WorldWideScience

Sample records for lh2 antenna complexes

  1. Multilayer-MCTDH approach to the energy transfer dynamics in the LH2 antenna complex

    Science.gov (United States)

    Shibl, Mohamed F.; Schulze, Jan; Al-Marri, Mohammed J.; Kühn, Oliver

    2017-09-01

    The multilayer multiconfiguration time-dependent Hartree method is used to study the coupled exciton-vibrational dynamics in a high-dimensional nonameric model of the LH2 antenna complex of purple bacteria. The exciton-vibrational coupling is parametrized within the Huang-Rhys model according to phonon and intramolecular vibrational modes derived from an experimental bacteriochlorophyll spectral density. In contrast to reduced density matrix approaches, the Schrödinger equation is solved explicitly, giving access to the full wave function. This facilitates an unbiased analysis in terms of the coupled dynamics of excitonic and vibrational degrees of freedom. For the present system, we identify spectator modes for the B800 to B800 transfer and we find a non-additive effect of phonon and intramolecular vibrational modes on the B800 to B850 exciton transfer.

  2. Evidence for high-pressure-induced rupture of hydrogen bonds in LH2 photosynthetic antenna pigment-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kangur, L; Leiger, K; Freiberg, A [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia)

    2008-07-15

    The bacteriochlorophyll a-containing LH2 light harvesting complex is an integral membrane protein that catalyzes the photosynthetic process in purple photosynthetic bacteria. The LH2 complexes from Rhodobacter sphaeroides show characteristic strong absorbance at 800 and 850 nm due to the bacteriochlorophyll a molecules confined in two separate areas of the protein. Using these cofactors as intrinsic probes to monitor changes in membrane protein structure, we investigate the response to high hydrostatic pressure up to 2.1 GPa of LH2 complexes embedded into natural membrane environment or extracted with detergent. We demonstrate that high pressure does induce significant alterations to the tertiary structure of the protein in proximity of the protein-bound bacteriochlorophyll a molecules, including breakage of the hydrogen bond they are involved in. The membrane-embedded complexes appear more resilient to damaging effects of the compression than the complexes extracted into detergent environment. This difference has tentatively been explained by more compact structure of the membrane-embedded complexes.

  3. Fluorescence-excitation and emission spectra from LH2 antenna complexes of Rhodopseudomonas acidophila as a function of the sample preparation conditions.

    Science.gov (United States)

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Köhler, Jürgen; Freiberg, Arvi

    2013-10-10

    The high sensitivity of optical spectra of pigment-protein complexes to temperature and pressure is well known. In the present study, we have demonstrated the significant influence of the environments commonly used in bulk and single-molecule spectroscopic studies at low temperatures on the LH2 photosynthetic antenna complex from Rhodopseudomonas acidophila. A transfer of this LH2 complex from a bulk-buffer solution into a spin-coated polymer film results in a 189 cm(-1) blue shift of the B850 excitonic absorption band at 5 K. Within the molecular exciton model, the origin of this shift could be disentangled into three parts, namely to an increase of the local site energies, a contraction of the exciton band, and a decrease of the displacement energy.

  4. Femtosecond and hole-burning studies of B800`s excitation energy relaxation dynamics in the LH2 antenna complex of Rhodopseudomonas acidophila (strain 10050)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.M.; Savikhin, S.; Reddy, N.R.S.; Jankowiak, R.; Struve, W.S.; Small, G.J. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States); Cogdell, R.J. [Univ. of Glasgow (United Kingdom)

    1996-07-18

    One- and two-color pump/probe femtosecond and hole-burning data are reported for the isolated B800-850 (LH2) antenna complex of Rhodopseudomonas acidophila (strain 10050). The two-color profiles are interpretable in terms of essentially monophasic B800{yields}B850 energy transfer with kinetics ranging from 1.6 to 1.1 ps between 19 and 130 K for excitation at or to the red of the B800 absorption maximum. The B800 zero-phonon hole profiles obtained at 4.2 K with burn frequencies located near or to the red of this maximum yielded a transfer time of 1.8 ps. B800 hole-burning data (4.2 K) are also reported for chromatophores at ambient pressure and pressures of 270 and 375 MPa. At ambient pressure the B800-B850 energy gap is 950 cm{sup -1}, while at 270 and 375 MPa it is close to 1000 and 1050 cm{sup -1}, respectively. However, no dependence of the B800{yields}B850 transfer time on pressure was observed. The resilience of the transfer rate to pressure-induced changes in the energy gap and the weak temperature dependence of the rate are consistent with the model that has the spectral overlap (of Foerster theory) provided by the B800 fluorescence origin band and weak vibronic absorption bands of B850. However, both the time domain and hole-burning data establish that there is an additional relaxation channel for B800, which is observed when excitation is located to the blue of the B800 absorption maximum. 40 refs., 11 figs., 6 tabs.

  5. The study of photo-induced ultrafast dynamics in light-harvesting complex LH2 of purple bacteria

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-min; YAN Yong-li; LIU Kang-jun; XU Chun-he; QIAN Shi-xiong

    2006-01-01

    In this paper,we introduce the photo-induced ultrafast dynamics taking place in the peripheral light harvesting antenna LH2 from purple bacteria Rhodobacter sphaeroides by using absorption,fluorescence emission and ultrafast spectroscopic techniques.Three kinds of LH2 sampies,pH treated LH2 (complete removal of B800 pigments),carotenoid mutated LH2 (GM 309) and electrochemical oxidation treated LH2 were used in comparison with native LH2 to investigate the mechanism of photo-induced ultrafast energy transfer within the LH2 complex.

  6. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    Science.gov (United States)

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-01

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  7. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  8. Femtosecond Dynamics of Energy Transfer in Native B800-B850 and B800-Released LH2 Complexes of Rhodobacter Sphaeroides

    Institute of Scientific and Technical Information of China (English)

    刘伟民; 朱荣毅; 夏辰安; 刘源; 徐春和; 钱士雄

    2003-01-01

    Two kinds of antenna complexes LH2 of Rhodobacter sphaeroides, wild type RS601 and the removal of B800 pigments (B800-released), were used in our experiment. These two LH2 complexes show quite different behaviour in absorption and femtosecond dynamics. By using the femtosecond pump-probe technique, the energy transfer processes occurring in two complexes were studied. Because of removing the B800 pigment from the LH2 in B800-released LH2 complex, the energy transfer between the B800 to B850 pigment was completely eliminated,while the pure internal energy transfer within the exciton states of B850 pigment could be carefully investigated.The results show that, at B800 absorption band, B800-released LH2 obviously shows a dominated transient absorption different from the photobleaching observed in RS601; while at the B850 band, these two complexes show similar photobleaching behaviour.

  9. Rhodopseudomonas acidophila strain 10050 contains photosynthetic LH2 antenna complexes that are not enriched with phosphatidylglycerol, and the phospholipids have a fatty acyl composition that is unusual for purple non-sulfur bacteria.

    Science.gov (United States)

    Russell, Nicholas J; Coleman, Julie K; Howard, Tina D; Johnston, Evelyn; Cogdell, Richard J

    2002-12-01

    The phospholipid composition of Rhodopseudomonas acidophila strain 10050 grown aerobically or anaerobically in the light was determined. The major phospholipids present in the aerobic cells were phosphatidylethanolamine (PE; 54%), phosphatidylglycerol (PG; 24%) and cardiolipin (diphosphatidylglycerol, DPG) (14%), together with phosphatidylcholine (PC; 5%). On moving the cells to anaerobic photosynthetic growth in the light PE remained the major phospholipid (37-49%), but there was a major change in the proportion of PC, which increased to 31-33%, and corresponding reductions in the contents of PG to 11-16% and DPG to 4-5%. The fatty acid composition of the phospholipids was unusual, compared with other purple non-sulfur photosynthetic bacteria, in that it contained 16:0 (29%), 17:1 (20%) and 19:1 (9%) plus several mainly unsaturated 2-OH fatty acids (9% total) as major components, when grown aerobically in the dark. In contrast when grown photosynthetically under anaerobic conditions there was <2% 17:1 or 19:1 present, while the amounts of 16:1 and 18:1 increased, and 16:0 decreased. The phospholipid composition of the purified light-harvesting complex 2 (LH2) complex was PE (43%), PC (42%) and DPG (15%). Unexpectedly, there was no PG associated with the purified LH2. These findings contrast with previous studies on several other photosynthetic bacteria, which had shown an increase in PG upon photosynthetic growth [Biochem. J. 181 (1979) 339]. The prior hypothesis that phosphatidylglycerol has some specific role to play in the function of light-harvesting complexes cannot be true for Rps. acidophila. It is suggested that specific integral membrane proteins may strongly influence the phospholipid content of the host membranes into which they are inserted.

  10. Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    DEFF Research Database (Denmark)

    Ikemoto, Hideki; Tubasum, Sumera; Pullerits, Tonu;

    2013-01-01

    harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy...

  11. Fluorescence polarization measures energy funneling in single light-harvesting antennas--LH2 vs conjugated polymers.

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J; Sforazzini, Giuseppe; Anderson, Harry L; Pullerits, Tõnu; Scheblykin, Ivan G

    2015-10-19

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.

  12. Synchrotron Small-Angle X-Ray Scattering Investigation on Integral Membrane Protein Light-Harvesting Complex LH2 from Photosynthetic Bacterium Rhodopseudomonas Acidophila

    Institute of Scientific and Technical Information of China (English)

    DU Lu-Chao; WENG Yu-Xiang; HONG Xin-Guo; XIAN Ding-Chang; Kobayashi Katsumi

    2006-01-01

    @@ Structures of membrane protein in solution are different from that in crystal phase. We present the primary results of small angle x-ray scattering (SAXS) resolved topological structures of a light harvesting antenna membrane protein complex LH2 from photosynthetic bacteria Rhodopseudomonas acidophila in detergent solution for the first time. Our results show that the elliptical shape of the LH2 complex in solution clearly deviates from its circular structure in crystal phase determined by x-ray diffraction. This result provides an insight into the structure and function interplay in LH2.

  13. Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy

    Science.gov (United States)

    Cohen Stuart, Thomas A.; Vengris, Mikas; Novoderezhkin, Vladimir I.; Cogdell, Richard J.; Hunter, C. Neil; van Grondelle, Rienk

    2011-01-01

    The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ∼150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas. PMID:21539791

  14. Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Thomas A. Cohen [Free Univ. of Amsterdam (Netherlands); Vengris, Mikas [Vilnius Univ. (Lithuania); Novoderezhkin, Vladimir I. [A.N. Belozersky Inst. of Physico-Chemical Biology, Moscow State Univ. (Russia); Cogdell, Richard J. [Microbial Photosynthesis Laboratory, Glasgow Biomedical Research Centre, Univ. of Glasgow (United Kingdom); Hunter, C. Neil [Department of Molecular Biology and Biotechnology, Univ. of Sheffield, (United Kingdom); van Grondelle, Rienk [Free Univ. of Amsterdam (Netherlands)

    2011-01-01

    The dynamics of the excited states of the light-harvesting complexes LH1 and LH2 of Rhodobacter sphaeroides are governed, mainly, by the excitonic nature of these ring-systems. In a pump-dump-probe experiment, the first pulse promotes LH1 or LH2 to its excited state and the second pulse dumps a portion of the excited state. By selective dumping, we can disentangle the dynamics normally hidden in the excited-state manifold. We find that by using this multiple-excitation technique we can visualize a 400-fs reequilibration reflecting relaxation between the two lowest exciton states that cannot be directly explored by conventional pump-probe. An oscillatory feature is observed within the exciton reequilibration, which is attributed to a coherent motion of a vibrational wavepacket with a period of ~150 fs. Our disordered exciton model allows a quantitative interpretation of the observed reequilibration processes occurring in these antennas.

  15. Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution.

    Science.gov (United States)

    Polli, Dario; Cerullo, Giulio; Lanzani, Guglielmo; De Silvestri, Sandro; Hashimoto, Hideki; Cogdell, Richard J

    2006-04-01

    In this report, we present a study of carotenoid-bacteriochlorophyll energy transfer processes in two peripheral light-harvesting complexes (known as LH2) from purple bacteria. We use transient absorption spectroscopy with approximately 10 fs temporal resolution, which is necessary to observe the very fast energy relaxation processes. By comparing excited-state dynamics of the carotenoids in organic solvents and inside the LH2 complexes, it has been possible to directly evaluate their energy transfer efficiency to the bacteriochlorophylls. In the case of okenone in the LH2 complex from Chromatium purpuratum, we obtained an energy transfer efficiency of etaET2=63+/-2.5% from the optically active excited state (S2) and etaET1=61+/-2% from the optically dark state (S1); for rhodopin glucoside contained in the LH2 complex from Rhodopseudomonas acidophila these values become etaET2=49.5+/-3.5% and etaET1=5.1+/-1%. The measurements also enabled us to observe vibrational energy relaxation in the carotenoids' S1 state and real-time collective vibrational coherence initiated by the ultrashort pump pulses. Our results are important for understanding the dynamics of early events of photosynthesis and relating it to the structural arrangement of the chromophores.

  16. Effect of Photo-Oxidation on Energy Transfer in Light Harvesting Complex (LH2) from Rhodobacter Sphaeroides 601

    Institute of Scientific and Technical Information of China (English)

    LIU Kang-Jun; LIU Wei-Min; YAN Yong-Li; DONG Zhi-Wei; LIU Yuan; XU Chun-He; QIAN Shi-Xiong

    2006-01-01

    @@ We study the photo-oxidation of bacteriochlorophylls (BChls) in peripheral light harvesting complexes (LH2) from rhodobacter sphaeroides by using the steady absorption and the femtosecond pump-probe measurement, to realize the detailed dynamics of LH2 in the presence of photo-oxidation.

  17. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2.

    Science.gov (United States)

    Urboniene, V; Vrublevskaja, O; Trinkunas, G; Gall, A; Robert, B; Valkunas, L

    2007-09-15

    We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.

  18. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Bocian, David F; Holten, Dewey; Hunter, C Neil

    2015-01-01

    Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas.

  19. Distance-Dependent Long-Range Electron Transfer in Protein: a Case Study of Photosynthetic Bacterial Light-Harvesting Antenna Complex LH2 Assembled on TiO2 Nanoparticle by Femto-Second Time-Resolved Spectroscopy%应用飞秒时间分辨瞬态吸收光谱研究蛋白质中距离相关长程电荷转移:光合细菌天线复合体LH2与TiO2纳米颗粒超分子组装体个例初探

    Institute of Scientific and Technical Information of China (English)

    翁羽翔; 张蕾; 杨健; 全冬晖; 汪力; 杨国桢; 藤井律子; 小山泰; 张建平; 冯娟; 余军华; 张宝文

    2003-01-01

    The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by α- and β-apoprotein helices. The α- and β-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 nm (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.%蛋白质在生物体内电荷转移过程中所起的作用迄今仍然是一个有争议的问题.其争论焦点是蛋白质在生物电荷转移过程中是否提供特殊的电子传递通道或者是仅仅作为普通的有机介质.应用飞秒时间分辨瞬态吸收光谱研究由光合细菌天线分子和平均粒径为8 nm的TiO2组装而成的超分子系统中长程电荷转移.晶体结构研究表明,光合细菌天线分子具有由多个α-脱辅基和β-脱辅基蛋白跨膜螺旋构成的双层空心柱面体结构,其中α-脱辅基蛋白跨膜螺旋构成的小环状体套于β-脱辅基蛋

  20. Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from Marichromatium purpuratum.

    Science.gov (United States)

    Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J

    2014-06-01

    LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.

  1. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    Science.gov (United States)

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  2. Ultrafast excitation relaxation in light-harvesting complex LH2 from Rb.sphaeroides 601

    Institute of Scientific and Technical Information of China (English)

    GUO Lijun; LIU Yuan; LIU Weimin; GUO Junhua; XU Chunhe; QIAN Shixiong

    2004-01-01

    The energy relaxation and kinetic evolution of transient spectra of bacteriochloro- phylls (BChls) in light-harvesting complex LH2 from Rb. Sphaeroides 601 were investigated using femtosecond pump-probe technique. Upon 783 nm excitation, the energy at B800 BChls experiences an intramolecular redistribution with 0.35 ps time constant before transferring to B850 BChls. With tuning the excitation wavelength, the dynamical evolution of excited BChls was clearly observed, which indicates an obvious competition between the ground state bleaching and excited state absorption (ESA) of BChls involved and an isosbestic point near 818 nm, and also demonstrates that from the lower electronic excited state of B800 BChls to the higher excitonic state of B850 BChls is an efficient routine for energy transfer. The excitation energy in higher excitonic states of B850 BChls relaxes rapidly to the next lowest excitonic state by interconversion, delocalization to adjacent molecular, populating the lowest excitonic state and the change of molecular conformation.

  3. Ultrafast excitation relaxation in light-harvesting complex LH2 from Rb. sphaeroides 601

    Institute of Scientific and Technical Information of China (English)

    GUO; Lijun; LIU; Yuan; LIU; Weimin; GUO; Junhua; XU; Chunhe

    2004-01-01

    The energy relaxation and kinetic evolution of transient spectra of bacteriochloro- phylls (BChls) in light-harvesting complex LH2 from Rb. Sphaeroides 601 were investigated using femtosecond pump-probe technique. Upon 783 nm excitation, the energy at B800 BChls experiences an intramolecular redistribution with 0.35 ps time constant before transferring to B850 BChls. With tuning the excitation wavelength, the dynamical evolution of excited BChls was clearly observed, which indicates an obvious competition between the ground state bleaching and excited state absorption (ESA) of BChls involved and an isosbestic point near 818 nm, and also demonstrates that from the lower electronic excited state of B800 BChls to the higher excitonic state of B850 BChls is an efficient routine for energy transfer. The excitation energy in higher excitonic states of B850 BChls relaxes rapidly to the next lowest excitonic state by interconversion, delocalization to adjacent molecular, populating the lowest excitonic state and the change of molecular conformation.

  4. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum

    National Research Council Canada - National Science Library

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-01-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized...

  5. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2.

    Science.gov (United States)

    Zerlauskiene, O; Trinkunas, G; Gall, A; Robert, B; Urboniene, V; Valkunas, L

    2008-12-11

    A comparative analysis of the temperature dependence of the absorption spectra of the LH2 complexes from different species of photosynthetic bacteria, i.e., Rhodobacter sphaeroides, Rhodoblastus acidophilus, and Phaeospirillum molischianum, was performed in the temperature range from 4 to 300 K. Qualitatively, the temperature dependence is similar for all of the species studied. The spectral bandwidths of both B800 and B850 bands increases with temperature while the band positions shift in opposite directions: the B800 band shifts slightly to the red while the B850 band to the blue. These results were analyzed using the modified Redfield theory based on the exciton model. The main conclusion drawn from the analysis was that the spectral density function (SDF) is the main factor underlying the strength of the temperature dependence of the bandwidths for the B800 and B850 electronic transitions, while the bandwidths themselves are defined by the corresponding inhomogeneous distribution function (IDF). Slight variation of the slope of the temperature dependence of the bandwidths between species can be attributed to the changes of the values of the reorganization energies and characteristic frequencies determining the SDF. To explain the shift of the B850 band position with temperature, which is unusual for the conventional exciton model, a temperature dependence of the IDF must be postulated. This dependence can be achieved within the framework of the modified (dichotomous) exciton model. The slope of the temperature dependence of the B850 bandwidth is then defined by the value of the reorganization energy and by the difference between the transition energies of the dichotomous states of the pigment molecules. The equilibration factor between these dichotomous states mainly determines the temperature dependence of the peak shift.

  6. Preferential incorporation of coloured-carotenoids occurs in the LH2 complexes from non-sulphur purple bacteria under carotenoid-limiting conditions.

    Science.gov (United States)

    Gall, Andrew; Henry, Sarah; Takaichi, Shinichi; Robert, Bruno; Cogdell, Richard J

    2005-11-01

    The effect of growing Rhodopseudomonas (Rps.) acidophila and Rps. palustris in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) has been investigated. Growth with sub-maximal concentrations of DPA induces Car limitation. The exact response to DPA is species dependent. However, both Rps. acidophila and Rps. palustris respond by preferentially incorporating the limiting amount of coloured Cars into their LH2 complexes at the expense of the RC-LH1 complexes. As inhibition by DPA becomes more severe there is an increase in the percentage of Cars with reduced numbers of conjugated C=C bonds. The effect of this changed Car composition on the structure and function of the antenna complexes has been investigated using absorption, fluorescence, CD and Raman spectroscopies. The results show that although the presence of Car molecules is important for the stability of the LH2 complexes that the overall native structure can be maintained by the presence of many different Cars.

  7. Single-Molecule Spectroscopy Reveals that Individual Low-Light LH2 Complexes from Rhodopseudomonas palustris 2.1.6. Have a Heterogeneous Polypeptide Composition

    Science.gov (United States)

    Brotosudarmo, Tatas H.P.; Kunz, Ralf; Böhm, Paul; Gardiner, Alastair T.; Moulisová, Vladimíra; Cogdell, Richard J.; Köhler, Jürgen

    2009-01-01

    Abstract Rhodopseudomonas palustris belongs to the group of purple bacteria that have the ability to produce LH2 complexes with unusual absorption spectra when they are grown at low-light intensity. This ability is often related to the presence of multiple genes encoding the antenna apoproteins. Here we report, for the first time to our knowledge, direct evidence that individual low-light LH2 complexes have a heterogeneous αβ-apoprotein composition that modulates the site energies of Bchl a molecules, producing absorption bands at 800, 820, and 850 nm. The arrangement of the Bchl a molecules in the “tightly coupled ring” can be modeled by nine αβ-Bchls dimers, such that the Bchls bound to six αβ-pairs have B820-like site energies and the remaining Bchl a molecules have B850-like site energies. Furthermore, the experimental data can only be satisfactorily modeled when these six αβ-pairs with B820 Bchl a molecules are distributed such that the symmetry of the assembly is reduced to C3. It is also clear from the measured single-molecule spectra that the energies of the electronically excited states in the mixed B820/850 ring are mainly influenced by diagonal disorder. PMID:19720038

  8. Effect of the mutation of carotenoids on the dynamics of energy transfer in light- harvesting complexes (LH2) from Rhodobacter sphaeroides 601 at room temperature

    Institute of Scientific and Technical Information of China (English)

    Liu Wei-Min; Liu Yuan; Liu Rang-Jun; Yan Yong-Li; Guo Li-Jun; Xu Chun-He; Qian Shi-Xiong

    2006-01-01

    Energy transfers in two kinds of peripheral light-harvesting complexes (LH2) of Rhodobacter sphaeroides (RS) 601 are studied by using femtosecond pump-probe spectroscopy with tunable laser wavelength at room temperature. These two complexes are native LH2 (RS601) and green carotenoid mutated LH2 (GM309). The obtained results demonstrate that, compared with spheroidenes with ten conjugated double bonds in native RS601, carotenoid in GM309 containing neurosporenes with nine conjugated double bonds can lead to a reduction in energy transfer rate in the B800-to-B850 band and the disturbance in the energy relaxation processes within the excitonic B850 band.

  9. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum.

    Science.gov (United States)

    Löhner, Alexander; Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Kelly, Sharon; Cogdell, Richard; Köhler, Jürgen

    2015-01-01

    The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.

  10. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  11. Spectroscopic evidence for triplet excitation energy transfer among carotenoids in the LH2 complex from photosynthetic bacterium Rhodopseudomonas palustris

    Institute of Scientific and Technical Information of China (English)

    FENG Juan; WANG Qian; ZHANG Xujia; HUANG Youguo; AI Xicheng; ZHANG Xingkang; ZHANG Jianping

    2004-01-01

    The LH2 complex from Rhodopsudomonas (Rps.) palustris is unique in the heterogeneous carotenoid compositions. The dynamics of triplet excited state Carotenoids (3Car*) has been investigated by means of sub-microsecond time-resolved absorption spectroscopy both at physiological temperature (295 K) and at cryogenic temperature (77 K). Broad and asymmetric Tn←T1 transient absorption was observed at room temperature following the photo-excitation of Car at 532 nm, which suggests the contribution from various carotenoid compositions having different numbers of conjugated C=C double bonds (NC=C). The triplet absorption bands of different carotenoids, which superimposed at room temperature, could be clearly distinguished upon decreasing the temperature down to 77 K. At room temperature the shorter-wavelength side of the main Tn←T1 absorption band decayed rapidly to reach a spectral equilibration with a characteristic time constant of~1 μs, the same spectral dynamics, however, was not observed at 77 K. The aforementioned spectral dynamics can be explained in terms of the triplet-excitation transfer among heterogeneous carotenoid compositions. Global spectral analysis was applied to the time-resolved spectra at room temperature, which revealed two spectral components peaked at 545 and 565 nm, and assignable to the Tn←T1 absorption of Cars with NC=C=11 and NC=C=13, respectively. Surprisingly, the decay time constant of a shorter-con- jugated Car, I.e. 0.72 μs (aerobic) and 1.36 μs (anaerobic), is smaller than that of a longer-con- jugated Car, I.e. 2.12 μs (aerobic) and 3.75 μs (anaerobic), which is contradictory to the general rule of carotenoids and relative polyenes. The results are explained in terms of triplet-excitation transfer among different types of Cars. It is postulated that two Cars with different conjugation lengths coexist in an α,β-subunit in the LH2 complex.

  12. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  13. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores.

    Science.gov (United States)

    Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro; Mizutani, Naoto; Komori, Daisuke; Nango, Mamoru; Miyasaka, Hiroshi; Itoh, Shigeru; Nagasawa, Yutaka; Dewa, Takehisa

    2015-10-14

    Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 α-polypeptides with a molar ratio of A647/LH2 ≃ 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Förster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.

  14. Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila

    Energy Technology Data Exchange (ETDEWEB)

    Scholes, G.D.; Fleming, G.R. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Physical Biosciences Div.; Gould, I.R. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemistry; Cogdell, R.J. [Univ. of Glasgow (United Kingdom). Div. of Biochemistry and Molecular Biology

    1999-04-01

    The results of ab initio molecular orbital calculations of excited states and electronic couplings (for energy transfer) between the B800 and B850 bacteriochlorophyll a (Bchl) chromophores in the peripheral light-harvesting complex (LH2) of the purple photosynthetic bacterium Rhodopseudomonas acidophila are reported. Electronic couplings are estimated from supermolecule calculations of Bchl dimers using the Ci-singles methodology and 3-21G{sup *} or 6-31G{sup *} basis sets. A scheme for dissecting the coupling into contributions from the Coulombic coupling and the short-range coupling (i.e., dependent on interchromophore orbital overlap) is reported. B850 couplings are calculated to be [total (Coulombic + short)]: intrapolypeptide dimer 320 (265 + 55) cm{sup {minus}1} and interpolypeptide dimer 255 (195 + 60) cm{sup {minus}1} at the CIS/6-31G{sup *} level. These results differ significantly from those estimated using the point dipole approximation. The effect of including Mg ligands (His residues) and H-bonding residues (Trp and Tyr) is also investigated. The consequences for superradiance and energy transfer dynamics and mechanism are discussed.

  15. STUDY ON THE STRUCTURAL BASIS OF PERIPHERAL LIGHT HARVESTING COMPLEXES (LH2 IN PURPLE NON-SULPHUR PHOTOSYNTHETIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Tatas H.P. Brotosudarmo

    2010-12-01

    Full Text Available Photosynthesis provides an example of a natural process that has been optimized during evolution to harness solar energy efficiently and safely, and finally to use it to produce a carbon-based fuel. Initially, solar energy is captured by the light harvesting pigment-protein complexes. In purple bacteria these antenna complexes are constructed on a rather simple modular basis. Light absorbed by these antenna complexes is funnelled downhill to reaction centres, where light drives a trans-membrane redox reaction. The light harvesting proteins not only provide the scaffolding that correctly positions the bacteriochlorophyll a and carotenoid pigments for optimal energy transfer but also creates an environment that can modulate the wavelength at which different bacteriochlorophyll molecules absorb light thereby creating the energy funnel. How these proteins can modulate the absorption spectra of the bacteriochlorophylls will be discussed in this review.

  16. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Goliney, I.Yu., E-mail: igoliney@kinr.kiev.ua [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Sugakov, V.I. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine); Valkunas, L. [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Department of Theoretical Physics, Vilnius University, Sauletekio 9, Build. 3, 10222 Vilnius (Lithuania); Vertsimakha, G.V. [Institute for Nuclear Research, National Academy of Science of Ukraine, 47 Nauki pr., 03680 Kyiv (Ukraine)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Excitons of light-harvesting complexes (LH2) hybridize with plasmon modes. Black-Right-Pointing-Pointer Light absorption of LH2 is enhanced by a metal nanoparticle. Black-Right-Pointing-Pointer Using nanoshells allows reaching resonance between molecular and plasmons. Black-Right-Pointing-Pointer Metal nanoparticles introduce additional channel of excitation decay. Black-Right-Pointing-Pointer Light-harvesting may gain from the proper positioning of nanoshells. -- Abstract: The paper explores the theoretical possibility of affecting optical spectra and the quantum yield of the energy transfer in the peripheral light-harvesting complexes (LH2) from photosynthetic bacteria by placing a metal nanoparticle or a nanoshell nearby. An increased probability of the excitonic transition in the LH2 arises due to the borrowing of the oscillator strength from surface plasmons of the metal particle or the nanoshell. While both absorption and quenching of the excitations increase in the vicinity to a metal nanoparticle, having opposite effects, the total yield of the excitation transfer to reaction centers is shown to grow in the certain range of parameters.

  17. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex.

  18. Spectral Diffusion and Electron-Phonon Coupling of the B800 BChl a Molecules in LH2 Complexes from Three Different Species of Purple Bacteria

    Science.gov (United States)

    Baier, J.; Gabrielsen, M.; Oellerich, S.; Michel, H.; van Heel, M.; Cogdell, R.J.; Köhler, J.

    2009-01-01

    We have investigated the spectral diffusion and the electron-phonon coupling of B800 bacteriochlorophyll a molecules in the peripheral light-harvesting complex LH2 for three different species of purple bacteria, Rhodobacter sphaeroides, Rhodospirillum molischianum, and Rhodopseudomonas acidophila. We come to the conclusion that B800 binding pockets for Rhodobacter sphaeroides and Rhodopseudomonas acidophila are rather similar with respect to the polarity of the protein environment but that the packaging of the αβ-polypeptides seems to be less tight in Rb. sphaeroides with respect to the other two species. PMID:19883604

  19. Multi-Level, Multi Time-Scale Fluorescence Intermittency of Photosynthetic LH2 Complexes: A Precursor of Non-Photochemical Quenching?

    Science.gov (United States)

    Schörner, Mario; Beyer, Sebastian Reinhardt; Southall, June; Cogdell, Richard J; Köhler, Jürgen

    2015-11-01

    The light harvesting complex LH2 is a chromoprotein that is an ideal system for studying protein dynamics via the spectral fluctuations of the emission of its intrinsic chromophores. We have immobilized these complexes in a polymer film and studied the fluctuations of the fluorescence intensity from individual complexes over 9 orders of magnitude in time. Combining time-tagged detection of single photons with a change-point analysis has allowed the unambigeous identification of the various intensity levels due to the huge statistical basis of the data set. We propose that the observed intensity level fluctuations reflect conformational changes of the protein backbone that might be a precursor of the mechanism from which nonphotochemical quenching of higher plants has evolved.

  20. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A; Blankenship, R. E.

    2011-10-08

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N = 11) and spirilloxanthin (N = 13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N = 13) to play the role of the direct quencher of the excited singlet state of BChl.

  1. Stark absorption spectroscopy on the carotenoids bound to B800-820 and B800-850 type LH2 complexes from a purple photosynthetic bacterium, Phaeospirillum molischianum strain DSM120.

    Science.gov (United States)

    Horibe, Tomoko; Qian, Pu; Hunter, C Neil; Hashimoto, Hideki

    2015-04-15

    Stark absorption spectroscopy was applied to clarify the structural differences between carotenoids bound to the B800-820 and B800-850 LH2 complexes from a purple photosynthetic bacterium Phaeospirillum (Phs.) molischianum DSM120. The former complex is produced when the bacteria are grown under stressed conditions of low temperature and dim light. These two LH2 complexes bind carotenoids with similar composition, 10% lycopene and 80% rhodopin, each with the same number of conjugated CC double bonds (n=11). Quantitative classical and semi-quantum chemical analyses of Stark absorption spectra recorded in the carotenoid absorption region reveal that the absolute values of the difference dipole moments |Δμ| have substantial differences (2 [D/f]) for carotenoids bound to either B800-820 or B800-850 complexes. The origin of this striking difference in the |Δμ| values was analyzed using the X-ray crystal structure of the B800-850 LH2 complex from Phs. molischianum DSM119. Semi-empirical molecular orbital calculations predict structural deformations of the major carotenoid, rhodopin, bound within the B800-820 complex. We propose that simultaneous rotations around neighboring CC and CC bonds account for the differences in the 2 [D/f] of the |Δμ| value. The plausible position of the rotation is postulated to be located around C21-C24 bonds of rhodopin.

  2. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching.

    Science.gov (United States)

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G; Cogdell, Richard; van Hulst, Niek F

    2014-06-23

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes.

  3. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  4. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  5. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Satoshi Matsuzaki

    2002-08-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules are provided. General conclusions are given in Chapter 5.

