data transmission to the ATLAS trigger and DAQ systems. In order to evaluate the different components, prototype boards in ATCA format equipped with modern Xilinx and Altera FPGAs have been built. We will report on the measured performance of the SERDES devices, the parallel signal processing using DSP slices, the implementation of trigger interfaces, using e.g. multi-Gb Ethernet, as well as the development of the ATCA infrastructure on the ROD prototype modules.

  10. Preliminary accelerator plans for maximizing the integrated LHC luminosity

    CERN Document Server

    Benedikt, Michael; Ruggiero, F; Ostojic, R; Scandale, Walter; Shaposhnikova, Elena; Wenninger, J

    2006-01-01

    A working group on "Proton Accelerators for the Future" (PAF) has been created in May 2005 by the CERN direction to elaborate a baseline scenario of the possible development and upgrade of the present Proton Accelerator Complex. This report is the result of the investigation conducted until the end of 2005, in close connection with the working group on "Physics Opportunities with Future Proton Accelerators" (POFPA) and is consistent with their recommendations. Focused on the goal of maximizing the integrated luminosity for the LHC experiments, a scenario of evolution is proposed, subject to further refinement using the future experience of commissioning and running-in the collider and its injector complex. The actions to be taken in terms of consolidation, R & D and improvement are outlined. The benefits for other types of physics are mentioned and will be investigated in more detail in the future.

  11. Upgrade of the ATLAS detectors and trigger at the High Luminosity LHC: tracking and timing for pile-up suppression

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2018-01-01

    The High Luminosity-Large Hadron Collider  is expected to start data-taking in 2026 and to provide an integrated luminosity of 3000 fb-1, giving a factor 10 more data than will be collected by 2023. This high statistics will make it possible to perform precise measurements in the Higgs sector and improve searches of new physics at the TeV scale. The luminosity is expected to be 7.5 ×1034 cm-2 s-1, corresponding to about 200 proton-proton pile-up interactions, which will increase the rates at each level of the trigger and degrade the reconstruction performance. To cope with such a harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted and the Trigger-DAQ system will be upgraded. In this talk an overview of two new sub-detectors enabling powerful pile-up suppression, a new Inner Tracker and a proposed High Granularity Timing Detector, will be given, describing the two technologies, their performance, and their interplay. Emphasis will also be given to the possi...

  12. Upgrade of the ATLAS detectors and trigger at the High Luminosity LHC: tracking and timing for pile-up suppression

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2018-01-01

    The High Luminosity-Large Hadron Collider is expected to start data-taking in 2026 and to provide an integrated luminosity of 3000 fb^{-1}, giving a factor 10 more data than will be collected by 2023. This high statistics will make it possible to perform precise measurements in the Higgs sector and improve searches of new physics at the TeV scale. The luminosity is expected to be 7.5 \\times 10^{34} cm^{-2} s^{-1}, corresponding to about 200 proton-proton pile-up interactions, which will increase the rates at each level of the trigger and degrade the reconstruction performance. To cope with such a harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted and the Trigger-DAQ system will be upgraded. In this talk an overview of two new sub-detectors enabling powerful pile-up suppression, a new Inner Tracker and a proposed High Granularity Timing Detector, will be given, describing the two technologies, their performance, and their interplay. Emphasis will also be giv...

  13. Future Plans of the ATLAS Collaboration for the HL-LHC

    CERN Document Server

    Hristova, Ivana; The ATLAS collaboration

    2017-01-01

    With the already outstanding LHC luminosity performance, and planned LHC upgrades in the upcoming shutdowns, it is expected that within a short time-scale, the general purpose LHC experiments will have to cope with luminosities beyond their original design. In order to maintain detector performance and sensitivity to expected and new physics processes, ATLAS has defined a continuous upgrade programme which foresees staged enhancements during the next 10 years of operation, and then more widespread changes before the transition to the highest luminosities after 2024. This talk will describe several components of the ATLAS upgrade, focusing in particular on the systems for acquiring large samples of data for the study of benchmark physics processes. The detector systems face two challenges in the higher luminosity environment: high particle occupancies and increased radiation dose. These will be addressed by a complete replacement of the inner detector and the readout electronics of the calorimeter and muon det...

  14. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    International Nuclear Information System (INIS)

    Barbier, G; Cadoux, F; Clark, A; Favre, Y; Ferrere, D; Gonzalez-Sevilla, S; Iacobucci, G; Marra, D La; Perrin, E; Seez, W; Endo, M; Hanagaki, K; Hara, K; Ikegami, Y; Nakamura, K; Takubo, Y; Terada, S; Jinnouchi, O; Nishimura, R; Takashima, R

    2014-01-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 10 34  cm −2  s −1 . For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described

  15. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  16. The ALICE Inner Tracking System Upgrade

    CERN Document Server

    Siddhanta, Sabyasachi

    2015-01-01

    The long term plan of ALICE (A Large Ion Collider Experiment) at the CERN Large Hadron Collider (LHC) is a detailed investigation and characterisation of the Quark-Gluon Plasma (QGP). ALICE has devised a comprehensive upgrade strategy to enhance its physics capabilities and to exploit the LHC running conditions after the second long shutdown of the LHC scheduled in 2019-20. The upgraded ALICE will focus on high precision measurements of rare probes over a wide range of momenta, which will significantly improve the performance with respect to the present experimental set up. The upgrade strategy is based on the fact that after LS2 LHC will progressively increase its luminosity with Pb beams eventually reaching an interaction rate of about 50 kHz. To exploit the new LHC capabilities, several existing detectors will undergo a substantial upgrade and new detectors will be added. Within this upgrade strategy, the Inner Tracking System (ITS) upgrade forms an important cornerstone, providing precise measurements for...

  17. Introduction to the HL-LHC Project

    Science.gov (United States)

    Rossi, L.; Brüning, O.

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11-12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federates efforts and R&D of a large community in Europe, in the US and in Japan, which will facilitate the implementation of the construction phase as a global project.

  18. Magnetic Analysis of the Nb$_3$Sn low-beta Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Chlachidze, G; Ferracin, P; Holik, E; Di Marco, J; Todesco, E; Sabbi, G L; Vallone, G; Wang, X

    2017-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture $Nb_3Sn$ quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axis and the contribution of the coil ends are also discussed. Moreover, we present the influence of the conductor magnetization and the dynamic effects.

  19. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  20. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  1. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  2. Conductor Specification and Validation for High-Luminosity LHC Quadrupole Magnets

    International Nuclear Information System (INIS)

    Cooley, L. D.; Ghosh, A. K.; Dietderich, D. R.; Pong, I.

    2017-01-01

    The High Luminosity Upgrade of the Large Hadron Collider (HL-LHC) at CERN will replace the main ring inner triplet quadrupoles, identified by the acronym MQXF, adjacent to the main ring intersection regions. For the past decade, the U.S. LHC Accelerator R&D Program, LARP, has been evaluating conductors for the MQXFA prototypes, which are the outer magnets of the triplet. Recently, the requirements for MQXF magnets and cables have been published in P. Ferracin et al., IEEE Trans. Appl. Supercond., vol. 26, no. 4, 2016, Art. no.4000207, along with the final specification for Ti-alloyed Nb3Sn conductor determined jointly by CERN and LARP. This paper describes the rationale beneath the 0.85 mm diameter strand’s chief parameters, which are 108 or more sub-elements, a copper fraction not less than 52.4%, strand critical current at 4.22 K not less than 631 A at 12 T and 331 A at 15 T, and residual resistance ratio of not less than 150. This paper also compares the performance for ~100 km production lots of the five most recent LARP conductors to the first 163 km of strand made according to the HL-LHC specification. Two factors emerge as significant for optimizing performance and minimizing risk: a modest increase of the sub-element diameter from 50 to 55 μm, and a Nb:Sn molar ratio of 3.6 instead of 3.4. Furthermore, the statistics acquired so far give confidence that the present conductor can balance competing demands in production for the HL-LHC project.

  3. CARE-HHH-APD Workshop on Finalizing the Roadmap for the Upgrade of the CERN and GSI Accelerator Complex

    CERN Document Server

    Zimmermann, Frank; BEAM'07; BEAM 2007; Finalizing the Roadmap for the Upgrade of the LHC and GSI Accelerator Complex

    2008-01-01

    This report contains the Proceedings of the CARE-HHH-APD Event BEAM’07, “Finalizing the Roadmap for the Upgrade of the CERN & GSI Accelerator Complex,” which was held at CERN in Geneva, Switzerland, from 1 to 5 October 2007. BEAM’07 was primarily devoted to beam dynamics limitations for the two, or three, alternative baseline scenarios of the LHC luminosity upgrade and to critical design choices for the upgrade of the LHC injector complex at CERN and for the FAIR complex at GSI. It comprised five parts: (1) a Mini-Workshop on LHC+ Beam Performance, (2) a CERN-GSI Meeting on Collective Effects, (3) the Francesco Ruggiero Memorial Symposium, (4) a Mini-Workshop on the LHC Injectors Upgrade, and (5) the BEAM’07 Summaries. Topics addressed in the first mini-workshop of BEAM’07 ranged from the luminosity performance reach of the upgraded LHC in different scenarios, over the generation and stability of the future LHC beams, the turnaround time, beam–beam effects, luminosity levelling methods, and ...

  4. Proceedings of Chamonix 2012 workshop on LHC Performance

    International Nuclear Information System (INIS)

    Carli, C.

    2012-01-01

    During this workshop on LHC performance, operation of the machine in 2012, activities during the first long shutdown LS1 aiming at preparing for operation at 7 TeV per beam and substantial long term upgrades of both the injector chain and the LHC have been discussed. After a session dedicated to observations and lessons from the run 2011, strategies for the run 2012 have been discussed in order to optimize the machine performance and, in particular, the maximum and integrated luminosity provided to the main experiments. Two session were dedicated to the preparation of the first long shutdown (LS1) followed by a session aiming at optimizing the performance to be expected after this first shutdown. The last two session of the workshop were dedicated to substantial upgrades of the injector complex and the LHC aiming at increasing the integrated luminosity to 250 inverse femto-barn per year after implementation in a second long shutdown. Improvements of the injector complex comprise increased injection energies in the PS Booster and the PS, an upgrade of the SPS vacuum chamber to alleviate limitations due to electron cloud build up and many more upgrades required for the generation of beams with higher brightness and smaller emittances than possible with the present machines. Plans for the LHC comprise an upgrade of the interaction regions to allow for a smaller beta*, crab cavities for luminosity levelling and, upgrades of the collimation and other systems

  5. Social Cost Benefit Analysis of HL-LHC

    CERN Document Server

    Bastianin, Andrea

    2018-01-01

    We present a Social Cost–Benefit Analysis (CBA) of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), assessing its economic costs and benefits up to 2038. The Net Present Value (NPV) of the HL-LHC project is positive at the end of the observation period. The ratio between incremental benefits and incremental costs of the HL-LHC with respect to continue operating the LHC under normal consolidation (i.e. without high-luminosity upgrade) is slightly over 1.7, meaning that each Swiss Franc invested in the HL-LHC upgrade project pays back approximately 1.7 CHF in societal benefits. Simulations based on 50000 Monte Carlo rounds show that there is a 94% chance to observe a positive NPV (i.e. a quantifiable economic benefit for the society). The attractiveness of CERN for Early Stage Researchers (ESR) is key for a positive CBA result. Given that benefits to ESRs are the single most important societal benefit, CERN should invest more in activities facilitating the transition to the international job...

  6. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  7. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  8. Supersymmetry Reach of Tevatron Upgrades and LHC in Gauge-mediated Supersymmetry-breaking Models

    CERN Document Server

    Wang, Y

    2002-01-01

    We examine signals for sparticle production at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC) within the framework of gauge mediated supersymmetry breaking models. We divide our analysis into four different model lines, each of which leads to qualitatively different signatures. We identify cuts to enhance the signal above Standard Model backgrounds, and use ISAJET to evaluate the SUSY reach of experiments at the Fermilab Main Injector and at its luminosity upgrades and also at the LHC. We examine the reach of the LHC via the canonical E/ and multilepton channels that have been advocated within the mSUGRA framework. For the model lines that we have examined, we find that the reach is at least as large, and frequently larger, than in the mSUGRA framework. For two of these model lines, we find that the ability to identify b-quarks and τ-leptons with high efficiency and purity is essential for the detection of the signal.

  9. The Physics Landscape of the High Luminosity LHC

    CERN Document Server

    Mangano, M

    2015-01-01

    We review the status of HEP after the first run of the LHC and discuss the opportunities offered by the HL-LHC, in light of the needs for future progress that are emerging from the data. The HL-LHC will push to the systematic limit the precision of most measurements of the Higgs boson, and will be necessary to firmly establish some of the more rare decays foreseen by the Standard Model, such as the decays to dimuons and to a Z+ photon pair. The HL-LHC luminosity will provide additional statistics required by the quantitative study of any discovery the LHC may achieve during the first 300 inverse femtobarn, and will further extend the discovery potential of the LHC, particularly for rare, elusive or low-sensitivity processes.

  10. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  11. To High Luminosity and beyond!

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    This week marks a major milestone for the High Luminosity LHC (HL-LHC - see here) project, as it moves from the design study to the machine construction phase. HL-LHC will extend the LHC’s discovery potential, increasing luminosity by a factor of 10 beyond the original design value and allowing the scientific community to study new phenomena.    Composer Domenico Vicinanza (left) directs the musical performance of sonified LHC data during a special Hi-Lumi event (see box). The green light was given during the 5th Joint HiLumi LHC-LARP annual meeting that took place at CERN from 26 to 30 October 2015. The meeting saw the participation of more than 230 experts from all over the world to discuss the results and achievements of the HiLumi LHC Design Study. During the week, these experts approved the first version of the HL-LHC Technical Design Report – the document that, following the Preliminary Design Report issued in 2014, describes in detail how the LHC upgrade progra...

  12. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste and INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2014-11-21

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R and D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  13. The ITk strips tracker for the phase-II upgrade of the ATLAS detector of the HL-LHC

    CERN Document Server

    Koutoulaki, Afroditi; The ATLAS collaboration

    2016-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  14. Heavy ion operation from run 2 to HL-LHC

    CERN Document Server

    Jowett, J M; Versteegen, R

    2014-01-01

    The nuclear collision programme of the LHC will continue with Pb-Pb and p-Pb collisions in Run 2 and beyond. Extrapolating from the performance at lower energies in Run 1, it is already clear that Run 2 will substantially exceed design performance. Beyond that, future high-luminosity heavy ion operation of LHC depends on a somewhat different set of (more modest) upgrades to the collider and its injectors from p-p. The high-luminosity phase will start sooner, in Run 3, when necessary upgrades to detectors should be completed. It follows that the upgrades for heavy-ion operation need high priority in LS2.

  15. Upgrade Plans for ATLAS Forward Calorimetry for the HL-LHC

    CERN Document Server

    Krieger, P; The ATLAS collaboration

    2013-01-01

    The ATLAS detector was designed and built to study proton-proton (pp) collisions produced by the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}{\\rm cm}^{-2}{\\rm s}^{-1}$. At the higher instantaneous luminosity ($5\\times 10^{34}{\\rm cm}^{-2}{\\rm s}^{-1}$) proposed for the High-Luminosity LHC (HL-LHC), some components of ATLAS will not operate properly, while others may not survive the dose that will be accumulated while collecting the proposed 3000 fb$^{-1}$ of pp collision data. For the ATLAS liquid argon (LAr) calorimeter, problems are anticipated in the forward region where the particle flux is particularly high. The existing Forward Calorimeter (FCal) was designed with very narrow LAr gaps (250-500 $\\mu$m) in order to avoid problems due to ion build-up that would distort the electric field. At HL-LHC luminosities, these gaps are no longer sufficiently narrow. The resulting distortions of the electric field in the gaps would be exacerbated b...

  16. Upgrade Plans for ATLAS Forward Calorimetry for the HL-LHC

    CERN Document Server

    Fincke-Keeler, M; The ATLAS collaboration

    2012-01-01

    Although LHC data-taking is expected to continue for a number or years, plans are already being developed for operation of the LHC and associated detectors at a increased instantaneous luminosity about 5 times the original design value of 10^34 cm^-2 s^-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the LAr forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities poses a number of problems that can degrade its performance, related to beam heating, space charge effects in the LAr gaps and HV losses due to increased current draws over the HV current-limiting resistors. One solution to these problems, which would require the opening of both endcap cryostats, is the construction and installation of a new FCal, with cooling loops, narrower LAr gaps, and lower value protection resistors. A second proposed solution, which does not...

  17. Power Load from Collision Debris on the LHC Point 8 Insertion Magnets implied by the LHCB Luminosity Increase

    CERN Document Server

    Esposito, L S; Lechner, A; Mereghetti, A; Vlachoudis, V; Patapenka, A

    2013-01-01

    LHCb is aiming to upgrade its goal peak luminosity up to a value of 2 × 1033 cm−2 s−1 after LS2. We investigate the collision debris impact on the machine elements by extensive FLUKA simulations, showing that the present machine layout is substantially compatible with such a luminosity goal. In particular the installation of a TAS (Target Absorber of Secondaries, installed in front of the final focus Q1-Q3 quadrupole triplet in the LHC high luminosity insertions) turns out not to be necessary on the basis of the expected peak power deposition in the Q1 superconducting coils. A warm protection may be desirable to further reduce heat load and dose on the D2 recombination dipole, due to the absence of the TAN (Target Absorber of Neutrals, present in Point 1 and 5).

  18. The LHC and its successors

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Not too long before the first long technical stop of the LHC, engineers and physicists are already working on the next generation of accelerators: HL-LHC and LHeC. The first would push proton-proton collisions to an unprecedented luminosity rate; the second would give a second wind to electron-proton collisions.   The ring-ring configuration of the LHeC would need this type of magnets, currently being studied for possible future use. In one year, the LHC will begin to change. During the first long shutdown, from December 2012 to late 2014, the machine will go through a first phase of major upgrades, with the objective of running at 7 TeV per beam at the beginning of 2015. With this long technical stop and the two others that will follow (in 2018 and 2022), a new project will see the light of day. Current plans include the study of something that looks more like a new machine rather than a simple upgrade: the High Luminosity LHC (HL-LHC). Much more powerful than the current machine, the HL-...

  19. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    CERN Document Server

    Novgorodova, O; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, plans for a High Luminosity LHC (HL-LHC) are already being developed for operation of the collider and associated detectors at luminosities of up to (5-7)×1034 cm-2s-1, with the goal of accumulating an integrated luminosity of 3000 fb-1. The proposed instantaneous and integrated luminosities are both well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two solutions for this are un...

  20. Electronics for CMS Endcap Muon Level-1 Trigger System Phase-1 and HL LHC upgrades

    Science.gov (United States)

    Madorsky, A.

    2017-07-01

    To accommodate high-luminosity LHC operation at a 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide robust track reconstruction, the trigger system must now import all available trigger primitives generated by the Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The μ TCA architecture (adopted by CMS) was used for this design. The talk presents the details of the hardware and firmware design of the production system based on Xilinx Virtex-7 FPGA family. The next round of LHC and CMS upgrades starts in 2019, followed by a major High-Luminosity (HL) LHC upgrade starting in 2024. In the course of these upgrades, new Gas Electron Multiplier (GEM) detectors and more RPC chambers will be added to the Endcap Muon system. In order to keep up with all these changes, a new Advanced Processor unit is being designed. This device will be based on Xilinx UltraScale+ FPGAs. It will be able to accommodate up to 100 serial links with bit rates of up to 25 Gb/s, and provide up to 2.5 times more logic resources than the device used currently. The amount of PTLUT memory will be significantly increased to provide more flexibility for the Pt assignment algorithm. The talk presents preliminary details of the hardware design program.

  1. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    CMS Collaboration

    2016-01-01

    We present feasibility studies to investigate the performances and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on the real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC).

  2. Prospects for physics at high luminosity with CMS

    Directory of Open Access Journals (Sweden)

    Varela João

    2013-05-01

    Full Text Available The precision measurements of the properties of the recently discovered Higgs-like boson will be central to the future LHC physics program. In parallel the search for New Physics beyond the SM will continue. Higher luminosity will extend the mass reach and allow sensitive searches for possible subtle signatures for new physics. In this paper we review the potential sensitivity of CMS to a selection of relevant future physics scenarios accessible with the LHC upgrades and a correspondingly upgraded CMS detector.

  3. UPGRADES

    CERN Multimedia

    J. Butler and J. Nash

    2011-01-01

    Recent progress on the CMS upgrades was summarised, in a workshop held at Fermilab between 7th and 10th November, attended by more than 150 people, many of whom came from Europe and Asia. Important goals of the workshop were to begin to formulate a schedule for the upgrades and to determine project interdependencies. Input was received from all the upgrade working groups and will be combined into a first-pass schedule over the next several weeks. In addition, technical progress on each of the major subtasks was presented and plans for the near-term future were established. Slides from the more than 100 talks are located at: https://indico.cern.ch/conferenceDisplay.py?confId=153564 In the opening plenary session, Frank Zimmermann, of the CERN Beams Department, gave his view of the LHC luminosity evolution. The luminosity will increase faster than we assumed in designing the upgrades. CMS will need to re-evaluate the current upgrade plans and revise them if necessary. CMS Upgrade Physics coordinator...

