WorldWideScience

Sample records for levels tillage increased

  1. The effect of conservation tillage forward speed and depth on farm fuel consumption

    Directory of Open Access Journals (Sweden)

    A Jalali

    2015-09-01

    energyconsumption. Mankind has been tilling agricultural soils for thousands of years to loosen them, to improve their tilth for water use and plant growth and to cover pests. Tillage is a process of creating a desired final soil condition for seeds from some undesirable initial soil conditions through manipulation of soil with the purpose of increasing crop yield.The aim of conservation tillage is to improve soil structure. Considering the advantages of conservation tillage and less scientific research works on imported conservation tillage devices and those which are made inside the country, and considering the importance of tillage depth and speed in different tiller performance, this investigation was carried out. Materials and methods: This investigation was carried out based on random blocks in the form of split plot experimental design. The main factor, tillage depth, (was 10 and 20cm at both levels and the second factor istillage forward speed, (was 6, 8, 10, 12 km h-1 in four levels for Bostan-Abad and 8, 10, 12, 14 km h-1 for Hashtrood with 4 repetitions. It was carried out by using complex tillager made in the Sazeh Keshte Bukan Company, which is mostly used in Eastern Azerbaijan and using Massey Ferguson 285 and 399tractors and its fuel consumptionwas studied. Results and Discussion: In this study, the effect of both factors on the feature of fuel consumption was examined. Regarding tillage speed effect for studies characteristic in Bostan-Abad at 1% probability level fuel consumption was effective. The effect of tillage depth has significance at 5% probability level on fuel consumption. The interaction effect of tillage speed and depth on fuel consumption was significant at probability level of 1% . In Hashtrood, the effect of tillage speed was significant on fuel consumption at probability level of 1% , and also tillage depth effect was significant on fuel consumption amount at probability of 1% . The interaction effect of tillage speed and depth on fuel consumption

  2. The effects of forward speed and depth of conservation tillage on soil bulk density

    Directory of Open Access Journals (Sweden)

    A Mahmoudi

    2015-09-01

    density at probability level of 1%. Through an increase in tillage speed, soil bulk density reduces at unit level. Conclusions: In this study, the effect of both factors on the feature of the soil bulk density in the sampling depth of 5-10 and 15-20 cm was examined. In Bostan-Abad and Hashtroud, on the whole, the results indicated that the increase in the speed of tillage, soil bulk density, was reduced and the speed of 10 kilometers per hour was the best for this to implement work. Also, with an increasing depth of tillage, the bulk density increased. Through an increase in tillage speed, soil bulk density reduced at unit level. Moreover, the optimum speed was concluded 10km per hour. Through an increase in tillage depth, bulk density and soil humidity increase accordingly. The best tillage depth using this machine is 10cm.

  3. Appraisal of economic impact of zero tillage, laser land levelling and bed-furrow interventions in punjab, pakistan

    International Nuclear Information System (INIS)

    Latif, A.; Shakir, A.S.

    2013-01-01

    irrigation is inevitable for profitable farming in arid and semi-arid regions. Water shortage is augmenting all over the world including Pakistan, due to which agriculture sector is facing critical challenges. For sustainable and feasible agriculture production, the cost of crop inputs needs to be reduced and at the same time the efficiency of resources must be enhanced. Resource conservation interventions (RCIs) play a vital role to achieve these goals. The RCIs include laser land levelling (LLL), zero tillage (ZT) and bed-furrow (BF). A survey was conducted in year 2011-12 in ten districts of Punjab for data collection regarding the agriculture inputs and outputs of RCIs and traditional irrigation system. The study area lies in rice-wheat cropping zone in Punjab, Pakistan. The analysis of data concluded that these interventions have enhanced the crop yield; saved significant irrigation water and increased the income of the farmers. Irrigation water saved by laser land levelling, zero tillage and bed-furrow was 31, 49 and 40 percent per hectare respectively in the selected irrigated areas. Water productivity was higher for zero tillage farms (2.02 kg/m/sup 3/) followed by bed-furrow (1.59 kg/m/sub 3/) and laser land levelling farms (1.58 kg/m/sub 3/). Fertilizer use efficiency by zero tillage, bed-furrow and laser land levelling was 19.1, 18.19 and 17.7 percent per hectare respectively as compared to traditional farming (13.98 percent). Therefore, the resource conservation interventions provide excellent tool for making development towards improving and sustaining agriculture production, ensure food security and poverty empowerment in Pakistan and elsewhere under similar socio-environmental conditions. (author)

  4. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  5. Improvement of native grassland by legumes introduction and tillage techniques

    Directory of Open Access Journals (Sweden)

    Syamsu Bahar

    1999-10-01

    Full Text Available A factorial design using three species of legumes (Siratro, Centro and Stylo and three different of tillage techniques (no-tillage, minimum tillage and total tillage was applied in this experiment. The results showed that there was no interaction between species and tillage techniques. There was significant reductions on bulk density from 1.23±0.03 g/cm3 (no-tillage to 1.07±0.02 g/cm3 (minimum tillage and 1.05±0.03 g/cm3 (total tillage. Also reductions on penetration resistance from 17.47±3.84 kg/cm2 (no-tillage to 3.31±0.43 kg/cm2 (minimum tillage and 3.19±0.45 kg/cm2 (total tillage. Otherwise significant increasing on aeration porosity from 12.80±0.80% vol. (no-tillage to 21.70±0.95% vol. (minimum tillage and 20.70±0.35% vol. (total tillage. Total tillage gives increased dry matter yield. Also both total tillage and minimum tillage give yields with a higher percentage of legumes compared with no-tillage. It was concluded that total tillage and minimum tillage could be used for improving native grassland.

  6. Effects of tillage methods, corn residue mulch and n fertilizer levels on the wheat crop productivity under the rain fed condition of loess plateau china

    International Nuclear Information System (INIS)

    Tanveer, S.K.; Zhang, J.L.; Lu, X.L.; Wen, X.; Tanveer, S.K.

    2015-01-01

    A 2 years study was conducted to assess the effects of different tillage methods (Chisel plough tillage, Zero-tillage, Rotary tillage and Mould board plough tillage), two mulch levels (M0 i.e. No corn residue mulch and M1 i.e. Corn residue mulch) and 5 N fertilizer levels (0, 80, 160, 240 and 320 kg N/ha) on the wheat crop productivity under the rain fed condition of Loess Plateau, China. Factorial experiment with three replications, having strip, split-split arrangement, with tillage methods in the main plots, mulch levels in sub- plots and N-fertilizer levels in the sub-sub plots was used for this study. Due to variations in rainfalls, during the year, 2010-11, maximum grain yields i.e. 6.58 t/ha and 6.72 t/ha were recorded in case of Zero tillage planting method and similarly in case of 80 kg N/ha, while during the cropping year 2011-12 equal grain yields were recorded in case of all tillage methods, however maximum grain yield (7.46 t /ha) was recorded in case of 320 kg N/ha, N fertilizer level. On two years average basis, maximum grain yields i.e. 6.75 t/ha and 6.80 t/ha were recorded in case of Zero tillage planting method and similarly in case of 80 kg N/ha as compared with the other tillage methods or N fertilizer levels. Use of mulch reduced > 40% weeds infestation. Economic analysis shows that Zero tillage and minimum use of N fertilizer according to the projected rainfalls along with the use of mulch are both economic and environmental friendly. (author)

  7. Weed Population Dynamics, Water Productivity and Grain Yield of Durum Wheat (Triticum durum L. in No-Tillage and Conventional Tillage Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Mojab

    2016-09-01

    Full Text Available Introduction: Elimination or reduction of tillage in conservation agricultural systems has led to wide variations in germination, emergence, and growth of weeds and has caused variations in the density and diversity of weeds under such systems. Maintaining crop residues on the soil surface has many potential benefits in agricultural production systems; such as reducing water and wind erosions, increasing the soil organic matter content, improving the soil structure and sowing conditions, as well as a better weed management through allelopathy or physical interference provided by the crop residues. Crop residue and tillage system cause potential changes in the soil temperature and water content, which influence soil density, structure, moisture, as well as soil temperature and nutrients. Crop residues act as mulches and can effect on weed seed germination and seedling emergence. Therefore, the objectives of current study were to evaluate the effects of no-tillage systems on: (i narrow- and broadleaved weed densities, (ii crop yield and (iii water productivity (WP. Materials and Methods: A two-year field study based on a split plot experiment in a randomized complete block design with four replications was carried out in Zahedshahr, Fars province, Iran (latitude 28˚44΄N, longitude 53˚48΄E, 1180 m altitude during 2009-10 and 2010-11 growing seasons. The planting practices including moldboard plow, disk and leveler were practiced in conventional tillage plots and crop planting was performed using a drill seeder (made by Kohorasan Co., Iran. The no-tillage plots were directly planted without any soil disturbance and removing wheat residues of the last year using a direct planter machine (model Berteni, Argentina. Furrow irrigation was used at both systems and a water counter (model WD, size DN100 was applied to measure the amount of used water based on m3 ha-1. 1 x 1 m quadrates that were installed at the center of each plot. Crop density, narrow

  8. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  9. Reduced tillage and green manures for sustainable cropping systems - Overview of the TILMAN-ORG project

    OpenAIRE

    Mäder, Paul

    2013-01-01

    Reduced tillage and green manures are environmentally friendly practices that increase levels of soil organic matter and biological activity, improve soil stability, and reduce fuel consumption and may mitigate the climate impact of crop production. The avoidance of deep ploughing is successfully practiced as no-tillage agriculture in conventional farming systems. However, these no-tillage systems rely on herbicides for weed control and mineral fertilisers for plant nutrients. As these inputs...

  10. Impact of tillage intensity on clay loam soil structure

    DEFF Research Database (Denmark)

    Daraghmeh, Omar; Petersen, Carsten; Munkholm, Lars Juhl

    Soil structure and structural stability are key parameters in sustainable soil management and optimum cropping practices. Locally and temporally adapted precision tillage may improve crop performance while at the same time reduce environmental impacts. The main objective of this study...... was to improve the knowledge of precision tillage practices through characterizing the effect of varied tillage intensities on structural properties of a clay loam soil. A field experiment was conducted using a randomized complete block design with two main factors, i.e. operational speed (OS, 2 levels......) and rotovating speed (RS, 3 levels). The tillage was conducted using a PTO-driven rotovator equipped to measure angular velocity. The effect of traffic compaction, made directly after tillage, was measured on soil taken from wheel track (WT) compared with soil outside wheel track (NWT). Soil samples from 0-3 cm...

  11. Determination of crop residues and the physical and mechanical properties of soil in different tillage systems

    Directory of Open Access Journals (Sweden)

    P Ahmadi Moghaddam

    2016-04-01

    Full Text Available Introduction: Monitoring and management of soil quality is crucial for sustaining soil function in ecosystem. Tillage is one of the management operations that drastically affect soil physical quality. Conservation tillage methods are one of the efficient solutions in agriculture to reduce the soil erosion, air pollution, energy consumption, and the costs, if there is a proper management on the crop residues. One of the serious problems in agriculture is soil erosion which is rapidly increased in the recent decades as the intensity of tillage increases. This phenomenon occurs more in sloping lands or in the fields which are lacking from crop residues and organic materials. The conservation tillage has an important role in minimizing soil erosion and developing the quality of soil. Hence, it has attracted the attention of more researchers and farmers in the recent years. Materials and Methods: In this study, the effect of different tillage methods has been investigated on the crop residues, mechanical resistance of soil, and the stability of aggregates. This research was performed on the agricultural fields of Urmia University, located in Nazloo zone in 2012. Wheat and barley were planted in these fields, consecutively. The soil texture of these fields was loamy clay and the factorial experiments were done in a completely randomized block design. In this study, effect of three tillage systems including tillage with moldboard (conventional tillage, tillage with disk plow (reduced tillage, chisel plow (minimum tillage and control treatment on some soil physical properties was investigated. Depth is second factor that was investigated in three levels including 0-60, 60-140, and 140-200 mm. Moreover, the effect of different percentages of crop residues on the rolling resistance of non-driving wheels was studied in a soil bin. The contents of crop residues have been measured by using the linear transects and image processing methods. In the linear

  12. Tillage system affects microbiological properties of soil

    Science.gov (United States)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Shannon (H') and Gini (1-G) diversity index of microbial communities were determined in soil samples (0-10 cm depth) taken in autumn 2009. All the enzymatic activities and the biomass estimated by viable cell counting were significantly higher under no-till than under conventional tillage. However, only fluorescents pseudomonas population was increased under no-till, meanwhile oligotrophic bacteria and actinomycetes populations were higher with conventional tillage than with no-till. Overall, there was a higher use all the group of carbon sources used in the BiologR test with conventional tillage than with no-till, by except amines and phenols which showed non-significant differences. This reveals different physiological profiles in the microbial communities under both tillage systems. The Gini diversity was significantly lower with no-till than with conventional tillage. It can be concluded that no-till increases microbial biomass in soil and subsequently enzymatic activities likely ascribed to an increased organic matter content. Under low availability of hydrocarbon sources in soil due to conventional tillage, which promotes a decrease in the organic matter content of the soil, populations of oligotrophods and the diversity of microbial communities are increased. Under these conditions, there must not be dominant carbon sources promoting the selection of microorganisms with a given physiological profile. The reduced hydrocarbon availability and the higher diversity contribute to explain the increased use of carbon sources used in Biolog with conventional tillage than with no-till.

  13. Effects of Tillage Systems on Changes of Soil Nutrients, Yield and Land Equivalent Ratio in Roselle – Green Gram Intercropping

    Directory of Open Access Journals (Sweden)

    A Hodiani mehr

    2017-10-01

    Full Text Available Introduction Intercropping is one of the components of sustainable agriculture and as part of crop rotation in the design of sustainable system. One of the benefits of intercropping is greater use of available resources. The aims of this study were to evaluate different tillage systems and cropping patterns of Roselle and Green Gram on some soil nutrients and the use efficiency of environmental resources. Usually, intercropping used at Low fertility soil with low input conditions in the tropics region. Bahrani et al. (2007 reported that no tillage systems compared with conventional tillage with crop residue, were increased soil organic carbon content in maize production. Ramroudi et al. (2011 expressed conventional tillage reduced amount of nitrogen compared to no tillage system. Material and Methods The research was conducted at Zabol city. Split plot experiment performed based on a randomized complete block design with three replications. Main plot was three levels of tillage system (zero (without plowing, reduced (disk and conventional tillage (disc plow and sub plot was planting ratio with five levels (pure culture of Roselle, pure culture of Green gram, 50% roselle+50% green gram, 25% roselle+75% green gram, 75% roselle+25% green gram were considered. Preparing the ground in mid-June 2012, according to the type of plowing was performed. For comparison of means were used by Duncan's test at 5% probability. Results and Discussion The effects of tillage systems, planting ratios and interaction of tillage systems × planting ratio on soil organic carbon and nitrogen were very significant. The highest and lowest levels of organic carbon were obtained in zero tillage (1.14% and conventional tillage systems (0.63 %, respectively. The highest and lowest nitrogen of soil after harvest, of pure culture of Green gram (0.11 % and 75 % of Roselle + 25% Green gram intercropping (0.06 % were obtained respectively, Tillage system could not affected the

  14. Tillage practices in the conterminous United States, 1989-2004-Datasets Aggregated by Watershed

    Science.gov (United States)

    Baker, Nancy T.

    2011-01-01

    This report documents the methods used to aggregate county-level tillage practices to the 8-digit hydrologic unit (HU) watershed. The original county-level data were collected by the Conservation Technology Information Center (CTIC). The CTIC collects tillage data by conducting surveys about tillage systems for all counties in the United States. Tillage systems include three types of conservation tillage (no-till, ridge-till, and mulch-till), reduced tillage, and intensive tillage. Total planted acreage for each tillage practice for each crop grown is reported to the CTIC. The dataset includes total planted acreage by tillage type for selected crops (corn, cotton, grain sorghum, soybeans, fallow, forage, newly established permanent pasture, spring and fall seeded small grains, and 'other' crops) for 1989-2004. Two tabular datasets, based on the 1992 enhanced and 2001 National Land Cover Data (NLCD), are provided as part of this report and include the land-cover area-weighted interpolation and aggregation of acreage for each tillage practice in each 8-digit HU watershed in the conterminous United States for each crop. Watershed aggregations were done by overlying the 8-digit HU polygons with a raster of county boundaries and a raster of either the enhanced 1992 or the 2001 NLCD for cultivated land to derive a county/land-cover area weighting factor. The weighting factor then was applied to the county-level tillage data for the counties within each 8-digit HU and summed to yield the total acreage of each tillage type within each 8-digit HU watershed.

  15. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  16. Zero tillage: A potential technology to improve cotton yield

    Directory of Open Access Journals (Sweden)

    Abbas Hafiz Ghazanfar

    2016-01-01

    Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.

  17. Tillage and NPK Effect on growth and yield of spring maize in islamabad, pakistan

    International Nuclear Information System (INIS)

    Memon, S.Q.; Mughal, A.Q.; Amjad, N.; Javed, H.I.

    2013-01-01

    Tillage is a very important crop production practice which affect crop performance. An experiment was conducted during the spring crop season 2009 to compare the effect of three different tillage regimes i.e. deep, conventional and zero and four fertilizer levels viz., control 100-50-50, 150-75-75 and 200-100-100 NPK kg ha. The randomized complete block design was used with three replications. There was significant differences in maize emergence percentage, plant height, grains cob, 1000-grain weight and grain yield due to tillage practices and various fertilizer levels, between tillage practices. However, the NPK at the rate 200-100-100 kg ha and deep tillage produced the highest emergence percentage, plant height, grains per cob, 1000-grain weight and grain yield followed by other fertilizer levels and conventional tillage. The zero tillage plots produced the low emergence percentage, plant height, grains cob, 1000-grain weight and grain yield. Therefore, considering the environ-mental conditions, the deep tillage with recommended dose of NPK performed best and provided more vegetative growth and grain yield in maize. However, poor-resource farmers can use the medium level of NPK at the rate 150-75-75 kg ha for getting an economical and successful maize crop. (author)

  18. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes

    Directory of Open Access Journals (Sweden)

    Florine Degrune

    2017-06-01

    Full Text Available Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum below the seedbed (15–20 cm. Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional

  19. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes.

    Science.gov (United States)

    Degrune, Florine; Theodorakopoulos, Nicolas; Colinet, Gilles; Hiel, Marie-Pierre; Bodson, Bernard; Taminiau, Bernard; Daube, Georges; Vandenbol, Micheline; Hartmann, Martin

    2017-01-01

    Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( Vicia faba and Triticum aestivum ) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas

  20. Effect of Tillage Technology on Species Composition of Weeds in Monoculture of Maize

    OpenAIRE

    S. Chovancova; F. Illek; J. Winkler

    2014-01-01

    The effect of tillage technology of maize on intensity of weed infestation and weed species composition was observed at experimental field. Maize is grown consecutively since 2001. The experimental site is situated at an altitude of 230 m above sea level in the Czech Republic. Variants of tillage technology are CT: plowing – conventional tillage 0.22 m, MT: loosening – disc tillage on the depth of 0.1 – 0.12 m, NT: direct sowing – without tillage. The evaluation of weed infestation was carrie...

  1. [Conservation tillage systems in North America and their significance for China].

    Science.gov (United States)

    Yang, Xueming; Zhang, Xiaoping; Fang, Huajun; Liang, Aizhen; Qi, Xiaoning; Wang, Yang

    2004-02-01

    Soil degradation through erosion and desertification reduces soil productivity, and is a serious problem in agricultural production of China. To avert our arable land from further degradation, soil management must be shifted from degrading tillage to conservation practices. Over viewing the technology used in the 20th century for controlling soil degradation from erosion, conservation tillage developed in the United States and adopted in South America and Africa is one of the most successful measures to overcome soil degradation problems. This paper reviewed the historical development and the current situation of conservation tillage systems used in North and South America, with special reference to their effects on soil erosion control and soil quality. The increasing adoption of conservation tillage systems in North and South America and Africa followed an enhanced awareness of the increasing risk of soil erosion and the high cost of fuel associated with conventional tillage. Many crucial points for successfully adopting conservation tillage systems were emphasized, such as equipment/tool development and chemical weed control. Adopting conservation tillage could provide China with low-priced means of reducing soil degradation and improving soil and water quality.

  2. Tillage effects on soil. Physical properties and sunflower ...

    African Journals Online (AJOL)

    Soil physical properties and sunflower (Helianthus annuus) yield under convectional tillage (CT) and zero-tillage (Z,TJ. was monitored for 3 consecutive years in Ilorin, Southern Guinea Savannah zone of Nigeria (SGSZN). While bulk density of CT increased slightly over the years, significant decrease of 12 and 8% were ...

  3. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II Fumonisin Incidence on Kernels

    Directory of Open Access Journals (Sweden)

    Adriano Marocco

    2009-09-01

    Full Text Available Planting maize under no-tillage is an increasing farming practice for sustainable agriculture and sound environmental management. Although several studies on yield of no-till maize have been done, there is few information about the effect of tillage on fumonisin contamination. The present study was done to determine the effect of notillage and conventional tillage with two rates of nitrogen on fumonisin content in kernels of continuous maize. Average grain contamination with fumonisins B1 and B2 over the years 2004-06 was not significantly different, with mean values of 1682, 1984 and 2504 μg kg-1, respectively. Fumonisin B1 was the most abundant toxin found in the samples. No-tillage significantly affected the incidence of fumonisins during the first year of the trial, in which fumonisin content was significantly higher with no-till (2008 μg kg-1 compared with conventional tillage (1355 μg kg-1. However, no-tillage did not significantly affect the incidence of fumonisins in the second and third years of the study. Fumonisin content at the rate of 300 kg N ha-1 was not statistically different compared to that obtained without N fertilization. The interaction between the soil management system and the rate of applied nitrogen was only evident in the second year. Our results indicate that fumonisin contamination was affected by no-tillage only in the first year. Nitrogen fertilization had no significant effect on fumonisin content in any year. The weather conditions during susceptible stages of maize development have probably overridden the effect of nitrogen fertilization.

  4. Fabrication and evaluation of a reservoir tillage machine to reduce runoff from farms with sprinkler irrigation systems

    Directory of Open Access Journals (Sweden)

    M. A Rostami

    2016-09-01

    performance, two factors contain of machine speed (in three levels of 5, 7.5 and 10 km h-1 and Arm's length (in two levels of 30 and 40 cm were evaluated. The machine was evaluated based on a completely randomized block factorial design with three replications. Effects of these factors on depth, distance and volume of basins and runoff were evaluated. Results and Discussion Mean comparisons of depth, distance and size of reservoirs in different machine forward speed and different Arm's length are summarized in Table 1 and 2. The results showed that the effect of arm length and forward speed on changes in the depth and volume of the reservoirs were significant at the probability level of one percent but changes of the distance between the reservoirs was only affected by Arm's length. The results also showed that increasing the forward speed from 5 to 10 km h-1 and increase the Arm's length from 30 to 40 cm increased depth, distance and volume of reservoirs. Reservoir tillage practices were control runoff in all plots. Conclusions In this research project, a reservoir tillage machine was built and assessed. Tillage unit of this machine is similar to the spider wheel. By this machine the small holes generated in the ground periodically. For evaluation of machine performance, effect of two factors, including machine speed and arm's length on depth, distance and volume of the basins were evaluated. The results showed that increasing the ground speed from 5 to 10 km h-1 and increase the arm's length from 30 to 40 cm increased depth, distance and volume of reservoirs. Reservoir tillage practices were controlled runoff in all plots.

  5. Soil tillage

    OpenAIRE

    Dierauer, Hansueli

    2013-01-01

    The web platform offers a compilation of various formats and materials dealing with reduced tillage and its challenges regarding weeds. A selection of short movies about mechanical weeding, green manure and tailor-made machinery is listed. Leaflets and publications on reduced tillage can be downloaded. In there, different treatments and machinery are tested and compared to advice farmers on how to conserve soil while keeping weed under control. For Swiss farmers information on the leg...

  6. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment. Keywords: Atmosphere, Greenhouse gases, Conservation tillage, Sustainable crop yield

  7. Effects of ridge tillage on photosynthesis and root characters of rice

    Directory of Open Access Journals (Sweden)

    Yao Yuan-zhi

    2015-03-01

    Full Text Available Rice (Oryza sativa L. is an important crop and breeding has not been able to improve yield. Root characteristics of hybrid rice 'Zhuliangyou 02' under conventional tillage and ridge tillage were studied in a Calcisols in Huaihua, China, from 2011 to 2013 to find better tillage methods to resolve massive water consumption, improve yield, and enhance productivity of agricultural labor for rice cultivation. Results showed ridge tillage increased photosynthetic parameters such as photosynthetic rate (P N, stomatal conductance (g s, and water use efficiency (WUE. It also significantly enhanced rice root number, root activity, and antioxidant enzyme activities; it also increased effective panicle number and actual yield by 22.12% and 15.18%, respectively, and enhanced aerenchymae during the early growth stage. Overall, ridge tillage could promote hybrid rice yields by enhancing root absorption, gas exchange, and reducing water consumption. It could be widely used in rice cultivation.

  8. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions.

    Science.gov (United States)

    Badagliacca, Giuseppe; Benítez, Emilio; Amato, Gaetano; Badalucco, Luigi; Giambalvo, Dario; Laudicina, Vito Armando; Ruisi, Paolo

    2018-05-20

    The introduction of legumes into crop sequences and the reduction of tillage intensity are both proposed as agronomic practices to mitigate the soil degradation and negative impact of agriculture on the environment. However, the joint effects of these practices on nitrous oxide (N 2 O) and ammonia (NH 3 ) emissions from soil remain unclear, particularly concerning semiarid Mediterranean areas. In the frame of a long-term field experiment (23 years), a 2-year study was performed on the faba bean (Vicia faba L.) to evaluate the effects of the long-term use of no tillage (NT) compared to conventional tillage (CT) on yield and N 2 O and NH 3 emissions from a Vertisol in a semiarid Mediterranean environment. Changes induced by the tillage system in soil bulk density, water filled pore space (WFPS), organic carbon (TOC) and total nitrogen (TN), denitrifying enzyme activity (DEA), and bacterial gene (16S, amoA, and nosZ) abundance were measured as parameters potentially affecting N gas emissions. No tillage, compared with CT, significantly increased the faba bean grain yield by 23%. The tillage system had no significant effect on soil NH 3 emissions. Total N 2 O emissions, averaged over two cropping seasons, were higher in NT than those in CT plots (2.58 vs 1.71 kg N 2 O-N ha -1 , respectively; P emissions in NT plots were ascribed to the increase of soil bulk density and WFPS, bacteria (16S abundance was 96% higher in NT than that in CT) and N cycle genes (amoA and nosZ abundances were respectively 154% and 84% higher in NT than that in CT). The total N 2 O emissions in faba bean were similar to those measured in other N-fertilized crops. In conclusion, a full evaluation of NT technique, besides the benefits on soil characteristics (e.g. TOC increase) and crop yield, must take into account some criticisms related to the increase of N 2 O emissions compared to CT. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Effect of Conservation Tillage and Cover Crop Residue on Beneficial Arthropods and Weed Seed Predation in Acorn Squash.

    Science.gov (United States)

    Quinn, N F; Brainard, D C; Szendrei, Z

    2016-12-01

    Conservation tillage combined with cover crops or mulching may enhance natural enemy activity in agroecosystems by reducing soil disturbance and increasing habitat structural complexity. In particular, weed seed predation can increase with vegetation cover and reduced tillage, indicating that mulches may improve the quality of the habitat for weed seed foraging. The purpose of this study was to quantify the effects of tillage and mulching for conservation biological control in cucurbit fields. The effects of mulch and reduced tillage on arthropods and rates of weed seed loss from arenas were examined in field trials on sandy soils in 2014 and 2015. Experimental factors included tillage and cover crop, each with two levels: strip-tillage or full-tillage, and cover crop mulch (rye residue) or no cover crop mulch (unmulched). Arthropod abundance on the crop foliage was not affected by tillage or cover crops. Contrary to expectations, epigeal natural enemies of insects and rates of weed seed removal either did not respond to treatments or were greater in full-tilled plots and plots without mulch. Our study demonstrates the potential importance of weed seed predators in reducing weed seedbanks in vegetable agroecosystems, and suggests that early-season tillage may not be detrimental to epigeal predator assemblages. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  11. Identifying conservation hotspots using tillage erosion modeling

    Science.gov (United States)

    Tillage operations redistribute soil within agricultural landscapes due to deviations in the quantity of soil moved during tillage. Tillage erosion is the net loss or accumulation of soil at any spot within an agricultural landscape due to soil being directly moved by tillage; it is a dominant erosi...

  12. Response of wheat to tillage and nitrogen fertilization in rice-wheat system

    International Nuclear Information System (INIS)

    Qamar, R.; Ehsanullah, A.; Ahmad, R.; Iqbal, M.

    2012-01-01

    In a rice-wheat system, rice stubbles remaining in the field often delay early planting of winter wheat to utilize residual soil moisture and reduce operating costs. A randomized complete block design in a split plot arrangement was conducted with four seasonal tillage methods [conventional tillage, CT; deep tillage, DT; zero tillage with zone disk tiller, ZDT; and happy seeder, HS] as main plots and five N levels [0, 75, 100, 125, and 150 kg ha/sup -1/] as subplots during 2009 to 2010 and 2010 to 2011 wheat growing seasons. Results showed that DT significantly decreased soil bulk density, penetration resistance, and volumetric moisture content compared with CT, ZDT and HS. However, wheat growth and yield parameter such as fertile tillers, plant height, root length, spike length, grain yields, and water and nutrient-use efficiency was significantly higher in DT compared with other tillage treatments. Wheat growth and yield was more increased by N fertilization at 125 kg ha/sup -1/ than other N rates. However, when the wheat plant productivity index was plotted over N rates, the non-linear relationship showed that N fertilization at 80 kg N ha-1 accounted for 85% of the variability in the plant productivity under DT and HS while ZDT had the same productivity at 120 kg N ha/sup -1/. (author)

  13. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  14. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery

    Directory of Open Access Journals (Sweden)

    M.A Rostami

    2014-09-01

    Full Text Available Local information about tillage intensity and ground residue coverage is useful for policies in agricultural extension, tillage implement design and upgrading management methods. The current methods for assessing crop residue coverage and tillage intensity such as residue weighing methods, line-transect and photo comparison methods are tedious and time-consuming. The present study was devoted to investigate accurate methods for monitoring residue management and tillage practices. The satellite imagery technique was used as a rapid and spatially explicit method for delineating crop residue coverage and as an estimator of conservation tillage adoption and intensity. The potential of multispectral high-spatial resolution WorldView-2 local data was evaluated using the total of eleven satellite spectral indices and Linear Spectral Unmixing Analysis (LSUA. The total of ninety locations was selected for this study and for each location the residue coverage was measured by the image processing method and recorded as ground control. The output of indices and LSUA method were individually correlated to the control and the relevant R2 was calculated. Results indicated that crop residue cover was related to IPVI, RVI1, RVI2 and GNDVI spectral indices and satisfactory correlations were established (0.74 - 0.81. The crop residue coverage estimated from the LSUA approach was found to be correlated with the ground residue data (0.75. Two effective indices named as Infrared Percentage Vegetation Index (IPVI and Ratio Vegetation Index (RVI with maximum R2 were considered for classification of tillage intensity. Results indicated that the classification accuracy with IPVI and RVI indices in different conditions varied from 78-100 percent and therefore in good agreement with ground measurement, observations and field records.

  15. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    replications. In one variant the area of a plot was 300 m2. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration; the daily average is lower at no-tillage (315-1914 mmoli m-2s-1), followed by minimum tillage (318-2395 mmoli m-2s-1) and is higher in the conventional tillage (321-2480 mmol m-2s-1). An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of long-term soil fertility. By determining the humus content after 3 years, it can be observed an increasing tendency when applying the minimum tillage (the increase was up to 0.41%) and no-tillage systems tillage (the increase was up to 0.64%). Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. The more the organic content in soil is higher the better soil aggregation is. The soil without organic content is compact. This reduces its capacity to infiltrate water, nutrients solubility and productivity, and that way it reduces the soil capacity for carbon sequestration. Acknowledgments This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change.

  16. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    Science.gov (United States)

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Directory of Open Access Journals (Sweden)

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  18. to Phosphorus Fertilization, Crop Sequence and Tillage Management

    Directory of Open Access Journals (Sweden)

    Xiaopeng Gao

    2012-01-01

    Full Text Available Field experiments were conducted at two locations in Manitoba, Canada, to determine the effect of crop rotation, phosphorus (P fertilization and tillage on grain yield and grain concentrations of Cd and Zn in durum wheat (Triticum durum L.. Compared to conventional tillage (CT, reduced tillage (RT management decreased grain Cd and increased grain yield and grain Zn in half of the site-years. The type of preceding crops of spring wheat-flax or canola-flax had little influence. Rate and timing of P application had little effect on grain Cd, but increasing P rate tended to decrease grain Zn. No interactive effect was detected among tested factors. Grain Zn was not related to grain Cd, but positively to other nutrients such as Fe, Mn, P, Ca, K, and Mg. Both grain Zn and Fe correlated positively with grain protein content, suggesting protein may represent a sink for micronutrients. The study suggested that the tillage management may have beneficial effects on both grain yield and quality. Phosphorus fertilizer can remain available for subsequent crops and high annual inputs in the crop sequence may decrease crop grain Zn. Understanding the environment is important in determining the impact of agricultural management on agronomic and nutrient traits.

  19. Evaluating energy efficiency of site-specific tillage in maize in NE Italy.

    Science.gov (United States)

    Bertocco, M; Basso, B; Sartori, L; Martin, E C

    2008-10-01

    This paper examine the efficiency of energy use of three conservation tillage practices (SST - sub-soil tillage; MT - minimum tillage; and NT - no tillage) performed within two management zones, previously identified in a field according to the stability of yield variability. Experiments were carried out in 2003 in NE Italy, on a farm near Rovigo, on a 8-ha field with clay soil, in maize (Zea mays, L.). The purpose of the paper is (i) to investigate the energy variability due to these tillage practices performed spatially within two management zones and (ii) to analyze the long-term energetic efficiency for each tillage practice. The energy balance was highest for SST with respect to MT and NT, due to labor and fuel consumption rates. The energy balance was influenced by the spatial pattern of yield, with appreciable differences between practices in terms of both the conversion index of energy for tillage (9.0, 12.6 and 22.8GJha(-1) for SST, MT and NT, respectively) and the energy use efficiency for tillage (8.0, 11.6, 21.8GJha(-1) for SST, MT and NT, respectively). Based on the simulated data and the calibration results, SALUS model proved to be a good tool for analyzing long-term effects of tillage practices on yield. The NT treatment showed the best efficiency over years, due to the low inputs in comparison with the output level.

  20. [Effects of different tillage patterns on soil properties, maize yield and water use efficiency in Weibei Highland, China.