  6. Photoprotection Mechanism of Light-Harvesting Antenna Complex from Purple Bacteria.

    Science.gov (United States)

    Kosumi, Daisuke; Horibe, Tomoko; Sugisaki, Mitsuru; Cogdell, Richard J; Hashimoto, Hideki

    2016-02-11

    Photosynthetic light-harvesting apparatus efficiently capture sunlight and transfer the energy to reaction centers, while they safely dissipate excess energy to surrounding environments for a protection of their organisms. In this study, we performed pump-probe spectroscopic measurements with a temporal window ranging from femtosecond to submillisecond on the purple bacterial antenna complex LH2 from Rhodobacter sphaeroides 2.4.1 to clarify its photoprotection functions. The observed excited state dynamics in the time range from subnanosecond to microsecond exhibits that the triplet-triplet excitation energy transfer from bacteriochlorophyll a to carotenoid takes place with a time constant of 16.7 ns. Furthermore, ultrafast spectroscopic data suggests that a molecular assembly of bacteriochlorophyll a in LH2 efficiently suppresses a generation of triple bacteriochlorophyll a.

  7. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Dahlberg, P. D. [Graduate Program in the Biophysical Sciences, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Gardiner, A. T.; Cogdell, R. J. [Department of Botany, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  8. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Science.gov (United States)

    Singh, V. P.; Westberg, M.; Wang, C.; Dahlberg, P. D.; Gellen, T.; Gardiner, A. T.; Cogdell, R. J.

    2015-01-01

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime. PMID:26049466

  9. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum.

    Science.gov (United States)

    Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Honkanen, Suvi; Kelly, Sharon; Niedzwiedzki, Dariusz M; Blankenship, Robert E; Shimizu, Yuuki; Wang-Otomo, Zheng-Yu; Cogdell, Richard J

    2014-11-01

    This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila.

  10. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophylla (BChla) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  11. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Satoshi Matsuzaki

    2002-06-27

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Q{sub y}-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll{sub a} (BChl{sub a}) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  12. Antenna complexes protect Photosystem I from Photoinhibition

    Directory of Open Access Journals (Sweden)

    Hienerwadel Rainer

    2009-06-01

    Full Text Available Abstract Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed.

  13. Antenna Miniaturization in Complex Electromagnetic Environments

    DEFF Research Database (Denmark)

    Zhang, Jiaying

    . Moreover, the modified Wheeler cap method for measurements of small antennas in complex environments is further developed. A cable-free impedance and gain measurement technique for electrically small antennas is also proposed. The electromagnetic model of this technique is derived by using the spherical...... wave expansion, and it is valid for arbitrary electrically small AUT at arbitrary distances between the probe and AUT. The whole measurement setup is modeled by the cascade of three coupled multipleort networks. The electromagnetic model, the simulation results, and the obtained measurement results...

  14. Fluorescence polarization measures energy funneling in single light-harvesting antennas—LH2 vs conjugated polymers

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J.; Sforazzini, Giuseppe; Anderson, Harry L.; Pullerits, Tõnu; Scheblykin, Ivan G.

    2015-01-01

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET. PMID:26478272

  15. Heterometallic antenna-reactor complexes for photocatalysis.

    Science.gov (United States)

    Swearer, Dayne F; Zhao, Hangqi; Zhou, Linan; Zhang, Chao; Robatjazi, Hossein; Martirez, John Mark P; Krauter, Caroline M; Yazdi, Sadegh; McClain, Michael J; Ringe, Emilie; Carter, Emily A; Nordlander, Peter; Halas, Naomi J

    2016-08-09

    Metallic nanoparticles with strong optically resonant properties behave as nanoscale optical antennas, and have recently shown extraordinary promise as light-driven catalysts. Traditionally, however, heterogeneous catalysis has relied upon weakly light-absorbing metals such as Pd, Pt, Ru, or Rh to lower the activation energy for chemical reactions. Here we show that coupling a plasmonic nanoantenna directly to catalytic nanoparticles enables the light-induced generation of hot carriers within the catalyst nanoparticles, transforming the entire complex into an efficient light-controlled reactive catalyst. In Pd-decorated Al nanocrystals, photocatalytic hydrogen desorption closely follows the antenna-induced local absorption cross-section of the Pd islands, and a supralinear power dependence strongly suggests that hot-carrier-induced desorption occurs at the Pd island surface. When acetylene is present along with hydrogen, the selectivity for photocatalytic ethylene production relative to ethane is strongly enhanced, approaching 40:1. These observations indicate that antenna-reactor complexes may greatly expand possibilities for developing designer photocatalytic substrates.

  16. PERFORMANCE EVALUATION OF LOX AND LH2 TURBOPUMP TURBINES FOR A 10 TON THRUST LOX/LH2 ROCKET ENGINE

    OpenAIRE

    HASHIMOTO, Ryohei; Kamijo, Kenjiro; Watanabe, Yoshiaki; Hasegawa, Satoshi; Fujita, Toshihiko; 橋本, 亮平; 上絛, 謙二郎; 渡辺, 義明; 長谷川, 敏; 藤田, 敏彦

    1981-01-01

    The aerodynamic performance evaluation of the pump-drive turbines for a 10 ton thrust liquid oxygen and liquid hydrogen (LOX and LH2) gas generator cycle propulsion system, which has dual-shaft series turbines, was tested mainly using cold nitrogen gas. At design equivalent speed and pressure ratio, the LOX turbine static efficiency was about 35 percent compared to the design value of 32.8 percent. The LH2 turbine static efficiency was very close to the design value of 45 percent. Equivalent ...

  17. Risk Assessment and Scaling for the SLS LH2 ET

    Science.gov (United States)

    Hafiychuk, Halyna; Ponizovskaya-Devine, Ekaterina; Luchinsky, Dmitry; Khasin, Michael; Osipov, Viatcheslav V.; Smelyanskiy, Vadim N.

    2012-01-01

    In this report the main physics processes in LH2 tank during prepress and rocket flight are studied. The goal of this investigation is to analyze possible hazards and to make risk assessment in proposed LH2 tank designs for SLS with 5 engines (the situation with 4 engines is less critical). For analysis we use the multinode model (MNM) developed by us and presented in a separate report and also 3D ANSYS simulations. We carry out simulation and theoretical analysis the physics processes such as (i) accumulation of bubbles in LH2 during replenish stage and their collapsing in the liquid during the prepress; (ii) condensation-evaporation at the liquid-vapor interface and tank wall, (iv) heating the liquid near the interface and wall due to condensation and environment heat, (v) injection of hot He during prepress and of hot GH2 during flight, (vi) mixing and cooling of the injected gases due to heat transfer between the gases, liquid and the tank wall. We analyze the effects of these physical processes on the thermo- and fluid gas dynamics in the ullage and on the stratification of temperature in the liquid and assess the associated hazards. A special emphasize is put on the scaling predictions for the larger SLS LH2 tank.

  18. Construction and Characterization of B850-Only LH2 Energy Transfer System in Purple Bacteria%紫细菌B800缺失LH2能量传递模型的构建及性质

    Institute of Scientific and Technical Information of China (English)

    李凯; 赵春贵; 岳慧英; 杨素萍; 曲音波; 焦念志

    2015-01-01

    To seek microscopic molecular mechanism of energy transfer and complex reconstitution in the photosynthesis ,the conditions for construction of B850‐only peripheral light‐harvesting complex (LH2) and their properties were investigated using absorption ,fluorescence spectroscopy ,molecular sieve chromatography ,ultrafiltration and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS‐PAGE) from the purple bacteria .The results indicated that bacteriochlorophylls (BChl) of B800 incu‐bated in 10 mmo · L -1 Tris‐HCl (pH 8.0) buffer are selectively released from their binding sites of LH2 of Rhodobacter azoto‐formans(A‐LH2)by0.08% (W/V)SDS.B850‐onlyA‐LH2wasconstructedafterremovingfreeBChlmixingwith10% meth‐yl alcohol by ultrafiltration .B850 BChl was released after A‐LH2 was incubated for 240 min in dark at room temperature (RT) . While BChl of B800 incubated in pH 1.9 buffer were selectively released from their binding sites of LH 2 of Rhodopseudomonas palustris (P‐LH2) .The authors acquired two components using molecular sieve chromatography .Free BChl of one component was not removed and self‐assembled to P‐LH2 .The other removed free BChl and B850‐only P‐LH2 was constructed .B850 un‐changed after P‐LH2 was incubated .P‐LH2 αandβsubunits have different molecular weights ,but those of A‐LH2 are in the contrary .It is concluded that B850‐only P‐LH2 is more stable than A‐LH2 .The enigmatic split of the B800 absorption band was not observed in these LH2 ,but we acquired two kinds of B800‐released LH2 from Rhodopseudomonas palustris .The authors’ results may provide a new light to separate homogeneous Apoprotein LH 2 .%构建B800缺失L H2对于阐明光合作用中光能传递的分子机制与捕光复合体组装机制具有重要意义。采用吸收光谱、荧光光谱、分子筛层析、超滤和SDS‐PAGE等方法研究了紫细菌两个典型种外周捕光复合体(LH2)约800 nm特征光谱(B800

  19. Nanometer arrays of functional light harvesting antenna complexes by nanoimprint lithography and host-guest interactions

    NARCIS (Netherlands)

    Escalante, Maryana; Zhao, Yiping; Ludden, Manon J.W.; Vermeij, Rolf; Olsen, John D.; Berenschot, Erwin; Hunter, C. Neil; Huskens, Jurriaan; Subramaniam, Vinod; Otto, Cees

    2008-01-01

    We show an approach based on a combination of site-directed mutagenesis, NIL and multivalent host−guest interactions for the realization of engineered ordered functional arrays of purified components of the photosynthetic system, the membrane-bound LH2 complex. In addition to micrometer-scale patter

  20. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  1. Single-molecule spectroscopy unmasks the lowest exciton state of the B850 assembly in LH2 from Rps. acidophila.

    Science.gov (United States)

    Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Freiberg, Arvi; Köhler, Jürgen

    2014-05-01

    We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.

  2. Hybrid Composites for LH2 Fuel Tank Structure

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  3. Excitonic level structures of LH1 and LH2 of purple photosynthetic bacteria using an analytical approach

    Institute of Scientific and Technical Information of China (English)

    杨光参; 汪力; 杨国桢

    2003-01-01

    The excitonic level structure of a ring-like chain of dimers is discussed analytically in order to aid the understanding of the possible spectral properties of LH1 and LH2 of purple photosynthetic bacteria. Under the approximation of dipoledipole interaction between Bchls, the excitonic levels, bandwidths and energy gap between two Davydov subbands are expressed analytically in terms of interaction energies and configurational parameters of dipoles. Our model includes all the interactions between pigment molecules in the system. The oscillator strengths and circular dichroism (CD) for the excitonic states are also presented analytically. The simulated absorption and CD spectra of LH1 and LH2 complexes reproduce the main features of the measured results.

  4. Nanoantenna enhanced emission of light-harvesting complex 2: the role of resonance, polarization, and radiative and non-radiative rates.

    Science.gov (United States)

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G; Cogdell, Richard; van Hulst, Niek F

    2014-12-01

    Nanoantennae show potential for photosynthesis research for two reasons; first by spatially confining light for experiments which require high spatial resolution, and second by enhancing the photon emission of single light-harvesting complexes. For effective use of nanoantennae a detailed understanding of the interaction between the nanoantenna and the light-harvesting complex is required. Here we report how the excitation and emission of multiple purple bacterial LH2s (light-harvesting complex 2) are controlled by single gold nanorod antennae. LH2 complexes were chemically attached to such antennae, and the antenna length was systematically varied to tune the resonance with respect to the LH2 absorption and emission. There are three main findings. (i) The polarization of the LH2 emission is fully controlled by the resonant nanoantenna. (ii) The largest fluorescence enhancement, of 23 times, is reached for excitation with light at λ = 850 nm, polarized along the long antenna-axis of the resonant antenna. The excitation enhancement is found to be 6 times, while the emission efficiency is increased 3.6 times. (iii) The fluorescence lifetime of LH2 depends strongly on the antenna length, with shortest lifetimes of ∼40 ps for the resonant antenna. The lifetime shortening arises from an 11 times resonant enhancement of the radiative rate, together with a 2-3 times increase of the non-radiative rate, compared to the off-resonant antenna. The observed length dependence of radiative and non-radiative rate enhancement is in good agreement with simulations. Overall this work gives a complete picture of how the excitation and emission of multi-pigment light-harvesting complexes are influenced by a dipole nanoantenna.

  5. Numerical GPR Imaging through Directional Antenna Systems in Complex Scenarios

    Science.gov (United States)

    Comite, Davide; Murgia, Federica; Barbara, Martina; Catapano, Ilaria; Soldovieri, Francesco; Galli, Alessandro

    2017-04-01

    The capability of imaging hidden targets and interfaces in non-accessible and complex scenarios is a topic of increasing interest for several practical applications, such as civil engineering, geophysics, and planetary explorations [1]. In this frame, Ground Penetrating Radar (GPR) has been proven as an efficient and reliable technique, also thanks to the development of effective imaging procedures based on linear modeling of the scattering phenomenon, which is usually considered as activated by ideal sources [1],[2]. Actually, such modeling simplifications are rarely verified in typical operative scenarios, when a number of heterogeneous targets can interact each other and with the surrounding environment, producing undesired contributions such as clutter and ghosts targets. From a physical viewpoint, these phenomena are mainly due to multipath contributions at the receiving antenna system, and different solutions have been proposed to mitigate these effects on the final image reconstruction (see, e.g., [2] and references therein). In this work we investigate on the possible improvements achievable when the directional features of the transmitting antenna system are taken into account in the imaging algorithm. Following and extending the recent investigations illustrated in [2] and [3], we consider in particular arrays of antennas, made by arbitrary types of elements, as activating the scattering phenomenon: hence, the effects of neglecting or accounting for the inherent directional radiation of the considered array are investigated as regards the accuracy of the final reconstruction of targets. Taking into account the resolution losses linked to the relevant synthetic aperture, we analyze the possibility of improving the quality of imaging, mitigating the presence of spurious contributions. By implementing a 'synthetic setup' that analyzes the scenarios under test through different electromagnetic CAD tools (mainly CST Microwave Studio and gprMax), it has been

  6. In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum

    DEFF Research Database (Denmark)

    Nielsen, Jakob Toudahl; Kulminskaya, Natalia V.; Bjerring, Morten;

    2016-01-01

    Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chloroba...

  7. Low complexity transmit antenna selection with power balancing in OFDM systems

    KAUST Repository

    Park, Kihong

    2010-10-01

    In this paper, we consider multi-carrier systems with multiple transmit antennas under the power balancing constraint, which is defined as the constraint that the power on each antenna should be limited under a certain level due to the linearity of the power amplifier of the RF chain. Applying transmit antenna selection and fixed-power variable-rate transmission per subcarrier as a function of channel variations, we propose an implementation-friendly antenna selection method which offers a reduced complexity in comparison with the optimal antenna selection scheme. More specifically, in order to solve the subcarrier imbalance across the antennas, we operate a two-step reallocation procedure to minimize the loss of spectral efficiency. We also provide an analytic lower bound on the spectral efficiency for the proposed scheme. From selected numerical results, we show that our suboptimal scheme offers almost the same spectral efficiency as the optimal one. © 2010 IEEE.

  8. A Transient UWB Antenna Array Used with Complex Impedance Surfaces

    Directory of Open Access Journals (Sweden)

    A. Godard

    2010-01-01

    Full Text Available The conception of a novel Ultra-Wideband (UWB antenna array, designed especially for transient radar applications through the frequency band (300 MHz–3 GHz, is proposed in this paper. For these applications, the elementary antenna must be compact and nondispersive, and the array must be able to steer in two dimensions. The geometry of the elementary antenna and its radiation characteristics are presented. The array beam steering is analyzed and a technique making the increase of the transient front-to-back ratio possible is described.

  9. Tracing of backward energy transfer from LH1 to LH2 in photosynthetic membranes grown under high and low irradiation.

    Directory of Open Access Journals (Sweden)

    Lanzani G.

    2013-03-01

    Full Text Available By introducing derivative transient absorption spectroscopy, we obtain rate constants for backward and forward energy transfer between LH1 and LH2 complexes in purple bacterial membranes. We find that backward energy transfer is strongly reduced in membranes grown under low irradiation conditions, compared to high light grown ones. We conclude that backward energy transfer is managed actively by the bacteria to avoid LH1 exciton deactivation under high irradiation conditions. The analytical method is generally applicable to excitonically coupled systems.

  10. Simulation and analysis of antennas radiating in a complex environment

    Science.gov (United States)

    Kim, J. J.; Burnside, W. D.

    1986-01-01

    A numerical procedure for computing the high-frequency radiation patterns of antennas mounted on curved surfaces is described. The procedure utilizes the uniform geometrical theory of diffraction to examine the antenna system's performance, which is dependent on antenna radiation patterns. Composite ellipsoid models of fuselage shapes are developed and the formation of geodesic paths on the models is studied; the shape of the fuselage affects the radiation patterns. The actual field radiated by the source and scattered by the structure is calculated using the ray field technique. The numerical solution is applied to the analysis of the antenna radiation patterns of a military aircraft, private aircraft, and the Space Shuttle orbiter. Good correlation between the calculated and measured radiation patterns is noted verifying the usefulness and accuracy of the numerical procedure.

  11. Electromagnetic, complex image model of a large area RF resonant antenna as inductive plasma source

    Science.gov (United States)

    Guittienne, Ph; Jacquier, R.; Howling, A. A.; Furno, I.

    2017-03-01

    A large area antenna generates a plasma by both inductive and capacitive coupling; it is an electromagnetically coupled plasma source. In this work, experiments on a large area planar RF antenna source are interpreted in terms of a multi-conductor transmission line coupled to the plasma. This electromagnetic treatment includes mutual inductive coupling using the complex image method, and capacitive matrix coupling between all elements of the resonant network and the plasma. The model reproduces antenna input impedance measurements, with and without plasma, on a 1.2× 1.2 m2 antenna used for large area plasma processing. Analytic expressions are given, and results are obtained by computation of the matrix solution. This method could be used to design planar inductive sources in general, by applying the termination impedances appropriate to each antenna type.

  12. In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum

    DEFF Research Database (Denmark)

    Nielsen, Jakob Toudahl; Kulminskaya, Natalia V.; Bjerring, Morten

    2016-01-01

    Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium...... of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix....

  13. Evidence of excited state localization and static disorder in LH2 investigated by 2D-polarization single-molecule imaging at room temperature.

    Science.gov (United States)

    Tubasum, Sumera; Camacho, Rafael; Meyer, Matthias; Yadav, Dheerendra; Cogdell, Richard J; Pullerits, Tõnu; Scheblykin, Ivan G

    2013-12-01

    Two-dimensional polarization fluorescence imaging of single light harvesting complexes 2 (LH2) of Rps. acidophila was carried out to investigate the polarization properties of excitation and fluorescence emission simultaneously, at room temperature. In two separate experiments we excited LH2 with a spectrally narrow laser line matched to the absorption bands of the two chromophore rings, B800 and B850, thereby indirectly and directly triggering fluorescence of the B850 exciton state. A correlation analysis of the polarization modulation depths in excitation and emission for a large number of single complexes was performed. Our results show, in comparison to B800, that the B850 ring is a more isotropic absorber due to the excitonic nature of its excited states. At the same time, we observed a strong tendency for LH2 to emit with dipolar character, from which preferential localization of the emissive exciton, stable for minutes, is inferred. We argue that the observed effects can consistently be explained by static energetic disorder and/or deformation of the complex, with possible involvement of exciton self-trapping.

  14. Low-Complexity MMSE Precoding for Coordinated Multipoint with Per-Antenna Power Constraint

    DEFF Research Database (Denmark)

    Kim, Tae Min; Sun, Fan; Paulraj, Arogyaswami

    2013-01-01

    We propose a low-complexity minimum mean square error (MMSE) transmit filter design for the coordinated beamforming (CB) in the coordinated multipoint (CoMP) under the practical per-antenna power constraint (PAPC). The proposed design is based on the non-linear Gauss-Seidel type algorithm in which...... the transmit filters for given receive filters are computed by iteratively updating the beamformer of each transmit antenna using simple closed-form expressions. The proposed approach can significantly reduce the overall complexity of the alternating optimization while preserving the optimality in the MSE...

  15. Space-based LH 2 propellant storage system: subscale ground testing results

    Science.gov (United States)

    Liggett, M. W.

    An orbital cryogenic liquid storage facility will be one of the essential elements of the US Space Program to realize the benefits of space-based cryogenic propulsion vehicles such as NASA's space transfer vehicle (STV) for transporting personnel and scientific packages from a space station in low earth orbit (LEO) to geosynchronous orbit (GEO), the moon and beyond. Long-term thermal control of LH 2 and LO 2 storage cryotanks is a key technical objective for many NASA and SDI programmes. Improved retention using refrigeration, boil-off vapour-cooled shields (VCSs), multilayer superinsulation (MLI) and para-ortho (P-O) hydrogen conversion are the required state-of-the-art techniques. The cryotank system level development testing (CSLDT) programme has supported the development of these technologies. Under the programme, trade studies and analyses were followed by the design and construction of a subscale LH 2 storage facility test article for steady-state and transient thermal tests. A two-stage gaseous helium (GHe) refrigerator was integrated with the test article and used to reduce boil-off and/or decrease the time required between passive test configuration steady-state conditions. The LH 2 tank, mounted in a vacuum chamber, was thermally shielded from the chamber wall by MLI blankets and two VCSs. The VCSs were cooled with either LH 2 boil-off gas (through an optional P-O converter) or refrigerated GHe. The CSLDT test article design, assembly and results from 400 hours of thermal tests are presented along with important conclusions. A comparison of predicted and measured steady-state boil-off rates is provided for 10 test configurations, and the system time constant is addressed. Also presented are some of the unique issues and challenges encountered during these tests that are related to instrumentation and control.

  16. Development of advanced materials composites for use as insulations for LH2 tanks

    Science.gov (United States)

    Lemons, C. R.; Salmassy, O. K.

    1973-01-01

    A study of thread-reinforced polyurethane foam and glass fabric liner, serving as internally bonded insulation for space shuttle LH2 tanks, is reported. Emphasis was placed on an insulation system capable of reentry and multiple reuse in the shuttle environment. The optimized manufacturing parameters associated with each element of the composite are established and the results, showing successful completion of subscale system evaluation tests using the shuttle flight environmental requirements, are given.

  17. Excitation Energy Transfer and Trapping in Higher Plant Photosystem II Complexes with Different Antenna Sizes

    NARCIS (Netherlands)

    Caffarri, Stefano; Broess, Koen; Croce, Roberta; van Amerongen, Herbert; Brown, Leonid S.

    2011-01-01

    We performed picosecond fluorescence measurements on well-defined Photosystem II (PSII) supercomplexes from Arabidopsis with largely varying antenna sizes. The average excited-state lifetime ranged from 109 ps for PSII core to 158 ps for the largest C(2)S(2)M(2) complex in 0.01% alpha-DM. Excitation

  18. Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes

    NARCIS (Netherlands)

    Caffarri, S.; Broess, K.; Croce, R.; Amerongen, van H.

    2011-01-01

    We performed picosecond fluorescence measurements on well-defined Photosystem II (PSII) supercomplexes from Arabidopsis with largely varying antenna sizes. The average excited-state lifetime ranged from 109 ps for PSII core to 158 ps for the largest C2S2M2 complex in 0.01% a-DM. Excitation energy

  19. Excitation Energy Transfer and Trapping in Higher Plant Photosystem II Complexes with Different Antenna Sizes

    NARCIS (Netherlands)

    Caffarri, S.; Broess, K.; Croce, R.; Amerongen, van H.

    2011-01-01

    700 cm(-1)) and a slow relaxation of the radical pair to an irreversible state (similar to 150 ps). Somewhat unexpectedly, we had to reduce the energy-transfer and charge-separation rates in complexes with decreasing size to obtain optimal fits. This strongly suggests that the antenna system is

  20. The method of the antenna system positioning for satellite communication network radiomonitoring complex

    OpenAIRE

    Гребенюк, Олег Петрович

    2014-01-01

    The method of orientation of the antenna system of complex of radiomonitoring of satellite communication networks is offered. A method takes into account the features of construction and functional setting of a transport stream of standard of DVB ‑ S.

  1. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.

    Science.gov (United States)

    Mirkovic, Tihana; Ostroumov, Evgeny E; Anna, Jessica M; van Grondelle, Rienk; Govindjee; Scholes, Gregory D

    2017-01-25

    The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.

  2. CFD investigation of thermal and pressurization performance in LH2 tank during discharge

    Science.gov (United States)

    Wang, Lei; Li, Yanzhong; Li, Cui; Zhao, Zhixiang

    2013-10-01

    Predictions of thermal and pressurization performance in a liquid hydrogen (LH2) tank during liquid discharge is of significance to the design and optimization of a rocket pressurization system. In this paper, a computational fluid dynamic (CFD) model is introduced to simulate the pressurized discharge event of LH2 tank. The wall region together with the fluid region is simultaneously considered as the computational domain, and low-Re k-ε model is applied to account for the fluid-wall heat exchange effect. Liquid-vapor phase change effect is also involved in the model. Comparison of the numerical results with existing experimental data suggests that the CFD model has a good adaptability in pressurization computation. Detailed characteristics, such as pressurant gas requirement, pressure altering history, and temperature distribution inside the tank, can be obtained by the model. The difference of pressurant gas, selecting helium or vapor H2, may result in the variations in pressure and temperature histories. Pressurization by vapor H2 supplies a higher pressure and also a temperature rise, which is significant to consider the selection of pressurant gas. The influences of phase change effect and injector structure on pressurization behaviors are also analyzed. The computational results show that liquid-vapor phase change has a slight influence on the pressurization behaviors. Significant pressure decay at the beginning stage of process may occur in the case of no-diffuser injector application since the incoming gas is excessively cooled by cold LH2. The results show that the present CFD model has a good adaptability in the prediction of pressurization behaviors and is a useful tool for the design and optimization of a pressurization system.

  3. LOX/LH2 propulsion system for launch vehicle upper stage, test results

    Science.gov (United States)

    Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.

    1984-01-01

    The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.

  4. Earth-Facing Antenna Characterization in a Complex Ground Plane/Multipath Rich Environment

    Science.gov (United States)

    Welch, Bryan W.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational space environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been successfully used to characterize the NEN-LGAs in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned.

  5. Earth-Facing Antenna Characterization in Complex Ground Plane/Multipath Rich Environment

    Science.gov (United States)

    Welch, Bryan W.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth-Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been used successfully to characterize the NEN-LGA's in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned

  6. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy.

    Science.gov (United States)

    Bína, David; Gardian, Zdenko; Herbstová, Miroslava; Kotabová, Eva; Koník, Peter; Litvín, Radek; Prášil, Ondřej; Tichý, Josef; Vácha, František

    2014-06-01

    A novel chlorophyll a containing pigment-protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~20kDa proteins of the light-harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705nm at room temperature in addition to the main chlorophyll a maximum at 677nm producing the major emission band at 714nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700nm unrelated to LHCI.

  7. Effects of pH on the peripheral light-harvesting antenna complex for Rhodopseudomonas palustris

    Institute of Scientific and Technical Information of China (English)

    FENG Juan; LI XueFeng; LIU Yan

    2008-01-01

    In this work steady-state absorption spectroscopy, circular dichroism spectroscopy and sub-micro-second time-resolved absorption spectroscopy were used to investigate the effect of pH on the struc-tures and functions of LH2 complex for Rhodopseudomonas palustris. The results revealed that: (1) B800 Bchla was gradually transformed to free pigments absorbing around 760 nm on the minutes timescale upon the induction of strong acidic pH, and subsequently there disappeared the CD signal for Qy band of B800 in the absence of B800. In addition, Carotenoids changed with the similar tendency to B850 BChl. (2) The introduction of strong basic pH gave rise to no significant changes for B800 Bchla, while B850 BChla experienced remarkable spectral blue-shift from 852 to 837 nm. Similar phe-nomenon was seen for the CD signal for Qy band of B850. Carotenoids displayed strong and pH-independent CD signals in the visible range. (3) In the case of both physiological and basic pH, broad and asymmetrical positive Tn←T1 transient absorption appeared following the pulsed photo-excitation of Car at 532 nm. By contrast, the featureless and weak positive signal was observed on the sub-microsecond timescale in the acidic pH environment. The aforementioned experimental results indicated that acidic pH-induced removal of B800 Bchla prevented the generation of the caro-tenoid triplet state (3Car*), which is known to be essential for the photo-protection function. Neverthe-less, carotenoids can still perform this important physiological role under the basic pH condition, where the spectral blue shift of B850 exerts little effect on the overall structure of the cyclic aggregate, therefore favoring the formation of carotenoid triplet state.

  8. Identification and characterization of multiple emissive species in aggregated minor antenna complexes.

    Science.gov (United States)

    Wahadoszamen, Md; Belgio, Erica; Rahman, Md Ashiqur; Ara, Anjue Mane; Ruban, Alexander V; van Grondelle, Rienk

    2016-12-01

    Aggregation induced conformational change of light harvesting antenna complexes is believed to constitute one of the pathways through which photosynthetic organisms can safely dissipate the surplus of energy while exposed to saturating light. In this study, Stark fluorescence (SF) spectroscopy is applied to minor antenna complexes (CP24, CP26 and CP29) both in their light-harvesting and energy-dissipating states to trace and characterize different species generated upon energy dissipation through aggregation (in-vitro) induced conformational change. SF spectroscopy could identify three spectral species in the dissipative state of CP24, two in CP26 and only one in CP29. The comprehensive analysis of the SF spectra yielded different sets of molecular parameters for the multiple spectral species identified in CP24 or CP26, indicating the involvement of different pigments in their formation. Interestingly, a species giving emission around the 730nm spectral region is found to form in both CP24 and CP26 following transition to the energy dissipative state, but not in CP29. The SF analyses revealed that the far red species has exceptionally large charge transfer (CT) character in the excited state. Moreover, the far red species was found to be formed invariably in both Zeaxanthin (Z)- and Violaxathin (V)-enriched CP24 and CP26 antennas with identical CT character but with larger emission yield in Z-enriched ones. This suggests that the carotenoid Z is not directly involved but only confers an allosteric effect on the formation of the far red species. Similar far red species with remarkably large CT character were also observed in the dissipative state of the major light harvesting antenna (LHCII) of plants [Wahadoszamen et al. PCCP, 2012], the fucoxanthin-chlorophyll protein (FCP) of brown algae [Wahadoszamen et al. BBA, 2014] and cyanobacterial IsiA [Wahadoszamen et al. BBA, 2015], thus pointing to identical sites and pigments active in the formation of the far red

  9. Low complexity antenna selection for V-BLAST systems with OSIC detection

    Directory of Open Access Journals (Sweden)

    Bae Youngtaek

    2011-01-01

    Full Text Available Abstract Multiple-input multiple-output (MIMO systems have an advantage of spectral efficiency compared to single-input single-output systems, which means that the MIMO systems have significantly higher data throughput. The V-BLAST (Vertical Bell Laboratories Layered Space Time scheme is a popular transceiver structure which has relatively good performance. In the V-BLAST scheme, ordered successive interference cancellation (OSIC technique was proposed as a possible efficient detection method in terms of performance and complexity. However, MIMO systems suffer from high complexity and implementation cost. As a practical solution, a technique called antenna selection has been introduced. Since the existing literature considered only the capacity-based selection, we develop an optimal selection method for V-BLAST scheme using OSIC detection with respect to error rate performance in this article. Its complexity is shown to be proportional to the fourth power of the number of transmit antennas. To reduce the complexity without significant performance degradation compared to the optimal selection method, a near-optimal selection method is also proposed. Simulation results show that the proposed selection method is very close to the performance of optimal selection.

  10. Application of the modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas in complex environment

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    In this paper, application of a modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small antennas is presented. It is shown that the limitations on the cavity dimension can be overcome and thus measurement in a large cavity is possible. The cavity loss...... is investigated, and a modified radiation efficiency formula that includes the cavity loss is introduced. Moreover, a modification of the technique is proposed that involves the antenna working complex environment inside the Wheeler Cap and thus makes possible measurement of an antenna close to a hand or head...

  11. A New Family of Low-Complexity STBCs for Four Transmit Antennas

    KAUST Repository

    Ismail, Amr

    2012-12-29

    Space-Time Block Codes (STBCs) suffer from a prohibitively high decoding complexity unless the low-complexity decodability property is taken into consideration in the STBC design. For this purpose, several families of STBCs that involve a reduced decoding complexity have been proposed, notably the multi-group decodable and the fast decodable (FD) codes. Recently, a new family of codes that combines both of these families namely the fast group decodable (FGD) codes was proposed. In this paper, we propose a new construction scheme for rate-1 FGD codes for 2^a transmit antennas. The proposed scheme is then applied to the case of four transmit antennas and we show that the new rate-1 FGD code has the lowest worst-case decoding complexity among existing comparable STBCs. The coding gain of the new rate-1 code is optimized through constellation stretching and proved to be constant irrespective of the underlying QAM constellation prior to normalization. Next, we propose a new rate-2 FD STBC by multiplexing two of our rate-1 codes by the means of a unitary matrix. Also a compromise between rate and complexity is obtained through puncturing our rate-2 FD code giving rise to a new rate-3/2 FD code. The proposed codes are compared to existing codes in the literature and simulation results show that our rate-3/2 code has a lower average decoding complexity while our rate-2 code maintains its lower average decoding complexity in the low SNR region. If a time-out sphere decoder is employed, our proposed codes outperform existing codes at high SNR region thanks to their lower worst-case decoding complexity.