  4. Upgrade of the ATLAS Muon System for the HL-LHC

    CERN Document Server

    Amelung, Christoph; The ATLAS collaboration

    2018-01-01

    The muon spectrometer of the ATLAS detector will be significantly upgraded during the Phase-II upgrade in Long Shutdown 3 in order to cope with the operational conditions at the High-Luminosity LHC in Run 4 and beyond. Most of the electronics for the Resistive Plate Chambers (RPC), Thin Gap Chambers (TGC), and Monitored Drift Tube (MDT) chambers will be replaced to make them compatible with the higher trigger rates and longer latencies necessary for the new level-0 trigger. The MDT chambers will be integrated into the level-0 trigger in order to sharpen the momentum threshold. Additional RPC chambers will be installed in the inner barrel layer to increase the acceptance and robustness of the trigger. Some of the MDT chambers in the inner barrel layer will be replaced with new small-diameter MDTs. New TGC triplet chambers in the barrel-endcap transition region will replace the current TGC doublets to suppress the high trigger rate from random coincidences in this region. The power system for the RPC, TGC, and ...

  5. Impact of an Extended ATLAS Tracker on $W^{\\pm}W^{\\pm}$ Scattering at a High-Luminosity LHC

    CERN Document Server

    Milic, Adriana; The ATLAS collaboration

    2016-01-01

    The ATLAS detector will undergo a major upgrade in Phase-II in order to maintain the high performance in the challenging environmental conditions that will be imposed by the High-Luminosity (HL) LHC. Several inner detector scenarios are under consideration including an extension of the nominal tracker from $|\\eta| = 200$. The study shows a significant improvement for the tracker layouts with a larger $\\eta$ coverage than the nominal one. Hence, the physics process studied provides a strong argument for the extension of the $\\eta$ coverage of the ITk.

  6. Technical Proposal for the Phase-II Upgrade of the CMS Detector

    CERN Document Server

    CMS Collaboration; Contardo, D; Klute, M; Mans, J; Silvestris, L; Butler, J; CERN. Geneva. The LHC experiments Committee; LHCC

    2015-01-01

    This Technical Proposal presents the upgrades foreseen to prepare the CMS experiment for the High Luminosity LHC. In this second phase of the LHC physics program, the accelerator will provide to CMS an additional integrated luminosity of about 2500 fb-1 over 10 years of operation, starting in 2025. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented p-p luminosity, the CMS collaboration will need to address the aging of the present detector and to improve the ability of the apparatus to isolate and precisely measure the products of the most interesting collisions. This document describes the conceptual designs and the expected performance of the upgrades, along with the plans to develop the appropriate experimental techniques. The infrastructure upgrades and the logistics of the installation in the experim...

  7. Optical data transmission ASICs for the high-luminosity LHC (HL-LHC) experiments

    International Nuclear Information System (INIS)

    Li, X; Huang, G; Sun, X; Liu, G; Deng, B; Gong, D; Guo, D; Liu, C; Liu, T; Xiang, A C; Ye, J; Zhao, X; Chen, J; You, Y; He, M; Hou, S; Teng, P-K; Jin, G; Liang, H; Liang, F

    2014-01-01

    We present the design and test results of two optical data transmission ASICs for the High-Luminosity LHC (HL-LHC) experiments. These ASICs include a two-channel serializer (LOCs2) and a single-channel Vertical Cavity Surface Emitting Laser (VCSEL) driver (LOCld1V2). Both ASICs are fabricated in a commercial 0.25-μm Silicon-on-Sapphire (SoS) CMOS technology and operate at a data rate up to 8 Gbps per channel. The power consumption of LOCs2 and LOCld1V2 are 1.25 W and 0.27 W at 8-Gbps data rate, respectively. LOCld1V2 has been verified meeting the radiation-tolerance requirements for HL-LHC experiments

  8. CMS Phase II Upgrade Scope Document

    CERN Document Server

    Butler, J; Klute, M; Mans, J; Silvestris, L; on behalf of the CMS, Collaboration; CERN. Geneva. The LHC experiments Committee; LHCC

    2015-01-01

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics by both the European Strategy Group and the US Particle Physics Project Prioritization Panel. To fulfil the full potential of this program, which includes the study of the nature of the Higgs boson, the investigation of the properties of any newly discovered particles in the upcoming LHC runs, and the extension of the mass reach for further discoveries, an integrated luminosity of 3000 fb-1 will have to be accumulated by the end of the program. In preparation for operation at the HL-LHC , CMS has documented the necessary upgrades and their expected costs in a Technical Proposal submitted to the CERN LHC Committee (LHCC) in mid-2015. The material presented in the current “Scope Document” provides additional information to assist the LHCC and the CERN Resource Review Board (RRB) in their review of the CMS upgrade. The document commences with a summary of the process followed to develop the scope of t...

  9. The Phase-1 Upgrade for the Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC

    CERN Document Server

    Izzo, Vincenzo; The ATLAS collaboration

    2018-01-01

    The Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC makes use of Resistive Plate Chamber (RPC) detectors. The on-detector trigger electronics modules are able to identify muons with predefined transverse momentum values (pT) by executing a coincidence logic on signals coming from the various detector layers. On-detector trigger boards then transfer trigger data to the off-detector electronics. A complex trigger system processes the incoming data by combining trigger information from the barrel and the endcap regions, and providing the combined muon candidate to the Central Trigger Processor (CTP). For almost a decade, the Level-1 Trigger system operated very well, despite the challenging requirements on trigger efficiency and performance, and the continuously increasing LHC luminosity. In order to cope with these constraints, various upgrades for the full trigger system were already deployed, and others have been designed to be installed in the next years. Most of the upgrades to the trigger system...

  10. The Phase-1 Upgrade for the Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC

    CERN Document Server

    Izzo, Vincenzo; The ATLAS collaboration

    2018-01-01

    The Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC makes use of Resistive Plate Chamber (RPC) detectors. The on-detector trigger electronics modules are able to identify muons with predefined transverse momentum values (pT) by executing a coincidence logic on signals coming from the various detector layers. Then, on-detector trigger boards transfer trigger data to the off-detector electronics. A complex trigger system processes the incoming data by combining trigger information from the Barrel and the End-cap regions, and by providing the combined muon candidate to the Central Trigger Processor (CTP). For almost a decade, the Level-1 Trigger system has been operating very well, despite the challenging requirements on trigger efficiency and performance, and the continuously increasing LHC luminosity. In order to cope with these constraints, various upgrades for the full trigger system were already deployed, and others have been designed to be installed in the next years. Most of the upgrades to the...

  11. Luminosity control and beam orbit stability with beta star leveling at LHC and HL-LHC

    CERN Document Server

    Gorzawski, Arkadiusz Andrzej; Wenninger, Jorg

    This thesis describes the wide subject of the luminosity leveling and its requirements for the LHC and the HL-LHC. We discuss the advantages and disadvantages of different leveling methods focusing the thesis on the beta star leveling technique. We review the beams offset build--up due to the environmental (i.e. natural ground motion) and mechanical (i.e. moving quadrupole) sources. We quantify the instrumentation requirements for the reliable and reproducible operation with small offsets at the interaction points. Last but not least, we propose a novel method for the beam offset stabilization at the collision point based on the feedback from the luminosity.

  12. ATLAS Future Plans: Upgrade and the Physics with High Luminosity

    Directory of Open Access Journals (Sweden)

    Rajagopalan S.

    2013-05-01

    Full Text Available The ATLAS experiment is planning a series of detector upgrades to cope with the planned increases in instantaneous luminosity and multiple interactions per crossing to maintain its physics capabilities. During the coming decade, the Large Hadron Collider will collide protons on protons at a center of mass energy up to 14 TeV with luminosities steadily increasing in a phased approach to over 5 × 1034 cm−2s−1. The resulting large data sets will significantly enhance the physics reach of the ATLAS detector building on the recent discovery of the Higgs-like boson. The planned detector upgrades being designed to cope with the increasing luminosity and its impact on the ATLAS physics program will be discussed.

  13. LIGHT and LUMINOSITY, from Einstein to LHC

    CERN Multimedia

    CERN. Geneva; Prof. ROSSI, Lucio

    2015-01-01

    After an introduction on the concept of light in physics, this talk will focus on CERN’s High Luminosity LHC project, aiming at extending the discovery potential of CERN’s flagship accelerator by increasing its “luminosity” (ie the number of particles that can be squeezed inside the accelerator to maximize the number of collisions). To achieve this objective, many new technologies are being developed at CERN and many collaborating institutes worldwide, especially in the field of superconductivity. Lucio Rossi, the main speaker, is the head of the HL-LHC project, based at CERN. Giorgio Apollinari, Director for the LHC Accelerator Research Program (LARP) will speak through a videoconference from Fermilab (USA). The event is webcast live and will be followed by Fermilab and other institutes in the USA.

  14. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  15. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase 2) where the peak luminosity will increase 5$\\times$ compared to the design luminosity ($10^{34} cm^{-2}s^{-1}$) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, c...

  16. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    Centis Vignali, Matteo

    2015-12-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.10 34 cm -2 s -1 . A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.10 34 cm -2 s -1 . As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.10 34 cm -2 s -1 , twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φ eq =2.10 16 cm -2 and a dose of ∼10 MGy after an integrated luminosity of 3000 fb -1 . Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip. The maximum rate experienced by the modules produced in

  17. Investigation of collimator materials for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2085459; Bertarelli, Alessandro; Redaelli, Stefano

    This PhD thesis work has been carried out at the European Organisation for Nuclear Research (CERN), Geneva, Switzerland), in the framework of the High Luminosity (HL) upgrade of the Large Hadron Collider (LHC). The HL-LHC upgrade will bring the accelerator beyond the nominal performance: it is planning to reach higher stored beam energy up to 700 MJ, through more intense proton beams. The present multi-stage LHC collimation system was designed to handle 360 MJ stored beam energy and withstand realistic losses only for this nominal beam. Therefore, the challenging HL-LHC beam parameters pose strong concerns for beam collimation, which call for important upgrades of the present system. The objective of this thesis is to provide solid basis for optimum choices of materials for the different collimators that will be upgraded for the baseline layout of the HL-LHC collimation system. To achieve this goal, material-related limitations of the present system are identified and novel advanced composite materials are se...

  18. ATLAS Upgrades: a challenge for the next Decades

    CERN Document Server

    Aielli, Giulio; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is now running at the center-of-mass energies of 13 TeV. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset for ATLAS and CMS from about few hundred fb-1 expected for LHC running in the next 10 years to 3000 fb-1 by around 2035. In parallel, the experiments need to be kept lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Along with maintenance and consolidation of the detector in the past few years, ATLAS has added inner b-layer to its tracking system. The challenge of coping with the HL-LHC instantaneous and integrated luminosities, along with the associated radiation levels, requires further maj...

  19. LHC Report: a break from luminosity production

    CERN Multimedia

    Jan Uythoven for the LHC team

    2016-01-01

    The LHC has been in great shape over the last few months, delivering over 20 fb-1 of integrated luminosity before the ICHEP conference in Chicago at the beginning of August. This is not much below the 25 fb-1 target for the whole of 2016. With this success in mind, a break in luminosity production was taken for six days, starting on 26 July 2016, for a machine development period.   This year, 20 days of the LHC schedule are devoted to machine development with the aim of carrying out detailed studies of the accelerator. The 20 days are divided over five different periods, called MD blocks. They can be seen as an investment in the future, so the machine can produce collisions more efficiently in the months and years to come. A detailed programme is worked out for each MD block, whereby different specialist teams are assigned periods of four to twelve hours, depending on the topic, to perform their previously approved tests. The MD program continues 24 hours per day, as in normal physics operation. One...

  20. Studies of Read-Out Electronics and Trigger for Muon Drift Tube Detectors at High Luminosities

    CERN Document Server

    Nowak, Sebastian

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. For precise measurements of the properties of the Higgs-Boson and searches for new phenomena beyond the Standard Model, the LHC luminosity of $L=10^{34}cm^{-2}s^{-1}$ is planned to be increased by a factor of ten leading to the High Luminosity LHC (HL-LHC). In order to cope with the higher background and data rates, the LHC experiments need to be upgraded. In this thesis, studies for the upgrade of the ATLAS Muon Spectrometer are presented with respect to the read-out electronics of the Monitored Drift Tube (MDT) and the small-diameter Muon Drift Tube (sMDT) chambers and the Level-1 muon trigger. Due to the reduced tube diameter of sMDT chambers, background occupancy and space charge effects are suppressed by an order of magnitude compar...

  1. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    CERN Document Server

    Rutherfoord, J; The ATLAS collaboration

    2012-01-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 10^34 cm^-2 s^-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals w...

  2. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    CERN Document Server

    Rutherfoord, J; The ATLAS collaboration

    2012-01-01

    Although LHC data-taking is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 10^34 cm^-2 s^-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the LAr forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities poses a number of problems that can degrade its performance, related to beam heating, space charge effects in the LAr gaps and HV losses due to increased current draws over the HV current-limiting resistors. One solution to the problems, which would require the opening of both endcap cryostats, is the construction and installation of a new FCal, with cooling loops, narrower LAr gaps, and lower value protection resistors. A second proposed solution, which does not ...

  3. Updates on Performance of Physics Objects with the Upgraded CMS detector for High Luminosity LHC.

    CERN Document Server

    CMS Collaboration

    2016-01-01

    This document contains a collection of performance plots obtained with the simulation of the upgrade Phase2 CMS detector for HL-LHC at the centre of mass energy of 14 TeV. Two pileup scenarios with and average = 140 and 200 collisions per event have been considered. We present updated results compared to the Technical Proposal (CMS-TDR-15-02) and Scope Document (CERN-LHCC-2015-019) for: track, muon, jet reconstruction and btagging performance. In addition, a set of plots containing studies of performance as a function of the linear pile up density along the beam axis are presented for tracking, vertexing, b-tagging, tau identification, muon isolation and missing $E_T$ resolution.

  4. High Luminosity Large Hadron Collider A description for the European Strategy Preparatory Group

    CERN Document Server

    Rossi, L

    2012-01-01

    The Large Hadron Collider (LHC) is the largest scientific instrument ever built. It has been exploring the new energy frontier since 2009, gathering a global user community of 7,000 scientists. It will remain the most powerful accelerator in the world for at least two decades, and its full exploitation is the highest priority in the European Strategy for Particle Physics, adopted by the CERN Council and integrated into the ESFRI Roadmap. To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond its design value. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about 10 years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 13 tesla superconducting magnets, very compact and ultra-precise superconduc...

  5. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  6. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  7. Effect of gamma irradiation on leakage current in CMOS read-out chips for the ATLAS upgrade silicon strip tracker at the HL-LHC

    CERN Document Server

    Stucci, Stefania Antonia; Lynn, Dave; Kierstead, James; Kuczewski, Philip; van Nieuwenhuizen, Gerrit J; Rosin, Guy; Tricoli, Alessandro

    2017-01-01

    The increase of the leakage current of NMOS transistors in detector readout chips in certain 130 nm CMOS technologies during exposure to ionising radiation needs special consideration in the design of detector systems, as this can result in a large increase of the supply current and power dissipation. As part of the R&D; program for the upgrade of the ATLAS inner detector tracker for the High Luminosity upgrade of the LHC at CERN, a dedicated set of irradiations have been carried out with the $^60$Co gamma-ray source at the Brookhaven National Laboratory. Measurements will be presented that characterise the increase in the digital leakage current in the 130 nm-technology ABC130 readout chips. The variation of the current as a function of time and total ionising dose has been studied under various conditions of dose rate, temperature and power applied to the chip. The range of variation of dose rates and temperatures has been set to be close to those expected at the High Luminosity LHC, i.e. in the range 0...

  8. The new transfer line collimation system for the LHC high luminosity era

    CERN Document Server

    Kain, V; Goddard, B; Maciariello, F; Meddahi, M; Mereghetti, A; Steele, G; Velotti, F; Gianfelice-Wendt, E

    2014-01-01

    A set of passive absorbers is located at the end of each of the 3 km long injection lines to protect the LHC in case of failures during the extraction process from the LHC’s last pre-injector or in the beam transfer itself. In case of an erroneous extraction, the absorbers have to attenuate the beam to a safe level and be robust enough themselves to survive the impact. These requirements are difficult to fulfill with the very bright and intense beams produced by the LHC injectors for the high luminosity era. This paper revisits the requirements for the LHC transfer line collimation system and the adapted strategy to fulfill these for the LHC high luminosity era. A possible solution for the new transfer line collimation system is presented.

  9. Topological and Central Trigger Processor for 2014 LHC luminosities

    CERN Document Server

    Simioni, E; The ATLAS collaboration; Bauss, B; Berge, D; Buscher, V; Childers, T; Degele, R; Dobson, E; Ebling, A; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Ji, W; Kaneda, M; Mattig, S; Messina, A; Meyer, C; Moritz, S; Pauly, T; Pottgen, R; Schafer, U; Spiwoks, R; Tapprogge, S; Wengler, T; Wenzel, V

    2012-01-01

    The ATLAS experiment is located at the European Center for Nuclear Research (CERN) in Switzerland. It is designed to observe phenomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4 10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5 micro seconds. It is primarily composed of the Calori...

  10. Topological and Central Trigger Processor for 2014 LHC luminosities

    CERN Document Server

    Simioni, E; The ATLAS collaboration; Bauss, B; Berge, D; B\\"{u}scher, V; Childers, T; Degele, R; Dobson, E; Ebling, A; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Ji, W; Kaneda, M; M\\"{a}ttig, S; Messina, A; Meyer, C; Moritz, S; Pauly, T; Pottgen, R; Sch\\"{a}fer, U; Spiwoks, R; Tapprogge, S; Wengler, T; Wenzel, V

    2012-01-01

    The ATLAS experiment is located at the European Center for Nu- clear Research (CERN) in Switzerland. It is designed to observe phe- nomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4×10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the AT- LAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5μs. It is primarily composed of the Calorimete...

  11. A luminosity monitor for LHC [notes of a thesis

    CERN Document Server

    Perrot, Anne Laure

    2000-01-01

    LHC luminosity will reach 10/sup 34/ cm/sup -2/ s/sup -1/ but special runs at 10/sup 28/ cm/sup -2/ s/sup -1/ are foreseen. Thus a luminosity monitor must have a dynamic range of six orders of magnitude. A good tolerance to radiation is also required. A detector using both ionisation and secondary emission techniques has been studied in this context. Its design is based on monitors used previously at the CERN PS and SPS. Special attention was devoted to minimise leakage currents. Linearity in both Secondary Emission Counter (SEC) and Ionisation Chamber (IC) modes has been tested from ~10/sup 4/ incident particles to ~10/sup 8/ incident particles. SEC is linear above ~5.10/sup 6/ incident particles while IC is linear over the full studied range. However, because of the radiation environment at LHC, the SEC mode is much preferred at high intensity. A solution actually foreseen is to switch from IC to SEC mode when the intensity is around 5.10/sup 6/ incident particles per second corresponding to an LHC luminosi...

  12. Upgrade Plans for ATLAS Forward Calorimetry for the HL-LHC

    CERN Document Server

    Turner, J

    2012-01-01

    Even though data-taking has just started with the LHC, plans are being developed to operate the machine and its detectors at up to 10 times the original design luminosity. This has a major impact on the Forward Calorimeter (FCal), which is exposed to some of the highest radiation rates in ATLAS. The FCal detector and its associated components were designed for operation at the maximum LHC luminosity of \\(\\text{10}^{\\text{34}} \\text{ cm}^{-2}\\text{s}^{-1}\\). However at the higher luminosities projected for the HL-LHC, operation of the FCal may be compromised. Beam heating in the FCal could lead to the formation of argon bubbles in the detector, the ionization rate will result in space charge effects that will reduce the signal and the current draw will result in a voltage drop across the HV current limiting resistors. Two possible solutions are being considered to maintain FCal operation at HL-LHC. One is a complete replacement of the FCal system. A replacement FCal would have a similar design to the current c...

  13. Pixel DAQ and trigger for HL-LHC

    International Nuclear Information System (INIS)

    Morettini, P.

    2017-01-01

    The read-out is one of the challenges in the design of a pixel detector for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), that is expected to operate from 2026 at a leveled luminosity of 5 × 10 34  cm −2  s −1 . This is especially true if tracking information is needed in a low latency trigger system. The difficulties of a fast read-out will be reviewed, and possible strategies explained. The solutions that are being evaluated by the ATLAS and CMS collaborations for the upgrade of their trackers will be outlined and ideas on possible development beyond HL-LHC will be presented.

  14. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  15. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  16. Prospects for a precision timing upgrade of the CMS PbWO$_{4}$ crystal electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Marzocchi, Badder

    2017-01-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies on the timing properties of PbWO crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies on the timing performance of PbWO$_{4}$ crystals with various photosensors and readout electronics will be shown.