    Science.gov (United States)

    Liu, Dan; Zhang, Xia; Li, Jun; Wang, Xu-Dong

    2018-02-01

    An eight-year field experiment of straw returning was conducted on dark loessial soil in Weibei Highland to investigate the effects of tillage patterns on soil aggregate, soil organic carbon (SOC), corn yield and soil water use efficiency (WUE). There were six tillage patterns, including conventional tillage (CT/CT), no-tillage (NT/NT), subsoiling tillage (ST/ST), no-tillage/subsoiling tillage (NT/ST), conventional tillage/no-tillage (CT/NT) and conventional tillage/subsoiling tillage (CT/ST). The results showed that compared with CT/CT, the patterns of NT/NT, ST/ST and the rotational tillage patterns (NT/ST, CT/NT and CT/ST) decreased the mean mass diameter of soil mechanical stable aggregate. The patterns of NT/NT, ST/ST and NT/ST increased the content of soil water-stable aggregate with the particle size >0.25 mm (WR 0.25 ) and their mean mass diameter, especially in the depth of 20-50 cm. These patterns reduced the proportion of aggregate destruction (PAD). Compared with CT/CT, the patterns of NT/ST, CT/NT, NT/NT and ST/ST increased the content of SOC in 0-10 cm soil layer. The content of SOC decreased as the increases of soil depth for all tillage patterns, but the decrease in SOC of three single tillage patterns (ST/ST, NT/NT and CT/CT) was larger than that of three rotational tillage patterns. Compared with CT/CT, the other five tillage patterns increased soil water storage in 0-200 cm soil profile, crop yield and WUE in maize. The yield and WUE in NT/ST pattern were significantly increased by 15.1% and 27.5%, respectively. Both corn yield and WUE were significantly and positively correlated with soil water storage in 0-200 cm soil profile in field during the cropping and fallow periods. Moreover, soil water storage during the cropping period was positively correlated with WR 0.25 , but negatively correlated with PAD in 0-50 cm soil layer. Particularly, maize yield, WUE and soil water storage during the cropping period were closely related to WR 0.25 in 20

  1. Soil respiration in a long-term tillage treatment experiment

    Science.gov (United States)

    Gelybó, Györgyi; Birkás, Márta; Dencsö, Márton; Horel, Ágota; Kása, Ilona; Tóth, Eszter

    2016-04-01

    Regular soil CO2 efflux measurements have been carried out at Józsefmajor longterm tillage experimental site in 2014 and 2015 with static chamber technique in no-till and ploughing plots in seven spatial replicates. The trial was established in 2002 on a loamy chernozem soil at the experimental site of the Szent István University nearby the city Hatvan, northern Hungary. At the site sunflower (Helianthus A.) and wheat (Triticum A.) was grown in 2014 and 2015, respectively. Ancillary measurements carried out at the site included weather parameters, soil water content, soil temperature. The aim of the investigation was to detect the effect of soil disturbance and soil tillage treatments on soil CO2 emission in agricultural ecosystems. Soil respiration measurements were carried out every week during the vegetation period and campaign measurements were performed scheduled to tillage application. In this latter case, measurements were carried out 1, 2, 3, 4, 6, 12, 18, 24, 48, 72, 96, 120 hours and 7 days after tillage operation. Results showed that during the vegetation season in the majority of measurement occasions emission was higher in the no-till plots. These differences; however were not found to be statistically significant. Due to the short term effect of tillage treatment, emissions increased following tillage treatment in the ploughed plots. Soil water content was also examined as main driver of soil CO2 fluxes. Soil water content sharply decreases in the surface layer (5-10 cm depth) after tillage treatment indicating a fast drying due to soil disturbance. This effect slowly attenuated and eventually extincted in approx. two weeks. CO2 emission measurements were associated with high uncertainties as a result of the measurement technique. Our further aim is to reduce this uncertainty using independent measurement techniques on the field.

  2. Tillage methods and mulch on water saving and yield of spring maize in Chitwan

    Directory of Open Access Journals (Sweden)

    Ishwari Prasad Upadhyay

    2016-12-01

    Full Text Available Tillage methods and mulch influences the productivity and water requirement of spring maize hence a field experiment was conducted at the National Maize Research Program, Rampur in spring seasons of 2011 and 2012 with the objectives to evaluate different tillage methods with and without mulch on water requirement and grain yield of spring maize. The experiment was laid out in two factors factorial randomized complete design with three replications. The treatments consisted of tillage methods (Permanent bed, Zero tillage and Conventional tillage and mulch (with and without. Irrigation timing was fixed as knee high stage, tasseling stage and milking/dough stage. Data on number of plants, number of ears, thousand grain weight and grain yield were recorded and analysed using GenStat. Two years combined result showed that the effect of tillage methods and mulch significant influenced grain yield and water requirement of spring maize. The maize grain yield was the highest in permanent beds with mulch (4626 kg ha-1 followed by zero tillage with mulch (3838 kg ha-1. Whereas total water applied calculated during the crop period were the highest in conventional tillage without mulch followed by conventional tillage with mulch. The permanent bed with mulch increased the yield and reduced the water requirement of spring maize in Chitwan.

  3. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Directory of Open Access Journals (Sweden)

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  4. Fertilizer placement and tillage effects on phosphorus leaching in fine-textured soils

    Science.gov (United States)

    Adoption of no-tillage in agricultural watersheds has resulted in substantial reductions in sediment and particulate phosphorus (P) delivery to surface waters. No-tillage, however, may result in increased losses of dissolved P in tile-drained landscapes due to the accumulation of P in surface soil l...

  5. Carbon dioxide emissions after application of different tillage systems for loam in northern China

    Science.gov (United States)

    Hongwen, Li; Lifeng, Hu; Fub, Chen; Xuemin, Zhang

    2010-05-01

    Tillage operations influence soil physical properties and crop growth, and thus both directly and indirectly the cropland CO2 exchange with the atmosphere. In this study, the results of CO2 flux measurements on cropland, under different tillage practices in northern China, are presented. CO2 flux on croplands with a winter wheat (Triticum aestivum L.) and maize (Zea may L.) rotation was monitored on plots with conventional tillage (CT), rotary tillage (RT) and no tillage (NT). Soil CO2 flux was generally greater in CT than in NT, and the RT CO2 flux was only slightly smaller than the CT. Daily soil CO2 emissions for CT, RT, and NT averaged 11.30g m-2, 9.63 g m-2 and 7.99 g m-2, respectively, during the growing period. Analysis of variance shows that these differences are significant for the three tillage treatments. Peak CO2 emissions were recorded on the CT and RT croplands after tillage operations. At the same time, no obviously increased emission of CO2 occurred on the NT plot. These differences demonstrate that tillage results in a rapid physical release of CO2.

  6. Infiltration of surface mined land reclaimed by deep tillage treatments

    International Nuclear Information System (INIS)

    Chong, S.K.; Cowsert, P.

    1994-01-01

    Surface mining of coal leads to the drastic disturbance of soils. Compaction of replaced subsoil and topsoil resulting from hauling, grading, and leveling procedures produces a poor rooting medium for crop growth. Soil compaction results in high bulk density, low macroporosity, poor water infiltration capacity, and reduced elongation of plant roots. In the United States, Public Law 95-87 mandates that the rooting medium of mined soils have specific textural characteristics and be graded and shaped to a topography similar to premining conditions. Also, crop productivity levels equivalent to those prior to mining must be achieved, especially for prime farmland. Alleviation of compaction has been the major focus of reclamation, and recently new techniques to augment the rooting zone with deep-ripping and loosening equipment have come to the forefront. Several surface mine operators in the Illinois coal basin are using deep tillage equipment that is capable of loosening soils to greater depths than is possible with conventional farm tillage equipment. Information on the beneficial effects of these loosening procedures on soil hydrological properties, such as infiltration, runoff potential, erosion, and water retention, is extremely important for future mined land management. However, such information is lacking. In view of the current yield demonstration regulation for prime farmland and other unmined soils, it is important that as much information as possible be obtained concerning the effect of deep tillage on soil hydrologic properties. The objectives of this study are: (1) to compare infiltration rates and related soil physical properties of mined soils reclaimed by various deep tillage treatments and (2) to study the temporal variability of infiltration and related physical properties of the reclaimed mined soil after deep tillage treatment

  7. Carbon dioxide efflux from soil with poultry litter applications in conventional and conservation tillage systems in northern Alabama.

    Science.gov (United States)

    Roberson, T; Reddy, K C; Reddy, S S; Nyakatawa, E Z; Raper, R L; Reeves, D W; Lemunyon, J

    2008-01-01

    Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.

  8. Impact of no-till and conventional tillage practices on soil chemical properties

    International Nuclear Information System (INIS)

    Aziz, A.; Bangash, N.

    2015-01-01

    There is a global concern about progressive increase in the emission of greenhouse gases especially atmosphere CO/sub 2/. An increasing awareness about environmental pollution by CO/sub 2/ emission has led to recognition of the need to enhance soil C sequestration through sustainable agricultural management practices. Conservation management systems such as no-till (NT) with appropriate crop rotation have been reported to increase soil organic C content by creating less disturbed environment. The present study was conducted on Vanmeter farm of The Ohio State University South Centers at Piketon Ohio, USA to estimate the effect of different tillage practices with different cropping system on soil chemical properties. Tillage treatments were comprised of conventional tillage (CT) and No-till (NT).These treatments were applied under continuous corn (CC), corn-soybean (CS) and corn soybean-wheat-cowpea (CSW) cropping system following randomized complete block design. No-till treatment showed significant increase in total C (30%), active C (10%), and passive salt extractable (18%) and microwave extractable C (8%) and total nitrogen (15%) compared to conventional tillage practices. Total nitrogen increased significantly 23 % in NT over time. Maximum effect of no-till was observed under corn-soybean-wheat-cowpea crop rotation. These findings illustrated that no-till practice could be useful for improving soil chemical properties. (author)

  9. Translocation of Soil Particles during Secondary Soil Tillage along Contour Lines

    Directory of Open Access Journals (Sweden)

    Novák Petr

    2018-04-01

    Full Text Available A high percentage of arable land and erosion risk on agricultural land are typical of current agriculture. While tillage erosion is a less frequently studied issue, it impacts vast areas of agricultural land. Not all relationships between cultivation equipment, the gradient of the plot and other factors have been known until now. Intensive soil tillage can be a crucial erosive factor mainly when the cultivation equipment moves in a fall line direction. Nevertheless, even when the equipment moves along contour lines, soil particles can be translocated perpendicular to the direction of the equipment movement (in a fall line direction. This phenomenon has not yet been adequately studied. For measurements, a field trial with secondary tillage of soil was laid out (a seedbed preparation implement was used. The objective of the trial was to evaluate the effect of the working tools of the cultivation equipment on the crosswise and lengthwise translocation of soil particles during soil tillage. Aluminium cubes, with a side length of 16 mm, were used as tracers. Before the operation, the tracers were inserted in a row perpendicular (at a right angle to a direction of the equipment passes. After the equipment passes, position of tracers was evaluated within a two-axis grid. The trial was performed at three gradients of the plot (2°, 6° and 11°. For each gradient, the 1-pass, 2-pass and 3-pass treatments were tested. The equipment always moved along the plot contour line. After the equipment passes in all treatments, all tracers were localized on an orthogonal grid. The results of the trial demonstrate the effect of the slope gradient on the crosswise translocation of particles during secondary tillage of soil in the slope direction. The tillage equipment translocated particles in the fall line direction even if it passed along the contour line. With the increasing intensity of passes, the effect of the equipment on crosswise translocation increases

  10. Burrower bugs (Heteroptera: Cydnidae) in peanut: seasonal species abundance, tillage effects, grade reduction effects, insecticide efficacy, and management.

    Science.gov (United States)

    Chapin, Jay W; Thomas, James S

    2003-08-01

    Pitfall traps placed in South Carolina peanut, Arachis hypogaea (L.), fields collected three species of burrower bugs (Cydnidae): Cyrtomenus ciliatus (Palisot de Beauvois), Sehirus cinctus cinctus (Palisot de Beauvois), and Pangaeus bilineatus (Say). Cyrtomenus ciliatus was rarely collected. Sehirus cinctus produced a nymphal cohort in peanut during May and June, probably because of abundant henbit seeds, Lamium amplexicaule L., in strip-till production systems. No S. cinctus were present during peanut pod formation. Pangaeus bilineatus was the most abundant species collected and the only species associated with peanut kernel feeding injury. Overwintering P. bilineatus adults were present in a conservation tillage peanut field before planting and two to three subsequent generations were observed. Few nymphs were collected until the R6 (full seed) growth stage. Tillage and choice of cover crop affected P. bilineatus populations. Peanuts strip-tilled into corn or wheat residue had greater P. bilineatus populations and kernel-feeding than conventional tillage or strip-tillage into rye residue. Fall tillage before planting a wheat cover crop also reduced burrower bug feeding on peanut. At-pegging (early July) granular chlorpyrifos treatments were most consistent in suppressing kernel feeding. Kernels fed on by P. bilineatus were on average 10% lighter than unfed on kernels. Pangaeus bilineatus feeding reduced peanut grade by reducing individual kernel weight, and increasing the percentage damaged kernels. Each 10% increase in kernels fed on by P. bilineatus was associated with a 1.7% decrease in total sound mature kernels, and kernel feeding levels above 30% increase the risk of damaged kernel grade penalties.

  11. Energy indices in irrigated wheat production under conservation and conventional tillage and planting methods

    Directory of Open Access Journals (Sweden)

    S. M Hosseini

    2016-04-01

    using a moldboard plow and secondary tillage operation was done using a disk harrow and land leveler. Seed bed was prepared in the reduced tillage method using a tine and disc cultivator which was able to complete the primary and secondary tillage operations simultaneously. Wheat seed was directly planted using direct planter without any seed bed preparation in the zero tillage method. Surface irrigation method was used to irrigate the plots and 11970 m3/ha water was consumed in each treatment. Input energies including direct energy (diesel and electricity and indirect energy (water, labor, seed, fertilizer, chemicals, and machinery were measured and calculated. Output energies (energy of grain and straw were measured in each treatment and the share of each input energy, energy ratio, net energy gain, and energy productivity were determined and compared. Collected data were analyzed using SAS software and Duncan’s multiple range tests was used to compare the treatments means. Results and Discussion: Results showed that tillage and planting methods had a significant effect on fuel and machinery energies; while, the total input energy, crop grain yield, and crop biologic yield were not affected by the tillage and planting methods (Table 4. Fertilizers and chemicals had the highest contribution in input energy of all treatments. Results also indicated that reduced tillage and seeding with Roto-seeder had the highest energy ratio (1.46 and the lowest energy ratio (1.40 was related to the conventional tillage methods (Fig.1. The highest net energy gain (47653 MJ was obtained from the reduced tillage and seeding with Roto-seeder; while, the lowest amount of net energy gain (41388 MJ was related to the conventional tillage and planting with Machine Barzegar grain drill (Fig.3. Results also showed that the reduced tillage and seeding with Roto-seeder had the highest energy productivity (0.115 kg MJ-1 and the conventional tillage treatments had the lowest energy productivity

  12. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L. affected by tillage managements

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemi

    2016-03-01

    Full Text Available Introduction Due to the development of sustainable agriculture and the reduction of utilizing chemical fertilizers, it is essential to use organic fertilizer. Organic matter is vital to soil fertility and its productivity. To maintain the level of fertility and the strength of soil, organic matter levels should be maintained at an appropriate level. Unfortunately, the level of organic matter in soil is generally less than 1%. One solution to increase the soil’s organic matter content is to use organic fertilizers such as animal manure, green manure, and vermicompost (Nuralvandy, 2011. As a correction factor, green manure can increase water supply and nutrient soil conservation (Tajbakhsh et al., 2005. Materials and methods In order to assess the effects of fertilizer sources (green manure, cow manure, and chemical fertilizer on maize yield and yield components (KSC 704 under tillage management, a field experiment was carried out at Zahak Agricultural and Natural Resource Research Station in two years (from 2013 to 2014. Before corn planting, barley was planted as green manure in the fall of each year. The experiment was conducted as a split plot arranged in a completely randomized block design with three replications. The main plots were tillage and no tillage, whereas the sub plots were: 1-barley green manure (without application of fertilizer, 2-barley green manure with applying 100% chemical fertilizer (NPK to the barley during cultivation, tillering and stemming stages, 3- green manure with 2/3 of chemical fertilizer to the barley and 1/3 to the maize, 4- green manure with 1/3 of chemical fertilizer to the barley and 2/3 to the maize, 5- barley green manure with 50% animal and chemical manures, 6- barley green manure with 40 t ha-1 of animal manure, 7-control (non-fertilizer application. Corn was planted on 15 March each year. Phosphorus, potassium fertilizer, and animal manure were added to the soil as the base fertilizers. At full

  13. Impact of tillage, plant population and mulches on phenological characters of maize

    International Nuclear Information System (INIS)

    Gul, B.; Khan, M.A.; Khan, H.

    2014-01-01

    Field experiments were conducted during 2006 and 2007 in Peshawar, using open pollinated maize variety Azam in RCB design having 3 factors viz., tillage, maize populations and mulches with split-split plot arrangements. Tillage levels (zero and conventional) were assigned to the main plots, populations (90000, 60000 and 30000 plants ha/sup -1/) to sub-plots and four types of mulches (weeds mulch, black plastic mulch, white plastic mulch and mungbean as living mulch), a hand weeding and a weedy check were allotted to sub-sub plots, respectively. Data were recorded on days to tasseling, days to silking, days to maturity, leaf area of maize plant-1 (cm/sub 2/) and plant height (cm). Tillage affected leaf area of maize, where zero tillage resulted lower leaf area of 4094 cm/sub 2/ compared to conventional tillage (4722 cm/sub 2/). Different levels of plant populations affected all the physiological parameters. Days to tasseling, silking and maturity were more in higher plant population as compared to medium and lower plant population. Similarly, minimum leaf area plant-1 was recorded in higher plant population (3894 cm/sub 2/) than medium and lower plant population of 4398 and 4932 cm/sub 2/, respectively. Maximum plant height was recorded in hand weeding treatment (173 cm). However, it was statistically at par with black plastic mulch (171 cm), followed by weeds mulch (162 cm) and white plastic mulch (161 cm) as compared to weedy check (152 cm). Based on two years study it is suggested that even if tillage options and plant populations are a part of the weed management program, it should not be used as a sole management tool, as both have a negative impact on the phenological parameters of maize which subsequently affected the final yield and must be integrated and supplemented with other control methods. (author)

  14. Effect of tillage systems and permanent groundcover intercropped with orange trees on soil enzyme activities

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-04-01

    Full Text Available The objective of this study was to evaluate the effect of different soil tillage systems and groundcover crops intercropped with orange trees on soil enzyme activities. The experiment was performed in an Ultisol soil in northwestern Paraná State. Two soil tillage systems were evaluated [conventional tillage (CT across the entire area and strip tillage (ST with a 2-m strip width] in combination with various groundcover vegetation management systems. Soil samples were collected after five years of experimental management at a depth of 0-15 cm under the tree canopy and in the inter-row space in the following treatments: (1 CT-Calopogonium mucunoides; (2 CT-Arachis pintoi; (3 CT-Bahiagrass; (4 CT-Brachiaria humidicola; and (5 ST-B. humidicola. The soil tillage systems and groundcover crops influenced the soil enzyme activities both under the tree canopy and in the inter-row space. The cultivation of B. humidicola provided higher amylase, arylsulfatase, acid phosphatase and alkaline phosphatase than other groundcover species. Strip tillage increased enzyme activities compared to the conventional tillage system.

  15. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage

    DEFF Research Database (Denmark)

    Peltrea, Clément; Nyord, Tavs; Bruun, Sander

    2015-01-01

    Abstract Soil application of organic waste products (OWP) can maintain or increase soil organic carbon (SOC) content, which in turn could lead to increased porosity and potentially to reduced energy use for soil tillage. Only a few studies have addressed the effect of SOC content on draught force...... for soil tillage, and this still needs to be addressed for fields that receive diverse types of organic waste of urban, agricultural and agro-industrial origin. The objective of this study was to determine the effect of changes in SOC induced by repeated soil application of OWP on draught force for soil...... tillage and tractor fuel consumption. Draught force was measured for tillage with conventional spring tillage tines, as well as bulk density, soil texture and SOC content in the CRUCIAL field experiment, Denmark in which diverse types of OWP had been applied annually for 11 years. The OWP included...

  16. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    Soil Tillage Conservation (STC) is considered major components of agricultural technology for soil conservation strategies and part of Sustainable Agriculture (SA). Human action upon soil by tillage determines important morphological, physical-chemical and biological changes, with different intensities and evaluative directions. Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of human intervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered an important intervention to limit these changes. STC involves reducing the number of tillage's (minimum tillage) to direct sowing (no-tillage) and plant debris remains at the soil surface in the ratio of at least 30%. Plant debris left on the soil surface or superficial incorporated contributes to increased biological activity and is an important source of carbon sequestration. STC restore soil structure and improve overall soil drainage, allowing more rapid infiltration of water into soil. The result is a soil bioremediation, more productive, better protected against wind and water erosion and requires less fuel for preparing the germinative bed. Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. We present the influence of conventional plough tillage system on soil, water and organic matter conservation in comparison with an alternative minimum tillage (paraplow, chisel plow and rotary harrow) and no-tillage system. The application of STC increased the organic matter content 0.8 to 22.1% and water stabile aggregate content from 1.3 to 13.6%, in the 0-30 cm depth, as compared to the conventional system. For the organic matter content and the wet aggregate stability, the statistical analysis of the data showed, increasing positive significance of STC. While the soil fertility and the wet aggregate stability were initially low, the effect of conservation practices on the

  17. The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe

    Science.gov (United States)

    Mupangwa, W.; Twomlow, S.; Walker, S.

    Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.

  18. Soil tillage practices and crops rotations effects on yields and ...

    African Journals Online (AJOL)

    Methodology and Results: Three soil tillage practices in main plot (T1 = no tillage with direct sowing, T2 = minimum tillage by soil scarifying with IR12 tool and T3 = conventional tillage with animals drawn plough) were compared and combined to four crops rotation systems, in a split-plot experimental design. Soil chemical ...

  19. Re-plant problems in long-term no-tillage cropping systems : causal analysis and mitigation strategies

    OpenAIRE

    Afzal

    2016-01-01

    No-tillage is considered as a promising alternative for tillage-based conventional farming, by saving energy-input and time, reducing groundwater pollution and counteracting soil erosion and losses of the soil-organic matter. However, in the recent past, no-tillage farmers in Southwest Germany repeatedly reported problems particularly in winter wheat production, characterized by stunted plant growth in early spring, chlorosis, impaired fine root development and increased disease susceptibilit...

  20. Do Tillage Methods Affect Germination and Species Similarity of Soil Weed Seeds Bank?

    Directory of Open Access Journals (Sweden)

    Shahgholi Hassan

    2015-12-01

    Full Text Available Cultural practices such as tillage used for crop production influence the composition of the weed seed bank in the soil. In order to investigate the effects of different tillage methods on seed bank properties, species diversity and similarity, two laboratory and greenhouse experiments were carried out as randomized complete block design with four replications in 2011. Treatments included: once tillage per year (T1, twice tillage per year (T2, more than twice tillage (T3 and no tillage (T4. Laboratory results showed that the T3 and T4 treatments had the highest and the lowest observed seeds numbers, respectively. Between the laboratory observed weed seeds, the maximum weed seed numbers were Echinochloa crus-galli and Amaranthus retroflexus in the T3 treatment, while Chenopodium album, Polygonum aviculare and Cuscuta campestris had the highest seed numbers in the T2 treatment. At the greenhouse study, Chenopodium album, Amaranthus retroflexus and Hordeum morinum in the T2 treatment were dominant species. The highest diversity was observed in the T2 treatment, and Chenopodium album and Echinochloa crus-galli were dominant species in the T2 and T3 treatments. Maximum species similarity index was achieved from the T1 and T3 treatments. Thereby this study concluded that increasing of tillage number could affect the similarity index of weed seeds and subsequently alters the weed community composition.

  1. YIELD OF MAIZE (ZEA MAYS L. ON DIFFERENT SOIL TILLAGE VARIANTS

    Directory of Open Access Journals (Sweden)

    Danijel Jug

    2006-12-01

    Full Text Available Reduced tillage, as well as the most reduced tillage – No-till – every year are becoming more important in our region. Unfortunately, the areas under reduced tillage are still very small. In order to establish optimal system of reduced soil tillage, the experimental trials were set on Chernozem soil type in northern Baranja during three vege¬tation seasons (1998/1999-2000/2001 and five soil tillage systems: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 30-35 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, CH Chiseling and diskharrowing (chiseling at 30-35 cm and diskharrowing at 10-15 cm as primary tillage, PD One diskharro-wing pass (diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. The highest yields were recor¬ded at CT with three-year average of 9.29 t/ha, followed by CH with 8.37 t/ha, DH with 8.07 t/ha, PD with 6.99 t/ha, whereas the lowest yields were recorded at NT treatment, with three-year average of 5.94 t/ha. The highest profit was achieved at CT treatment (665,34 HRK/ha, followed by CH (189,24 HRK/ha, DH (77,20 HRK/ha, PD (-334,95 HRK/ha and NT (-459,81 HRK/ha.

  2. Long-term effects of conventional and reduced tillage systems on soil condition and yield of maize

    Science.gov (United States)

    Rátonyi, Tamás; Széles, Adrienn; Harsányi, Endre

    2015-04-01

    As a consequence of operations which neglect soil condition and consist of frequent soil disturbance, conventional tillage (primary tillage with autumn ploughing) results in the degradation and compaction of soil structure, as well as the reduction of organic matter. These unfavourable processes pose an increasing economic and environmental protection problem today. The unfavourable physical condition of soils on which conventional tillage was performed indicate the need for preserving methods and tools. The examinations were performed in the multifactorial long-term tillage experiment established at the Látókép experiment site of DE MÉK. The experiment site is located in the Hajdúság loess ridge (Hungary) and its soil is loess-based calcareous chernozem with deep humus layer. The physical soil type is mid-heavy adobe. The long-term experiment has a split-split plot design. The main plots are different tillage methods (autumn ploughing, spring shallow tillage) without replication. In this paper, the effect of conventional and reduced (shallow) tillage methods on soil conditions and maize yield was examined. A manual penetrometer was used to determine the physical condition and compactedness of the soil. The soil moisture content was determined with deep probe measurement (based on capacitive method). In addition to soil analyses, the yield per hectare of different plots was also observed. In reduced tillage, one compacted layer is shown in the soil resistance profile determined with a penetrometer, while there are two compacted layers in autumn ploughing. The highest resistance was measured in the case of primary tillage performed at the same depth for several years in the compacted (pan disk) layer developed under the developed layer in both treatments. The unfavourable impact of spring shallow primary tillage on physical soil conditions is shown by the fact that the compaction of the pan disk exceed the critical limit value of 3 MPa. Over the years, further

  3. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  4. [Dynamics of aquic brown soil enzyme activities under no-tillage].

    Science.gov (United States)

    Liu, Xiumei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2006-12-01

    This paper studied the effects of no-tillage on the dynamics of invertase, urease and acid phosphatase activities in an aquic brown soil during maize growing season. The results showed that in 0 - 10 cm soil layer, the invertase activity at jointing, trumpet-shaped and ripening stages, urease activity at jointing and booting stages, and acid phosphatase activity at booting and ripening stages were significantly higher under no-tillage (NT) than under conventional tillage (CT). In 10 - 20 cm soil layer, the invertase activity at seedling, jointing and trumpet-shaped stages was significantly different between NT and CT, and the urease activity during whole growing season except at booting stage was significantly higher under NT than under CT. In 20 - 30 cm soil layer, the invertase activity during maize growing season was significantly lower under NT than under CT, and urease activity at seedling stage and acid phosphate activity at ripening stage were significantly different between these two treatments. Under NT, there was a decreasing trend of soil enzyme activities with increasing soil depth; while under CT, soil invertase and acid phosphatase activities increased, but urease activity decreased with increasing soil depth.

  5. The development and adoption of conservation tillage systems on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    L. Awada

    2014-03-01

    Full Text Available One of the major agricultural innovations on the Canadian Prairies over the last 40 years has been the introduction of conservation tillage (CT. Conservation tillage-a system that includes minimum and zero tillage (ZT -was introduced as an alternative to traditional (conventional tillage (TT to control soil degradation and to promote agricultural sustainability. The development and adoption of CT systems involved pioneer farmers, engineers, scientists, and farmer associations. By the end of the 1970s, CT started to take shape on the Prairies, but for a number of economic, technical, political and social reasons, the adoption of CT did not occur on any major scale before the 1990s. Today, more than 75% of the Prairie's cropland is under some form of CT with more than 50% under ZT. In this paper, the factors behind the development and adoption of conservation tillage technology on the Prairies in the period between 1930 and 2011 are reviewed. Then, some of the benefits of the adoption of CT on the Prairies are highlighted. The data show that CT and ZT became profitable for the majority of farmers during and after the 1990s, and that the increased use of CT contributed to the dramatic decrease in the area under summerfallow and to the increase in the area sown to canola and pulse crops. These changes contributed to the reduction of all forms of land degradation and to decreases in agricultural greenhouse gas (GHG emissions.

  6. RESEARCHES REGARDING TO CONTROL SPECIES CONVOLVULUS ARVENSIS L. ON RELATION WITH SOIL TILLAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2007-07-01

    Full Text Available The research paper presents the results obtained in the pedoclimatic conditions of Cluj-Napoca, Romania, concerning the control of Convolvulus arvensis L species. To determine or accomplish the relation with soil tillage systems and herbicides applied on soy-bean, wheat and maize crop. Minimum tillage systems determine an increasing percentage of Convolvulus arvensis species at weeding, different depending on experimental variant and on crop: 11.2-39.1% at soy-bean, 0.9-4.2% at wheat and 11.9-24.4% at maize crop. The number of Convolvulus arvensis seeds increases with 169% at tillage variant with disk + rotary harrow, 77% of these being located in the first 10 cm soil depth.

  7. TILLAGE EROSION: THE PRINCIPLES, CONTROLLING FACTORS AND MAIN IMPLICATIONS FOR FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Agnieszka Wysocka-Czubaszek

    2014-10-01

    Full Text Available Tillage erosion is one of the major contributors to landscape evolution in hummocky agricultural landscapes. This paper summarizes the available data describing tillage erosion caused by hand-held or other simple tillage implements as well as tools used in typical conventional agriculture in Europe and North America. Variations in equipment, tillage speed, depth and direction result in a wide range of soil translocation rates observed all over the world. The variety of tracers both physical and chemical gives a challenge to introduce the reliable model predicting tillage erosion, considering the number and type of tillage operation in the whole tillage sequence.

  8. Chemical, green and organic manure effects on chemical properties on a savannah oxisol and on corn under conventional tillage and no-tillage

    Science.gov (United States)

    Mannigel, Anny R.; Alves, Marlene C.; Valério Filho, Walter V.

    2015-04-01

    Modern agriculture, in general, has always been based on the concept that natural resources are endless; however, this concept is changing. Concern for the environment is increasingly becoming part of farming practices, either by the awareness of society, or because the high cost of fertilizers or even the exhaustion of soils. The objective of this research was to evaluate the effects of the green manure and mineral fertilizer and/or organic manure and, on the chemical properties of an Oxisol, on "Savannah" (cerrado) area in Mato Grosso do Sul-Brazil, cultivated with corn (Zea mays L.) on the following management conditions: no-tillage and conventional tillage, on area previously under pasture (Brachiaria decumbens). The experimental design was a randomized blocks and the tested treatments were: control (without organic manure or chemical fertilizer); chemical fertilizer, as recommended for the culture and based on the chemical soil analysis; organic manure (cow manure); organic manure + half of the mineral fertilizer recommended rate; and the green manure Crotalaria juncea and Pennisetum americanum. The chemical analyses were the soil chemical analysis to the intent of soil fertility. Corn yield was evaluated. The collect of soil samples were realized in depths of 0.00-0.05 m and 0.05-0.10 m and 0.10-0.20 m. The organic manure and the organic manure + half of the mineral recommended rate increased P, Ca, Mg, K and Organic Matter in the first depth (0.00 - 0.05 m). These treatments also increased K and Mg at the second depth analyzed (0.05 - 0.10 m) and K in the depth from 0.10 - 0.20 m. Under conventional tillage management presents better crop results with an average grain yield of 3649 kg ha-1 versus 2374 kg ha-1 obtained under no-tillage. The use of chemical fertilizer, organic manure + half of the mineral recommended rate, Crotalaria juncea, organic manure and Pennisetum americanum increased corn yield by 84, 79, 58, 44 and 41 %, respectively.

  9. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    Science.gov (United States)

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  10. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China

    Science.gov (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui

    2010-07-01

    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  11. Short-term turnover of soil organic matter after tillage proven by Pyrolysis-field ionization MS

    Science.gov (United States)

    Fiedler, Sebastian; Jurasinski, Gerald; Leinweber, Peter; Glatzel, Stephan

    2015-04-01

    Knowledge about the composition and the turnover dynamics of soil organic matter (SOM) is crucial to the fertility of agricultural soils. Even short-term changes of SOM are of fundamental importance. Tillage changes the decomposition and the mineralisation of SOM. By disrupting macroaggregates, tillage induces an increased turnover and hampers the aggregation of SOM. As a consequence, mineralisation of SOM is stimulated which may imply an additional efflux of CO2 and N2O from soil. Pyrolysis-field ionization mass spectrometry (Py-FIMS) has been developed as a key method for SOM research. This powerful analytical tool allows a rapid, global and objective determination of the majority of chemical compound classes and is an appropriate method for the analysis of even small differences of biogeochemical matters. Hence, Py-FIMS may allow for a precise detection of the turnover of SOM and the involved compounds that are affected by tillage in the short-term. Py-FIMS measurements along with the determination of the CO2 and N2O effluxes from soil after tillage at the same site may give new insights into the compounds of SOM which are mineralised and consequently contribute to fundamental processes such as respiration, nitrification and denitrification. We applied Py-FIMS to soil samples from a stagnic Luvisol taken before and after tillage from a harvested maize field in Northern Germany. The samples were taken from two treatments amended with mineral fertiliser (MF) and biogas residues (BR), respectively, and also from an unfertilised control (UC). Tillage was conducted by disc harrowing, followed by mouldboard ploughing up to 30 cm. Simultaneously the soil efflux of CO2 and N2O was measured with a dynamic chamber technique. Before tillage, the mass spectra showed distinct differences in the relative ion intensities: the BR treatment showed much more volatilised matter during pyrolysis indicating an increased amount of SOM. Furthermore, in this treatment, the proportions

  12. Earthworms influenced by reduced tillage, conventional tillage and energy forest in Swedish agricultural field experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lagerloef, Jan (SLU, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala (Sweden)), Email: Jan.Lagerlof@ekol.slu.se; Paalsson, Olof; Arvidsson, Johan (SLU, Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala (Sweden))

    2012-03-15

    We compared earthworm density, depth distribution and species composition in three soil cultivation experiments including the treatments ploughless tillage and mouldboard ploughing. Sampling was done in September 2005 and for one experiment also in 1994. By yearly sampling 1995-2005, earthworms in an energy forest of Salix viminalis were compared with those in an adjacent arable field. Sampling method was digging of soil blocks and hand sorting and formalin sampling in one cultivation experiment. Both methods were used in the energy forest and arable land comparison. In two soil cultivation experiments, highest abundances or biomass were found in ploughless tillage. Earthworm density was higher in the upper 10 cm, especially in the ploughless tillage. Earthworm density was significantly higher in the energy forest than in the arable field. Formalin sampling revealed c. 36% of the earthworm numbers found by digging in the energy forest and gave almost no earthworms in the arable field. In all treatments with soil cultivation, species living and feeding in the rhizosphere and soil dominated. One such species, Allolobophora chlorotica, was more abundant under mouldboard ploughing than ploughless tillage. Lumbricus terrestris, browsing on the surface and producing deep vertical burrows, was more common in the ploughless tillage. Species living and feeding close to the soil surface were almost only found in the energy forest, which had not been soil cultivated since 1984. The findings support earlier studies pointing out possibilities to encourage earthworms by reduced soil cultivation. This is one of the first published studies that followed earthworm populations in an energy forest plantation during several years. Explanation of earthworm reactions to management and environmental impacts should be done with consideration of the ecology of species or species groups. Earthworm sampling by formalin must always be interpreted with caution and calibrated by digging and

  13. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G

    2014-02-01

    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  14. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    Science.gov (United States)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  15. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment.