  12. Light and Heat Induced Denaturation of Photosystem Ⅱ Core Antenna Complex CP47

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Light and heat induced denaturation of CP47, the core antenna complex of photosystem Ⅱ purified from spinach, were investigated using absorption and circular dichroism spectra.Light caused the destruction of chlorophyll a and excitonic interaction of chlorophyll a in CP47, while the protein secondary structure was not apparently changed.Heat induced the destruction of protein secondary structure and excitonic interaction of chlorophyll a, but the chlorophyll a molecule was not damaged.The results suggest that both the chlorophyll a molecular structure and the protein native conformation are necessary for excitonic interaction of chlorophyll a and the energy transfer function of the chlorophyll a binding protein.

  13. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  14. Large/Complex Antenna Performance Validation for Spaceborne Radar/Radiometeric Instruments

    Science.gov (United States)

    Focardi, Paolo; Harrell, Jefferson; Vacchione, Joseph

    2013-01-01

    Over the past decade, Earth observing missions which employ spaceborne combined radar & radiometric instruments have been developed and implemented. These instruments include the use of large and complex deployable antennas whose radiation characteristics need to be accurately determined over 4 pisteradians. Given the size and complexity of these antennas, the performance of the flight units cannot be readily measured. In addition, the radiation performance is impacted by the presence of the instrument's service platform which cannot easily be included in any measurement campaign. In order to meet the system performance knowledge requirements, a two pronged approach has been employed. The first is to use modeling tools to characterize the system and the second is to build a scale model of the system and use RF measurements to validate the results of the modeling tools. This paper demonstrates the resulting level of agreement between scale model and numerical modeling for two recent missions: (1) the earlier Aquarius instrument currently in Earth orbit and (2) the upcoming Soil Moisture Active Passive (SMAP) mission. The results from two modeling approaches, Ansoft's High Frequency Structure Simulator (HFSS) and TICRA's General RF Applications Software Package (GRASP), were compared with measurements of approximately 1/10th scale models of the Aquarius and SMAP systems. Generally good agreement was found between the three methods but each approach had its shortcomings as will be detailed in this paper.

  15. Large/Complex Antenna Performance Validation for Spaceborne Radar/Radiometeric Instruments

    Science.gov (United States)

    Focardi, Paolo; Harrell, Jefferson; Vacchione, Joseph

    2013-01-01

    Over the past decade, Earth observing missions which employ spaceborne combined radar & radiometric instruments have been developed and implemented. These instruments include the use of large and complex deployable antennas whose radiation characteristics need to be accurately determined over 4 pisteradians. Given the size and complexity of these antennas, the performance of the flight units cannot be readily measured. In addition, the radiation performance is impacted by the presence of the instrument's service platform which cannot easily be included in any measurement campaign. In order to meet the system performance knowledge requirements, a two pronged approach has been employed. The first is to use modeling tools to characterize the system and the second is to build a scale model of the system and use RF measurements to validate the results of the modeling tools. This paper demonstrates the resulting level of agreement between scale model and numerical modeling for two recent missions: (1) the earlier Aquarius instrument currently in Earth orbit and (2) the upcoming Soil Moisture Active Passive (SMAP) mission. The results from two modeling approaches, Ansoft's High Frequency Structure Simulator (HFSS) and TICRA's General RF Applications Software Package (GRASP), were compared with measurements of approximately 1/10th scale models of the Aquarius and SMAP systems. Generally good agreement was found between the three methods but each approach had its shortcomings as will be detailed in this paper.

  16. Assembly of Photosynthetic Antenna Protein Complexes from Algae for Development of Nano-biodevice and Its Fuelization

    Science.gov (United States)

    2013-05-20

    Task 1 : Artificial domain assembly of LH pigment complexes from photosynthetic bacterial membranes on nano-patterning and lipid modified...public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this proposal is to use photosynthetic antenna pigment ...nanobiophotonics) and its fuelization. The advantage of these pigment complexes from algae as well as from plants and photosynthetic bacteria is its

  17. Molecular Basis of Light Harvesting and Photoprotection in CP24 UNIQUE FEATURES OF THE MOST RECENT ANTENNA COMPLEX

    NARCIS (Netherlands)

    Passarini, Francesca; Wientjes, Emilie; Hienerwadel, Rainer; Croce, Roberta

    2009-01-01

    CP24 is a minor antenna complex of Photosystem II, which is specific for land plants. It has been proposed that this complex is involved in the process of excess energy dissipation, which protects plants from photodamage in high light conditions. Here, we have investigated the functional

  18. Energy Transfer Pathways in the CP24 and CP26 Antenna Complexes of Higher Plant Photosystem II : A Comparative Study

    NARCIS (Netherlands)

    Marin, Alessandro; Passarini, Francesca; Croce, Roberta; van Grondelle, Rienk; Brown, Leonid S.

    2010-01-01

    Antenna complexes are key components of plant photosynthesis, the process that converts sunlight, CO(2), and water into oxygen and sugars. We report the first (to our knowledge) femtosecond transient absorption study on the light-harvesting pigment-protein complexes CP26 (Lhcb5) and CP24 (Lhcb6) of

  19. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  20. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    Science.gov (United States)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  1. The safe removal of frozen air from the annulus of an LH2 storage tank

    Science.gov (United States)

    Krenn, A.; Starr, S.; Youngquist, R.; Nurge, M.; Sass, J.; Fesmire, J.; Cariker, C.; Bhattacharya, A.

    2015-12-01

    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modelling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods.

  2. The Safe Removal of Frozen Air from the Annulus of an LH2 Storage Tank

    Science.gov (United States)

    Krenn, A.; Starr, S.; Youngquist, R.; Nurge, M.; Sass, J.; Fesmire, J.; Cariker, C.; Bhattacharya, A.

    2015-01-01

    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modeling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods.

  3. Regulating the Energy Flow in a Cyanobacterial Light-Harvesting Antenna Complex.

    Science.gov (United States)

    Eisenberg, Ido; Caycedo-Soler, Felipe; Harris, Dvir; Yochelis, Shira; Huelga, Susana F; Plenio, Martin B; Adir, Noam; Keren, Nir; Paltiel, Yossi

    2017-02-16

    Photosynthetic organisms harvest light energy, utilizing the absorption and energy-transfer properties of protein-bound chromophores. Controlling the harvesting efficiency is critical for the optimal function of the photosynthetic apparatus. Here, we show that the cyanobacterial light-harvesting antenna complex may be able to regulate the flow of energy to switch reversibly from efficient energy conversion to photoprotective quenching via a structural change. We isolated cyanobacterial light-harvesting proteins, phycocyanin and allophycocyanin, and measured their optical properties in solution and in an aggregated-desiccated state. The results indicate that energy band structures are changed, generating a switch between the two modes of operation, exciton transfer and quenching, achieved without dedicated carotenoid quenchers. This flexibility can contribute greatly to the large dynamic range of cyanobacterial light-harvesting systems.

  4. On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P. [Theoretical Division, T-4, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Nesterov, Alexander I., E-mail: nesterov@cencar.udg.mx [Departamento de Física, CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara, CP 44420, Jalisco (Mexico); Sayre, Richard T. [Biological Division, B-11, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Still, Susanne [Department of Information and Computer Sciences, and Department of Physics and Astronomy, University of Hawaii at Mānoa, 1860 East–West Road, Honolulu, HI 96822 (United States)

    2016-03-22

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification. - Highlights: • Improvement of the efficiency of the charge-transfer nonphotochemical quenching in CP29. • Strategy for restoring the NPQ efficiency when the environment changes. • By changing of energy transfer rates to the sinks, one can significantly improve the performance of the NPQ.

  5. On Improving the Performance of Nonphotochemical Quenching in CP29 Light-Harvesting Antenna Complex

    CERN Document Server

    Berman, Gennady P; Sayre, Richard T; Still, Susanne

    2015-01-01

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification.

  6. Hole burning with pressure and electric field: A window on the electronic structure and energy transfer dynamics of bacterial antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.M.

    1999-02-12

    Light-harvesting (LH) complexes of cyclic (C{sub n}) symmetry from photosynthetic bacteria are studied using absorption and high pressure- and Stark-hole burning spectroscopies. The B800 absorption band of LH2 is inhomogeneously broadened while the B850 band of LH2 and the B875 band of the LH1 complex exhibit significant homogeneous broadening due to ultra-fast inter-exciton level relaxation. The B800{r_arrow}B850 energy transfer rate of ({approximately}2 ps){sup {minus}1} as determined by hole burning and femtosecond pump-probe spectroscopies, is weakly dependent on pressure and temperature, both of which significantly affect the B800-B850 energy gap. The resilience is theoretically explained in terms of a modified Foerster theory with the spectral overlap provided by the B800 fluorescence origin band and weak vibronic absorption bands of B850. Possible explanations for the additional sub-picosecond relaxation channel of B800 observed with excitation on the blue side of B800 are given. Data from pressure and temperature dependent studies show that the B800 and B850 bacteriochlorophyll a (BChl a) molecules are weakly and strongly excitonically coupled, respectively, which is consistent with the X-ray structure of LH2. The B875 BChl a molecules are also strongly coupled. It is concluded that electron-exchange, in addition to electrostatic interactions, is important for understanding the strong coupling of the B850 and B875 rings. The large linear pressure shifts of {approximately}{minus}0.6 cm{sup {minus}1}/MPa associated with B850 and B875 can serve as important benchmarks for electronic structure calculations.

  7. KEA-144: Final Results of the Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) Project

    Science.gov (United States)

    Notardonato, William; Fesmire, James; Swanger, Adam; Jumper, Kevin; Johnson, Wesley; Tomsik, Thomas

    2017-01-01

    GODU-LH2 system has successfully met all test objectives at the 33%, 67%, and 100% tank fill level. Complete control over the state of the fluid has been demonstrated using Integrated Refrigeration and Storage (IRAS). Almost any desired point along the H2saturation curve can essentially be "dialed in" and maintained indefinitely. System can also be used to produce densified hydrogen in large quantities to the triple point. Exploring multiple technology infusion paths. Studying implementation of IRAS technology into new LH2sphere for EM-2 at LC39B. Technical interchange also occurring with STMD, LSP, ULA, DoE, KIST, Kawasaki, Shell Oil, SpaceX, US Coast Guard, and Virgin Galactic.

  8. Application of the modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas in complex environment

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    In this paper, application of a modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small antennas is presented. It is shown that the limitations on the cavity dimension can be overcome and thus measurement in a large cavity is possible. The cavity loss...... is investigated, and a modified radiation efficiency formula that includes the cavity loss is introduced. Moreover, a modification of the technique is proposed that involves the antenna working complex environment inside the Wheeler Cap and thus makes possible measurement of an antenna close to a hand or head...... phantom. The measurement procedures are described and the key features of the technique are discussed. The results of simulations and measurements by the proposed method are presented and compared....

  9. An efficient fringe integral equation method for optimizing the antenna location on complex bodies

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter; Breinbjerg, Olav

    2001-01-01

    in such applications. The structure is then modelled by triangular or rectangular surface patches with corresponding surface current expansion functions. A MoM matrix which is independent of the antenna location can be obtained by modelling the antenna as an impressed electric or magnetic source, e.g., a slot antenna...... sources located arbitrarily close to the surface of the structure, was presented by Jorgensen, Meincke and Breinbjerg (see Proc. of the Applied Computational Electromagnetic Symp., Monterey, CA,. March 2001). In this formulation, the surface current on the structure is obtained by evaluating a number...... of line integrals and performing a single matrix-vector multiplication for each antenna location. This paper reviews the F-DMFIE formulation and applies it to a more complicated geometry than that of Jorgensen et al. In addition, efficient solution methods for multiple antenna locations, including...

  10. 28-Homobrassinolide Modulate Antenna Complexes and Carbon Skeleton of Brassica juncea L. under Temperature Stress

    Directory of Open Access Journals (Sweden)

    Harpreet Kaur

    2014-08-01

    Full Text Available The aim of present study was to explore the ameliorative impact of 28-homoBL on morpho-physiological attributes, photosynthetic pigments and sugars of Brassica juncea L. exposed to oxidative stress caused by extreme temperatures (4 and 44 °C. For this, experiments were carried out at the Plant Physiology Laboratory, Department of Botany, Punjabi University, Patiala. Effect of different degrees of temperature (4 and 44 °C taking 24 °C as control was studied. 28-homoBL (10-6, 10-9 and 10-12M primed and unprimed seeds of B. juncea L. in terms of antenna complexes and end products of photosynthesis that is total carbohydrates and total soluble sugars was investigated. All concentrations of 28-homoBL used in present study showed different effects on morphology and light quenching pigments. All concentrations of 28-homoBL showed promoting effect on growth and light quenching pigments. The carbon makeup ameliorated positively in stressed and non-stressed components of photosynthetic machinery and 10-9 M 28-homoBL showed best results. In conclusion 28-homoBL showed great potential in protecting the reaction centre of photosynthetic machinery from oxidative stress caused by extreme low and high temperatures but in very dose dependent manner and thus modulate the carbon skeleton of the plant.

  11. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part I: basic concepts

    Science.gov (United States)

    Howling, A. A.; Guittienne, Ph; Jacquier, R.; Furno, I.

    2015-12-01

    The coupling between an inductive source and the plasma determines the power transfer efficiency and the reflected impedance in the primary circuit. Usually, the plasma coupling is analysed by means of a transformer equivalent circuit, where the plasma inductance and resistance are estimated using a global plasma model. This paper shows that, for planar RF antennas, the mutual inductance between the plasma and the primary circuit can be calculated using partial inductances and the complex image method, where the plasma coupling is determined in terms of the plasma skin depth and the distance to the plasma. To introduce the basic concepts, the mutual inductance is calculated here for a linear conductor parallel to the plasma surface. In the accompanying paper part II Guittienne et al (2015 Plasma Sources Sci. Technol. 24 065015), impedance measurements on a RF resonant planar plasma source are modeled using an impedance matrix where the plasma-antenna mutual impedances are calculated using the complex image method presented here.

  12. Evaluation of Concrete Consolidation: DSS-35 Antenna Reinforced Concrete Pedestal, Canberra Deep Space Communications Complex, Australia

    Science.gov (United States)

    Saldua, B. P.; Dodge, E. C.; Kolf, P. R.; Olson, C. A.

    2016-02-01

    Antenna structures for the Deep Space Network track spacecraft that are millions of miles away. Therefore, these structures have tight specifications for translation, rotation, and differential settlement. This article presents several nondestructive test methods that were used to evaluate, locate, and repair imperfections in the reinforced concrete pedestal that supports the DSS-35 antenna structure. These methods include: (1) impulse response (IR), (2) ultrasonic shear-wave tomography (MIRA), and (3) ground-penetrating radar (GPR).

  13. Numerical and experimental comparisons of the self-pressurization behavior of an LH2 tank in normal gravity

    Science.gov (United States)

    Barsi, S.; Kassemi, M.

    2008-03-01

    In optimizing the design of cryogenic storage facilities for future in-orbit or on-surface applications the boil-off and the self-pressurization rates must be accurately predicted for different g-levels and for a variety of heat loads and distributions. In this paper, a two-phase CFD model is presented that describes the self-pressurization behavior of a flightweight partially full LH2 tank in normal gravity. Existing experimental data at different fill levels are used to assess the predictive capability of the model. The model's predictions indicate favorable agreement with the experimentally measured pressure histories. Small deviations are observed for the median fill level cases where it is suggested that a non-uniform heat load may be the source of this discrepancy.

  14. Radiation and scattering by thin-wire structures in the complex frequency domain. [electromagnetic theory for thin-wire antennas

    Science.gov (United States)

    Richmond, J. H.

    1974-01-01

    Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.

  15. Reverse Compute and Forward: A Low-Complexity Architecture for Downlink Distributed Antenna Systems

    CERN Document Server

    Hong, Songnam

    2012-01-01

    We consider a distributed antenna system where $L$ antenna terminals (ATs) are connected to a Central Processor (CP) via digital error-free links of finite capacity $R_0$, and serve $L$ user terminals (UTs). This system model has been widely investigated both for the uplink and the downlink, which are instances of the general multiple-access relay and broadcast relay networks. In this work we focus on the downlink, and propose a novel downlink precoding scheme nicknamed "Reverse Quantized Compute and Forward" (RQCoF). For this scheme we obtain achievable rates and compare with the state of the art available in the literature. We also provide simulation results for a realistic network with fading and pathloss with $K > L$ UTs, and show that channel-based user selection produces large benefits and essentially removes the problem of rank deficiency in the system matrix.

  16. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    Science.gov (United States)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  17. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    Science.gov (United States)

    2012-07-10

    bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure determined to high resolution) revealed...the mechanisms of efficient light -harvesting but also those of photo-protection. In order to understand these reactions both structural and functional...binding protein and its effect on the stability of reconstituted light -harvesting core antenna complex” , Photosynthesis Res.. 111,63-69(2012)(Doi

  18. Structural characterization of the B800-850 and B875 light-harvesting antenna complexes from Rhodobacter sphaeroides by electron microscopy

    NARCIS (Netherlands)

    Boonstra, Arjen F.; Visschers, Ronald W.; Calkoen, Florentine; Grondelle, Rienk van; Bruggen, Ernst F.J. van; Boekema, Egbert J.

    1993-01-01

    The structure and aggregation behavior of B800-850 (LHII) and B875 (LHI) antenna complexes of Rhodobacter sphaeroides were studied by electron microscopy. Single molecular projections (top views and side views) of isolated particles were analyzed. The B800-850 complexes, isolated as 150 kDa particle

  19. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.

    Science.gov (United States)

    Aratani, Naoki; Kim, Dongho; Osuka, Atsuhiro

    2009-12-21

    The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of protein-embedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-meso-linked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Forster-type incoherent energy hopping model. In noncoordinating solvents such as CHCl(3), meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated

  20. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Martin, Elizabeth C; Bocian, David F; Hunter, C Neil; Holten, Dewey

    2017-03-01

    Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, "blue" form with an S2 (1(1)B u(+) ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, "red" form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (1(1)B u(+) ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (1(1)B u(+) ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (1(1)B u(+) ) → S0 (1(1)A g(-) ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid-protein interactions, including the inferred hydrogen bonding.

  1. Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, Ł. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Czechowski, N. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Piatkowski, D. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Litvin, R. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Mackowski, S. [Nicolaus Copernicus Univ., Torun (Poland). Inst. of Physics; Brotosudarmo, T. H. P. [Ma Chung Univ., Malang (Indonesia). Ma Chung Research Center for Photosynthetic Pigments; Pichler, S. [Univ. of Glasgow, Scotland (United Kingdom). Inst. of Molecular, Cell and Systems Biology; Cogdell, R. J. [Univ. Linz (Austria). Inst. fur Halbleiter-und Festkorperphysik; Heiss, W. [Univ. Linz (Austria). Inst. fur Halbleiter-und Festkorperphysik

    2011-10-24

    The influence of plasmon excitations in spherical gold nanoparticles on the optical properties of a light-harvesting complex 2 (LH2) from the purple bacteria Rhodopseudomonas palustris has been studied. Systematic analysis is facilitated by controlling the thickness of a silica layer between Au nanoparticles and LH2 complexes. Fluorescence of LH2 complexes features substantial increase when these complexes are separated by 12 nm from the gold nanoparticles. At shorter distances, non-radiative quenching leads to a decrease of fluorescence emission. The enhancement of fluorescence originates predominantly from an increase of absorption of pigments comprising the LH2 complex.

  2. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    Science.gov (United States)

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  3. Construction and Structural Analysis of Tethered Lipid Bilayer Containing Photosynthetic Antenna Proteins for Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sumino, Ayumi; Dewa, Takehisa; Takeuchi, Toshikazu; Sugiura, Ryuta; Sasaki, Nobuaki; Misawa, Nobuo; Tero, Ryugo; Urisu, Tsuneo; Gardiner, Alastair T; Cogdell, Richard J; Hashimoto, Hideki; Nango, Mamoru

    2011-07-11

    The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAY), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.

  4. Smart antennas

    CERN Document Server

    Godara, Lal Chand

    2004-01-01

    INTRODUCTION Antenna GainPhased Array AntennaPower Pattern Beam Steering Degree of Freedom Optimal AntennaAdaptive AntennaSmart AntennaSummary NARROWBAND PROCESSINGSignal Model Conventional BeamformerNull Steering BeamformerOptimal BeamformerOptimization Using Reference SignalBeam Space Processing Effect of ErrorsNotation and AbbreviationsReferencesADAPTIVE PROCESSINGSample Matrix Inversion AlgorithmUnconstrained Least Mean Squares AlgorithmNormalized Least Mean Squares AlgorithmConstrained

  5. Fourpoint antenna

    OpenAIRE

    2003-01-01

    Wideband antennas with omnidirectional coverage have both military and commercial applications. In one embodiment, the Planar Inverted Cone Antenna (PICA) is composed of a single flat element vertically mounted above a ground plane. A geometry of Planar Inverted Cone Antenna (PICA) is based on the conventional circular-disc antenna with trimmed top part having the shape of a planar-inverted cone, in a second embodiment, the Fourpoint antenna also provides balanced impedance over the operating...

  6. High-Resolution Imaging of Molecular Gas and Dust in the Antennae (NGC 4038/39) Super Giant Molecular Complexes

    CERN Document Server

    Wilson, C D; Madden, S C; Charmandaris, V

    2000-01-01

    We present new aperture synthesis CO maps of the Antennae (NGC 4038/39) obtained with the Caltech Millimeter Array. These sensitive images show molecular emission associated with the two nuclei and a partial ring of star formation to the west of NGC 4038, as well as revealing the large extent of the extra-nuclear region of star formation (the ``overlap region''), which dominates the CO emission from this system. The largest molecular complexes have masses of 3-6x10^8 M_sun, typically an order of magnitude larger than the largest structures seen to date in more quiescent galaxy disks. The extremely red luminous star clusters identified previously with HST are well-correlated with the CO emission, which supports the conclusion that they are highly embedded young objects rather than old globular clusters. There is an excellent correlation between the CO emission and the 15 micron emission seen with ISO, particularly for the brightest regions. The most massive complexes in the overlap region have similar [NeIII]/...

  7. Multicolour optical coding from a series of luminescent lanthanide complexes with a unique antenna.

    Science.gov (United States)

    Wartenberg, Nicolas; Raccurt, Olivier; Bourgeat-Lami, Elodie; Imbert, Daniel; Mazzanti, Marinella

    2013-03-04

    The bis-tetrazolate-pyridine ligand H(2)pytz sensitises efficiently the visible and/or near-IR luminescence emission of ten lanthanide cations (Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb). The Ln(III) complexes present sizeable quantum yields in both domains with a single excitation source. The wide range of possible colour combinations in water, organic solvents and the solid state makes the complexes very attractive for labelling and encoding.

  8. The structural role of the carotenoid in the bacterial light-harvesting protein 2 (LH2) of Rhodonbacter capsulatus. A Fourier transform Raman spectroscopy and circular dichroism study.

    Science.gov (United States)

    Zurdo, J; Centeno, M A; Odriozola, J A; Fernández-Cabrera, C; Ramírez, J M

    1995-11-01

    In previous work (Zurdo J, Fernández-Cabrera C and Ramírez JM (1993) Biochem J 290: 531-537), it had been shown that selective extraction of the carotenoid from the light-harvesting protein 2 (LH2) of Rhodobacter capsulatus induced the dissociation of 800-nm absorbing bacteriochlorophyll (Bchl), a 10-nm red shift of 854-nm Bchl, and a decrease of the stability of the protein in detergent solution. In the present study, the Fourier transform Raman and near-infrared circular dichroism spectra of native and carotenoid-depleted LH2 membrane preparations were compared. It was found that while the coupled carbonyls of 854-nm Bchl remained specifically H-bonded to the peptides after carotenoid extraction, the optical activity of the near-infrared electronic transition was significantly altered. Given the excitonic origin of such optical activity, our data suggest that carotenoid extraction elicits a rearrengement of the chromophore cluster and of the associated polypeptide subunits. This implies a significant role of the carotenoid in maintaining the native quaternary structure of the protein, which would be consistent with the observed dissociation of 800-nm Bchl and the loss of solubilized LH2 stability that result from carotenoid removal. There is no evidence for a similar role of the carotenoid in the LH1 protein.

  9. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  10. Plasma Antenna

    OpenAIRE

    N M Vijay

    2014-01-01

    The fundamental base of plasma antenna is the use of an ionized medium as a conductor. The plasma antenna is a radiofrequency antenna formed by a plasma columns, Filaments or sheets, which are excited by a surface wave. The relevance of this device is how rapidly it can be turned on and off, only applying an electrical pulse. Besides its wide carrier frequency, the great directivity and controllable antenna shape. Otherwise a disadvantage is that it needs energy to be ionized....

  11. Bio-Inspired Assembly of Artificial Photosynthetic Antenna Complexes for Development of Nanobiodevices

    Science.gov (United States)

    2011-06-24

    complexes involved in the primary reactions of bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its...role in the primary process of purple bacterial photosynthesis that is, capturing light energy, transferring it to the RC where it is used in...planar lipid bilayers, through vesicle-to-planar membrane formation, could be confirmed by absorption spectroscopy and high resolution atomic force

  12. Validation of Emulated Omnidirectional Antenna Output Using Directive Antenna Data

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Karstensen, Anders; Nielsen, Jesper Ødum

    2016-01-01

    In this paper, we present validation of a method for constructing a virtual omnidirectional antenna in the azimuth plane. The virtual omnidirectional antenna utilizes a combination of data from directive horn antennas. The aim is to utilize the high gain of the horn antenna to improve the dynamic...... range of channel sounding measurements conducted in the centimeter and millimeter wave bands. The resulting complex impulse response from the virtual omnidirectional antenna is used to find the power-delay-profile (PDP). This is then compared to measurements conducted at the same time using a real...... omnidirectional antenna. The validation shows that the synthesized omnidirectional is capable of predicting main components and the slope of the PDP. Further, it is shown that by choosing angular sampling steps corresponding to the half power beam width (HPBW) of the used antenna similar power levels can...

  13. Taxonomic distribution and origins of the extended LHC (light-harvesting complex antenna protein superfamily

    Directory of Open Access Journals (Sweden)

    Brinkmann Henner

    2010-07-01

    Full Text Available Abstract Background The extended light-harvesting complex (LHC protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS. The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae: glaucophytes, red algae and green plants (Viridiplantae. By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the

  14. Reconfigurable antenna pattern verification

    Science.gov (United States)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  15. Luminescent europium and terbium complexes of dipyridoquinoxaline and dipyridophenazine ligands as photosensitizing antennae: structures and biological perspectives.

    Science.gov (United States)

    Dasari, Srikanth; Patra, Ashis K

    2015-12-14

    The europium(III) and terbium(III) complexes, namely [Eu(dpq)(DMF)2(NO3)3] (1), [Eu(dppz)2(NO3)3] (2), [Tb(dpq)(DMF)2Cl3] (3), and [Tb(dppz)(DMF)2Cl3] (4), where dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 1 and 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz in 2 and 4) and N,N'-dimethylformamide (DMF) have been isolated, characterized from their physicochemical data, luminescence studies and their interaction with DNA, serum albumin protein and photo-induced DNA cleavage activity are studied. The X-ray crystal structures of complexes 1-4 show discrete mononuclear Ln(3+)-based structures. The Eu(3+) in [Eu(dpq)(DMF)2(NO3)3] (1) and [Eu(dppz)2(NO3)3] (2) as [Eu(dppz)2(NO3)3]·dppz (2a) adopts a ten-coordinated bicapped dodecahedron structure with a bidentate N,N-donor dpq ligand, two DMF and three NO3(-) anions in 1 and two bidentate N,N-donor dppz ligands and three NO3(-) anions in 2. Complexes 3 and 4 show a seven-coordinated mono-capped octahedron structure where Tb(3+) contains bidentate dpq/dppz ligands, two DMF and three Cl(-) anions. The complexes are highly luminescent in nature indicating efficient photo-excited energy transfer from the dpq/dppz antenna to Ln(3+) to generate long-lived emissive excited states for characteristic f → f transitions. The time-resolved luminescence spectra of complexes 1-4 show typical narrow emission bands attributed to the (5)D0 → (7)F(J) and (5)D4 → (7)F(J) f-f transitions of Eu(3+) and Tb(3+) ions respectively. The number of inner-sphere water molecules (q) was determined from luminescence lifetime measurements in H2O and D2O confirming ligand-exchange reactions with water in solution. The complexes display significant binding propensity to the CT-DNA giving binding constant values in the range of 1.0 × 10(4)-6.1 × 10(4) M(-1) in the order 2, 4 (dppz) > 1, 3 (dpq). DNA binding data suggest DNA groove binding with the partial intercalation nature of the complexes. All the complexes also show binding propensity (K(BSA)

  16. Elucidation of structure-function relationships in photosynthetic light-harvesting antenna complexes by non-linear polarization spectroscopy in the frequency domain (NLPF).

    Science.gov (United States)

    Lokstein, Heiko; Krikunova, Maria; Teuchner, Klaus; Voigt, Bernd

    2011-08-15

    Photosynthetically active pigments are usually organized into pigment-protein complexes. These include light-harvesting antenna complexes (LHCs) and reaction centers. Site energies of the bound pigments are determined by interactions with their environment, i.e., by pigment-protein as well as pigment-pigment interactions. Thus, resolution of spectral substructures of the pigment-protein complexes may provide valuable insight into structure-function relationships. By means of conventional (linear) and time-resolved spectroscopic techniques, however, it is often difficult to resolve the spectral substructures of complex pigment-protein assemblies. Nonlinear polarization spectroscopy in the frequency domain (NLPF) is shown to be a valuable technique in this regard. Based on initial experimental work with purple bacterial antenna complexes as well as model systems NLPF has been extended to analyse the substructure(s) of very complex spectra, including analyses of interactions between chlorophylls and "optically dark" states of carotenoids in LHCs. The paper reviews previous work and outlines perspectives regarding the application of NLPF spectroscopy to disentangle structure-function relationships in pigment-protein complexes.

  17. Purification and characterization of the B808-866 light-harvesting complex from green filamentous bacterium Chloroflexus aurantiacus.

    Science.gov (United States)

    Xin, Yueyong; Lin, Su; Montaño, Gabriel A; Blankenship, Robert E

    2005-11-01

    The integral membrane light-harvesting complex B808-866 from the thermophilic green filamentous bacterium Chloroflexus aurantiacus has been isolated and characterized. Reversed-phase HPLC analysis demonstrated that the number of bacteriochlorophyll (BChl) in the B808-866 antenna complex is 36 +/- 2 per reaction center. The main carotenoid type is gamma-carotene, and the molar ratio of BChl to carotenoid is 3:2. The steady-state absorption and fluorescence spectroscopy of the B808-866 complex are reminiscent of the well-studied LH2 peripheral antenna of purple bacteria, whereas the protein sequence and the circular dichroism spectrum of B808-866 is more similar to the LH1 inner core antenna. The efficiency of excitation transfer from carotenoid to BChl is about 25%. The above results combined with electron microscopy and dynamic light scattering analysis suggest that the B808-866 antenna is more like the LH1, whereas surrounds the reaction center but probably consists of 24 building blocks with a ring diameter of about 20 nm. The above results suggested that there are probably two reaction centers inside the ring of B808-866. The unique properties of this light-harvesting complex may provide insights on the protein-pigment interactions in bacterial photosynthesis.

  18. Reconfigurable antennas

    CERN Document Server

    Bernhard, Jennifer

    2007-01-01

    This lecture explores the emerging area of reconfigurable antennas from basic concepts that provide insight into fundamental design approaches to advanced techniques and examples that offer important new capabilities for next-generation applications. Antennas are necessary and critical components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Making antennas reconfigurable so that their behavior can adapt with changing system requirements or environmental conditions can ameliorate or eliminate these restricti

  19. Microstrip Antenna

    OpenAIRE

    Anuj Mehta

    2015-01-01

    Abstract This article presents an overview of the microstrip patch antenna and its design techniques. Basically a microstrip patch antenna comprises of a trace of copper or any other metal of any geometry on one side of a standard printed circuit board substrate with other side grounded. The antenna is fed using various feeding techniques like coaxial strip line aperture coupling or proximity coupling techniques. The working principle and the radiation mechanism have also been described. The ...

  20. Antenna Measurement

    OpenAIRE

    Picard, Dominique

    2010-01-01

    Currently it is possible to measure all the characteristics of an antenna with a good accuracy. Far-field ranges do not have a very good accuracy, due to parasitic reflections for the outdoor ranges and because of the limited distance between the source antenna and the tested antenna for the indoor ranges. The compact range allows one to obtain a direct farfield cut in a relatively short time. The near-field techniques are the most accurate and the most convenient for global antenna radiation...

  1. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  2. Complex genetic interactions govern the temporal effects of Antennapedia on antenna-to-leg transformations in Drosophila melanogaster

    Indian Academy of Sciences (India)

    Ian Dworkin; Wendy Lee; Fiona Mccloskey; Ellen Larsen

    2007-08-01

    The putative regulatory relationships between Antennapedia (Antp), spalt major (salm) and homothorax (hth) are tested with regard to the sensitive period of antenna-to-leg transformations. Although Antp expression repressed hth as predicted, contrary to expectations, hth did not show increased repression at higher Antp doses, whereas salm, a gene downstream of hth, did show such a dose response. Loss of hth allowed antenna-to-leg transformations but the relative timing of proximal–distal transformations was reversed, relative to transformations induced by ectopic Antp. Finally, overexpression of Hth was only partially able to rescue transformations induced by ectopic Antp. These results indicate that there may be additional molecules involved in antenna/leg identity and that spatial, temporal and dosage relationships are more subtle than suspected and must be part of a robust understanding of molecular network behaviour involved in determining appendage identity in Drosophila melanogaster.

  3. ASME Section VIII Recertification of a 33,000 Gallon Vacuum-jacketed LH2 Storage Vessel for Densified Hydrogen Testing at NASA Kennedy Space Center

    Science.gov (United States)

    Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.