  17. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gallrapp, Christian

    2015-07-01

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  18. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    International Nuclear Information System (INIS)

    Gallrapp, Christian

    2015-01-01

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  19. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    Science.gov (United States)

    Massironi, A.

    2018-04-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.

  20. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Massironi, Andrea

    2017-01-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO$_4$ crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO$_4$ crystals with different photosensors and readout electronics will be shown.

  1. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    CERN Document Server

    Novgorodova, Olga; The ATLAS collaboration

    2015-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10$^{34}$ cm$^{-2}$s$^{-1}$. Liquid argon (LAr) sampling calorimeters are employed for electromagnetic and hadronic calorimetry. The LAr has to withstand a High Luminosity LHC (HL-LHC) operation of the collider and associated detectors at luminosities of up to (5-7)$\\times$10$^{34}$ cm$^{-2}$s$^{-1}$, with the goal of accumulating an integrated luminosity of 3000 fb$^{-1}$. This is well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two possible solutions for keeping the current performance are being discussed. The electronics readout will also need to withstand a 3-5 times larger radiation environment. In the hadronic endcap calorimeter (HEC) cold GaAs preampl...

  2. submitter Simulation of a quench event in the upgraded High-Luminosity LHC Main dipole circuit including the 11 T Nb$_{3}$Sn dipole magnets

    CERN Document Server

    Fernandez Navarro, Alejandro Manuel; Verweij, Arjan P; Bortot, Lorenzo; Mentink, Matthias; Prioli, Marco; Auchmann, Bernhard; Izquierdo Bermudez, Susana; Ravaioli, Emmanuele; Yammine, Samer

    2018-01-01

    To achieve the goal of increased luminosity, two out of eight main dipole circuits of the accelerator will be reconfigured in the coming LHC upgrade by replacing one standard 14.3-m long, Nb-Ti-based, 8.3 T dipole magnet by two 5.3-m long, Nb$_{3}$Sn-based, 11.2 T magnets (MBH). The modified dipole circuits will contain 153 Nb-Ti magnets and two MBH magnets. The latter will be connected to an additional trim power converter to compensate for the differences in the magnetic transfer functions. These modifications imply a number of challenges from the point of view of the circuit integrity, operation, and quench protection. In order to assess the circuit performance under different scenarios and to validate the circuit quench protection strategy, reliable and accurate numerical transient simulations have to be performed. We present the field/circuit coupling simulation of the reconfigured main dipole magnet chain following the introduction of the MBH magnets. 2-D distributed LEDET models of the MBH's have been ...

  3. Semi-empirical model for optimising future heavy-ion luminosity of the LHC

    CERN Document Server

    Schaumann, M

    2014-01-01

    The wide spectrum of intensities and emittances imprinted on the LHC Pb bunches during the accumulation of bunch trains in the injector chain result in a significant spread in the single bunch luminosities and lifetimes in collision. Based on the data collected in the 2011 Pb-Pb run, an empirical model is derived to predict the single-bunch peak luminosity depending on the bunch’s position within the beam. In combination with this model, simulations of representative bunches are used to estimate the luminosity evolution for the complete ensemble of bunches. Several options are being considered to improve the injector performance and to increase the number of bunches in the LHC, leading to several potential injection scenarios, resulting in different peak and integrated luminosities. The most important options for after the long shutdown (LS) 1 and 2 are evaluated and compared.

  4. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  5. Development of the DAQ System of Triple-GEM Detectors for the CMS Muon Spectrometer Upgrade at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387583

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). After a long technical stop in 2019-2020, the LHC will restart and run at a luminosity of 2 × 1034 cm−2 s−1, twice its nominal value. This will in turn increase the rate of particles to which detectors in CMS will be exposed and affect their performance. The muon spectrometer in particular will suffer from a degraded detection efficiency due to the lack of redundancy in its most forward region. To solve this issue, the GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. Within the GEM collaboration, the Data Acquisition (DAQ) subgroup is in charge of the development of the electronics and software of the DAQ system of the detectors. This thesis presents th...

  6. Upgraded Readout and Trigger Electronics for the ATLAS Liquid Argon Calorimeter at the LHC at the Horizons 2018-2022

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2013-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Board (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies...

  7. Upgraded Readout and Trigger Electronics for the ATLAS Liquid-Argon Calorimeters at the LHC at the Horizons 2018-2022

    CERN Document Server

    Damazio, D O; The ATLAS collaboration

    2013-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Board (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies...

  8. Study of ZZ to four leptons events in ATLAS at the LHC and upgrade of the ATLAS Muon Spectrometer

    CERN Multimedia

    Kouskoura, V

    2014-01-01

    The study of the ZZ and ZZ* production in proton-proton collisions at the Large Hadron Collider (LHC) at CERN is presented. The data analyzed in this study were recorded by the ATLAS experiment at a centre-of-mass energy of 7 TeV and of 8 TeV. The selected events are consistent with fully leptonic ZZ decays, in particular to electrons and muons. The total ZZ production cross section is measured and is found to be in agreement with the Standard Model (SM) prediction. The ZZ production allows the study of the anomalous neutral Triple Gauge Couplings. No deviation from the SM prediction is found that could indicate the presence of New Physics. In view of the forthcoming increase of the instantaneous luminosity of the LHC, the ATLAS Collaboration foresees upgrades of the detector. An upgrade of the Muon Spectrometer is presented. The integration of the new detection elements in the ATLAS Geometry is illustrated, as well as the increase in the total Barrel acceptance.

  9. Resistive plate chambers for 2013-2014 muon upgrade in CMS at LHC

    International Nuclear Information System (INIS)

    Colafranceschi, S.; Sharma, A.; Chudasama, R.; Pant, L.M.; Mohanty, A.K.; Sehgal, R.; Sehgal, S.T.; Thomas, R.G.; Bhandari, V.; Chand, S.; Kumar, A.; Kumar, S.; Singh, A.; Singh, V.; Aly, S.; Aly, R.; Elkafrawy, T.; Ibrahim, A.; Radi, A.; Sayed, A.

    2014-01-01

    During 2013 and 2014 (Long Shutdown LS1) the CMS experiment is upgrading the forward region installing a fourth layer of RPC detectors in order to complete and improve the muon system performances in the view of the foreseen high luminosity run of LHC. The new two endcap disks consists of 144 double-gap RPC chambers assembled at three different production sites: CERN, Ghent (Belgium) and BARC (India). The chamber components as well as the final detectors are subjected to full series of tests established in parallel at all the production sites. All assembly and test operations have been engineered in order to standardize and improve detector production. In this work the complete chamber construction, quality control procedures and preliminary results will be detailed

  10. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Science.gov (United States)

    Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.

    2018-03-01

    The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  11. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Directory of Open Access Journals (Sweden)

    M. Borg

    2018-03-01

    Full Text Available The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  12. Development of Silicon Detectors for the High Luminosity LHC

    International Nuclear Information System (INIS)

    Eichhorn, Thomas Valentin

    2015-07-01

    The Large Hadron Collider (LHC) at CERN will be upgraded to a High Luminosity LHC in the year 2022, increasing the instantaneous luminosity by a factor of five. This will have major impacts on the experiments at the LHC, such as the Compact Muon Solenoid (CMS) experiment, and especially for their inner silicon tracking systems. Among other things, the silicon sensors used therein will be exposed to unprecedented levels of radiation damage, necessitating a replacement of the entire tracking detector. In order to maintain the excellent current performance, a new tracking detector has to be equipped with sensors of increased radiation hardness and higher granularity. The CMS experiment is undertaking an extensive R and D campaign in the search for the future silicon sensor technology baseline to be used in this upgrade. This thesis presents two methods suitable for use in this search: finite element TCAD simulations and test beam measurements. The simulations are focussed on the interstrip capacitance between sensor strips and are compared to measurements before and after the inclusion of radiation damage effects. A geometrical representation of the strip sensors used in the campaign has been found, establishing the predictive power of simulations. The test beam measurements make use of the high-precision pixel telescopes available at the DESY-II test beam facility. The performance of these telescopes has been assessed and their achievable pointing resolution has been found to be below 2 μm. Thin, epitaxial silicon is a candidate material for usage in radiation hard sensors for the future CMS tracking detector. Sample strip sensors of this material have been irradiated to fluences of up to 1.3 x 10 16 n eq /cm 2 with 800 MeV or 23 GeV protons. Test beam measurements with 5 GeV electrons have been performed to investigate the radiation hardness of epitaxial sensors using the pixel beam telescopes. The epitaxial device under test (DUT) has been integrated into the

  13. Petalet prototype for the ATLAS silicon strip detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sperlich, Dennis [Humboldt-Universitaet zu Berlin (Germany); Gregor, Ingrid-Maria; Bloch, Ingo; Keller, John Stakely; Lohwasser, Kristin; Poley, Louise; Zakharchuk, Nataliia; Diez Cornell, Sergio [DESY (Germany); Hauser, Marc Manuel; Mori, Riccardo; Kuehl, Susanne; Parzefall, Ulrich [Albert-Ludwigs Universitaet Freiburg (Germany)

    2015-07-01

    To achieve more precise measurements and to search new physics phenomena, the luminosity at the LHC is expected to be increased during a series of upgrades in the next years. The latest scheduled upgrade, called the High Luminosity LHC (HL-LHC) is proposed to provide instantaneous luminosity of 5 x 10{sup 34} cm{sup 2}s{sup -1}. The increased luminosity and the radiation damage will affect the current Inner Tracker. In order to cope with the higher radiation dose and occupancy, the ATLAS experiment plans to replace the current Inner Detector with a new all-silicon tracker consisting of ∝8 m{sup 2} pixel and ∝192 m{sup 2} strip detectors. In response to the needs, highly modular structures will be used for the strip system, called Staves for the barrel region and Petals for the end-caps region. A small-scaled prototype for the Petal, the Petalet, is built to study some specialties of this complex wedge-shaped structures. The Petalet consists of one large and two small sized sensors. This report focuses on the recent progress in the prototyping of the Petalet and their electrical performances.

  14. Upgrade of the ATLAS Tile Calorimeter Electronics

    International Nuclear Information System (INIS)

    Carrió, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year

  15. The PreProcessors for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2015-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade will accommodate the detector and data acquisition system for the HL-LHC. In particular, the Tile Hadronic Calorimeter (TileCal) will replace completely on- and off-detector electronics using a new read-out architecture. The digitized detector data will be transferred for every beam crossing to the super Read Out Drivers (sRODs) located in off-detector counting rooms with a total data bandwidth of roughly 80 Tbps. The sROD implements increased pipelines memories and must provide pre-processed digital trigger information to Level 0/1 systems. The sROD module represents the link between the on-detector electronics and the overall ATLAS data acquisition system. It also implements the interface between the Detector Control System (DCS) and the on-detector electronics which is used to control and monitor the high voltage...

  16. Calibration techniques and strategies for the present and future LHC electromagnetic calorimeters

    Science.gov (United States)

    Aleksa, M.

    2018-02-01

    This document describes the different calibration strategies and techniques applied by the two general purpose experiments at the LHC, ATLAS and CMS, and discusses them underlining their respective strengths and weaknesses from the view of the author. The resulting performances of both calorimeters are described and compared on the basis of selected physics results. Future upgrade plans for High Luminosity LHC (HL-LHC) are briefly introduced and planned calibration strategies for the upgraded detectors are shown.

  17. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz

    2017-02-11

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A dedicated pixelated luminosity detector measures coincidences in several three-layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point. The upgraded fast beam conditions monitor measures the particle flux using 24 two-pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background. A new beam-halo monitor at larger radius exploits Cherenkov light produced by relativistic charged particles in fuzed quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All new and upgraded sub-detectors have been taking data from the first day of LHC operation in April 2015. Results on their commissioning and essential characteristics using data since the start-up of LHC will be presented.

  18. Performance of new radiation tolerant thin n-in-p Silicon pixel sensors for the CMS experiment at High Luminosity LHC

    CERN Document Server

    Dalla Betta, G.F; Darbo, G; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Meschini, Marco; Messineo, Alberto; Moroni, Luigi; Rivera, Ryan Allen; Ronchin, S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few 10$^{16}$ particles/cm$^2$ at $\\sim$3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R and D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planars, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS readout chip have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  19. B-physics studies for HL-LHC ATLAS upgrade

    CERN Document Server

    Jakoubek, Tomas; The ATLAS collaboration

    2017-01-01

    Simulation studies were made to estimate ATLAS HL-LHC upgrade performance for B-physics. In particular, the decay of $B_s^0 \\to J/\\psi\\phi$ is studied in order to measures the $CP$ violating mixing phase and the width difference between the $B_s^0$ eigenstates. The increased sensitivity is related mainly to the improved decay time resolution obtained with the upgraded ITk inner tracking detector.

  20. Second Generation Coil Design of the Nb$_{3}$Sn low-beta Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Ballarino, A; Cavanna, E; Bossert, R; Cheng, D; Dietderich, D; Ferracin, P; Ghosh, A; Hagen,P; Holik, E; Perez, J C; Rochepault, E; Schmalzle, J; Todesco, E; Yu, M

    2016-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb$_{3}$Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with a fine tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this paper we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.

  1. Upgrade plans for ATLAS Forward Calorimetry for the HL-LHC

    CERN Document Server

    Turner, J; The ATLAS collaboration

    2011-01-01

    Even though data taking has just started with the LHC, plans are being developed to operate the machine and its detectors at up to 10 times the original design luminosity. This has an impact on many components of the ATLAS detector, particularly the Forward calorimeter, which is exposed to some of the highest radiation rates in ATLAS. The FCal detector and its associated components were designed for operation at the maximum LHC luminosity of 1034 cm2s-1. However at the higher luminosities (HL), which are projected for the HL-LHC, operation of the FCal will be compromised. Beam heating in the FCal which is located on a liquid argon filled cryostat could lead to the formation of argon bubbles in the detector, the ionization rate will result in space charge effects that will reduce the signal and the current draw will result in a voltage drop across the HV current limiting resistors. The space charge and ionization rates will result in the FCal becoming insensitive to particles at its inner edge and the insensit...

  2. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Tetsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2016-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges arising from the increased hit rate will have to be solved by designing faster and more complex readout electronics that will also have to withstand unprecedented radiation doses. Developing such integrated circuit requires a significant R and D effort and resources, therefore a joint development project between several institutes (including ours) was started. This collaboration, named RD53, aims to develop a pixel readout chip suitable for ATLAS' and CMS' upgrades using a 65nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology are discussed. Most of the talk is allocated to presenting some of the circuits designed by our group (focusing on developments connected to RD53 collaboration), along with their performance measurement results.

  3. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    Science.gov (United States)

    Rutherfoord, John; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 1034 cm-2 s-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  4. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2023, after the upgrade of the LHC (High Luminosity LHC, phase 2) the peak luminosity will increase by a factor of 5 compared to the design value (1034 cm-2 s-1), thus requiring an upgrade of the TileCal readout electronics. Except the 9852 photomultipliers (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at 40 MHz at the front-end level and sending them with 10 Gbps optical links to the back-end electronics. Moreover, to increase reliability, redundancy will be introduced at different levels. Three different options are currently being investigated for the front-end electronics and extensive test beam studies are planned to select the best option. One demonstrator prototype module is also planned to be inserted in TileCal in 2014 that will include hybrid electronic components able to probe the new design, but still compatible with the presen...

  5. Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    CERN Document Server

    Barth, C; Bloch, I.; Bögelspacher, F.; de Boer, W.; Daniels, M.; Dierlamm, A.; Eber, R.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Erfle, J.; Feld, L.; Garutti, E.; Gregor, I. -M.; Guthoff, M.; Hartmann, F.; Hauser, M.; Husemann, U.; Jakobs, K.; Junkes, A.; Karpinski, W.; Klein, K.; Kuehn, S.; Lacker, H.; Mahboubi, K.; Müller, Th.; Mussgiller, A.; Nürnberg, A.; Parzefall, U.; Poehlsen, T.; Poley, L.; Preuten, M.; Rehnisch, L.; Sammet, J.; Schleper, P.; Schuwalow, S.; Sperlich, D.; Stanitzki, M.; Steinbrück, G.; Wlochal, M.

    2016-01-01

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Phys...

  6. The Upgrade of the CMS RPC System during the First LHC Long Shutdown

    CERN Document Server

    Tytgat, M.; Verwilligen, P.; Zaganidis, N.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Shopova, M.; Sultanov, G.; Assran, Y.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Pugliese, G.; Benussi, L.; Bianco, S.; Caponero, M.; Colafranceschi, S.; Felli, F.; Piccolo, D.; Saviano, G.; Carrillo, C.; Berzano, U.; Gabusi, M.; Vitulo, P.; Kang, M.; Lee, K.S.; Park, S.K.; Shin, S.; Sharma, A.

    2012-01-01

    The CMS muon system includes in both the barrel and endcap region Resistive Plate Chambers (RPC). They mainly serve as trigger detectors and also improve the reconstruction of muon parameters. Over the years, the instantaneous luminosity of the Large Hadron Collider gradually increases. During the LHC Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the experiments for this, two long shutdown periods are scheduled for 2013-2014 and 2018-2019. The CMS Collaboration is planning several detector upgrades during these long shutdowns. In particular, the muon detection system should be able to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high particle rates. One of the measures to ensure this, is to extend the present RPC system with the addition of a 4th layer in both endcap regions. During the first long shutdown, these two new stations will be equipped in the region |eta|<1.6 with...

  7. Pile-up Rejection in the High Granularity Time Detector for the High Luminosity LHC

    CERN Document Server

    McNulty, Paul

    2016-01-01

    The High Granularity Timing Detector, a proposed upgrade to the Liquid Argon Calorimeter during the transition to the High Luminosity LHC, will provide increased resolution in the time domain and offer an avenue for efficiently mitigating the expected increase in pile-up jets. This study analyzes how effectively current algorithms are using a signal jet peak calculation to disentangle desired information from other events. Two samples, one with only hard-scattering events and another that also included pile-up events, were used. A transverse momentum range of 30GeV to 70GeV and pseudo-rapidity range of 2.4 to 4.8 divided the sample to see how the HGTD performed when calculating the signal peak for each jet and how many cells had detections in and out of that peak for each sample.

  8. Towards Optimum Material Choices for HL-LHC Collimator Upgrade

    CERN Document Server

    Quaranta, E.; Biancacci, N.; Bruce, R.; Carra, F.; Métral, E.; Redaelli, S.; Rossi, A.; Salvant, B.

    2016-01-01

    properties that address different limitations of the present collimation system, solutions have been found to fulfil various upgrade challenges. This paper describes the proposed staged approach to deploy new materials in the upgraded HL-LHC collimation system. Beam tests at the CERN HiRadMat facility were also performed to benchmark simulation methods and constitutive material models.

  9. Concept of a Machine Protection System for the High-Energy LHC

    CERN Document Server

    Raginel, Vivien; Wollmann, Daniel

    2018-01-01

    The High-Energy LHC (HE-LHC) is setting new precedents in stored energy in both, the superconducting magnet system (∼ 20 GJ) and the beams (1.34 GJ) as compared to LHC and the LHC upgrade to increase the luminosity (HL-LHC). Therefore, the requirements and performance of the existing machine protection systems have to be reviewed and adapted to the new HE-LHC beam parameters, failure cases and machine availability requirements.

  10. HL-LHC updates in Japan

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    At a recent meeting in Japan, updates on the High Luminosity LHC (HL-LHC) project were presented, including the progress made so far and the deadlines still to be met for the upgraded machine to be operational from 2020.   New magnets made with advanced superconductor Nb3Sn in the framework of the HL-LHC project. These magnets are currently under construction at CERN by the TE-MSC group. The LHC is the world’s most powerful particle accelerator, and in 2015 it will reach yet another new record for the energy of its colliding beams. One key factor of its discovery potential is its ability to produce collisions described in mathematical terms by the parameter known as “luminosity”. In 2025, the HL-LHC project will allow the total number of collisions in the LHC to increase by a factor of 10. The first step in this rich upgrade programme is the delivery of the Preliminary Design Report (PDR), which is also a key milestone of the HiLumi LHC Design Study partly fund...

  11. The miniature optical transmitter and transceiver for the High-Luminosity LHC (HL-LHC) experiments

    International Nuclear Information System (INIS)

    Liu, C; Zhao, X; Deng, B; Gong, D; Guo, D; Li, X; Liang, F; Liu, G; Liu, T; Xiang, A C; Ye, J; Chen, J; Huang, D; Hou, S; Teng, P-K

    2013-01-01

    We present the design and test results of the Miniature optical Transmitter (MTx) and Transceiver (MTRx) for the high luminosity LHC (HL-LHC) experiments. MTx and MTRx are Transmitter Optical Subassembly (TOSA) and Receiver Optical Subassembly (ROSA) based. There are two major developments: the Vertical Cavity Surface Emitting Laser (VCSEL) driver ASIC LOCld and the mechanical latch that provides the connection to fibers. In this paper, we concentrate on the justification of this work, the design of the latch and the test results of these two modules with a Commercial Off-The-Shelf (COTS) VCSEL driver

  12. Progress with the single-sided module prototype for the ATLAS tracker upgrade server

    NARCIS (Netherlands)

    Allport, P.P.; et al., [Unknown; Colijn, A.P.; Hessey, N.P.; Koffeman, E.