    Science.gov (United States)

    Singh, Pooja; Heikkinen, Jaakko; Ketoja, Elise; Nuutinen, Visa; Palojärvi, Ansa; Sheehy, Jatta; Esala, Martti; Mitra, Sudip; Alakukku, Laura; Regina, Kristiina

    2015-06-15

    We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and

  16. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods

    Directory of Open Access Journals (Sweden)

    M.A. Badshah

    2014-02-01

    Full Text Available Tillering is an important agronomic trait for rice grain production. To evaluate yield and tillering response, Liangyoupeijiu (super hybrid rice was grown in Hunan, China during 2011–2012 under different methods of tillage (conventional and no-tillage system and crop establishment methods (transplanting at a spacing of 20 cm × 20 cm with one seedling per hill and direct seeding at a seeding rate of 22.5 kg ha− 1. Our results revealed that, at maximum tillering (Max. and at maturity (MA stages, direct seeding (DS resulted in 22% more tillers than transplanting (TP irrespective of tillage system. Tiller mortality reached a peak between panicle initiation (PI and booting (BT stages, and was 16% higher under conventional tillage (CT than under no-tillage (NT. Transplanting required 29% more time for the completion of tillering and less for DS. Tillering rate was 43% higher in DS than TP under either CT or NT. There was a positive correlation between panicle number per m2 and maximum tiller number per m2, but not panicle-bearing tiller rate. The panicle bearing tiller rate was higher under DS than TP and higher under NT than CT. Tiller dry weight gradually increased up to heading (HD stage, and was 14% higher under TP than DS. Leaf area (cm2 tiller− 1 gradually increased from Max. to HD stage and then decreased by 34% in conventional tillage transplanting (CTTP and 45% in no-tillage transplanting (NTTP from 12DAH–24DAH (days after heading, but was similar (35% under DS under either CT or NT. Grain yield was higher under CTTP owing to the larger sink size (heavier panicle, more spikelets in per cm length of panicle than under DS.

  17. The Role of Government Policies in the Adoption of Conservation Tillage in China: A Theoretical Model

    Science.gov (United States)

    Ding, Ya

    2018-01-01

    In recent years, many areas of China have been facing increasing problems of soil erosion and land degradation. Conservation tillage, with both economic and ecological benefits, provides a good avenue for Chinese farmers to conserve land as well as secure food production. However, the adoption rate of conservation tillage systems is very low in China. In this paper, the author constructs a theoretical model to explain a farmer’s adoption decision of conservation tillage. The goal is to investigate potential reasons behind the low adoption rate and explores alternative policy tools that can help improve a farmer’s incentive to adopt conservation tillage in China.

  18. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    Directory of Open Access Journals (Sweden)

    D. Jug

    2005-12-01

    Full Text Available The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth, together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage. Accordingly, the main goal of this research was to determine effects of conventional and reduced soil tillage systems on yield components and nodulation ability of nitrogen fixing bacteria in soybean crop. The research was established at chernozem soil type of northern Baranja as monofactorial completely randomized block design in four repetitions. The soil tillage variants were as follows: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 25-30 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. Results show significantly lower plant density, mass of 1000 grains and grain yield at variants with reduced soil tillage in both investigation years. However, reduced tillage systems had positive trend on nitrogen-fixing bacteria nodulation, since the highest values of number and mass of nodules per plant were recorded. This research was run during the years 2002 and 2003, the last one extremely droughty, thus it requires continuation.

  19. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  20. ECONOMICS RESULTS OF WHEAT PRODUCTION BY DIFFERENT SOIL TILLAGE WAYS

    Directory of Open Access Journals (Sweden)

    J. Kanisek

    2001-06-01

    Full Text Available Wheat consumption in the world increases and its importers are some European countries too. The present price of wheat grain will make selling at the market difficult for manufactures from the Republic of Croatia. Conditions and results of four year organizational - economical investigations of conventional and four ways of reduced soil tillage at wheat production are displayed in this paper. Total of 9.35 hours/ha of machinery work and 114.3 l/ha of fuel are consumed at conventional soil tillage. Total costs are 1660 DM/ha. Price of grain is 276.71 DM/t and profit amounts to 187.83 DM/ha. If the soil tillage is done by a disk harrow costs of the machinery work reduce to 471.36 DM/ha and profitability amounts to 16.5%. When soil tillage is done by multitiller with classical sowing, a yield of 5.65 t/ha st price of 273.37 DM/t and investment profitability 12.7% are obtained. Direct sowing by a Rotosem, without previous tillage, requires 11.66 hours/ha of human work and 7.18 hours/ha of machinery work. to meet the total costs 4.9 t/ha of grains need. In order to get equipment, 98 t of grains from land of 17.5 ha should be given annually during the period of 8 years. Plughing and sowing by Rotosem give 5.9 t/ha grains at price of 279.36 DM/t. Total energy cost at conventional production is 30085 and at reduced one it is 27972 MJ/ha.

  1. Use of multispectral Ikonos imagery for discriminating between conventional and conservation agricultural tillage practices

    Science.gov (United States)

    Vina, Andres; Peters, Albert J.; Ji, Lei

    2003-01-01

    There is a global concern about the increase in atmospheric concentrations of greenhouse gases. One method being discussed to encourage greenhouse gas mitigation efforts is based on a trading system whereby carbon emitters can buy effective mitigation efforts from farmers implementing conservation tillage practices. These practices sequester carbon from the atmosphere, and such a trading system would require a low-cost and accurate method of verification. Remote sensing technology can offer such a verification technique. This paper is focused on the use of standard image processing procedures applied to a multispectral Ikonos image, to determine whether it is possible to validate that farmers have complied with agreements to implement conservation tillage practices. A principal component analysis (PCA) was performed in order to isolate image variance in cropped fields. Analyses of variance (ANOVA) statistical procedures were used to evaluate the capability of each Ikonos band and each principal component to discriminate between conventional and conservation tillage practices. A logistic regression model was implemented on the principal component most effective in discriminating between conventional and conservation tillage, in order to produce a map of the probability of conventional tillage. The Ikonos imagery, in combination with ground-reference information, proved to be a useful tool for verification of conservation tillage practices.

  2. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, USA

    Science.gov (United States)

    Conservation tillage (CsT) involves management that reduces soil erosion by maintaining crop residue cover on farm fields. Typically, both infiltration and soil organic matter increase over time with CsT practices. We compared the impact of a commonly used CsT practice, strip tillage (ST), to conven...

  3. GRANULOMETRIC AND HUMIC FRACTIONS CARBON STOCKS OF SOIL ORGANIC MATTER UNDER NO-TILLAGE SYSTEM IN UBERABA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2011-12-01

    Full Text Available The cover plant use preceding grain crops in Cerrado soil can increase the carbon stocks of chemical and physical fractions of soil organic matter (SOM. The present study aimed to quantify the carbon stocks of SOM granulometric and humic fractions in a Cerrado area under no-tillage system with different cover plant, and compare the results with those from conventional tillage and fallow areas, in Uberaba, MG, Brazil. The implemented cover crops were: millet, tropical grass and sunn hemp. Furthermore, an area was used in fallow and another as a control area (conventional tillage. After cover crop removal, the areas were subdivided for the corn and soybean plantation. Soil samples were collected in the 0.0-0.025, 0.025-0.05, 0.05-0.10 and 0.10-0.20 m depths, with posterior quantification of total organic carbon (TOC levels and chemical and granulometric fractionation of SOM. Humic acid carbon (C-HAF, fulvic acids (C-FAF and humin (C-HUM were quantified through these fractionations. The granulometric fractions consisted in particulate organic matter (POM and mineral organic matter (MOM. Using the carbon levels for each fraction, the respective stocks for each depth were calculated, including the 0.0-0.20 m layer. In the 0.0-0.20 m layer, TOC had the highest stocks for the millet area. The highest POM stocks were found for the corn plantation over sunn hemp and the fallow and soybean area over millet and tropical grass (0.0-0.20 m. In relation to the MOM stocks, the highest values were observed in the areas with millet, sunn hemp and tropical (palisade grass, all superior to those found in the conventional tillage and fallow areas, independent of evaluated culture (0.10-0.20 m. The highest C-HUM stocks were observed in the area with tropical grass (0.025-0.05 m and areas with tropical grass and sunn hemp (0.10-0.20 m, when compared to conventional tillage, independent of evaluated culture (corn and soybean. The highest C-FAH stocks in the depth of 0

  4. Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-06-01

    Full Text Available The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1 CT and annual cover crop with the leguminous Calopogonium mucunoides; (2 CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and cover crop with spontaneous B. humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.

  5. Evaluation of Tillage, Residue Management and Nitrogen Fertilizer Effects on CO2 Emission in Maize (Zea Mays L. Cultivation

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2016-02-01

    and different levels of N fertilizer (0, 150, 300 and 450 kg urea ha-1 was randomized as a subplot in tillage treatment. The seedbed preparation was made based on common practices at the location. Plot size under the trial was 4 m × 3 m so as to get 70 cm inter row spacing. Maize seeds (single-cross 704 cultivar were hand sown in May for two years. The ideal density of the crops was considered as spacing 20 cm inter plant. As soon as the seeds were sown, irrigation continued every 10 days. No herbicides or chemical fertilizers were applied during the course of the trials and weeding was done manually when necessary. Measurement of CO2 emissions was performed by the closed chamber method. For this purpose, PVC plastic rings (20 cm in diameter and 30 cm height were scattered on each of the plots. The chambers were placed in soil for two hours and the gathered air was collected by 10 ml vacuum syringe. Then, the samples were transferred to the laboratory and CO2 was measured using GC-mass. Results and Discussion: The results showed that CO2 emissions for conventional tillage was about 15 and 10% higher than the reduced tillage in 2011 and 2012, respectively. The CO2 emissions can be taken as indicators of soil tillage effects on the soil ecosystem, because CO2 emissions are closely connected to the microbial turnover and the physical accessibility of organic matter to microbes. These parameters were more available in the conventional tillage than the reduced tillage. CO2 emissions were strongly higher in the remaining residual condition rather than leaving condition in two years. CO2 emissions in the remaining residual condition was about 4.36 and 5.37 times higher than that of the leaving residual condition in 2011 and 2012, respectively. The microbial respiration and humidity of soil in the remaining residual condition is higher than that of the leaving residual condition. CO2 emission was elevated with increasing the rate of N fertilizer. The N fertilizer can

  6. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    Directory of Open Access Journals (Sweden)

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  7. The Weeds Response to the Winter Vetch (Vicia villosa and Chicklingpea (Lathyrus sativus Cover Crops under Different Tillage Methods in Corn Fields

    Directory of Open Access Journals (Sweden)

    Javad Hamzei

    2017-01-01

    Full Text Available Introduction: Using cover crops in conservation tillage systems offers many advantages, one of which is weed control through physical and chemical interferences. Most of the benefits of cover crops are well known. They prevent form wind and water erosions, conserve soil moisture by reducing evaporation and increasing infiltration, increase the content of organic matter, increase fertility by recycling nutrients, add nitrogen if they are legumes, and improve soil structure. Proper cover crops can also suppress weed growth by allelopathic activities and light interference. They impact on environmental quality through the protection of surface water and groundwater, as well as eliminating the need for using preemergence herbicides. Either increase or decreases have been reported for crop yields when the crop residues remain on soil surface. No-till system has been reported to increase the presence of certain difficult to control weeds. Therefore, the aim of this study was to investigate the effect of tillage systems and cover crops on weed control and corn yield. Materials and Methods: Experiment was carried out as split plot based on randomized complete block design with three replications at the Bu-Ali Sina University in growing season of 2011. Tillage with moldboard, tillage with chisel (minimum tillage, and no tillage were considered as main plots and two cover crops, winter vetch and chicklingpea, chemical weed control and weed-infest treatment (control were considered as sub-plots. Cover crops were cultivated in late March 2011. In early June 2011, cover crops were harvested and were spread over the soil surface. The Plot size was 22.50 m-2. Five rows were in each plot with 75 cm intervals among rows and 18 cm among seedlings. 2 square were picked in the three central rows of each plot in order to determine the yield and yield components. From each plot three quadrants (1×1 mrandomly were picked and weeds and cover crops was separated. All

  8. Effect of tillage and planting date on seasonal abundance and diversity of predacious ground beetles in cotton.

    Science.gov (United States)

    Shrestha, R B; Parajulee, M N

    2010-01-01

    A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the

  9. Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling

    Science.gov (United States)

    Mkoga, Z. J.; Tumbo, S. D.; Kihupi, N.; Semoka, J.

    /ha) ( P < 0.05). Results also indicated a probability of 0.5 of getting higher yield in conservation than in conventional tillage practice. The conservation tillage treatment had the ability to even-out the acute and long intra-seasonal dry spells. For example a 36-days agricultural dry spell which occurred between 85th and 130th day after planting in the 1989/1990 season (in the CT treatment) was mitigated to zero days in the RR treatment by maintaining soil moisture above the critical point. Critical soil moisture for maize was measured at 0.55 of maximum soil moisture that can be depleted crop (0.55 D). It is concluded that conservation tillage practice where ripping and surface crop residues is used is much more effective in mitigating dry spells and increase productivity in a seasonal rainfall range of between 460 and 770 mm. It is recommended that farmers in the area adopt that type of conservation tillage because rainfall was in this range (460-770 mm) in 12 out of the past 24 years, indicating possibility of yield losses once in every 2 years.

  10. Tillage effects on N2O emission from soils under corn and soybeans in eastern Canada

    International Nuclear Information System (INIS)

    Gregorich, E.G.; St-Georges, P.; McKim, U.F.; Chan, C.; Rochette, P.

    2008-01-01

    New research has suggested that no-till agricultural practices will result in higher levels of nitrous oxide (N 2 O) emissions due to increased levels of denitrification. This study was evaluated and compared N 2 O emissions from tilled and no-till soils. Data used in the study were comprised of more than 1500 flux measurements of N 2 O taken between April and October over a period of 3 years at a site in Ottawa, Ontario. Soybean and corn crop rotations were used. Treatment effects of tillage, crop, and time of season on N 2 O fluxes were assessed using analysis of variance (ANOVA) methods. The study evaluated the responses of tillage during periods when soil temperatures were above 0 degrees C. Results of the studies demonstrated that fertilization management practices contributed to the higher N 2 O emissions observed in soils planted with corn when compared with soils planted with soybeans. Biological nitrogen (N) fixation in soybeans did not contribute to annual N 2 O emissions, and the effects of tillage on N 2 O emissions varied from year to year. The tilled soils typically had better aeration, higher temperatures, and lower water content than no-till soils. N 2 O emissions from no-till soils were lower than rates observed in tilled soils in 2 of the 3 years studied. Higher emissions observed in no-till soils were attributed to timing and the method of fertilizer placement. It was concluded that further studies are needed to develop methods of improving N use efficiency within tillage systems. 30 refs., 5 tabs., 2 figs

  11. The effect of soil tillage system and weeding time on the growth of weed and yield of soybean (Glycine max (L. Merril

    Directory of Open Access Journals (Sweden)

    Husni Thamrin Sebayang

    2018-04-01

    Full Text Available The growth and yield of soybeans can decrease due to competition from weeds. Various efforts have been made to control the growth of weeds such as land preparation and weeding periods. An experiment to study the effect of soil tillage systems and weeding time on the growth of weeds and soybean crop yield (Glycine max (L. Merril has been done in Wringinsongo Village, Tumpang Sub-District, Malang Regency from February to May 2017. The split-plot design with three replicates was used with the soil tillage system as the main plot consisting of three levels, T0: no tillage, T1: minimum tillage, and T2: conventional tillage, and weeding time as the sub plot consisting of 4 levels, P0: no weeding, P1: weeding 1 time, P2: weeding two times and P3: weeding three times. The results showed that the dominant weed species before treatment were Amaranthus spinosus (Spiny amaranth, Cynodon dactylon (Bermuda grass, Cyperus rotundus (Purple nutsedge, Ageratum conyzoides (Billygoat weed, and Portulaca oleracea (Common purslane. After treatment, the dominant weed species were Cyperus rotundus (Purple nutsedge, Amaranthus spinosus (Spiny amaranth, Ageratum conyzoides (Billygoat weed, Physalis peruviana (Cape gooseberry, and Eclipta alba (False daisy. There was no significant difference of the dry weight of weeds in conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting, and minimum tillage and no tillage. For the yield of soybeans, conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting were not significant with that of minimum tillage. The yield of soybeans was lower than that of with no tillage and no weeding.

  12. Uncertainties in assessing tillage erosion - How appropriate are our measuring techniques?

    Science.gov (United States)

    Fiener, P.; Wilken, F.; Aldana-Jague, E.; Deumlich, D.; Gómez, J. A.; Guzmán, G.; Hardy, R. A.; Quinton, J. N.; Sommer, M.; Van Oost, K.; Wexler, R.

    2018-03-01

    Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 × 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 0.39 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = - 26 ± 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost

  13. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa

    Directory of Open Access Journals (Sweden)

    Sarah Gegner-Kazmierczak

    2016-03-01

    Full Text Available Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND, USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa to eliminate the standard use of a barley (Hordeum vulgare companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage as the main plot and herbicide treatments (bromoxynil, DCPA, oxyfluorfen, and pendimethalin as sub-plots. Neither tillage nor herbicide treatments affected onion stand counts. Common lambsquarters (Chenopodium album densities were lower in strip tillage compared to conventional tillage up to three weeks after the post-emergence applied herbicides. In general, micro-rate post-emergence herbicide treatments provided greater early-season broadleaf weed control than pre-emergence herbicide treatments. Onion yield and grade did not differ among herbicide treatments because the mid-season herbicide application provided sufficient control/suppression of the early-season weed escapes that these initial weed escapes did not impact onion yield or bulb diameter. In 2007, onion in the strip tillage treatment were larger in diameter resulting in greater total and marketable yields compared to conventional tillage. Marketable onion yield was 82.1 Mg ha−1 in strip tillage and 64.9 Mg ha−1 in conventional tillage. Results indicate that strip tillage use in direct-seeded onion production was beneficial, especially when growing conditions were conducive to higher yields and that the use of strip tillage in onion may provide an alternative to using a companion crop as it did not interfere with either early-season weed management system.

  14. Planning soil tillage using quality function deployment (QFD

    Directory of Open Access Journals (Sweden)

    Milan Marcos

    2003-01-01

    Full Text Available The Brazilian forest sector represents about 4% of gross domestic product (GDP which is correspondent to US$ 21.0 billion. The natural forest area is approximately 4.8 million hectares and for the near future there will be a need to increase the planted area. To avoid or minimize the impact of mechanized practices on forest soils, the reduced tillage has been developed. The aim of this work is to define the technical priorities of the reduced tillage for eucalyptus seedlings, using quality function deployment (QDF. The design requirements classified as the most important to attend seedling demands were the furrow width and depth, and clod sizes. QFD has the potential to be applied to agro-forestry systems to translate plant demands into technical requirements.

  15. N-utilization in non-inversion tillage systems

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2011-01-01

    When changing from ploughing to non-inversion tillage, N rates are of particular importance both for farmers and the environment. A tillage and fertilizer experiment was established in Denmark under temperate coastal climatic conditions to evaluate the N fertilizer responses on yields and N uptake......–30 kg N ha−1 of the total fertilizer N amount in autumn to autumn-sown crops (1.00NAut). In all the crop rotations, straw was chopped and retained after harvest. Different types of N fertilizer responses were observed in the six crops, but generally yields were lower with non-inversion tillage than...... with ploughing. On two occasions, yields in ploughed plots were significantly (p able to offset the growth reduction, which resulted from poor growth in patches probably caused...

  16. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    Science.gov (United States)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    technique (NT). Infiltration measurements were supplemented by retention data for dryer conditions (-10 to -300 kPa) as determined by pressure plate extraction on steel core samples. The HYDRUS 2D/3D software package was used to inversely fit the parameters of suitable soil retention models to the data. Beside the most common model of Van Genuchten (1978), we also assessed the lognormal distribution model proposed by Kosugi (1994) and the dual porosity approach of Durner (1994). We will show that a dual porosity model best fits the infiltration data. It allows the retention curve to account for both the cumulative infiltration (structure-controlled flow) as well as the measured retention data points (texture-controlled flow). The pressure plate extraction data are used to determine one of the shape-determining parameter sets of the model equation. As the tillage effect on the temporal variability is expected to be negligible for texture-controlled water flow, these parameters are set constant with time for each tillage treatment. All remaining model parameters were inversely determined by the infiltration data. The advantage of a bimodal retention model is greatest when macropores strongly contribute to water movement. This can be observed especially under conventional tillage, where a strong increase of macropores is caused by annual ploughing, but also for reduced (oder minimum) tillage treatments, where biopores from earthworm burrows and dead plant roots increase macropore flow.

  17. Predicting soil workability and fragmentation in tillage: a review

    DEFF Research Database (Denmark)

    Obour, Peter Bilson; Lamandé, Mathieu; Edwards, Gareth T. C.

    2017-01-01

    of SWRC and the drop-shatter tests or tensile strength; (i) to quantify the effects of soil texture, organic matter and compaction on soil workability; and (ii) to compare soil water content for workability in the field with theoretical soil workability, thereby improving the prediction of soil......Soil workability and friability are required parameters to consider when creating suitable seedbeds for crop establishment and growth. Knowledge of soil workability is important for scheduling tillage operations and for reducing the risk of tillage-induced structural degradation of soils....... A reliable evaluation of soil workability implies a distinctive definition of the critical water content (wet and dry limits) for tillage. In this review, we provide a comprehensive assessment of the methods for determining soil workability, and the effects of soil properties and tillage systems on soil...

  18. [Diversity of soil fauna in corn fields in Huang-Huai-Hai Plain of China under effects of conservation tillage].

    Science.gov (United States)

    Zhu, Qiang-Gen; Zhu, An-Ning; Zhang, Jia-Bao; Zhang, Huan-Chao; Huang, Ping; Zhang, Cong-Zhi

    2009-10-01

    An investigation was made on the abundance and diversity of soil fauna in the corn fields under conventional and conservation tillage in Huang-Huai-Hai Plain of China. The abundance and diversity of soil fauna were higher at corn maturing (September) than at its jointing stage (July), and higher at jointing stage under conservation tillage than under conventional tillage. Soil fauna mainly distributed in surface soil layer (0-10 cm), but still had a larger number in 10-20 cm layer under conservation tillage. The individuals of acari, diptera, diplura, and microdrile oligochaetes, especially those of acari, were higher under conservation tillage than under conventional tillage. At maturing stage, an obvious effect of straw-returning under conservation tillage was observed, i. e., the more the straw returned, the higher the abundance of soil fauna, among which, the individuals of collembola, acari, coleopteran, and psocoptera, especially those of collembolan, increased significantly. The abundance of collembola at both jointing and maturing stages was significantly positively correlated with the quantity of straw returned, suggesting that collembola played an important role in straw decomposition and nutrient cycling.

  19. Dust-associated microbiomes from dryland wheat fields differ with tillage practice and biosolids application

    Science.gov (United States)

    Schlatter, Daniel C.; Schillinger, William F.; Bary, Andy I.; Sharratt, Brenton; Paulitz, Timothy C.

    2018-07-01

    Wind erosion is a significant threat to the productivity and sustainability of agricultural soils. In the dryland winter wheat (Triticum aestivum L.)-fallow region of Inland Pacific Northwest of the USA (PNW), farmers increasingly use conservation tillage practices to control wind erosion. In addition, some farmers in this dry region apply municipal biosolids to soils as fertilizer and a source of stable organic matter. The impacts of soil management practices on emissions of dust microbiota to the atmosphere are understudied. We used high-throughput DNA sequencing to examine the impacts of conservation tillage and biosolids amendments on the transport of dust-associated fungal and bacterial communities during simulated high-wind events over two years at Lind, WA. The fungal and bacterial communities contained in windblown dust differed significantly with tillage (conservation vs. conventional) and fertilizer (synthetic vs. biosolids) treatments. However, the richness and diversity of fungal and bacterial communities of dust did not vary significantly with tillage or fertilizer treatments. Taxa enriched in dust from fields under conservation tillage represented many plant-associated taxa that likely grow on residue left on the soil surface, whereas taxa that were more abundant with conventional tillage were those that likely grow on buried plant residue. Dust from biosolids-amended fields harbored greater abundances of taxa that likely feed on introduced carbon. Most human-associated taxa that may pose a health risk were not present in dust after biosolids amendment, although members of Clostridiaceae were enriched with this treatment. Results show that tillage and fertilizer management practices impact the composition of bioaerosols emitted during high-wind events and have potential implications for plant and human health.

  20. Improving maize productivity through tillage and nitrogen management

    African Journals Online (AJOL)

    Continuous cultivation of fields with same implement (cultivator) creates a hard pan in the subsoil which adversely affects crop productivity. In addition to tillage, nitrogen management is a key factor for better crop growth and yield. Impact of different tillage systems and nitrogen management on yield attributes and grain yield ...

  1. Inoculum potential of Fusarium spp. relates to tillage and straw management in Norwegian fields of spring oats

    Directory of Open Access Journals (Sweden)

    Ingerd Skow Hofgaard

    2016-04-01

    Full Text Available The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing on the inoculum potential (IP and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. F. avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using qPCR. Fusarium dispersal, quantified by quantitative PCR analysis of spore trap samples collected at and after heading, generally corresponded to IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  2. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats

    Science.gov (United States)

    Hofgaard, Ingerd S.; Seehusen, Till; Aamot, Heidi U.; Riley, Hugh; Razzaghian, Jafar; Le, Vinh H.; Hjelkrem, Anne-Grete R.; Dill-Macky, Ruth; Brodal, Guro

    2016-01-01

    The increased occurrence of Fusarium-mycotoxins in Norwegian cereals over the last decade, is thought to be caused by increased inoculum resulting from more cereal residues at the soil surface as a result of reduced tillage practices. In addition, weather conditions have increasingly promoted inoculum development and infection by Fusarium species. The objective of this work was to elucidate the influence of different tillage regimes (autumn plowing; autumn harrowing; spring plowing; spring harrowing) on the inoculum potential (IP) and dispersal of Fusarium spp. in spring oats. Tillage trials were conducted at two different locations in southeast Norway from 2010 to 2012. Oat residues from the previous year’s crop were collected within a week after sowing for evaluation. IP was calculated as the percentage of residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. Fusarium avenaceum and F. graminearum were the most common Fusarium species recovered from oat residues. The IP of Fusarium spp. was significantly lower in plowed plots compared to those that were harrowed. Plowing in either the autumn or spring resulted in a low IP. Harrowing in autumn was more effective in reducing IP than the spring harrowing, and IP levels for the spring harrowed treatments were generally higher than all other tillage treatments examined. Surprisingly low levels of F. langsethiae were detected in the residues, although this species is a common pathogen of oat in Norway. The percentage of the residues infested with F. avenaceum, F. graminearum, F. culmorum, and F. langsethiae generally related to the quantity of DNA of the respective Fusarium species determined using quantitative PCR (qPCR). Fusarium dispersal, quantified by qPCR analysis of spore trap samples collected at and after heading, generally corresponded to the IP. Fusarium dispersal was also observed to increase after rainy periods. Our findings are in line with the

  3. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Directory of Open Access Journals (Sweden)

    Liqun Zhu

    Full Text Available Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C contents. However, the effects of tillage method or straw return on soil organic C (SOC have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC, dissolved organic C (DOC and microbial biomass C (MBC contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  4. Tillage as a driver of change in weed communities

    NARCIS (Netherlands)

    Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; Kranzler, A.; Luik, A.; Mäder, P.; Peigné, J.; Stoll, E.; Delfosse, P.; Sukkel, W.; Surböck, A.; Westaway, S.; Sans, F.X.

    2016-01-01

    The adoption of non-inversion tillage practices has been widely promoted due to their potential benefits in reducing energy consumption and greenhouse emissions as well as improving soil fertility. However, the lack of soil inversion usually increases weed infestations and changes the composition

  5. Tillage and residue burning affects weed populations and seed banks.

    Science.gov (United States)

    Narwal, S; Sindel, B M; Jessop, R S

    2006-01-01

    An integrated weed management approach requires alternative management practices to herbicide use such as tillage, crop rotations and cultural controls to reduce soil weed seed banks. The objective of this study was to examine the value of different tillage practices and stubble burning to exhaust the seed bank of common weeds from the northern grain region of Australia. Five tillage and burning treatments were incorporated in a field experiment, at Armidale (30 degrees 30'S, 151 degrees 40'E), New South Wales, Australia in July 2004 in a randomized block design replicated four times. The trial was continued and treatments repeated in July 2005 with all the mature plants from the first year being allowed to shed seed in their respective treatment plots. The treatments were (i) no tillage (NT), (ii) chisel ploughing (CP), (iii) mould board ploughing (MBP), (iv) wheat straw burning with no tillage (SBNT) and (v) wheat straw burning with chisel ploughing (SBC). Soil samples were collected before applying treatments and before the weeds flowered to establish the seed bank status of the various weeds in the soil. Wheat was sown after the tillage treatments. Burning treatments were only initiated in the second year, one month prior to tillage treatments. The major weeds present in the seed bank before initiating the trial were Polygonum aviculare, Sonchus oleraceus and Avena fatua. Tillage promoted the germination of other weeds like Hibiscus trionum, Medicago sativa, Vicia sp. and Phalaris paradoxa later in the season in 2004 and Convolvulus erubescens emerged as a new weed in 2005. The MBP treatment in 2004 reduced the weed biomass to a significantly lower level of 55 g/m2 than the other treatments of CP (118 g/m2) and NT plots (196 g/m2) (P < 0.05). However, in 2005 SBC and MBP treatments were similar in reducing the weed biomass. In 2004, the grain yield trend of wheat was significantly different between CP and NT, and MBP and NT (P < 0.05) with maximum yield of 5898

  6. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian oxisol under no-tillage and tillage systems

    NARCIS (Netherlands)

    Roscoe, R.; Vasconcellos, C.A.; Furtini Neto, A.E.; Guedes, G.A.A.; Fernandes, L.A.

    2000-01-01

    We studied the relationship between urease activity (UA) and soil organic matter (SOM), microbial biomass N (Nbiom) content, and urea-N fertilizer assimilation by maize in a Dark Red Latosol (Typic Haplustox) cultivated for 9 years under no-tillage (NT), tillage with a disc plough (DP), and tillage

  7. Optimize the cost of cultivation with using low-tillage in the wheat fields of Tehran province

    OpenAIRE

    KAMALI, Hossein; PARHIZGAR, Mohammad Mahdi

    2015-01-01

    Abstract. In appropriate patterns of tillage in wheat, three methods commonly cultivated as a maximum for tillage, planting a multifunctional device as minimum tillage and direct seeding cultivation system as no tillage operations together are comparable. Analysis of variance and mean cost of land preparation and time spent on the three methods of tillage operations shows that maximum conventional tillage and planting allocated to the most and direct seeding without tillage operations allocat...

  8. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Heng, K.L

    2012-01-01

    Soil water conservation through tillage is widely accepted as one of the ways of improving crop yields in rainfed agriculture. Field experiments were conducted between 2007 and 2009 to evaluate the effects of conservation tillage on the yields and crop water use efficiency of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in eastern Kenya. Experimental treatments were a combination of three tillage practices and four cropping systems. Tillage practices were tied-ridges, subsoiling-ripping and ox-ploughing. The cropping systems were single crop maize, single crop cowpea, intercropped maize.cowpea and single crop maize with manure. The treatments were arranged in split plots with tillage practices as the main plots and cropping systems as the sub-plots in a Randomized Complete Block Design (RCBD). The results showed that tied-ridge tillage had the greatest plant available water content while subsoiling-ripping tillage had the least in all seasons. Averaged across seasons and cropping season, tillage did not have a significant effects on maize grain yield but it did have a significant effect on crop grain and dry matter water use efficiency (WUE). Nevertheless, maize grain yields and WUE values were generally greater under tied-ridge tillage than under subsoiling-ripping and ox-plough tillages. The yields and WUE of cowpea under subsoiling-ripping tillage were less than those of ox-plough tillage. When averaged across the seasons and tillage systems, the cropping system with the manure treatment increased (P.0.05) maize grain yield, grain WUE and dry matter WUE by 36%, 30%, 26% respectively, compared to treatments without manure. Maize and cowpea when intercropped under ox-plough and ripping tillage systems did not have any yield advantage over the single crop

  9. Economic and energy assessment of minimalized soil tillage methods in maize cultivation

    OpenAIRE

    Piotr Szulc; Andrzej Dubas

    2014-01-01

    Grain yield of maize cultivated in the years 1997-2009 in monoculture and with annual tillage simplifications was assessed in energy and economy terms. Effects of no-tillage system and direct sowing (D) with cultivation with autumn deep (A) and shallow (B) ploughing and cultivation with spring pre-sowing ploughing (C) were compared. It was demonstrated that the 13-year maize grain yield in no-tillage system and direct sowing was lower by 10.4% than the yield obtained in conventional tillage s...

  10. Energy indices in irrigated wheat production under conservation and conventional tillage and planting methods

    OpenAIRE

    S. M Hosseini; S Afzalinia; K Mollaei

    2016-01-01

    Introduction: Conservation tillage system was recommended for soil erosion control in North America for the first time 60 years ago (Wang et al., 2006). Using this tillage system including minimum and zero tillage has been rapidly developed in recent years. Thearea covered by zero tillage in 2006 was 95 million ha all over the world (Dumanski et al., 2006). In addition to saving soil and water resources, conservation tillage system reduces energy consumption and improves energy indices by com...

  11. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania

    International Nuclear Information System (INIS)

    Buragienė, Sidona; Šarauskis, Egidijus; Romaneckas, Kęstutis; Sasnauskienė, Jurgita; Masilionytė, Laura; Kriaučiūnienė, Zita

    2015-01-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO 2 ) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO 2 emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230–250 mm, shallow ploughing was conducted at a depth of 120–150 mm, deep loosening was conducted at depths of 250–270 mm, and shallow loosening was conducted at depths of 120–150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO 2 emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO 2 emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO 2 emissions from the soil during the spring. Soil CO 2 emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO 2 emissions from soils during the

  12. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    using sodium tetraphenyl boron at 5 percent level and ammonium acetate at 1 percent level, both before wheat heading. Soil potassium content did not differ significantly in this stage when potassium excess method was used. With all methods of soil potassium determination, soil potassium did not differ significantly at harvest. Soil potassium with moldboard-ploughing was less than all other tillage methods at before plant heading. Thomas et al. (55 and Martin Rhoda et al.(40 also stated that soil potassium was greater with no-tillage method. Lopez Phando & Pardo. (34 similarly stated that soil potassium with no-tillage method was greater than moldboard ploughing. According to results of the current experiment, soil mechanical resistance was further reduced as tillage intensity was increased. Soil mechanical resistance with moldboard ploughing was less than other tillage methods between early heading stage and harvest. Lower mechanical resistance with increased tillage intensity increased root growth and soil potassium uptake by wheat grain and straw, leading to greater yield production in accordance with results by Fakori (16. Conclusions Soil tillage with moldboard ploughing reduced mechanical resistance, increased root density (and possibly soil-root contact surface area and soil potassium uptake which results a greater wheat head density and yield and also a lower soil potassium with different methods (potassium excess determination and bulk soil solution potassium concentration methods and also using soidium tetraphenyl boron, ammonium acetate extractants at before heading which is the stage for maximal growth and nutrient accumulation rate. Soil extractants maybe used for plant nutrient uptake and yield predictions in a plant canopy, when plant nutrient uptake has a positive significant correlation with soil potassium and treatments do not affect root growth and the mentioned correlation.