    2015-01-01

    The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.

  4. Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chen, Wang-Chao; Kong, Fan-Tai; Li, Zhao-Qian; Pan, Jia-Hong; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Huang, Yang; Yu, Ting; Dai, Song-Yuan

    2016-08-03

    Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1). In conjunction with TiO2 photoanode of submicrospheres and iodide-based electrolytes, the DSSCs sensitizing with the RC sensitizers, achieved impressively high short-circuit current density (19.04 mA cm(-2) for RC-41, 19.83 mA cm(-2) for RC-42, and 20.21 mA cm(-2) for RC-43) and power conversion efficiency (10.07% for RC-41, 10.52% for RC-42, and 10.78% for RC-43). The superior performances of RC dye sensitizers were attributed to the enhanced light-harvesting capacity and incident-photon-to-current efficiency (IPCE) caused by the introduction of electron-donating antennas in the ancillary ligands. The interfacial charge recombination/regeneration kinetics and electron lifetime were further evaluated by the electrochemical impedance spectroscopy (EIS) and transient absorption spectroscopy (TAS). These data decisively revealed the dependences on the photovoltaic performance of ruthenium sensitizers incorporating electron-donating antennas.

  5. Dimerization-assisted energy transport in light-harvesting complexes.

    Science.gov (United States)

    Yang, S; Xu, D Z; Song, Z; Sun, C P

    2010-06-21

    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 [without a reaction center (RC)] to the LH1 (surrounding the RC) or from the LH2 to another LH2. The excited and unexcited states of a bacteriochlorophyll (BChl) are modeled by a quasispin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system and then calculate the transfer efficiency and average transfer time. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.

  6. Dimerization-assisted energy transport in light-harvesting complexes

    CERN Document Server

    Yang, S; Song, Z; Sun, C P

    2010-01-01

    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 (without a reaction center (RC)) to the LH1 (surrounding the RC), or from the LH2 to another LH2. The excited and un-excited states of a bacteriochlorophyll (BChl) are modeled by quasi-spin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system, and then calculate the transfer efficiency and average transfer time at a low enough temperature. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.

  7. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  8. Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: using studies on purple bacterial antenna complexes as an example.

    Science.gov (United States)

    Cogdell, Richard J; Köhler, Jürgen

    2009-08-13

    Optical single-molecule techniques can be used in two modes to investigate fundamental questions in biochemistry, namely single-molecule detection and single-molecule spectroscopy. This review provides an overview of how single-molecule spectroscopy can be used to gain detailed information on the electronic structure of purple bacterial antenna complexes and to draw conclusions about the underlying physical structure. This information can be used to understand the energy-transfer reactions that are responsible for the earliest reactions in photosynthesis.

  9. Notch Antennas

    Science.gov (United States)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  10. Simultaneous Measurement of Antenna Gain and Complex Permittivity of Liquid in Near-Field Region Using Weighted Regression

    Science.gov (United States)

    Ishii, Nozomu; Shiga, Hiroki; Ikarashi, Naoto; Sato, Ken-Ichi; Hamada, Lira; Watanabe, Soichi

    As a technique for calibrating electric-field probes used in standardized SAR (Specific Absorption Rate) assessment, we have studied the technique using the Friis transmission formula in the tissue-equivalent liquid. It is difficult to measure power transmission between two reference antennas in the far-field region due to large attenuation in the liquid. This means that the conventional Friis transmission formula cannot be applied to our measurement so that we developed an extension of this formula that is valid in the near-field region. In this paper, the method of weighted least squares is introduced to reduce the effect of the noise in the measurement system when the gain of the antenna operated in the liquid is determined by the curve-fitting technique. And we examine how to choose the fitting range to reduce the uncertainty of the estimated gain.

  11. Influence of phospholipid composition on self-assembly and energy-transfer efficiency in networks of light-harvesting 2 complexes.

    Science.gov (United States)

    Sumino, Ayumi; Dewa, Takehisa; Noji, Tomoyasu; Nakano, Yuki; Watanabe, Natsuko; Hildner, Richard; Bösch, Nils; Köhler, Jürgen; Nango, Mamoru

    2013-09-12

    In the photosynthetic membrane of purple bacteria networks of light-harvesting 2 (LH2) complexes capture the sunlight and transfer the excitation energy. In order to investigate the mutual relationship between the supramolecular organization of the pigment-protein complexes and their biological function, the LH2 complexes were reconstituted into three types of phospholipid membranes, consisting of L-α-phosphatidylglycerol (PG), L-α-phosphatidylcholine (PC), and L-α-phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Atomic force microscopy (AFM) revealed that the type of phospholipids had a crucial influence on the clustering tendency of the LH2 complexes increased from PG over PC to PE/PG/CL, where the LH2 complexes formed large, densely packed clusters. Time-resolved spectroscopy uncovered a strong quenching of the LH2 fluorescence that is ascribed to singlet-singlet and singlet-triplet annihilation by an efficient energy transfer between the LH2 complexes in the artificial membrane systems. Quantitative analysis reveals that the intercomplex energy transfer efficiency varies strongly as a function of the morphology of the nanostructure, namely in the order PE/PG/CL > PC > PG, which is in line with the clustering tendency of LH2 observed by AFM. These results suggest a strong influence of the phospholipids on the self-assembly of LH2 complexes into networks and concomitantly on the intercomplex energy transfer efficiency.

  12. A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions.

    Science.gov (United States)

    Kikuchi, J; Asakura, T; Loach, P A; Parkes-Loach, P S; Shimada, K; Hunter, C N; Conroy, M J; Williamson, M P

    1999-04-15

    The first study by nmr of the integral membrane protein, the bacterial light-harvesting (LH) antenna protein LH1 beta, is reported. The photosynthetic apparatus of purple bacteria contains two different kinds of antenna complexes (LH1 and LH2), which consist of two small integral membrane proteins alpha and beta, each of approximately 6 kDa, and bacteriochlorophyll and carotenoid pigments. We have purified the antenna polypeptide LH1 beta from Rhodobacter sphaeroides, and have recorded CD spectra and a series of two-dimensional nmr spectra. A comparison of CD spectra of LH1 beta observed in organic solvents and detergent micelles shows that the helical character of the peptide does not change appreciably between the two milieus. A significantly high-field shifted methyl signal was observed both in organic solvents and in detergent micelles, implying that a similar three-dimensional structure is present in each case. However, the 1H-nmr signals observed in organic solvents had a narrower line width and better resolution, and it is shown that in this case organic solvents provide a better medium for nmr studies than detergent micelles. A sequential assignment has been carried out on the C-terminal transmembrane region, which is the region in which the pigment is bound. The region is shown to have a helical structure by the chemical shift values of the alpha-CH protons and the presence of nuclear Overhauser effects characteristic of helices. An analysis of the amide proton chemical shifts of the residues surrounding the histidine chlorophyll ligand suggests that the local structure is well ordered even in the absence of protein-lipid and protein-pigment interactions. Its structure was determined from 348 nmr-derived constraints by using distance geometry calculations. The polypeptide contains an alpha-helix extending from Leu19 (position of cytoplasmic surface) to Trp44 (position of periplasmic surface). The helix is bent, as expected from the amide proton chemical

  13. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  14. Diamond dipole active antenna

    OpenAIRE

    Bubnov, Igor N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  15. Designing hydrophobic sheet protected Eu(III)-tetracycline complex using long chain unsaturated fatty acid: Efficient ‘antenna effect’ in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Swarna Kamal; Sanyal, Sagarika; Samanta, Sugata; Ghosh, Sanjib, E-mail: pchemsg@gmail.com

    2015-04-15

    We have designed a novel ternary system consisting of Tetracycline hydrochloride (TC), Eu(III) and unsaturated long chain fatty acid (Oleic acid, α-Linolenic acid) in aqueous buffer at physiological pH of 7.2. The systems exhibit highly efficient ‘antenna effect’ of Eu(III) compared to that observed in the binary system of TC and Eu(III) [Eu{sub 3}TC]. Transients of Eu(III) emission in aqueous buffer and D{sub 2}O buffer show that the number of water molecules, coordinated directly to the Eu(III) ion, decreases from 12 in Eu{sub 3}TC to 2 in the ternary system using oleic acid. The micelle formed by the bent conformation of the unsaturated oleic acid provides a hydrophobic sheet on all sides of Eu{sub 3}TC complex protecting Eu(III) from interacting with O–H oscillator. The simple biocompatible system could be used for imaging purpose, and biomedical assay. - Highlights: • A ternary system containing a ligand, oleic acid and Eu(III) has been developed. • The system exhibits enhanced ‘antenna effect’ in aqueous medium at pH=7.2. • This may help design a useful biosensor/imaging technique using Eu(III)

  16. The Numerical Calculation and Analysis of the Spectrum of Lower-Hybrid Waves Launched by Grill-Type Antenna on HL-2A

    Institute of Scientific and Technical Information of China (English)

    Zeng Jianer; Lu Zhihong; Yuan Yong

    2005-01-01

    The LHCD antenna that will be used in LH-2A is the original one used in LH-1M, which will be modified. We measured the feature of the antenna, including the reflection of main waveguide, VSWR, the phase shift between the adjacent sub-waveguides and so on. The paper describes the measured results and spectrum calculation based on the measured parameters. From the works we can assess our antennas correctly, which will be useful in LHCD experiment on HL-2A in the years to come.

  17. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  18. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  19. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2017-03-28

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  20. UWB planar antenna technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent developments of the ultra-wideband(UWB)planar antennas are reviewed,where the progress in UWB plate monopole antennas,UWB printed monopole antennas and the UWB printed slot antennas is introduced and compared.In addition,the UWB printed antennas with the band-notched functions are also presented.

  1. A New Low-Complexity Decodable Rate-5/4 STBC for Four Transmit Antennas with Nonvanishing Determinants

    CERN Document Server

    Ismail, Amr; Sari, Hikmet

    2012-01-01

    The use of Space-Time Block Codes (STBCs) increases significantly the optimal detection complexity at the receiver unless the low-complexity decodability property is taken into consideration in the STBC design. In this paper we propose a new low-complexity decodable rate-5/4 full-diversity 4 x 4 STBC. We provide an analytical proof that the proposed code has the Non-Vanishing-Determinant (NVD) property, a property that can be exploited through the use of adaptive modulation which changes the transmission rate according to the wireless channel quality. We compare the proposed code to the best existing low-complexity decodable rate-5/4 full-diversity 4 x 4 STBC in terms of performance over quasi-static Rayleigh fading channels, worst- case complexity, average complexity, and Peak-to-Average Power Ratio (PAPR). Our code is found to provide better performance, lower average decoding complexity, and lower PAPR at the expense of a slight increase in worst-case decoding complexity.

  2. Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae.

    Science.gov (United States)

    Kvíčalová, Zuzana; Alster, Jan; Hofmann, Eckhard; Khoroshyy, Petro; Litvín, Radek; Bína, David; Polívka, Tomáš; Pšenčík, Jakub

    2016-04-01

    Room temperature transient absorption spectroscopy with nanosecond resolution was used to study quenching of the chlorophyll triplet states by carotenoids in two light-harvesting complexes of the dinoflagellate Amphidinium carterae: the water soluble peridinin-chlorophyll protein complex and intrinsic, membrane chlorophyll a-chlorophyll c2-peridinin protein complex. The combined study of the two complexes facilitated interpretation of a rather complicated relaxation observed in the intrinsic complex. While a single carotenoid triplet state was resolved in the peridinin-chlorophyll protein complex, evidence of at least two different carotenoid triplets was obtained for the intrinsic light-harvesting complex. Most probably, each of these carotenoids protects different chlorophylls. In both complexes the quenching of the chlorophyll triplet states by carotenoids occurs with a very high efficiency (~100%), and with transfer times estimated to be in the order of 0.1ns or even faster. The triplet-triplet energy transfer is thus much faster than formation of the chlorophyll triplet states by intersystem crossing. Since the triplet states of chlorophylls are formed during the whole lifetime of their singlet states, the apparent lifetimes of both states are the same, and observed to be equal to the carotenoid triplet state rise time (~5ns).

  3. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon anti-bunching

    NARCIS (Netherlands)

    Wientjes, E.; Renger, J.; Curto, A.G.; Cogdell, R.; Hulst, van N.F.

    2014-01-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demons

  4. Beamforming and Antenna Grouping Design for the Multi-Antenna Relay with Energy Harvesting to Improve Secrecy Rate

    Directory of Open Access Journals (Sweden)

    Weijia Lei

    2016-07-01

    Full Text Available The physical security strategy in the wireless network with a single-antenna eavesdropper is studied. The information transmits from a single-antenna source to a single-antenna destination, and an energy-limited multi-antenna relay is employed to forward information. The antennas of the relay are divided into two groups. One group receives and forwards information, and the other converts the received signal into energy. Beamforming is used by the relay to prevent the eavesdropper from intercepting confidential information. For the purpose of maximizing the secrecy rate, antenna grouping and beamforming vectors are designed. A low complexity scheme of antenna grouping is presented. The simulation results show that the secrecy rate can be significantly improved by arranging part of the antennas for energy harvesting, and part for forwarding and optimizing the beamforming vector at the relay. The antenna grouping scheme significantly reduces the computational complexity at the cost of acceptable performance loss.

  5. Optical antennas and plasmonics

    OpenAIRE

    Park, Q-Han

    2009-01-01

    Optical antenna is a nanoscale miniaturization of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. Strong electric field is shown to exist within a highly localized region o...

  6. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants.

    Science.gov (United States)

    Iwai, Masakazu; Yokono, Makio

    2017-06-01

    Plants have successfully adapted to a vast range of terrestrial environments during their evolution. To elucidate the evolutionary transition of light-harvesting antenna proteins from green algae to land plants, the moss Physcomitrella patens is ideally placed basally among land plants. Compared to the genomes of green algae and land plants, the P. patens genome codes for more diverse and redundant light-harvesting antenna proteins. It also encodes Lhcb9, which has characteristics not found in other light-harvesting antenna proteins. The unique complement of light-harvesting antenna proteins in P. patens appears to facilitate protein interactions that include those lost in both green algae and land plants with regard to stromal electron transport pathways and photoprotection mechanisms. This review will highlight unique characteristics of the P. patens light-harvesting antenna system and the resulting implications about the evolutionary transition during plant terrestrialization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.

    Science.gov (United States)

    Chi, Shuang C; Mothersole, David J; Dilbeck, Preston; Niedzwiedzki, Dariusz M; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J; Jackson, Philip J; Martin, Elizabeth C; Li, Ying; Holten, Dewey; Neil Hunter, C

    2015-02-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.

  8. In situ solid-state NMR spectroscopy of protein in heterogeneous membranes: the baseplate antenna complex of Chlorobaculum tepidum.

    Science.gov (United States)

    Kulminskaya, Natalia V; Pedersen, Marie Ø; Bjerring, Morten; Underhaug, Jarl; Miller, Mette; Frigaard, Niels-Ulrik; Nielsen, Jakob T; Nielsen, Niels Chr

    2012-07-01

    A clever combination: an in situ solid-state NMR analysis of CsmA proteins in the heterogeneous environment of the photoreceptor of Chlorobaculum tepidum is reported. Using different combinations of 2D and 3D solid-state NMR spectra, 90 % of the CsmA resonances are assigned and provide on the basis of chemical shift data information about the structure and conformation of CsmA in the CsmA-bacteriochlorophyll a complex.

  9. Modeling of optical spectra of the light-harvesting CP29 antenna complex of photosystem II--part II.

    Science.gov (United States)

    Feng, Ximao; Kell, Adam; Pieper, Jörg; Jankowiak, Ryszard

    2013-06-01

    Until recently, it was believed that the CP29 protein from higher plant photosystem II (PSII) contains 8 chlorophylls (Chl's) per complex (Ahn et al. Science 2008, 320, 794-797; Bassi et al. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10056-10061) in contrast to the 13 Chl's revealed by the recent X-ray structure (Pan et al. Nat. Struct. Mol. Biol. 2011, 18, 309-315). This disagreement presents a constraint on the interpretation of the underlying electronic structure of this complex. To shed more light on the interpretation of various experimental optical spectra discussed in the accompanying paper (part I, DOI 10.1021/jp4004328 ), we report here calculated low-temperature (5 K) absorption, fluorescence, hole-burned (HB), and 300 K circular dichroism (CD) spectra for CP29 complexes with a different number of pigments. We focus on excitonic structure and the nature of the low-energy state using modeling based on the X-ray structure of CP29 and Redfield theory. We show that the lowest energy state is mostly contributed to by a612, a611, and a615 Chl's. We suggest that in the previously studied CP29 complexes from spinach (Pieper et al. Photochem. Photobiol.2000, 71, 574-589) two Chl's could have been lost during the preparation/purification procedure, but it is unlikely that the spinach CP29 protein contains only eight Chl's, as suggested by the sequence homology-based study (Bassi et al. Proc. Natl. Acad. Sci. U.S.A.1999, 96, 10056-10061). The likely Chl's missing in wild-type (WT) CP29 complexes studied previously (Pieper et al. Photochem. Photobiol. 2000, 71, 574-589) include a615 and b607. This is why the nonresonant HB spectra shown in that reference were ~1 nm blue-shifted with the low-energy state mostly localized on about one Chl a (i.e., a612) molecule. Pigment composition of CP29 is discussed in the context of light-harvesting and excitation energy transfer.

  10. On Connectivity of Wireless Sensor Networks with Directional Antennas.

    Science.gov (United States)

    Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V

    2017-01-12

    In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models.

  11. On Connectivity of Wireless Sensor Networks with Directional Antennas

    Science.gov (United States)

    Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.

    2017-01-01

    In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081

  12. On Connectivity of Wireless Sensor Networks with Directional Antennas

    Directory of Open Access Journals (Sweden)

    Qiu Wang

    2017-01-01

    Full Text Available In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models.

  13. Computer controlled antenna system

    Science.gov (United States)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  14. Optical antenna gain. I - Transmitting antennas

    Science.gov (United States)

    Klein, B. J.; Degnan, J. J.

    1974-01-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  15. Optical antenna gain. 1: transmitting antennas.

    Science.gov (United States)

    Klein, B J; Degnan, J J

    1974-09-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM(00) mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  16. An Efficient Beam Steerable Antenna Array Concept for Airborne Applications

    OpenAIRE

    Aliakbarian, H.; Van der Westhuizen, E.; Wiid, R.; Volskiy, V.; R. Wolhuter; G. A. E. Vandenbosch

    2014-01-01

    Deployment of a satellite borne, steerable antenna array with higher directivity and gain in Low Earth Orbit makes sense to reduce ground station complexity and cost, while still maintaining a reasonable link budget. The implementation comprises a digitally beam steerable phased array antenna integrated with a complete system, comprising the antenna, hosting platform, ground station, and aircraft based satellite emulator to facilitate convenient aircraft based testing of the antenna array and...

  17. Loaded antenna in half lossy space base on HDGA

    Institute of Scientific and Technical Information of China (English)

    SUN Guo-xi; YIN Jun-xun

    2005-01-01

    Antenna loads can modify the current distribution on the wires, thus improving antenna characteristics in the process. However, it is difficult to calculate appropriate loads of antenna near the ground because in half lossy space there are inherent situational complexities. This paper optimizes loads of antenna near the ground base using a half-determined genetic algorithm. The numerical results show the HDGA has a quicker convergent speed and a better convergent value than the SGA.

  18. Curved spiral antennas for underwater biological applications

    Science.gov (United States)

    Llamas, Ruben

    We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes

  19. One antenna, two antennae, big antennae, small: total antennae length, not bilateral symmetry, predicts odor-tracking performance in the American cockroach Periplaneta americana.

    Science.gov (United States)

    Lockey, Jacob K; Willis, Mark A

    2015-07-01

    Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed. © 2015. Published by The Company of Biologists Ltd.

  20. Computational Investigation of Microstrip Antennas in Plasma Environment

    CERN Document Server

    Vyas, Hardik; Gupta, Sanjeev

    2016-01-01

    Microstrip antennas are extensively used in spacecraft systems and other applications where they encounter a plasma environment. A detailed computational investigation of change in antenna radiation properties in the presence of plasma has been presented in this paper. The study shows antenna properties such as the resonant frequency, return loss, radiation properties and the different characteristics of the antenna changes when it is surrounded by plasma. Particular focus of the work is to understand the causes behind these changes by correlating the complex propagation constant in the plasma medium, field distribution on the patch and effective dielectric of the antenna substrate with antenna parameter variations. The study also provides important insights to explore the possibilities of designing tunable microstrip antenna where the substrate can be replaced with plasma and important antenna characteristics can be controlled by varying the plasma density.

  1. Flexible plasma linear antenna

    Science.gov (United States)

    Zhao, Jiansen; Wang, Shengzheng; Wu, Huafeng; Liu, Yue; Chang, Yongmeng; Chen, Xinqiang

    2017-02-01

    In this work, we introduce a type of plasma antenna that was fabricated using flexible materials and excited using a 5-20 kHz alternating current (ac) power supply. The results showed that the antenna characteristics, including the impedance, the reflection coefficient (S11), the radiation pattern, and the gain, can be controlled rapidly and easily by varying both the discharge parameters and the antenna shapes. The scope for reconfiguration is greatly enhanced when the antenna shape is changed from a monopole to a helix configuration. Additionally, the antenna polarization can also be adjusted by varying the antenna shapes.

  2. Plasmas pour la destruction de l'H2S et des mercaptans Plasmas for Destruction of H2s and Mercaptans

    Directory of Open Access Journals (Sweden)

    Czernichowski A.

    2006-12-01

    Full Text Available Cet article passe en revue l'utilisation des plasmas comme milieu activateurs d'une oxydation de H2S ou CH3SH dilués dans l'air, le CO2 ou la vapeur d'eau, à fins de conversion en SO, moins malodorant. Le produit peut être ensuite utilisé comme réactif dans un processus similaire à celui de Claus, en présence d'eau, ce qui permet de convertir deux fois plus de polluants initiaux en soufre élémentaire. Une attention particulière est portée aux décharges électriques glissantes (GlidArc. Ces décharges puissantes produisent un plasma non thermique qui active des réactions oxydatrices. La plupart des expériences ont été réalisées en utilisant les réacteurs GlidArc-I à un ou à quatre étages. Les sulfures dilués dans l'air dans des concentrations initiales atteignant jusqu'à 1 %( H2S ou 0,1 % (CH3SH ont été traités sous des flux jusqu'à 70 m3(n/h d'air pollué et sous une puissance de 5 kW. Les essais ont été réalisés sous 1 atm. Une dépollution jusqu'à 100 % a été obtenue moyennant un coût énergétique assez bas dépendant de la concentration initiale du polluant : environ 1000 kWh par kilogramme de soufre extrait pour 100 ppm de H2S et seulement 10 kWh/kg pour 1 % initial d'H2S dans l'air. Pratiquement les mêmes coûts ont été observés dans le cas de mélanges CH3SH-air. En utilisant une très simple douche en recirculation d'eau qui lave les gaz sortants (l'eau se sature avec le SO2 et capture ainsi l'H2S non traité nous avons divisé ces coûts d'énergie par trois, en évitant également l'émission de SO2, et en obtenant du soufre non toxique. Un nouveau principe (et réacteur GlidArc-II est ensuite présenté ; il s'agit d'une brosseà décharges électriques. Nos premiers tests sont très prometteurs car dès à présent, nous divisons déjà la dépense énergétique par deux par rapport au GlidArc-I. L'échelle industrielle peut par conséquent être envisagée. Plasmas are reviewed as activation media for an oxidation of H2S or CH3SH diluted in air, CO2 or steam in order to convert them into less malodorous SO2. The product can be then used as a reagent in a Claus-like process in presence of water to convert twice as much of initial pollutants into elemental sulfur. A particular attention is devoted to the gliding electrical discharges (GlidArc. These powerful discharges produce non-thermal plasma, which activates oxidation reactions. Most of experiments were performed using one and four-stage GlidArc-I reactors. Air-diluted sulfides at initial concentrations up to 1% (H2S or 0. 1% (CH3SH were processed at up to 70 m3(n/h flow rate and 5 kW power scale. The tests were done at 1 atm. Up to 100% clean-up was obtained at a quite low energy cost depending on initial pollutant concentration: roughly 1000 kWh per 1 kg of removed sulfur at 100 ppm of H2S, but only 10 kWh/kg for 1% initial H2S in air. Almost the same energies were needed in the case of CH3SH-air mixtures. Using a very simple washing column in which water saturates with the produced SO2 and so captures unprocessed H2S we cut these process energy by three, avoiding the SO2 emission and obtaining non-toxic sulfur. New development based on GlidArc-ll brush-like electric discharges is also presented. Preliminary tests are very promising as the energy expense is already cut down by a factor of two with respect to the GlidArc-I devices. Up to industrial scale tests can be therefore performed.

  3. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  4. Antenna Structure Registrate

    Data.gov (United States)

    Department of Homeland Security — This file is an extract of the Antenna Structure Registrate (ASR). The ASR consists of antenna structures that are more than 60.96 meters (200 feet) in height or...

  5. Antenna impedance matching with neural networks.

    Science.gov (United States)

    Hemminger, Thomas L

    2005-10-01

    Impedance matching between transmission lines and antennas is an important and fundamental concept in electromagnetic theory. One definition of antenna impedance is the resistance and reactance seen at the antenna terminals or the ratio of electric to magnetic fields at the input. The primary intent of this paper is real-time compensation for changes in the driving point impedance of an antenna due to frequency deviations. In general, the driving point impedance of an antenna or antenna array is computed by numerical methods such as the method of moments or similar techniques. Some configurations do lend themselves to analytical solutions, which will be the primary focus of this work. This paper employs a neural control system to match antenna feed lines to two common antennas during frequency sweeps. In practice, impedance matching is performed off-line with Smith charts or relatively complex formulas but they rarely perform optimally over a large bandwidth. There have been very few attempts to compensate for matching errors while the transmission system is in operation and most techniques have been targeted to a relatively small range of frequencies. The approach proposed here employs three small neural networks to perform real-time impedance matching over a broad range of frequencies during transmitter operation. Double stub tuners are being explored in this paper but the approach can certainly be applied to other methodologies. The ultimate purpose of this work is the development of an inexpensive microcontroller-based system.

  6. Cross resonant optical antenna.

    Science.gov (United States)

    Biagioni, P; Huang, J S; Duò, L; Finazzi, M; Hecht, B

    2009-06-26

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  7. Cross Resonant Optical Antenna

    Science.gov (United States)

    Biagioni, P.; Huang, J. S.; Duò, L.; Finazzi, M.; Hecht, B.

    2009-06-01

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  8. [Formation of 55-kDa Fragments under Impaired Coordination Bonds and Hydrophobic Interactions in Peripheral Light-Harvesting Complexes Isolated from Photosynthetic Purple Bacteria].

    Science.gov (United States)

    Solov'ev, A A; Erokhin, Y E

    2015-01-01

    Size exclusion chromatography was used to assess the relative size of intact and diphenylamine-treated (DPA, with suppressed carotenoid synthesis) peripheral light-harvesting complexes (LH2 complexes) of the sulfurbacterium Allochromatium minutissimum. Both LH2 complexes were nonamers and had the same elution volume V(e), coinciding with that for the LH2 complex of Rhodoblastus acidophilus (strain 10050). Their molecular mass was 150 kDa. Bot pheophytinization of bacteriochlorophyll (BChl) at low pH and treatment with the detergent LDAO, affecting the hydrophobic interactions between the neighboring protomers, result in the fragmentation of the ring of the isolated LH2 complexes and formation of 55-kDa fragments with molecular masses corresponding to one-third of the initial value. Fragmentation caused by both pheophytinization and detergent treatment was much more rapid in DPA-treated LH2 complexes than in the intact ones. The 55-kDa fragments formed at low pH values contained monomeric bacteriopheophytin, while the fragments of a similar molecular mass formed at pH 8.0 in the presence of the detergent contained monomeric BChl. The observed fragmentation was hypothesized to reflect the inherent C3 symmetry of the LH2 complexes, with the preliminarily assembled trimers used as building blocks.

  9. Coherently combining antennas

    Science.gov (United States)

    Dybdal, Robert B. (Inventor); Curry, Samuel J. (Inventor)

    2009-01-01

    An apparatus includes antenna elements configured to receive a signal including pseudo-random code, and electronics configured to use the pseudo-random code to determine time delays of signals incident upon the antenna elements and to compensate the signals to coherently combine the antenna elements.

  10. Effects of acid pH and urea on the spectral properties of the LHII antenna complex from the photosynthetic bacterium Ectothiorhodospira sp.

    Science.gov (United States)

    Buche, A; Ramirez, J M; Picorel, R

    2000-06-01

    The aim of this study was to investigate the spectral modifications of the LHII antenna complex from the purple bacterium Ectothiorhodospira sp. upon acid pH titration both in the presence and absence of urea. A blue shift specifically and reversibly affected the B850 band around pH 5.5-6.0 suggesting that a histidine residue most probably participated in the in vivo absorption red shifting mechanism. This transition was observed in the presence and absence of urea. Under strong chaotropic conditions, a second transition occurred around pH 2.0, affecting the B800 band irreversibly and the B850 reversibly. Under these conditions a blue shift from 856 to 842 nm occurred and a new and strong circular dichroism signal from the new 842 nm band was observed. Reverting to the original experimental conditions induced a red shift of the B850 band up to 856 nm but the circular dichroism signal remained mostly unaffected. Under the same experimental conditions, i.e. pH 2.1 in the presence of urea, part of the B800 band was irreversibly destroyed with concomitant appearance of a band around 770 nm due to monomeric bacteriochlorophyll from the disrupted B800. Furthermore, Gaussian deconvolution and second derivative of the reverted spectra at pH 8.0 after strong-acid treatment indicated that the new B850 band was actually composed of two bands centered at 843 and 858 nm. We ascribed the 858 nm band to bacteriochlorophylls that underwent reversible spectral shift and the 843 nm band to oligomeric bacteriopheophytin formed from a part of the B850 bacteriochlorophyll. This new oligomer would be responsible for the observed strong and mostly conservative circular dichroism signal. The presence of bacteriopheophytin in the reverted samples was definitively demonstrated by HPLC pigment analysis. The pheophytinization process progressed as the pH decreased below 2.1, and at a certain point (i.e. pH 1.5) all bacteriochlorophylls, including those from the B800 band, became converted to

  11. Exciton Dynamics in LH1 and LH2 of Rhodopseudomonas Acidophila and Rhodobium Marinum Probed with Accumulated Photon Echo and Pump-Probe Measurements

    NARCIS (Netherlands)

    Lampoura, Stefania S.; Grondelle, Rienk van; Stokkum, Ivo H.M. van; Cogdell, Richard J.; Wiersma, Douwe A.; Duppen, Koos; van Stokkum, I.H.N.

    2000-01-01

    Exciton dynamics in the B850 and B875 bands of isolated complexes of Rhodopseudomonas acidophila (strain 10050 and 7050) and in the B875 band of isolated complexes of Rhodobium marinum were investigated by means of accumulated photon echo and pump-probe techniques at different temperatures and wavel

  12. Dielectrically Loaded Biconical Antennas

    Science.gov (United States)

    Nusseibeh, Fouad Ahmed

    1995-01-01

    Biconical antennas are of great interest to those who deal with broadband applications including the transmission/reception of pulses. In particular, wide-angle conical antennas are an attractive choice in many applications including Electronic Support Measures (ESM) and the measurements of transient surface currents and charge densities on aircraft. Dielectric loading in the interior region of a conical antenna can be used to reduce the size of the antenna especially at low frequencies and/or for structural strength. Therefore, having an analytical solution for the input impedance and the frequency response is very helpful in optimizing the design and understanding the behavior of the antenna. From the quasi-analytical solution for the input impedance and the electric field of a wide-angle conical antenna, it can be seen that the dielectric loading in the antenna region improves the input impedance at low frequencies, but increases the number of resonance points and the magnitude of these peaks. When an inhomogeneous dielectric load is used, the magnitude of the resonance peaks is decreased (depending on the way the load is distributed), improving the input impedance of the antenna significantly. Introducing a dielectric load in the interior region of an electrically short receiving cone makes the antenna behave as an electrically longer antenna. However, this is not true for the case for electrical1y long antennas. For the case of pulse transmission, the dielectric load affects only the amplitude. Of course, if the dielectric fills the whole space, both transmitting and receiving antennas behave as electrically longer antennas.

  13. Copper-, palladium-, and platinum-containing complexes of an asymmetric dinucleating ligand.

    Science.gov (United States)

    Halvagar, Mohammad Reza; Neisen, Benjamin; Tolman, William B

    2013-01-18

    The coordination chemistry of an asymmetric dinucleating hexadentate ligand LH(2) comprising neutral alkyltriamine and potentially dianionic dicarboxamido-pyridyl donor sets with copper, palladium, and platinum has been explored. Monometallic, dicopper, and heterodinuclear Cu-Pd and -Pt complexes have been prepared and characterized, including by NMR, EPR, UV-vis, and IR spectroscopy and X-ray crystallography. For example, the monometallic complexes [(LH(2))MCl]X (M = Cu, X = OTf; M = Pd or Pt, X = Cl) were prepared, wherein the metal(II) ions are coordinated to the triamine portion and the pyridyldicarboxamide is unperturbed. Treatment of LH(2) with [MesCu](x) (Mes = mesityl) provided a monocopper(I) complex, again with the metal coordinated only to the trialkylamine donor set. Reaction of [(LH(2))CuCl]OTf with NaOMe resulted in an unexpected migration of the copper(II)-chloride fragment to the pyridyldicarboxamide site to yield Na[LCuCl], from which a dicopper complex LCu(2)Cl(2) and mixed-metal complexes LCu(Cl)M(Cl) (M = Pd, Pt) were prepared by addition of CuCl(2) or MCl(2), respectively. The heterodinuclear complexes were also prepared by addition of CuCl(2) to [(LH(2))MCl]Cl.