    2011-01-01

    The ATLAS experiment is preparing for the planned luminosity upgrade of the LHC (the super-luminous LHC or sLHC) with a programme of development for tracking able to withstand an order of greater magnitude radiation fluence and much greater hit occupancy rates than the current detector. This has led

  13. Assembly And Test Of A 120 MM Bore 15 T Nb3Sn Quadrupole For The LHC Upgrade

    International Nuclear Information System (INIS)

    Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Sabbi, G.L.; Wang, X.; Anerella, M.; Ghosh, A.K.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Zlobin, A.V.

    2010-01-01

    In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb 3 Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.

  14. HL-LHC parameter space and scenarios

    International Nuclear Information System (INIS)

    Bruning, O.S.

    2012-01-01

    The HL-LHC project aims at a total integrated luminosity of approximately 3000 fb -1 over the lifetime of the HL-LHC. Assuming an exploitation period of ca. 10 years this goal implies an annual integrated luminosity of approximately 200 fb -1 to 300 fb -1 per year. This paper looks at potential beam parameters that are compatible with the HL-LHC performance goals and discusses briefly potential variation in the parameter space. It is shown that the design goal of the HL-LHC project can only be achieved with a full upgrade of the injector complex and the operation with β* values close to 0.15 m. Significant margins for leveling can be achieved for β* values close to 0.15 m. However, these margins can only be harvested during the HL-LHC operation if the required leveling techniques have been demonstrated in operation

  15. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    CERN Document Server

    Miucci, A; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; Rosa, A.La; Muenstermann, D.; George, M.; Grosse-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J.C.; Liu, J; Barbero, M.; Rozanov, A

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. 1Corresponding author. c CERN 2014, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation and DOI. doi:10.1088/1748-0221/9/05/C050642014 JINST 9 C05064 A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation a...

  16. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  17. Large-R jets in Atlas Tile Calorimeter current and upgraded geometry

    CERN Document Server

    Cecchini, Vincent Egidio

    2017-01-01

    This report describes a comparative study of two different geometries of the Atlas Tile Calorimeter to assess the performance of an increased granularity upgrade. The current geometry is compared to the upgraded one, needed because of the luminosity increase in the High-Luminosity LHC. Those geometries had been simulated in Geant4 to provide Monte-Carlo events simulations allowing us to compare the behaviour of the upgraded geometry with the current one. Data analysis is made from this simulation to compare the behaviour of the reconstructed jets substructure in the two different geometries.

  18. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    International Nuclear Information System (INIS)

    Rutherfoord, John

    2012-01-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 10 34 cm −2 s −1 . The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  19. LUCID Upgrade for ATLAS Luminosity Measurement in Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00444244; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor, LUCID, and its read-out electronics have been completely rebuilt for the LHC Run II in order to cope with a higher center of mass energy ($\\sqrt{s}$=13 TeV) and the 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive $^{207}$Bi sources that produce internal-conversion electrons with energy above the Cherenkov threshold in quartz. The new electronics can count signals with amplitude above a predefined threshold (hits) as well as the integrated pulseheight of the signals, which makes it possible to measure luminosity with complementary methods. The new detector, calibration system and electronics will be described, together with the results of the 2015 luminosity measurement.

  20. Optics and lattice optimizations for the LHC upgrade project

    CERN Document Server

    Holzer, B; Chance, A; Dalena, B; Payet, J; Bogomyagkov, A; Appleby, R; Korostelev, M; Hock, K; Wolski, A; Milardi, C; Faus-Golfe, A; Resta, J

    2012-01-01

    The luminosity upgrade of the LHC collider at CERN is based on a strong focusing scheme to reach lowest values of the beta function at the collision points. Several issues have to be addressed in this context, that are considered as mid term goals for the optimisation of the lattice and beam optics: Firstly a number of beam optics have been developed to establish a baseline for the hardware R&D, and that will define the specifications for the new magnets that will be needed, in Nb$_{3}$Sn as well as in NbTi technology. Secondly, the need for sufficient flexibility of the beam optics especially for smallest β * values, the need for a smooth transition between the injection and the collision optics, the comparison of the optics performance between flat and round beams and finally different ways to optimise the chromatic correction, including the study of local correction schemes. This paper presents the status of this work, which is a result of an international collaboration, and summarises the main parame...

  1. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    CERN Document Server

    Beimforde, Michael

    To extend the discovery potential of the experiments at the LHC accelerator a luminosity upgrade towards the super LHC (sLHC) with an up to ten-fold peak luminosity is planned. Within this thesis a new module concept was developed and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector.

  2. Development of a novel diamond based detector for machine induced background and luminosity measurements

    International Nuclear Information System (INIS)

    Hempel, Maria

    2017-07-01

    The Large Hadron Collider (LHC) is the largest particle accelerator and storage ring in the world, used to investigate fundamentals of particle physics and to develop at the same time the technology of accelerators and detectors. Four main experiments, located around the LHC ring, provide insight into the nature of particles and search for answers to as yet unexplained phenomena in the universe. These four experiments are ATLAS (A Toroidal LHC Apparatus), ALICE (A Large Ion Collider Experiment), CMS (Compact Muon Solenoid) and LHCb (LHC beauty). Two proton or heavy ion beams circulate in the LHC and are brought into collision in the four experiments. The physics potential of each experiment is determined by the luminosity, which is a ratio of the number of the events during a certain time period to the cross section of a physics process. A measurement of the luminosity is therefore essential to determine the cross section of interesting physics processes. In addition, safe and high-quality data-taking requires stable beam conditions with almost no beam losses. So-called beam loss monitors are installed in the LHC rings to monitor beam losses around the LHC. Each experiment has in addition its own detectors to measure beam losses, hereafter called machine induced background. One such detector is installed in CMS, the Fast Beam Condition Monitor (BCM1F). Based on diamond sensors it was designed and built to measure both, the luminosity and the machine induced background. BCM1F ran smoothly during the first LHC running period from 2009-2012 and delivered valuable beam loss and luminosity information to the control rooms of CMS and LHC. At the end of 2012 the LHC was shut down for an upgrade to improve the performance by increasing the proton energy from 4 TeV to 7 TeV and decreasing the proton bunch spacing from 50 ns to 25 ns. Due to the success of BCM1F an upgrade of its sensors and readout components was planned in order to fulfil the new requirements. The upgrade

  3. Development of a novel diamond based detector for machine induced background and luminosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2017-07-15

    The Large Hadron Collider (LHC) is the largest particle accelerator and storage ring in the world, used to investigate fundamentals of particle physics and to develop at the same time the technology of accelerators and detectors. Four main experiments, located around the LHC ring, provide insight into the nature of particles and search for answers to as yet unexplained phenomena in the universe. These four experiments are ATLAS (A Toroidal LHC Apparatus), ALICE (A Large Ion Collider Experiment), CMS (Compact Muon Solenoid) and LHCb (LHC beauty). Two proton or heavy ion beams circulate in the LHC and are brought into collision in the four experiments. The physics potential of each experiment is determined by the luminosity, which is a ratio of the number of the events during a certain time period to the cross section of a physics process. A measurement of the luminosity is therefore essential to determine the cross section of interesting physics processes. In addition, safe and high-quality data-taking requires stable beam conditions with almost no beam losses. So-called beam loss monitors are installed in the LHC rings to monitor beam losses around the LHC. Each experiment has in addition its own detectors to measure beam losses, hereafter called machine induced background. One such detector is installed in CMS, the Fast Beam Condition Monitor (BCM1F). Based on diamond sensors it was designed and built to measure both, the luminosity and the machine induced background. BCM1F ran smoothly during the first LHC running period from 2009-2012 and delivered valuable beam loss and luminosity information to the control rooms of CMS and LHC. At the end of 2012 the LHC was shut down for an upgrade to improve the performance by increasing the proton energy from 4 TeV to 7 TeV and decreasing the proton bunch spacing from 50 ns to 25 ns. Due to the success of BCM1F an upgrade of its sensors and readout components was planned in order to fulfil the new requirements. The upgrade

  4. CMS: Present status, limitations, and upgrade plans

    International Nuclear Information System (INIS)

    Cheung, H.W.K.

    2011-01-01

    An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R and D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

  5. Run II performance of luminosity and beam condition monitors at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Hamburg (Germany)

    2016-07-01

    The BRIL (Beam Radiation Instrumentation and Luminosity) system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. Many of the BRIL subsystems have been upgraded and others have been added for LHC Run II to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) delivers an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. An overview of the performance during 2015 LHC running for the new/updated BRIL subsystems will be given, including the uncertainties of the luminosity measurements.

  6. FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC

    CERN Document Server

    Barbero, M; The ATLAS collaboration

    2010-01-01

    A new ATLAS pixel chip FE-I4 has been developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. It is based on a two-stage architecture with a pre-amp AC-coupled to a second stage of amplification. It features leakage current compensation circuitry, local 4-bit pre-amp feedback tuning and a discriminator locally adjusted through 5 configuration bits. The digital architecture is based on a 4-pixel unit called Pixel Digital Region (PDR) allowing for local storage of hits in 5-deep data buffers at pixel level for the duratio...

  7. Higher brightness beams from the SPS for the HL-LHC era

    CERN Document Server

    AUTHOR|(CDS)2085448; Bracco, Chiara (CERN)

    The need to push the LHC beyond its limits and increase the deliverable luminosity to the experiments by about one order of magnitude has driven the ongoing injector and HL-LHC upgrades. The higher luminosity requires to increase the beam brightness, which directly translates in the need to adapt the different machine protection systems. Among all the foreseen upgrades, the transfer line collimators (TCDI) and the LHC injection protection systems will be revised. In particular, the guaranteed protection is evaluated in this Ph D work, together with the specification for the minimum shielded aperture in case of injection failures. A detailed model is also developed which insures a more reliable and efficient procedure for the validation of the TCDI setup within the required accuracy. The physics beyond colliders will also be pushed over its current limits in the HL-LHC era. SHiP, a new proposed fixed target experiment served by the SPS is under study. The unprecedented level of requested protons on target per ...

  8. Beam dynamics studies to develop LHC luminosity model

    CERN Document Server

    Campogiani, Giovanna; Papaphilippou, Ioannis

    The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...

  9. Detector Performance and Upgrade Plans of the Pixel Luminosity Telescope for Online per-Bunch Luminosity Measurement at CMS

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors. It was installed during LS1 and has been providing luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to quickly identify likely tracks at the full 40MHz interaction rate. In addition, the full pixel information is read out at a lower rate, allowing for more detailed offline analysis. In this talk, we will present details of the commissioning, performance and operational history of the currently installed hardware and upgrade plans for LS2.

  10. A level-1 pixel based track trigger for the CMS HL-LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2016-01-01

    We present feasibility studies to investigate the performance and interest of a Level-1 trigger based on pixels. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is based on real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of rare physics events from the large pile-up of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total Level-1 trigger rate while keeping a high selection capability. This is quite an innovative and challenging objective for the upgrade of the experiments for the High Luminosity LHC.

  11. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  12. Big advance towards the LHC upgrade

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The LHC is currently the world’s most powerful accelerator. With its technical achievements it has already set world records. However, big science looks very far ahead in time and is already preparing already for the LHC’s magnet upgrade, which should involve a 10-fold increase of the collision rates toward the end of the next decade. The new magnet technology involves the use of an advanced superconducting material that has just started to show its potential.   The first Long Quadrupole Shell (LQS01) model during assembly at Fermilab. The first important step in the qualification of the new technology for use in the LHC was achieved at the beginning of December when the US LHC Accelerator Research Program (LARP) – a consortium of Brookhaven National Laboratory, Fermilab, Lawrence Berkeley National Laboratory and the SLAC National Accelerator Laboratory founded by US Department Of Energy (DOE) in 2003 – successfully tested the first long focussing magnet th...

  13. A new read-out architecture for the ATLAS Tile Calorimeter Phase-II Upgrade

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2015-01-01

    TileCal is the Tile hadronic calorimeter of the ATLAS experiment at the LHC. The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will increase of order five times the LHC nominal instantaneous luminosity. TileCal will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The data generated in the detector will be transferred to the new Read-Out Drivers (sRODs) located in off-detector for every bunch crossing before any event selection is applied. Furthermore, the sROD will be responsible of providing preprocessed trigger information to the ATLAS first level of trigger. It will implement pipeline memories to cope with the latencies and rates specified in the new trigger schema and in overall it will represent the interface between the data acquisition, trigger and control systems and the on-detector electronics. The new TileCal read-out architecture will be presented includi...

  14. Tests with beam setup of the TileCal Phase-II upgrade electronics

    CERN Document Server

    Hlaluku, Dingane Reward; The ATLAS collaboration

    2017-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile Calorimeter (TileCal) will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal electronics both on- and off-detector will be completely redesigned and a new readout architecture will be adopted. The photomultiplier signals will be digitised and transferred to the TileCal PreProcessors (PPr) located off-detector for every bunch crossing. Then, the PPr will provide preprocessed digital data to the first level trigger with improved spatial granularity and energy resolution with respect to the current analog trigger signals. We plan to insert one TileCal module instrumented with the new electronics in the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new drawer, so-called Hybrid Demonstrator, must provide analog trigger signal fo...

  15. LUCID Upgrade for ATLAS Luminosity Measurement in Run II.

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor LUCID and its read-out electronics has been completely rebuilt for the 2015 LHC run in order to cope with a higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive Bi$^{207}$ sources that produces internal conversion electrons above the Cherenkov threshold in quartz. The new electronics can count particle hits above a threshold but also the integrated pulseheight of the signals from the particles which makes it possible to measure luminosity with new methods. The new detector, calibration system and electronics will be covered by the contribution as well as the results of the luminosity measurements with the detector in 2015.

  16. LHC crab-cavity aspects and strategy

    International Nuclear Information System (INIS)

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-01-01

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  17. Will ALICE run in the HL-LHC era?

    International Nuclear Information System (INIS)

    Wessels, J.P.

    2012-01-01

    We will present the perspectives for ion running in the HL-LHC era. In particular, ALICE is preparing a significant upgrade of its rate capabilities and is further extending its particle identification potential. This paves the way for heavy ion physics at unprecedented luminosities, which are expected in the HL-LHC era with the heaviest ions. Here, we outline a scenario, in which ALICE will be taking data at a luminosity of L > 6*10 27 cm -2 *s -1 for Pb-Pb with the aim of collecting at least 10 nb -1 . The potential interest of data-taking during high luminosity proton runs for ATLAS and CMS will also be commented. (author)

  18. Upgrade of the CMS Tracker with tracking trigger

    International Nuclear Information System (INIS)

    Abbaneo, D

    2011-01-01

    The planned upgrades of the LHC and its injector chain are expected to allow operation at luminosities around or above 5 × 10 34 cm −2 s −1 sometimes after 2020, to eventually reach an integrated luminosity of 3000 fb −1 at the end of that decade. In order to fully exploit such operating conditions and the delivered luminosity, CMS needs to upgrade its tracking detectors and substantially improve its trigger capabilities. To achieve such goals, R and D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. Some of the options considered are reviewed, discussing their potential advantages and disadvantages.

  19. Electron cloud studies for the LHC and future proton colliders

    CERN Document Server

    Domínguez Sánchez de la Blanca, César Octavio; Zimmermann, Frank

    2014-01-01

    The Large Hadron Collider (LHC) is the world’s largest and most powerful particle collider. Its main objectives are to explore the validity of the standard model of particle physics and to look for new physics beyond it, at unprecedented collision energies and rates. A good luminosity performance is imperative to attain these goals. In the last stage of the LHC commissioning (2011-2012), the limiting factor to achieving the design bunch spacing of 25 ns has been the electron cloud effects. The electron cloud is also expected to be the most important luminosity limitation after the first Long Shut-Down of the LHC (LS1), when the machine should be operated at higher energy and with 25-ns spacing, as well as for the planned luminosity upgrade (HL-LHC) and future high energy proton colliders (HE-LHC and VHE-LHC). This thesis contributes to the understanding of the electron cloud observations during the first run of the LHC (2010-2012), presents the first beam dynamics analysis for the next generation of high en...

  20. Prototype application for the control and debugging of CMS upgrade projects

    CERN Document Server

    Mills-Howell, Dominic

    2016-01-01

    Following the high-luminosity upgrades of the LHC, many subsystems of the CMS experiment require upgrading and others are using the LHC shutdowns as an opportunity to improve performance. The upgrades, themselves, have served to highlight the exigency to attack problems that were previously unaddressed. One such problem is the need for a tool that allows the users to easily monitor, debug, and test custom hardware. Such a tool could be abstracted to work, in theory, with various hardware devices. In addition to having the added benefit of being able to support future hardware, and maintaining parallel operations with the remaining control software.

  1. The ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator Data Acquisition and Software

    CERN Document Server

    Little, Jared David; The ATLAS collaboration

    2018-01-01

    The LHC plans a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the design LHC value. The electronics of the hadronic Tile Calorimeter (TileCal) will undergo a substantial upgrade to accommodate to the HL-LHC parameters. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. The photomultiplier signals will be digitized and transferred off-detector to the TileCal PreProcessors (TilePPr) for every bunch crossing, requiring a data bandwidth of 40 Tbps. The TilePPr will reconstruct, store and send the calorimeter signals to first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. In parallel, the data samples will be stored in pipeline memories and the data of the events selected by the ATLAS central trigger system and transferred to the ATLAS global Da...

  2. Design studies for the Phase II upgrade of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Orimoto, Toyoko Jennifer

    2016-01-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstate crystals forming the barrel part of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) will still perform well, even after the expected integrated luminosity of 3000fb-1 at the end of HL-LHC. The avalanche photodiodes (APDs) used to detect the scintillation light will also continue to be operational, although there will be some increase in noise due to radiation-induced dark currents. This will be mitigated by reducing the barrel operating temperature during HL-LHC running.The front-end electronics of the ECAL barrel will be replaced, in order to remove existing constraints on trigger rate and latency and to provide additional capability to fully exploit the higher luminosity delivered by the HL-LHC. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgraded off-detector processors, allowing maximum flexibility and enhanced tri...

  3. Upgrades of the CMS muon system in preparation of HL-LHC

    CERN Document Server

    Teyssier, Daniel Francois

    2017-01-01

    The present CMS muon system operates three different detector types in the barrel drift tubes (DT) and resistive plate chambers (RPC), along with cathode strip chambers (CSC) and another set of RPCs in the forward regions. In order to cope with increasingly challenging conditions various upgrades are planned to the trigger and muon systems. New detectors will be added to improve the performance in the critical forward region large-area triple-foil gas electron multiplier (GEM) detectors will already be installed in LS2 in the pseudo-rapidity region $1.6 < \\eta < 2.4$, aiming at suppressing the rate of background triggers while maintaining high trigger efficiency for low transverse momentum muons. For the High Luminosity (HL)-LHC operations, the muon forward region should be enhanced with another large area GEM based station, called GE2/1, and with two new generation RPC stations, called RE3/1 and RE4/1, having low resistivity electrodes. These detectors will combine tracking and triggering capabil...

  4. A Time-Multiplexed Track-Trigger for the CMS HL-LHC upgrade

    CERN Document Server

    Hall, Geoffrey

    2016-01-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trig...

  5. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hils, Maximilian, E-mail: maximilian.hils@tu-dresden.de

    2016-07-11

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton–proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10{sup 34} cm{sup −2} s{sup −1}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5–7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb{sup −1}. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  6. Silicon sensors for trackers at high-luminosity environment

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, Timo, E-mail: timo.peltola@helsinki.fi

    2015-10-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system that was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than in the current LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 Collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented. - Highlights: • An overview of the recent results from the RD50 collaboration. • Accuracy of TCAD simulations increased by including both bulk and surface damage. • Sensors with n-electrode readout and MCz material offer higher radiation hardness. • 3D detectors are a promising choice for the extremely high fluence environments. • Detectors with an enhanced charge carrier generation under systematic investigation.

  7. An FPGA based track finder for the L1 trigger of the CMS experiment at the High Luminosity LHC

    CERN Document Server

    Tomalin, Ian; Ball, Fionn Amhairghen; Balzer, Matthias Norbert; Boudoul, Gaelle; Brooke, James John; Caselle, Michele; Calligaris, Luigi; Cieri, Davide; Clement, Emyr John; Dutta, Suchandra; Hall, Geoffrey; Harder, Kristian; Hobson, Peter; Iles, Gregory Michiel; James, Thomas Owen; Manolopoulos, Konstantinos; Matsushita, Takashi; Morton, Alexander; Newbold, David; Paramesvaran, Sudarshan; Pesaresi, Mark Franco; Pozzobon, Nicola; Reid, Ivan; Rose, A. W; Sander, Oliver; Shepherd-Themistocleous, Claire; Shtipliyski, Antoni; Schuh, Thomas; Skinnari, Louise; Summers, Sioni Paris; Tapper, Alexander; Thea, Alessandro; Uchida, Kirika; Vichoudis, Paschalis; Viret, Sebastien; Weber, M; Aggleton, Robin Cameron

    2017-12-14

    A new tracking detector is under development for use by the CMS experiment at the High-Luminosity LHC (HL-LHC). A crucial requirement of this upgrade is to provide the ability to reconstruct all charged particle tracks with transverse momentum above 2-3 GeV within 4$\\mu$s so they can be used in the Level-1 trigger decision. A concept for an FPGA-based track finder using a fully time-multiplexed architecture is presented, where track candidates are reconstructed using a projective binning algorithm based on the Hough Transform, followed by a combinatorial Kalman Filter. A hardware demonstrator using MP7 processing boards has been assembled to prove the entire system functionality, from the output of the tracker readout boards to the reconstruction of tracks with fitted helix parameters. It successfully operates on one eighth of the tracker solid angle acceptance at a time, processing events taken at 40 MHz, each with up to 200 superimposed proton-proton interactions, whilst satisfying the latency requirement. ...