  13. Differential responses of nitrate reducer community size, structure, and activity to tillage systems.

    Science.gov (United States)

    Chèneby, D; Brauman, A; Rabary, B; Philippot, L

    2009-05-01

    The main objective of this study was to determine how the size, structure, and activity of the nitrate reducer community were affected by adoption of a conservative tillage system as an alternative to conventional tillage. The experimental field, established in Madagascar in 1991, consists of plots subjected to conventional tillage or direct-seeding mulch-based cropping systems (DM), both amended with three different fertilization regimes. Comparisons of size, structure, and activity of the nitrate reducer community in samples collected from the top layer in 2005 and 2006 revealed that all characteristics of this functional community were affected by the tillage system, with increased nitrate reduction activity and numbers of nitrate reducers under DM. Nitrate reduction activity was also stimulated by combined organic and mineral fertilization but not by organic fertilization alone. In contrast, both negative and positive effects of combined organic and mineral fertilization on the size of the nitrate reducer community were observed. The size of the nitrate reducer community was a significant predictor of the nitrate reduction rates except in one treatment, which highlighted the inherent complexities in understanding the relationships the between size, diversity, and structure of functional microbial communities along environmental gradients.

  14. Haplic Chernozem Properties as Affected by Different Tillage Systems

    Directory of Open Access Journals (Sweden)

    Magdalena Hábová

    2016-01-01

    Full Text Available During 2007–2011 we assessed content and quality of humic substances with relationship to soil structure. Object of study was Haplic Chernozem (Hrušovany nad Jevišovkou, Czech Republic under three different tillage systems: – conventional ploughing to a depth of 0.22 m (CP; – reduced tillage with shallow harrowing to a depth of 0.15 m (RTSH; – reduced tillage with subsoiling to a depth of 0.35–0.40 m (RTS. Isolation of humic acids was made according to IHSS standard method using spectrometer Shimadzu 8700. Aggregates stability was determined by wet sieving method. Results showed that macrostructure stability was directly connected with time of sampling and content and quality of humic substances. After five years of experiment statistically significant differences in humic substances content were found. The highest structure stability, quantity and quality of humic substances were achieved under reduced tillage with shallow harrowing.

  15. Tillage and Farmyard Manure Effects on Crusting and Compacting ...

    African Journals Online (AJOL)

    Seasonal rainwater losses through increased runoff volumes reduce soil moisture and hence result in agricultural drought. The objective of this study was to examine the hydrological effects of two tillage practices with and without farmyard manure on surface runoff and soil loss of crusting and compacting soils under field ...

  16. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem.

    Science.gov (United States)

    Smith, Chris R; Blair, Peter L; Boyd, Charlie; Cody, Brianne; Hazel, Alexander; Hedrick, Ashley; Kathuria, Hitesh; Khurana, Parul; Kramer, Brent; Muterspaw, Kristin; Peck, Charles; Sells, Emily; Skinner, Jessica; Tegeler, Cara; Wolfe, Zoe

    2016-11-01

    The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no-till, had a much greater impact on nearly everything measured compared to the crop planted. No-till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no-till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff-both of which have ecosystem-level effects and both direct and indirect effects on humans and other organisms.

  17. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan.

    Science.gov (United States)

    Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, Ahmad

    2017-11-01

    Wheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha -1 ), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.

  18. The effect of tillage systems and mulching on soil microclimate ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Most of these traditional farmers employ zero tillage system and mulching .... Based on tillage systems, some researchers have ... The planting activity took ... tree as practised by most traditional farmers, owing to the high cost.

  19. A multiple soil ecosystem services approach to evaluate the sustainability of reduced tillage systems

    Science.gov (United States)

    Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam

    2017-04-01

    reduced tillage systems improved soil ecosystem services such as soil biodiversity, water regulation (quantity, quality), carbon storage and soil stability; however, the effects on crop production were more variable (-10% to +7 % range), strongly depending on crop type and agricultural practices (fertilisation, rotation, cover crop). Sociological approach showed that saving labour time and fuel costs were the main motivations for change. Agronomic and environmental benefits are not the trigger but are increasingly recognized and contribute to the maintenance of the practice. Farmers also expressed a need for stronger networking and technical advice, which plays a crucial role. Scientists and experts raise awareness, support collective learning and provide instrumental. Recommendations were provided for sustainable soil management aiming at ecological intensification of agricultural land.

  20. Tillage, fertilization systems and chemical attributes of a Paleudult

    Directory of Open Access Journals (Sweden)

    Evelyn Penedo Dorneles

    2015-02-01

    Full Text Available Tillage and fertilization methods may affect soil fertility. With the aim of assessing changes in soil chemical properties over a period of ten years, soil samples of a Paleudult were collected over nine seasons at three layer depths (0-5, 5-10, 10-20 cm and were chemically analyzed. Grain yield and nutrient export in two summer crops, soybean (Glycine max and corn (Zea mays, in a field experiment set in Eldorado do Sul, in the state of Rio Grande do Sul, Brazil, were determined. Three soil tillage systems were evaluated, conventional (CT, reduced (RT and no-tillage (NT, combined with mineral (lime and fertilizers and organic (poultry litter fertilization. The no-tillage system stood out as compared to the others, especially in the surface layer, in terms of values of organic matter, soil pH, available phosphorus, cation exchange capacity and base saturation. Phosphorus content was higher under organic than mineral fertilization due to the criteria used for the establishment of fertilizer doses. Under organic fertilization, soil pH values were similar to those obtained in limed soil samples because of the cumulative effect of the organic fertilizer. Soybean yield was lower under NT in comparison to the RT and CT systems. Consequently, soybean grain exported a lower content of nutrients than maize grain. Maize yield was not affected by either tillage or fertilization systems.

  1. Conservation Tillage on the Loess Plateau, China: Food security, Yes; Carbon sequestration, No?

    Science.gov (United States)

    Kuhn, Nikolaus; Hu, Yaxian; Xiao, Liangang; Greenwood, Phil; Bloemertz, Lena

    2015-04-01

    Climate change is expected to affect food security globally and increase the variability in food supply. At the same time, agricultural practices offer a great potential for mitigating and adapting to climate change. In China, food security has increased in the last decades with the number of undernourished people declining from 21% in 1990 to 12% today. However, the limited relative amount of arable land and scarce water supplies will remain a challenge. The Loess Plateau of China, located in the mid-upper reaches of the Yellow River and has an area of some 630000 km2 with a high agricultural potential. However, due to heavy summer rainstorms, steep slopes, low vegetation cover, and highly erodible soils, the Loess Plateau has become one of the most severely eroded areas in the world. Up to 70% of arable land is affected by an annual soil loss of 20-25 ton ha-1, far exceeding the threshold for sustainable use (10 ton ha-1). Rainfed farming systems are dominant on the Loess Plateau, and the farmers in this area have been exposed to a steadily increasing temperature as well as an erratic, but slightly decreasing rainfall since 1970. Therefore, adaptation of the regional agriculture is required to adapt to climate change and may be even engaged in mitigation. This study analyzed the potential contribution of conservation tillage to adaptation and mitigation of climate change on the Loess Plateau. In total, 15 papers published in English were reviewed, comparing two tillage practices, conventional tillage (CT) and conservation tillage typically represented by no-tillage (NT). Soil organic carbon (SOC) stock across soil depths as well yields and the inter-annual variations with regards to and their annual rainfall precipitation were compared for NT and CT. Our results show that: 1) The benefit of NT compared to CT in terms of increasing total SOC stocks diminishes with soil depth, questioning the use of average SOC stocks observed in topsoil to estimate the potential

  2. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  3. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa)

    OpenAIRE

    Sarah Gegner-Kazmierczak; Harlene Hatterman-Valenti

    2016-01-01

    Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND), USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa) to eliminate the standard use of a barley (Hordeum vulgare) companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage) as the main plot and herbicide treatments (bromoxynil, DCPA...

  4. Effects of Different Soil Tillage Intensity on Yields of Spring Barley

    Directory of Open Access Journals (Sweden)

    Alena Pernicová

    2014-01-01

    Full Text Available Within the period 1990–2012, effects of different soil tillage intensity on yields of spring barley were studied in a field experiment in the sugar-beet producing region (Ivanovice na Hané, Czech Republic. The forecrop of the spring barley was always sugar beet; following in three different crop rotations, after maize for silage, winter wheat and spring barley. Four variants of tillage were evaluated: Variant 1 – ploughing to the depth of 0.22 m; Variant 2 – shallow ploughing to the depth of 0.15 m; Variant 3 – no tillage; Variant 4 – shallow loosening soil to the depth of 0.10 m.Effect of different tillage on yields of spring barley was statistically insignificant. In all three crop rotations, the highest and the lowest average yields were obtained in Variant 2 (ploughing to the depth of 0.15 m and Variant 1 (ploughing to the depth of 0.22 m, respectively. Average yields in variants of soil tillage were these: variant 1 – 6.42 t.ha−1; variant 2 – 6.57 t.ha−1, variant 3 – 6.53 t.ha−1, variant 4 – 6.50 t.ha−1. The obtained results indicate that in these pedo-climatic conditions reduction of intensity soil tillage represented a very suitable alternative in case of growing spring barley after sugar beet as compared with the conventional method of tillage by ploughing to the depth of 0.22 m.

  5. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Luigi Sartori

    2011-02-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  6. Effects of Tillage Model on Healthy Plough Layer Structure and Its Development Trends

    Directory of Open Access Journals (Sweden)

    HU Jun-ming

    2018-02-01

    Full Text Available Soil cultivation is closely related to land productivity. Nutrient in plough layer is the key factor affecting the absorption and utilization of crop nutrients. Good plough layer structure is beneficial to the coordination of water, fertilizer, gas and heat. The depth of arable layer is related to tillage methods. Constructing good plough layer structure is conducive to crop growth and distribution. This paper reviewed both domestic and foreign researches regarding tillage models, which included conventional tillage, protective cultivation, rotary tillage, deep tillage, and so on. Based on the above research results, the effects of tillage models on the healthy soil layer construction were discussed from the soil bulk density, soil porosity, soil aggregates, infiltration of soil, soil heavy metals, soil respiration and the characters of root system. The deficiencies of current research were pointed out from several aspects such as tillage system, system positioning, tillage efficiency, suitable crop. In order to maximize the comprehensive production capacity of cultivated land resources and solve the contradiction between human being and land, this paper forecasted the development trend of ideal plough layer structure from four aspects:Cultivate patterns according to local conditions, the establishment of complex farming models, accelerating the research and application of new agricultural machinery, conducting systematic research of farmland microclimate environment. This will provide the theoretical basis and technical support for the optimal farming mode in agricultural production.

  7. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Bruno Basso

    2006-12-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  8. Effect of Different Tillage Methods and Cover Crop Types on Yield and Yield Components of Wheat

    Directory of Open Access Journals (Sweden)

    Z Sharefee

    2018-05-01

    Full Text Available Introduction Conservation agriculture is an appropriate strategy for maintaining and improving agricultural resources which increases crop production and stability and also provides environmental protection. This attitude contributes to the conservation of natural resources (soil, water, and air and is one of the most effective ways to overcome the drought crisis, water management and compensation of soil organic matter in arid and semi-arid regions. The practice of zero-tillage decreases the mineralization of organic matter and contributes to the sequestration of organic carbon in the soil. Higher amounts of organic matter in the soil improve soil structure and root growth, water infiltration and retention, and cation exchange capacity. In addition, zero-tillage reduces soil compaction and crop production costs. Cover crops are cultivated to protect the soil from erosion and elements loss by leaching or runoff and also improve the soil moisture and temperature. Given that South Khorasan farmers still use traditional methods of cultivation of wheat, and cover crops have no place in their farming systems, the aim of this study was to investigate the effect of cover crops types and tillage systems on yield and yield components of wheat in Birjand region. Materials and Methods A split plot field experiment was conducted based on randomized complete block design with three replications at the Research Farm of the University of Birjand over the growing season of 2014-2015. The main factor was the type of tillage (no-till, reduced tillage and conventional tillage and cover crop type (chickling pea (Lathyrus sativus, rocket salad (Eruca sativa, triticale (X Triticosecale witmack, barley (Hordeum vulgaris and control (no cover crop was considered as sub plots. Cover crops were planted on July 2014. Before planting wheat, cover crops were dried through spraying paraquat herbicide using a backpack sprayer at a rate of 3 L ha-1. Then the three tillage

  9. Optimal Draft requirement for vibratory tillage equipment using Genetic Algorithm Technique

    Science.gov (United States)

    Rao, Gowripathi; Chaudhary, Himanshu; Singh, Prem

    2018-03-01

    Agriculture is an important sector of Indian economy. Primary and secondary tillage operations are required for any land preparation process. Conventionally different tractor-drawn implements such as mouldboard plough, disc plough, subsoiler, cultivator and disc harrow, etc. are used for primary and secondary manipulations of soils. Among them, oscillatory tillage equipment is one such type which uses vibratory motion for tillage purpose. Several investigators have reported that the requirement for draft consumption in primary tillage implements is more as compared to oscillating one because they are always in contact with soil. Therefore in this paper, an attempt is made to find out the optimal parameters from the experimental data available in the literature to obtain minimum draft consumption through genetic algorithm technique.

  10. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  11. Effect of cover crops on emergence and growth of carrot (Daucus carota L. in no-plow and traditional tillage

    Directory of Open Access Journals (Sweden)

    Marzena Błażewicz-Woźniak

    2015-03-01

    Full Text Available The aim of the experiment was to determine the influence of cover crop biomass incorporated into the soil at different times and using different treatments on carrot emergence and growth. 7 species of cover crops were included in the study: Secale cereale, Avena sativa, Vicia sativa, Sinapis alba, Phacelia tanacetifolia, Fagopyrum esculentum, and Helianthus annuus.  Number of emerged carrot plants significantly depended on the cover crop used and on the method of pre-winter and spring pre-sowing tillage. Carrot emerged best after a rye or oats cover crop. Regardless of the cover crop species used, the largest number of carrots emerged in cultivation on ridges. In other variants of no-plow tillage, number of seedlings was significantly lower and did not differ from that under traditional plow tillage. The highest leaf rosettes were formed by carrot growing after a rye or oats cover crop. The highest rosettes were produced by carrots in the treatments where tillage was limited to the use of a tillage implement in spring and the lowest ones after pre-winter plowing. The effect of tillage on the emergence and height of carrot leaves largely depended on weather conditions in the successive years of the study. The largest number of leaves was found in carrots grown after a buckwheat cover crop and in cultivation without cover crop, while the smallest one after phacelia and white mustard. Carrots produced the largest number of leaves after a sunflower cover crop and the use of a tillage implement in spring, while the number of leaves was lowest when the mustard biomass was incorporated into the soil in spring. The use of cover crops significantly increased the mass of leaves produced by carrot as compared to the cultivation without cover crop. The largest mass of leaves was produced by carrots grown after the phacelia and mustard cover crops. Conventional plow tillage and pre-winter tillage using a stubble cultivator promoted an increase in the mass

  12. Comparison of effects of machine performance parameters and energy indices of soybean production in conservation and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    A Sharifi

    2016-09-01

    also calculated. Results and Discussion The results showed that no-tillage methods by grain drill and row crop planter had the lowest field efficiency (56% and 58.9%, respectively, but had the highest field capacity (0.76 and 0.71 ha h-1, respectively, as the passage of implements in the field was less than that of conventional tillage. Peruzi et al., (1996 also reported that required time for minimum tillage and no-till was 80% less than conventional tillage. No-till using grain drill with the total field capacity of 0.76 ha h-1 and conventional tillage with 0.33 ha h-1 had the highest and lowest field capacity among the treatments, respectively. Minimum tillage had the best horizontal distribution uniformity for seed placement on the row. No-till using seed drill had the highest energy ratio of 4.5 and yield of 3612 kg ha-1, which were higher than the other treatments. No-till also produced 0.19 kg crop per each MJ energy consumption. It consumed the lowest amount of energy with 5.3 MJ for production of 1 kg soybean and had the highest net energy gain among treatments. Minimum tillage had the lowest consumption of energy with 2030.2 MJ ha-1 among the treatments. It had the lowest amount of net energy gain because of having lowest yield (2794 kg ha-1. Zentner et al., (2004 and Razzaghi et al., (2012 also concluded that conservation tillage systems had the lowest amount of energy consumption compared to the conventional tillage. Conclusions The study of energy indices is important for producing agricultural crops to decrease energy consumption. Among the tillage methods, no-till method had the best indices about reducing energy consumption. Although the size of no-till grain drill will increase the weight and energy consumption of machine, but it well penetrates on the soil. Results showed that minimum tillage and no-till methods are proper alternatives for replacement of conventional method for producing soybean, according to the precise of planting and improvement of

  13. The effect of conservation tillage on crop yield in China

    Directory of Open Access Journals (Sweden)

    Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG

    2015-06-01

    Full Text Available Traditional agricultural practices have resulted in decreased soil fertility, shortage of water resources and deterioration of agricultural ecological environment, which are seriously affecting grain production. Conservation tillage (CT research has been developed and applied in China since the 1960s and 1970s, and a series of development policies have been issued by the Chinese government. Recent research and application have shown that CT has positive effects on crop yields in China. According to the data from the Conservation Tillage Research Center (CTRC, Chinese Ministry of Agriculture (MOA, the mean crop yield increase can be at least 4% in double cropping systems in the North China Plain and 6% in single cropping systems in the dryland areas of North-east and North-west China. Crop yield increase was particularly significant in dryland areas and drought years. The mechanism for the yield increase in CT system can be attributed to enhanced soil water content and improved soil properties. Development strategies have been implemented to accelerate the adoption of CT in China.

  14. Effect of various tillage practices on soil properties and maize growth

    International Nuclear Information System (INIS)

    Leghari, N.

    2016-01-01

    Appropriate tillage practices are vital for good tilth that is pre-requisite for aggregate formation, soil aeration, better root development and plant growth. A field experiment of maize was carried out at the experimental site of Sindh Agriculture University Tandojam during two consecutive growing seasons 2009 and 2010. A randomized complete block design with three treatment conventional tillage (CT), reduced tillage (RT) and no tillage (NT) was used in the study. Significant differences between tillage treatments were observed in the soil properties, growth and root development of plants. The NT treatment retained higher soil water contents (15.8 and 16.0%) measured at 0-20 cm depth during 2009 and 2010, respectively. Likewise, the soil bulk density (1.4 and 1.4 cm-3) was higher at this depth consequently; it resulted in greater soil strength (81 N m-2 and 79 N m-2) during 2009 and 2010, respectively. The negative and significant correlations were recorded between root dry weight and soil strengths. On the other hand, positive and significant relationship of root dry weight with mean total dry matter production and LAI was observed. Moreover, the root development related observations were significantly enhanced under CT as compared to RT and NT treatments. The results indicate that conventional tillage improve maize growth and root development by improving soil properties. (author)

  15. Catch crop biomass production, nitrogen uptake and root development under different tillage systems

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller

    2012-01-01

    tinctoria L.), perennial ryegrass (RG) (Lolium perenne L.) and fodder radish (FR) (Raphanus sativus L.) under three tillage systems. For that, we used a tillage experiment established in 2002 on a Danish sandy loam. The tillage treatments were direct drilling (D), harrowing to 8–10 cm (H) and ploughing (P...

  16. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production.

    Science.gov (United States)

    Chakraborty, Debashis; Ladha, Jagdish Kumar; Rana, Dharamvir Singh; Jat, Mangi Lal; Gathala, Mahesh Kumar; Yadav, Sudhir; Rao, Adusumilli Narayana; Ramesha, Mugadoli S; Raman, Anitha

    2017-08-24

    Alternative tillage and rice establishment options should aim at less water and labor to produce similar or improved yields compared with traditional puddled-transplanted rice cultivation. The relative performance of these practices in terms of yield, water input, and economics varies across rice-growing regions. A global meta and mixed model analysis was performed, using a dataset involving 323 on-station and 9 on-farm studies (a total of 3878 paired data), to evaluate the yield, water input, greenhouse gas emissions, and cost and net return with five major tillage/crop establishment options. Shifting from transplanting to direct-seeding was advantageous but the change from conventional to zero or reduced tillage reduced yields. Direct-seeded rice under wet tillage was the best alternative with yield advantages of 1.3-4.7% (p Direct-seeding under zero tillage was another potential alternative with high savings in water input and cost of cultivation, with no yield penalty. The alternative practices reduced methane emissions but increased nitrous oxide emissions. Soil texture plays a key role in relative yield advantages, and therefore refinement of the practice to suit a specific agro-ecosystem is needed.

  17. Effect of conservation tillage and peat application on weed infestation on a clay soil

    Directory of Open Access Journals (Sweden)

    P. VANHALA

    2008-12-01

    Full Text Available Amendment of soil with peat is an attempt to avoid crop yield variation in the transition to conservation tillage, as it improves seedbed conditions and crop growth in drought-sensitive clay soils. Weed infestations were compared in 1999-2000 between the original and peat-amended clay (Typic Cryaquept, very fine, illitic or mixed under different autumn tillage systems in an oats-barley rotation. In a field experiment, sphagnum peat (H = 4 had been spread (0.02 m 3 m -2 on the soil surface in August 1995. Tillage treatments included mouldboard ploughing (to 20 cm and stubble cultivations of different working depths (8 or 15 cm and intensity (once or twice. Weed biomass and density were assessed by an area of 1 m 2 per field plot in August 1999-2000 and June 2000. The 1999 season was dry, but soil moisture conditions were more favourable in 2000. Peat application tended to increase the number of volunteer oats and Chenopodium album in 1999, while decreasing Galium spurium biomass. Ploughing significantly increased the abundance of Chenopodium album and Lamium purpureum in barley (Hordeum vulgare in 1999. Weed infestation was much lower in 2000, and tillage effect on Chenopodium album was minor in oats (Avena sativa. Growth of Lamium purpureum and Fumaria officinalis was stimulated in ploughed soils both years. Intensity and working depth of stubble cultivation had no significant effect on weeds.;

  18. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  19. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    Science.gov (United States)

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  20. Experimental analysis of CO{sub 2} emissions from agricultural soils subjected to five different tillage systems in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Buragienė, Sidona [Institute of Agricultural Engineering and Safety, Aleksandras Stulginskis University, Studentu str. 15A, LT-53361 Akademija, Kaunas distr. (Lithuania); Šarauskis, Egidijus, E-mail: egidijus.sarauskis@asu.lt [Institute of Agricultural Engineering and Safety, Aleksandras Stulginskis University, Studentu str. 15A, LT-53361 Akademija, Kaunas distr. (Lithuania); Romaneckas, Kęstutis, E-mail: kestas.romaneckas@asu.lt [Institute of Agroecosystems and Soil Science, Aleksandras Stulginskis University, Studentu str. 11, Akademija LT-53361, Kaunas dist. (Lithuania); Sasnauskienė, Jurgita, E-mail: jurgita.sasnauskiene@asu.lt [Institute of Environment and Ecology, Aleksandras Stulginskis University, Studentu str. 11, Akademija LT-53361, Kaunas dist. (Lithuania); Masilionytė, Laura, E-mail: laura.masilionyte@gmail.com [Joniskelis Experimental Station, Lithuanian Research Centre for Agriculture and Forestry, Joniskelis, LT-39301 Pasvalys distr. (Lithuania); Kriaučiūnienė, Zita, E-mail: zita.kriauciuniene@asu.lt [Experimental Station, Aleksandras Stulginskis University, Rapsu str. 7, LT-53363 Noreikiskes, Kaunas distr. (Lithuania)

    2015-05-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO{sub 2}) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO{sub 2} emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230–250 mm, shallow ploughing was conducted at a depth of 120–150 mm, deep loosening was conducted at depths of 250–270 mm, and shallow loosening was conducted at depths of 120–150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO{sub 2} emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO{sub 2} emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO{sub 2} emissions from the soil during the spring. Soil CO{sub 2} emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO{sub 2

  1. Influence of Tillage and Poultry Manure on the Physical Properties of ...

    African Journals Online (AJOL)

    User

    growth (Lampurlanes et al.,2001), grain yield and the ... Deep tillage improved the root length, root ... Data indicated that the deep tillage practice significantly improved the maize grain physical ... applied at the time of sowing while remaining.

  2. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices (di...... that P improved soil quality compared to H and D, especially when combined with cover crop. We also conclude that D may benefit from cover crop to yield better soil friability and hence soil quality.......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality...

  3. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    OpenAIRE

    D. Jug; Mihaela Blažinkov; S. Redžepović; Irena Jug; B. Stipešević

    2005-01-01

    The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth), together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage). Accordingly, the main goal of this resear...

  4. Tillage and manure effect on soil microbial biomass and respiration ...

    African Journals Online (AJOL)

    The objective of this study was to determine the influence of both tillage and liquid pig manure application on soil microbial biomass, enzyme activities and microbial respiration in a meadow soil. The results obtained did not show any significant effect of tillage and manure on microbial biomass carbon (C) and nitrogen (N) ...

  5. Tillage practices and identity formation in High Plains farming

    DEFF Research Database (Denmark)

    Strand, Katherine; Arnould, Eric; Press, Melea

    2014-01-01

    farming, recognition and denunciation of other farmers’ practices, and recognition and justification of their own contribute to identity formation. This research contributes to the ongoing discussion of how identity is formed through day-to-day activities in the material world. The plow creates divisions...... landscape. Specifically, they compare conservation tillage wedded to ‘modern’ ideologies of scientific farming with conventional tillage newly linked to beliefs about both organic and traditional farming, and examine how farmers use these different forms of tillage to create their identities. Roadside...... in the High Plains community between organic farmers who continue to rely on this implement in their material engagement with the land and the chemical farmers who distance their practices from the plow as they distinguish themselves as stewards of the soil....

  6. Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions

    International Nuclear Information System (INIS)

    Zhou, Dandan; Chen, Bingfa; Wu, Min; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

    2014-01-01

    Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. - Highlights: • Mineral compositions tend to be similar after tillage. • Increased SOM decreases OFL sorption for soils from the same geological location. • Tillage activities or dense vegetations greatly decrease OFL sorption. • The summed sorption of individual soil components is

  7. Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen

    International Nuclear Information System (INIS)

    Keshavarz-Afshar, Reza; Mohammed, Yesuf Assen; Chen, Chengci

    2015-01-01

    Despite the great potential of camelina (Camelina sativa L. Crantz) as a promising biofuel feedstock, in-farm energy flow of the crop and its associated environmental impacts has not received sufficient attention from researchers. In order to assess net energy gain and to identify energy saving and environmental friendly production operations, a two year study was conducted at central Montana. We investigated the effects of tillage method (CT (conventional tillage) vs. NT (no-tillage)) and N (nitrogen) fertilizer rate (0, 45, 90 kg N ha −1 ) on energy balance and GHG (greenhouse gas emission) of dryland camelina production. Results indicated that energy input and GHG emission were 5 and 8% lower in NT than in CT. Application of 45 and 90 kg N ha −1 increased camelina energy input by 186 and 365%, while increased energy output by only 21 and 64%, respectively. There was no significant difference in net energy gain in response to N fertilization, but lower energy efficiency in response to higher N inputs. Averaged across tillage systems, the GHG emission was 32.0 kg C eq ha −1 with 0 N applied, and the GHG emission increased by 206 and 389% when 45 and 90 kg N ha −1 was applied. Overall, N fertilizer had the biggest share in total energy input. Averaged over all experimental treatments, 14,945 MJ ha −1 net energy was obtained from camelina crop in this study which shows the potential of this crop as a bioenergy feedstock. Our result showed that implementation of NT is strongly recommendable for camelina production in this region. Moreover, improvement of N use efficiency has the highest priority to improve energy performance and reduce GHG emissions in camelina production. - Highlights: • Camelina produced 14,945 MJ ha −1 of net energy in this study. • No tillage operation reduced 5% energy input and 8% greenhouse gas emission. • Nitrogen fertilizer was the most energy-intensive input in camelina production.

  8. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...... of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....

  9. influence of tillage practices on physical properties of a sandy loam

    African Journals Online (AJOL)

    DR. AMINU

    many regions of the world if the mechanics of tillage effects on soil physical properties is to be well understood. Thus, the ... tillage systems on water storage of a sandy loam soil after 22 years of ..... Soil infiltration ... and processes. Academy ...

  10. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (I Three Year Yield Performances

    Directory of Open Access Journals (Sweden)

    Vincenzo Tabaglio

    Full Text Available A three-year (2004-2006 field trial was carried out to compare two agricultural land management systems, in the Po Valley (Northern Italy. Conventional tillage and No-tillage (hereafter indicated as CT and NT, respectively were compared for maize treated with three levels of nitrogen. The soil was a fine-loamy, mixed, mesic Ultic Haplustalf, that had been under processing tomato in the previous year. Experimental design was a split-plot with four replicates, with the management system as the main factor and nitrogen fertilization (0, 250 and 300 kg N ha-1 year-1 as the secondary factor. Cumulative 3-yr yields of grain and total biomass of NT maize plants were 8% lower than those obtained under CT management, but not significantly different. No N starter was distributed in the first conversion year, causing 17% less grain yield in the NT plots compared with the CT plots. The N fertilizing with 250 and 300 kg N ha-1 year-1 determined statistically equal grain yields, demonstrating the waste of the extra 50 kg N at the N2 rate. Overall, the results for the three years indicate that on an Ultic Haplustalf conversion from a ploughed regime to mature NT conditions could be achieved over a relatively short period.

  11. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    Science.gov (United States)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified

  12. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller

    2011-01-01

    emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover...... application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250–400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop......Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  13. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    Science.gov (United States)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  14. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  15. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  16. Weed-Species Abundance and Diversity Indices in Relation to Tillage Systems and Fertilization

    Directory of Open Access Journals (Sweden)

    Ilias S. Travlos

    2018-04-01

    Full Text Available Weeds pose a major threat to world agriculture by reducing detrimentally crop yield and quality. However, at the same time, weeds are major interacting components of the agroecosystems. Abundance and diversity of weeds vary significantly among the several communities. In order to evaluate each community's structure and the interactions among them, several population indices are used as key tools. In parallel, various cultivation and land management strategies, such as tillage and fertilization, are commonly used in terms of integrated weed management. Estimating the response of weed species on those practices is crucial for both biodiversity maintenance and alternative weed control methods. Many experiments have confirmed the fundamental role of tillage intensity and nutrition supply in weed species' abundance and diversity. For instance, in some studies, the abundance of perennial weeds was doubled under reduced tillage intensity. In addition, higher values of Shannon-Weiner and Pielou indices were reported in the PK fertilization treatment compared to the control and NK fertilization treatments. The objective of this paper is to provide a brief overview of the key results of these experiments and summarize the part of the literature related to the effect of tillage systems and fertilization on weed species abundance and diversity. Such knowledge could contribute to the sound design and implementation of integrated weed management programs which in turn may lead to a decrease in the density of serious and noxious weeds and an increase in the overall balance of agroecosystems.

  17. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.

    Science.gov (United States)

    Schroeder, K L; Paulitz, T C

    2008-03-01

    Rhizoctonia spp. cause substantial yield losses in direct-seeded cereal crops compared with conventional tillage. To investigate the mechanisms behind this increased disease, soils from tilled or direct-seeded fields were inoculated with Rhizoctonia spp. at population densities from 0.8 to 250 propagules per gram and planted with barley (Hordeum vulgare). The incidence and severity of disease did not differ between soils with different tillage histories. Both R. solani AG-8 and R. oryzae stunted plants at high inoculum densities, with the latter causing pre-emergence damping-off. High inoculum densities of both species stimulated early production of crown roots in barley seedlings. Intact soil cores from these same tilled and direct-seeded fields were used to evaluate the growth of Rhizoctonia spp. from colonized oat seeds. Growth of R. oryzae was not affected by previous tillage history. However, R. solani AG-8 grew more rapidly through soil from a long-term direct-seeded field compared to tilled soils. The differential response between these two experiments (mixed, homogenized soil versus intact soil) suggests that soil structure plays a major role in the proliferation of R. solani AG-8 through soils with different tillage histories.

  18. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    OpenAIRE

    SU Yong-zhong; ZHANG Ke; LIU Ting-na; WANG Ting

    2016-01-01

    A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP) in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different texture...

  19. Gross mineralization of nitrogen in fertile soils. Effects of the tillage system and soil depths

    International Nuclear Information System (INIS)

    Videla, C.; Echeverria, H.; Studdert, G.

    2002-01-01

    A greenhouse experiment was carried out with the aim of determining the effect of different tillage systems and soil depths on gross mineralization rates (TMB). The studied soil was a Typic Argiudoll Petrocalcic Paleudoll complex, under: conventional tillage for 23 yr. (PC treatment); no tillage for 6 yr. (PD treatment), and pasture for 4 yr. (P treatment) and 0-10 and 10-20 sampling depths. TMB were estimated through 15 N dilution technique, by addition of labelled (NH 4 ) 2 SO 4 (10% 15 N at. exc.) at days 0, 7, 21 and 35. Twenty-four and 72 h after each addition, N inorganic content and 15 N enrichment of inorganic were determined on 2M KCl extracts in order to estimate the TMB. At 0-10 cm depth, TMB increase until day 21 and decreased afterwards. There were no significant differences between tillage treatments. At 10-20 cm soil depth PC and PD TMB were constant during the whole analysed period. P treatment had a quadratic adjust, with negative linear component. P TMB was lower than PC and PD until day 21 but afterwards it was significantly higher. These results suggest the presence in the pasture of an organic matter fraction, which mineralizes lately but with a high rate. (author)

  20. Effects of tillage technologies and application of biopreparations on micromycetes in the rhizosphere and rhizoplane of spring wheat

    Science.gov (United States)

    Shirokikh, I. G.; Kozlova, L. M.; Shirokikh, A. A.; Popov, F. A.; Tovstik, E. V.

    2017-07-01

    The population density and structure of complexes of soil microscopic fungi in the rhizosphere and rhizoplane of spring wheat ( Triticum aestivum L.), plant damage by root rot and leaf diseases, and crop yield were determined in a stationary field experiment on a silty loamy soddy-podzolic soil (Albic Retisol (Loamic, Aric)) in dependence on the soil tillage technique: (a) moldboard plowing to 20-22 cm and (b) non-inversive tillage to 14-16 cm. The results were treated with the two-way ANOVA method. It was shown that the number of fungal propagules in the rhizosphere and rhizoplane of plants in the variant with non-inversive tillage was significantly smaller than that in the variant with plowing. Minimization of the impact on the soil during five years led to insignificant changes in the structure of micromycete complexes in the rhizosphere of wheat. The damage of the plants with root rot and leaf diseases upon non-inversive tillage did not increase in comparison with that upon plowing. Wheat yield in the variant with non-inversive tillage was insignificantly lower than that in the variant with moldboard plowing. The application of biopreparations based on the Streptomyces hygroscopicus A4 and Pseudomonas aureofaciens BS 1393 resulted in a significant decrease of plant damage with leaf rust.