  14. Microstrip antennas in subsurface sensing

    Science.gov (United States)

    Volgyi, Ferenc

    2000-07-01

    This paper reviews the various applications of microstrip antennas with special emphasis on subsurface sensing, microwave moisture measurement and nondestructive testing of dielectric materials. With reference to the literature, we first describe the commonly used GPR-antennas, the printed Vivaldi-antennas, and microstrip antennas used in moisture content measurement. Furthermore, attention is given to the problems of new antenna technologies, showing examples for active integrated antennas, a photonic band gap patch antenna and a silicon micromachined patch antenna. The reminder of the paper summarizes relevant R&D activities in microstrip antennas at BUTE/DMT, focusing on near-field experiments, monitoring of particleboards and WLAN- applications of patch radiators.

  15. Polarization Ratio Determination with Two Identical Linearly Polarized Antennas

    Science.gov (United States)

    2017-01-17

    Polarization Ratio Determination with Two Identical Linearly Polarized Antennas Herbert M. Aumann1, Francis G. Willwerth2 and Kristan A. Tuttle2...maine.edu Abstract— This paper describes a method for determining the complex polarization ratio using two identical, linearly polarized antennas. By...present paper it will be shown that the later technique can also be used to determine the polarization ratio of a linearly polarized antenna. II

  16. Using the Antenna Effect as a Spectroscopic Tool; Photophysics and Solution Thermodynamics of the Model Luminescent Hydroxypyridonate Complex [EuIII(3,4,3-LI(1,2-HOPO))]-

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; D' Aleo, Anthony; Ng Pak Leung, Clara; Shuh, David; Raymond, Kenneth

    2009-11-20

    While widely used in bioassays, the spectrofluorimetric method described here uses the antenna effect as a tool to probe the thermodynamic parameters of ligands that sensitize lanthanide luminescence. The Eu3+ coordination chemistry, solution thermodynamic stability and photophysical properties of the spermine-based hydroxypyridonate octadentate chelator 3,4,3-LI(1,2-HOPO) are reported. The complex [EuIII(3,4,3-LI(1,2-HOPO))]- luminesces with a long lifetime (805 mu s) and a quantum yield of 7.0percent in aqueous solution, at pH 7.4. These remarkable optical properties were exploited to determine the high (and proton-independent) stability of the complex (log beta 110 = 20.2(2)) and to define the influence of the ligand scaffold on the stability and photophysical properties.

  17. Dynamic Combustion Stability Rating of LOX/LH2 Rocket Engine%氢氧火箭发动机动态燃烧稳定性评定技术研究

    Institute of Scientific and Technical Information of China (English)

    丁兆波; 许晓勇; 乔桂玉; 陶瑞峰

    2013-01-01

      为了实现氢氧发动机的动态燃烧稳定性试验评定,基于国内外液体火箭发动机动态稳定性评定的相关经验,并结合 CPIA655关于稳定性评定的准则,进行了氢氧发动机动态稳定性评定的方案探讨。分析表明,氢氧发动机有必要在全系统热试车状态下进行动态稳定性评定试验。所选定的扰动装置和传感器在喷注器面安装的方案可实现性最好,结构变动最小,可保持试验在原型燃烧室状态下进行,同时扰动效果较好,传感器敏感性较好。%In order to carry out dynamic combustion stability rating of a LOX/LH2 rocket engine, the schemes of stability rating for the LOX/LH2 rocket engine are investigated based on the stability rating datum of some rocket engines and the basic criteria of CPIA655, including the evaluation standard, testing method, disturbance method, dynamic pressure testing and structure design. Compared to other schemes, the selected scheme that disturbance device and high frequency pressure sensors install on injector surface has better feasibility and less structural changes, which could ensure the rating test to be carried in a prototype engine, thereby leading to better disturbance efficiency and measure sensitivity.

  18. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  19. Antenna applications of superconductors

    Science.gov (United States)

    Hansen, R. C.

    1991-09-01

    The applicability of superconductors to antennas is examined. Potential implementations that are examined are superdirective arrays; electrically small antennas; tuning and matching of these two; high-gain millimeter-wavelength arrays; and kinetic inductance slow wave structures for array phasers and traveling wave array feeds. It is thought that superdirective arrays and small antennas will not benefit directly, but their tuning/matching networks will undergo major improvements. Miniaturization of antennas will not be aided, but much higher gain millimeter-wave arrays will be realizable. Kinetic inductance slow-wave lines appear advantageous for improved array phasers and time delay, as well as for traveling-wave array feeds.

  20. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  1. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  2. MASTER TELEVISION ANTENNA SYSTEM.

    Science.gov (United States)

    Rhode Island State Dept. of Education, Providence.

    SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)

  3. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong

    2011-06-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Substrate integrated antennas and arrays

    CERN Document Server

    Cheng, Yu Jian

    2015-01-01

    Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book:Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologiesExamines theoretical and experimental results connected to electrical and mechanical performanceExp

  5. Milestones in Broadcasting: Antennas.

    Science.gov (United States)

    Media in Education and Development, 1985

    1985-01-01

    Briefly describes the development of antennas in the prebroadcast era (elevated antenna, selectivity to prevent interference between stations, birth of diplex, directional properties, support structures), as well as technological developments used in long-, medium-, and short-wave broadcasting, VHF/FM and television broadcasting, and satellite…

  6. Experiments with Dipole Antennas

    Science.gov (United States)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  7. Heuristic Based Adaptive Step Size CLMS Algorithms for Smart Antennas

    Directory of Open Access Journals (Sweden)

    Y Rama Krishna

    2013-05-01

    Full Text Available A smart antenna system combines multiple antenna elements with a signal processing capability to optimize its radiation and/or reception pattern automatically in response to the signal environment through complex weight selection. The weight selection process to get suitable Array factor with low Half Power Beam Width (HPBW and Side Lobe Level (SLL is a complex method. The aim of this task is to design a new approach for smart antennas to minimize the noise and interference effects from external sources with least number of iterations. This paper presents Heuristics based adaptive step size Complex Least Mean Square (CLMS model for Smart Antennas to speedup convergence. In this process Benveniste and Mathews algorithms are used as heuristics with CLMS and the improvement of performance of Smart Antenna System in terms of convergence rate and array factor are discussed and compared with the performance of CLMS and Augmented CLMS (ACLMS algorithms.

  8. Fast Adaptive Beamforming with Smart Antenna for Radio Frequency Repeater

    Directory of Open Access Journals (Sweden)

    Wang Chaoqun

    2016-01-01

    Full Text Available We present a fast adaptive beamforming null algorithm with smart antenna for Radio Frequency Repeater (RFR. The smart antenna system is realized by a Direction Of Arrival (DOA Estimator, whose output is used by an adaptive beamforming algorithm to shape a suitable radiation pattern of the equivalent antenna; so that the co-channel interference due to retransmitting antenna can be reduced. The proposed adaptive beamforming algorithm, which has been proved by formulaic analysis and simulation, has a lower computation complexity yet better performance.

  9. ANTENNA OF RADIO CONTROL

    Directory of Open Access Journals (Sweden)

    Ludwig Ilnytskyi

    2015-12-01

    Full Text Available The article is devoted to current issues in the field of radio monitoring. In this article was considered the antenna of radio control, which represents a grid from three vibrators. Threelement antenna array provides simultaneous control of two radio electronic devices that radiates at frequencies that are close to each other. Antenna system using simple technical means provides noise suppression, even if noise will have the same frequency as useful signal. This makes it possible to use the antenna system in conditions of multibeam wave propagation under the adjustment on the most intense by the power beam. Antenna system makes it possible to measure the electromagnetic field intensity, congestion of the frequency spectrum, direction of noise electromagnetic waves incidence, noise electric field intensity.

  10. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  11. RECEIVE ANTENNA SUBSET SELECTION BASED ON ORTHOGONAL COMPONENTS

    Institute of Scientific and Technical Information of China (English)

    Lan Peng; Liu Ju; Gu Bo; Zhang Wei

    2007-01-01

    A new receive antenna subset selection algorithm with low complexity for wireless Multiple-Input Multiple-Output (MIMO) systems is proposed, which is based on the orthogonal components of the channel matrix. Larger capacity is achieved compared with the existing antenna selection methods. Simulation results of quasi-static flat fading channel demonstrate the significant performance of the proposed selection algorithm.

  12. Tracking energy transfer between light harvesting complex 2 and 1 in photosynthetic membranes grown under high and low illumination.

    Science.gov (United States)

    Lüer, Larry; Moulisová, Vladimíra; Henry, Sarah; Polli, Dario; Brotosudarmo, Tatas H P; Hoseinkhani, Sajjad; Brida, Daniele; Lanzani, Guglielmo; Cerullo, Giulio; Cogdell, Richard J

    2012-01-31

    Energy transfer (ET) between B850 and B875 molecules in light harvesting complexes LH2 and LH1/RC (reaction center) complexes has been investigated in membranes of Rhodopseudomonas palustris grown under high- and low-light conditions. In these bacteria, illumination intensity during growth strongly affects the type of LH2 complexes synthesized, their optical spectra, and their amount of energetic disorder. We used a specially built femtosecond spectrometer, combining tunable narrowband pump with broadband white-light probe pulses, together with an analytical method based on derivative spectroscopy for disentangling the congested transient absorption spectra of LH1 and LH2 complexes. This procedure allows real-time tracking of the forward (LH2 → LH1) and backward (LH2←LH1) ET processes and unambiguous determination of the corresponding rate constants. In low-light grown samples, we measured lower ET rates in both directions with respect to high-light ones, which is explained by reduced spectral overlap between B850 and B875 due to partial redistribution of oscillator strength into a higher energetic exciton transition. We find that the low-light adaptation in R. palustris leads to a reduced elementary backward ET rate, in accordance with the low probability of two simultaneous excitations reaching the same LH1/RC complex under weak illumination. Our study suggests that backward ET is not just an inevitable consequence of vectorial ET with small energetic offsets, but is in fact actively managed by photosynthetic bacteria.

  13. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  14. Optimisation of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    H. El Hamchary

    1996-04-01

    Full Text Available When choosing the most appropriate microstrip antenna configuration for particular applications, the kind of excitation of the radiating element is an essential factor that requires careful considerations. For controlling the distribution of energy of the linear or planar array of elements and for coupling energy to the individual elements, a wide variety of feed mechanisms are available. In this paper, the coaxial antenna feeding is assumed and the best (optimised feeding is found. Then, antenna characteristics such as radiation pattern, return loss, input impedance, and VSWR are obtained.

  15. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  16. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium.

    Science.gov (United States)

    Brotosudarmo, Tatas H P; Collins, Aaron M; Gall, Andrew; Roszak, Aleksander W; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2011-11-15

    The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Detailed analysis of their absorption spectra reveals that there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucAB(a) and PucAB(b) apoproteins. The LL complexes contain PucAB(a), PucAB(d) and PucB(b)-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra. Crystallographic studies and molecular sieve chromatography suggest that both the HL and the LL complexes are nonameric. Furthermore, the electron-density maps do not support the existence of an additional Bchl (bacteriochlorophyll) molecule; rather the density is attributed to the N-termini of the α-polypeptide.

  17. Array Antenna Limitations

    CERN Document Server

    Jonsson, B L G; Hussain, N

    2013-01-01

    This letter defines a physical bound based array figure of merit that provides a tool to compare the performance of both single and multi-band array antennas with respect to return-loss, thickness of the array over the ground-plane, and scan-range. The result is based on a sum-rule result of Rozanov-type for linear polarization. For single-band antennas it extends an existing limit for a given fixed scan-angle to include the whole scan-range of the array, as well as the unit-cell structure in the bound. The letter ends with an investigation of the array figure of merit for some wideband and/or wide-scan antennas with linear polarization. We find arrays with a figure of merit >0.6 that empirically defines high-performance antennas with respect to this measure.

  18. Electrically driven optical antennas

    Science.gov (United States)

    Kern, Johannes; Kullock, René; Prangsma, Jord; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-09-01

    Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light or indirectly via excited discrete states in active materials in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.

  19. Atacama Compact Array Antennas

    CERN Document Server

    Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.

  20. Nonlinear plasmonic antennas

    Directory of Open Access Journals (Sweden)

    Shakeeb Bin Hasan

    2014-12-01

    Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.

  1. Dielectric Covered Planar Antennas

    Science.gov (United States)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  2. Polarized Antenna Splitting Functions

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2009-10-17

    We consider parton showers based on radiation from QCD dipoles or 'antennae'. These showers are built from 2 {yields} 3 parton splitting processes. The question then arises of what functions replace the Altarelli-Parisi splitting functions in this approach. We give a detailed answer to this question, applicable to antenna showers in which partons carry definite helicity, and to both initial- and final-state emissions.

  3. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  4. Hybrid antenna synthesis for reconfigurable contoured beams

    Science.gov (United States)

    Searle, A. D.; Westcott, B. S.

    1993-08-01

    A reflector illuminated by a small phased array is an attractive antenna configuration for systems requiring reconfigurable contoured beams. The use of a shaped reflector can provide control of the feed power distribution and antenna geometry. A systematic reflector synthesis technique based on geometric optics is formulated, using complex coordinate notation and illustrated by application to a simple design requirement. Results demonstrate that geometric shaping can be successfully applied to systems with distributed sources, and that significant beam reconfiguration can be achieved by phase-only control of the feed array.

  5. Optical antenna gain. II - Receiving antennas

    Science.gov (United States)

    Degnan, J. J.; Klein, B. J.

    1974-01-01

    Expressions are developed for the gain of a centrally obscured, circular optical antenna used as the collecting and focusing optics in a laser receiver, involving losses due to (1) incoming light blockage by central obscuration, (2) energy spillover at the detector, and (3) the effect of local oscillator distribution in the case of heterodyne or homodyne detection. Numerical results are presented for direct detection and for three types of local oscillator distribution (uniform, Gaussian, and matched).

  6. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Brotosudarmo, Tatas H. P. [Univ. of Glasgow, Scotland (United Kingdom). Inst. of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences; Collins, Aaron M. [Washington Univ., St. Louis, MO (United States). Depts. of Biology and Chemistry; Gall, Andrew [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France). Inst. de Biologie et Technologies de Saclay et CNRS; Roszak, Aleksander W. [Univ. of Glasgow, Scotland (United Kingdom). Dept. of Chemistry, WestChem; Gardiner, Alastair T. [Univ. of Glasgow, Scotland (United Kingdom). Inst. of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences; Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States). Depts. of Biology and Chemistry; Cogdell, Richard J. [Univ. of Glasgow, Scotland (United Kingdom). Inst. of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences

    2011-11-15

    The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Analysis of the absorption spectra reveals there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucABa and PucABb apoproteins. The LL complexes contain PucABa, PucABd and PucBb-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra.

  7. Thermal Adaptability of the Light-Harvesting Complex 2 from Thermochromatium tepidum: Temperature-Dependent Excitation Transfer Dynamics.

    Science.gov (United States)

    Shi, Ying; Zhao, Ning-Jiu; Wang, Peng; Fu, Li-Min; Yu, Long-Jiang; Zhang, Jian-Ping; Wang-Otomo, Zheng-Yu

    2015-11-25

    The photosynthetic purple bacterium Thermochromatium (Tch.) tepidum is a thermophile that grows at an optimal temperature of ∼50 °C. We have investigated, by means of steady-state and time-resolved optical spectroscopies, the effects of temperature on the near-infrared light absorption and the excitation energy transfer (EET) dynamics of its light-harvesting complex 2 (LH2), for which the mesophilic counterpart of Rhodobacter (Rba.) sphaeroides 2.4.1 (∼30 °C) was examined in comparison. In a limited range around the physiological temperature (10-55 °C), the B800-to-B850 EET process of the Tch. tepidum LH2, but not the Rba. sphaeroides LH2, was found to be characteristically temperature-dependent, mainly because of a temperature-tunable spectral overlap. At 55 °C, the LH2 complex from Tch. tepidum maintained efficient near-infrared light harvesting and B800-to-B850 EET dynamics, whereas this EET process was disrupted in the case of Rba. sphaeroides 2.4.1 owing to the structural distortion of the LH2 complex. Our results reveal a remarkable thermal adaptability of the light-harvesting function of Tch. tepidum, which could enhance our understanding of the survival strategy of this thermophile in response to environmental challenges.

  8. Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers.

    Science.gov (United States)

    Madjet, M E; Abdurahman, A; Renger, T

    2006-08-31

    An accurate and numerically efficient method for the calculation of intermolecular Coulomb couplings between charge densities of electronic states and between transition densities of electronic excitations is presented. The coupling of transition densities yields the Förster type excitation energy transfer coupling, and from the charge density coupling, a shift in molecular excitation energies results. Starting from an ab initio calculation of the charge and transition densities, atomic partial charges are determined such as to fit the resulting electrostatic potentials of the different states and the transition. The different intermolecular couplings are then obtained from the Coulomb couplings between the respective atomic partial charges. The excitation energy transfer couplings obtained in the present TrEsp (transition charge from electrostatic potential) method are compared with couplings obtained from the simple point-dipole and extended dipole approximations and with those from the ab initio transition density cube method of Krüger, Scholes, and Fleming. The present method is of the same accuracy as the latter but computationally more efficient. The method is applied to study strongly coupled pigments in the light-harvesting complexes of green sulfur bacteria (FMO), purple bacteria (LH2), and higher plants (LHC-II) and the "special pairs" of bacterial reaction centers and reaction centers of photosystems I and II. For the pigment dimers in the antennae, it is found that the mutual orientation of the pigments is optimized for maximum excitonic coupling. A driving force for this orientation is the Coulomb coupling between ground-state charge densities. In the case of excitonic couplings in the "special pairs", a breakdown of the point-dipole approximation is found for all three reaction centers, but the extended dipole approximation works surprisingly well, if the extent of the transition dipole is chosen larger than assumed previously. For the "special

  9. Optical phased arrays with evanescently-coupled antennas

    Science.gov (United States)

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  10. Cup Cylindrical Waveguide Antenna

    Science.gov (United States)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  11. Electrochemically Programmable Plasmonic Antennas.

    Science.gov (United States)

    Dong, Shi; Zhang, Kai; Yu, Zhiping; Fan, Jonathan A

    2016-07-26

    Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications.

  12. GROUP TRANSMIT ANTENNA SELECTION BASED ON GIS TECHNOLOGY FOR V-BLAST SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoge; Xu Chengqi

    2008-01-01

    The conventional transmit antenna selection for Vertical Bell Laboratories Layered Space Time (V-BLAST) system is very complex because it needs to compute the inverse of channel matrices time after time. In this paper, a new group transmit antenna selection scheme for V-BLAST system is proposed. The 1st group transmit antennas are decided according to a certain selection criterion among the available antennas. Then, with Group Interference Suppression (GIS) technology, the interferences of the transmit symbols from the selected antennas can be suppressed. Finally, the 2nd group transmit antennas are decided among the residual available antennas. Simulations show that its performance is lower than that of the conventional selection scheme. However, the new selection scheme has lower complexity than the conventional one.

  13. Zero-forcing beamforming with receiver antenna selection in downlink multi-antenna multi-user system*

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.

  14. The ACTS multibeam antenna

    Science.gov (United States)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  15. The ACTS multibeam antenna

    Science.gov (United States)

    Regier, Frank A.

    1992-06-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  16. First two ALMA antennas successfully linked

    Science.gov (United States)

    2009-05-01

    a millionth of a second between equipment located many kilometers apart. The extreme environment where the ALMA observatory is located, with its strong winds, high altitude, and wide range of temperatures, just adds to the complexity of the observatory and to the fascinating engineering challenges we face", comments Richard Murowinski, ALMA Project Engineer. The astronomical target in this scientific milestone was the planet Mars. The astronomers measured the distinctive "fringes" -- a regular pattern of alternating strong and weak signals -- detected by the interferometer as the planet moved across the sky. The hardware used in this successful first test included two 12-metre diameter ALMA antennas as well as the complex series of electronic processing components needed to combine the signals. Such pairs of antennas are the basic building blocks of imaging systems that enable radio telescopes to deliver pictures that approach or even exceed the resolving power of visible light telescopes. Each antenna is combined electronically with every other antenna to form a multitude of antenna pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in early in the next decade, ALMA's 66 antennas will provide over a thousand such antenna pairings, with distances between antennas up to 16 kilometres. This will enable ALMA to see with a sharpness surpassing that of the best space telescopes, and to complement ground-based optical interferometers such as the ESO Very Large Telescope Interferometer (VLTI). "We are on target to do the first interferometry tests at the 5000-metre high-altitude site by the end of this year, and by the end of 2011 we plan to have at least 16 antennas working together as a single giant telescope," said Thijs de Graauw, ALMA Director. Notes for editors ALMA is a revolutionary astronomical telescope, comprising an array of 66 giant 12-metre and 7-metre

  17. Hemispheric ultra-wideband antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  18. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  19. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  20. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    Science.gov (United States)

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  1. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  2. Cassegrain-Antenna Gain Improvement

    Science.gov (United States)

    Galindo, V.; Cha, A. G.; Mittra, R.

    1986-01-01

    Modified antenna feed with dual-shaped subreflectors yields 10-to20-percent improvement in efficiency of existing large-aperture paraboloidal or Cassegrainian antennas. Such offset dual-shaped subreflector (DSS) feed brings gain of existing paraboloid or Cassegrain antennas up to that of reflector antennas of more recent design at cost considerably lower than for reshaping existing reflecting surfaces. Mathematical procedures developed for synthesizing nearly optimum shapes for DSS elements of new feeds.

  3. Hyperbolic thermal antenna

    CERN Document Server

    Barbillon, Grégory; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2016-01-01

    A thermal antenna is an electromagnetic source which emits in its surrounding, a spatially coherent field in the infrared frequency range. Usually, its emission pattern changes with the wavelength so that the heat flux it radiates is weakly directive. Here, we show that a class of hyperbolic materials, possesses a Brewster angle which is weakly dependent on the wavelength, so that they can radiate like a true thermal antenna with a highly directional heat flux. The realization of these sources could open a new avenue in the field of thermal management in far-field regime.

  4. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...... cylindrical surfaces have the sane characteristic constants and different constants are treated separately. Extensive numerical computations of the field radiated from the slot antennas described here are being carried out, but no numerical results are yet available...

  5. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  6. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  7. Antennas fundamentals, design, measurement

    CERN Document Server

    Long, Maurice

    2009-01-01

    This comprehensive revision (3rd Edition) is a senior undergraduate or first-year graduate level textbook on antenna fundamentals, design, performance analysis, and measurements. In addition to its use as a formal course textbook, the book's pragmatic style and emphasis on the fundamentals make it especially useful to engineering professionals who need to grasp the essence of the subject quickly but without being mired in unnecessary detail. This new edition was prepared for a first year graduate course at Southern Polytechnic State University in Georgia. It provides broad coverage of antenna

  8. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  9. Aperture optical antennas

    CERN Document Server

    Wenger, Jerome

    2014-01-01

    This contribution reviews the studies on subwavelength aperture antennas in the optical regime, paying attention to both the fundamental investigations and the applications. Section 2 reports on the enhancement of light-matter interaction using three main types of aperture antennas: single subwavelength aperture, single aperture surrounded by shallow surface corrugations, and subwavelength aperture arrays. A large fraction of nanoaperture applications is devoted to the field of biophotonics to improve molecular sensing, which are reviewed in Section 3. Lastly, the applications towards nano-optics (sources, detectors and filters) are discussed in Section 4.

  10. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  11. Coupling of metal-based light-harvesting antennas and electron-donor subunits: Trinuclear Ruthenium(II) complexes containing tetrathiafulvalene-substituted polypyridine ligands

    DEFF Research Database (Denmark)

    Campagna, Sebastiano; Serroni, Scolastica; Puntoriero, Fausto

    2002-01-01

    Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF1, trans-bpy-TTF1, and cis-bpy-TTF2 have been prepared and characterized. X-ray analysis of trans-bpy-TTF1, is also reported. Such ligands have been used to prepare two new trinuclear Ru-II complexes, namely, [{(bpy)(2)R...

  12. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    shaping. The interesting thing about D-C synthesis is that the side lobes have the same amplitude. Five-element arrays were used. Again, 41 pattern samples were used for the input. Nine actual D-C patterns ranging from -10 dB to -30 dB side lobe levels were used to train the network. A comparison between simulated and actual D-C techniques for a pattern with -22 dB side lobe level is shown. The goal for this research was to evaluate the performance of neural network computing with antennas. Future applications will employ the backpropagation training algorithm to drastically reduce the computational complexity involved in performing EM compensation for surface errors in large space reflector antennas.

  13. China's Largest Radio Antenna System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ After three-and-half-year efforts, the National Astronomical Observatories at CAS (NAOC) has constructed two arrays of radio antennae: a 50m antenna at Miyun Station in Beijing and a 40m antenna in Kunming, capital of southwest China's Yunnan Province.

  14. The structure and function of bacterial light-harvesting complexes.

    Science.gov (United States)

    Law, Christopher J; Roszak, Aleksander W; Southall, June; Gardiner, Alastair T; Isaacs, Neil W; Cogdell, Richard J

    2004-01-01

    The harvesting of solar radiation by purple photosynthetic bacteria is achieved by circular, integral membrane pigment-protein complexes. There are two main types of light-harvesting complex, termed LH2 and LH1, that function to absorb light energy and to transfer that energy rapidly and efficiently to the photochemical reaction centres where it is trapped. This mini-review describes our present understanding of the structure and function of the purple bacterial light-harvesting complexes.

  15. RESEARCH ON INDOOR ELECTROMAGNETIC RADIATION FIELD OF MULTIPLE ANTENNA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Lu Yanhui; Zou Peng; Zhou Xiaoping

    2012-01-01

    The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems.Based on the Finite Difference Time Domain (FDTD) algorithm,using the mobile phone shielding device as the multiple antenna systems example,the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method.The effectivity of prediction method is verified by comparing the prediciton results with the measurment results.About 80% of the error can be controlled less than ±4 dB.The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.

  16. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  17. Community Antenna Television (CATV).

    Science.gov (United States)

    Federal Communications Commission, Washington, DC.

    The number of households hooked up to cable television or community antenna television (CATV) is expanding rapidly, and Federal Communications Commission (FCC) has been developing regulations since 1962 to guide the growth of the industry. By 1965 the FCC had claimed jurisdiction over all CATV systems in the U. S. This jurisdiction was challenged…

  18. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume...

  19. Evolutionary optimization of optical antennas

    CERN Document Server

    Feichtner, Thorsten; Kiunke, Markus; Hecht, Bert

    2012-01-01

    The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs. Here a checkerboard-type, initially random array of gold cubes is subjected to evolutionary optimization. To illustrate the power of the approach we demonstrate that by optimizing the near-field intensity enhancement the evolutionary algorithm finds a new antenna geometry, essentially a split-ring/two-wire antenna hybrid which surpasses by far the performance of a conventional gap antenna by shifting the n=1 split-ring resonance into the optical regime.

  20. Quartz antenna with hollow conductor

    Science.gov (United States)

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  1. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  2. Construction of artificial pigment-protein antennae

    Energy Technology Data Exchange (ETDEWEB)

    Sibbald, JeNell [Iowa State Univ., Ames, IA (United States)

    1997-01-10

    Photosynthesis is a complex process which results in the conversion of solar radiation into chemical energy. This chemical energy is then used as the free energy source for all living organisms. In its basic form, photosynthesis can be described as the light-activated synthesis of carbohydrates from the simple molecules of water and carbon dioxide: 6H2O + 6 CO2 light C6H12O6 + 6 O2 This basic mechanism actually requires numerous reaction steps. The two primary steps being: the capture of light by pigment molecules in light-harvesting antenna complexes and the transfer of this captured energy to the so-called photochemical reaction center. While the preferred pathway for energy absorbed by the chromophores in the antenna complexes is transfer to the reaction center, energy can be lost to competing processes such as internal conversion or radiative decay. Therefore, the energy transfer must be rapid, typically on the order of picoseconds, to successfully compete. The focus of the present work is on the construction of light-harvesting antenna complexes incorporating modular pigment-proteins.

  3. Lightweight, Self-Deploying Foam Antenna Structures

    Science.gov (United States)

    Sokolowski, Witold; Levin, Steven; Rand, Peter

    2004-01-01

    Lightweight, deployable antennas for a variety of outer-space and terrestrial applications would be designed and fabricated according to the concept of cold hibernated elastic memory (CHEM) structures, according to a proposal. Mechanically deployable antennas now in use are heavy, complex, and unreliable, and they utilize packaging volume inefficiently. The proposed CHEM antenna structures would be simple and would deploy themselves without need for any mechanisms and, therefore, would be more reliable. The proposed CHEM antenna structures would also weigh less, could be packaged in smaller volumes, and would cost less, relative to mechanically deployable antennas. The CHEM concept was described in two prior NASA Tech Briefs articles: "Cold Hibernated Elastic Memory (CHEM) Expandable Structures" (NPO-20394), Vol. 23, No. 2 (February 1999), page 56; and "Solar Heating for Deployment of Foam Structures" (NPO-20961), Vol. 25, No. 10 (October 2001), page 36. To recapitulate from the cited prior articles: The CHEM concept is one of utilizing opencell foams of shape-memory polymers (SMPs) to make lightweight, reliable, simple, and inexpensive structures that can be alternately (1) compressed and stowed compactly or (2) expanded, then rigidified for use. A CHEM structure is fabricated at full size from a block of SMP foam in its glassy state [at a temperature below the glass-transition temperature (Tg) of the SMP]. The structure is heated to the rubbery state of the SMP (that is, to a temperature above Tg) and compacted to a small volume. After compaction, the structure is cooled to the glassy state of the SMP. The compacting force can then be released and the structure remains compact as long as the temperature is kept below Tg. Upon subsequent heating of the structure above Tg, the simultaneous elastic recovery of the foam and its shape-memory effect cause the structure to expand to its original size and shape. Once thus deployed, the structure can be rigidified by

  4. Predicting Antenna Parameters from Antenna Physical Dimensions

    Science.gov (United States)

    1993-12-01

    for a linear array is [Ref. 3: pp. 43-44]: G = erDo (dimensionless) (3.20) G(dB) = 101og1 0 (etD,) (dB) (3.21) As a result of constructing the linear...transmission line. Therefore, the gain of the antenna is: G = erDo (dimensionless) (7.19) G(dB) = 101og1 0 (ecDo) (dB) (7.20) A caged dipole in free...surface, and the distance (r’) from the origin to the projection of point (P) onto the z = 0 plane. The primed angles in Figure 8.1 correspond to the

  5. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  6. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation......State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...

  7. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.

    Science.gov (United States)

    Song, Lingnan; Myers, Amanda C; Adams, Jacob J; Zhu, Yong

    2014-03-26

    We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable, and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multilayer structures.

  8. Ultrafast energy relaxation in single light-harvesting complexes.

    Science.gov (United States)

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk

    2016-03-15

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  9. Integrated Solar Panel Antennas for Cube Satellites

    OpenAIRE

    Mahmoud, Mahmoud N.

    2010-01-01

    This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small satellite surface real estate and to replace deployed wire antennas for certain operational frequencies. The two main advantages of the proposed antenna are: 1) the antenna does not require an expensive deployment mechanism that is required by dipole antennas; 2) the antenna does not occupy as much valuable surface real estate as patch ante...

  10. Integrated Solar Panel Antennas for Cube Satellites

    OpenAIRE

    Mahmoud, Mahmoud N.

    2010-01-01

    This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small satellite surface real estate and to replace deployed wire antennas for certain operational frequencies. The two main advantages of the proposed antenna are: 1) the antenna does not require an expensive deployment mechanism that is required by dipole antennas; 2) the antenna does not occupy as much valuable surface real estate as patch ante...

  11. A Reconfigurable Radiation Pattern Annular Slot Antenna

    OpenAIRE

    Aziz, NA; Radhi, A; Nilavalan, R

    2016-01-01

    This paper contemplate a theoretical analysis of a pattern reconfigurable antenna using annular slot antenna operating in low frequency. A shorting pin is inserted to allow the annular slot antenna to have an omnidirectional radiation pattern like a monopole antenna. The reconfigurable antenna consists of numerous metal cylinders arranged around the annular slot antenna. By controlling pin diodes associated with the metal cylinders, the antenna is capable of working up in different dire...

  12. Spectroscopy of Single Light-Harvesting Complexes from Purple Photosynthetic Bacteria at 1.2 K

    NARCIS (Netherlands)

    Oijen, A.M. van; Ketelaars, M.; Köhler, J.; Aartsma, T.J.; Schmidt, J.

    1998-01-01

    In this Letter we present the first observation of the fluorescence-excitation spectra of individual light-harvesting complexes (LH2) from purple photosynthetic bacteria at 1.2 K. The spectra reveal the electronic transitions to the individual excitonic states of the assembly of absorbing

  13. Unraveling the Electronic Structure of Individual Photosynthetic Pigment-Protein Complexes

    NARCIS (Netherlands)

    Oijen, Antoine M. van; Ketelaars, Martijn; Köhler, Jürgen; Aartsma, Thijs J.; Schmidt, Jan

    1999-01-01

    Low-temperature single-molecule spectroscopic techniques were applied to a light-harvesting pigment-protein complex (LH2) from purple photosynthetic bacteria. The properties of the electronically excited states of the two circular assemblies (B800 and B850) of bacteriochlorophyll a (BChl a) pigment

  14. Spectroscopy of Single Light-Harvesting Complexes from Purple Photosynthetic Bacteria at 1.2 K

    NARCIS (Netherlands)

    Oijen, A.M. van; Ketelaars, M.; Köhler, J.; Aartsma, T.J.; Schmidt, J.