  8. Upgrade of the ATLAS Monitored Drift Tube Frontend Electronics for the HL-LHC

    CERN Document Server

    Zhu, Junjie; The ATLAS collaboration

    2017-01-01

    The ATLAS monitored drift tube (MDT) chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT system is capable of measuring the sagitta of muon tracks to an accuracy of 60 μm, which corresponds to a momentum accuracy of about 10% at pT=1 TeV. To cope with large amount of data and high event rate expected from the High-Luminosity LHC (HL-LHC) upgrade, ATLAS plans to use the MDT detector at the first-trigger level to improve the muon transverse momentum resolution and reduce the trigger rate. The new MDT trigger and readout system will have an output event rate of 1 MHz and a latency of 6 us at the first-level trigger. The signals from MDT tubes are first processed by an Amplifier/Shaper/Discriminator (ASD) ASIC, and the binary differential signals output by the ASDs are then router to the Time-to-Digital Converter (TDC) ASIC, where the arrival times of leading and trailing edges are digitized in a time bin of 0.78 ns which leads to an RMS timing error of 0.25 n...

  9. The CMS Level-1 trigger for LHC Run II

    Science.gov (United States)

    Tapper, A.

    2018-02-01

    During LHC Run II the centre-of-mass energy of pp collisions has increased from 8 TeV up to 13 TeV and the instantaneous luminosity has progressed towards 2 × 1034 cm-2s-1. In order to guarantee a successful and ambitious physics programme under these conditions, the CMS trigger system has been upgraded. The upgraded CMS Level-1 trigger is designed to improve performance at high luminosity and large number of simultaneous inelastic collisions per crossing. The trigger design, implementation and commissioning are summarised, and performance results are described.

  10. The Phase II Upgrade of the ATLAS Calorimeter

    CERN Document Server

    Tartarelli, Giuseppe Francesco; The ATLAS collaboration

    2017-01-01

    This presentation will show the status of the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC). For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 1034 cm−2 s−1 and the average pile-up up to 200 interactions per bunch crossing. The Liquid Argon (LAr) calorimeter electronics will need to be replaced to cope with these challenging conditions: the expected radiation doses will indeed exceed the qualification range of the current readout system, and the upgraded trigger system will require much longer data storage in the electronics (up to 60 us), that the current system cannot sustain. The status of the R&D of the low-power ASICs (pre-amplifier, shaper, ADC, serializer and transmitters) and of the readout electronics design will be discussed. Moreover, a High Granularity Timing Detector (HGTD) is proposed to be added in front of the LAr calorimeters in the end-cap region (2.4 <|eta|< 4.2) for pile-up mitigation a...

  11. Silicon Sensor Development for the CMS Tracker Upgrade

    CERN Document Server

    Auzinger, Georg; Elliott-Peisert, Anna

    The Large Hadron Collider at the European Council for Nuclear Research in Geneva is scheduled to undergo a major luminosity upgrade after its lifetime of ten years of operation around the year 2020, to maximize its scientific discovery potential. The total integrated luminosity will be increased by a factor of ten, which will dramatically change the conditions under which the four large detectors at the LHC will have to operate. The Compact Muon Solenoid, which has contributed to the recent discovery of a new, Higgs-like boson is one of them. Its innermost part -- the so-called tracker -- is a high-precision instrument that measures the created particles' trajectories by means of silicon detectors. With a total surface of more than 200 square-meters it is the largest device of its kind ever built. The increase in instantaneous luminosity in the upgraded LHC will lead to a dramatically increased track density at the interaction points of the colliding beams and thus also to a much more hostile radiation env...

  12. B-physics studies for HL-LHC ATLAS upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236452; The ATLAS collaboration

    2017-01-01

    Performance studies are made to estimate the ATLAS potential in $B$-physics after upgrade for Run2 and HL-LHC. Real data as well as Monte Carlo simulations are used to study the decay of $B^0_s \\to J/\\psi\\phi$ in order to measure the $CP$ violating mixing phase and the width difference between the $B^0_s$ eigenstates. The increased sensitivity is expected mainly due to the improved decay time resolution obtained with the upgraded IBL and ITk inner tracking detector.

  13. Proposal to negotiate a collaboration agreement for the design, testing and prototyping of superconducting elements for the High Luminosity LHC (HL-LHC) project and for the production of spare quadrupole magnets for LHC

    CERN Document Server

    2016-01-01

    Proposal to negotiate a collaboration agreement for the design, testing and prototyping of superconducting elements for the High Luminosity LHC (HL-LHC) project and for the production of spare quadrupole magnets for LHC

  14. LHC abort gap cleaning studies during luminosity operation

    CERN Document Server

    Bartmann, W; Bracco, C; Bravin, E; Goddard, B; Höfle, W; Jacquet, D; Jeff, A; Kain, V; Meddahi, M; Roncarolo, F; Uythoven, J; Valuch, D; Gianfelice-Wendt, E

    2012-01-01

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  15. Search for heavy lepton resonances decaying to a Z boson and a lepton in proton-proton collisions at √(s)=8 TeV with the ATLAS detector and investigations of radiation tolerant silicon-strip detectors for the high-luminosity LHC upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Wiik-Fuchs, Liv

    2017-03-09

    The success of particle physics experiments, like those at the Large Hardon Collider (LHC) at CERN, relies on a worldwide interdisciplinary collaboration in a variety of different fields. This thesis contributes to two vital aspects in this area of research:in the first part of a search for heavy trilepton resonances decaying to a Z boson and an electron or muon is presented, while the second part focusses on research and development of radiation tolerant silicon tracking detectors designed for the upgrade of the ATLAS detector for the future luminosity upgrade of the LHC. The search for trilepton resonances is based on pp collision data taken at a centre-of-mass energy of 8 TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 20.3 fb{sup -1}. To reconstruct the narrow resonance, events with at least three leptons (electrons or muons) with a high-transverse momentum are selected. Two of these leptons are required to be consistent with originating from a Z boson decay. Since no significant excess above Standard Model background predictions is observed, 95% confidence level upper limits on the production cross section of trilepton resonances beyond the Standard Model are derived. The results of this analysis are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 113-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-474 GeV are excluded. The second part of this thesis focusses on the development of radiation-tolerant silicon strip detectors for the luminosity upgrade of the ATLAS detector envisaged to commence in the year 2016. This thesis includes the results of several studies which contribute to multiple key aspects required for a successful upgrade of the silicon strip detector of the ATLAS Inner Tracker. Among these are the results of a beam test providing the first comparative results between

  16. Search for heavy lepton resonances decaying to a Z boson and a lepton in proton-proton collisions at √(s)=8 TeV with the ATLAS detector and investigations of radiation tolerant silicon-strip detectors for the high-luminosity LHC upgrade of the ATLAS inner detector

    International Nuclear Information System (INIS)

    Wiik-Fuchs, Liv

    2017-01-01

    The success of particle physics experiments, like those at the Large Hardon Collider (LHC) at CERN, relies on a worldwide interdisciplinary collaboration in a variety of different fields. This thesis contributes to two vital aspects in this area of research:in the first part of a search for heavy trilepton resonances decaying to a Z boson and an electron or muon is presented, while the second part focusses on research and development of radiation tolerant silicon tracking detectors designed for the upgrade of the ATLAS detector for the future luminosity upgrade of the LHC. The search for trilepton resonances is based on pp collision data taken at a centre-of-mass energy of 8 TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 20.3 fb"-"1. To reconstruct the narrow resonance, events with at least three leptons (electrons or muons) with a high-transverse momentum are selected. Two of these leptons are required to be consistent with originating from a Z boson decay. Since no significant excess above Standard Model background predictions is observed, 95% confidence level upper limits on the production cross section of trilepton resonances beyond the Standard Model are derived. The results of this analysis are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 113-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-474 GeV are excluded. The second part of this thesis focusses on the development of radiation-tolerant silicon strip detectors for the luminosity upgrade of the ATLAS detector envisaged to commence in the year 2016. This thesis includes the results of several studies which contribute to multiple key aspects required for a successful upgrade of the silicon strip detector of the ATLAS Inner Tracker. Among these are the results of a beam test providing the first comparative results between

  17. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of $3000~\\text{fb}^{-1}$. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate by a factor 10 to 1 MHz and the trigger latency by a factor of 20 which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new front-end and a high bandwidth back-end system for receiving data from all 186.000 channels at 40 MHz LHC bunch-crossing frequency and for off-detector buffering...

  18. ALICE Upgrades: Plans and Potentials

    CERN Document Server

    Tieulent, Raphael

    2015-01-01

    The ALICE collaboration consolidated and completed the installation of current detectors during LS1 with the aim to accumulate 1 nb$^{-1}$ of Pb-Pb collisions during Run 2 corresponding to about 10 times the Run 1 integrated luminosity. In parallel, the ALICE experiment has a rich detector upgrade programme scheduled during the second LHC long shutdown (LS2, 2018-2019) in order to fully exploit the LHC Runs 3 and 4. The main objectives of this programme are: improving the tracking precision and enabling the read-out of all Pb-Pb interactions at a rate of up to 50 kHz, with the goal to record an integrated luminosity of 10 nb$^{-1}$ after LS2 in minimum-bias trigger mode. This sample would represent an increase by a factor of one hundred with respect to the minimum-bias sample expected during Run 2. The implementation of this upgrade programme, foreseen in LS2, includes: a new low-material Inner Tracking System at central rapidity with a forward rapidity extension to add vertexing capabilities to the current M...

  19. Upgrading the Atlas Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    Tile Calorimeter is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2024, after the upgrade of the LHC the peak luminosity will increase by a factor of 5 compared to the design value, thus requiring an upgrade of the Tile Calorimeter readout electronics. Except the photomultipliers tubes (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at the front-end level and sending them with 10 Gb/s optical links to the back-end electronics. One demonstrator prototype module is planned to be inserted in Tile Calorimeter in 2015 that will include hybrid electronic components able to probe the new design.

  20. Status of the CMS detector and upgrade plans

    CERN Document Server

    Guiducci, Luigi

    2013-01-01

    The CMS experiment at the LHC collected 5.55 /fb of proton proton collisions data at a center of mass energy of 7 TeV in 2011 and almost 20 /fb at 8 TeV energy in 2012, while the LHC run is still ongoing. The CMS detector has shown excellent performance and very good data taking efficiency. The operational experience will be discussed focusing on relevant technical aspects. The performance of CMS subdetectors will be illustrated. Emphasis will be put on the solutions adopted during 2012 run to adapt to the increase in luminosity of the LHC while mantaining the high quality of the physics objects delivered to offline analysis. New challenges, dictated by future LHC luminosity scenarios, are ahead of CMS an overview of the detector upgrade plans, both on medium and long term range, will be given.

  1. Total Ionizing Dose Testing of the ABC130 ASIC for the ATLAS Phase-II Semiconductor Tracker Upgrade

    CERN Document Server

    Morningstar, Alan

    2015-01-01

    The Large Hadron Collider's (LHC) current inner detector was not built to withstand the radiation damage from the 3000 $\\text{fb}^{-1}$ of integrated luminosity that is planned for the high luminosity LHC (HL-LHC). Therefore, the ATLAS inner detector (ID) must be completely upgraded. As a part of this upgrade, the semiconductor tracker (SCT) and transition radiation tracker (TRT) will be replaced with new silicon microstrip sensors {[}1{]}. These silicon strips will be read out by the ABC130 chip and thus the ABC130 must be able to withstand an expected 30 Mrad of radiation over 10 years. The ABC130 chip was irradiated with 70 Mrad of x-ray radiation over the course of 2 days and the results are discussed in this report.

  2. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    International Nuclear Information System (INIS)

    Miucci, A; Gonzalez-Sevilla, S; Ferrere, D; Iacobucci, G; Rosa, A La; Muenstermann, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Obermann, T; Wermes, N; Garcia-Sciveres, M; Backhaus, M; Capeans, M; Feigl, S; Nessi, M; Pernegger, H; Ristic, B; George, M

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

  3. Enabling technologies for silicon microstrip tracking detectors at the HL-LHC

    International Nuclear Information System (INIS)

    Feld, L.; Karpinski, W.; Klein, K.

    2016-04-01

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative ''Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC'' (PETTL), which was supported by the Helmholtz Alliance ''Physics at the Terascale'' during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R and D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements.

  4. Enabling technologies for silicon microstrip tracking detectors at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Feld, L.; Karpinski, W.; Klein, K. [RWTH Aachen Univ. (Germany). 1. Physikalisches Institut B; Collaboration: The PETTL Collaboration; and others

    2016-04-15

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative ''Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC'' (PETTL), which was supported by the Helmholtz Alliance ''Physics at the Terascale'' during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R and D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements.

  5. The Fast Interaction Trigger Upgrade for ALICE

    CERN Document Server

    Garcia-Solis, Edmundo

    2016-01-01

    The ALICE Collaboration is preparing a major detector upgrade for the second LHC long shutdown (2019–20). The LHC heavy-ion luminosity and collision rate from 2021 onwards will considerably exceed the design parameters of the present ALICE forward trigger detectors. Furthermore, the introduction of a new Muon Forward Tracker (MFT) will significantly reduce the space available for the upgraded trigger detectors. To comply with these conditions a Fast Interaction Trigger (FIT) has been designed. FIT will be the primary forward trigger, luminosity, and collision time measurement detector. The FIT will be capable of triggering at an interaction rate of 50 kHz, with a time resolution better than 30 ps, with 99% efficiency. It will also determine multiplicity, centrality, and reaction plane. FIT will consist of two arrays of Cherenkov radiators with MCP-PMT sensors and of a single, large-size scintillator ring. The arrays will be placed on both sides of the interaction point (IP). Because of the presence of the h...

  6. Upgrade plans for hadron calorimeter in the CMS detector

    International Nuclear Information System (INIS)

    Dugad, Shashikant R.

    2010-01-01

    The Large Hadron Collider (LHC) is expected to undergo upgrades in two phases in next decade. Luminosity at the completion of the second phase is expected to increase by an order of magnitude to 10 35 /cm 2 s. The upgrade of the CMS Hadron Calorimeter (HCAL) is being planned to sustain an increased dose of radiation and challenges arising from occupancy rate due to higher luminosity. Replacement of existing photo readout device by silicon photomultipliers is being planned for the HCAL. Detailed studies performed on this device are presented. Plans on the upgrade of the front-end electronics, DAQ, trigger, and the active elements in some part of the detector will be discussed in detail.

  7. Coil End Optimization of the Nb$_3$Sn Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Bossert, R; Cheng, D; Ferracin, P; Krave, ST; Perez, J C; Schmalzle, J; Yu, M

    2015-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture quadrupole magnet that aims at providing a nominal gradient of 140 T/m. The resulting conductor peak field of more than 12 T requires the use of Nb$_{3}$Sn superconducting coils. In this paper the coil design for the quadrupole short model (SQXF) is described, focusing in particular on the optimization of the end-parts. We first describe the magnetic optimization aiming at reducing the peak field enhancement in the ends and minimizing the integrated multipole content. Then we focus on the analysis and tests performed to determine the most suitable shapes of end turns and spacers, minimizing the mechanical stress on the cables. We conclude with a detailed description of the baseline end design for the first series of the short model coils.

  8. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)758889; The ATLAS collaboration

    2016-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to \\SI{14}{\\tera\\electronvolt} and instantaneous luminosities up to \\SI{d34}{\\per\\centi\\meter\\squared\\per\\second}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of \\SI{3000}{\\per\\femto\\barn}. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end (FE) electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate and the trigger latency which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new FE and a high bandwidth back-end (BE) system for receiving data from all \

  9. Implementation of FPGA-based Level-1 Tracking at CMS for the HL-LHC

    CERN Document Server

    Chaves, Jorge Enrique

    2014-01-01

    A new approach for track reconstruction is presented to be used in the all-hardware first level of the CMS trigger. The application of the approach is intended for the upgraded all-silicon tracker, which is to be installed for the High Luminosity era of the LHC (HL-LHC). The upgraded LHC machine is expected to deliver a luminosity on the order of $5\\times10^{34} $cm$^{-2}$s$^{-1}$. This expected luminosity means there would be about 125 pileup events in each bunch crossing at a frequency of 40 MHz. To keep the CMS trigger rate at a manageable level under these conditions, it is necessary to make quick decisions on the events that will be processed. The timing estimates for the algorithm are expected to be below 5 $\\mu$s, well within the requirements of the L1 trigger at CMS for track identification. The algorithm is integer-based, allowing it to be implemented on an FPGA. Currently we are working on a demonstrator hardware implementation using a Xilinx Virtex 6 FPGA. Results from simulations in C++ and Verilo...

  10. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Oreglia, M; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to use will be decided after extensive test beam studies. High speed optical links are used to read out all digitized data to the counting room. For the off-detector electronics a new back-end architecture is being developed, including the initial trigger processing and pipeline memories. A demonstrator prototype read-out for a slice of the ...

  11. Mechanical Qualification of the Support Structure for MQXF, the Nb$_{3}$Sn Low-Beta; Quadrupole for the High Luminosity LHC

    CERN Document Server

    Juchno, M; Anerella, M; Bajas, H; Bajko, M; Bourcey, N; Cheng, D W; Felice, H; Ferracin, P; Grosclaude, P; Guinchard, M; Perez, J C; Prin, H; Schmalzle

    2016-01-01

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb$_{3}$Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structure was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. This paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were per...

  12. Luminosity upgrade possibilities for the PEP-II B-Factory

    CERN Document Server

    Sullivan, M

    2003-01-01

    PEP-II is an asymmetric e sup + e sup - collider being constructed in the SLAC PEP tunnel by SLAC, LBNL, and LLNL. The two beams have energies of 3.1 GeV and 9.0 GeV and are made to collide at a single interaction point. PEP-II has a 2200 m circumference. The nominal parameters for PEP-II are listed in Table 1. The High Energy Ring (HER) of PEP-II started commissioning in 1997. The Low Energy Ring (LER) will be commissioned in the summer of 1998. The BaBar detector is to be installed starting January 1999. Studies for increasing the luminosity in PEP-II beyond the design are underway. A brief summary of the possibilities are presented here. Improvements to the integrated luminosity will be implemented gradually. Major luminosity improvements will likely come in two phased upgrades. Several of these possibilities are summarized in Table 1.

  13. LUMINOSITY UPGRADE POSSIBILITIES FOR THE PEP-II B-FACTORY

    International Nuclear Information System (INIS)

    Sullivan, Michael K

    2003-01-01

    PEP-II is an asymmetric e + e - collider being constructed in the SLAC PEP tunnel by SLAC, LBNL, and LLNL. The two beams have energies of 3.1 GeV and 9.0 GeV and are made to collide at a single interaction point. PEP-II has a 2200 m circumference. The nominal parameters for PEP-II are listed in Table 1. The High Energy Ring (HER) of PEP-II started commissioning in 1997. The Low Energy Ring (LER) will be commissioned in the summer of 1998. The BaBar detector is to be installed starting January 1999. Studies for increasing the luminosity in PEP-II beyond the design are underway. A brief summary of the possibilities are presented here. Improvements to the integrated luminosity will be implemented gradually. Major luminosity improvements will likely come in two phased upgrades. Several of these possibilities are summarized in Table 1

  14. Commissioning of the Absolute Luminosity For ATLAS Detector at the LHC

    DEFF Research Database (Denmark)

    Jakobsen, Sune

    To determine the total cross section and absolute luminosity in the ATLAS detector at the LHC via pp scattering under very small angles, a dedicated sub-detector called ALFA has been made. Several performance evaluation tests including a test beam campaign lead to improvements of the detector...

  15. The Phase-1 Upgrade for the Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC

    CERN Document Server

    Izzo, Vincenzo; The ATLAS collaboration

    2018-01-01

    The Level-1 Barrel Trigger of the ATLAS Experiment is based on Resistive Plate Chambers (RPC) detectors. The on-detector trigger electronics identifies muons with specific values of transverse momentum (pT), by using coincidences between different layers of detectors. Trigger data is then transferred from on-detector to the off-detector trigger electronics boards. Data is processed by a complex system, which combines trigger data from the Barrel and the End-cap regions, and provides the combined muon candidate to the Central Trigger Processor (CTP). The system has been performing very well for almost a decade. However, in order to cope with continuously increasing LHC luminosity and more demanding requirements on trigger efficiency and performance, various upgrades for the full trigger system were already deployed, and others are foreseen in the next years. Most of the trigger upgrades are based on state-of-the-art technologies and allow designing more complex trigger menus, increasing processing power and da...