  1. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion.

    Science.gov (United States)

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the (137)Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of (137)Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. (137)Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion.

  2. Effect of Tillage Systems with Corn Residue on Grain Yield of Rapeseed in Moghan Region

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2014-09-01

    Full Text Available This study carried out to evaluate the effect of different tillage systems on rapeseed yield (hayola 401 planted in corn residues. This experiment was done in Moghan region with clay soils during 2009-2012. Different seedbed preparation methods include MT: moldboard + disk tillage (conventional tillage was included, SCT: Stem Crusher + chisel + disk tandem harrow, STT: Stem Crusher + double-disc, CT: chisel + disk tillage and DD: two heavy disks. The experiment was conducted in a randomized complete block design with four replications. The results showed that soil bulk density in the 0-10 cm layer was not significant in different tillage treatments, but it was significantly higher than the conventional tillage in 10-20 cm depth. However, penetration resistance in 10-30 cm under DD was significantly higher than other treatments, but it was not significant in 0-10 cm layer among all tillage treatments. Thus, Comparison of the soil bulk density, penetration resistance, and plant establishment showed that the reduced tillage in canola seedbed preparation was effective. Besides, the surveys indicated that there was a significant different between MWD after primary and secondary tillage. The mean diameter weighted under SCT and DD, were 1.19 and 1.24 cm, respectively had the best status. The highest value and the worst status of this parameter observed for MT which was 1.92 cm. The highest rate of grain yield obtained by application of treatment SCT, and it was 2563.8 kg ha-1, The SCT treatment can be recommended as an effective canola bed preparation due to its significant saving in time and cost after corn harvesting.

  3. Influence of Tillage and Mulch on Soil Physical Properties and ...

    African Journals Online (AJOL)

    User

    tillage along with plastic mulch have positive impact on soil physical properties, root growth, water use efficiency ... positive effects on crop yield (Gla & Kulig,. 2008). ... potash fertilizers were applied at 120, 100 and 60 .... 0-10. 1.57B. 1.57B. 1.57B. 1.8B. 1.7B. 1.8B. Tillage × Soil depth. CTInitial. 0-5 ...... (Brassica napus). Eur.

  4. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  5. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation

    International Nuclear Information System (INIS)

    Šarauskis, Egidijus; Buragienė, Sidona; Masilionytė, Laura; Romaneckas, Kęstutis; Avižienytė, Dovile; Sakalauskas, Antanas

    2014-01-01

    To achieve energy independence, Lithuania and other Baltic countries are searching for new ways to produce energy. Maize is a crop that is suitable for both food and forage, as well as for the production of bioenergy. The objective of this work was to assess the energy efficiency of maize cultivation technologies in different systems of reduced tillage. The experimental research and energy assessment was carried out for five different tillage systems: DP (deep ploughing), SP (), DC (deep cultivation), SC (shallow cultivation) and NT (no tillage). The assessment of the fuel inputs for these systems revealed that the greatest amount of diesel fuel (67.2 l ha −1 ) was used in the traditional DP system. The reduced tillage systems required 12–58% less fuel. Lower fuel consumption reduces the costs of technological operations and reduces CO 2 emissions, which are associated with the greenhouse effect. The agricultural machinery used in reduced tillage technologies emits 107–223 kg ha −1 of CO 2 gas into the environment, whereas DP emits 253 kg ha −1 of CO 2 . The energy analysis conducted in this study showed that the greatest total energy input (approximately 18.1 GJ ha −1 ) was associated with the conventional deep-ploughing tillage technology. The energy inputs associated with the reduced-tillage technologies, namely SP, DC and SC, ranged from 17.1 to 17.6 GJ ha −1 . The lowest energy input (16.2 GJ ha −1 ) was associated with the NT technology. Energy efficiency ratios for the various technologies were calculated as a function of the yield of maize grain and biomass. The best energy balance and the highest energy efficiency ratio (14.0) in maize cultivation was achieved with the NT technology. The energy efficiency ratios for DP, SP, DC and SC were 12.4, 13.4, 11.3 and 12.0, respectively. - Highlights: • Energetical and economic analysis of maize cultivation was done. • Reduced tillage technology reduces working time, fuel consumption

  6. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-12-01

    Full Text Available To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola was an Ultisol (Typic Paleudult originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST (strip width 2 m, in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1 CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2 CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.

  7. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less

  8. Application of Multio-bjective Fuzzy Goal Programming to Optimize Cropping Pattern with Emphasis on Using Conservation Tillage Methods

    Directory of Open Access Journals (Sweden)

    samad erfanifar

    2014-10-01

    Full Text Available In this study, the optimal cropping patterns based on individual aims are presented and followed by a multi-objective cropping pattern with emphasize on the use of conservation tillage methods in Darab region presented. Individual goals consisted of maximizing gross margin and food secIn this study, the optimal cropping patterns based on individual aims were presented and followed by using a multi-objective fuzzy goal programming with emphasize on the use of conservation tillage methods in the Darab region. Individual goals consisted of maximizing gross margin and food security and minimizing water consumption and urea fertilizer use. The results showed that in the multi-objective cropping pattern, gross margin and food security increased by 23.5% and 6.1% , while water and energy consumption decreased by 4% and 5.1%, respectively as compared to the current cropping pattern. The fuzzy composite distance improved by %36, as compared to the current condition. Moreover, having replaced the conventional tillage methods with conservation tillage methods in the cropping pattern, the diesel fuel consumption reduced by 27%. Therefore, replacing multi-objective cropping pattern ,on which the conservation tillage methods are emphasized, with the conventional cropping patterns improves economic and environmental conditions. urity index and minimizing water and urea fertilizer.The results showed that in the multi-objective cropping pattern, gross margin and food security index respectively increase by 23.5% and 6.1% and water and energy consumption decrease by 4% and 5.1% respectively as compared to current cropping pattern. The fuzzy composite distance improves by %36 compares to current condition and represents better cropping pattern than the others. Morever in this cropping pattern, conventional tillage method will be replaced by conservation tillage practices, therefore the amount of diesel fuel consumption reduces by 27% that is equivalent to an

  9. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Tao; Congfeng Li; Jingjing Li; Zaisong Ding; Jie Xu; Xuefang Sun; Peilu Zhou; Ming Zhao

    2015-01-01

    A two-year field experiment (2012–2013) was conducted to investigate the effects of two tillage methods and five maize straw mulching patterns on the yield, water consumption, and water use efficiency (WUE) of spring maize (Zea mays L.) in the northern Huang–Huai–Hai valley of China. Compared to rotary tillage, subsoil tillage resulted in decreases in water consumption by 6.3–7.8% and increases in maize yield by 644.5–673.9 kg ha−1, soil water content by 2.9–3.0%, and WUE by 12.7–15.2%. Chopped straw mulching led to higher yield, soil water content, and WUE as well as lower water consumption than prostrate whole straw mulching. Mulching with 50%chopped straw had the largest positive effects on maize yield, soil water content, and WUE among the five mulching treatments. Tillage had greater influence on maize yield than straw mulching, whereas straw mulching had greater influence on soil water content, water consumption, and WUE than tillage. These results suggest that 50%chopped straw mulching with subsoil tillage is beneficial in spring maize production aiming at high yield and high WUE in the Huang–Huai–Hai valley.

  10. [Effects of Short-time Conservation Tillage Managements on Greenhouse Gases Emissions from Soybean-Winter Wheat Rotation System].

    Science.gov (United States)

    Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he

    2016-04-15

    Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.

  11. Avaliação dos atributos físicos de um Nitossolo Vermelho distroférrico sob sistema plantio direto, preparo convencional e mata nativa Evaluation of physical attributes of a dystrophic Red Nitosol under no-tillage, conventional tillage and native forest systems

    Directory of Open Access Journals (Sweden)

    Renato Lara de Assis

    2005-07-01

    a Dystroferric Red Nitosol. The evaluated systems were: PD1 (one year of adoption of no-tillage, PD4 (no-tillage for four years, PD5 (no-tillage for five years, PD12 (no-tillage for 12 years, one system under conventional tillage (PC for 18 years and another without use or intervention (native forest-MN. The increase in no-tillage adoption time led to a decrease in bulk density and compaction at the 0-5 cm depth, but cause no alterations at the 10-15 cm depth. The mean geometric diameter (DMG of aggregates increased along the time of adoption of no-tillage at the 0-5 cm depth and the MN presented the largest DMG at both soil depths. The time of adoption of the no-tillage system caused no differentiation in total soil porosity. Penetration resistance presented no predominant trend of variation along the time of adoption of no-tillage. There was also no trend in relation to the other systems. PD12, at the depth of 0-5 cm, presented the largest macro and the smallest micro porosity. Soil water infiltration was faster and the saturated hydraulic conductivity of the soil was higher under the systems PD12 and MN.

  12. Increasing crop diversity mitigates weather variations and improves yield stability.

    Science.gov (United States)

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  13. Effects of tillage and nitrogen fertilizers on CH4 and CO2 emissions and soil organic carbon in paddy fields of central China.

    Directory of Open Access Journals (Sweden)

    Li Cheng-Fang

    Full Text Available Quantifying carbon (C sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT and no-tillage (NT] and the application of nitrogen (N fertilizer (0 and 210 kg N ha(-1 on fluxes of CH(4 and CO(2, and soil organic C (SOC sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH(4 emissions by 13%-66% and SOC by 21%-94% irrespective of soil sampling depths, but had no effect on CO(2 emissions in either year. Tillage significantly affected CH(4 and CO(2 emissions, where NT significantly decreased CH(4 emissions by 10%-36% but increased CO(2 emissions by 22%-40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%-48% in the 0-5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0-20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered.

  14. Effects of tillage and nitrogen fertilizers on CH4 and CO2 emissions and soil organic carbon in paddy fields of central China.

    Science.gov (United States)

    Cheng-Fang, Li; Dan-Na, Zhou; Zhi-Kui, Kou; Zhi-Sheng, Zhang; Jin-Ping, Wang; Ming-Li, Cai; Cou-Gui, Cao

    2012-01-01

    Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha(-1)) on fluxes of CH(4) and CO(2), and soil organic C (SOC) sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH(4) emissions by 13%-66% and SOC by 21%-94% irrespective of soil sampling depths, but had no effect on CO(2) emissions in either year. Tillage significantly affected CH(4) and CO(2) emissions, where NT significantly decreased CH(4) emissions by 10%-36% but increased CO(2) emissions by 22%-40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%-48% in the 0-5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0-20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered.

  15. Root growth conditions in the topsoil as affected by tillage intensity

    DEFF Research Database (Denmark)

    Kadziene, Grazina; Munkholm, Lars Juhl; Mutegi, James

    2011-01-01

    in the topsoil. Samples were taken from a 7-year tillage experiment on a Danish sandy loam at Foulum, Denmark (56°30′ N, 9°35′ E) in 2008. The main crop was spring barley followed by either dyer's woad (Isatis tinctoria L.) or fodder radish (Raphanus sativus L.) cover crops as subtreatment. The tillage...

  16. Grassland soil tillage by three implements in an Ultisol and its physical and hydropedological implications

    Directory of Open Access Journals (Sweden)

    Manuel E. Camacho

    2015-11-01

    Full Text Available A field study was conducted to test the effects of soil tillage with 3 different implements on compaction, physical and hydropedological properties of an Ultisol under cattle production, located in San Mateo, Alajuela. An area of approximately 10 000 m2 was selected and divided into 16 plots (650 m2 each and was tilled with 3 different implements corresponding to the treatments, following an unrestricted random experimental design, with a plot as experimental unit. Soil without tillage (T, tillage by spader plow (PM, tillage by chisel plow (C or tillage by subsoiler (S were established as treatments. Forty days after tillage treatments, soil penetration resistance every 5 cm up to 50 cm deep was assessed, and gravimetric moisture content, bulk and particle density, water infiltration and hydraulic conductivity, all of them up to the first 10 cm deep, all of them were measured. Soil compaction, expressed as soil penetration resistance, was reduced by tillage treatments; the lowest values for soil compaction were found in the spader plow treatment (PM. This same treatment enhanced cumulated infiltration (38.70±3.60 mm at 150 min significantly, comparing with those obtained in T treatment (0.09±0.02 mm at 150 min. No significant differences were found among tillage treatments for bulk density, total porosity and airspace, but comparing with control treatment (T they were found. Subsoiler treatment (S favored the highest values for hydraulic conductivity, but no significant differences with the other treatments were found (p>0.05.

  17. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    Science.gov (United States)

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  18. Tillage systems and cover crops on soil physical properties after soybean cultivation

    Directory of Open Access Journals (Sweden)

    Rafael B. Teixeira

    Full Text Available ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS. Soil tillage systems were: conventional tillage (CT, minimum tillage (MT and no tillage (DS, the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.

  19. Weed seed germination in winter cereals under contrasting tillage systems

    DEFF Research Database (Denmark)

    Scherner, Ananda

    2015-01-01

    to accumulate in the top soil layer and timing of herbicide applications sometimes seems to target the emergence pattern of these weeds poorly. In contrast to the management of most diseases and pests, weed management should be considered in a time frame. The abilities to produce above and below ground...... of weeds. An important component in IWM is to understand and ultimately predict weed emergence patterns in relation to the cropping system and the tillage method applied. A better understanding of the cumulative emergence patterns of weed species in winter crops under different tillage regimes will help......Grass weeds and Gallium aparine are major weed problems in North European arable cropping systems with high proportions of winter crops, especially winter wheat (Clarke et al., 2000; Melander et al., 2008). Problems are accentuated where inverting tillage is omitted, as weed seeds tend...

  20. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    Full Text Available Introduction Winter wheat is an important, well-adapted grain crop under dryland condition of the northwest of Iran. Soil water is the most limiting resource for crop growth in dryland areas. Therefore, farmers need to use crop residues and minimum tillage to control the soil erosion and effectively store and to use the limited precipitation received for crop production. Crop rotation and tillage system could affect crop yield due to their effects on water conservation and soil chemical and physical properties. Galantini et al., (2000 studied the effect of crop rotation on wheat productivity in the Pampean semi-arid region of Argentina and found that a wheat–vetch (Vicia sativa L. rotation resulted in higher yield and protein content, and greater yield components than the other rotations.Payne et al. (2000 stated that where precipitation amount is marginal (400 mm, dry field pea offers a potential alternative to summer fallowing. The purpose of this study was to identify the optimal tillage system for increasing crop productivity in a vetch–wheat rotation in dryland farming of the northwest of Iran. Materials and Methods The field experiment was carried out from 2010 to 2014 at the Dryland Agricultural Research Station (latitude37° 12´N; longitude 46◦20´E; 1730 m a.s.l., 25 km east of Maragheh, East Azerbaijan Province, Iran. The long-term (10 years average precipitation, temperature and relative humidity of the station are 336.5 mm, 9.4 ◦C and 47.5%, respectively. The soil (Fine Mixed, Mesic, Vertic Calcixerepts, USDA system; Calcisols, FAO system at the study site had a clay loam texture in the 0–15 cm surface layer and a clay texture in the 15–80 cm depth. This study was conducted in vetch (Vicia pannonica- wheat (Triticum aestivum L. rotation. The experiment was arranged in a randomized complete block design with four replications. The tillage treatments consisted of (1 conventional tillage: moldboard plowing followed by one

  1. Modeling Edge Effects of Tillage Erosion

    Science.gov (United States)

    Tillage erosion has been recognized as an important factor in redistribution of soil over time and in the development of morphological changes within agricultural fields. Field borders, fences, and vegetated strips that interrupt soil fluxes lead to the creation topographic discontinuities or lynche...

  2. Spatial targeting of conservation tillage to improve water quality and carbon retention benefits

    International Nuclear Information System (INIS)

    Yang, W.; Sheng, C.; Voroney, P.

    2005-01-01

    Conservation tillage reduces soil erosion and improves water quality in agricultural watersheds. However, the benefits of conservation tillage in carbon sequestration are the subject of controversy. Public funds are provided to farms to encourage the adoption of conservation tillage. Given the economic costs, the targeting of areas likely to achieve the greatest environmental benefits has become an important policy-making issue. A geographic information system (GIS) based modelling framework which integrated hydrologic, soil organic matter, and farm models to evaluate the spatial targeting of conservation tillage was presented. A case study applying the framework in the Fairchild Creek watershed in Ontario indicated that targeting conservation tillage based on sediment abatement goals can achieve comparable carbon retention benefits in terms of the percentage reduction of base carbon losses. Targeted subcatchments for conservation tillage varied across the watershed based on benefit to cost ratios. Conservation tillage patterns based on carbon retention goals showed similar results to sediment abatement goals but slight differences were observed because of different carbon content in the soils. The results indicated that sediment abatement may be used as an indicator in setting up program goals. The impacts of conservation programs can then be evaluated based on calibrated and validated hydrologic models in conjunction with monitoring data. Results also showed that setting carbon retention may lead to higher costs in order to achieve corresponding sediment abatement benefits. Carbon retention may not be suitable for setting as a stand-alone environmental goal for conservation programs because of the difficulties in verifying the impacts and the discrepancies between carbon and sediment benefits. It was concluded that the modelling results have important policy implications for the design of conservation stewardship programs that aim to achieve environmental

  3. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.) –Wheat (Triticum aestivum L.) Cropping System in Central China

    Science.gov (United States)

    Liu, Tian-Qi; Cao, Cou-Gui; Li, Cheng-Fang

    2016-01-01

    Investigating microbial metabolic characteristics and soil organic carbon (SOC) within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT) and no tillage (NT)] as main plots and straw returning methods [preceding crop residue returning (S, 2100−2500 kg C ha−1) and removal (NS, 0 kg C ha-1)] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC) fractions within aggregates and their relationships under a rice–wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%), and 0.25 mm aggregate, and 0.25 mm aggregate, and tillage (NT and S) increased microbial metabolic activities and Shannon index in >0.25 and directly improved SOC by promoting DOC in >0.25 mm aggregate in the upper (0−5 cm) soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities. PMID:26731654

  4. Effects of Tillage on Yield and Economic Returns of Maize and Cowpea in Semi-Arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Nyamwaro, S.O; Heng, K.L

    2014-01-01

    Crop yields and financial returns are important criteria for adoption of conservation tillage by farmers. A study was conducted between 2007-2010 to compare the financial returns of subsoiling-ripping and tied-ridge tillage with the conventional ox-plough tillage in the production of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) under semi-arid subsistence farming conditions in lower eastern Kenya. Four cropping systems namely maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure were evaluated in a split-plot treatments arrangement with tillage practices as the main plots and cropping systems as the sub-plots. The grain yields of maize and cowpea, prevailing market prices for cowpea and maize grains, labour, inputs applied and other relevant socio-economic data were collected every season, to enable estimation of economic returns and acceptability of the technologies. The results showed that average grain yield for maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure cropping systems under tied-ridge were 5, 9, 97 and 27% greater than the yields under oxplough tillage, respectively. Crop yields produced under subsoiling-ripping and ox-plough tillage were generally similar. However, land preparation and weeding labour expenses (KES 4240 / ha) for ox-plough tillage were 34% greater than those for subsoiling-ripping tillage but 40% lower than those for tied-ridge tillage. When averaged across seasons and tillage systems, the highest gross margins (KES 8567 / ha) were obtained in sole cowpea cropping system, followed by sole maize with manure (KES 4070 / ha), intercrop (KES 864 / ha) and least (loss of KES 1330 / ha) in sole maize without manure cropping system. (author)

  5. Changes in the fertility of a leached chernozem under different primary tillage technologies

    Science.gov (United States)

    Korolev, V. A.; Gromovik, A. I.; Borontov, O. K.

    2016-01-01

    Changes in the fertility of a leached chernozem under different tillage technologies (moldboard, non-inversive, and combined tillage) were studied in a multifactor stationary field experiment established in 1985 in Voronezh oblast on a low-humus medium-deep light clayey leached chernozem. The nine-field rotation of cereals and sugar beet was practiced. It was found that the major parameters of soil fertility—the content and qualitative composition of humus and the physicochemical and physical properties of the chernozem—remained relatively stable independently from the applied primary tillage technologies. However, taking into account economic characteristics (crop yields, production costs, energy expenses, etc.), the combined tillage system proved to be most efficient. It can be recommended for cereals-sugar beet rotation systems in the central chernozemic region, as it ensures the highest efficiency of crop growing and preserves the fertility of leached chernozems.

  6. Tillage effects on soil quality after three years of irrigation in Northern Spain

    Science.gov (United States)

    Irrigation is being initiated on large areas of traditionally rainfed land to meet increasing global demand for food, feed, fiber, and fuel. However, the consequences of this transition on soil quality (SQ) have scarcely been studied. Therefore, after previously identifying the most tillage-sensitiv...

  7. Effects of soil tillage on the energy budget of soybean (Glycine max (L.) Merr.)

    International Nuclear Information System (INIS)

    Casa, R.; Cascio, B. lo

    1997-01-01

    The different terms of the energy budget were measured by the Bowen ratio method on soybean (Glycine max (L.) Merr.) grown on a conventional tillage and a direct drilling system. The differences found in the energy budgets varied according to the degree of fractional ground cover and of soil water availability. Soil heat flux was greater for the direct drilling treatment, although soil heating was slower as compared to the conventional tillage. Comparisons for well watered and dry conditions revealed that the conventional tillage system used as latent heat a fraction of net radiation greater than the direct drilling treatment only in well watered conditions. In dry conditions the differences in latent heat fluxes and canopy resistances between the two tillage systems were smaller [it

  8. Soil Biochemical Changes Induced by Poultry Litter Application and Conservation Tillage under Cotton Production Systems

    Directory of Open Access Journals (Sweden)

    Seshadri Sajjala

    2012-07-01

    Full Text Available Problems arising from conventional tillage (CT systems (such as soil erosion, decrease of organic matter, environmental damage etc. have led many farmers to the adoption of no-till (NT systems that are more effective in improving soil physical, chemical and microbial properties. Results from this study clearly indicated that NT, mulch tillage (MT, and winter rye cover cropping systems increased the activity of phosphatase, β-glucosidase and arylsulfatase at a 0–10 cm soil depth but decreased the activity of these enzymes at 10–20 cm. The increase in enzyme activity was a good indicator of intensive soil microbial activity in different soil management practices. Poultry litter (PL application under NT, MT, and rye cropping system could be considered as effective management practices due to the improvement in carbon (C content and the biochemical quality at the soil surface. The activities of the studied enzymes were highly correlated with soil total nitrogen (STN soil organic carbon (SOC at the 0–10 cm soil depth, except for acid phosphatase where no correlation was observed. This study revealed that agricultural practices such as tillage, PL, and cover crop cropping system have a noticeable positive effect on soil biochemical activities under cotton production.

  9. Soil workability as a basis for advice on tillage activities

    OpenAIRE

    Cadena Zapata, M.

    1999-01-01

    In the tropical area of Mexico, when and how to carry out tillage is a qualitative decision. There is no quantified information about the interaction between a chosen process of cultivation, soil type and weather, which dictate the tool and power requirements. Waste of energy and soil degradation by erosion and compaction, and lack of timeliness are recognized problems caused by inadequate tillage management in the tropical area of Mexico.

    In this thesis, the workab...

  10. Effects of Conventional and Conservation Tillage on Soil Hydraulic Properties of a Silty-loamy Soil

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Bens, O.; Buczko, U.

    2004-01-01

    Infiltration into soils is strongly correlated with macroporosity. Under agricultural land use, the properties of the macropore network are governed by the applied management and tillage system. On an experimental site with a silt loam soil partly under conventional and conservation tillage, the ......, conservation tillage could possibly offer a means to reduce surface runoff and flood generation in agricultural landscapes dominated by silty-loamy soils. d 2...

  11. Cowpea production as affected by dry spells in no-tillage and conventional crop systems

    Directory of Open Access Journals (Sweden)

    Rômulo Magno Oliveira de Freitas

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effect of different periods of water shortage in no-tillage and conventional crop systems on cowpea yield components and grain yield in the Mossoró-RN region. For this, an experiment was conducted using two tillage systems (conventional and no-tillage subjected to periods of irrigation suspension (2; 6; 10; 14; 18 end 22 days, started at flowering (34 days after sowing. Plants were harvested 70 days after sowing, and the studied variables were: Pods length (CV, number of grains per pod (NGV, number of pods per plant (NPP, the hundred grains weight (PCG and grain yield (kg ha-1. The no-tillage system is more productive than the conventional under both irrigation and water stress treatments. The water stress length affected grain yield and all yield components studied in a negative way, except for the hundred grains weight. Among the systems studied, the no-tillage provides higher values for the yield components, except the hundred grains weight.

  12. Methodology proposal for the development of Tillage Models - (Part II) Indexes of physical-mechanic characterization of the soil and development of a tillage model

    International Nuclear Information System (INIS)

    Lozano Osorno Fernando; Castillo Herran, Bernardo

    1999-01-01

    A proposal was presented for the elaboration of tillage models that allows making decisions on systems of soil preparation (including the option of zero tillage) starting with measurements of the condition of these. After following a plan of sampling of diverse physical-mechanics parameters of the soil and of a statistical process of correlation, they were chosen as representative variables: the apparent density, the cone index, the content of humidity and the cohesion (torsion box, proves in situ); not only such parameters are very related to each other, but rather they also make possible to estimate other variables of interest like the total porosity appropriately, the macro-porosity, the hydraulic conductivity and in general the soil resistance, which makes viable to choose methods of removal of the soil in function of the initial state of the same one. In the proven case it could verify the possibility to establish systems of tillage reduction

  13. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  14. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna.

    Science.gov (United States)

    Rodrigues, Marcos; Pavinato, Paulo Sergio; Withers, Paul John Anthony; Teles, Ana Paula Bettoni; Herrera, Wilfrand Ferney Bejarano

    2016-01-15

    Crop production in the Brazilian Cerrado is limited by soil phosphorus (P) supply without large inputs of inorganic P fertilizer, which may become more costly and scarce in the future. Reducing dependency on fertilizer P requires a greater understanding of soil P supply in the highly weathered soils in this important agricultural region. We investigated the impact of no tillage (NT) and conventional tillage (CT) agriculture on accumulated (legacy) soil P and P forms in four long-term sites. Compared to the native savanna soils, tilled soils receiving regular annual P fertilizer inputs (30-50 kg P ha(-1)) increased all forms of inorganic and organic P, except highly recalcitrant P associated with the background lithology. However, 70-85% of the net added P was bound in moderately labile and non-labile forms associated with Fe/Al oxyhydroxides rather than in plant available forms. Under NT agriculture, organic P forms and labile and non-labile inorganic P forms were all significantly (Pagriculture. The contribution of organic P cycling in these tropical soils increased after conversion to agriculture and was proportionally greater under NT. The results highlight the large amounts of unutilized legacy P present in Brazil's Cerrado soils that could be better exploited to reduce dependency on imports of finite phosphate rock. No tillage agriculture confers a positive albeit relatively small benefit for soil P availability and overall soil function. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials

    Science.gov (United States)

    Andruschkewitsch, R.; Geisseler, D.; Koch, H.-J.; Ludwig, B.

    2012-04-01

    Despite increasing interest in tillage techniques as a factor affecting organic carbon (Corg) dynamics and stabilization mechanisms little is known about the underlying processes. Our objectives were (i) to quantify the impact of different tillage treatments on the amount and distribution of of labile Corg pools, on the water-stable macro-aggregate (>250 µm) contents and on organic carbon (Corg) storage and (ii) to quantify the ability of soils under different tillage treatments, light fraction (LF) inputs and clay contents in macro-aggregate formation. Therefore four long-term tillage trials on loess soil in Germany with regular conventional tillage (CT, to 30 cm), mulch tillage (MT, to 10 cm), and no-tillage (NT) treatments. Samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth after 18-25 years of different tillage treatments and investigated on free and occluded LF (fLF and oLF, respectively) and on macro-aggregate contents. Furthermore an incubation experiment for the quantifcation of macro-aggregate formation was conducted. Macro-aggregates in soils from CT and NT treatments (0-5 and 5-25 cm soil depth) were destroyed and different amounts of light fraction (LF) and clay were applied. The four long-term tillage trials, differing in texture and climatic conditions, revealed consistent results in Corg storage among each other. Based on the equivalent soil mass approach (CT: 0-40, MT: 0-38, NT: 0-36 cm) the Corg stocks in the sampled profile were significantly higher for the MT treatment than for the CT and NT treatments. Significantly lower Corg, fLF, oLF, and macro-aggregate contents for the soils under CT treatment in comparison with the soils under NT and MT treatments were restricted on the top 5 cm. The correlation of the macro-aggregate content against the fLF and oLF contents suggested that the macro-aggregate content is influenced to a lesser extent directly by the physical impact of the different tillage treatments but by the contents of available

  16. Infiltration in reclaimed mined land ameliorated with deep tillage treatments

    International Nuclear Information System (INIS)

    Chong, S.K.; Cowsert, P.T.

    1997-01-01

    Reclamation of mined land with heavy machinery can result in soil compaction, which increases soil bulk density and reduces porosity, water infiltrability, root elongation and crop productivity. This paper examines the effect on infiltration in reclaimed surface mined land of a deep tillage treatment, and the subsequent changes in infiltration after the amelioration. The experiment was conducted at the Horse Creek Mine near Conant, Ferry County, IL, USA

  17. The impact of different soil tillage on weed infestation of spring barley in conditions of dryer climatic areas Czech Republic

    Directory of Open Access Journals (Sweden)

    Jan Winkler

    2008-01-01

    Full Text Available The impact of soil tillage on weeds in spring barley was observed on the field trial. The field trial was established in very warm and dry climatic region (experimental field station in Žabčice, Mendel University of Agriculture and Forestry Brno, Czech Republic. In the experiment there was used 7-strip crop rotation and three variants of soil tillage: conventional tillage (CT, minimum tillage (MT, when soil is shallow loosened and no tillage (NT what means direct sowing without any soil tillage. The weed infestation was evaluated by counting method before herbicide application. Analysis of va­rian­ce (ANOVA and then LSD methods, DCA (Detrended Correspondence Analysis and CCA (Canonical Correspondence Analysis were used for evaluation of results. The obtained results showed, that different soil tillage did not statistically influenced weed infestation in spring barley. The number of weed species depended on the depth of soil tillage, the variant of minimum tillage had lower number of weed species. These species were more common on the variant of conventional tillage: Chenopodium album, Silene noctiflora, Sinapis arvensis, Veronica polita. The variant of minimum tillage was more suitable for these species: Cirsium arvense, Convolvulus arvensis, Amaranthus sp., Galium aparine. On the variant of direct so­wing there appeared mainly these species: Sonchus oleraceus, Lactuca serriola, Tripleurospermum inodorum.

  18. Short-Term Effects of Tillage Practices on Soil Organic Carbon Turnover Assessed by δ 13C Abundance in Particle-Size Fractions of Black Soils from Northeast China

    Science.gov (United States)

    Zhang, Xiaoping; Chen, Xuewen

    2014-01-01

    The combination of isotope trace technique and SOC fractionation allows a better understanding of SOC dynamics. A five-year tillage experiment consisting of no-tillage (NT) and mouldboard plough (MP) was used to study the changes in particle-size SOC fractions and corresponding δ 13C natural abundance to assess SOC turnover in the 0–20 cm layer of black soils under tillage practices. Compared to the initial level, total SOC tended to be stratified but showed a slight increase in the entire plough layer under short-term NT. MP had no significant impacts on SOC at any depth. Because of significant increases in coarse particulate organic carbon (POC) and decreases in fine POC, total POC did not remarkably decrease under NT and MP. A distinct increase in silt plus clay OC occurred in NT plots, but not in MP plots. However, the δ 13C abundances of both coarse and fine POC increased, while those of silt plus clay OC remained almost the same under NT. The C derived from C3 plants was mainly associated with fine particles and much less with coarse particles. These results suggested that short-term NT and MP preferentially enhanced the turnover of POC, which was considerably faster than that of silt plus clay OC. PMID:25162052

  19. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  20. Application limestone forms and doses for alfalfa in no-tillage system

    Directory of Open Access Journals (Sweden)

    Letícia Cristina Bertusso Toffolli

    Full Text Available Alfalfa (Medicago sativa L. requires good soil fertility. Brazil is characterized by acidic soils which reduce the potential of the crop. Generally, liming is incorporated into the soil, but in tillage systems it is inadvisable. This study aimed to evaluate the effects of the lime application method and dose on pH, Al+3, V % and Ca+Mg in the soil and on dry matter yield of alfalfa cultivated under a consolidated no-tillage system. The experiment was conducted at the Experimental Station of Paraná Agronomic Institute, located in Pato Branco city, in Paraná state. The plots consisted of the types of lime application (plowing+harrowing, subsoil and surface, the sub-plots was the lime dose (0, 2, 4, 6 and 8 Mg ha-1 and the sub-sub-plots were the sampled soil depth (0-5; 5-10; 10-20 and 20-30 cm. The results show the application of lime, even superficially, caused increases in pH, concentration of Ca and Mg and base saturation of the soil, while also reducing the concentration of Al, especially in the surface layers of the soil. The practice of plowing and harrowing or of subsoiling, with the aim of lime incorporation in a consolidated no-tillage system is unnecessary. If it is required, the application of lime to the soil should be done superficially for alfalfa cultivated in this system.

  1. Soil water retention as affected by tillage and residue management in semiarid Spain

    NARCIS (Netherlands)

    Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B.

    2006-01-01

    Conservation tillage preserves soil water and this has been the main reason for its rapid dissemination in rainfed agriculture in semiarid climates. We determined the effects of conservation versus conventional tillage on available soil water capacity (AWC) and related properties at the end of 5

  2. Long-term rotation and tillage effects on soil structure and crop yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2013-01-01

    long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C......–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality...

  3. Response of CH4 and N2O emissions and wheat yields to tillage method changes in the North China plain.

    Directory of Open Access Journals (Sweden)

    Shenzhong Tian

    Full Text Available The objective of this study was to quantify soil methane (CH(4 and nitrous oxide (N(2O emissions when converting from minimum and no-tillage systems to subsoiling (tilled soil to a depth of 40 cm to 45 cm in the North China Plain. The relationships between CH(4 and N(2O flux and soil temperature, moisture, NH(4 (+-N, organic carbon (SOC and pH were investigated over 18 months using a split-plot design. The soil absorption of CH(4 appeared to increase after conversion from no-tillage (NT to subsoiling (NTS, from harrow tillage (HT to subsoiling (HTS and from rotary tillage (RT to subsoiling (RTS. N(2O emissions also increased after conversion. Furthermore, after conversion to subsoiling, the combined global warming potential (GWP of CH(4 and N(2O increased by approximately 0.05 kg CO(2 ha(-1 for HTS, 0.02 kg CO(2 ha(-1 for RTS and 0.23 kg CO(2 ha(-1 for NTS. Soil temperature, moisture, SOC, NH(4 (+-N and pH also changed after conversion to subsoiling. These changes were correlated with CH(4 uptake and N(2O emissions. However, there was no significant correlation between N(2O emissions and soil temperature in this study. The grain yields of wheat improved after conversion to subsoiling. Under HTS, RTS and NTS, the average grain yield was elevated by approximately 42.5%, 27.8% and 60.3% respectively. Our findings indicate that RTS and HTS would be ideal rotation tillage systems to balance GWP decreases and grain yield improvements in the North China Plain region.