    1998-01-01

    In this Letter we present the first observation of the fluorescence-excitation spectra of individual light-harvesting complexes (LH2) from purple photosynthetic bacteria at 1.2 K. The spectra reveal the electronic transitions to the individual excitonic states of the assembly of absorbing bacterioch

  15. Unraveling the Electronic Structure of Individual Photosynthetic Pigment-Protein Complexes

    NARCIS (Netherlands)

    Oijen, Antoine M. van; Ketelaars, Martijn; Köhler, Jürgen; Aartsma, Thijs J.; Schmidt, Jan

    1999-01-01

    Low-temperature single-molecule spectroscopic techniques were applied to a light-harvesting pigment-protein complex (LH2) from purple photosynthetic bacteria. The properties of the electronically excited states of the two circular assemblies (B800 and B850) of bacteriochlorophyll a (BChl a) pigment

  16. Modeling and design of antennas for implantable telemetry applications.

    Science.gov (United States)

    Venkatasubramanian, Arun; Gifford, Brandon

    2016-08-01

    Incorporating an RF communications link in an implanted medical device can increase its range of applicability and improve quality of life for the patient. Developments in support electronics decrease design risk, but the implanted antenna remains a critical component of a communications link that operates at very low received power. Transmitted power is limited both by regulatory restrictions and, for most implanted devices, by power source capacity. Dielectric losses and wave trapping in the body result in transmission losses much greater than seen in free space communications. Small antenna size is required for physiological acceptability. Design optimization must trade antenna size, geometric complexity and material cost against efficiency, operating bandwidth and driving power. Designs must also work in differing body morphologies. This paper describes the methodology for simulation and the impact of different body morphologies on implant antenna performance. An understanding of these is required to optimize antenna performance and meet ever increasing range requirements. It is shown that depending on the use case and end user morphology, the antenna performance can be incredible successful or marginally adequate. Given the high sensitivity to small changes in thickness of the human body, testing the antenna for a range of BMI and body fat percentages is a must to truly characterize its performance.

  17. Design of an Airborne Complex-structural Wideband Flush-mounted Antenna%一种可齐平安装的机载复合结构宽带天线的设计

    Institute of Scientific and Technical Information of China (English)

    陈爱新; 姜铁华; 苏东林; 魏文轩; 张艳君; 闫伟

    2011-01-01

    In this paper, a wideband ultra-high frequency (UHF) antenna which can be flush-mounted is designed. The antenna is composed of three parts: the cavity-backed discone antenna, the short-circuited structure between the top plate of the discone and ground, and the multi-plate antenna. These parts respectively generate medium, Iow and high resonance frequencies, thus widening the bandwidth of antenna efficiently. The influences of primary structural parameters on the resonance frequencies and impendence bandwidth are analyzed, then the optimal values are given, and the prototype with optimal parameters is fabricated. The measurement results show that the impedance bandwidth of VSWR≤2. 5 achieves 65%,covering a frequency range from 430 MHz to 845 MHz, and the antenna has omni-directional patterns. Meanwhile, the antenna has very Iow profile; the overall height of it is less than one tenth of the largest operating wavelength of the antenna. This antenna has great potential in practical applications to aircrafts and vessels where flush-mounted antennas are required.%设计了一种可齐平安装的宽带超高频(UHF)天线.该天线由含有背腔结构的盘锥天线、盘锥顶盘与地板之间的短路结构、以及多板天线3个部分复合而成.这3个部分分别在频率的中端、低端和高端产生3个邻近的独立谐振点,从而有效地展宽了天线的工作带宽.分析了天线各主要结构参数对谐振频点和阻抗带宽的影响,给出了这些参数的最优值,并据此制作了天线样机.测试结果表明,设计的天线在430~845 MHz的频带内,驻波比小于2.5.相对带宽为65%,辐射方向图水平全向.同时,该天线具有低剖面结构,整体高度小于最大工作波长的十分之一,在要求齐平安装的飞机和舰船等平台上具有广泛的应用前景.

  18. Multifunctional Antenna Techniques

    Science.gov (United States)

    2015-11-25

    acquisition and processing server scheme. An Android smartphone application ( app ) provides the user interface for the system and can be used to select the...Dynamic Tethering of a Phased Array to an Android Smartphone , IEEE Transactions on Antennas and Propagation, (06 2013): 0. doi: 10.1109/TAP...modes of flight, and hover. The Android smartphone system was connected to a nine-axis inertial measurement unit (IMU) through an Arduino

  19. Circuit realization microwave antennas-oscillator on strip antennas

    OpenAIRE

    Golynskyy, V. D.; Prudyus, I. N.

    2009-01-01

    Showing special feature of development circuitries microwave transistors antennasoscillator on strip dielectric-resonator-antennas. Showing circuitries and technical characteristics of developed microwave antennasoscillator on strip.

  20. 47 CFR 80.863 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  1. 47 CFR 80.866 - Spare antenna.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  2. Efficient Placement of Directional Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  3. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  4. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    The fundamental limitations in performance of electrically small antennas (ESAs) - and how far these may be approached - have been of great interest for over a century. Particularly over the past few decades, it has become increasingly relevant and important, to approach these limits in view...... to the important antenna parameters of radiation efficiency e and impedance bandwidth. For single-mode antennas the fundamental minimum Q is the Chu lower bound. In this Ph.D. dissertation, the topic is miniaturization of spherical antennas loaded by an internal magnetodielectric core. The goal is to determine......, quantify, and assess the effects of an internal material loading upon antenna performance, including its potentials towards miniaturization. Emphasis have been upon performing an exhaustive and exact analysis of rigorous validity covering a large class of spherical antennas. In the context of this study...

  5. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  6. Antenna structure with distributed strip

    Science.gov (United States)

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  7. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...... on the antenna performance. The optimized antenna demonstrates S11 below -10 dB and a stable omnidirectional radiation pattern robust against the cable effect over the frequency band 1.5-41 GHz despite its compactness (the maximum electrical dimension is of 0.29max, where max is the free space wavelength...... at the lowest frequency of operation). A prototype of the antenna is fabricated and tested. The simulated and measured S11 are in a good agreement. Measured radiation patterns confirm the pattern stability in terms of the direction of maximum radiation and 3 dB beamwidth....

  8. Optical antenna gain. 2: receiving antennas.

    Science.gov (United States)

    Degnan, J J; Klein, B J

    1974-10-01

    Expressions are derived for the gain of a centrally obscured, circular optical antenna when used as the collecting and focusing optics in a laser receiver which include losses due to (1) blockage of the incoming light by the central obscuration, (2) the spillover of energy at the detector, and (3) the effect of local oscillator distribution in the case of heterodyne or homodyne detection. Numerical results are presented for direct detection and for three types of local oscillator distributions (uniform, Gaussian, and matched) in the case of heterodyne or homodyne detection. The results are presented in several graphs that allow the rapid evaluation of receiver gain for an arbitrary set of telescope and detector parameters. It is found that, for uniform illumination by the LO, the optimum SNR is obtained when the detector radius is approximately 0.74 times the Airy disk radius. The use of an optimized Gaussian (spot size = 0.46 times the Airy disk radius) improves the receiver gain by less than 1 dB. Theuse results are insensitive to the size of the central obscuration.

  9. An Efficient Beam Steerable Antenna Array Concept for Airborne Applications

    Directory of Open Access Journals (Sweden)

    H. Aliakbarian

    2014-04-01

    Full Text Available Deployment of a satellite borne, steerable antenna array with higher directivity and gain in Low Earth Orbit makes sense to reduce ground station complexity and cost, while still maintaining a reasonable link budget. The implementation comprises a digitally beam steerable phased array antenna integrated with a complete system, comprising the antenna, hosting platform, ground station, and aircraft based satellite emulator to facilitate convenient aircraft based testing of the antenna array and ground-space communication link. This paper describes the design, development and initial successful interim testing of the various subsystems. A two element prototype used in this increases the signal-to-noise ratio (SNR by 3 dB which is corresponding to more than 10 times better bit error rate (BER.

  10. Design and Analysis of HJ-1-C Satellite SAR Antenna

    Directory of Open Access Journals (Sweden)

    Zheng Shi-kun

    2014-06-01

    Full Text Available With truss deployable mesh parabolic reflector, the HJ-1-C SAR antenna has complex structure and multiple steps during the deployed processing. The design of the antenna is difficult in terms of deployed reliability and electrical performance. This paper makes intensive research on system, structure and electrical design, and the analysis of mechanical and thermal performance in the actual space conditions is also presented. The successful deploying in orbit and high image quality of the HJ-1-C satellite indicate that the mechanical, electronic, thermal and reliability design of the antenna satisfy the project requirement, and these research provides valuable experience for the design of the centralized mesh parabolic SAR antenna.

  11. MULTILAYER MICROSTRIP ANTENNA QUALITY FACTOR OPTIMIZATION FOR BANDWIDTH ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    M.C. SRIVASTAVA

    2012-12-01

    Full Text Available The impedance bandwidth, one of the important characteristics of microstrip patch antennas, can be significantly improved by using a multilayer dielectric configuration. In this paper the focus is on bandwidth enhancement technique of a multilayer patch antenna for X-band applications. In order to enhance the bandwidth, antenna losses are contained by controlling those quality factors which can have a significant impact on the bandwidth for a given permittivity and thickness of the substrate. This has been achieved by conformal transformation of the multidielectric microstrip antenna. For the ease of analysis Wheelers transformation is used to map the complex permittivity of a multilayer substrate to a single layer. Method of Moments and Finite Difference Time Domain approaches are used for the computation of results.

  12. Slotted Antenna with Anisotropic Covering

    Science.gov (United States)

    2015-08-06

    08-2015 Publication Slotted Antenna with Anisotropic Covering David A. Tonn et al Naval Under Warfare Center Division, Newport 1176 Howell St...NUWC 300055 Distribution A An antenna includes a tubular, conductive radiator having a longitudinal slot formed therein from a first end of the...conductive radiator to a second end of the conductive radiator. An antenna feed can be joined to the conductive radiator adjacent to and across the slot

  13. A distributed array antenna system

    Science.gov (United States)

    Shaw, R.; Kovitz, J.

    1986-01-01

    The Space Station communication system will use microwave frequency radio links to carry digitized information from sender to receiver. The ability of the antenna system to meet stringent requirements on coverage zones, multiple users, and reliability will play an important part in the overall multiple access communication system. This paper will describe the configuration of a multibeam conformal phased array antenna and the individual microwave integrated components incoporated into this antenna system.

  14. Antenna arrays a computational approach

    CERN Document Server

    Haupt, Randy L

    2010-01-01

    This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.

  15. Metamaterial-based "sabre" antenna

    Science.gov (United States)

    Hafdallah Ouslimani, Habiba; Yuan, Tangjie; Kanane, Houcine; Priou, Alain; Collignon, Gérard; Lacotte, Guillaume

    2014-05-01

    The "sabre" antenna is an array of two monopole elements, vertically polarized with omnidirectional radiation patterns, and placed on either side of a composite material on the tail of an airplane. As an in-phase reflector plane, the antenna uses a compact dual-layer high-impedance surface (DL-HIS) with offset mushroom-like Sivenpiper square shape unit cells. This topology allows one to control both operational frequency and bandgap width, while reducing the total height of the antenna to under λ0/36. The designed antenna structure has a wide bandwidth higher than 24% around 1.4 GHz. The measurements and numerical simulations agree very well.

  16. Spiral Microstrip Antenna with Resistance

    Science.gov (United States)

    Shively, David G. (Inventor)

    1998-01-01

    A spiral microstrip antenna having resistor elements embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  17. Ferrite attenuator modulation improves antenna performance

    Science.gov (United States)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  18. Small Antennas for Wireless Micro-Systems

    OpenAIRE

    Rainer Wansch

    2002-01-01

    This paper will describe the topology of wireless micro-systems networks and some of their key components. In particular we will deal with the antennas: loops, helices, F-antennas, patches and dielectrically loaded antennas.

  19. A FLOSS Tool for Antenna Radiation Patterns

    CERN Document Server

    Yannopoulou, Nikolitsa

    2010-01-01

    This paper briefly highlights the features of the software tool [RadPat4W], named after Radiation Patterns for Windows but also compatible with the [Wine] environment of Linux. The tool is a stand-alone part of a freeware suite that is based on an alternative exposition of fundamental Antenna Theory and is under active development for many years now. Nevertheless, [RadPat4W] source code has been now released as FLOSS Free Libre Open Source Software and thus it may be freely used, copied, modified or redistributed, individually or cooperatively, by the interested user to suit her/his personal needs for reliable antenna applications from the simplest to the more complex.

  20. Millimeter and submillimeter wave antenna structure

    Science.gov (United States)

    Rebiez, Gabriel M. (Inventor); Rutledge, David B. (Inventor)

    1989-01-01

    An integrated circuit antenna structure for transmitting or receiving millimeter and/or submillimeter wave radiation having an antenna relatively unimpaired by the antenna mounting arrangment is disclosed herein. The antenna structure of the present invention includes a horn disposed on a substrate for focusing electromagnetic energy with respect to an antenna. The antenna is suspended relative to the horn to receive or transmit the electromagnetic energy focused thereby.

  1. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  2. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    Science.gov (United States)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  3. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  4. Terahertz antenna electronic chopper

    Energy Technology Data Exchange (ETDEWEB)

    Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F. [Department of Electronics, Wroclaw University of Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw (Poland)

    2016-01-15

    In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.

  5. Patch antenna terahertz photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Palaferri, D.; Todorov, Y., E-mail: yanko.todorov@univ-paris-diderot.fr; Chen, Y. N.; Madeo, J.; Vasanelli, A.; Sirtori, C. [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMS 7162, 75013 Paris (France); Li, L. H.; Davies, A. G.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-04-20

    We report on the implementation of 5 THz quantum well photodetector exploiting a patch antenna cavity array. The benefit of our plasmonic architecture on the detector performance is assessed by comparing it with detectors made using the same quantum well absorbing region, but processed into a standard 45° polished facet mesa. Our results demonstrate a clear improvement in responsivity, polarization insensitivity, and background limited performance. Peak detectivities in excess of 5 × 10{sup 12} cmHz{sup 1/2}/W have been obtained, a value comparable with that of the best cryogenic cooled bolometers.

  6. Antennas for light and plasmons

    NARCIS (Netherlands)

    Dikken, Dirk Jan Willem

    2015-01-01

    Antennas have been used for over a century as emitters, scatterers and receivers of electromagnetic waves. All wireless communication devices, such as radio, mobile phones and satellite communication are strongly dependent on the capability of an antenna to localize propagating electromagnetic waves

  7. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  8. Tunable Antennas for Mobile Devices

    DEFF Research Database (Denmark)

    Morris, Art; Barrio, Samantha Caporal Del; Shin, J

    2014-01-01

    Modern mobile terminal design has been driven by the user interface and broadband connectivity. Real world RF performance has substantially fallen recently which impacts data rates, battery life and often causes lost connections. This has been caused by changing antenna location and reduced antenna...

  9. Millimeter-wave antenna measurement

    NARCIS (Netherlands)

    Akkermans, J.A.G.; Dijk, R. van; Herben, M.H.A.J.

    2007-01-01

    A novel approach is presented to accurately measure the scattering parameters as well as the radiation pattern of planar antennas that operate in the millimeter-wave frequency band. To avoid interconnection problems, RF probes have been used to connect to the antenna. These RF probes are normally us

  10. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...

  11. Broadband antenna with frequency scanning

    Directory of Open Access Journals (Sweden)

    A. A. Shekaturin

    2014-06-01

    Full Text Available Relevance of this study. The main advantage of frequency scanning is simplicity of implementation. At this point, multifunctional usage of microwave modules is an urgent task, as well as their maximum simpler and cheaper. Antenna design and operation. The study is aimed at providing electric antenna with frequency scanning. It was based on the log-periodic antenna due to its wideband and negotiation capability over the entire operating frequency range. For this distribution line is bent in an arc of a circle in a plane blade while vibrators are arranged along the radius. Computer modeling of antennas with frequency scanning. Modeled with a non-mechanical motion antenna beam emitters representing system for receiving a radio frequency signal on mobile objects calculated for 1.8 GHz ... 4.2 GHz. The simulation was performed in a software environment for numerical modeling of electromagnetic «Feko 5.5». Analysis of the interaction of radiation is based on the method of moments. Findings. The result of this work is to propose a new design of the antenna with a frequency scanning method as agreed in a wide frequency range. In the studied technical solution provided by the rotation of NAM in the frequency range, and the matching of the antenna to the feed line is maintained. Application of this type of antennas on the proposed technical solution in communication systems will improve the communication reliability by maintaining coordination in the frequency range

  12. The Ultrawideband Leaky Lens Antenna

    NARCIS (Netherlands)

    Bruni, S.; Neto, A.; Marliani, F.

    2007-01-01

    A novel directive and nondispersive antenna is presented: the ultrawideband (UWB) leaky lens. It is based on the broad band Cherenkov radiation occurring at a slot printed between different infinite homogeneous dielectrics. The first part of the paper presents the antenna concept and the UWB design.

  13. Mobile Phone Antenna Performance 2016

    DEFF Research Database (Denmark)

    Pedersen, Gert F.

    2016-01-01

    This study investigates the antenna performance of a number of mobile phones widely used in the Nordic Countries. The study is supported by the Nordic Council of Ministers. The antenna performance of the phones is vital for the phones ability to ensure radio coverage in low signal situations...

  14. Optical antenna enhanced spontaneous emission.

    Science.gov (United States)

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  15. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  16. Antenna Selection for Full-Duplex MIMO Two-Way Communication Systems

    KAUST Repository

    Wilson-Nunn, Daniel

    2017-03-11

    Antenna selection for full-duplex communication between two nodes, each equipped with a predefined number of antennae and transmit/receive chains, is studied. Selection algorithms are proposed based on magnitude, orthogonality, and determinant criteria. The algorithms are compared to optimal selection obtained by exhaustive search as well as random selection, and are shown to yield performance fairly close to optimal at a much lower complexity. Performance comparison for a Rayleigh fading symmetric channel reveals that selecting a single transmit antenna is best at low signal-to-noise ratio (SNR), while selecting an equal number of transmit and receive antennae is best at high SNR.

  17. Optical antennas as nanoscale resonators

    CERN Document Server

    Agio, Mario

    2011-01-01

    Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interaction, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  18. Optical antennas as nanoscale resonators.

    Science.gov (United States)

    Agio, Mario

    2012-02-07

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  19. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q.......Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for the stored energies obtained through the vector spherical wave theory, it is shown that a magnetic-coated metal core reduces the internal stored energy of both TM1m and TE1m modes simultaneously, so that a self-resonant antenna with the Q approaching the fundamental minimum is created. Numerical results...

  20. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  1. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  2. Antenna array geometry optimization for a passive coherent localisation system

    Science.gov (United States)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  3. Spectral performance of Square Kilometre Array Antennas - II. Calibration performance

    Science.gov (United States)

    Trott, Cathryn M.; de Lera Acedo, Eloy; Wayth, Randall B.; Fagnoni, Nicolas; Sutinjo, Adrian T.; Wakley, Brett; Punzalan, Chris Ivan B.

    2017-09-01

    We test the bandpass smoothness performance of two prototype Square Kilometre Array (SKA) SKA1-Low log-periodic dipole antennas, SKALA2 and SKALA3 ('SKA Log-periodic Antenna'), and the current dipole from the Murchison Widefield Array (MWA) precursor telescope. Throughout this paper, we refer to the output complex-valued voltage response of an antenna when connected to a low-noise amplifier, as the dipole bandpass. In Paper I, the bandpass spectral response of the log-periodic antenna being developed for the SKA1-Low was estimated using numerical electromagnetic simulations and analysed using low-order polynomial fittings, and it was compared with the HERA antenna against the delay spectrum metric. In this work, realistic simulations of the SKA1-Low instrument, including frequency-dependent primary beam shapes and array configuration, are used with a weighted least-squares polynomial estimator to assess the ability of a given prototype antenna to perform the SKA Epoch of Reionisation (EoR) statistical experiments. This work complements the ideal estimator tolerances computed for the proposed EoR science experiments in Trott & Wayth, with the realized performance of an optimal and standard estimation (calibration) procedure. With a sufficient sky calibration model at higher frequencies, all antennas have bandpasses that are sufficiently smooth to meet the tolerances described in Trott & Wayth to perform the EoR statistical experiments, and these are primarily limited by an adequate sky calibration model and the thermal noise level in the calibration data. At frequencies of the Cosmic Dawn, which is of principal interest to SKA as one of the first next-generation telescopes capable of accessing higher redshifts, the MWA dipole and SKALA3 antenna have adequate performance, while the SKALA2 design will impede the ability to explore this era.

  4. Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.

    Science.gov (United States)

    Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric

    2017-01-23

    This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.

  5. Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna

    Science.gov (United States)

    Choe, Yun-Sik; Hao, Zuoqiang; Lin, Jingquan

    2015-06-01

    A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg, and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.

  6. Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yun-Sik [School of Science, Changchun University of Science and Technology, 130022 Changchun (China); Department of Physics, University of Science, Pyongyang, North Korea (Korea, Republic of); Hao, Zuoqiang; Lin, Jingquan, E-mail: linjingquan@cust.edu.cn [School of Science, Changchun University of Science and Technology, 130022 Changchun (China)

    2015-06-15

    A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg, and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.

  7. Synthesis and characterization of new TiO{sub 2} sensitizers for photovoltaic cells: bipyridine phosphonic di-acid ruthenium and osmium complexes and dyads composed of an organic chromophore and a ruthenium complex for antenna effect; Synthese et caracterisation de nouveaux sensibilisateurs de TiO{sub 2} pour la photovoltaique: complexes de ruthenium et d'osmium avec la bipyridine diacide phosphonique et diades composees d'un chromophore organique et d'un complexe de ruthenium pour l'effet d'antenne

    Energy Technology Data Exchange (ETDEWEB)

    Zabri, H.

    2004-04-01

    The aim of this work is to develop new poly-pyridine transition metals complexes as TiO{sub 2} sensitizers for the design of photovoltaic cells. The first part concerns the preparation and the study of the properties of RuL{sub 2}X{sub 2} complexes (L = 2,2'-bipyridine bis phosphonic acid and X = Cl, CN, NCS). The cis di-thiocyanate bis-(2,2-bipyridine-4,4-phosphonic di-acid) ruthenium (II) sensitizer has the best performances but is nevertheless inferior of 30% to its analog containing the carboxylic acid function (N3) taken as reference in this work. In a second part, the osmium complexes with the 2,2'-bipyridine-4,4'-phosphonic di-acid have been prepared on account of their widest absorbance towards the low energies of the solar spectra. The spectroscopic ({sup 1}H and {sup 13}C NMR, UV-Visible, IR, action spectra, emission and life span of the excited states) and electrochemical properties of these complexes have been studied. This study has shown that 1)the tris-(2,2'-bipyridine-4,4'-phosphonic di-acid) osmium (II) has a photovoltaic efficiency similar to those of N3 2)the phosphonic acid function leads to a bond more stable with TiO{sub 2} compared with those obtained with the carboxylic acid function. At last, dyads composed of an organic pigment (zinc phthalocyanine and boradiazaindacene) grafted on a ruthenium complex have been prepared. The two organic pigments allow to increase the cross section of light collection of the ruthenium complex by antenna effect. The photochemical study in solution shows that the fluorescence of the antennas is trapped by the next ruthenium complex probably by energy transfer. (O.M.)

  8. Microstrip antenna on tunable substrate

    Science.gov (United States)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  9. Metal Patch Antenna

    Science.gov (United States)

    Chamberlain, Neil F. (Inventor); Hodges, Richard E. (Inventor); Zawadzki, Mark S. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  10. 47 CFR 95.1213 - Antennas.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used...

  11. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which can...

  12. 47 CFR 95.1013 - Antennas.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas...

  13. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  14. Double Structure Broadband Leaky Wave Antenna

    NARCIS (Netherlands)

    Neto, A.; Dijk, R. van; Filippo, M.

    2011-01-01

    A leaky wave antenna contains a first and a second leaky wave antenna structure back to back against each other. Each antenna structure comprises a dielectric body and an elongated wave carrying structure, such as a slot in a conductive ground plane. In each leaky wave antenna structure the body and

  15. Double Structure Broadband Leaky Wave Antenna

    NARCIS (Netherlands)

    Neto, A.; Dijk, R. van; Filippo, M.

    2011-01-01

    A leaky wave antenna contains a first and a second leaky wave antenna structure back to back against each other. Each antenna structure comprises a dielectric body and an elongated wave carrying structure, such as a slot in a conductive ground plane. In each leaky wave antenna structure the body and

  16. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  17. 47 CFR 73.69 - Antenna monitors.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the...

  18. 47 CFR 95.51 - Antenna height.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  19. The collinear coaxial array antenna

    Science.gov (United States)

    Brammer, D. J.; Williams, D.

    1981-03-01

    A design of a coaxial vertical antenna proposed in the ARRL antenna handbook is analyzed. A numerical analysis was carried out using the moment method. A variety of antenna configurations in the 160 MHz design frequency are analyzed and current distribution, gain, polar diagrams and impedances are calculated. The analysis is carried out for simple configurations and extended to a case with 16 repeated center sections. The effects of using lossy cable in the construction is also investigated. A defect in the original ARRL design is rectified. An array of an overall length 5.33 wavelengths is shown to have a gain of 10.69 dB.

  20. DUAL BAND MONOPOLE ANTENNA DESIGN

    Directory of Open Access Journals (Sweden)

    P. Jithu

    2013-06-01

    Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.

  1. Microstrip and printed antenna design

    CERN Document Server

    Bancroft, Randy

    2009-01-01

    The approach in this book is historical and practical. It covers abasic designsa in more detail than other microstrip antenna books that tend to skip important electrical properties and implementation aspects of these types of antennas. Examples include: quarter-wave patch, quarter by quarter patch, detailed design method for rectangular circularly polarized patch, the use of the TM11 (linear and broadside CP), TM21 (monopole CP pattern) and TM02 (monopole linear) circular patch modes in designs, dual-band antenna designs which allow for independent dual-band frequencies. Limits on broadband m

  2. Measurement of mobile antenna systems

    CERN Document Server

    Arai, Hiroyuki

    2012-01-01

    If you're involved with the design, installation or maintenance of mobile antenna systems, this thoroughly revised and updated edition of a classic Artech book offers you the most current and comprehensive coverage of all the mandatory measurement techniques you need for your work in the field. This Second Edition presents critical new material in key areas, including radiation efficiency measurement, mobile phone usage position, and MIMO (multiple-input/multiple-output) antennas.This unique resource provides in-depth examinations of all relevant mobile antenna measurement theories, along with

  3. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  4. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  5. Wideband Antennas for Modern Radar Systems

    OpenAIRE

    Ren, Yu-Jiun; Lai, Chieh-Ping

    2010-01-01

    In this chapter, the basics of the antenna and phased array are reviewed and different wideband antennas for modern radar systems are presented. The concepts of the radome and frequency selective surface are also reviewed. The main contents include important parameters of the antenna, and theory and design consideration of the array antenna. Various wideband antennas are introduced and their performances are demonstrated, including: (1) for the phased array radar, the slotted waveguide array ...

  6. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  7. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem I core antenna/reaction center complexes.

    OpenAIRE

    Trinkunas, G.; Holzwarth, A R

    1996-01-01

    A procedure is described to generate and optimize the lattice models for spectrally inhomogeneous photosynthetic antenna/reaction center (RC) particles. It is based on the genetic algorithm search for the pigment spectral type distributions on the lattice by making use of steady-state and time-resolved spectroscopic input data. Upon a proper fitness definition, a family of excitation energy transfer models can be tested for their compatibility with the availability experimental data. For the ...

  8. Antenna Coupling in Multi Active Multi Passive Port Topologies

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The electromagnetic (EM) coupling between pairs of antennas in a system comprised of μ active RF ports and M passive ones is expressed under arbitrary complex terminations by obtaining the effective transfer function between the active ports using Mason's rule. Unlike a previous approach where...

  9. The new 34-meter antenna

    Science.gov (United States)

    Pompa, M. F.

    1986-01-01

    The new 34-m high efficiency Azimuth - Elevation antenna configuration, including its features, dynamic characteristics and performance at 8.4-GHz frequencies is described. The current-technology features of this antenna produce a highly reliable configuration by incorporation of a main wheel and track azimuth support, central pintle pivot bearing, close tolerance surface panels and all-welded construction. Also described are basic drive controls that, as slaved to three automatic microprocessors, provide accurate and safe control of the antenna's steering tasks. At this time antenna installations are completed at Goldstone and Canberra and have operationally supported the Voyager - Uranus encounter. A third installation is being constructed currently in Madrid and is scheduled for completion in late 1986.

  10. Electrically-driven optical antennas

    CERN Document Server

    Kern, Johannes; Prangsma, Jord C; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-01-01

    Unlike radiowave antennas, optical nanoantennas so far cannot be fed by electrical generators. Instead, they are driven by light or via optically active materials in their proximity. Here, we demonstrate direct electrical driving of an optical nanoantenna featuring an atomic-scale feed gap. Upon applying a voltage, quantum tunneling of electrons across the feed gap creates broadband quantum shot noise. Its optical frequency components are efficiently converted into photons by the antenna. We demonstrate that the properties of the emitted photons are fully controlled by the antenna architecture, and that the antenna improves the quantum efficiency by up to two orders of magnitude with respect to a non-resonant reference system. Our work represents a new paradigm for interfacing electrons and photons at the nanometer scale, e.g. for on-chip wireless data communication, electrically driven single- and multiphoton sources, as well as for background-free linear and nonlinear spectroscopy and sensing with nanometer...

  11. Dipoles, unintentional antennas and EMC

    Directory of Open Access Journals (Sweden)

    Berend Danker

    2008-01-01

    Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.

  12. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  13. Diversity Gain through Antenna Blocking

    Directory of Open Access Journals (Sweden)

    V. Dehghanian

    2012-01-01

    Full Text Available As part of the typical usage mode, interaction between a handheld receiver antenna and the operator's RF absorbing body and nearby objects is known to generate variability in antenna radiation characteristics through blocking and pattern changes. It is counterintuitive that random variations in blocking can result in diversity gain of practical applicability. This diversity gain is quantified from a theoretical and experimental perspective. Measurements carried out at 1947.5 MHz verify the theoretical predictions, and a diversity gain of 3.1 dB was measured through antenna blocking and based on the utilized measurement setup. The diversity gain can be exploited to enhance signal detectability of handheld receivers based on a single antenna in indoor multipath environments.

  14. Nanopillar Optical Antenna Avalanche Detectors

    Science.gov (United States)

    2014-08-30

    68 , (11), 10. 51. Adachi, S., Properties of aluminium gallium ...bandwidth products > 100 GHz. 2 UNIVERSITY OF CALIFORNIA Los Angeles Nanopillar Optical Antenna Avalanche Detectors A dissertation... products > 100 GHz. 6 iii The dissertation of Pradeep

  15. Thin magnetic conductor substrate for placement-immune, electrically-small antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Eubanks, Travis Wayne; McDonald, Jacob J.; Loui, Hung

    2011-09-01

    An antenna is considered to be placement-immune when the antenna operates effectively regardless of where it is placed. By building antennas on magnetic conductor materials, the radiated fields will be positively reinforced in the desired radiation direction instead of being negatively affected by the environment. Although this idea has been discussed thoroughly in theoretical research, the difficulty in building thin magnetic conductor materials necessary for in-phase field reflections prevents this technology from becoming more widespread. This project's purpose is to build and measure an electrically-small antenna on a new type of non-metallic, thin magnetic conductor. This problem has not been previously addressed because non-metallic, thin magnetic conductor materials have not yet been discovered. This work proposed the creation of an artificial magnetic conductor (AMC) with in-phase field reflections without using internal electric conductors, the placement of an electrically-small antenna on this magnetic conductor, and the development of a transmit-receive system that utilizes the substrate and electrically-small antenna. By not using internal electric conductors to create the AMC, the substrate thickness can be minimized. The electrically-small antenna will demonstrate the substrate's ability to make an antenna placement immune, and the transmit-receive system combines both the antenna and the substrate while adding a third layer of system complexity to demonstrate the complete idea.

  16. Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana.

    Science.gov (United States)

    Jia, Ting; Ito, Hisashi; Tanaka, Ayumi

    2016-11-01

    The photosystem I/II ratio increased when antenna size was enlarged by transient induction of CAO in chlorophyll b -less mutants, thus indicating simultaneous regulation of antenna size and photosystem I/II stoichiometry. Regulation of antenna size and photosystem I/II stoichiometry is an indispensable strategy for plants to acclimate to changes to light environments. When plants grown in high-light conditions are transferred to low-light conditions, the peripheral antennae of photosystems are enlarged. A change in the photosystem I/II ratio is also observed under the same light conditions. However, our knowledge of the correlation between antenna size modulation and variation in photosystem I/II stoichiometry remains limited. In this study, chlorophyll a oxygenase was transiently induced in Arabidopsis thaliana chlorophyll b-less mutants, ch1-1, to alter the antenna size without changing environmental conditions. In addition to the accumulation of chlorophyll b, the levels of the peripheral antenna complexes of both photosystems gradually increased, and these were assembled to the core antenna of both photosystems. However, the antenna size of photosystem II was greater than that of photosystem I. Immunoblot analysis of core antenna proteins showed that the number of photosystem I increased, but not that of photosystem II, resulting in an increase in the photosystem I/II ratio. These results clearly indicate that antenna size adjustment was coupled with changes in photosystem I/II stoichiometry. Based on these results, the physiological importance of simultaneous regulation of antenna size and photosystem I/II stoichiometry is discussed in relation to acclimation to light conditions.