  16. Instrumentation for silicon tracking at the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00524651; Strandberg, Sara; Garcia-Sciveres, Maurice

    2017-06-14

    In 2027 the Large Hadron Collider (LHC) at CERN will enter a high luminosity phase, deliver- ing 3000 fb 1 over the course of ten years. The High Luminosity LHC (HL-LHC) will increase the instantaneous luminosity delivered by a factor of 5 compared to the current operation pe- riod. This will impose significant technical challenges on all aspects of the ATLAS detector but particularly the Inner Detector, trigger, and data acquisition systems. In addition, many of the components of the Inner Detector are reaching the end of their designed lifetime and will need to be exchanged. As such, the Inner Detector will be entirely replaced by an all silicon tracker, known as the Inner Tracker (ITk). The layout of the Pixel and strip detectors will be optimised for the upgrade and will extend their forward coverage. To reduce the per-pixel hit rate and explore novel techniques for deal- ing with the conditions in HL-LHC, an inter-experiment collaboration called RD53 has been formed. RD53 is tasked with producing a front...

  17. Upgrade of the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    AUTHOR|(CDS)2072874

    2014-01-01

    The Level-1 calorimeter trigger (L1Calo) operated successfully during the first data taking phase of the ATLAS experiment at the LHC. Facing the new challenges posed by the upcoming increases of the LHC beam energy and luminosity, and from the experience of the previous running, a series of upgrades is planned for L1Calo. The initial upgrade phase in 2013-14 includes substantial improvements to the analogue and digital signal processing to cope with baseline shifts due to signal pile-up. Additionally a newly introduced system will receive real-time data from both the upgraded L1Calo and L1Muon trigger to perform trigger algorithms based on entire event topologies. During the second upgrade phase in 2018-19 major parts of L1Calo will be rebuilt in order to exploit a tenfold increase in the available calorimeter data granularity compared to that of the current system. The contribution gives an overview of the existing system and the lessons learned during the first period of LHC data taking. Based on these, the...

  18. Upgrade of the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Mueller, Felix; The ATLAS collaboration

    2014-01-01

    The Level-1 calorimeter trigger (L1Calo) operated successfully during the first data taking phase of the ATLAS experiment at the LHC. Based on the lessons learned , a series of upgrades is planned for L1Calo to face the new challenges posed by the upcoming increases of the LHC beam energy and luminosity. The initial upgrade phase in 2013-14 includes substantial improvements to the analogue and digital signal processing to cope with baseline shifts due to signal pile-up. Additionally a newly introduced system will receive real-time data from both the upgraded L1Calo and L1Muon trigger to perform trigger algorithms based on entire event topologies. During the second upgrade phase in 2018-19 major parts of L1Calo will be rebuilt in order to exploit a tenfold increase in the available calorimeter data granularity compared to that of the current system. In this contribution we present the lessons learned during the first period of LHC data taking. Based on these we discuss the expected performance improvements tog...

  19. Clock Distribution and Readout Architecture for the ATLAS Tile Calorimeter at the HL-LHC

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2018-01-01

    The Tile Calorimeter (TileCal) is one detector of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter made of steel plates and plastic scintillators which are readout using approximately 10,000 PhotoMultipliers Tubes (PMTs). In 2024, the LHC will undergo a series of upgrades towards a High Luminosity LHC (HL-LHC) to deliver up to 7.5 times the current nominal instantaneous luminosity. The ATLAS Tile Phase II Upgrade will accommodate detector and data acquisition system to the HL-LHC requirements. The detector electronics will be redesigned using a new clock distribution and readout architecture with a full-digital trigger system. After the Long Shutdown 3 (2024-2026), the on-detector electronics will transfer digitized data for every bunch crossing (~25 ns) to the Tile PreProcessors (TilePPr) in the counting rooms with a total data bandwidth of 40 Tbps. The TilePPrs will store the detector data in pipeline memories to cope with the new ATLAS DAQ architecture requirements...

  20. Scintillator performance at low dose rates and low temperatures for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Ricci-Tam, Francesca

    2018-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance, especially for forward calorimetry, and highlights the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. The upgrade includes both electromagnetic and hadronic components, with the latter using a mixture of silicon sensors (in the highest radiation regions at high pseudorapidity) and scintillator as its active components. The scintillator will nevertheless receive large doses accumulated at low dose rates, and will have to operate at low temperature - around -30 degrees Celsius. We discuss measurements of scintillator radiation tolerance, from in-situ measurements from the current CMS endcap calorimeters, and from measurements at low temperature and low dose-rate at gamma sources in the laboratory.

  1. HE upgrade beyond phase 1. Finger scintillator option.

    CERN Document Server

    Afanasiev, Sergey; Boyarintsev, A.Yu; Emeliantchik, Igor; Golutvin, Igor; Grinyov, B.V; Ershov, Yuri; Levchuk, Leonid; Litomin, Aliaksandr; Malakhov, Alexander; Moisenz, Petr; Popov, V.F; Shumeiko, Nikolai; Smirnov, Vitaly; Sorokin, Pavlo; Zhmurin, Petro

    2014-01-01

    CMS hadron calorimeters (HB, HE, HO) have been in operation for several years and contributed substantially to the success of the CMS Physics Program. The endcap calorimeter HE suffered more radiation damage than anticipated causing rapid degradation of scintillator segments (tiles) which have a higher radiation flux from secondary particles than HB and HO. A proposal to upgrade of HE calorimeter will provide a solution for survivability at future LHC higher luminosity. A finger-strip plastic scintillator option has many advantages and is a lower cost alternative to keep the excellent HE performance at high luminosity. Measurements and simulations have been performed and this method is a good upgrade strategy.

  2. Elastic cross-section and luminosity measurement in Atlas at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Efthymiopoulos, I. [Conseil Europeen pour la recherche nucleaire, AB Dept., Geneve (Switzerland)

    2005-07-01

    Recently the Atlas experiment was complemented with a set of ultra-small-angle detectors located in 'Roman Pot' inserts at 240 m on either side of the interaction point, aiming at the absolute determination of the LHC luminosity by measuring the elastic scattering rate at the Coulomb Nuclear Interference region. Details of the proposed measurement the detector construction and the expected performance as well as the challenges involved are discussed here. Our aim is to determine the luminosity within a 2% error and give a competitive measurement on other parameters like the {rho}-parameter, the total cross-section and the nuclear slope.

  3. The ALICE TPC Upgrad

    Science.gov (United States)

    Castro, Andrew; Alice-Usa Collaboration; Alice-Tpc Collaboration

    2017-09-01

    The Time Projection Chamber (TPC) currently used for ALICE (A Large Ion Collider Experiment at CERN) is a gaseous tracking detector used to study both proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) In order to accommodate the higher luminosit collisions planned for the LHC Run-3 starting in 2021, the ALICE-TPC will undergo a major upgrade during the next LHC shut down. The TPC is limited to a read out of 1000 Hz in minimum bias events due to the intrinsic dead time associated with back ion flow in the multi wire proportional chambers (MWPC) in the TPC. The TPC upgrade will handle the increase in event readout to 50 kHz for heavy ion minimum bias triggered events expected with the Run-3 luminosity by switching the MWPCs to a stack of four Gaseous Electron Multiplier (GEM) foils. The GEM layers will combine different hole pitches to reduce the dead time while maintaining the current spatial and energy resolution of the existing TPC. Undertaking the upgrade of the TPC represents a massive endeavor in terms of design, production, construction, quality assurance, and installation, thus the upgrade is coordinated over a number of institutes worldwide. The talk will go over the physics motivation for the upgrade, the ALICE-USA contribution to the construction of Inner Read Out Chambers IROCs, and QA from the first chambers built in the U.S

  4. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  5. ATLAS Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a factor ten, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  6. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    International Nuclear Information System (INIS)

    Datte, P.; Beche, J.-F.; Haguenauer, M.; Manfredi, P.F.; Manghisoni, M.; Millaud, J.; Placidi, M.; Ratti, L.; Riot, V.; Schmickler, H.; Speziali, V.; Turner, W.

    2002-01-01

    A novel, segmented, multi-gap, pressurized gas ionization chamber is being developed for optimization of the luminosity of the LHC. The ionization chambers are to be installed in the front quadrupole and zero degree neutral particle absorbers in the high luminosity IRs and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper we report the initial results of our second test of this instrumentation in an SPS external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic shower produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentations to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated

  7. Polycrystalline CdTe detectors: A luminosity monitor for the LHC

    Science.gov (United States)

    Gschwendtner, E.; Placidia, M.; Schmicklera, H.

    2003-09-01

    The luminosity at the four interaction points of the Large Hadron Collider must be continuously monitored in order to provide an adequate tool for the control and optimization of the collision parameters and the beam optics. At both sides of the interaction points absorbers are installed to protect the super-conducting accelerator elements from quenches caused by the deposited energy of collision products. The luminosity detectors will be installed in the copper core of these absorbers to measure the electromagnetic and hadronic showers caused by neutral particles that are produced at the proton-proton collision in the interaction points. The detectors have to withstand extreme radiation levels (108 Gy/yr at the design luminosity) and their long-term operation has to be assured without requiring human intervention. In addition the demand for bunch-by-bunch luminosity measurements, i.e. 40 MHz detection speed, puts severe constraints on the detectors. Polycrystalline CdTe detectors have a high potential to fulfill the requirements and are considered as LHC luminosity monitors. In this paper the interaction region is shown and the characteristics of the CdTe detectors are presented.

  8. Polycrystalline CdTe detectors: A luminosity monitor for the LHC

    International Nuclear Information System (INIS)

    Gschwendtner, E.; Placidia, M.; Schmicklera, H.

    2003-01-01

    The luminosity at the four interaction points of the Large Hadron Collider must be continuously monitored in order to provide an adequate tool for the control and optimization of the collision parameters and the beam optics. At both sides of the interaction points absorbers are installed to protect the super-conducting accelerator elements from quenches caused by the deposited energy of collision products. The luminosity detectors will be installed in the copper core of these absorbers to measure the electromagnetic and hadronic showers caused by neutral particles that are produced at the proton-proton collision in the interaction points. The detectors have to withstand extreme radiation levels (108 Gy/yr at the design luminosity) and their long-term operation has to be assured without requiring human intervention. In addition the demand for bunch-by-bunch luminosity measurements, i.e. 40 MHz detection speed, puts severe constraints on the detectors. Polycrystalline CdTe detectors have a high potential to fulfill the requirements and are considered as LHC luminosity monitors. In this paper the interaction region is shown and the characteristics of the CdTe detectors are presented

  9. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  10. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    Spannagel, Simon

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  11. Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System

    CERN Document Server

    AUTHOR|(CDS)2069742; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Achenbach, Ralf; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexandrov, Evgeny; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amaral Coutinho, Yara; Amelung, Christoph; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, John Thomas; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araujo Ferraz, Victor; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Augusto, José; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Ballestrero, Sergio; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Batraneanu, Silvia; Battistin, Michele; Bauer, Florian; Bauss, Bruno; Bawa, Harinder Singh; Beacham, James Baker; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertelsen, Henrik; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogdan, Mircea Arghir; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borga, Andrea; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Brawn, Ian; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Ciodaro Xavier, Thiago; Cirkovic, Predrag; Citraro, Saverio; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Coura Torres, Rodrigo; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crone, Gordon Jeremy; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drake, Gary; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Dwuznik, Michal; Ebke, Johannes; Edmunds, Daniel; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ermoline, Iouri; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Faulkner, Peter; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Front, David Moris; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; Gentsos, Christos; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghibaudi, Marco; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibson, Stephen; Gillam, Thomas; Gillberg, Dag; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Giunta, Michele; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Green, Barry; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Haefner, Petra; Hageböck, Stephan; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Higuchi, Kota; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jansweijer, Peter Paul Maarten; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joos, Markus; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahra, Christian; Kajomovitz, Enrique; Kaluza, Adam; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Kazarov, Andrei; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kiese, Patric Karl; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klimkovich, Tatsiana; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Kolos, Serguei; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; K{ö}nig, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Laurens, Philippe; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberali, Valentino; Liberti, Barbara; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Luciano, Pierluigi; Lucotte, Arnaud; Ludwig, Dörthe; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Luongo, Carmela; Lupu, Nachman; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Macey, Tom; Machado Miguens, Joana; Macina, Daniela; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Maldaner, Stephan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Meera-Lebbai, Razzak; Meessen, Christophe; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Garcia, Raul; Murillo Quijada, Javier Alberto; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaidis, Spyridon; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Panes, Boris; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Piendibene, Marco; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Weiming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Quinonez, Fernando; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Stefan; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Reiss, Andreas; Relich, Matthew; Rembser, Christoph; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Romero Maltrana, Diego; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savage, Graham; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaeffer, Jan; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schettino, Vinicius; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Klaus; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schroer, Nicolai; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Shooltz, Dean; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sicoe, Alexandru Dan; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silva Oliveira, Marcos Vinicius; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sivoklokov, Serguei; Siyad, Mohamed Jimcaale; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Soloviev, Igor; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Stahlman, Jonathan; Staley, Richard; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Stupak, John; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taghavirad, Saeed; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Tuts, Michael; Twomey, Matthew Shaun; Tykhonov, Andrii; Tylmad, Maja; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Vieira De Souza, Julio; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wenzel, Volker; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whittington, Denver; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    The Phase-I upgrade of the ATLAS Trigger and Data Acquisition (TDAQ) system is to allow the ATLAS experiment to efficiently trigger and record data at instantaneous luminosities that are up to three times that of the original LHC design while maintaining trigger thresholds close to those used in the initial run of the LHC.

  12. Data acquisition and processing in the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2016-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile Calorimeter (TileCal) will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The photomultiplier signals will be digitized and transferred to the TileCal PreProcessors (TilePPr) located off-detector for every bunch crossing, requiring a data bandwidth of 80 Tbps. The TilePPr will provide preprocessed information to the first level of trigger and in parallel will store the samples in pipeline memories. The data of the events selected by the trigger system will be transferred to the ATLAS global Data AcQuisition (DAQ) system for further processing. A demonstrator drawer has been built to evaluate the new proposed readout architecture and prototypes of all the components. In the demonstrator, the detector data received in the Til...

  13. The development of Global Feature eXtractor (gFEX) - the ATLAS calorimeter Level 1 trigger for ATLAS at High Luminosity LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)759889; The ATLAS collaboration; Begel, Michael; Chen, Hucheng; Chen, Kai; Lanni, Francesco; Takai, Helio; Wu, Weihao

    2017-01-01

    As part of the ATLAS Phase-I Upgrade, the gFEX is designed to help maintain the ATLAS Level-1 trigger acceptance rate with the increasing LHC luminosity. The gFEX identifies patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the 40MHz LHC bunch crossing rate. The prototype v1 and v2 were designed and fully tested in 2015 and 2016 respectively. A pre-production gFEX board has been manufactured, which is an ATCA module consisting of three UltraScale+ FPGAs and one ZYNQ UltraScale+, and 35 MiniPODs are implemented in an ATCA module. This board receives coarse-granularity (0.2x0.2) information from the entire ATLAS calorimeters on up to 300 optical fibers and 96 links to the L1Topo at the speed up to 12.8 Gb/s.

  14. Optics Challenges and Solutions for the LHC Insertion Upgrade Phase I

    CERN Document Server

    Fartoukh, S

    2010-01-01

    The goal of the LHC Insertion (IR) Upgrade Phase-I is to enable a reliable operation of the machine with a performance at least doubled with respect to its design luminosity. One key ingredient is ideally a reduction of Beta* down to 25 cm, using a new inner triplet (IT) with longer Nb-Ti quadrupoles operating at a lower gradient (~ 120 T/m) and therefore offering a larger aperture (120 mm). Reducing Beta*, but also operating at a lower IT gradient (which, at a given Beta*, further increases the size of the Beta-functions all over the long straight section), has however a certain number of drawbacks which cannot be solved by only increasing the aperture of the new low-beta quadrupoles. Without modifying the current layout of the matching section (MS) and assuming that the arc sextupoles cannot safely operate above nominal current (550A), optics solutions with a Beta* of 30 cm are already at the edge of feasibility, both in terms of mechanical aperture in the MS and new IT (assuming 120 mm aperture), in terms ...

  15. The CMS Data Acquisition - Architectures for the Phase-2 Upgrade

    CERN Document Server

    Andre, Jean-Marc Olivier; Branson, James; Brummer, Philipp Maximilian; Chaze, Olivier; Cittolin, Sergio; Contescu, Cristian; Craigs, Benjamin Gordon; Darlea, Georgiana Lavinia; Deldicque, Christian; Demiragli, Zeynep; Dobson, Marc; Doualot, Nicolas; Erhan, Samim; Fulcher, Jonathan F; Gigi, Dominique; Michail Gladki; Glege, Frank; Gomez Ceballos, Guillelmo; Hegeman, Jeroen Guido; Holzner, Andre Georg; Janulis, Mindaugas; Jimenez Estupinan, Raul; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph Maria Ernst; Petrova, Petia; Pieri, Marco; Racz, Attila; Reis, Thomas; Sakulin, Hannes; Schwick, Christoph; Simelevicius, Dainius; Zejdl, Petr

    2017-01-01

    The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of $7.5\\times10^{34}$ cm$^{-2} s^{-1}$ (levelled), at the price of extreme pileup of up to 200 interactions per crossing. In LS3, the CMS Detector will also undergo a major upgrade to prepare for the phase-2 of the LHC physics program, starting around 2025. The upgraded detector will be read out at an unprecedented data rate of up to 50 Tb/s and an event rate of 750 kHz. Complete events will be analysed by software algorithms running on standard processing nodes, and selected events will be stored permanently at a rate of up to 10 kHz for offline processing and analysis. In this paper we discuss the baseline design of the DAQ and HLT systems for the phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. Implications on hardware and infrastructure requirements for the DAQ "data cen...

  16. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    CERN Document Server

    Matsushita, Takashi

    2017-01-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41~fb$^{-1}$ with a peak luminosity of 1.5 $\\times$ 10$^{34}$ cm$^{-2}$s$^{-1}$ and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS \\mbox{Level-1} trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implemen...

  17. Upgrade of the ALICE Inner Tracking System

    OpenAIRE

    Reidt, Felix; Collaboration, for the ALICE

    2014-01-01

    During the Long Shutdown 2 of the LHC in 2018/2019, the ALICE experiment plans the installation of a novel Inner Tracking System. It will replace the current six layer detector system with a seven layer detector using Monolithic Active Pixel Sensors. The upgraded Inner Tracking System will have significantly improved tracking and vertexing capabilities, as well as readout rate to cope with the expected increased Pb-Pb luminosity of the LHC. The choice of Monolithic Active Pixel Sensors has be...

  18. The Upgrade of the ATLAS First Level Calorimeter Trigger

    CERN Document Server

    Yamamoto, Shimpei; The ATLAS collaboration

    2015-01-01

    The Level-1 calorimeter trigger (L1Calo) operated successfully during the first data taking phase of the ATLAS experiment at the LHC. Based on the lessons learned, a series of upgrades is planned for L1Calo to face the new challenges posed by the upcoming increases of the LHC beam energy and luminosity. The initial upgrade phase in 2013-15 includes substantial improvements to the analogue and digital signal processing to cope with baseline shifts due to signal pile-up. Additionally a newly introduced system will receive real-time data from both the upgraded L1Calo and L1Muon trigger to perform trigger algorithms based on entire event topologies. During the second upgrade phase in 2018-19 major parts of L1Calo will be rebuilt in order to exploit a tenfold increase in the available calorimeter data granularity compared to that of the current system. In this contribution we present the lessons learned during the first period of LHC data taking. Based on these we discuss the expected performance improvements toge...

  19. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00306349; The ATLAS collaboration

    2017-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  20. Integration of a neutral absorber for the LHC point 8

    CERN Document Server

    Santamaria, A; Alemany, R; Burkhardt, H; Cerutti, F

    2014-01-01

    The LHCb detector will be upgraded during the second long shutdown (LS2) of the LHC machine, in order to increase its statistical precision significantly. The upgraded LHCb foresees a peak luminosity of LHL = 1-21033cm-2s-11, with a pileup of ~5. This represents ten times more luminosity and five times more pile up than in the present LHC. With these conditions, the pp-collisions and beam losses will produce a non-negligeable beam-induced energy deposition in the interaction region. More precisely, studies [1] have shown that the energy deposition will especially increase on the D2 recombination dipole, which could bring them close to their safety thresholds. To avoid this, the placement of a minimal neutral absorber has been proposed. This absorber will have the same role as the TAN in the high luminosity Interaction Regions (IR) 1 and 5. This study shows the possible dimensions and location of this absorber, and how it would reduce both the peak power density and total heat load.