  4. Thrips (Thysanoptera: Thripidae) mitigation in seedling cotton using strip tillage and winter cover crops.

    Science.gov (United States)

    Toews, Michael D; Tubbs, R Scott; Wann, Dylan Q; Sullivan, Dana

    2010-10-01

    Thrips are the most consistent insect pests of seedling cotton in the southeastern United States, where symptoms can range from leaf curling to stand loss. In a 2 year study, thrips adults and immatures were sampled at 14, 21 and 28 days after planting on cotton planted with a thiamethoxam seed treatment in concert with crimson clover, wheat or rye winter cover crops and conventional or strip tillage to investigate potential differences in thrips infestations. Densities of adult thrips, primarily Frankliniella fusca (Hinds), peaked on the first sampling date, whereas immature densities peaked on the second sampling date. Regardless of winter cover crop, plots that received strip tillage experienced significantly fewer thrips at each sampling interval. In addition, assessment of percentage ground cover 42 days after planting showed that there was more than twice as much ground cover in the strip-tilled plots compared with conventionally tilled plots. Correlation analyses showed that increased ground cover was inversely related to thrips densities that occurred on all three sampling dates in 2008 and the final sampling date in 2009. Growers who utilize strip tillage and a winter cover crop can utilize seed treatments for mitigation of early-season thrips infestation.

  5. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    Science.gov (United States)

    Wang, Li-Fang; Shangguan, Zhou-Ping

    2015-07-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259-7898 kg ha-1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic.

  6. Sustainable semiarid dryland production in relation to tillage effects on Hydrology: 1983-2013

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch tillage, SM, as a result of improved soil conditions or water conservation, but knowledge of long-term tillage effects on the comprehensive field hydrology and sustained crop production is needed. ...

  7. Long-Term No-Tillage Direct Seeding Mode for Water-Saving and Drought-Resistance Rice Production in Rice-Rapeseed Rotation System

    Directory of Open Access Journals (Sweden)

    Xing-bin DU

    2014-07-01

    Full Text Available To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS mode and conventional tillage direct seeding (CTDS mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0–5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5–20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.

  8. MAIZE YIELD AND ITS STABILITY AS AFFECTED BY TILLAGE AND CROP RESIDUE MANAGEMENT IN THE EASTERN ROMANIAN DANUBE PLAIN

    Directory of Open Access Journals (Sweden)

    Alexandru COCIU

    2015-10-01

    Full Text Available Rainfed crop management systems need to be optimized to provide more resilient options in order to cope with projected climatic scenarios which are forecasting a decrease in mean precipitation and more frequent extreme drought periods in the Eastern Romanian Danube Plain. This research, carried out in the period of 2011-2014, had as main purpose the determination of influence of tillage practices and residue management on rainfall use efficiency, maize yield and its stability, in order to evaluate the advantages of conservation agriculture (CA in the time of stabilization of direct seeding effects, in comparison with traditional chisel tillage. The maize grain yields are presented for each crop management practices, as follows: (1 chisel tillage, retained crop residues being chopped and incorporated (ciz; (2 zero tillage, retained crop residue chopped and kept on the field in short flat condition (rvt; (3 zero tillage, crop residues kept on the field in short root-anchored condition (1/2rva, and (4 zero tillage, crop residues kept on the field in tall root-anchored condition (1/1rva. In 2012, a year with prolonged drought during vegetative growth, yield differences between zero tillage with short root-anchored residue retention (1/2rva and chisel tillage with residue incorporation (ciz were positive, up to 840 kg ha-1. In average over 2011-2014, conservation agriculture (CA practices had a yield advantage over traditional chisel tillage practice. Zero tillage with residue retention used rainfall more efficiently so suggesting that it is a more resilient agronomic system than traditional (conventional practices involving chisel tillage with residue incorporation.

  9. Soil-blade orientation effect on tillage forces determined by 3D finite element models

    Directory of Open Access Journals (Sweden)

    Ayadi Ibrahmi

    2014-10-01

    Full Text Available This paper investigated the effect of the cutting parameters of a blade on the tillage force components using finite element modeling. A three-dimensional model was carried out with Abaqus Explicit in order to study the interaction between the tool and soil. The soil was modeled with linear forms of the Drucker-Pager model, while the tool was considered as a rigid body with a reference point taken at its tip. The effect of tillage depth and the width of a vertical blade were studied. It was found that the amounts of the draught and vertical forces increase linearly with a slope of 0.037 and 0.0143 respectively when the width increases. The narrow tool (width< 60mm has a greater effect on the specific draught force than a larger tool. Draught and specific draught force increase with polynomial and linear curve respectively versus the depth. However, this effect was reduced for the vertical force. These results were in a good agreement with previously published works. The second part of this paper is focused on the oblique position of the blade to evaluate the effect of the attack angles on both the tillage forces (draught, lateral and vertical and the cutting process of the soil during and after its failure. For all considered angles, the draught force presents the highest values compared to the vertical and lateral forces. Results showed that working with small cutting and an average rake angles (30° to 60° and 45° respectively can produce a good soil inversion.

  10. Phosphorus fractions in an agricultural chronosequence under tillage regimes in the Cerrado area in Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Roni Fernandes Guareschi

    2016-04-01

    Full Text Available The increase in the amount and quantity of soil organic matter (SOM, as well as the use of phosphorus-based fertilizers in the superficial soil layer in areas under tillage regimes (TR, may affect phosphorus (P dynamics in the soil. Therefore, the aims of the present work were as follows: to evaluate the inorganic and organic fractions of P and its lability levels (labile, moderately labile, and moderately resistant in a Distroferric Red Latosol under tillage regimes (TR 3, 15, and 20 years after implementation, and to compare them with those of areas of native Cerrado and pastures. We also focus on analyzing the correlations of the P fractions in these areas with other soil attributes, such as total carbon and nitrogen levels, light organic matter (LOM, chemical and physical granulometric fractions of the SOM, maximum phosphate adsorption capacity (MPAC, and the remaining phosphorus (Prem. In each of these areas, samples were collected from the 0.0-0.05 and 0.05-0.10 m soil layers. An entirely randomized experimental design was used. After TR implementation, the constant use of phosphorus-based fertilizers as well as the incremental addition of SOM resulted in an increase in the levels of labile, moderate labile, and moderately resistant organic and inorganic P, with a tendency for total P accumulation to be mostly in the inorganic, moderately labile form. The native Cerrado soil presented high levels of labile and moderately labile inorganic P. Pasture areas presented the lowest levels of labile organic and inorganic P, as well as moderately labile and moderately resistant organic P. By principal component analysis (PCA, it was possible to observe alterations in all soil attributes and P levels of the fractions analyzed.

  11. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    Directory of Open Access Journals (Sweden)

    Strašil Zdeněk

    2015-09-01

    Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.

  12. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    Science.gov (United States)

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  13. Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China

    Science.gov (United States)

    Longitudinal ridge tillage is the conventional tillage method in the cold, Mollisol region of Northeast China in which furrows are oriented up and down the slope. Soil erosion is a serious problem in this region in part due to the use of this tillage system with long slope lengths. It is unclear wha...

  14. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    Science.gov (United States)

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  15. TILLAGE AND DYNAMICS OF INORGANIC NITROGEN IN ECOLOGICAL AND INTEGRATION MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    J SMATANA

    2002-05-01

    Full Text Available During the period of 1991-1993 in the field experiment, the effect of different soil management (tillage 0,24 m and tillage 0,12-0,15 m in ecological and integration management system on changes of inorganic nitrogen (Nan = N-NH4 + + N-NO3 - content in the soil layer from 0 up to 0,6 m of the soil depth (0,00-0,30 m and 0,30- 0,60 m were studied. Trials were held in a warm climatic zone of the South – Western Slovakia on the brown soil. Different soil management systems (tillage 0,24 m and tillage 0,12-0,15 m considerably did not affected ammonification and nitrification processes in the soil. The sustainability of minimalization via shallow ploughing is not excluded, on the contrary this minimalization may have high a positive influence on economic saving the energy, labour costs, etc. The quantitative and qualitative changes of studied form of N were significantly effected by weather and soil depth. Soil content of N-NH4 + and N-NO3 - was in negative correlation with soil depth.

  16. Relationships between Fungal Biomass and Nitrous Oxide Emission in Upland Rice Soils under No Tillage and Cover Cropping Systems.

    Science.gov (United States)

    Zhaorigetu; Komatsuzaki, Masakazu; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    The relationships between soil microbial properties and nitrous oxide emission were examined in upland soil under different tillage systems [no tillage (NT), rotary and plow tillage] and cover crop systems (fallow, cereal rye, and hairy vetch) in 2004 and 2005. Microbiological analyses included the determination of soil ergosterol as an indicator of fungal biomass, bacterial plate counting, and MPN estimations of ammonia oxidizers and denitrifiers. The combined practice of NT with rye-cover crop treatment increased fungal biomass but not bacterial populations in 0-10 cm deep soils. Such increase in fungal biomass was not found in 10-20 cm and 20-30 cm deep cover-cropped NT soil. The combined practice of NT with rye-cover cropping resulted in higher in situ N(2)O emission rates compared with rotary- and plow-till treatments. N(2)O flux was positively correlated with soil ergosterol content but not with denitrifier MPN and other soil chemical properties. These results suggested a significant contribution of fungi to N(2)O emission in cover-cropped NT soils.

  17. The impact of different soil tillage on weed infestation of spring barley in conditions of dryer climatic areas Czech Republic

    OpenAIRE

    Jan Winkler

    2008-01-01

    The impact of soil tillage on weeds in spring barley was observed on the field trial. The field trial was established in very warm and dry climatic region (experimental field station in Žabčice, Mendel University of Agriculture and Forestry Brno, Czech Republic). In the experiment there was used 7-strip crop rotation and three variants of soil tillage: conventional tillage (CT), minimum tillage (MT), when soil is shallow loosened and no tillage (NT) what means direct sowing without any soil t...

  18. Tillage and residue effects on rainfed wheat and corn production in the Semi-Arid Regions of Northern China

    NARCIS (Netherlands)

    Wang, X.B.; Hoogmoed, W.B.; Perdok, U.D.; Cai, D.X.

    2003-01-01

    Field studies on tillage and residue management for spring corn were conducted at two sites, in Tunliu (1987-1990), and Shouyang (1992-1995) counties of Shanxi province in the semihumid arid regions of northern China. This paper discusses the effects of different fall tillage (winter fallow tillage)

  19. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  20. Effects of different tillage and transplanting methods on rice rooting ability

    International Nuclear Information System (INIS)

    Ren Wanjun; Yang Wenyu; Fan Gaoqiong; Wu Jinxiu; Wang Lihong

    2007-01-01

    Effects of different tillage and transplanting methods on rice rooting ability were studied with the methods of water culture and 3 H labeling. The results showed that the dynamic curve of rooting ability had single peak during growth period, and the peak of root length per plant, root number and root dry weight appeared at booting. With conventional tillage and transplanting method, the rice plant had the strongest rooting ability, under non-tillage treatment (BCSNT), the rooting ability was the lowest during elongating to heading. After 10d of heading, the dry weight and 3 H specific activity of BCSNT was higher than other treatments, at the same time, the percentage of 3 H assimilate at new root was the highest. Dry weight was positively correlated with percentage of 3 H assimilate of new root, while negatively with percentage of 3 H assimilate of panicle. (authors)

  1. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho

    2015-11-01

    Full Text Available ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L. development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models of Kostiakov-Lewis, Horton and Philip. Based on the obtained results, the combination of effects between soil tillage system and corn development stages reduces soil and water losses. The contour tillage system promoted improvements in soil physical properties, favoring the reduction of erosion in 59.7% (water loss and 86.6% (soil loss at 75 days after planting, and the increase in the stable infiltration rate in 223.3%, compared with the exposed soil. Associated to soil cover, contour cultivation reduces soil and water losses, and the former is more influenced by management. Horton model is the most adequate to represent soil water infiltration rate under the evaluated conditions.

  2. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  3. Runoff amount and quality as influenced by tillage and fertilizer management choices in a Cecil soil

    Science.gov (United States)

    Tillage and fertilizer choices and their interactions have varying impacts on levels and qualities of runoff from agricultural fields. We quantified runoff, sediment loss, concentrations and loads of ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (PO4-P) and total...

  4. Water Use Efficiency under Different Tillage and Irrigation Systems for Tomato Farming in Southeastern Brazil

    Science.gov (United States)

    Bhering, S. B.; Fernandes, N. F.; Macedo, J. R.

    2009-04-01

    highly degrade the environment, applied without practices of soil and water conservation. Such production systems are associated with a variety of environmental problems, such as soil erosion, the extensive pumping of groundwater, the partial obstruction of surface drainage to form artificial lakes, the contamination of groundwater, among others. The environmental impacts generated by all these problems assume a greater importance due to the complete absence of monitoring the continuous lowering of the water table and the changes in water quality. We consider that the main management strategies for developing sustainable production systems for the tomato farming in this area should be based on monitoring water use efficiency, increasing water availability in the root zone and also preventing runoff, leaching and evaporation of water from the soil. Therefore, techniques were applied as green manures with legumes without incorporation of the biomass, non-mechanized and curve-level soil preparation, planting in level, soil cover with crop residues, fertirrigation with solid fertilization of low value, the conduct of tomato especially supported by plastic string attached to a trellis, drip irrigation, and monitoring soil water potential (SWP) with Watermak sensors. At the end of the tomato cycle, water use efficiency and the productivity were compared at 8 micro-plots installed in the 3 studied production systems: conventional tillage (CT-H), minimum tillage (MT-H), both with "wetting irrigation with garden hose", and no-tillage with drip irrigation (NT-D). For each production system, soil physical properties were characterized and soil water potential (SWP) and soil temperature were continuously monitored at different depths (20, 40, 60 and 80 cm), as well as the total water volume used in each irrigation. In parallel, we also compared the development of the root system and the final productivity for each one of the three production systems. The results obtained in this

  5. Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Gergely Jakab

    2017-09-01

    Full Text Available Decreased water retention and increased runoff and soil loss are of special importance concerning soil degradation of hilly crop fields. In this study, plots under ploughing (conventional tillage (PT and conservation tillage (CT; 15 years were compared. Rainfall simulation on 6 m2 plots was applied to determine infiltration and soil loss during the growing season. Results were compared with those measured from 1200 m2 plots exposed to natural rainfalls in 2016. Infiltration was always higher under CT than PT, whereas the highest infiltration was measured under the cover crop condition. Infiltration under seedbed and stubble resulted in uncertainties, which suggests that natural pore formation can be more effective at improving soil drainage potential than can temporary improvements created by soil tillage operations. Soil erodibility was higher under PT for each soil status; however, the seedbed condition triggered the highest values. For CT, soil loss volume was only a function of runoff volume at both scales. Contrarily, on PT plots, some extreme precipitation events triggered extremely high soil loss owing to linear erosion, which meant no direct connection existed between the scales. Improved soil conditions due to conservation practice are more important for decreasing soil loss than the better surface conditions.

  6. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions

    International Nuclear Information System (INIS)

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-01-01

    No tillage (NT) has been associated to increased N_2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N_2O and CH_4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N_2O emissions by 68% compared to NT and generally led to higher CH_4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N_2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH_4 oxidation was enhanced after liming application due to decreased Al"3"+ toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N_2O and CH_4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH_4 emissions and, under CT, abate N_2O emissions. - Highlights: • The effect of tillage and liming on GHG was studied in poorly drained acidic soils. • NT reduced N_2O emissions, global warming potential and greenhouse gases intensity. • Liming reduced N_2O and CH_4 emissions under CT; no effect was observed under NT. • NT and liming provide an opportunity for N_2O and CH_4 mitigation.

  7. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions

    Energy Technology Data Exchange (ETDEWEB)

    García-Marco, Sonia, E-mail: sonia.garcia@upm.es [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Abalos, Diego, E-mail: diego.abalosrodriguez@wur.nl [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Espejo, Rafael, E-mail: rafael.espejo@upm.es [Departamento de Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Vallejo, Antonio, E-mail: antonio.vallejo@upm.es [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Mariscal-Sancho, Ignacio, E-mail: i.mariscal@upm.es [Departamento de Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2016-10-01

    No tillage (NT) has been associated to increased N{sub 2}O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N{sub 2}O and CH{sub 4} emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N{sub 2}O emissions by 68% compared to NT and generally led to higher CH{sub 4} emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N{sub 2}O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH{sub 4} oxidation was enhanced after liming application due to decreased Al{sup 3+} toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N{sub 2}O and CH{sub 4} emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH{sub 4} emissions and, under CT, abate N{sub 2}O emissions. - Highlights: • The effect of tillage and liming on GHG was studied in poorly drained acidic soils. • NT reduced N{sub 2}O emissions, global warming potential and greenhouse gases intensity. • Liming reduced N{sub 2}O and CH{sub 4} emissions under CT; no effect was observed under NT

  8. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  9. Pesticide Interactions with N source and Tillage: Effects on soil biota and ecosystem services

    DEFF Research Database (Denmark)

    Jensen, John; Petersen, Søren O; Elsgaard, Lars

    . This study was planned to evaluate interactions between pesticide use and other soil management factors. The study was carried out within a long-term tillage experiment using two tillage practices (no-till (NT) and mouldboard ploughing (MP), two contrasting N sources (manure and mineral fertiliser), and two...

  10. Evaluation of Conservation Tillage Techniques for Maize Production ...

    African Journals Online (AJOL)

    conservation tillage techniques and evaluate the impacts of the system on ... biological soil manipulation to optimize conditions for seed germination, emergence and ..... planting and weeding operations as total expense and sales from maize ...

  11. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  12. Response of water use efficiency and carbon emission to no-tillage and winter wheat genotypes in the North China Plain.

    Science.gov (United States)

    Ren, Yujie; Gao, Chao; Han, Huifang; Li, Quanqi

    2018-04-20

    No-tillage management practices reduce net CO 2 losses from farmland and keep soil from degrading, but also decrease winter wheat grain yield and water use efficiency (WUE) in the North China Plain (NCP). Suitable management practices, namely, the choice of genotypes, could enhance crop yield and WUE; however, how the WUE and CO 2 exchange responds to no-tillage practices and winter wheat genotypes remains unclear. In the 2015-2016 and 2016-2017 winter wheat growing seasons in the NCP, a field experiment was carried out, and tested two tillage methods (no-tillage with mulching and conventional tillage) and two winter wheat genotypes ('Tainong 18' and 'Jimai 22'). The goal of the study was to identify the relationship between winter wheat grain yield, water consumption, and carbon emissions in no-tillage practices. The results showed that, compared to conventional tillage, no-tillage significantly reduced the net CO 2 -C cumulative emissions and water consumption; however, the grain yield was significantly reduced by 6.8% and 12.0% in the first and second growing seasons, respectively. Compared with Jimai 22, Tainong 18 had a compensatory effect on the yield reduction caused by no-tillage. As a result, the yield carbon utilization efficiency (R) and WUE were the highest in no-tillage with Tainong 18 (NT18), and the carbon emission per unit water consumption was the lowest in NT18. The results support the idea that a combination of no-tillage with genotype can improve the regulation of soil carbon emissions and water consumption of winter wheat, thus, providing theoretical support for sustainable crop production and soil development in the NCP. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis.

    Science.gov (United States)

    Briones, María Jesús I; Schmidt, Olaf

    2017-10-01

    The adoption of less intensive soil cultivation practices is expected to increase earthworm populations and their contributions to ecosystem functioning. However, conflicting results have been reported on the effects of tillage intensity on earthworm populations, attributed in narrative reviews to site-dependent differences in soil properties, climatic conditions and agronomic operations (e.g. fertilization, residue management and chemical crop protection). We present a quantitative review based on a global meta-analysis, using paired observations from 165 publications performed over 65 years (1950-2016) across 40 countries on five continents, to elucidate this long-standing unresolved issue. Results showed that disturbing the soil less (e.g. no-tillage and conservation agriculture [CA]) significantly increased earthworm abundance (mean increase of 137% and 127%, respectively) and biomass (196% and 101%, respectively) compared to when the soil is inverted by conventional ploughing. Earthworm population responses were more pronounced when the soil had been under reduced tillage (RT) for a long time (>10 years), in warm temperate zones with fine-textured soils, and in soils with higher clay contents (>35%) and low pH (earthworm population responses to RT. Additional meta-analyses confirmed that epigeic and, more importantly, the bigger-sized anecic earthworms were the most sensitive ecological groups to conventional tillage. In particular, the deep burrower Lumbricus terrestris exhibited the strongest positive response to RT, increasing in abundance by 124% more than the overall mean of all 13 species analysed individually. The restoration of these two important ecological groups of earthworms and their burrowing, feeding and casting activities under various forms of RT will ensure the provision of ecosystem functions such as soil structure maintenance and nutrient cycling by "nature's plough." © 2017 John Wiley & Sons Ltd.

  14. Effects of no tillage on the abundance and diversity of soil and olive tree canopy arthropods.

    OpenAIRE

    Lousão, C.; Bento, Albino; Campos, M.; Ruano, F.; Pereira, J.A.

    2007-01-01

    Soil tillage is a traditional practice in the olive groves of Trás-os-Montes region (Northeast of Portugal) where the soil is maintained without any vegetal cover. However, this agronomic practice may have dangerous environmental effects of several orders. In this way, with the present work we aimed to contribute for the knowledge about the effect of two soil management practices in the olive grove (traditional tillage in comparison to no tillage) on the arthropods abundance an...

  15. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  16. Effect of tillage on the efficacy of CGA362622 on weed control in maize

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... time and resources managing weeds. Tillage alone or in combination with good cropping methods is ... help in managing herbicide resistance weeds and may also increase weed density as well as reduce crop yield .... This change in weed compo- sition agrees with Richley et al. (1977) indicating shift.

  17. Erosion and sediment deposition evaluation on slopes under different tillage systems in the Cerrado region using the 137Cs fallout technique

    International Nuclear Information System (INIS)

    Arthur, Robson Clayton Jacques

    2010-01-01

    In Brazil, the expansion of agricultural areas causes several problems on natural resources. With the increasing occupation of the Cerrado region by agriculture, a series of environmental problems like deforestation, soil erosion and soil compaction are appearing and causing radical transformations in the natural landscape due to removing almost all native vegetation. The conventional tillage system (CTS) is considered an inadequate form of soil management for its frequently irremediable consequences of soil compaction and soil erosion, and the no till system (NTS) makes the maintenance of the soil conditions possible, letting them close to the natural environment, thus reducing rates of soil erosion. The objective of this work was to evaluate the efficiency of riparian forests in the retention of sediments originated for three different tillage systems, through the fallout 137 CS redistribution technique, the Universal Soil Loss Equation (USLE) and some physical and chemical parameters that indicate the structural conditions of the soils of Goiatuba and Jandaia-GO. In the three areas, soil profiles were collected in three layers of 20 cm (0-20, 20-40 and 40-60 cm) at distinct points located along linear transects in the direction of the maximum slope until the riparian forest. In the riparian forest of each area, trenches were opened and soil was sampled to evaluate the activity of 137 Cs and the physical and chemical parameters of soil. Detection of the activity of 137 Cs was made with a gamma ray detector model (GEM-20180P, EG and ORTEC) connected to a multichannel analyzer. The comparison of averages was made using the Tukey test at 5% level of significance. The. results indicated that, the three soil tillage systems presented high rates of soil erosion and deposition of sediments and the riparian forest of the areas under CTS, NTS and pasture, located downstream received great amounts of sediments, and that only the riparian forest of CTS was capable to trap

  18. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study.

    Science.gov (United States)

    Cade-Menun, Barbara J; Carter, Martin R; James, Dean C; Liu, Corey W

    2010-01-01

    In many regions, conservation tillage has replaced conventional tilling practices to reduce soil erosion, improve water conservation, and increase soil organic matter. However, tillage can have marked effects on soil properties, specifically nutrient redistribution or stratification in the soil profile. The objective of this research was to examine soil phosphorus (P) forms and concentrations in a long-term study comparing conservation tillage (direct drilling, "No Till") and conventional tillage (moldboard plowing to 20 cm depth, "Till") established on a fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island, Canada. No significant differences in total carbon (C), total nitrogen (N), total P, or total organic P concentrations were detected between the tillage systems at any depth in the 0- to 60-cm depth range analyzed. However, analysis with phosphorus-31 nuclear magnetic resonance spectroscopy showed differences in P forms in the plow layer. In particular, the concentration of orthophosphate was significantly higher under No Till than Till at 5 to 10 cm, but the reverse was true at 10 to 20 cm. Mehlich 3-extractable P was also significantly higher in No Till at 5 to 10 cm and significantly higher in Till at 20 to 30 cm. This P stratification appears to be caused by a lack of mixing of applied fertilizer in No Till because the same trends were observed for pH and Mehlich 3-extractable Ca (significantly higher in the Till treatment at 20 to 30 cm), reflecting mixing of applied lime. The P saturation ratio was significantly higher under No Till at 0 to 5 cm and exceeded the recommended limits, suggesting that P stratification under No Till had increased the potential for P loss in runoff from these sites.

  19. A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2010-10-01

    Full Text Available Most of the indices currently employed for assessing soil surface micro-topography, such as random roughness (RR, are merely descriptors of its vertical component. Recently, multifractal analysis provided a new insight for describing the spatial configuration of soil surface roughness. The main objective of this study was to test the ability of multifractal parameters to assess in field conditions the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. In addition, we evaluated the potential of the joint use of multifractal indices plus RR to improve predictions of water storage in depressions of the soil surface (MDS. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil. Six tillage treatments, namely, disc harrow, disc plough, chisel plough, disc harrow + disc level, disc plough + disc level and chisel plough + disc level were tested. In each treatment soil surface micro-topography was measured four times, with increasing amounts of natural rainfall, using a pin meter. The sampling scheme was a square grid with 25 × 25 mm point spacing and the plot size was 1350 × 1350 mm (≈1.8 m2, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. MDS was estimated from grid elevation data with a depression-filling algorithm. Multifractal analysis was performed for experimental data sets as well as for oriented and random surface conditions obtained from the former by removing slope and slope plus tillage marks, respectively. All the investigated microplots exhibited multifractal behaviour, irrespective of surface condition, but the degree of multifractality showed wide differences between them. Multifractal parameters provided valuable information for characterizing the spatial features of soil micro-topography as they were able to

  20. Sediment yield control in vineyards covered with cereal. Effect of tillage

    International Nuclear Information System (INIS)

    Ruiz-Colmenero, M.; Bienes, R.; Marques, M. J.

    2009-01-01

    A study has been carried out about the use of plant cover treatment to avoid land degradation in a hillside rainfed vineyard in Madrid under Mediterranean semiarid climate. Three treatments were tested: traditional tillage (lab) soil covered by Brachypodium distrachyon (bra) with self-sowing, soil covered by Scale cereale (sec) mown in Spring. Three erosion plots per treatment were placed in the middle of the strips and 2 simulated rainfalls were carried out at each plot in autumn, before and after the tillage. (Author) 7 refs.

  1. Growth and yield of rain fed wheat as affected by different tillage system integrated with glyphosate herbicide

    International Nuclear Information System (INIS)

    Ali, S.; Malik, M.A.; Khan, M.A.

    2016-01-01

    In rainfed areas, tillage is primarily done for moisture conservation and weed control. However, excessive tilling not only harms the soil health but also increases the cost of production. To find out the sustainable and economical tillage combination, response of wheat was studied under different tillage systems integrated with glyphosate herbicide through field experiments conducted at University Research Farm of Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan during 2012-2014 for two consecutive seasons. Principal component analysis proved that the plant height, biological yield, grain yield and harvest index of wheat were highest in treatment where one moldboard plowing was done followed by eight cultivations without using glyphosate in fallow period, which might be due to vigorous growth of wheat in this tillage system having enhanced root proliferation and moisture conservation, thus allowing plants to extract more nutrients and water from the deeper soil layers; whereas, the number of tillers per square meter, number of spikelets per spike, 1000 grain weight and number of grains per spike of wheat were maximum where one moldboard plowing was done followed by two applications of glyphosate herbicide in fallow period, which might be due to vigorous growth of wheat in this tillage system during 1st year of experiment when unexpected high rainfall was occurred during crop growth stage. Cluster analysis also categorized these two treatments into same category on the base of all agronomic parameters studied. The highest yield (3.5132 t ha-1) and (3.1242 t ha-1) was obtained from where one moldboard plowing was done following eight cultivations without using glyphosate followed by the treatment where one moldboard plowing was done following four cultivations without using glyphosate, respectively and were statistically at par with each other. Therefore one moldboard plowing following four cultivations is recommended for taking higher and

  2. Effect of Soil Tillage Practices on Dynamic of Bacterial Communities in Soil

    OpenAIRE

    Mirna Mrkonjić Fuka; Mihaela Blažinkov; Viviane Radl; Danijel Jug; Nataša Hulak; Sulejman Redžepović; Michael Schloter

    2016-01-01

    Several studies have indicated that intensive tillage has notable effect on properties of the soil microbiota that may influence numerous important soils functions, e.g. mobilization of nutrients or change of the overall emission rates of greenhouse gases. Therefore, the aim of our study was to investigate dynamic of microbial communities in soil planted with soybean under different tillage systems. Moreover, abundance of populations harboring the nitrous- oxide reductase gene (nosZ) a...

  3. [Effect of tillage patterns on the structure of weed communities in oat fields in the cold and arid region of North China].

    Science.gov (United States)

    Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun

    2014-06-01

    In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.

  4. Water stability of soil aggregates in different systems of Chernozem tillage

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2011-01-01

    Full Text Available Effects of various agrotechnical measures on macrostructural changes in the ploughing layer and subsoil were studied within the period of 2008–2010. Soil macrostructure was evaluated on the base of water stability of soil aggregates. Altogether three variants of soil tillage were established, viz. ploughing to the depth of 0.22 m (Variant 1, deep soil loosening to the depth of 0.35–0.40 m (Variant 2, and shallow tillage to the depth of 0.15 m (Variant 3. Experiments were established on a field with Modal Chernozem in the locality Hrušovany nad Jevišovkou (maize-growing region, altitude of 210 m, average annual sum of precipitation 461 mm. In the first experimental year, winter rape was the cultivated crop and it was followed by winter wheat, maize and spring wheat in subsequent years. The aim of this study was to evaluate effects of different methods of tillage on water stability of soil aggregates and on yields of individual crops. An overall analysis of results revealed a positive effect of cultivation without ploughing on water stability of soil aggregates. In the variant with ploughing was found out a statistically significant decrease of this stability. At the same time it was also found out that both minimum tillage and deep soil loosening showed a positive effect on yields of crops under study (above all of maize and winter wheat.

  5. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy

    DEFF Research Database (Denmark)

    Mutegi, James; Munkholm, Lars Juhl; Petersen, Bjørn Molt

    2010-01-01

    (RT) or conventional tillage (CT). Each of these tillage treatments further varied in respect to whether the resulting plot crop residues were retained (+Res) or removed (-Res). Sampling took place from autumn 2007 to the end of spring 2008. Overall N2O emissions were 27 and 26% lower in DD and RT...

  6. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  7. Effect of tillage on earthworms over short- and medium-term in conventional and organic farming

    NARCIS (Netherlands)

    Crittenden, S.; Eswaramurthy, T.; Goede, de R.G.M.; Brussaard, L.; Pulleman, M.M.

    2014-01-01

    Earthworms play an important role in many soil functions and are affected by soil tillage in agricultural soils. However, effects of tillage on earthworms are often studied without considering species and their interactions with soil properties. Furthermore, many field studies are based on one-time

  8. Effect of different tillage intensity on yields and yield-forming factors in winter wheat

    Directory of Open Access Journals (Sweden)

    Martin Houšť

    2012-01-01

    Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.

  9. Effect of Tillage in Day or Night and Application of Reduced Dosage of Imazethapyr and Trifluralin on Weed Control, Yield and Yield Components of Chickpea

    Directory of Open Access Journals (Sweden)

    A Abbasian

    2015-07-01

    Full Text Available This Experiment was arranged as a strip-plot on the base of a completely randomized block design with three replications to study the effect of tillage (whether in day or night or in day by light-proof cover and application of reduced dosage of imazethapyr and trifluralin on weed control, yield and yield components of chickpea. Main plots consisted of tillage methods and subplots consisted of trifluralin (at doses of 480, 960 and 1440 g ai /ha and imazethapyr (at doses of 50, 100 and 150 g ai /ha, plus weed free and weedy checks. Results showed weed biomass in day tillage, night tillage and in light-proof cover tillage were respectively 86, 127 and 148 g m-2. Therefore tillage at night or by light-proof cover in day time showed not enough efficiency in weed control. Weed biomass increased when application dose of herbicides decreased. Chickpea grain yield showed significant differences when different doses of herbicides applied. The minimum and the maximum seed yield were obtained respectively in weed free (by 208 g m-2 and weedy checks (by 123 g m-2. Reduced dosage of imazethapyr and trifluralin could control weeds good enough by no significant decrease in chickpea yield. Efficacy of imazethapyr to control weeds grown in chickpea was significantly better than that of trifluralin

  10. Long term effects of different tillage systems influencing yield and energy efficiency in maize (Zea mays L.)

    OpenAIRE

    Momirović, Nebojša; Dolijanović, Željko; Oljača, Mićo V.; Videnović, Živorad

    2011-01-01

    Adoption and improvement of different tillage systems toward agricultural sustainability has a great social, economical and environmental impact. The base of sustainability is a system productivity as ratio of output to input in a given system, measured in the same units, commonly as energy requirements. The objective of this study was to evaluate the aspect of energy requirements in the different soil tillage systems regarding total energy consumption under conventional tillage. The appropri...

  11. A simplified modelling approach for quantifying tillage effects on soil carbon stocks

    DEFF Research Database (Denmark)

    Chatskikh, Dmitri; Hansen, Søren; Olesen, Jørgen E.

    2009-01-01

    Soil tillage has been shown to affect long-term changes in soil organic carbon (SOC) content in a number of field experiments. This paper presents a simplified approach for including effects of tillage in models of soil C turnover in the tilled-soil layer. We used an existing soil organic matter...... (SOM) model (CN-SIM) with standard SOC data for a homogeneous tilled layer from four long-term field experiments with conventionally tilled (CT) and no-till (NT) treatments. The SOM model was tested on data from long-term (>10 years) field trials differing in climatic conditions, soil properties......, residue management and crop rotations in Australia, Brazil, the USA and Switzerland. The C input for the treatments was estimated using data on crop rotation and residue management. The SOM model was applied for both CT and NT trials without recalibration, but incorporated a 'tillage factor' (TF) to scale...

  12. Temporary effect of chiseling on the compaction of a Rhodic Hapludox under no-tillage

    Directory of Open Access Journals (Sweden)

    Sâmala Glícia Carneiro Silva

    2012-04-01

    Full Text Available Mechanical chiseling has been used to alleviate the effects of compaction in soils under no-tillage (NT. However, its effect on the soil physical properties does not seem to have a defined duration period. The purpose of this study was to evaluate the behavior of the bulk density (BD and degree of compaction (DC at different soil depths, after chiseling in no-tillage, for one year. The experiment was performed in Ponta Grossa, Paraná State, Brazil, using an Oxisol (Rhodic Hapludox. Bulk density and DC were previously measured in an area under NT for 16 years, then immediately after chiseling (CHI in May 2009, six months after chiseling (CHI6M in October 2009 and one year after chiseling (CHI12M in May 2010. In the layers 0.0-0.10, 0.10-0.20 and 0.20-0.30 m, there was a significant BD reduction CHI and a marked increase CHI6M. The BD values measured CHI12M were similar to those before tillage. Chiseling reduced the DC in the layers 0.0-0.10 m and 0.10-0.20 m, but returned to the initial values one year later. During the evaluation periods CHI, CHI6M and CHI12M, the BD increased in the layer 0.30-0.40 m, compared with NT. The highest DC values were observed six months after chiseling; nevertheless the structural recovery of the soil was considerable, possibly due to the high degree of soil resilience and the influence of the wetting and drying cycles detected in the study period. The chiseling effects, evaluated by BD and DC, lasted less than one year, i.e., the beneficial short-term effects of chiseling on the reduction of the surface BD increased the risk of compaction in deeper soil layers.