  17. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  18. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  19. Antenna design for mobile devices

    CERN Document Server

    Zhang, Zhijun

    2017-01-01

    - Integrates state-of-the-art technologies with a special section for step-by-step antenna design - Features up-to-date bio-safety and electromagnetic compatibility regulation compliance and latest standards - Newly updated with MIMO antenna design, measurements and requirements - Accessible to readers of many levels, from introductory to specialist - Written by a practicing expert who has hired and trained numerous engineers

  20. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem I core antenna/reaction center complexes.

    Science.gov (United States)

    Trinkunas, G; Holzwarth, A R

    1996-07-01

    A procedure is described to generate and optimize the lattice models for spectrally inhomogeneous photosynthetic antenna/reaction center (RC) particles. It is based on the genetic algorithm search for the pigment spectral type distributions on the lattice by making use of steady-state and time-resolved spectroscopic input data. Upon a proper fitness definition, a family of excitation energy transfer models can be tested for their compatibility with the availability experimental data. For the case of the photosystem I core antenna (99 chlorophyll + primary electron donor pigment (P700)), three spectrally inhomogeneous three-dimensional lattice models, differing in their excitation transfer conditions, were tested. The relevant fit parameters were the pigment distribution on the lattice, the average lattice spacing of the main pool pigments, the distance of P700 and of long wavelength-absorbing (LWA) pigments to their nearest-neighbor main pool pigments, and the rate constant of charge separation from P700. For cyanobacterial PS I antenna/RC particles containing a substantial amount of LWA pigments, it is shown that the currently available experimental fluorescence data are consistent both with more migration-limited, and with more trap-limited excitation energy transfer models. A final decision between these different models requires more detailed experimental data. From all search runs about 30 different relative arrangements of P700 and LWA pigments were found. Several general features of all these different models can be noticed: 1) The reddest LWA pigment never appears next to P700. 2) The LWA pigments in most cases are spread on the surface of the lattice not far away from P700, with a pronounced tendency toward clustering of the LWA pigments. 3) The rate constant kP700 of charge separation is substantially higher than 1.2 ps-1, i.e., it exceeds the corresponding rate constant of purple bacterial RCs by at least a factor of four. 4) The excitation transfer

  1. Wideband Antenna for HPM Measurements

    Directory of Open Access Journals (Sweden)

    Kurkan Ivan

    2016-01-01

    Full Text Available The measurements of microwave pulses of gigawatt power level have a lot of constraints. A receiving antenna is a starting and core point of the measurement system. Waveguide based and dipole antennas have a limited wide bands, while the use of commercially available wideband antennas is restricted by their maximum peak power acceptances. The design of the wide band antenna with the small effective area was proposed. The characteristics of prototype were obtained in numerical simulations with ANSYS HFSS software and by calibration tests in the frequency band of 1–13 GHz. It has the effective area about the 1 mm2 in X-band and square-law dependence on the wavelength in a wide band. The cross polarization rate is more than 60 dB at the centre position and not less than 30 dB within the range of ±5° in azimuth and elevation angle. The wide beam radiation pattern forces a user to discriminate reflected signals. This antenna could greatly simplify the measurement system, replacing a set of narrow band antennas that connected to several recording channels.

  2. Complex

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Schiff bases and their complex compounds have been studied for their .... establishing coordination of the N–(2 – hydroxybenzyl) - L - α - valine Schiff base ..... (1967); “Spectrophotometric Identification of Organic Compounds”, Willey, New.

  3. Evolution of low-light adapted peripheral light-harvesting complexes in strains of Rhodopseudomonas palustris.

    Science.gov (United States)

    Kotecha, Abhay; Georgiou, Theonie; Papiz, Miroslav Z

    2013-03-01

    Purple bacteria have peripheral light-harvesting (PLH) complexes adapted to high-light (LH2) and low-light (LH3, LH4) growth conditions. The latter two have only been fully characterised in Rhodopseudomonas acidophila 7050 and Rhodopseudomonas palustris CGA009, respectively. It is known that LH4 complexes are expressed under the control of two light sensing bacteriophytochromes (BphPs). Recent genomic sequencing of a number of Rps. palustris strains has provided extensive information on PLH genes. We show that both LH3 and LH4 complexes are present in Rps. palustris and have evolved in the same operon controlled by the two adjacent BphPs. Two rare marker genes indicate that a gene cluster CL2, containing LH2 genes and the BphP RpBphP4, was internally transferred within the genome to form a new operon CL1. In CL1, RpBphP4 underwent gene duplication to RpBphP2 and RpBphP3, which evolved to sense light intensity rather than spectral red/far-red intensity ratio. We show that a second LH2 complex was acquired in CL1 belonging to a different PLH clade and these two PLH complexes co-evolved together into LH3 or LH4 complexes. The near-infrared spectra provide additional support for our conclusions on the evolution of PLH complexes based on genomic data.

  4. Transmit antenna selection based on shadowing side information

    KAUST Repository

    Yilmaz, Ferkan

    2011-05-01

    In this paper, we propose a new transmit antenna selection scheme based on shadowing side information. In the proposed scheme, single transmit antenna which has the highest shadowing coefficient is selected. By the proposed technique, usage of the feedback channel and channel estimation complexity at the receiver can be reduced. We consider independent but not identically distributed Generalized-K composite fading model, which is a general composite fading & shadowing channel model for wireless environments. Exact closed-form outage probability, moment generating function and symbol error probability expressions are derived. In addition, theoretical performance results are validated by Monte Carlo simulations. © 2011 IEEE.

  5. Energy detection using very large antenna array receivers

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; De Carvalho, Elisabeth; Popovski, Petar;

    2014-01-01

    We propose the use of energy detection for single stream transmission and reception by a very large number of antennas, with primary application to millimeter wave communications. The reason for applying energy detection is low complexity, cost and power efficiency. While both energy detection...... and millimeter wave communications are limited to short ranges due respectively to noise sensitivity and propagation attenuation, processing by a large number of receive antennas overcomes those shortcomings to provide significant reach extension. This processing is solely based on long-term statistics...

  6. Coupled-oscillator based active-array antennas

    CERN Document Server

    Pogorzelski, Ronald J

    2012-01-01

    Describing an innovative approach to phased-array control in antenna design This book explores in detail phased-array antennas that use coupled-oscillator arrays, an arrangement featuring a remarkably simple beam steering control system and a major reduction in complexity compared with traditional methods of phased-array control. It brings together in one convenient, self-contained volume the many salient research results obtained over the past ten to fifteen years in laboratories around the world, including the California Institute of Technology's Jet Propulsion Laboratory.

  7. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  8. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...... bands in proximity with the users body. Results show that antennas may experience very different losses and envelope correlation coefficients depending on their relative position with respect to the handset, as the influence of the users hand is not symmetrical in most cases. Narrow-band antennas...

  9. Detecting flaws in Portland cement concrete using TEM horn antennae

    Science.gov (United States)

    Al-Qadi, Imad L.; Riad, Sedki M.; Su, Wansheng; Haddad, Rami H.

    1996-11-01

    To understand the dielectric properties of PCC and better correlate them with type and severity of PCC internal defects, a study was conducted to evaluate PCC complex permittivity and magnetic permeability over a wideband of frequencies using both time domain and frequency domain techniques. Three measuring devices were designed and fabricated: a parallel plate capacitor, a coaxial transmission line, and transverse electromagnetic (TEM) horn antennae. The TEM horn antenna covers the microwave frequencies. The measurement technique involves a time domain setup that was verified by a frequency domain measurement. Portland cement concrete slabs, 60 by 75 by 14 cm, were cast; defects include delamination, delamination filled with water, segregation, and chloride contamination. In this paper, measurements using the TEM horn antennae and the feasibility of detecting flaws at microwave frequency are presented.

  10. Wide-Angle-Scanning Reflectarray Antennas Actuated by MEMS

    Science.gov (United States)

    Fang, Houfei; Huang, John; Thomson, Mark W.

    2009-01-01

    An effort to develop large-aperture, wide-angle-scanning reflectarray antennas for microwave radar and communication systems is underway. In an antenna of this type as envisioned, scanning of the radiated or incident microwave beam would be effected through mechanical rotation of the passive (reflective) patch antenna elements, using microelectromechanical systems (MEMS) stepping rotary actuators typified by piezoelectric micromotors. It is anticipated that the cost, mass, and complexity of such an antenna would be less than, and the reliability greater than, those of an electronically scanned phased-array antenna of comparable beam-scanning capability and angular resolution. In the design and operation of a reflectarray, one seeks to position and orient an array of passive patch elements in a geometric pattern such that, through constructive interference of the reflections from them, they collectively act as an efficient single reflector of radio waves within a desired frequency band. Typically, the patches lie in a common plane and radiation is incident upon them from a feed horn.

  11. Smart Cylindrical Dome Antenna Based on Active Frequency Selective Surface

    Directory of Open Access Journals (Sweden)

    Tongyu Ding

    2017-01-01

    Full Text Available In this paper, we proposed a beamforming antenna, which is realized using an omnidirectional antenna in the center surrounded by a cylindrical smart dome. The smart dome is made of 16 active frequency selective surface columns of which the amplitude and phase response can be continuously tuned by varying the bias voltages of the employed varactors. Thus, the performance of the proposed antenna could achieve higher gain, better nulling level, and more agility than many switch methods-based cylindrical reconfigurable antennas. Moreover, in order to overcome the unavailable analytical synthesis caused by complex mutual coupling between columns, we develop a genetic algorithm based optimization system and conducted a serial of experiments to evaluate the high-gain, nulling, continuously steering, and frequency-invariant ability. The results show that, during the frequency tunable range of the AFSS (2.0 GHz to 2.7 GHz, the antenna can offer an additional gain of up to 6.57 dB and nulling level of −56.41 dBi. For the high-gain modes, the −3 dB beam widths are 26°–34°, which offers enhanced angular resolution compared with other reported beam-sweeping work. Furthermore, the radiation pattern is continuously steerable.

  12. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2014-12-15

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  13. Microstrip antenna gain enhancement with metamaterial radome

    Science.gov (United States)

    Attachi, S.; Saleh, C.; Bouzouad, M.

    2017-01-01

    In this work, a high gain patch antenna using multilayer FSS radome is proposed for millimeter-wave applications. The antenna operating frequency is 43.5 GHz. The antenna/radome system consists of one, two, three, or four layers of metasurfaces placed in the near-field region of a microstrip patch antenna. The antenna/radome system gain is improved by 9 dBi compared to the patch antenna alone, and the radiation pattern half-power beamwidth is reduces to 20° in both E- and H-planes.

  14. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  15. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  16. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  17. Antennas in matter: Fundamentals, theory, and applications

    Science.gov (United States)

    King, R. W. P.; Smith, G. S.; Owens, M.; Wu, T. T.

    1981-01-01

    The volume provides an introduction to antennas and probes embedded within or near material bodies such as the earth, the ocean, or a living organism. After a fundamental analysis of insulated and bare antennas, an advanced treatment of antennas in various media is presented, including a detailed study of the electromagnetic equations in homogeneous isotropic media, the complete theory of the bare dipole in a general medium, and a rigorous analysis of the insulated antenna as well as bare and insulated loop antennas. Finally, experimental models and measuring techniques related to antennas and probes in a general dissipative or dielectric medium are examined.

  18. Single Band Helical Antenna in Axial Mode

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2012-11-01

    Full Text Available Helical antennas have been widely used in a various useful applications, due to their low weight and low profile conformability, easy and cheap realization.Radiation properties of this antenna are examined both theoretically and experimentally. In this paper, an attempt has been made to investigate new helical antenna structure for Applications. CST MWS Software is used for the simulation and design calculations of the helical antennas. The axial ratio, return loss, VSWR, Directivity, gain, radiation pattern is evaluated. Using CST MWS simulation software proposed antenna is designed/simulated and optimized. The antenna exhibits a single band from 0 GHz to 3 GHz for GPS and several satellite applications

  19. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    Science.gov (United States)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we

  20. Single and dual-Gregorian reflector antenna shaped beam far-field synthesis

    Science.gov (United States)

    Mehler, M. J.

    The direct far-field G.O. synthesis of shaped beam reflector antennas has recently been treated by Mehler, Tun and Adatia (1986). These authors use a synthesis technique which exploits complex coordinates and which is based on a method originally considered by Norris and Westcott (1976). They describe the synthesis of single reflector antennas which radiate both elliptical beams and European coverage patterns. Here this technique is extended to consider a class of dual reflector antennas which possess shaped main reflectors and conic subreflectors. An example is given of a Gregorian duel reflector antenna which radiates a cross-polar field significantly smaller than that radiated by single shaped reflector antennas. In addition, the behavior of the radiation pattern as a function of the reflector diameter is investigated.

  1. Multi-Frequency Analysis For Interstitial Microwave Hyperthermia Using Multi-Slot Coaxial Antenna

    Science.gov (United States)

    Gas, Piotr

    2015-01-01

    The presented paper shows a new concept of multi-slot coaxial antenna working at different frequencies to predict the best solution for interstitial microwave hyperthermia treatment. The described method concerns a microwave heating of unhealthy cells using a thin microwave antenna located in the human tissue. Therefore, the coupled wave equation in a sinusoidal steady-state and the transient bioheat equation under an axial symmetrical model are considered. The 4-Cole-Cole approximation has been used to compute the complex relative permittivity of the human tissues at different antenna operating frequencies. At the stage of numerical simulation the finite element method (FEM) is used. Special attention has been paid to estimate the optimal antenna parameters for thermal therapy for three microwave frequencies mainly used in medical practice and make comparison of the obtained results in the case of single-, double- and triple-slot antennas.

  2. Direction of Arrival Estimation with a Novel Single-Port Smart Antenna

    Directory of Open Access Journals (Sweden)

    Chen Sun

    2004-08-01

    Full Text Available A novel direction of arrival (DOA estimation technique that uses the conventional multiple-signal classification (MUSIC algorithm with periodic signals is applied to a single-port smart antenna. Results show that the proposed method gives a high-resolution (1 degree DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only 1 analogue-to-digital converter (ADC is used in this antenna, which features low power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling among antenna elements. Therefore, it offers an economical way to extensively implement smart antennas into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals such as laptops in wireless networks.

  3. Direction of Arrival Estimation with a Novel Single-Port Smart Antenna

    Science.gov (United States)

    Sun, Chen; Karmakar, Nemai C.

    2004-12-01

    A novel direction of arrival (DOA) estimation technique that uses the conventional multiple-signal classification (MUSIC) algorithm with periodic signals is applied to a single-port smart antenna. Results show that the proposed method gives a high-resolution (1 degree) DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only 1 analogue-to-digital converter (ADC) is used in this antenna, which features low power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling among antenna elements. Therefore, it offers an economical way to extensively implement smart antennas into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals such as laptops in wireless networks.

  4. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    Science.gov (United States)

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  5. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  6. Designing and implementing Multibeam Smart Antennas for high bandwidth UAV communications using FPGAs

    Science.gov (United States)

    Porcello, J. C.

    Requirements for high bandwidth UAV communications are often necessary in order to move large amounts of mission information to/from Users in real-time. The focus of this paper is antenna beamforming for point-to-point, high bandwidth UAV communications in order to optimize transmit and receive power and support high data throughput communications. Specifically, this paper looks at the design and implementation of Multibeam Smart Antennas to implement antenna beamforming in an aerospace communications environment. The Smart Antenna is contrasted against Fast Fourier Transform (FFT) based beamforming in order to quantify the increase in both computational load and FPGA resources required for multibeam adaptive signal processing in the Smart Antenna. The paper begins with an overall discussion of Smart Antenna design and general beamforming issues in high bandwidth communications. Important design considerations such as processing complexity in a constrained Size, Weight and Power (SWaP) environment are discussed. The focus of the paper is with respect to design and implementation of digital beamforming wideband communications waveforms using FPGAs. A Multibeam Time Delay element is introduced based on Lagrange Interpolation. Design data for Multibeam Smart Antennas in FPGAs is provided in the paper as well as reference circuits for implementation. Finally, an example Multibeam Smart Antenna design is provided based on a Xilinx Virtex-7 FPGA. The Multibeam Smart Antenna example design illustrates the concepts discussed in the paper and provides design insight into Multibeam Smart Antenna implementation from the point of view of implementation complexity, required hardware, and overall system performance gain.

  7. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.

    Science.gov (United States)

    Li, Kun; Hogan, Nathaniel J; Kale, Matthew J; Halas, Naomi J; Nordlander, Peter; Christopher, Phillip

    2017-06-14

    Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO2/Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.

  8. Non-Reciprocal Optical Antennas

    CERN Document Server

    Castro-Lopez, Marta; van Hulst, Niek F

    2014-01-01

    Plasmonics aims to interface photonics and electronics. Finding optical, near-field analogues of much used electro-technical components is crucial to the success of such a platform. Here we present the plasmonic analogue of a non-reciprocal antenna. For non-reciprocality in a plasmonic context, the optical excitation and emission resonances of the antenna need to be an orthogonal set. We show that nonlinear excitation of metal nanoantennas creates a sufficient shift between excitation and emission wavelengths that they can be interpreted as decoupled, allowing for independent tuning of excitation and emission properties along different spatial dimensions. This leads, for given excitation wavelength and polarization, to independent optimization of emission intensity, frequency spectrum, polarization and angular spectrum. Non-reciprocal optical antennas of both gold and aluminum are characterized and shown to be useful as e.g. nonlinear signal transducers or nanoscale sources of widely tunable light.

  9. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  10. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  11. High-temperature superconductor antenna investigations

    Science.gov (United States)

    Karasack, Vincent G.

    1990-10-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  12. Multifrequency Printed Antennas Loaded with Metamaterial Particles

    Directory of Open Access Journals (Sweden)

    D. Segovia-Vargas

    2009-06-01

    Full Text Available This paper provides a review of printed antennas loaded with metamaterial particles. This novel technique allows developing printed antennas with interesting features such as multifrequency (simultaneous operation over two or more frequency bands and multifunctionality (e. g. radiation pattern diversity. Moreover, compactness is also achieved and the main advantages of conventional printed antennas (light weight, low profile, low cost ... are maintained. Different types of metamaterial-loaded printed antennas are reviewed: printed dipoles and patch antennas. Several prototypes are designed, manufactured and measured showing good results. Furthermore, simple but accurate equivalent models are proposed. These models allow an easy and quick design of metamaterial-loaded printed antennas. Finally, two interesting applications based on the proposed antennas are reviewed: the patch antennas are used as radiating elements of emerging active RFID systems in the microwave band and the metamaterial-loaded printed dipoles are employed to increase the performance of log-periodic arrays.

  13. VLBI Antenna Calibration via GPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate and develop an inexpensive system to determine: 1)VLBI antenna properties such as axis-offset, non-intersection of axis and antenna...

  14. International Mapping of Antenna-Measurement Facilities

    DEFF Research Database (Denmark)

    Boccia, Luigi; Breinbjerg, Olav; Di Massa, Giuseppe

    2006-01-01

    This paper presents a comprehensive international mapping of antenna-measurement facilities. This initiative, conducted within the framework of the Antenna Centre of Excellence (ACE) of the European Union, is oriented toward all institutions having research, development, or operational activities...

  15. Multiband small zeroth-order metamaterial antenna

    Science.gov (United States)

    Dakhli, Nabil; Choubani, Fethi; David, Jacques

    2011-06-01

    A novel resonant metamaterial antenna based on the Composite Right/Left-Handed (CRLH) transmission line (TL) model is presented. The proposed small antenna is designed to operate simultaneously over multiple wireless services (UMTS-WLAN-WIMAX)

  16. Mode-matching for Optical Antennas

    CERN Document Server

    Feichtner, Thorsten; Hecht, Bert

    2016-01-01

    The emission rate of a point dipole can be strongly increased in presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g.~ohmic losses and non-negligible field penetration in metals at optical frequencies. Here we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  17. Gain Enhancement of a Microstrip Patch Antenna Using a Reflecting Layer

    Directory of Open Access Journals (Sweden)

    Anwer Sabah Mekki

    2015-01-01

    Full Text Available A low profile, unidirectional, dual layer, and narrow bandwidth microstrip patch antenna is designed to resonate at 2.45 GHz. The proposed antenna is suitable for specific applications, such as security and military systems, which require a narrow bandwidth and a small antenna size. This work is mainly focused on increasing the gain as well as reducing the size of the unidirectional patch antenna. The proposed antenna is simulated and measured. According to the simulated and measured results, it is shown that the unidirectional antenna has a higher gain and a higher front to back ratio (F/B than the bidirectional one. This is achieved by using a second flame retardant layer (FR-4, coated with an annealed copper of 0.035 mm at both sides, with an air gap of 0.04λ0 as a reflector. A gain of 5.2 dB with directivity of 7.6 dBi, F/B of 9.5 dB, and −18 dB return losses (S11 are achieved through the use of a dual substrate layer of FR-4 with a relative permittivity of 4.3 and a thickness of 1.6 mm. The proposed dual layer microstrip patch antenna has an impedance bandwidth of 2% and the designed antenna shows very low complexity during fabrication.

  18. Design and application of single-antenna GPS/accelerometers attitude determination system

    Institute of Scientific and Technical Information of China (English)

    He Jie; Huang Xianlin; Wang Guofeng

    2008-01-01

    In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU).It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi-physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).

  19. An Evolved Antenna for Deployment on NASA's Space Technology 5 Mission. Chapter 1

    Science.gov (United States)

    Lohn, Jason D.; Hornby, Gregory S.; Linden, Derek S.

    2004-01-01

    We present an evolved X - band antenna design and flight prototype currently on schedule to be deployed on NASA's Space Technology 5(ST5) spacecraft. Current methods of designing and optimizing antennas by hand are time and labor intensive, limit complexity and require significant expertise and experience. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions that would ordinarily not be found. The ST5 antenna was evolved to meet a challenging set of mission requirements, most notably the combination of wide beamwidth for a circularly-polarized wave and wide bandwidth.Two evolutionary algorithms were used: one used a genetic algorithm style representation that did not allow branching in the antenna arms: the second used a genetic programming style tree-structured representation that allowed branching in the antenna arms. The highest performance antennas from both algorithms were fabricated and tested and both yielded similar performance. Both were comparable in performance to a hand-designed antenna produced by a contractor for the mission, and so we consider them examples of human-competitive performance by evolutionary algorithms. One of the evolved antenna prototypes is undergoing flight qualification testing.

  20. Design considerations for low antenna correlation and mutual coupling reduction in multi antenna terminals

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2007-01-01

    The influence of mutual coupling on the envelope correlation between two identical planar inverted F-antennas (PIFA) are investigated. The capacity of a multiple-input multiple-output (MIMO) antenna system strongly depends on the correlation between the antennas. By placing two antennas in a fixe...

  1. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field. The r...

  2. Improved List Sphere Decoder for Multiple Antenna Systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced-complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fixed initial radius, the ILSD adopts an adaptive radius to accelerate the list construction. Characterized by low-complexity and radius-insensitivity, the proposed algorithm makes iterative joint detection and decoding more realizable in multiple-antenna systems. Simulation results show that computational savings of ILSD over LSD are more apparent with more transmit antennas or larger constellations, and with no performance degradation. Because the complexity of the ILSD algorithm almost keeps invariant with the increasing of initial radius, the BER performance can be improved by selecting a sufficiently large radius.

  3. Illustration of the Impedance Behaviour of Extremely Low-Profile Coupled Shorted-Patches Antennas for UHF RFID of People

    Directory of Open Access Journals (Sweden)

    Milan Svanda

    2014-01-01

    Full Text Available The recently introduced coupled shorted-patches technique for the design of extremely low-profile UHF RFID tag antennas is used to illustrate the flexibility of selected feeding methods for tuning the antenna input impedance for the complex values required for matching with typical RFID chips. We present parametric studies of the impedance behaviour of dipole-excited and directly excited antennas designed for radiofrequency identification of people in the European UHF frequency band. Our study can significantly facilitate the design of this class of on-body tag antennas.

  4. Mode-matching for Optical Antennas

    OpenAIRE

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2016-01-01

    The emission rate of a point dipole can be strongly increased in presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g.~ohmic losses and non-negligible field penetration in metals at optical frequencies. Here we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based ...

  5. Optical antenna effect in semiconducting nanowires.

    Science.gov (United States)

    Chen, G; Wu, Jian; Lu, Qiujie; Gutierrez, H R; Xiong, Qihua; Pellen, M E; Petko, J S; Werner, D H; Eklund, P C

    2008-05-01

    We report on investigations of the interaction of light with nanoscale antennae made from crystalline GaP nanowires (NWs). Using Raman scattering, we have observed strong optical antenna effects which we identify with internal standing wave photon modes of the wire. The antenna effects were probed in individual NWs whose diameters are in the range 40 optical antenna effect" in semiconducting NWs is essential to the analysis of all electro-optic effects in small diameter filaments.

  6. Optical antenna for photofunctional molecular systems.

    Science.gov (United States)

    Ikeda, Katsuyoshi; Uosaki, Kohei

    2012-02-06

    Optical antennas can enhance the efficiency of photon-molecule interactions. To design efficient antenna structures, it is essential to consider physicochemical aspects in addition to electromagnetic considerations. Specifically, chemical interactions between optical antennas and molecules have to be controlled to enhance the overall efficiency. For this purpose, sphere-plane nanostructures are suitable optical antennas for molecular-modified functional electrode systems when a well-defined electrode is utilized as a platform.

  7. Electromechanically Tunable Suspended Optical Nano-antenna

    OpenAIRE

    Chen, Kai; Razinskas, Gary; Feichtner, Thorsten; Grossmann, Swen; Christiansen, Silke; Hecht, Bert

    2016-01-01

    Coupling mechanical degrees of freedom with plasmonic resonances has potential applications in optomechanics, sensing, and active plasmonics. Here we demonstrate a suspended two-wire plasmonic nano-antenna acting like a nano-electrometer. The antenna wires are supported and electrically connected via thin leads without disturbing the antenna resonance. As a voltage is applied, equal charges are induced on both antenna wires. The resulting equilibrium between the repulsive Coulomb force and th...

  8. Wideband irregular-shaped fractal antennas

    OpenAIRE

    Kolesov, V. V.; Krupenin, S. V.

    2007-01-01

    This paper proposes an algorithm of generating fully reproducible irregular fractal structures for antenna design. Three types of pseudorandom fractal clusters are introduced. The multi-frequency behavior of the irregular-shaped fractal antennas is studied by means of numerical analysis. The antenna behavior is studied under feeder displacement. As shown by numerical results feeder displacements allow one to control the spatial-frequency antenna characteristics.

  9. Dual-Antenna Microwave Reception Without Switching

    Science.gov (United States)

    Hartop, Robert W.

    1994-01-01

    Receiver remains connected to both antennas, transmitter switched to connect it to one or other. Combination of hybrid junction, circulators, and filter provides simultaneous reception paths from both antennas without significantly altering radiation patterns of antennas. Communication system considered for use in spacecraft and in which mechanical switch permitted on downlink but not on uplink. Applicable to terrestrial microwave communication stations subject to dual-antenna requirements.

  10. Rectangular dielectric resonator antennas theory and design

    CERN Document Server

    Yaduvanshi, Rajveer S

    2016-01-01

    This book covers resonating modes inside device and gives insights into antenna design, impedance and radiation patterns. It discusses how higher-order modes generation and control impact bandwidth and antenna gain. The text covers new approaches in antenna design by investigation hybrid modes, H_Z and E_Z fields available simultaneously, and analysis and modelling on modes with practical applications in antenna design. The book will be prove useful to students, researchers and professionals alike.

  11. Advanced antennas for SAR spacecraft

    Science.gov (United States)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  12. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  13. Antenna reconfiguration verification and validation

    Science.gov (United States)

    Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor); Carlson, Douglas R. (Inventor); Drexler, Jerome P. (Inventor)

    2009-01-01

    A method of testing the electrical functionality of an optically controlled switch in a reconfigurable antenna is provided. The method includes configuring one or more conductive paths between one or more feed points and one or more test point with switches in the reconfigurable antenna. Applying one or more test signals to the one or more feed points. Monitoring the one or more test points in response to the one or more test signals and determining the functionality of the switch based upon the monitoring of the one or more test points.

  14. Nested-cone transformer antenna

    Science.gov (United States)

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  15. Artesian Well Abandonment at Launch Complex 39A

    Science.gov (United States)

    Morgan, Lindsay; Johansen, Deda

    2015-01-01

    The artesian well tasked for abandonment was located on the LOX side (northwest area) of the launch complex. The exact date of well installation is unknown. The well was no longer in use at the time of the abandonment request, but was previously utilized under St. Johns River Water Management District (SJRWMD) consumptive use permit (No. 50054) for the Floridian Aquifer. The exact construction details of the LOX artesian well were also unknown; however, a similar-type artesian well was previously located on the LH2 side of the site, which was abandoned in 2012. Based on discussions with the NASA RPM and review of the LH2 artesian well abandonment completion report, the LH2 artesian well was reported to be an 8-inch diameter, 330-foot deep well. The NASA RPM communicated that the LOX artesian well was likely to be an 8-inch diameter, 380-foot deep well. This information was used for scoping, and was subsequently confirmed to be substantially accurate. No additional information could be found for the LOX artesian well using the NASA Remediation Information System (RIS).

  16. Novel fabry-pérot cavity antenna with enhanced beam steering property using reconfigurable meta-surface

    Science.gov (United States)

    Xie, Peng; Wang, Guangming; Cai, Tong; Li, Haipeng; Liang, Jiangang

    2017-07-01

    Fabry-Pérot cavity (FPC) antenna is essential and widely used in communication system. However, conventional Fabry-Pérot cavity antennas suffer from limited working modes, small beam steering range, and also complex configurations. Here, we propose a novel reconfigurable meta-surface to extend the working modes of the FPC antenna, and thus enhanced beam steering angles (-54° to 54°). The reconfigurable meta-surface consists of 6 × 6 unit cells, occupying an area of 90 mm × 90 mm. The well-designed bias circuits can control the reflection phase of the meta-surface by tuning the states of the inserted PIN diodes, which results in 11 radiation directions of our FPC antenna. For experimental demonstration, we fabricate and assemble an antenna sample working at 5 GHz. Numerical and experimental results coincide well with each other, indicating enhanced radiation properties and wide applications of our FPC antenna.

  17. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  18. Isolation between three antennas at 700 MHz

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Pedersen, Gert F.

    2015-01-01

    To address the antenna design challenges posed by many frequency bands, introduced with long-term evolution deployment, this study proposes the use of separate transmit (Tx) and receive (Rx) narrow-band antennas. In addition, a diversity Rx (Dx) antenna is needed for multiple-input multiple...

  19. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  20. Small X-Band Oscillator Antennas

    Science.gov (United States)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  1. 47 CFR 101.517 - Antennas.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements....

  2. 47 CFR 101.115 - Directional antennas.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed...

  3. New Concepts in Electromagnetic Materials and Antennas

    Science.gov (United States)

    2015-01-01

    AFRL-RY-WP-TR-2014-0233 NEW CONCEPTS IN ELECTROMAGNETIC MATERIALS AND ANTENNAS Jeffrey Allen, Naftali Herscovici, Brad Kramer, and...Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology

  4. 47 CFR 95.859 - Antennas.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service....

  5. 47 CFR 73.816 - Antennas.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization...

  6. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...

  7. Coplanar waveguide feed for microstrip patch antennas

    Science.gov (United States)

    Smith, R. L.; Williams, J. T.

    1992-01-01

    A coplanar waveguide (CPW) loop is shown to be an effective low VSWR feed for microstrip antennas. The low VSWR transition between the CPW and the antenna is obtained without the use of a matching circuit, and it is relatively insensitive to the position of the antenna and the feed.

  8. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  9. Smart antennas: state of the art

    OpenAIRE

    Boche, Holger; Bourdoux, André; Rodríguez Fonollosa, Javier; Kaiser, Thomas; Molisch, Andreas F.; Utschick, Wolfgang

    2006-01-01

    Aim of this contribution is to illustrate the state of the art of smart antenna research from several perspectives. The bow is drawn from transmitter issues via channel measurements and modeling, receiver signal processing, network aspects, technological challenges towards first smart antenna applications and current status of standardization. Moreover, some future prospects of different disciplines in smart antenna research are given. Peer Reviewed

  10. 47 CFR 74.641 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards... elevation planes. (2) New periscope antenna systems will be authorized upon a certification that the...

  11. 47 CFR 78.105 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... planes. (2) New periscope antenna systems will be authorized upon a certification that the radiation, in...

  12. 47 CFR 80.923 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  13. Future Vogues in Handset Antenna Systems

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Pedersen, Gert Frølund

    2011-01-01

    This paper exemplifies future trends in handset antenna systems, contextualizing their historical evolution and anticipating novel paradigms. It is shown through numerical simulations how narrow-band antennas used in transceiver separation mode can reduce the total loss in presence of the user......’s hand, improving at the same time the antenna isolation....

  14. Antenna Construction and Propagation of Radio Waves.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  15. Orthogonal antenna architecture for MIMO handsets

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The paper presents a method for decorrelating the antenna elements of a MIMO system in a compact handheld terminal at low bands. The architecture of the antenna system induces orthogonal currents over the closely spaced antennas resulting in a correlation free system. Nevertheless, due to the small...