  1. ATLAS Higgs Physics Prospects at the High Luminosity LHC

    CERN Document Server

    Varol, Tulin; The ATLAS collaboration

    2017-01-01

    The Higgs physics prospects at the high-luminosity LHC are presented, assuming an energy of $\\sqrt s = 14$ TeV and a data sample of 3000-4000 fb$^{-1}$. In particular, the ultimate precision attainable on the couplings measurements of the 125 GeV Higgs boson with SM fermions and bosons is discussed, as well as perspectives on the search for the Standard Model di-Higgs production, which could lead to the measurement of the Higgs boson self-coupling.

  2. Testing Long-Range Beam-Beam Compensation for the LHC Luminosity Upgrade

    CERN Document Server

    Rijoff, T L

    2012-01-01

    The performance of the Large Hadron Collider (LHC) at CERN and its minimum crossing angle are limited by the effect of long-range beam-beam collisions. A wire compensators can mitigate part of the long-range effects and may allow for smaller crossing angles, or higher beam intensity. A prototype long-range wire compensator could be installed in the LHC by 2014/15. Since the originally reserved position for such a wire compensator is not available for this first step, we explore other possible options. Our investigations consider various longitudinal and transverse locations, different wire shapes, different optics configurations and several crossing angles between the two colliding beams. Simulations are carried out with the weak-strong code BBtrack. New postprocessing tools are introduced to analyse tune footprints and particle stability. In particular, a new method for the Lyapunov coefficient calculation is implemented. Submitted as "Tesi di laurea" at the University of Milano, 2012.

  3. Operation of the ATLAS end-cap calorimeters at sLHC luminosities, an experimental study

    CERN Document Server

    Ferencei, J; The ATLAS collaboration

    2009-01-01

    The expected increase of luminosity at sLHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters (EMEC, HEC, FCAL) in the endcap, respectively forward region. Small modules of each type of calorimeter have been built. The layout and the components used are very close to the ones used in the construction of the ATLAS calorimeter. The goal is to simulate in the high intensity proton beam at IHEP /Protvino the particle impact as expected for ATLAS in sLHC. Depending on the position in pseudorapidity |η|, each forward calorimeter has to cope with a different particle and energy flux. Placing absorber elements in-between the various small calorimeter modules, the particle and energy flux as expected in ATLAS later - given the variation due to |η| and longitudinal position - can be simulated very well.

  4. Design and performance of the upgrade of the CMS L1 muon trigger

    CERN Document Server

    AUTHOR|(CDS)2079102

    2016-01-01

    After the Long Shutdown 1 (LS1) LHC will run at a center of mass energy of 13TeV, providing CMS with proton collisions at an expected luminosity which is almost double the LHC design value of $10^{34} \\text{cm}^{-2}\\text{s}^{-1}$, and almost three times the peak luminosity reached during Run1 of $7.7\\cdot10^{33} \\text{cm}^{-2}\\text{s}^{-1}$. The higher luminosity and center of mass energy of the LHC will raise the Level 1 (L1) muon trigger rate by almost a factor six for a given muon transverse momentum $\\text{p}_{\\text{T}}$ threshold. It is therefore necessary to increase the muon ($\\text{p}_{\\text{T}}$) threshold to keep the trigger rate below 100 kHz, the maximum sustainable rate for the CMS detectors. An increase of the L1 trigger thresholds implies a lowering of the efficiency in detecting signals from new physics. The CMS muon trigger is upgraded using custom designed AMC boards, with more powerful FPGAs and larger memories. The upgraded CMS muon trigger system implements pattern recognition and MVA (Bo...

  5. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    CERN Document Server

    Zhang, Zhicai

    2017-01-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run...

  6. Luminosity measurement at CMS

    International Nuclear Information System (INIS)

    Karacheban, Olena

    2017-10-01

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10 34 cm -2 s -1 was reached with 10 11 protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using van der Meer (Vd

  7. Luminosity measurement at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena

    2017-10-15

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10{sup 34} cm{sup -2} s{sup -1} was reached with 10{sup 11} protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using

  8. Towards a Level-1 tracking trigger for the ATLAS experiment at the High Luminosity LHC

    CERN Document Server

    Martin, T A D; The ATLAS collaboration

    2014-01-01

    At the high luminosity HL-LHC, upwards of 160 individual proton-proton interactions (pileup) are expected per bunch-crossing at luminosities of around $5\\times10^{34}$ cm$^{-2}$s$^{-1}$. A proposal by the ATLAS collaboration to split the ATLAS first level trigger in to two stages is briefly detailed. The use of fast track finding in the new first level trigger is explored as a method to provide the discrimination required to reduce the event rate to acceptable levels for the read out system while maintaining high efficiency on the selection of the decay products of electroweak bosons at HL-LHC luminosities. It is shown that available bandwidth in the proposed new strip tracker is sufficiency for a region of interest based track trigger given certain optimisations, further methods for improving upon the proposal are discussed.

  9. Upgrade of the protection system for superconducting circuits in the LHC

    CERN Document Server

    Denz, R; Formenti, F; Meß, K H; Siemko, A; Steckert, J; Walckiers, L; Strait, J

    2010-01-01

    Prior to the re-start of the Large Hadron Collider LHC in 2009 the protection system for superconducting magnets and bus-bars QPS will be substantially upgraded. The foreseen modifications will enhance the capability of the system in detecting problems related to the electrical interconnections between superconducting magnets as well as the detection of so-called aperture symmetric quenches in the LHC main magnets.

  10. Upgrade of the protection system for superconducting circuits in the LHC

    OpenAIRE

    Denz, R; Dahlerup-Petersen, K; Formenti, F; Meß, K H; Siemko, A; Steckert, J; Walckiers, L; Strait, J

    2009-01-01

    Prior to the re-start of the Large Hadron Collider LHC in 2009 the protection system for superconducting magnets and bus-bars QPS will be substantially upgraded. The foreseen modifications will enhance the capability of the system in detecting problems related to the electrical interconnections between superconducting magnets as well as the detection of so-called aperture symmetric quenches in the LHC main magnets.

  11. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Todome, K., E-mail: todome@hep.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Takashima, R. [Department of Science Education, Kyoto University of Education, Kyoto 612-8522 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Tojo, J. [Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Kono, T. [Ochadai Academic Production, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); and others

    2016-09-21

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the “super-module” in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  12. Development of a Level-1 Track and Vertex Finder for the Phase II CMS experiment upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00414391; Shepherd-Themistocleous, Claire

    The High Luminosity (HL-LHC) upgrade to the Large Hadron Collider will operate at an increased instantaneous luminosity, up to seven times the design value, in order to collect an integrated luminosity of $3,000$\\,fb$^{-1}$ in the decade following 2025. Proton bunches at the HL-LHC will cross every $25$\\,ns, producing an average of 140-200 pile-up proton-proton collisions per crossing. A new tracking detector is under development for use by the CMS experiment at the HL-LHC. A crucial requirement of this upgrade is to provide the ability to reconstruct charged particle tracks with transverse momentum above $2$--$3$\\,GeV within $4\\,\\upmu$s to be used in the Level-1 (L1) trigger decision. This thesis presents one of the main proposals for the final L1 Track Finding system, which exploits a fully time-multiplexed architecture based on high-speed FPGA electronics. The developed track finding algorithm makes use of the Hough Transform technique to identify track candidates, followed by a track fitting stage. Sever...

  13. The LHCb RICH Upgrade: Development of the DCS and DAQ system.

    CERN Multimedia

    Cavallero, Giovanni

    2018-01-01

    The LHCb experiment is preparing for an upgrade during the second LHC long shutdown in 2019-2020. In order to fully exploit the LHC flavour physics potential with a five-fold increase in the instantaneous luminosity, a trigger-less readout will be implemented. The RICH detectors will require new photon detectors and a brand new front-end electronics. The status of the integration of the RICH photon detector modules with the MiniDAQ, the prototype of the upgraded LHCb readout architecture, has been reported. The development of the prototype of the RICH Upgrade Experiment Control System, integrating the DCS and DAQ partitions in a single FSM, has been described. The status of the development of the RICH Upgrade Inventory, Bookkeeping and Connectivity database has been reported as well.

  14. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $Nb_3Sn$ Quadrupole for the High-Luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Stoynev, S.; et al.

    2017-01-01

    The development of $Nb_3Sn$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.

  15. LHC@home is ready to support HiLumi LHC: take part!

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Recently relaunched, the LHC@home volunteer computing project is now ready to support the HiLumi LHC project, the design phase of the planned upgrade of the LHC that will increase its luminosity by a factor of 5 to 10 beyond its original design value. HiLumi will need massive simulations to test the beam dynamics. Whether you are at home or at work, you can help experts design the future LHC by connecting your computer to LHC@home. Go for it!   LHC@home is aimed at involving the public in real science. If you have a computer that is connected to the Internet, you can join the large team of volunteers who are already supporting its two main projects: Test4Theory, which runs computer simulations of high-energy particle collisions, and SixTrack, which is aimed at optimizing the LHC performance by performing beam dynamics simulations. In both cases, the software is designed to run only when your computer is idle and causes no disruption to your normal activities. To the simulations run by the Six...

  16. Beam-Beam Interaction Studies at LHC

    CERN Document Server

    Schaumann, Michaela; Alemany Fernandez, R

    2011-01-01

    The beam-beam force is one of the most important limiting factors in the performance of a collider, mainly in the delivered luminosity. Therefore, it is essential to measure the effects in LHC. Moreover, adequate understanding of LHC beam-beam interaction is of crucial importance in the design phases of the LHC luminosity upgrade. Due to the complexity of this topic the work presented in this thesis concentrates on the beam-beam tune shift and orbit effects. The study of the Linear Coherent Beam-Beam Parameter at the LHC has been determined with head-on collisions with small number of bunches at injection energy (450 GeV). For high bunch intensities the beam-beam force is strong enough to expect orbit effects if the two beams do not collide head-on but with a crossing angle or with a given offset. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are as well ...

  17. Upgrade of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, M J; Baglin, V; Bregliozzi, G; Caspers, F; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Jimenez, J M; Magnin, N; Mertens, V; Métral, E; Salvant, B; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    Two LHC injection kicker systems, each comprising 4 magnets per ring, produce a kick of 1.3 T·m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns and an adequately low beam coupling impedance. Operation with increasingly higher intensity beams, stable for many hours at a time, has resulted in substantial heating of the ferrite yoke, sometimes requiring cool-down over several hours before the LHC can be refilled. During the long shutdown in 2013/2014 all eight kicker magnets will be upgraded with an improved beam screen and an increased emissivity of the vacuum tank. In addition equipment adjacent to the injection kickers and various vacuum components will be modified to...

  18. submitter Quench Protection Heater Study With the 2-m Model Magnet of Beam Separation Dipole for the HL-LHC Upgrade

    CERN Document Server

    Suzuki, Kento; Higashi, Norio; Iida, Masahisa; Ikemoto, Yukiko; Kawamata, Hiroshi; Kimura, Nobuhiro; Nakamoto, Tatsushi; Ogitsu, Toru; Ohata, H; Okada, Naoki; Okada, Ryutaro; Sugano, Michinaka; Musso, Andrea; Todesco, Ezio

    2018-01-01

    The beam separation dipole magnet (D1), which is being operated in the large hadron collider (LHC), has to be replaced in accordance with upgrade to the high-luminosity LHC. The new D1 will be equipped with several circuits of heaters by which most of the stored energy is dissipated in the whole of the magnet during its quench, thereby avoiding localization of hot spots. Prior to construction of the production magnet, the 2-m mechanical short model is fabricated, and performance of this quench protection heater is evaluated through a series of the cold tests. As a result, we confirm that the maximum hot spot temperature obtained in the measurement reaches the practical limit of 300 K, and determine to design a new heater circuit. In this paper, we report the heater studies together with the prospect for future design of the quench protection heater.

  19. LHCb PID Upgrade Technical Design Report

    CERN Document Server

    LHCb Collaboration

    2013-01-01

    The LHCb upgrade will take place in the second long shutdown of the LHC, currently scheduled to begin in 2018. The upgrade will enable the experiment to run at luminosities of $2 \\times 10^{33}cm^{-2}s^{-1}$ and will read out data at a rate of 40MHz into a exible software-based trigger. All sub-detectors of LHCb will be re-designed to comply with these new operating conditions. This Technical Design Report presents the upgrade plans of the Ring Imaging Cherenkov (RICH) system, the calorimeter system and the muon system, which together provide the particle identication capabilities of the experiment.

  20. Design of the new ATLAS Inner Tracker for the High Luminosity LHC

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2017-01-01

    In the high luminosity era of the Large Hadron Collider (HL-LHC), the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with this high rate, the ATLAS Inner Detector is being completely redesigned, and will be replaced by an all-silicon system, the Inner Tracker (ITk). This new tracker will have both silicon pixel and silicon strip sub-systems. The components of the Inner Tracker will have to be resistant to the large radiation dose from the particles produced in HL-LHC collisions, and have low mass and sufficient sensor granularity to ensure a good tracking performance over the pseudorapidity range |η|<4. In this talk, first the challenges and second possible solutions to these challenges will be discussed, i.e. designs under consideration for the pixel and strip modules, and the mechanics of local supports in the barrel and endcaps.

  1. HERA and the LHC: A Workshop on the implications of HERA for LHC physics: Proceedings Part A

    CERN Document Server

    De Roeck, A.; Startup Meeting; Working Group Meeting; Mid-term Review Meeting; Working Group Meeting; Working Group Meeting; Final Meeting

    2005-01-01

    The HERA electron--proton collider has collected 100 pb$^{-1}$ of data since its start-up in 1992, and recently moved into a high-luminosity operation mode, with upgraded detectors, aiming to increase the total integrated luminosity per experiment to more than 500 pb$^{-1}$. HERA has been a machine of excellence for the study of QCD and the structure of the proton. The Large Hadron Collider (LHC), which will collide protons with a centre-of-mass energy of 14 TeV, will be completed at CERN in 2007. The main mission of the LHC is to discover and study the mechanisms of electroweak symmetry breaking, possibly via the discovery of the Higgs particle, and search for new physics in the TeV energy scale, such as supersymmetry or extra dimensions. Besides these goals, the LHC will also make a substantial number of precision measurements and will offer a new regime to study the strong force via perturbative QCD processes and diffraction. For the full LHC physics programme a good understanding of QCD phenomena and the ...

  2. The CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Mastrolorenzo, Luca

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors wi...

  3. Considerations on Energy Frontier Colliders after LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  4. ECFA 2016: Prospects for selected standard model measurements with the CMS experiment at the High-Luminosity LHC

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The prospects for selected standard model measurements at the High-Luminosity LHC presented at ECFA 2016 workshop are summarized. The extrapolations assume proton-proton collision data at a centre-of-mass energy of 14$\\,$TeV corresponding to an integrated luminosity of up to $3\\,\\text{ab}^{-1}$. The achievable precision for top quark mass measurements based on different analysis strategies is estimated. Searches for flavour-changing neutral currents in top quark decays are studied and expected limits are set, based on different scenarios for the extrapolation of systematic uncertainties to the High-Luminosity LHC run conditions. The feasibility of a dedicated track trigger for the $B_s \\rightarrow \\phi \\phi$ decay studies is discussed.

  5. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  6. Upgrade of the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Wessels, M; The ATLAS collaboration

    2014-01-01

    The Level-1 Calorimeter Trigger (L1Calo) of the ATLAS experiment has been operating well since the start of LHC data taking, and played a major role in the Higgs boson discovery. To face the new challenges posed by the upcoming increases of the LHC proton beam energy and luminosity, a series of upgrades is planned for L1Calo. The initial upgrade phase in 2013-14 includes substantial improvements to the analogue and digital signal processing to allow more sophisticated digital filters for energy and timing measurement, as well as compensate for pile-up and baseline shifting effects. Two existing digital algorithm processor subsystems will receive substantial hardware and firmware upgrades to increase the real-time data path bandwidth, allowing topological information to be transmitted and processed at Level-1. An entirely new subsystem, the Level-1 Topological Processor, will receive real-time data from both the upgraded L1Calo and Level-1 Muon Trigger to perform trigger algorithms based on entire event topolo...

  7. The ATLAS Tracker Upgrade: Short Strips Detectors for the SLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2009-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  8. Vol. 31 - Crystal Collimation for LHC

    CERN Document Server

    Mirarchi, Daniele; Scandale, Walter; Hall, Geoffrey

    2015-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) may demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The present collimation system has accomplished its tasks during the LHC Run I very well, where no quench with circulating beam took place with up to 150 MJ of stored energy at 4 TeV. On the other hand, uncertainty remains on the performance at the design energy of 7 TeV and with 360 MJ of stored energy. In particular, a further increase up to about 700 MJ is expected for the high luminosity upgrade (HL-LHC), where improved cleaning performance may be needed together with a reduction of collimator impedance. The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present s...

  9. ATLAS Fast Tracker Status and Tracking at High luminosity LHC

    CERN Document Server

    Ilic, Nikolina; The ATLAS collaboration

    2018-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. This talk describes the electronics system used for the FTK’s massive parallelization. The installation, commissioning and running of the system is happening in 2016, and is detailed in this talk. Tracking at High luminosity LHC is also presented.

  10. Pixel Detector Developments for Tracker Upgrades of the High Luminosity LHC

    CERN Document Server

    Meschini, Marco; Dalla Betta, G. F; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Mendicino, R; Messineo, Alberto; Moroni, Luigi; Ronchin, S; Sultan, D.M.S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    and 3D devices. The results on the 3D pixel sensors before irradiation are very satisfactory and % make us confident support the conclusion that columnar devices are % 3D devices very good candidates for the inner layers of the upgrade pixel detectors.

  11. Upgrade Plans for ATLAS Forward Calorimetry for the HL-LHC

    Science.gov (United States)

    Turner, J.; ATLAS Liquid Argon Calorimeter Group

    Even though the LHC is still in an early phase of operation, plans are being developed to operate the machine and its detectors at up to 10 times the original design luminosity. This has a major impact on the Forward Calorimeter (FCal), which is exposed to some of the highest radiation rates in ATLAS. The FCal detector and its associated components were designed for operation at the maximum LHC luminosity of 1034 cm-2s-1. However at the higher luminosities projected for the HL-LHC, operation of the FCal may be compromised. Beam heating in the FCal could lead to the formation of argon bubbles in the detector, the ionization rate will result in space charge effects that will reduce the signal and the current draw will result in a voltage drop across the HV current limiting resistors. Two possible solutions are being considered to maintain FCal operation at HL-LHC. One is a complete replacement of the FCal system. A replacement FCal would have a similar design to the current calorimeter except for the addition of cooling loops, lower value HV protection resistors and the use of smaller ionization gaps, as small as 100 microns in the first compartment. The second solution is the installation of a small warm calorimeter, referred to as the Mini-FCal, to be placed in front of the FCal. This addition would reduce the ionization load in the first FCal compartment, which would keep a larger region of the FCal active and reduce the heat load to an acceptable level. The current concept for the Mini-FCal is a standard parallel plate calorimeter with copper absorbers and diamond sensors, which were chosen for their inherent radiation resistance. It is anticipated that neutrons will be the major cause of damage to the diamond sensors and the integrated flux of neutrons in the Mini-FCal after 3000 fb-1 at the HL-LHC will be up to 2 x 1017 neutrons/cm2. Recent irradiation tests carried out by members of the ATLAS Liquid Argon group show that these sensors can still operate after

  12. Superconducting link bus design for the accelerator project for upgrade of LHC

    International Nuclear Information System (INIS)

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.

    2011-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  13. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J.

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  14. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    CERN Document Server

    Rimoldi, Marco; The ATLAS collaboration

    2017-01-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detector based on CMOS pixel techology. Such detectors provide charge collection, analog and digital amplification in the same silicon bulk. The radiation hardness is obtained with multiple nested wells that have embedded the CMOS electronics with sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC. A number of alternative solutions have been explored and characterised, and are presented in this document.

  15. The first cable for the HL-LHC produced at CERN

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables, made from state-of-the-art Nb3Sn conductor, for the LHC High Luminosity Upgrade. Key elements of the machine are of a precision Turkshead equipped with a variable power drive, a caterpillar, a dimensional control bench, a data acquisition system, and a take-up unit. The video shows the production of a long length Rutherford cable, made from 40 Nb3Sn strands, that will be use in a 11 T LHC High Luminosity dipole magnet. The wiring machine is the only one left in Europe able to do such a job.

  16. The first cable for the HL-LHC produced at CERN

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables, made from state-of-the-art Nb$_{3}$Sn conductor, for the LHC High Luminosity Upgrade. Key elements of the machine are of a precision Turkshead equipped with a variable power drive, a caterpillar, a dimensional control bench, a data acquisition system, and a take-up unit. The video shows the production of a long length Rutherford cable, made from 40 Nb$_{3}$Sn strands, that will be use in a 11 T LHC High Luminosity dipole magnet. The wiring machine is the only one left in Europe able to do such a job.