  13. Nitrate Leaching From Grain Maize After Different Tillage Methods and Long/Short Term Cover Cropping

    DEFF Research Database (Denmark)

    Hansen, Elly Møller

    trial initiated in 1968 on a coarse sandy soil. The previous trial included spring sown crops undersown (with or without) perennial ryegrass (Lolium perenne L.) as cover crop, two N-rates (90 and 120 kg N ha-1) and different tillage methods (shallow tillage and ploughing autumn or spring). With maize......) previous history of long-term cover cropping, ii) soil tillage methods, iii) N rates and iv) present short-term use of cover cropping in maize. Preliminary results from 2009 – 2011 suggest that leaching after a history of cover cropping tended to be higher than after no history of cover cropping......, but the effect was insignificant. The effect of tillage and previous N rates were also insignificant but the present use of cover crops had a small but significant decreasing effect on leaching compared to no cover cropping. The cover crop was well established in both years but grew less vigorously during autumn...

  14. Morphology and stability of aggregates of an Oxisol according to tillage system and gypsum application

    Directory of Open Access Journals (Sweden)

    Fábio Régis de Souza

    2012-12-01

    Full Text Available Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots with 0 and 2000 kg ha-1 of gypsum (subplots and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.

  15. Forms of phosphorus transfer in runoff under no-tillage in a soil treated with successive swine effluents applications.

    Science.gov (United States)

    Lourenzi, Cledimar Rogério; Ceretta, Carlos Alberto; Tiecher, Tadeu Luis; Lorensini, Felipe; Cancian, Adriana; Stefanello, Lincon; Girotto, Eduardo; Vieira, Renan Costa Beber; Ferreira, Paulo Ademar Avelar; Brunetto, Gustavo

    2015-04-01

    Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.

  16. Effects of tillage on the activity density and biological diversity of carabid beetles in spring and winter crops.

    Science.gov (United States)

    Hatten, Timothy D; Bosque-Pérez, Nilsa A; Labonte, James R; Guy, Stephen O; Eigenbrode, Sanford D

    2007-04-01

    The effects of tillage regimen (conventional [CT] and no-tillage [NT]) on the activity density and diversity of carabid beetles (Coleoptera: Carabidae) was studied by pitfall trapping within a rain-fed cropping system in northwestern Idaho, 2000-2002. The cropping rotation consisted of a spring cereal (barley, Hordeum vulgare L., in 2000 and 2001; and wheat, Triticum aestivum L., in 2002), spring dry pea (Pisum sativum L.) 2000-2002, and wheat (T. aestivum), spring in 2000 and 2001, and winter in 2002. A total of 14,480 beetles comprised of 30 species was captured, with five numerically dominant species [Poecilus scitulus L., Poecilus lucublandus Say, Microlestes linearis L., Pterostichus melanarius Ill., and Calosoma cancellatum (Eschscholtz)], accounting for 98% of all captures. All species including the dominants responded idiosyncratically to tillage regimen. Adjusting for trapping biases did not significantly change seasonal activity density of Poecilus spp. or Pt. melanarius to tillage. More beetles were captured in CT than in NT crops because of the dominance of P. scitulus in CT, whereas species richness and biological diversity were generally higher in NT crops. Observed patterns suggest that direct effects of tillage affected some species, whereas indirect effects related to habitat characteristics affected others. CT may provide habitat preferable to xerophilic spring breeders. A relationship was found between beetle species size and tillage regimen in pea and to a lesser extent across all spring crops, with large species (>14 mm) conserved more commonly in NT, small species (tillage systems.

  17. N{sub 2}O and CH{sub 4} emissions from a fallow–wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Tellez-Rio, Angela, E-mail: angela.tellez@upm.es [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); García-Marco, Sonia [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Navas, Mariela; López-Solanilla, Emilia [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Centro de Biotecnología y Genómica de Plantas UPM-INIA. Dpto Biotecnología. E.T.S.I. Agrónomos. Technical University of Madrid. Campus Montegancedo, UPM. Autovía M-40, Salida 38 N, 36S. 28223 Pozuelo de Alarcón. Madrid (Spain); Tenorio, Jose Luis [Dpto. de Medio Ambiente, INIA. Ctra. de La Coruña km. 7.5, 28040 Madrid (Spain); Vallejo, Antonio [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2015-03-01

    Conservation agriculture that includes no tillage (NT) or minimum tillage (MT) and crop rotation is an effective practice to increase soil organic matter in Mediterranean semiarid agrosystems. But the impact of these agricultural practices on greenhouse gases (GHGs), such as nitrous oxide (N{sub 2}O) and methane (CH{sub 4}), is variable depending mainly on soil structure and short/long-term tillage. The main objective of this study was to assess the long-term effect of three tillage systems (NT, MT and conventional tillage (CT)) and land-covers (fallow/wheat) on the emissions of N{sub 2}O and CH{sub 4} in a low N input agricultural system during one year. This was achieved by measuring crop yields, soil mineral N and dissolved organic C contents, and fluxes of N{sub 2}O and CH{sub 4}. Total cumulative N{sub 2}O emissions were not significantly different (P > 0.05) among the tillage systems or between fallow and wheat. The only difference was produced in spring, when N{sub 2}O emissions were significantly higher (P < 0.05) in fallow than in wheat subplots, and NT reduced N{sub 2}O emissions (P < 0.05) compared with MT and CT. Taking into account the water filled pore space (WFPS), both nitrification and denitrification could have occurred during the experimental period. Denitrification capacity in March was similar in all tillage systems, in spite of the higher DOC content maintained in the topsoil of NT. This could be due to the similar denitrifier densities, targeted by nirK copy numbers at that time. Cumulative CH{sub 4} fluxes resulted in small net uptake for all treatments, and no significant differences were found among tillage systems or between fallow and wheat land-covers. These results suggest that under a coarse-textured soil in low N agricultural systems, the impact of tillage on GHG is very low and that the fallow cycle within a crop rotation is not a useful strategy to reduce GHG emissions. - Highlights: • Tillage systems and land-covers with low N

  18. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?

    Science.gov (United States)

    Chen, Guihua; Kolb, Lauren; Cavigelli, Michel A; Weil, Ray R; Hooks, Cerruti R R

    2018-03-15

    Nitrous oxide (N 2 O) is an important greenhouse gas and a catalyst of stratospheric ozone decay. Agricultural soils are the source of 75% of anthropogenic N 2 O emissions globally. Recently, significant attention has been directed at examining effects of conservation tillage on carbon sequestration in agricultural systems. However, limited knowledge is available regarding how these practices impact N 2 O emissions, especially for organic vegetable production systems. In this context, a three-year study was conducted in a well-drained sandy loam field transitioning to organic vegetable production in the Mid-Atlantic coastal plain of USA to investigate impacts of conservation tillage [strip till (ST) and no-till (NT)] and conventional tillage (CT) [with black plastic mulch (CT-BP) and bare-ground (CT-BG)] on N 2 O emissions. Each year, a winter cover crop mixture (forage radish: Raphanus sativus var. longipinnatus, crimson clover: Trifolium incarnatum L., and rye: Secale cereale L.) was grown and flail-mowed in the spring. Nearly 80% of annual N 2 O-nitrogen (N) emissions occurred during the vegetable growing season for all treatments. Annual N 2 O-N emissions were greater in CT-BP than in ST and NT, and greater in CT-BG than in NT, but not different between CT-BG and CT-BP, ST and NT, or CT-BG and ST. Conventional tillage promoted N mineralization and plastic mulch increased soil temperature, which contributed to greater N 2 O-N fluxes. Though water filled porosity in NT was higher and correlated well with N 2 O-N fluxes, annual N 2 O-N emissions were lowest in NT suggesting a lack of substrates for nitrification and denitrification processes. Crop yield was lowest in NT in Year 1 and CT-BP in Year 3 but yield-scaled N 2 O-N emissions were consistently greatest in CT-BP and lowest in NT each year. Our results suggest that for coarse-textured soils in the coastal plain with winter cover crops, conservation tillage practices may reduce N 2 O emissions in organic

  19. Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese rice-wheat rotation ecosystems

    Science.gov (United States)

    Yao, Zhisheng; Zhou, Zaixing; Zheng, Xunhua; Xie, Baohua; Liu, Chunyan; Butterbach-Bahl, Klaus; Zhu, Jianguo

    2010-03-01

    Tillage practices result in major changes to soil environmental conditions and to the distribution of crop residues and nutrients in the soil profile, which may consequently affect the biogenic production and emission of N trace gases. To investigate the effects of tillage during the nonwaterlogged period on nitric oxide (NO) and nitrous oxide (N2O) emissions in rice-wheat rotation systems, we performed field experiments at three sites (Suzhou, Wuxi, and Jiangdu) in the Yangtze River Delta using static chamber techniques. The results showed that the effect of tillage on the emissions of both gases differed among the three field sites due to differences in agricultural management and soil texture. At the site with a light soil texture (Jiangdu: sandy loam), no tillage resulted in reduced NO emissions (0.5 kg N ha-1) as compared to conventionally tilled fields (0.9 kg N ha-1; p tillage plots showed significantly higher emissions (p tillage resulted in lower NO and higher N2O emissions from either N fertilized or unfertilized fields even though these results were not statistically significant. In the silty clay loam soils (Suzhou), which showed the highest soil organic carbon contents and the highest rates of N trace gas emissions in all three of the investigated sites, reduced tillage resulted in much higher NO emissions, whereas N2O emissions were not obviously influenced by tillage practices (reduced tillage versus tillage: NO, 9.5 versus 5.4 kg N ha-1; N2O, 10.6 versus 9.0 kg N ha-1). Similar effects of tillage were observed for the direct emission factors of the applied N during the wheat season. The observed emission factors for the different sites ranged from 0.3% to 2.4% for N2O (mean: 1.0%) and from 0.1% to 4.0% (mean: 0.9%) for NO, respectively. The observed site-to-site differences in emission factors are most likely the results of variations in soil properties (such as texture and pH) and agricultural practices (such as tillage and crop residue management

  20. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    NARCIS (Netherlands)

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of

  1. Effect of Tillage Systems and Fertilizer on Quality and Quantity of Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    Reza Tabatabaee

    2017-09-01

    Full Text Available Introduction The marigold is a medicinal plant from Asteraceae family and widely used as a medicinal plant. The marigold extract is widely used in the traditional medicine and herbal therapy. According to previous studies on the medicinal plant in the natural and agricultural ecosystem, using the sustainable agricultural systems provides the best conditions for plant qualitative and quantitative production. So, the global approach in production of products especially medicinal plants is toward using the ecologic management methods in the format of sustainable agricultural systems. The objectives of this experiment were to study on the effect of using the nitrogen chemical fertilizers and the variety of composts in the format of different tillage systems on the leaf area, dry weight, flower yield and the extract yield of marigold plant. Material and methods A field experiment was conducted in order to assessing the effect of conventional farming, ecological management and semi ecological management systems on the dry weight and the height of plant, yield of flower, the percentage of extract and the essence of marigold, in two years of 2013 and 2014 in Fars province, Shiraz in the format of randomized complete block design with 4 replications and 12 treatments. All the data were submitted to an analysis of variance (ANOVA and Least Significant Different test (LSD was used to verify the significant differences among treatment means at the 5% probability level. Results and discussion The results of analysis of variance showed that the effect of different farming systems treatment on vegetative and reproductive growth of marigold were significant (p≤0.01 (Table 3. For example, the highest dry weight and leaf area of marigold were obtained from the conventional tillage system treatment and 165 kg ha-1 urea fertilizer. Furthermore, the highest flower dry weight, the number of flower and flowers harvest index and extract yield of marigold were

  2. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    Science.gov (United States)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  3. 105-116 Effect of Winged Subsoiler and Traditional Tillage ...

    African Journals Online (AJOL)

    3) compared to traditional tillage (Qs = 34 mm-season-. 1, T = 49 ... Maresha plow that cuts soil deeper than achieved with the traditional .... Data Processing and Analysis. Statistical ... soil compaction and shallow depth could be addressed.

  4. Tillage and planting density affect the performance of maize hybrids in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Tika Baladur Karki

    2015-12-01

    Full Text Available To find out whether the different tillage methods at different planting densities affect the performance of maize hybrids, an experiment was carried out at National Maize Research Program, Rampur during spring season of 2013 and 2014. The experiment was laid out in strip plot design with three replications having 12 treatments. The vertical factor was tillage with conservation tillage (No Tillage + residue=NT and conventional tillage (CT and the horizontal factor were genotypes (Rampur Hybrid-2 and RML-32/RML-17 and in split planting geometries (75cm × 25cm =53333 plants/ha, 70cm × 25cm=57142 plant/ha and 60cm ×25cm= 66666 plants/ha. In both the years, the highest number of cobs (73,177 and 67638/ha was recorded at planting density of 66666/ha. NT had the highest no of kernel rows/cob (14.01 as against 12.12 in CT in 2014. The highest number of kernels (27.3 and 29.29 per row was recorded in NT during 2013 and 2014 respectively. Similarly, in 2014, the highest number of kernels were found in RML-32/RMl-17 (29.17/row and planting density of 53333/ha (28.46/row. In 2013, RML-32/RML-17 produced the highest test weight of 363.94g over the Rampur hybrid-2 with 362.17g. Significantly the highest grain yield of 9240.00 kg/ha in 2013 and 7459.80 kg/ha in 2014 at planting geometry of 65cm ×25cm were recorded. No effects was found by tillage methods for grain yields of maize in 2013, but was found in 2014 (7012.18 kg in NT compared to 6037.59 kg/ha in CT. NT and wider spaced crop matured earlier in both the years; however Rampur hybrid-2 matured earlier to RML-32/RML-17 in 2013. In 2014, harvest index of 47.85 % was recorded in planting geometry of 66666/ha, the highest benefit cost ratio of 1.36 was worked out in NT and 1.46 at the density of 66666/ha. The highest value of 2.46% of soil organic matter was recorded in NT as compared to 2.43% in CT.

  5. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape and maize in Europe. However, new regulations on pesticide use may hinder further expansion of reduc...

  6. Simulated soil organic carbon response to tillage, yield, and climate change in the southeastern Coastal Plains

    Science.gov (United States)

    Intensive tillage, low-residue crops, and a warm, humid climate have contributed to soil organic carbon (SOC) loss in the southeastern Coastal Plains region. Conservation (CnT) tillage and winter cover cropping are current management practices to rebuild SOC; however, there is sparse long-term field...

  7. TILLAGE EFFECTS ON SUNFLOWER (HELIANTHUS ANNUUS, L. EMERGENCE, YIELD, QUALITY, AND FUEL CONSUMPTION IN DOUBLE CROPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    ABDULLAH SESSIZ

    2009-06-01

    Full Text Available The relation between crop growing and soil tillage treatment are play important role in agricultural production. Soils under conventional tillage (CT generally have lower bulk density and associated higher total porosity within the plough layer than under no tillage (NT. No-till farming can reduce soil erosion, conserve soil moisture and minimize labor and fuel consumption. The aim of this study were to investigate the effects of conventional, reduced and notillage methods on soil physical properties, sunfl ower yield and yield components, protein and oil content and fuel consumption in Southeastern of Turkey. Six tillage methods for the second crop sunfl ower were tested and compared each other within after lentil harvesting at 2003 and 2004 years in a clay loam soil. According to results, the fi rst year, the bulk density had decreased from 1.29 to 1.09 g cm-3, the second year the δb had decreased from 1.41 to 1.23 g cm-3. Differences between years and tillage methods in terms of yield were found signifi cant (p<0.05. However, no differences were found between the NT and CT. There were also no signifi cance differences in content of protein, oil and ash among six tillage methods. The highest fuel consumption was measured in conventional method (CT whereas the lowest value was found in direct seeding method as 33.48 L ha-1 and 6.6 L ha-1, respectively.

  8. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R.P.; Aulicino, M.B.; Mónaco, C.I.; Kripelz, N.; Cordo, C.A.

    2015-07-01

    Fungal diversity seems to be a good indicator of ecosystem disturbance and functioning. The purpose of this work was to quantify the fungal population as a sensitive indicator of the changes caused by stubble placement in two tillage systems: reduced tillage (RT) and conventional tillage (CT) with and without cropping. To this end, we determined the effect of soil disturbances such as N fertilization, tillage practice, and cropped area on the soil fungal communities of a Phaeozem luvico of the El Salado river basin (Argentina). Soil samples (at 0-10 cm depth) were collected from a field cultivated with wheat at post-harvest, before sowing and at tillering. The relative abundance of individuals of the fungal population was studied on Nash Snyder and Oxgall agar media after different treatments and assessed as colony forming units (CFU/gof soil). The diversity of the fungal population was studied by Shannon´s index (H). The tillage system showed a marked effect only at post-harvest and the number of propagules was highest under RT for both culture media. The largest values of H were found only at post-harvest when Oxgall agar was used. A significant decrease in the values of H was observed when CT and high fertilization was applied in the wheat cropped area. The relative abundance of individuals of the fungal population was different in soils under the different tillage practices. (Author)

  9. Precise tillage systems for enhanced non-chemical weed management

    NARCIS (Netherlands)

    Kurstjens, D.A.G.

    2007-01-01

    Soil and residue manipulation can assist weed management by killing weeds mechanically, interfering in weed lifecycles, facilitating operations and enhancing crop establishment and growth. Current tillage systems often compromise these functions, resulting in heavy reliance on herbicides,

  10. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in

  11. Agronomic performance of common bean in straw mulch systems and topdressing nitrogen rates in no-tillage

    Directory of Open Access Journals (Sweden)

    Tatiana Pagan Loeiro da Cunha

    2015-10-01

    Full Text Available ABSTRACTIn no-tillage systems, straw coverage on soil surface is the key to success, and the choice of crops for rotation is crucial to achieve the sustainability and quality that conservation agriculture requires. The objective of this study was to evaluate the agronomic performance of the common bean cultivar IAC Formoso sown in succession to three straw mulch systems (corn alone, corn/Urochloa ruziziensisintercrop and U. ruziziensisalone and topdress nitrogen rates (0; 40; 80; 120 and 160 kg ha-1N, at the four-leaf stage, three years after the implementation of no-tillage. The experiment was arranged in a randomized block split plot design, with three replications. Common bean highest yields were achieved in succession to U. ruziziensisalone and intercropped with corn. The corn/U. ruziziensisintercrop provided both straw and seed production, allowing for quality no-tillage. Topdressed nitrogen influenced the common bean yield when in succession to corn alone, U. ruziziensisalone and corn/U. ruziziensisintercrop in no-tillage.

  12. Perdas de solo e nutrientes num latossolo vermelho-amarelo ácrico típico, com diferentes sistemas de preparo e sob chuva natural Soil and nutrient losses under different tillage systems in a clayey oxisol under natural rainfall

    Directory of Open Access Journals (Sweden)

    Marcelo Henrique Siqueira Leite

    2009-06-01

    harrow and one passage of leveling harrow and contour seeding (CNiv; tillage with two passages of leveling harrow and contour seeding (NA and no tillage and contour seeding (CMN. The soil losses were determined by the direct method during the cotton crop cycle, from December 2005 to June 2006. Along each runoff sampling, soil samples were withdrawn to quantify the losses of N, P, K and organic carbon (C-org in the sediments. Decreasing soil tillage lessened the losses of sediments, nutrients and organic carbon, indicating that the CMN treatment was the most efficient. The trends for N, P, K and C-org losses in the sediments were similar to the soil losses. N, P and K varied according to the fertilizers used. The constituent with the highest concentration in the sediment was C in organic compounds. The basic infiltration rate differed among the treatments in the following order: CMA CNiv NA < CMN, indicating that tillage systems that reduced soil revolving and increased organic C, increased the basic infiltration rate and decreased soil erosion.

  13. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    ), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  14. Effect of different pre-sowing tillage on quantity and quality of parsnip (Pastinaca sativa L. root yield in ridge cultivation

    Directory of Open Access Journals (Sweden)

    Mirosław Konopiński

    2012-12-01

    Full Text Available Parsnip is a very valuable vegetable due to its nutritional value and dietetic quality. It is moreover herbal raw material abundant in active substances. The yield quality of vegetables greatly depends on thorough pre-sowing soil tillage. The present study aimed at evaluating the influence of different presowing soil tillage (medium-deep ploughing, cultivating and plant growing methods, flat or ridge cultivation, on the yield of parsnip and some biometric traits of its roots. The field experiment was carried out in 1999, 2000 and 2002 on lessive soil with the granulometric composition corresponding to medium silty loam. The parsnip cultivar 'Półdługi Biały' was the experimental plant species. The cultivation of parsnip on ridges had a significant influence on increased total yield of roots and decreased yield of small roots, as compared to flat cultivation. A significant increase in unit weight of the root and its diameter in the top part was also recorded in the latter type of cultivation. Spring pre-sowing tillage had no significant effect on parsnip yields. An increasing trend was observed only for total and marketable root yield in the ploughed plots. When parsnip is grown on lessive soil (which has an unstable structure, plants cultivated on ridges after spring pre-sowing plough are the most beneficial treatment combination.

  15. Iron oxides dynamics in a subtropical Brazilian Paleudult under long-term no-tillage management

    Directory of Open Access Journals (Sweden)

    Alberto Vasconcellos Inda

    2013-02-01

    Full Text Available Replacing conventional tillage (CT with no-tillage (NT management alters the pedoenvironment and the rate of topsoil processes, with possible effects on dissolution processes associated with iron oxides and therefore soil mineralogy. This study aimed to determine the effect of NT on the content and distribution of types of iron oxides in a Rhodic Paleudult in southern Brazil. Soil samples were collected at eight depths within the 0.00-0.80 m layer under CT and NT in a long-term experiment (21 years. Mineralogical identification was conducted by X-ray diffraction (XRD, and the Fe content related to specific types of iron oxides determined by selective dissolution and diffuse-reflectance spectroscopy. Kaolinite, quartz, goethite, hematite, and maghemite were identified in the clay fraction. In the NT-managed soil, there was a decrease in the content of crystalline iron oxides and an increase in the content of poorly crystalline iron oxides with increasing proximity to the soil surface. These results suggest that iron oxides are rearranged in this soil by reductive dissolution of the crystalline types and neoformation of metastable ferrihydrite in topsoil layers, which should be assessed further in laboratory studies.

  16. Artificial neural network approach for mapping contrasting tillage practices

    Science.gov (United States)

    Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensi...

  17. Effect of tillage and fumigation on Pasteuria penetrans

    Science.gov (United States)

    The endospore-forming bacterium Pasteuria penetrans (Pp) is a parasite of Meloidogyne spp. In this study, the effect of tillage and the fumigant 1,3-dichloropropene (1,3-D) on numbers of Pp and suppression of M. incognita (Mi) was evaluated from 2011-2013. A split-plot experiment was established i...

  18. Soil tillage and water infiltration in semi-arid Morocco: the role fo surface and sub-surface soil conditions

    NARCIS (Netherlands)

    Dimanche, P.H.; Hoogmoed, W.B.

    2002-01-01

    Production of cereals in a dryland farming system forms an important part of agricultural production in Morocco. Yield levels on the Saïs Plateau between Meknès and Fez in the semi-arid zone, however, remain low possibly because of sub-optimum water use due to inefficient tillage systems. A study

  19. Effects of the Tillage Technology and the Forecrop on Weeds in Stands of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Jan Winkler

    2015-01-01

    Full Text Available The semipilot-scale field experiment was established in the cadastre of the village Letkovice in the South Moravian Region (Czech Republic. The study area was situated in a warm climatic region T2. Winter wheat was cultivated in two variants of tillage, viz. conventional tillage (CT and minimum tillage (MT and after three different forecrops (fodder beet, late potatoes, and broad (faba bean. Weed infestation of wheat stands was evaluated in spring seasons of 2007 and 2008, always before the application of herbicides. Numbers of weed specimens and their species were defined by means of a calculation method. Recorded data were processed by means of multidimensional analyses of ecological data, viz. Data Correspondence Analysis (DCA and Redundancy Analysis (RDA. Within the study period, altogether 22 weed species were identified in all variants with different tillage technologies and different forecrops. In the MT variant, the degree of winter wheat stand infestation with weeds was lower. As far as the forecrops were concerned, the most and the least intensive degrees of infestation were recorded on plots with faba bean and late potatoes, respectively.

  20. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L. grown in monoculture depending on tillage systems and catch crops

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus Fusarium, with F. culmorum being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus Bipolaris sorokiniana was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of F. culmorum, both on the stem base and roots of spring wheat.

  1. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  2. Impact of tillage on soil magnetic properties: results over thirty years different cultivation plots

    Science.gov (United States)

    Thiesson, Julien; Kessouri, Pauline; Buvat, Solène; Tabbagh, Alain

    2010-05-01

    Cultivation may favour or not different processes such as air and water circulation, organic matter and fertilizers supplies..., consequently it can a priori induce significant changes in local oxido-reduction conditions which determine the magnetic properties of soils: the soil magnetic signal. If laboratory measurements on soil samples can be slow and irreversible, it is also possible to perform in field measurements by using electromagnetic devices that allow quick and easy measuring over the relevant soil thicknesses both in time (TDEM) and frequency (FDEM) domains. The object of this study is to compare the variation of two magnetic properties (magnetic susceptibility, measured by FDEM apparatus and magnetic viscosity measured by TDEM apparatus) and there ratio along depth for three different types of tillage (no tillage, ploughing, and simplified tillage). An experimental plot of 80 m by 50 m total area, on which these three types of tillage have been conducted for more than thirty years, was surveyed. The plot is divided in five strips of 16 m by 50 m area, each of which being cultivated by one type of tillage only. Each strip is divided in two parts, one half with nitrogen-fixing crop during intercultivation winter period and the other half with bare soil during this period. On each part, the variation along depth of both magnetic properties was assessed by surveying with different devices corresponding to three different volumes of investigation. For the magnetic susceptibility measurements the devices used were the MS2 of Bartington Ltd with the MS2D probe and the CS60 a slingram prototype use in VCP and HCP configurations. For the magnetic viscosity, the devices used were the DECCO from Littlemore ltd. And the VC100, a slingram prototype, used at two heights. Eleven values of the two magnetic properties have been recorded using each device and their medians calculated. The data were inverted to define the median magnetic profiles of each half

  3. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Michael G. Patterson

    2013-01-01

    Full Text Available A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR and within-row (WR management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT and non-inversion tillage (NIT. Subplots were three cover treatments: crimson clover, cereal rye or none (i.e., winter fallow; and the sub subplots were four secondary spring tillage methods: disking followed by (fb cultivator (DCU, disking fb chisel plow (DCH, disking fb disking (DD and no tillage (NT. Averaged over years and soil inversion, the crimson clover produced maximum cover biomass (4390 kg ha−1 fb cereal rye (3698 kg ha−1 and winter fallow (777 kg ha−1. Two weeks after planting (WAP and before the postemergence (POST application, Palmer amaranth WR and BR density were two- and four-times less, respectively, in IT than NIT. Further, Palmer amaranth WR and BR density were reduced two-fold following crimson clover and cereal rye than following winter fallow at 2 WAP. Without IT, early season Palmer amaranth densities were 40% less following DCU, DCH and DD, when compared with IT. Following IT, no spring tillage method improved Palmer amaranth control. The timely application of glufosinate + S-metolachlor POST tank mixture greatly improved Palmer amaranth control in both IT and NIT systems. The highest cotton yields were obtained with DD following cereal rye (2251 kg ha−1, DD following crimson clover (2213 kg ha−1 and DD following winter fallow (2153 kg ha−1. On average, IT cotton yields (2133 kg ha−1 were 21% higher than NIT (1766 kg ha−1. Therefore, from an integrated weed management standpoint, an occasional fall IT could greatly reduce Palmer amaranth emergence on farms highly infested with glyphosate-resistant Palmer amaranth. In addition, a cereal rye or crimson clover cover crop can effectively reduce early season Palmer

  4. Seedling emergence response of rare arable plants to soil tillage varies by species.

    Science.gov (United States)

    Torra, Joel; Recasens, Jordi; Royo-Esnal, Aritz

    2018-01-01

    Very little information is available on emergence of rare arable plants (RAP) in relation to soil disturbance and seed burial conditions in Europe. This information is essential to design conservation and soil management strategies to prevent the decline of these species in agroecosystems. The objective of this research was to investigate the effect of soil cultivation with burial time on the emergence and seed persistence of RAP. Seeds of 30 RAP species were collected from Spanish arable fields and subjected to two tillage treatments: (a) no soil disturbance, and (b) autumnal soil disturbance down to 10 cm depth every year. The treatments simulated no-till and tilled (disking), respectively. In plots under no-till, RAP seeds were sown at 1-cm depth. In the tilled plots, seeds were sown homogeneously mixed in the top 1-10 cm of soil. The trial was established every two consecutive seasons, and each trial was maintained for two years. Annual cumulative plant emergence was calculated each year; whereas the first trial was monitored for a third year to estimate seed longevity using a persistence index. The response in emergence of the 30 RAP to annual tillage varied among species. With burial time (number of years), higher emergence was observed for seeds sown in tilled soil. This was true across all species, and with strong season effects. The persistence index was correlated with seed weight, species with bigger seeds had low persistence indices while no pattern was observed for small seeded species. Most RAP species, particularly those with high persistence, showed induction of secondary dormancy processes, highlighting the importance of tillage to promote RAP emergence, and hence, seed bank replenishment. Therefore, as time passes the absence of soil tillage may represent a driver of RAP seed bank decline for those species with secondary dormancy processes. In conclusion, it is important to design soil management strategies, such as regular tillage to promote

  5. Effects of Tillage Methods on Some Soil Physical Properties, Growth and Yield of Water Melon in a Semi-Arid Region of Nigeria

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-02-01

    Full Text Available An appropriate tillage method is necessary to create an optimum seed bed condition for optimum crop growth and yield. Two-year field experiment was conducted in 2013 and 2014 to investigate the effects of different tillage methods on the physical properties of sandy loam soil, growth and yield of water melon (Citrullus vulgaris in a semi-arid environment. The Tillage treatments were disc ploughing plus disc harrowing (DP+DH, double disc ploughing (DDP, double disc harrowing (DDH, disc ploughing (DP and disc harrowing (DH as minimum tillage (MT and zero tillage (ZT and direct drilling method (control. The watermelon seeds were Planted manually placing three (3 seeds per hole at an interval of 1.5m along the rows and 50cm between the rows at an average depth of 5cm. The treatments were laid in a randomized complete block design (RCBD with four replications. Results showed that disc ploughing + disc harrowing (DP+DH was found to be more appropriate and profitable tillage method in improving soil physical properties and growth and yield of water melon in a sandy loam soil. Watermelon yield, fruit weight (FW, fruit length (FL, fruit diameter (FD and leaf area index (LAI were significantly influenced (P=0.05, but influence of tillage treatments were not significant on the number of fruit per plant (NFPP. A numerical value of 31.0t/ha, 26.0, 5.4kg, 29.0cm, and 33.8cm were recorded for maximum crop yield, NFPP, FW, FD and FL respectively in DP+DH-treated plots. For zero tillage (ZT treatment, maximum of crop yield and NFPP were 26.5t/ha and 20.0 respectively. Thus for enhanced growth and yield of watermelon, DP/DH would be more preferable. The orthodox method of zero tillage is out rightly discouraged

  6. The influence of biopreparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage.

    Science.gov (United States)

    Naujokienė, Vilma; Šarauskis, Egidijus; Lekavičienė, Kristina; Adamavičienė, Aida; Buragienė, Sidona; Kriaučiūnienė, Zita

    2018-06-01

    The application of innovation in agriculture technologies is very important for increasing the efficiency of agricultural production, ensuring the high productivity of plants, production quality, farm profitability, the positive balance of used energy, and the requirements of environmental protection. Therefore, it is a scientific problem that solid and soil surfaces covered with plant residue have a negative impact on the work, traction resistance, energy consumption, and environmental pollution of tillage machines. The objective of this work was to determine the dependence of the reduction of energy consumption and CO 2 gas emissions on different biopreparations. Experimental research was carried out in a control (SC1) and seven different biopreparations using scenarios (SC2-SC8) using bacterial and non-bacterial biopreparations in different consistencies (with essential and mineral oils, extracts of various grasses and sea algae, phosphorus, potassium, humic and gibberellic acids, copper, zinc, manganese, iron, and calcium), estimating discing and plowing as the energy consumption parameters of shallow and deep soil tillage machines, respectively. CO 2 emissions were determined by evaluating soil characteristics (such as hardness, total porosity and density). Meteorological conditions such average daily temperatures (2015-20.3 °C; 2016-16.90 °C) and precipitations (2015-6.9 mm; 2016-114.9 mm) during the month strongly influenced different results in 2015 and 2016. Substantial differences between the averages of energy consumption identified in approximately 62% of biological preparation combinations created usage scenarios. Experimental research established that crop field treatments with biological preparations at the beginning of vegetation could reduce the energy consumption of shallow tillage machines by up to approximately 23%, whereas the energy consumption of deep tillage could be reduced by up to approximately 19.2% compared with the control

  7. Influence of Tillage and Mulch on Soil Physical Properties and ...

    African Journals Online (AJOL)

    ... (M0); rice straw, (MRice); wheat straw, (MWheat); plastic sheet, (MPlastic) at 4 t ... Happy seeder and deep tillage along with plastic mulch have positive impact ... use efficiency and yield parameters by creating a favorable soil environment.

  8. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China

    Directory of Open Access Journals (Sweden)

    Tianqi Liu

    2018-03-01

    Full Text Available Tillage practices and nitrogen (N sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH3 volatilization, nitrogen use efficiency (NUE, and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer and tillage practices (no-tillage [NT] and conventional intensive tillage [CT] on NH3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH3 volatilization from basal fertilizer by 10–14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH3 emissions and improving grain yield and NUE in paddy fields of central China.

  9. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China.

    Science.gov (United States)

    Liu, Tianqi; Huang, Jinfeng; Chai, Kaibin; Cao, Cougui; Li, Chengfang

    2018-01-01

    Tillage practices and nitrogen (N) sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH 3 volatilization, nitrogen use efficiency (NUE), and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer) and tillage practices (no-tillage [NT] and conventional intensive tillage [CT]) on NH 3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH 3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH 3 volatilization from basal fertilizer by 10-14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH 3 emissions and improving grain yield and NUE in paddy fields of central China.