  16. 47 CFR 80.1017 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  17. 47 CFR 74.737 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  18. 47 CFR 80.967 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  19. 120-GHz HEMT Oscillator With Surface-Wave-Assisted Antenna

    Science.gov (United States)

    Samoska, Lorene; Siegel, Peter; Leong, Kevin; Itoh, Tatsuo; Qian, Yongxi; Radisic, Vesna

    2003-01-01

    Two monolithic microwave integrated circuits (MMICs) have been designed and built to function together as a source of electromagnetic radiation at a frequency of 120 GHz. One of the MMICs is an oscillator and is the highest-power 120-GHz oscillator reported thus far in the literature. The other MMIC is an end-fire antenna that radiates the oscillator signal. Although these MMICs were constructed as separate units and electrically connected with wire bonds, future oscillator/ antenna combinations could readily be fabricated as monolithic integrated units. Such units could be used as relatively high-power solid-state microwave sources in diverse applications that include automotive radar, imaging, scientific instrumentation, communications, and radio astronomy. As such, these units would be attractive alternatives to vacuum-tube oscillators, which are still used to obtain acceptably high power in the frequency range of interest. The oscillator (see figure) includes a high-electron-mobility transistor (HEMT), with gate-periphery dimensions of 4 by 37 m, in a common-source configuration. The series feedback element of the oscillator is a grounded coplanar waveguide (CPW) at the source. The HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle) to maximize the output power of the oscillator. Input and output impedance-matching circuit elements are designed to maximize output power and to establish the conditions needed for oscillation. The design of the antenna takes advantage of surface waves, which, heretofore, have been regarded as highly disadvantageous because they can leak power and degrade the performances of antennas that have not been designed to exploit them. Measures taken to suppress surface waves have included complex machining of circuit substrates and addition of separate substrates. These measures are difficult to implement in standard MMIC fabrication processes. In contrast, because the design of the

  20. Smart adaptive array antennas for wireless communcations

    Science.gov (United States)

    Christodoulou, Christos G.; Georgiopoulos, Michael

    2001-08-01

    This paper discusses an experimental neural network based smart antenna capable of performing direction finding and the necessary beamforming. The Radial Basis Function Neural Network (RBFNN) algorithm is used for both tasks and for multiple signals. The algorithm operates in two stages. The field of view of the antenna array is divided into spatial sectors, then each network is trained in the first stage to detect signals emanating from sources in that sector. According to the outputs of the first stage, one or more networks of the second stage can be activated so as to estimate the exact location of the sources. No a priori knowledge is required about the number of sources, and the networks can be designed to arbitrary angular resolution. Some experimental results are shown and compared with other algorithms, such as, the Fourier Transform and the MUSIC algorithm. The comparisons show the superior performance of the RBFNN and its ability to overcome many limitations of the conventional and other superresolution techniques, specifically by reducing the computational complexity and the ability to deal with a large number of sources.

  1. Hollow plasmonic antennas for broadband SERS spectroscopy.

    Science.gov (United States)

    Messina, Gabriele C; Malerba, Mario; Zilio, Pierfrancesco; Miele, Ermanno; Dipalo, Michele; Ferrara, Lorenzo; De Angelis, Francesco

    2015-01-01

    The chemical environment of cells is an extremely complex and multifaceted system that includes many types of proteins, lipids, nucleic acids and various other components. With the final aim of studying these components in detail, we have developed multiband plasmonic antennas, which are suitable for highly sensitive surface enhanced Raman spectroscopy (SERS) and are activated by a wide range of excitation wavelengths. The three-dimensional hollow nanoantennas were produced on an optical resist by a secondary electron lithography approach, generated by fast ion-beam milling on the polymer and then covered with silver in order to obtain plasmonic functionalities. The optical properties of these structures have been studied through finite element analysis simulations that demonstrated the presence of broadband absorption and multiband enhancement due to the unusual geometry of the antennas. The enhancement was confirmed by SERS measurements, which showed a large enhancement of the vibrational features both in the case of resonant excitation and out-of-resonance excitation. Such characteristics indicate that these structures are potential candidates for plasmonic enhancers in multifunctional opto-electronic biosensors.

  2. Synthesis, Characterization and Luminescent Properties of Complexes of Rare Earth Nitrates with 2,2′:4′,4″:2″,2-Quaterpyridine

    Institute of Scientific and Technical Information of China (English)

    唐瑜; 张正华; 谭民裕; 王锐

    2002-01-01

    The rare earth nitrate complexes with 2,2′:4′,4″:2″,2-quaterpyridine (L) were prepared in ethylacetate. These new complexes with the general formula [RE(NO3)3L]*H2O (RE = La, Pr, Eu, Tb, Er, Y) were characterized by elemental analysis, IR spectra, thermal analysis and molar conductance measurements. The luminescence properties of these complexes were also studied.

  3. Wireless Sensor Network Security Enhancement Using Directional Antennas: State of the Art and Research Challenges

    Directory of Open Access Journals (Sweden)

    Daniel-Ioan Curiac

    2016-04-01

    Full Text Available Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.

  4. A Genetic Algorithm-based Antenna Selection Approach for Large-but-Finite MIMO Networks

    KAUST Repository

    Makki, Behrooz

    2016-12-29

    We study the performance of antenna selectionbased multiple-input-multiple-output (MIMO) networks with large but finite number of transmit antennas and receivers. Considering the continuous and bursty communication scenarios with different users’ data request probabilities, we develop an efficient antenna selection scheme using genetic algorithms (GA). As demonstrated, the proposed algorithm is generic in the sense that it can be used in the cases with different objective functions, precoding methods, levels of available channel state information and channel models. Our results show that the proposed GAbased algorithm reaches (almost) the same throughput as the exhaustive search-based optimal approach, with substantially less implementation complexity.

  5. Compact Agile Antenna Concept Utilizing Reconfigurable Front End for Wireless Communications

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Svendsen, Simon

    2014-01-01

    that separates the Tx and Rx chain throughout the front end (FE). The complexity of the FE is reduced dramatically by replacing the duplex filters with tunable filters and closely integrating the tunable antennas in the FE, providing filtering which can be used to lower requirements for the tunable filters....... For this purpose, very small narrow-band antennas are designed, which can cover 1710–2170 MHz by using tunable capacitors. Simulations and measurements of the antenna concept are carried out in the proposed FE architecture, serving as a proof of concept....

  6. Receive antenna selection for underlay cognitive radio with instantaneous interference constraint

    KAUST Repository

    Hanif, Muhammad Fainan

    2015-06-01

    Receive antenna selection is a low complexity scheme to reap diversity benefits.We analyze the performance of a receive antenna selection scheme in spectrum sharing systems where the antenna that results in highest signal-to-interference plus noise ratio at the secondary receiver is selected to improve the performance of secondary transmission. Exact and asymptotic behaviours of the received SINR are derived for both general and interference limited scenarios over general fading environment. These results are then applied to the outage and average bit error rate analysis when the secondary transmitter changes the transmit power in finite discrete levels to satisfy the instantaneous interference constraint at the primary receiver.

  7. Wireless Sensor Network Security Enhancement Using Directional Antennas: State of the Art and Research Challenges.

    Science.gov (United States)

    Curiac, Daniel-Ioan

    2016-04-07

    Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.

  8. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  9. Installing the antenna for STELLA

    CERN Multimedia

    1979-01-01

    The 3 metre diameter antenna for the STELLA satellite communication project is lowered into position on the roof of the Computer Building (see Weekly Bulletin 48/79 and CERN Courier 19 (1979) 444). STELLA stands for Satellite Transmission Experiment Linking Laboratories.

  10. Improved Gain Microstrip Patch Antenna

    Science.gov (United States)

    2015-08-06

    same as one half wavelength, λ, of a design frequency for reception or transmission by the antenna 10. Patch 16 can be joined to a coaxial feed 18. A...expressed in the appended claims. [0024] The foregoing description of the preferred embodiments of the invention has been presented for purposes of

  11. DSS 13 microprocessor antenna controller

    Science.gov (United States)

    Gosline, R. M.

    1988-01-01

    A microprocessor-based antenna monitor and control system with multiple CPUs are described. The system was developed as part of the unattended station project for DSS 13 and was enhanced for use by the SETI project. The operational features, hardware, and software designs are described, and a discussion is provided of the major problems encountered.

  12. Photogrammetry Of A Parabolic Antenna

    Science.gov (United States)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  13. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  14. On Transmit Antenna Selection for Multiuser MIMO Systems with Dirty Paper Coding

    CERN Document Server

    Mohaisen, Manar

    2010-01-01

    In this paper, we address the transmit antenna selection in multi-user MIMO systems with precoding. The optimum and reduced complexity sub-optimum antenna selection algorithms are introduced. QR-decomposition (QRD) based antenna selection is investigated and the reason behind its sub-optimality is analytically derived. We introduce the conventional QRD-based algorithm and propose an efficient QRD-based transmit antenna scheme (maxR) that is both implementation and performance efficient. Moreover, we derive explicit formulae for the computational complexities of the aforementioned algorithms. Simulation results and analysis demonstrate that the proposed maxR algorithm requires only 1% of the computational efforts required by the optimal algorithm for a degradation of 1dB and 0.1dB in the case of linear zero-forcing and Tomlinson-Harashima precoding schemes, respectively.

  15. Antenna selection based on large-scale fading for distributed MIMO systems

    Institute of Scientific and Technical Information of China (English)

    施荣华

    2016-01-01

    An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output ( D-MIMO) systems.By utilizing the radio access units ( RAU) selection based on large-scale fa-ding , the proposed algorithm decreases enormously the computational complexity .Based on the characteristics of distributed systems , an improved particle swarm optimization ( PSO) has been pro-posed for the antenna selection after the RAU selection .In order to apply the improved PSO algo-rithm better in antenna selection , a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity .The proposed algorithm can make full use of the advantages of D-MIMO systems , and achieve near-optimal performance in terms of channel ca-pacity with low computational complexity .

  16. Nanorod optical antennas for dipolar transitions

    CERN Document Server

    Taminiau, Tim H; van Hulst, Niek F

    2009-01-01

    Optical antennas link objects to light. Here, we analyze metal nanorod antennas as cavities with variable reflection coefficients to derive the interaction of dipolar transitions with radiation through the antenna modes. The presented analytical model accurately describes the complete emission process, and is summarized in a phase-matching equation. We show how antenna modes evolve as they become increasingly more bound, i.e. plasmonic. The results illustrate why efficient antennas should not be too plasmonic, and how subradiant even modes can evolve into weakly-interacting dark modes. Our description is valid for the interaction of nanorods with light in general, and is thus widely applicable.

  17. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...

  18. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  19. Broad band antennas and feed methods

    Energy Technology Data Exchange (ETDEWEB)

    Benzel, David M.; Twogood, Richard E.

    2017-04-18

    Two or more Vivaldi antennas, consisting of two plates each, each with the antenna's natural impedance of approximately 100 ohms, are placed in parallel to achieve a 50 ohm impedance in the case of two antennas or other impedances (100/n ohms) for more than two antennas. A single Vivaldi antenna plate (half Vivaldi antenna) over a ground plane can also be used to achieve a 50 ohm impedance, or two or more single plates over a ground plane to achieve other impedances. Unbalanced 50 ohm transmission lines, e.g. coaxial cables, can be used to directly feed, the dual Vivaldi (four plate) antenna in a center fed angled center departure, or more desirably, a center fed offset departure configuration.

  20. Broad band antennas and feed methods

    Science.gov (United States)

    Benzel, David M.; Twogood, Richard E.

    2017-04-18

    Two or more Vivaldi antennas, consisting of two plates each, each with the antenna's natural impedance of approximately 100 ohms, are placed in parallel to achieve a 50 ohm impedance in the case of two antennas or other impedances (100/n ohms) for more than two antennas. A single Vivaldi antenna plate (half Vivaldi antenna) over a ground plane can also be used to achieve a 50 ohm impedance, or two or more single plates over a ground plane to achieve other impedances. Unbalanced 50 ohm transmission lines, e.g. coaxial cables, can be used to directly feed, the dual Vivaldi (four plate) antenna in a center fed angled center departure, or more desirably, a center fed offset departure configuration.

  1. Improvement of antenna decoupling in radar systems

    Science.gov (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  2. Foldable nanopaper antennas for origami electronics.

    Science.gov (United States)

    Nogi, Masaya; Komoda, Natsuki; Otsuka, Kanji; Suganuma, Katsuaki

    2013-05-21

    Foldable antennas are required for small-sized electronic devices with high portability. Antennas on plastic substrates provide high flexibility and high sensitivity but are not foldable. Antennas on paper substrates are foldable, but their sensitivity is poor because of their coarse surfaces. In this paper, nanopapers with smooth surfaces and high foldability are fabricated from 30 nm wide cellulose nanofibers for use as foldable antenna substrates. Silver nanowires are then printed on the nanopapers to act as antenna lines. These nanopaper antennas with silver nanowires exhibit high sensitivity because of their smooth surfaces and high foldability because of their network structures. Also, their high foldability allows the mechanical tuning of their resonance points over a wide frequency range without using additional components such as condensers and coils. Nanopaper antennas with silver nanowires are therefore suitable for the realization of future foldable electronics.

  3. Integrated broadband bowtie antenna on transparent substrate

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T

    2015-01-01

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.

  4. Metamaterial-Inspired Efficient Electrically Small Antenna

    DEFF Research Database (Denmark)

    Erentok, Aycan; Ziolkowski, R. W.

    2008-01-01

    Planar two-dimensional (2D) and volumetric three-dimensional (3D) metamaterial-inspired efficient electrically-small antennas that are easy to design; are easy and inexpensive to build; and are easy to test; are reported, i.e., the EZ antenna systems. The proposed 2D and 3D electrical- and magnetic......-based EZ antennas are shown to be naturally matched to a 50 source, i.e., without the introduction of a matching network. It is demonstrated numerically that these EZ antennas have high radiation efficiencies with very good impedance matching between the source and the antenna and, hence, that they have...... high overall efficiencies. The reported 2D and 3D EZ antenna designs are linearly scalable to a wide range of frequencies and yet maintain their easy-to-build characteristics. Several versions of the 2D EZ antennas were fabricated and tested. The measurement results confirm the performance predictions...

  5. From Antenna to Assay

    Science.gov (United States)

    Moore, Evan G.; Samuel, Amanda P. S.; Raymond, Kenneth N.

    2009-01-01

    Conspectus Ligand-sensitized, luminescent lanthanide(III) complexes are of considerable importance because their unique photophysical properties (microsecond to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts) make them well suited as labels in fluorescence-based bioassays. The long-lived emission of lanthanide(III) cations can be temporally resolved from scattered light and background fluorescence to vastly enhance measurement sensitivity. One challenge in this field is the design of sensitizing ligands that provide highly emissive complexes with sufficient stability and aqueous solubility for practical applications. In this Account, we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time-Resolved Fluorescence (HTRF) technology. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms and using multi-chromophore chelates to increase molar absorptivity; earlier examples utilized a single pendant chromophore (that is, a single “antenna”). Ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ∼60% that are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM chromophore and time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally, we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong

  6. Miniaturized Wideband Aperture Coupled Microstrip Patch Antenna by Using Inverted U-Slot

    OpenAIRE

    2014-01-01

    This paper presents a linear polarized aperture coupled inverted U-slot patch antenna with small steps at the edges. The proposed design exhibits wideband behavior, acceptable return loss, VSWR, gain, small size, and less complexity. The theoretical analysis is based on the finite element method (FEM). This design has wide bandwidth, good return loss, VSWR, and radiation characteristics by implanting the inverted U-shaped stepped slots on a single aperture coupled patch. The proposed antenna ...

  7. Antenna gain measurements in the intermediate-field zone

    Science.gov (United States)

    Anchidin, Liliana; Bari, Farida; Dumitrascu, Ana; Paun, Mirel; Deacu, Daniela; Tasu, Sorin; Danisor, Alin; Tamas, Razvan D.

    2016-12-01

    Antenna gain is usually evaluated under far-field conditions. Furthermore, Friis transmission formula can solely be applied when antenna size can be neglected with respect to the distance between the measuring antenna and the antenna under test. In this paper, we show that by applying the distance averaging technique the far-field and antenna size constraints can be overcome. Our method was validated by measuring a monopole antenna and a Vivaldi antenna in an open area test site (OATS).

  8. Tissue dielectric measurement using an interstitial dipole antenna.

    Science.gov (United States)

    Wang, Peng; Brace, Christopher L

    2012-01-01

    The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna's input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5-20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole-Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator.

  9. Multi-walled carbon nanotube-based RF antennas.

    Science.gov (United States)

    Elwi, Taha A; Al-Rizzo, Hussain M; Rucker, Daniel G; Dervishi, Enkeleda; Li, Zhongrui; Biris, Alexandru S

    2010-01-29

    A novel application that utilizes conductive patches composed of purified multi-walled carbon nanotubes (MWCNTs) embedded in a sodium cholate composite thin film to create microstrip antennas operating in the microwave frequency regime is proposed. The MWCNTs are suspended in an adhesive solvent to form a conductive ink that is printed on flexible polymer substrates. The DC conductivity of the printed patches was measured by the four probe technique and the complex relative permittivity was measured by an Agilent E5071B probe. The commercial software package, CST Microwave Studio (MWS), was used to simulate the proposed antennas based on the measured constitutive parameters. An excellent agreement of less than 0.2% difference in resonant frequency is shown. Simulated and measured results were also compared against identical microstrip antennas that utilize copper conducting patches. The proposed MWCNT-based antennas demonstrate a 5.6% to 2.2% increase in bandwidth, with respect to their corresponding copper-based prototypes, without significant degradation in gain and/or far-field radiation patterns.

  10. Excitation migration in fluctuating light-harvesting antenna systems.

    Science.gov (United States)

    Chmeliov, Jevgenij; Trinkunas, Gediminas; van Amerongen, Herbert; Valkunas, Leonas

    2016-01-01

    Complex multi-exponential fluorescence decay kinetics observed in various photosynthetic systems like photosystem II (PSII) have often been explained by the reversible quenching mechanism of the charge separation taking place in the reaction center (RC) of PSII. However, this description does not account for the intrinsic dynamic disorder of the light-harvesting proteins as well as their fluctuating dislocations within the antenna, which also facilitate the repair of RCs, state transitions, and the process of non-photochemical quenching. Since dynamic fluctuations result in varying connectivity between pigment-protein complexes, they can also lead to non-exponential excitation decay kinetics. Based on this presumption, we have recently proposed a simple conceptual model describing excitation diffusion in a continuous medium and accounting for possible variations of the excitation transfer pathways. In the current work, this model is further developed and then applied to describe fluorescence kinetics originating from very diverse antenna systems, ranging from PSII of various sizes to LHCII aggregates and even the entire thylakoid membrane. In all cases, complex multi-exponential fluorescence kinetics are perfectly reproduced on the entire relevant time scale without assuming any radical pair equilibration at the side of the excitation quencher, but using just a few parameters reflecting the mean excitation energy transfer rate as well as the overall average organization of the photosynthetic antenna.

  11. A Blind Antenna Selection Scheme for Single-Cell Uplink Massive MIMO

    KAUST Repository

    Elkhalil, Khalil

    2017-02-09

    This paper considers the uplink of a single-cell large-scale multiple-input multiple output (MIMO) system in which m mono-antenna users communicate with a base station (BS) outfitted by n antennas. We assume that the number of antennas at the BS and that of users take large values, as envisioned by large-scale MIMO systems. This allows for high spectral efficiency gains but obviously comes at the cost of higher complexity, a fact that becomes all the more critical as the number of antennas grows large. To solve this issue is to choose a subset of the available n antennas. The subset must be carefully chosen to achieve the best performance. However, finding the optimal subset of antennas is usually a difficult task, requiring one to solve a high dimensional combinatorial optimization problem. In this paper, we approach this problem in two ways. The first one consists in solving a convex relaxation of the problem using standard convex optimization tools. The second technique solves the problem using a greedy approach. The main advantages of the greedy approach lies in its wider scope, in that, unlike the first approach, it can be applied irrespective of the considered performance criterion. As an outcome of this feature, we show that the greedy approach can be applied even when only the channel statistics are available at the BS, which provides blind way to perform antenna selection.

  12. Negative ion source with external RF antenna

    Science.gov (United States)

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  13. Transparent antennas for solar cell integration

    Science.gov (United States)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  14. Photo-generated THz antennas

    Science.gov (United States)

    Georgiou, G.; Tyagi, H. K.; Mulder, P.; Bauhuis, G. J.; Schermer, J. J.; Rivas, J. Gómez

    2014-01-01

    Electromagnetic resonances in conducting structures give rise to the enhancement of local fields and extinction efficiencies. Conducting structures are conventionally fabricated with a fixed geometry that determines their resonant response. Here, we challenge this conventional approach by demonstrating the photo-generation of THz linear antennas on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the realization of different conducting antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for the all-optical spatial control of resonances on surfaces and the concomitant control of THz extinction and local fields.

  15. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  16. Plasmonic Antenna Coupling for QWIPs

    Science.gov (United States)

    Hong, John

    2007-01-01

    In a proposed scheme for coupling light into a quantum-well infrared photodetector (QWIP), an antenna or an array of antennas made of a suitable metal would be fabricated on the face of what would otherwise be a standard QWIP. This or any such coupling scheme is required to effect polarization conversion: Light incident perpendicularly to the face is necessarily polarized in the plane of the face, whereas, as a matter of fundamental electrodynamics and related quantum selection rules, light must have a non-zero component of perpendicular polarization in order to be absorbed in the photodetection process. In a prior coupling scheme, gratings in the form of surface corrugations diffract normally gles, thereby imparting some perpendicular polarization. Unfortunately, the corrugation- fabrication process increases the overall nonuniformity of a large QWIP array. The proposed scheme is an alternative to the use of surface corrugations.

  17. Omnidirectional antenna having constant phase

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Matthew

    2017-04-04

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintaining a required spacing/parallelism therebetween.

  18. The planar parabolic optical antenna.

    Science.gov (United States)

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-09

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  19. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  20. Dual Mode Slotted Monopole Antenna

    Science.gov (United States)

    2017-01-05

    of 15 DUAL MODE SLOTTED MONOPOLE ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention is directed...such as this that is capable of radiating at a different frequency below this cutoff. The present invention provides a means by which the overall

  1. Quasi-optical active antennas

    Science.gov (United States)

    Moussessian, Alina

    Quasi-optical power combiners such as quasi-optical grids provide an efficient means of combining the output power of many solid-state devices in free space. Unlike traditional power combiners no transmission lines are used, therefore, high output powers with less loss can be achieved at higher frequencies. This thesis investigates four different active antenna grids. The first investigation is into X-band High Electron Mobility Transistor (HEMT) grid amplifiers. Modelling and stability issues of these grids are discussed, and gain and power measurements are presented. A grid amplifier with a maximum efficiency of 22.5% at 10 GHz and a peak gain of 11dB is presented. The second grid is a varactor grid used as a positive feedback network for a grid amplifier to construct a tunable grid oscillator. Reflection measurements for the varactor grid show a tuning range of 1.2 GHz. The third grid is a self- complementary grid amplifier. The goal is to design a new amplifier with a unit cell structure that can be directly modelled using CAD tools. The properties of self- complementary structures are studied and used in the design of this new amplifier grid. The fourth grid is a 12 x 12 terahertz Schottky grid frequency doubler with a measured output power of 24 mW at 1 THz for 3.1-μs 500-GHz input pulses with a peak power of 47 W. A passive millimeter-wave travelling-wave antenna built on a dielectric substrate is also presented. Calculations indicate that the antenna has a gain of 15 dB with 3-dB beamwidths of 10o in the H-plane and 64o in the E-plane. Pattern measurements at 90 GHz support the theory. The antenna is expected to have an impedance in the range of 50/Omega to 80/Omega.

  2. EHF multifunction phased array antenna

    Science.gov (United States)

    Solbach, Klaus

    1986-07-01

    The design of a low cost demonstration EHF multifunction-phased array antenna is described. Both, the radiating elements and the phase-shifter circuits are realized on microstrip substrate material in order to allow photolithographic batch fabrication. Self-encapsulated beam-lead PIN-diodes are employed as the electronic switch elements to avoid expensive hermetic encapsulation of the semiconductors or complete circuits. A space-feed using a horn-radiator to illuminate the array from the front-side is found to be the simplest and most inexpensive feed. The phased array antenna thus operates as a reflect-array, the antenna elements employed in a dual role for the collection of energy from the feed-horn and for the re-radiation of the phase-shifted waves (in transmit-mode). The antenna is divided into modules containing the radiator/phase-shifter plate plus drive- and BITE-circuitry at the back. Both drive- and BITE-components use gate-array integrated circuits especially designed for the purpose. Several bus-systems are used to supply bias and logical data flows to the modules. The beam-steering unit utilizes several signal processors and high-speed discrete adder circuits to combine the pointing, frequency and beam-shape information from the radar system computer with the stored phase-shift codes for the array elements. Since space, weight and power consumption are prime considerations only the most advanced technology is used in the design of both the microwave and the digital/drive circuitry.

  3. Twin-Axial Wire Antenna

    Science.gov (United States)

    2015-08-06

    COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...by mutual capacitance between the elements. Reactive loads are positioned in said HF/VHF element at regular intervals for optimizing performance of...capacitance between the elements. Reactive loads are positioned in said HF/VHF element at regular intervals for optimizing performance of the antenna in

  4. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  5. A multi octaves directive dielectric lens: The Pyramid Antenna

    NARCIS (Netherlands)

    Marliani, L.; Bruni, S.; Neto, A.

    2005-01-01

    Leaky wave antennas have been investigated for a long time and are typically an inexpensive solution for beam scanning antennas. We have designed a novel antenna topology, named the pyramid antenna, based on the broadband leaky concept. The pyramid antenna, currently covered by a patent application,

  6. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    Paulides, M.M.; Bakker, J.F.; Zwamborn, A.P.M.; Rhoon, G.C. van

    2007-01-01

    Purpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: 1) patient positioning, 2) antenna ring radius, 3) number of antenna rings, 4) number of antennas per ring and 5) distance between antenna rings. Materials

  7. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    M.M. Paulides (Margarethus); J.F. Bakker (Jurriaan); A.P.M. Zwamborn; G.C. van Rhoon (Gerard)

    2007-01-01

    textabstractPurpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: (1) patient positioning, (2) antenna ring radius, (3) number of antenna rings, (4) number of antennas per ring and (5) distance between antenna

  8. 47 CFR 73.316 - FM antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  9. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  10. Simulation of Conformal Spiral Slot Antennas on Composite Platforms

    Science.gov (United States)

    Volakis, J. L.; Nurnberger, M. W.; Ozdemir,T.

    1998-01-01

    During the course of the grant, we wrote and distributed about 12 reports and an equal number of journal papers supported fully or in part by this grant. The list of reports (title & abstract) and papers are given in Appendices A and B. This grant has indeed been instrumental in developing a robust hybrid finite element method for the analysis of complex broadband antennas on doubly curved platforms. Previous to the grant, our capability was limited to simple printed patch antennas on mostly planar platforms. More specifically: (1) mixed element formulations were developed and new edge-based prisms were introduced; (2) these elements were important in permitting flexibility in geometry gridding for most antennas of interest; (3) new perfectly matched absorbers were introduced for mesh truncations associated with highly curved surfaces; (4) fast integral algorithms were introduced for boundary integral truncations reducing CPU time from O(N-2) down to O(N-1.5) or less; (5) frequency extrapolation schemes were developed for efficient broadband performance evaluations. This activity has been successfully continued by NASA researchers; (6) computer codes were developed and extensively tested for several broadband configurations. These include FEMA-CYL, FEMA-PRISM and FEMA-TETRA written by L. Kempel, T. Ozdemir and J. Gong, respectively; (7) a new infinite balun feed was designed nearly constant impedance over the 800-3000 MHz operational band; (8) a complete slot spiral antenna was developed, fabricated and tested at NASA Langley. This new design is a culmination of the projects goals and integrates the computational and experimental efforts. this antenna design resulted in a U.S. patent and was revised three times to achieve the desired bandwidth and gain requirements from 800-3000 MHz.

  11. Temperature-induced dissociation reaction and dynamics of light-harvesting complex Ⅱ isolated from purple photosynthetic bacterium Rps. palustris

    Institute of Scientific and Technical Information of China (English)

    FENG Juan; LI XueFeng; LIU Yuan

    2007-01-01

    Steady-state absorption spectroscopy, circular dichroism, and resonance Raman spectroscopy have been used to investigate the thermal stability of LH2 complex isolated from purple photosynthetic bacterium Rps. Palustris. The results show that: 1) upon increasing the temperature, a transition from B800 and B850 to free bacteriochlorophyll (B780) happens; 2) a gradual decrease and disappearance of CD signal in visible region occur; 3) a shift of the frequency, belonging to C=C and C-C stretching vibration, to higher wavenumber takes place. It is suggested that LH2 complex can be dissociated in the presence of B800, B850 and carotenoids simultaneously. Single-exponential fitting on the dynamic decay curves gives the apparent time constants of hundreds of minutes for various pigments.

  12. Distribution of colored carotenoids between light-harvesting complexes in the process of recovering carotenoid biosynthesis in Ectothiorhodospira haloalkaliphila cells.

    Science.gov (United States)

    Ashikhmin, Aleksandr; Makhneva, Zoya; Bolshakov, Maksim; Moskalenko, Andrey

    2014-12-01

    The processes of recovering colored-carotenoid (Car) biosynthesis in Car-less cells of the purple sulfur bacterium Ectothiorhodospira haloalkaliphila grown with diphenylamine (DPA-cells) have been studied. It has been found that (1) the rate of recovering colored-Car biosynthesis in the lag-phase is far ahead of the growth rate of the cells themselves; (2) several Cars (ζ-carotene, neurosporene etc.) act as intermediates in Car biosynthesis; (3) because filling the "empty" Car pockets in the LH1-RC complexes is faster than in LH2, available spirilloxanthin is preferentially incorporated into the nascent LH1-RC core particles; (4) as a consequence of the resulting lack of spirilloxanthin availability, the biosynthetic intermediates (anhydrorhodovibrin, rhodopin and lycopene) fill the empty nascent LH2 Car pockets. In the present report, we further discuss the process of colored Car incorporation into LH complexes during the recovery of Car biosynthesis in the DPA-cells of Ect.haloalkaliphila.

  13. A small sensor with matched optical antenna

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, A.V. [Russian Academy of Sciences, Moscow (Russian Federation). Central Design Bureau for Unique Instrumentation

    1994-12-31

    Each device for radiation registration in the radio range contains an antenna. Mainly it is the antenna dimension that determines the sensitivity of the device. Can an antenna for the registration of more short wave radiation be constructed? The main feature of antenna action is the conversion of the incident radiation mode into the mode passing through the antenna. At this moment the radiation brightness (which is equivalent to a number of photons per mode) can increase. In accordance with the geometric optics (Shtraubel theorem) the length and mirror systems cannot raise the radiation brightness in principle and cannot be treated as an antenna. Recently it was established that definite optical processes and systems give a possibility of increasing the full radiation brightness. The device for effective registration of short wave radiation is worked out on the basis of these processes.

  14. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  15. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M

    2011-01-01

    The field of antenna measurements is lacking a Golden Standard, i.e. an antenna of which the pattern is known by definition. To gain confidence in the performance of a range, including the procedures and skills of the operators, range comparison has been a popular tool for over three decades...... designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable electrical...... characteristics allowing frequent travel and shall ease the handling of the VAST antenna (practical electrical and mechanical interfaces, well-defined alignment tools, low mass, attachment points for lifting, etc). The widespread use of the so-called VAST-12 antenna demonstrates the long-term value of dedicated...

  16. A Review of Antennas for Picosatellite Applications

    Directory of Open Access Journals (Sweden)

    Abdul Halim Lokman

    2017-01-01

    Full Text Available Cube Satellite (CubeSat technology is an attractive emerging alternative to conventional satellites in radio astronomy, earth observation, weather forecasting, space research, and communications. Its size, however, poses a more challenging restriction on the circuitry and components as they are expected to be closely spaced and very power efficient. One of the main components that will require careful design for CubeSats is their antennas, as they are needed to be lightweight, small in size, and compact or deployable for larger antennas. This paper presents a review of antennas suitable for picosatellite applications. An overview of the applications of picosatellites will first be explained, prior to a discussion on their antenna requirements. Material and antenna topologies which have been used will be subsequently discussed prior to the presentation of several deployable configurations. Finally, a perspective and future research work on CubeSat antennas will be discussed in the conclusion.

  17. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  18. Microfluidic serpentine antennas with designed mechanical tunability.

    Science.gov (United States)

    Huang, YongAn; Wang, Yezhou; Xiao, Lin; Liu, Huimin; Dong, Wentao; Yin, Zhouping

    2014-11-07

    This paper describes the design and characterization of microfluidic serpentine antennas with reversible stretchability and designed mechanical frequency modulation (FM). The microfluidic antennas are designed based on the Poisson's ratio of the elastomer in which the liquid alloy antenna is embedded, to controllably decrease, stabilize or increase its resonance frequency when being stretched. Finite element modelling was used in combination with experimental verification to investigate the effects of substrate dimensions and antenna aspect ratios on the FM sensitivity to uniaxial stretching. It could be designed within the range of -1.2 to 0.6 GHz per 100% stretch. When the aspect ratio of the serpentine antenna is between 1.0 and 1.5, the resonance frequency is stable under stretching, bending, and twisting. The presented microfluidic serpentine antenna design could be utilized in the field of wireless mobile communication for the design of wearable electronics, with a stable resonance frequency under dynamic applied strain up to 50%.

  19. Compact Miniaturized Antenna for 210 MHz RFID

    Science.gov (United States)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  20. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    of 72 ohms is numerically investigated and its performance is compared to that of the multiarm spherical helix antenna of the same size. Both antennas yield equal quality factors, which are about 1.5 times the Chu lower bound, but quite different cross-polarization characteristics.......This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...