  17. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R and D project

    International Nuclear Information System (INIS)

    Casse, G

    2014-01-01

    The ATLAS upgrade Planar Pixel Sensors (PPS) project aims to prove the suitability of silicon detectors processed with planar technology to equip all layers of the pixel vertex detector proposed for the upgrade of the ATLAS experiment for the future High Luminosity LHC at CERN (HL-LHC). The detectors need to be radiation tolerant to the extreme fluences expected to be received during the experimental lifetime, with optimised geometry for full coverage and high granularity and affordable in term of cost, due to the relatively large area of the upgraded ATLAS detector system. Here several solutions for the detector geometry and results with radiation hard technologies (n-in-n, n-in-p) are discussed

  18. Performance and Future Upgrades of the CMS Drift Tube Muon Detector

    CERN Document Server

    Redondo Ferrero, David Daniel

    2017-01-01

    A key component of the CMS (Compact Muon Solenoid) experiment is its muon system. The tracking and triggering of muons in the central part relies on Drift Tube (DT) chambers. The DT system keeps evolving in order to cope with long term operational challenges, as well as future constraints for rate reduction imposed by future increases of LHC luminosity, maintaining the highest possible efficiency. During the first long LHC shutdown (LS1) a significant number of improvements and upgrades started being implemented, in particular concerning the readout and trigger electronics. Ever since LS1, each LHC winter shutdown is used to install and test these new developments towards HL-LHC.Regarding the long term operation of the DT system, in order to cope with up to a factor 2 nominal LHC luminosity, several modifications will be required. The in-chamber local electronics will be modified to cope with the new environment. Also the second level of the readout system needs to be redesigned to minimize event processing ...

  19. Irradiation study of different silicon materials for the CMS tracker upgrade

    CERN Document Server

    Erfle, Joachim; Hansen, Wolfgang; Garutti, Erika

    Around 2022, an upgrade of the LHC collider complex is planned to significantly increase the luminosity (the High Luminosity LHC, HL-LHC). This means that the experiments have to cope with a higher number of collisions per bunch crossing and survive in a radiation environment much harsher than that at the present LHC. Especially the tracking detectors have to be improved for the HL-LHC. The increased number of tracks requires an increase of the number of readout channels while the higher radiation makes new sensor materials necessary. Within CMS, a measurement campaign was initiated to study the performance of different silicon materials in a corresponding radiation environment. To simulate the expected radiation the samples were irradiated with neutrons and with protons with two different energies. Radiation damage can be divided in two categories. First, ionizing energy loss in the surface isolation layers of the sensor leads to a change of the concentration of charged states in the sensor surface and there...

  20. Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans

    Science.gov (United States)

    Barnes, M. J.; Adraktas, A.; Bregliozzi, G.; Goddard, B.; Ducimetière, L.; Salvant, B.; Sestak, J.; Vega Cid, L.; Weterings, W.; Vallgren, C. Yin

    2017-07-01

    During Run 1 of the LHC, one of the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. In addition, there were also sporadic issues with vacuum activity and electrical flashover of the injection kickers. An extensive program of studies was launched and significant upgrades were carried out during Long Shutdown 1 (LS 1). These upgrades included a new design of beam screen to reduce both beam coupling impedance of the kicker magnet and the electric field associated with the screen conductors, hence decreasing the probability of electrical breakdown in this region. This paper presents operational experience of the injection kicker magnets during the first years of Run 2 of the LHC, including a discussion of faults and kicker magnet issues that limited LHC operation. In addition, in light of these issues, plans for further upgrades are briefly discussed.

  1. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2017-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  2. The Latest from the LHC: hitting the target luminosity for 2010!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Thanks to a significant increase in the number of bunches in each beam, the 2010 target peak luminosity of 1032 cm-2 s-1 was reached on 14 October 2010, with further progress made in the following days. Soon, the attention of the LHC operators will turn to operation with lead ions throughout November.   In the last two weeks the number of bunches injected in each beam has steadily increased to reach 312, of which 295 collide in points 1 (ATLAS experiment), 5 (CMS experiment) and 8 (LHCb experiment). This has allowed the operators to reach a luminosity of 1.48x1032 cm-2 s-1, comfortably exceeding the target for 2010. With the present number of bunches, there are over 3.5x1013 protons per beam and around 20MJ of stored energy per beam. Since 4 October, when 204 bunches per beam were injected into the LHC, some intensity-related effects have started to be observed, notably, a significant rise in the ATLAS background. This is linked to an increase in pressure in the beam vacuum about 60m either s...

  3. Atlas Tracker Upgrade: Silicon Strip Detectors and Modules for the SLHC

    CERN Document Server

    Minano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN by a significant factor, with the upgraded machine dubbed Super-LHC. The ATLAS experiment will require a new tracker for Super-LHC operation. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will imply a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. Extensive R&D programmes are underway to develop silicon sensors with sufficient radiation hardness. In parallel, new front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown.

  4. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    Directory of Open Access Journals (Sweden)

    Senkin Sergey

    2018-01-01

    Full Text Available The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  5. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    Science.gov (United States)

    Senkin, Sergey

    2018-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  6. Impedance measurements and simulations for the LHC and HL-LHC injection protection collimator

    CERN Document Server

    AUTHOR|(CDS)2125995; Biancacci, Nicolò

    This thesis focuses on the study and the data analysis of the Injection Protection Collimator (also Injection Protection Target Dump or TDI), one of the Large Hadron Collider (LHC) collimators at CERN, in Geneva. The last chapters also deal with the Segmented TDI (TDIS), the TDI upgrade for High Luminosity-LHC (HL-LHC). Going more into details, measurements on the TDI - hexagonal Boron Nitride (TDI - hBN, installed in the LHC during run 2015) were carried out. Using the obtained results as an input, two derivations followed: one evaluating the layer resistivity and the other one for its thickness, in order to consider all the possible coating degradations that could occur. The whole range of data obtained from both the derivations was then fed to Impedance Wake 2D (IW2D), a code performing numerical simulations, to attain impedances. Finally, the resulting longitudinal impedance was compared to some measurements performed on the real TDIs, immediately after they were removed from the LHC. The TDI - Graphite, ...

  7. The ATLAS SCT: Commissioning Experience and SLHC Upgrade

    OpenAIRE

    Mitrevski, J

    2008-01-01

    The ATLAS Semiconductor Tracker (SCT) has been installed, and fully connected to electrical, optical and cooling services. Commissioning has been performed both with calibration data and cosmic ray events. The cosmics were used to align the detector, measure the hit efficiency and set the timing. The SCT is now ready to take data when the LHC turns on this autumn. At the same time, it is clear that the present ATLAS tracker will need to be renewed for projected luminosity upgrade of the LHC, ...

  8. Effective pile-up density as a measure of the experimental data quality for High-Luminosity LHC operational scenarios.

    CERN Document Server

    Medina Medrano, Luis Eduardo; Arduini, Gianluigi; Napsuciale, Mauro

    2018-01-01

    The High-Luminosity LHC (HL-LHC) experiments will operate at unprecedented level of event pile-up from proton-proton collisions at 14TeV center-of-mass energy. In this paper we study the performance of the baseline and a series of alternative scenarios in terms of the delivered integrated luminosity and its quality (pile-up density). A new figure-of-merit is introduced, the effective pile-up density, a concept that reflects the expected detector efficiency in the reconstruction of event vertices for a given operational scenario, acting as a link between the machine and experimental slides. Alternative scenarios have been proposed either to improve the baseline performance, or tot provide operational schemes in the case of particular limitations. Simulations of the evolution of optimum fills with the latest set of parameters of the HL-LHC are performed with β* - levelling, and results are discussed in terms of both the integrated luminosity and the effective pile-up density. The crab kissing scheme, a propose...

  9. Luminosity Determination in $pp$ Collisions at $\\sqrt{s}$ = 7 TeV using the ATLAS Detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Ackers, Mario; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Jose; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arms, Kregg; Armstrong, Stephen Randolph; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Guimaraes da Costa, J.Barreiro; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Belhorma, Bouchra; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bischof, Reinhard; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Boaretto, Christian; Bobbink, Gerjan; Bobrovnikov, Victor; Bocci, Andrea; Bock, Rudolf; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; B{oser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Booth, Richard; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Braccini, Saverio; Bracinik, Juraj; Braem, Andre; Brambilla, Elena; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Bright-Thomas, Paul; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Francois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urban, Susana; Caccia, Massimo; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Garrido, Maria Del Mar Capeans; Caprini, Irinel; Caprini, Mihai; Caprio, Mario; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Montoya, German D.Carrillo; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, Joao; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Cerna, Cedric; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervetto, Mario; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Clark, Allan G.; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Coluccia, Rita; Comune, Gianluca; Conde Muino, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Correard, Sebastien; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, Maria Jose; Costanzo, Davide; Costin, Tudor; Cote, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crepe-Renaudin, Sabine; Cuenca Almenar, Cristobal; Donszelmann, Tulay Cuhadar; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; De Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; La Cruz-Burelo, Eduard De; de la Taille, Christophe; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; de Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedes, George; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; del Papa, Carlo; del Peso, Jose; del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Dennis, Chris; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diaz Gomez, Manuel Maria; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Yagci, Kamile Dindar; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, Andre; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jurgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jorg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Duhrssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Duren, Michael; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Efthymiopoulos, Ilias; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferguson, Douglas; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Ferro, Fabrizio; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fohlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; Garcia, Carmen; Garcia Navarro, Jose Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Helene; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gildemeister, Otto; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Gopfert, Thomas; Goeringer, Christian; Gossling, Claus; Gottfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gollub, Nils Peter; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Goncalo, Ricardo; Gonella, Laura; Gong, Chenwei; Gonidec, Allain; Gonzalez, Saul; Gonzalez de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Gorski, Boguslaw Tomasz; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanere, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafstrom, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hartel, Roland; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jrgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harper, Robert; Harrington, Robert; Harris, Orin; Harrison, Karl; Hart, John; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Hendriks, Patrick John; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frederic; Hensel, Carsten; Hens, Tobias; Hernandez Jimenez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higon-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hindson, Daniel; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Hollins, Ivan; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homer, Jim; Homma, Yasuhiro; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hott, Thomas; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Goran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jez, Pavel; Jezequel, Stephane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Mark; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joo, Kwang; Joram, Christian; Jorge, Pedro; Jorgensen, Sigrid; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Koneke, Karsten; Konig, Adriaan; Koenig, Sebastian; Konig, Stefan; Kopke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamaki, Miikka Juhani; Kotov, Serguei; Kotov, Vladislav; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Krobath, Gernot; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kruger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramon; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambacher, Marion; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Leahu, Marius; Lebedev, Alexander; Lebel, Celine; Lechowski, Matthieu; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lehto, Mark; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepidis, Johannes; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Lim, Heuijin; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Sterzo, Francesco Lo; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Jiansen; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dorthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Bjorn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lynn, James; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maasen, Michael; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mattig, Peter; Mattig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Magrath, Caroline; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amelia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandi{c, Igor; Mandrysch, Rocco; Maneira, Jose; Mangeard, Pierre-Simon; Mangin-Brinet, Mariane; Manjavidze, Ioseb; Mann, Alexander; Mann, Anthony; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchesotti, Marco; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin Dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mas, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGarvie, Scott; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McMahon, Tania; McMahon, Tom; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Merkl, Doris; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W.Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Migliaccio, Agostino; Mijovi{c, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuz, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Miscetti, Stefano; Misiejuk, Andrzej; Mitra, Ankush; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A.; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjornmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Monig, Klaus; Moser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Mock, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moye, Tamsin; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Muller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nasteva, Irina; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Nauyock, Farah; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neukermans, Lionel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nicholson, Caitriana; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norniella Francisco, Olga; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Odino, Gian Andrea; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver, Concepcion; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, Antonio; Onyisi, Peter; Oram, Christopher; Ordonez, Gustavo; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ottewell, Brian; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Oye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Palmer, Matt; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadopoulou, Theodora; Paramonov, Alexander; Park, Su-Jung; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pasztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peeters, Simon Jan Marie; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Cavalcanti, Tiago Perez; Perez Codina, Estel; Perez Garcia-Estan, Maria Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petereit, Emil; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, Joao Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommes, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Bueso, Xavier Portell; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rajek, Silke; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Rohne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rottlander, Iris; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Ruhr, Frederik; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, Jose; Salvachua Ferrando, Belen; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Bjorn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, Joao; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schafer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schoning, Andre; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schweiger, Dietmar; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, Jose; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, Jose; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sj{olin, J{orgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spano, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Stefanidis, Efstathios; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockmanns, Tobias; Stockton, Mark; Stodulski, Marek; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Strohmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Siva; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sanchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Gary; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothee; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Viegas, Florbela De Jes Tique Aires; Tisserant, Sylvain; Tobias, Jurgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokar, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonazzo, Alessandra; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocme, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Typaldos, Dimitrios; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Ferrer, Juan Antonio Valls; Van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; Van Gemmeren, Peter; van Kesteren, Zdenko; Van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Ventura, Silvia; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vertogardov, Leonid; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sebastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Anh, Tuan Vu; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Joshua C.; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Stephanie; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zdrazil, Marian; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi Della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zilka, Branislav; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Zivkovi{c, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of mu, the average number of inelastic interactions per bunch crossing. Residual time- and mu-dependence between the methods is less than 2% for 0luminosity calibrations, performed using beam separation scans, have a common systematic uncertainty of +/-11, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most +/-2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detect...

  10. A time-multiplexed track-trigger for the CMS HL-LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G., E-mail: g.hall@imperial.ac.uk

    2016-07-11

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trigger concept is explained, the potential benefits for processing future tracker data are described and a feasible design based on currently existing hardware is outlined.

  11. The ATLAS Trigger Core Configuration and Execution System in Light of the ATLAS Upgrade for LHC Run 2

    CERN Document Server

    Heinrich, Lukas; The ATLAS collaboration

    2015-01-01

    During the 2013/14 shutdown of the Large Hadron Collider (LHC) the ATLAS first level trigger (L1T) and the data acquisition system (DAQ) were substantially upgraded to cope with the increase in luminosity and collision multiplicity, expected to be delivered by the LHC in 2015. To name a few, the L1T was extended on the calorimeter side (L1Calo) to better cope with pile-up and apply better-tuned isolation criteria on electron, photon, and jet candidates. The central trigger (CT) was widened to analyze twice as many inputs, provide more trigger lines, and serve multiple sub-detectors in parallel during calibration periods. A new FPGA-based trigger, capable of analyzing event topologies at 40 MHz, was added to provide further input to forming the level 1 trigger decision (L1Topo). On the DAQ side the dataflow was completely remodeled, merging the two previously existing stages of the software-based high level trigger into one. Partially because of these changes, partially because of the new trigger paradigm to h...

  12. Proposed FPGA based tracking for a Level-1 track trigger at CMS for the HL-LHC

    CERN Document Server

    Pozzobon, Nicola

    2014-01-01

    The High Luminosity LHC (HL-LHC) is expected to deliver a luminosity in excess of $5\\times10^{34}$ cm$^{-2}$/s. The high event rate places stringent requirements on the trigger system. A key component of the CMS upgrade for the HL-LHC is a track trigger system which will identify tracks with transverse momenta above 2 GeV already at the first-level trigger within 5 $\\mu$s. This presentation will discuss a proposed track finding and fitting based on the tracklet based approach implemented on FPGAs. Tracklets are formed from pairs of hits in nearby layers in the detector and used in a road search. Summary Fast pattern recognition in Silicon trackers for triggering has often made use of Associative Memories for the pattern recognition step. We propose an alternative approach to solving the pattern recognition and track fitting problem for the upgraded CMS tracker for the HL-LHC operation. We make use of the trigger primitives,stubs, from the tracker. The stubs are formed from pairs of hits in sensors separated r...

  13. Electrical characterization of thin edgeless N-on-p planar pixel sensors for ATLAS upgrades

    International Nuclear Information System (INIS)

    Bomben, M; Calderini, G; Chauveau, J; Marchiori, G; Bagolini, A; Boscardin, M; Giacomini, G; Zorzi, N; Bosisio, L; Rosa, A La

    2014-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors' simulation results, a complete overview of the electrical characterization of the produced devices will be given

  14. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    Science.gov (United States)

    Rimoldi, M.

    2017-12-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detectors based on CMOS technology. Such detectors can provide charge collection, analog amplification and digital processing in the same silicon wafer. The radiation hardness is improved thanks to multiple nested wells which give the embedded CMOS electronics sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC . A number of alternative solutions have been explored and characterised. In this document, test results of the sensors fabricated in different CMOS processes are reported.

  15. Compensation of the Long-Range Beam-Beam Interaction in the LHC

    CERN Document Server

    AUTHOR|(CDS)2256057; De Conto, Jean-Marie

    In the LHC, protons collide in four interaction points in order to deliver luminosity to detectors located there. In the next machine upgrade, the High Luminosity LHC, the objective is to increase this luminosity by a factor five. By sharing the same vacuum pipes, the two counter rotating beams are interacting with a longitudinal offset with respect to the IP: this effect is called Long-Range Beam-Beam interaction. In order to compensate this effect, a device is currently studying in the LHC: the Beam-Beam Compensator Wire. It consists in a DC wire carrying a current and imitating the strong beam, in the weak-strong approximation. This thesis reports a study of this device. First, we show under which hypothesis the strong beam can be equivalent to a wire. Then, we characterise the magnetic field of this wire and its effect on the weak beam before presenting results of experiments we led in order to demonstrate the beneficial effect of this device.

  16. Study of an energy upgrade of the CERN PS Booster

    CERN Document Server

    Hanke, K; Angoletta, M E; Bartmann, W; Bartolome, S; Bertone, C; Blas, A; Borburgh, J; Bozzini, D; Butterworth, A; Carli, C; Dahlen, P; Dobers, T; Findlay, A; Folch, R; Gilbert, N; Hansen, J; Hermanns, T; Jensen, S; Le Roux, P; Lopez-Hernandez, L A; Mahner, E; Masi, A; Mikulec, B; Muttoni, Y; Newborough, A; Nisbet, D; Nonis, M; Olek, S; Paoluzzi, M; Pittet, S; Puccio, B; Raginel, V; Ruehl, I; Tan, J; Todd, B; Weterings, W; Widorski, W

    2011-01-01

    CERN’s LHC injector chain will have to deliver beams with ultimate brilliance as the LHC is heading for increased luminosity in the coming years. In order to overcome bottlenecks in the injector chain, an increase of the beam transfer energy from the CERN Proton Synchrotron Booster (PSB) to the Proton Synchrotron (PS) has been investigated as a possible upgrade scenario. This paper gives an overview of the technical solutions and summarizes the conclusions of the feasibility study.

  17. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    International Nuclear Information System (INIS)

    Savic, N.; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-01-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm"2). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm"2 pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  18. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Savic, N., E-mail: natascha.savic@mpp.mpg.de; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-02-11

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm{sup 2}). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm{sup 2} pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  19. Operation of the LHC with Protons at High Luminosity and High Energy

    CERN Document Server

    Papotti, Giulia; Alemany-Fernandez, Reyes; Crockford, Guy; Fuchsberger, Kajetan; Giachino, Rossano; Giovannozzi, Massimo; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Lamont, Mike; Nisbet, David; Normann, Lasse; Pojer, Mirko; Ponce, Laurette; Redaelli, Stefano; Salvachua, Belen; Solfaroli Camillocci, Matteo; Suykerbuyk, Ronaldus; Uythoven, Jan; Wenninger, Jorg

    2016-01-01

    In 2015 the Large Hadron Collider (LHC) entered the first year in its second long Run, after a 2-year shutdown that prepared it for high energy. The first two months of beam operation were dedicated to setting up the nominal cycle for proton-proton operation at 6.5 TeV/beam, and culminated with the first physics with 3 nominal bunches/ring at 13 TeV CoM on 3 June. The year continued with a stepwise intensity ramp up that allowed reaching 2244 bunches/ring for a peak luminosity of ~5·10³³ cm⁻²s^{−1} and a total of just above 4 fb-1 delivered to the high luminosity experiments. Beam operation was shaped by the high intensity effects, e.g. electron cloud and macroparticle-induced fast losses (UFOs), which on a few occasions caused the first beam induced quenches at high energy. This paper describes the operational experience with high intensity and high energy at the LHC, together with the issues that had to be tackled along the way.

  20. Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    AUTHOR|(SzGeCERN)713745; The ATLAS collaboration

    2016-01-01

    The Hadronic Tile Calorimeter (TileCal) detector is one of the several subsystems composing the ATLAS experiment at the Large Hadron Collider (LHC). The LHC upgrade program plans an increase of order five times the LHC nominal instantaneous luminosity culminating in the High Luminosity LHC (HL-LHC). In order to accommodate the detector to the new HL-LHC parameters, the TileCal read out electronics is being redesigned introducing a new read out strategy with a full-digital trigger system. In the new read out architecture, the front-end electronics allocates the MainBoards and the DaughterBoards. The MainBoard digitizes the analog signals coming from the PhotoMultiplier Tubes (PMTs), provides integrated data for minimum bias monitoring and includes electronics for PMT calibration. The DaughterBoard receives and distributes Detector Control System (DCS) commands, clock and timing commands to the rest of the elements of the front-end electronics, as well as, collects and transmits the digitized data to the back-e...