  10. Evaporação da água na superfície do solo em sistemas de plantio direto e preparo convencional Soil surface water evaporation under no-tillage and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    Genei Antonio Dalmago

    2010-08-01

    Full Text Available Este trabalho teve por objetivos quantificar a evaporação da água na superfície do solo, em plantio direto e em preparo convencional, e avaliar o uso de microlisímetros de pesagem para medir esse processo. As medições foram feitas em campo, nos verões de 2001/2002, 2002/2003 e 2004/2005, em experimentos irrigados e não irrigados. Utilizaram-se delineamentos inteiramente casualizados, com quatro repetições, cujos tratamentos consistiram de sistemas de manejo do solo – plantio direto e preparo convencional –, e a presença ou ausência de cultivo de milho. Mediu-se a evaporação diária durante períodos de secagem do solo, entre precipitações ou irrigações consecutivas. Em experimentos sem irrigação, a evaporação acumulada foi maior sob plantio direto, na maioria dos períodos de medição, independentemente da presença da lavoura de milho. Nos experimentos com irrigação, a evaporação não apresentou diferenças regulares entre sistemas de manejo de solo. Normalmente, no início dos períodos de medição, com dois a cinco dias de secagem do solo, a evaporação foi maior em solo sob preparo convencional, tendo-se tornado maior em plantio direto, no restante do período de secagem. O emprego de microlisímetros de pesagem é eficiente para medir a evaporação na superfície do solo.This work aimed to quantify the evaporation of water on the soil surface under no-tillage and conventional tillage systems, and to evaluate the microlysimeters use to measure this process. Measurements were performed in the field, during the summers of 2001/2002, 2002/2003 and 2004/2005, in experiments with and without irrigation. Completely randomized designs were used, with four repetitions. The treatments consisted of no-tillage and conventional soil tillage systems, in the presence or absence of corn cultivation. Evaporation was measured daily, during drying periods between precipitations and consecutive irrigations. Without

  11. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals...... in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...

  12. Influence of physical and chemical properties of different soil types on optimal soil moisture for tillage

    Directory of Open Access Journals (Sweden)

    Vladimir Zebec

    2017-01-01

    Full Text Available Soil plasticity is the area of soil consistency, i.e. it represents a change in soil condition due to different soil moisture influenced by external forces activity. Consistency determines soil resistance in tillage, therefore, the aim of the research was to determine the optimum soil moisture condition for tillage and the influence of the chemical and physical properties of the arable land horizons on the soil plasticity on three different types of soil (fluvisol, luvisol and humic glaysol. Statistically significant differences were found between all examined soil types, such as the content of clay particles, the density of packaging and the actual and substitution acidity, the cation exchange capacity and the content of calcium. There were also statistically significant differences between the examined types of soil for the plasticity limit, liquid limit and the plasticity index. The average established value of plasticity limit as an important element for determining the optimal moment of soil tillage was 18.9% mass on fluvisol, 24.0% mass on luvisol and 28.6% mass on humic glaysol. Very significant positive direction correlation with plasticity limits was shown by organic matter, clay, fine silt, magnesium, sodium and calcium, while very significant negative direction correlation was shown by hydrolytic acidity, coarse sand, fine sand and coarse silt. Created regression models can estimate the optimal soil moisture condition for soil cultivation based on the basic soil properties. The model precision is significantly increased by introducing a greater number of agrochemical and agrophysical soil properties, and the additional precision of the model can be increased by soil type data.

  13. Soybean root growth and crop yield in reponse to liming at the beginning of a no-tillage system

    Directory of Open Access Journals (Sweden)

    Edson Campanhola Bortoluzzi

    2014-02-01

    Full Text Available Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation, soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity and plant parameters (root growth system, soybean grain yield, and oat dry matter production were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.

  14. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  15. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  16. The Effects of Different Tillage Systems on Soil Hydrology and Erosion in Southeastern Brazil

    Science.gov (United States)

    Bertolino, A. V. F. A.; Fernandes, N. F.; Souza, A. P.; Miranda, J. P.; Rocha, M. L.

    2009-04-01

    Conventional tillage usually imposes a variety of modifications on soil properties that can lead to important changes in the type and magnitude of the hydrological processes that take place at the upper portion of the soil profile. Plough pan formation, for example, is considered to be an important consequence of conventional tillage practices in southeastern Brazil, decreasing infiltration rates and contributing to soil erosion, especially in steep slopes. In order to characterize the changes in soil properties and soil hydrology due to the plough pan formation we carried out detailed investigations in two experimental plots in Paty do Alferes region, located in the hilly landscape of Serra do Mar in southeastern Brazil, close to Rio de Janeiro city. Farming activities are very important in this area, in particular the ones related to the tomato production. The local hilly topography with short and steep hillslopes, as well as an average annual rainfall of almost 2000 mm, favor surface runoff and the evolution of rill and gully erosion. The two runoff plots are 22m long by 4m wide and were installed side by side along a representative hillslope, both in terms of soil (Oxisol) and steepness. At the lower portion of each plot there is a collecting trough connected by a PVC pipe to a 500 and 1000 liters sediment storage boxes. Soil tillage treatments used in the two plots were: Conventional Tillage (CT), with one plowing using disc-type plow (about 18 cm depth) and one downhill tractor leveling, in addition to burning residues from previous planting; and Minimum Tillage (MT), which did not allow burning residues from previous planting and preserved a vegetative cover between plantation lines. Runoff and soil erosion measurements were carried out in both plots immediately after each rainfall event. In order to characterize soil water movements under the two tillage systems (CT and MT), 06 nests of tensiometers and 04 nests of Watermark sensors were installed in each

  17. Resurrection of glyphosate resistant palmer amaranth control in conservation tillage dicamba tolerant cotton; soil health salvation using herbicide technology

    Science.gov (United States)

    Conservation agriculture hecterage in the mid-south and southeastern US has decreased because of herbicide resistant and other hard to control weeds. Producers have increasingly utilized tillage, the majority either using a moldboard plow to deeply bury weed seed and decrease emergence, or ‘vertica...

  18. Long-Term Effects of Rotational Tillage On Visual Evaluation of Soil Structure, Soil Quality and Crop Yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard; Deen, Bill

    year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Measurements were carried out in the topsoil for three different rotations: R1 (C-C-C-C) continuous corn (Zea mays L.), R6. (C-C-O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare...... L.) and R8, (C-C-S-S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard plowing, MP. Topsoil...

  19. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China.

    Science.gov (United States)

    Chen, Weiwei; Tong, Daniel Q; Zhang, Shichun; Zhang, Xuelei; Zhao, Hongmei

    2017-07-01

    Mineral particles or particulate matters (PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading. However, precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor (EF) measurements. To understand PM emissions from these practices in northeastern China, we measured EFs of PM 10 and PM 2.5 from three field operations (i.e., tilling, planting and harvesting) in major crop production (i.e., corn and soybean), using portable real-time PM analyzers and weather station data. County-level PM 10 and PM 2.5 emissions from agricultural tillage and harvest were estimated, based on local EFs, crop areas and crop calendars. The EFs averaged (107±27), (17±5) and 26mg/m 2 for field tilling, planting and harvesting under relatively dry conditions (i.e., soil moisture agricultural dust emissions to regional air quality in northeastern China. Copyright © 2016. Published by Elsevier B.V.

  20. Soil erosion measurements under organic and conventional land use treatments and different tillage systems using micro-scale runoff plots and a portable rainfall simulator

    Science.gov (United States)

    Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas

    2015-04-01

    Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been

  1. Disponibilidade de água do solo ao milho cultivado sob sistemas de semeadura direta e preparo convencional Water availability to maize plants cultivated under no-tillage and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    Mirta Teresinha Petry

    2007-06-01

    Full Text Available O objetivo deste trabalho foi quantificar o armazenamento, a disponibilidade e a extração de água no solo por plantas de milho irrigadas e submetidas a déficit hídrico terminal, cultivadas sob sistema de semeadura direta e preparo convencional. Foram realizados dois experimentos durante os anos agrícolas de 1999/00 e 2000/01, em área experimental do Departamento de Engenharia Rural da Universidade Federal de Santa Maria. Utilizou-se o delineamento experimental inteiramente casualizado, fatorial, com quatro repetições. Foram utilizados dois manejos da água de irrigação (fator A: irrigado e déficit hídrico terminal (plantas de milho foram submetidas a déficit hídrico terminal a partir dos 27 dias após a emergência; e dois sistemas de cultivo (fator B: semeadura direta e preparo convencional. Nas parcelas irrigadas, irrigações foram feitas para elevar o conteúdo de água no solo ao limite superior de disponibilidade de água às plantas, sempre que a evapotranspiração máxima acumulada da cultura do milho atingia 25 mm. O conteúdo de água no solo foi medido em três leituras semanais, para determinação da extração de água pelas plantas e disponibilidade de água às plantas de milho. Os resultados indicaram que a disponibilidade de água às plantas de milho foi similar nos sistemas semeadura direta e preparo convencional, em ambos os anos agrícolas avaliados. Plantas de milho cultivadas em preparo convencional extraíram maior quantidade de água, em ambos os anos, em relação à semeadura direta.The aim objective of this study was to quantify the soil water storage, plant-available water and extraction of soil water by corn plants under irrigation and terminal drought. Plants were cultivated under no-tillage and conventional tillage systems. Two experiments were conducted in the 1999/00 and 2000/01 growing season on an experimental field of the Agricultural Engineering Department of the Federal University of Santa

  2. Impact of cover crops and tillage on porosity of podzolic soil

    Science.gov (United States)

    Błażewicz-Woźniak, M.; Konopiñski, M.

    2013-09-01

    The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.

  3. Qualidade de solo submetido a sistemas de cultivo com preparo convencional e plantio direto Soil quality under tillage and no-tillage cropping systems

    Directory of Open Access Journals (Sweden)

    Eusângela Antônia Costa

    2006-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a qualidade de um Latossolo Vermelho submetido a sistemas de cultivo com preparo convencional e plantio direto. Foram estudadas duas áreas experimentais, localizadas na Embrapa Cerrados, em Planaltina, DF, com oito e dez anos de cultivo. Foram coletadas amostras de solo, em diversas profundidades, nas parcelas experimentais e em área de cerrado nativo. Os seguintes atributos foram avaliados: densidade do solo, porosidade total, capacidade de água disponível, grau de floculação, resistência do solo à penetração, teor de matéria orgânica, capacidade de troca catiônica, fósforo remanescente, carbono da biomassa microbiana e respiração basal. Os dados obtidos foram comparados a valores referenciais quanto à qualidade do solo, mediante modelagem gráfica. Observou-se que a qualidade do solo, em ambos os sistemas de cultivo, é similar quanto aos atributos físicos; os teores de matéria orgânica e fósforo remanescente também são semelhantes, mas a capacidade de troca catiônica é mais alta no solo sob plantio direto. Em relação aos atributos biológicos, o solo sob plantio direto apresenta atividade biológica mais elevada. A qualidade do solo em ambos os sistemas é similar, em relação aos atributos avaliados.The objective of this study was to evaluate the quality of an Oxisol under tillage and no-tillage systems. Two experimental areas were studied, both located in Embrapa Cerrados, Planaltina, DF, Brazil, with eight and ten years of cropping. Soil samples were collected from different depth layers in the experimental plots and native cerrado vegetation area. The following soil atributes were evaluated: bulk density, soil porosity, available water capacity, degree of flocculation, soil resistance to penetration, organic matter content, cation exchange capacity, equilibrium phosphorus, microbial biomass carbon and basal respiration. The data obtained were compared with referential

  4. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  5. Developments in conservation tillage in rainfed regions of North China

    NARCIS (Netherlands)

    Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D.

    2007-01-01

    Dryland regions in northern China account for over 50% of the nation's total area, where farming development is constrained by adverse weather, topography and water resource conditions, low fertility soils, and poor soil management. Conservation tillage research and application in dryland regions of

  6. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-01-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain. PMID:25859321

  7. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  8. Soil phosphorus loss in tile drainage water from long-term conventional- and non-tillage soils of Ontario with and without compost addition.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Wang, Y T; Ma, B L; Welacky, T

    2017-02-15

    Recent ascertainment of tile drainage a predominant pathway of soil phosphorus (P) loss, along with the rise in concentration of soluble P in the Lake Erie, has led to a need to re-examine the impacts of agricultural practices. A three-year on-farm study was conducted to assess P loss in tile drainage water under long-term conventional- (CT) and non-tillage (NT) as influenced by yard waste leaf compost (LC) application in a Brookston clay loam soil. The effects of LC addition on soil P loss in tile drainage water varied depending on P forms and tillage systems. Under CT, dissolved reactive P (DRP) loss with LC addition over the study period was 765g P ha -1 , 2.9 times higher than CT without LC application, due to both a 50% increase in tile drainage flow volume and a 165% increase in DRP concentration. Under NT, DRP loss in tile drainage water with LC addition was 1447gPha -1 , 5.3 times greater than that for NT without LC application; this was solely caused by a 564% increase in DRP concentration. However, particulate P loads in tile drainage water with LC application remained unchanged, relative to non-LC application, regardless of tillage systems. Consequently, LC addition led to an increase in total P loads in tile drainage water by 57 and 69% under CT and NT, respectively. The results indicate that LC application may become an environmental concern due to increased DRP loss, particularly under NT. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Nitrogen gas emissions and nitrate leaching dynamics under different tillage practices based on data synthesis and process-based modeling

    Science.gov (United States)

    Huang, Y.; Ren, W.; Tao, B.; Zhu, X.

    2017-12-01

    Nitrogen losses from the agroecosystems have been of great concern to global changes due to the effects on global warming and water pollution in the form of nitrogen gas emissions (e.g., N2O) and mineral nitrogen leaching (e.g., NO3-), respectively. Conservation tillage, particularly no-tillage (NT), may enhance soil carbon sequestration, soil aggregation and moisture; therefore it has the potential of promoting N2O emissions and reducing NO3- leaching, comparing with conventional tillage (CT). However, associated processes are significantly affected by various factors, such as soil properties, climate, and crop types. How tillage management practices affect nitrogen transformations and fluxes is still far from clear, with inconsistent even opposite results from previous studies. To fill this knowledge gap, we quantitatively investigated gaseous and leaching nitrogen losses from NT and CT agroecosystems based on data synthesis and an improved process-based agroecosystem model. Our preliminary results suggest that NT management is more efficient in reducing NO3- leaching, and meanwhile it simultaneously increases N2O emissions by approximately 10% compared with CT. The effects of NT on N2O emissions and NO3- leaching are highly influenced by the placement of nitrogen fertilizer and are more pronounced in humid climate conditions. The effect of crop types is a less dominant factor in determining N2O and NO3- losses. Both our data synthesis and process-based modeling suggest that the enhanced carbon sequestration capacity from NT could be largely compromised by relevant NT-induced increases in N2O emissions. This study provides the comprehensive quantitative assessment of NT on the nitrogen emissions and leaching in agroecosystems. It provides scientific information for identifying proper management practices for ensuring food security and minimizing the adverse environmental impacts. The results also underscore the importance of suitable nitrogen management in the NT

  10. Effects of tillage practice on soil structure, N2O emissions and economics in cereal production under current socio-economic conditions in central Bosnia and Herzegovina.

    Science.gov (United States)

    Žurovec, Ognjen; Sitaula, Bishal Kumar; Čustović, Hamid; Žurovec, Jasminka; Dörsch, Peter

    2017-01-01

    Conservation tillage is expected to have a positive effect on soil physical properties, soil Carbon (C) storage, while reducing fuel, labour and machinery costs. However, reduced tillage could increase soil nitrous oxide (N2O) emissions and offset the expected gains from increased C sequestration. To date, conservation tillage is barely practiced or studied in Bosnia and Herzegovina (BH). Here, we report a field study on the short-term effects of reduced (RT) and no tillage (NT) on N2O emission dynamics, yield-scaled N2O emissions, soil structure and the economics of cereal production, as compared with conventional tillage (CT). The field experiment was conducted in the Sarajevo region on a clayey loam under typical climatic conditions for humid, continental BH. N2O emissions were monitored in a Maize-Barley rotation over two cropping seasons. Soil structure was studied at the end of the second season. In the much wetter 2014, N2O emission were in the order of CT > RT > NT, while in the drier 2015, the order was RT > CT > NT. The emission factors were within or slightly above the uncertainty range of the IPCC Tier 1 factor, if taking account for the N input from the cover crop (alfalfa) preceding the first experimental year. Saturated soils in spring, formation of soil crusts and occasional droughts adversely affected yields, particularly in the second year (barley). In 2014, yield-scaled N2O emissions ranged from 83.2 to 161.7 g N Mg-1 grain (corn) but were much greater in the second year due to crop failure (barley). RT had the smallest yield-scaled N2O emission in both years. NT resulted in economically inacceptable returns, due to the increased costs of weed control and low yields in both years. The reduced number of operations in RT reduced production costs and generated positive net returns. Therefore, RT could potentially provide agronomic and environmental benefits in crop production in BH.

  11. Effects of tillage and cropping systems on yield and nitrogen fixation of cowpea intercropped with maize in northen Guinea savanna zone of Ghana

    International Nuclear Information System (INIS)

    Kombiok, J.M.; Safo, E.Y; Quansah, C.

    2006-01-01

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on four different tillage systems at Nyankpala in the Northern Region of Ghana. The experiment was laid in a split-plot design with four replications. The main factor was tillage systems comprising conventional (Con), bullock plough (BP), hand hoe (HH) and zero tillage (ZT). The sub-factor was cropping systems (CRPSYT) which consisted of sole maize, sole cowpea, maize/cowpea inter-row cropping system, and bare fallow in 2000. The last named was replaced by maize/cowpea intra-row cropping system in 2001. The results showed that Con and BP, which produced over 10 cm plough depth, significantly reduced soil bulk density that favoured significant (P I). The LERs ranged from 1.43 to 1.79 in 2000, and from 1.23 to 1.24 in 2001 for Con and ZT, respectively. These indicate 33 and 52 percent mean increases in productivity of cowpea and maize, respectively, over their pure stands across the 2 years. However, grain yields of both crops from the inter- and intra-row cropping systems were not different. (au)

  12. Natural abundance of 15N in barley as influenced by prior cropping or fallow, nitrogen fertilizer and tillage

    International Nuclear Information System (INIS)

    Doughton, J.A.; Saffigna, P.G.; Vallis, I.

    1991-01-01

    The 15 N abundance of nitrogen was measured in barley grown with 0,50 and 100 kg/ha of applied nitrogen after pretreatments of either fallow or grain sorghum, where sorghum stubble was either incorporated, removed or retained on the soil surface (zero-till). Barley 15 N abundance was assumed to reflect that of assimilated soil mineral nitrogen. 15 N enrichment was assumed to be mostly the result of isotope fractionation between 14 N and 15 N during denitrification of the large excess of NO 3 -N present prior to and during the experiment. Nitrogen fertilizer additions caused 15 N depletion of nitrogen in barley. However, where fertilizer additions resulted in excess availability of NO 3 -N, subsequent denitrification and 15 N enrichment of this NO 3 -N levels partially counterbalanced the 15 N depleting effect of fertilizer additions. Where soil NO 3 -N levels were low ( 3 -N/ha) following sorghum there were no differences in 15 N abundance of nitrogen in barley between tillage treatments. With additions of nitrogen fertilizer and the availability of excess NO 3 -N for denitrification, differences between tillage treatments occurred with some being significant. 27 refs., 6 tabs

  13. Aerodynamic roughness length related to non-aggregated tillage ridges

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available Wind erosion in agricultural soils is dependent, in part, on the aerodynamic roughness length (z0 produced by tillage ridges. Although previous studies have related z0 to ridge characteristics (ridge height (RH and spacing (RS, these relationships have not been tested for tillage ridges observed in the North African agricultural fields. In these regions, due to climate and soil conditions, small plowing tools are largely used. Most of these tools produce non-aggregated and closely-spaced small ridges. Thus, experiments were conducted in a 7-m long wind tunnel to measure z0 for 11 ridge types covering the range of geometric characteristics frequently observed in south Tunisia. Experimental results suggest that RH2/RS is the first order parameter controlling z0. A strong relationship between z0 and RH2/RS is proposed for a wide range of ridge characteristics.

  14. Manejo integrado da brusone em arroz no plantio direto e convencional Integrated rice blast disease management under direct drilling and conventional tillage

    Directory of Open Access Journals (Sweden)

    Gisele Barata da Silva

    2003-04-01

    Full Text Available O objetivo deste trabalho foi desenvolver medidas adequadas para o manejo da brusone (Pyricularia grisea, integrando a resistência da cultivar, práticas culturais e o controle químico. Foram realizados dois experimentos no campo, um no plantio direto (PD e outro no plantio convencional (PC, nos anos agrícolas 1998/1999 e 1999/2000. Os tratamentos, num total de 16, em esquema fatorial 2(4, consistiram de duas cultivares, Carajás e Primavera, duas doses de N, 30 e 60 kg ha-1, sementes não tratadas e tratadas com fungicida pyroquilon e parcelas sem pulverização e com duas pulverizações, na parte aérea das plantas, da mistura dos fungicidas benomyl e difenoconazole. A incidência e a severidade da brusone nas folhas e nas panículas foram significativamente menores no PD em relação ao PC. A cultivar Primavera apresentou maior suscetibilidade à brusone nas folhas, independentemente do sistema de plantio. A dose de 60 kg ha-1 de N contribuiu para aumento da brusone nas folhas, no PD e no PC, no segundo ano. As pulverizações com a mistura de fungicidas reduziram a severidade da brusone nas panículas nos dois sistemas de plantio. A produtividade foi maior no PC do que no PD e a cultivar Carajás foi superior à Primavera.The objective of this work was to develop adequate measures for rice blast (Pyricularia grisea management integrating cultivar resistance, cultural practices and chemical control. Two field experiments were carried out, one under direct drilling and the other one under conventional tillage, during two consecutive rice growing seasons, 1998/1999 and 1999/2000. The treatments totaling 16, in a factorial scheme 2(4, included two cultivars, Carajás and Primavera, two levels of N, 30 and 60 kg ha-1, nontreated seed and seed treated with pyroquilon, plots nonsprayed and sprayed with two applications of fungicide mixture benomyl and difenoconazole. The incidence and severity of leaf and panicle blast were significantly lower

  15. Effect of N fertilization and tillage on nitrous oxide (N2O) loss from soil under wheat production

    Science.gov (United States)

    Bansal, Sheel; Aberle, Ezra; Teboh, Jasper; Yuja, Szilvia; Liebig, Mark; Meier, Jacob; Boyd, Alec

    2017-01-01

    Nitrous oxide (N2O-N) is one of the most important gases in the atmosphere because it is 300 times more powerful than carbon dioxide in its ability to trap heat, and is a key chemical agent of ozone depletion. The amount of N2O-N emitted from agricultural fields can be quite high, depending on the complex interplay between N fertility and residue management, plant N uptake, microbial processes, environmental conditions, and wet-up and dry-down events. High N fertilizer rates generally increase yields, but may disproportionately increase N2O-N losses due to prolonged residence time in soil when not used by the crop, and incomplete decomposition of excess N-compounds by microbes. Tillage could also affect N2O-N losses through changes in soil moisture content. Though nitrogen monoxide (NO) is one form of N lost from the soil, especially under conventional tillage, this study objective was to quantify N2O loss in wheat fields from applied urea on soil under no-till (NT) versus incorporated urea under conventional till (CT).

  16. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  17. Soil workability as a basis for advice on tillage activities

    NARCIS (Netherlands)

    Cadena Zapata, M.

    1999-01-01

    In the tropical area of Mexico, when and how to carry out tillage is a qualitative decision. There is no quantified information about the interaction between a chosen process of cultivation, soil type and weather, which dictate the tool and power requirements. Waste of energy and soil

  18. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  19. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    NARCIS (Netherlands)

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  20. Potential and economic efficiency of using reduced tillage to mitigate climate effects in Danish agriculture

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Jørgensen, Sisse Liv; Nainggolan, Doan

    2016-01-01

    , research also suggests that soil carbon stocks are declining. The scope of Payment for Ecosystem Service (PES) approaches to effectively and efficiently address climate regulation will depend on the spatial distribution of the carbon assimilation capacity, current land use, the value of avoided emissions...... and compare these to the marginal abatement costs curve used in Danish climate policy. The cost effectiveness of reduced tillage as a climate mitigation PES scheme critically depends on the current debate on the net effects of carbon sequestration in reduced tillage practices. Based on existing IPCC...

  1. Reducing tillage intensity affects the cumulative emergence dynamics of annual grass weeds in winter cereals

    DEFF Research Database (Denmark)

    Scherner, A; Melander, B; Jensen, P K

    2017-01-01

    Annual grass weeds such as Apera spica-venti and Vulpia myuros are promoted in non-inversion tillage systems and winter cereal-based crop rotations. Unsatisfactory weed control in these conditions is often associated with a poor understanding of the emergence pattern of these weed species. The aim...... with a higher total emergence seen under direct drilling, followed by pre-sowing tine cultivation and ploughing. The emergence patterns of all species were differently influenced by the tillage systems, suggesting that under direct drilling, in which these species occur simultaneously, management interventions...

  2. Rationally Managed Pastures Stock More Carbon than No-Tillage Fields

    Directory of Open Access Journals (Sweden)

    Hizumi L. S. Seó

    2017-12-01

    Full Text Available A significant share of Greenhouse Gases (GHG produced from agriculture comes from cattle farming. The reduction in GHG emissions from ruminants fed with grains has led some researchers to recommend such a diet as a means of mitigating emissions in the sector. A more accurate balance of emissions, however, must include the carbon (C stocked by feed crops. Within the grain production system, no-tillage (NT cultivation systems have a greater capacity to increase and store soil organic carbon (SOC. Within grazing management systems, the rotation used in Voisin's Rational Grazing (VRG allows the accumulation of SOC through root growth. The objective of this study was to assess the C stock of pasture under VRG and compare soil C stock between VRG pasture and fields under no-tillage management, in two seasons over a period of 1 year. The study included five dairy farms in Santa Catarina State, Brazil. In each property, we collected soil to quantify SOC from VRG pasture and NT fields, in summer and winter. In the pasture, to determine the total stock, we also collected samples from the aerial parts of plants and the roots. Further, we estimated how efficient would be producing milk from those pastures or from those crops. The VRG pasture showed a greater capacity to stock C in the soil than the no-tillage fields (VRG = 115.0 Mg C ha−1; NT = 92.5 Mg C ha−1; p < 0.00009, with the greatest difference at a depth of 0–10 cm (VRG = 41 Mg C ha−1; NT = 32 Mg C ha−1; p < 0.00008. In VRG, 95% of C was in the soil, 1% in the aerial part of plants, and 4% in the roots. On pasture was produced 0.15 kg of milk.kg−1 of C stored, and on NT system 0.13 kg of milk.kg−1 of C stored. In this study, we conclude that independent of season, the soil in well managed pastures had a greater stock of C, produced more milk and produced more milk.kg−1 of stored C than fields under NT management. Therefore, when comparing GHG emissions of ruminants with different

  3. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P Northeast China representative of a cool to temperate zone.

  4. Climate, duration, and N placement determine N2 O emissions in reduced tillage systems: a meta-analysis.

    Science.gov (United States)

    van Kessel, Chris; Venterea, Rodney; Six, Johan; Adviento-Borbe, Maria Arlene; Linquist, Bruce; van Groenigen, Kees Jan

    2013-01-01

    No-tillage and reduced tillage (NT/RT) management practices are being promoted in agroecosystems to reduce erosion, sequester additional soil C and reduce production costs. The impact of NT/RT on N2 O emissions, however, has been variable with both increases and decreases in emissions reported. Herein, we quantitatively synthesize studies on the short- and long-term impact of NT/RT on N2 O emissions in humid and dry climatic zones with emissions expressed on both an area- and crop yield-scaled basis. A meta-analysis was conducted on 239 direct comparisons between conventional tillage (CT) and NT/RT. In contrast to earlier studies, averaged across all comparisons, NT/RT did not alter N2 O emissions compared with CT. However, NT/RT significantly reduced N2 O emissions in experiments >10 years, especially in dry climates. No significant correlation was found between soil texture and the effect of NT/RT on N2 O emissions. When fertilizer-N was placed at ≥5 cm depth, NT/RT significantly reduced area-scaled N2 O emissions, in particular under humid climatic conditions. Compared to CT under dry climatic conditions, yield-scaled N2 O increased significantly (57%) when NT/RT was implemented <10 years, but decreased significantly (27%) after ≥10 years of NT/RT. There was a significant decrease in yield-scaled N2 O emissions in humid climates when fertilizer-N was placed at ≥5 cm depth. Therefore, in humid climates, deep placement of fertilizer-N is recommended when implementing NT/RT. In addition, NT/RT practices need to be sustained for a prolonged time, particularly in dry climates, to become an effective mitigation strategy for reducing N2 O emissions. © 2012 Blackwell Publishing Ltd.

  5. New Concept of Cultivation Using Limited Strip-Tillage with Strip Shallow Irrigation

    Directory of Open Access Journals (Sweden)

    Yazid Ismi Intara

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE Dry land is one of land resources which potentially used for food crop cultivation, especially in the areas which have light to medium technical obstacles. The development of technology to improve soil quality in marginal lands to be productive lands is still widely open for agricultural development in Indonesia. Rooting medium quality can be improved by changing soil tillage method and observing the proper crop irrigation technology. It can be the solution for crop cultivation in clay loam soil. This study aimed to obtain water movement model in a minimally-tilled clay soil with strip shallow irrigation. The concept is limited soil-tillage with strip shallow irrigation method, water supply technique, and crop water requirement. Method used in this study includes developing water movement model (software development in a minimally-tilled clay soil with subsurface irrigation. In the final stages, research also conducted water movement analysis testing apparatus in the laboratory, field validation of the subsurface irrigation performance, and cultivation technique testing to chili pepper growth (Capsicum annuumL.. The development of water movement simulation on a limited strip-tillage with subsurface irrigation uses the concept to quantify the amount of water in the soil. The analysis of movement pattern was demonstrated on contour patterns. It showed that the wetting process can reach depth zone – 5 cm to the rooting zone. It was an important discovery on the development of minimum stripe tillage soil with subsurface irrigation. Specifically, it can be concluded that: the result of fitting by eyes to diffusivity graphic and water content obtained the required parameter values for soil physical properties. It was then simulated on horizontal water movement model on a minimum strip-tillage with strip shallow irrigation /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso

  6. Did tillage erosion play a role in millennial scale landscape development?

    NARCIS (Netherlands)

    Baartman, J.E.M.; Temme, A.J.A.M.; Schoorl, J.M.; Braakhekke, M.H.A.; Veldkamp, A.

    2012-01-01

    Landscape evolution models (LEMs) quantitatively simulate processes of sedimentation and erosion on millennial timescales. An important aspect of human impact on erosion is sediment redistribution due to agriculture, referred to herein as tillage erosion. In this study we aim to analyse the

  7. The effect of different tillage methods and organic fertilizers on soil physical state and crop yield

    OpenAIRE

    Ožeraitienė, Danutė; Čiuberkis, Steponas

    2006-01-01

    The present paper summarises the data of field and laboratory trials conducted in Lithuania (Vežaiciai Branch of the Lithuanian Institute of Agriculture) during the period 2003-2006. The effects of primary soil tillage: 1) deep (22-25 cm) ploughing; 2) shallow (10-12 cm) ploughing; 3) shallow (8-10 cm) tillage with a disc harrow as well as the effects of different organic fertilizers (farmyard manure, green manure and straw) on the main physical indicators of moraine loam soil (structure, bul...

  8. Impacts of conservation tillage on the hydrological and agronomic performance of Fanya juus in the upper Blue Nile (Abbay river basin

    Directory of Open Access Journals (Sweden)

    H. H. G. Savenije

    2012-12-01

    Full Text Available Adoption of soil conservation structures (SCS has been low in high rainfall areas of Ethiopia mainly due to crop yield reduction, increased soil erosion following breaching of SCS, incompatibility with the tradition of cross plowing and water-logging behind SCS. A new type of conservation tillage (CT involving contour plowing and the construction of invisible subsoil barriers using a modified Maresha winged "subsoiler" is suggested as a means to tackle these problems as an integral part of the SCS. We investigated the effect of integrating the CT with SCS on the surface runoff, water-logging, soil loss, crop yield and plowing convenience. The new approach of conservation tillage has been compared with traditional tillage (TT on 5 farmers' fields in a high rainfall area in the upper Blue Nile (Abbay river basin. Test crops were wheat [triticum vulgare] and tef [eragrostis tef]. Farmers found CT convenient to apply between SCS. Surface runoff appeared to be reduced under CT by 48 and 15%, for wheat and tef, respectively. As a result, CT reduced sediment yield by 51 and 9.5%, for wheat and tef, respectively. Significantly reduced water-logging was observed behind SCS in CT compared to TT. Grain yields of wheat and tef increased by 35 and 10%, respectively, although the differences were not statistically significant apparently due to high fertility variations among fields of participating farmers. Farmers who tested CT indicated that they will continue this practice in the future.

  9. Phosphorus Uptake and Partitioning in Maize as Affected by Tillage ...

    African Journals Online (AJOL)

    Higher phosphorus concentrations were found in the ears than in the shoots and leaves at physiological maturity. Tillage x phospho-rus interactions influenced phosphorus partitioning in the ears and the leaves on the Dystric Cam-bisol but not on the Ferric Acrisol. PUE in the plant parts were significantly higher under ...

  10. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes

    DEFF Research Database (Denmark)

    Scherner, Ananda; Melander, Bo; Kudsk, Per

    2016-01-01

    Tillage methods and crop rotation are probably the two most important cropping factors affecting weed communities, particularly when herbicide use is restricted. This study examined weed dynamics following eleven years of different tillage and crop rotation treatments. The aboveground grass weed...... flora was recorded each year and the content and vertical location of individual weed seeds within the plough layer (0–20 cm) were determined after 11 years of continuous mouldboard ploughing (P), pre-sowing tine cultivation to 8–10 cm soil depth (H8-10) and direct drilling (D). The content of weed...... seeds, especially grass weeds, was determined for three distinct soil layers (0–5, 5–10 and 10–20 cm), reflecting the cultivation depths of the tillage treatments. The annual grass weeds, Apera spica-venti and Vulpia myuros, were promoted by non-inversion tillage and in the case of V. myuros also...

  11. Economic Evaluation for Integrated Use of Glyphosate Herbicide and Tillage Combinations Applied before Sowing of Rain-Fed Wheat (Triticum Aestivum L.)

    International Nuclear Information System (INIS)

    Ali, S.; Malik, M. A.; Ansar, M.; Qureshi, R.

    2016-01-01

    Low average yield, scarce soil moisture and less soil fertility are major problems of rain-fed wheat. Economic feasibility of different tillage systems integrated with glyphosate herbicide and wheat crop productivity was determined through field experiments conducted at the University Research Farm of Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan during summer and winter seasons of 2012-13 and 2013-14. Different combinations of tillage and glyphosate herbicide were used in the fallow period (summer season) that were consisted of following treatments viz. T1 = 1 Mould board Plowing + 8 Cultivations, T2 = No-Till + Glyphosate, T3 = 1 Mould board Plowing + Glyphosate, T4 = 1 MB Plowing + 4 Cultivations, T5 = 1 Disc Harrowing + Glyphosate, T6 = 1 Disc Harrowing + 4 Cultivations and T7 = 1 Chiseling + Glyphosate. Results showed that the highest yield viz. 3.5132, 3.1242 t ha-1 were obtained in the case of conventional tillage (T1) and reduced tillage (T4), respectively with a net profit of 888.92 and 839.35 $ ha-1. The yield was positively affected by tillage intensity. In conclusion, T1 is recommended for getting maximum net return from wheat grown in rain-fed areas of Pakistan. (author)

  12. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    Science.gov (United States)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  13. Characterization of tillage effects on soil permeability using different measures of macroporosity derived from tension infiltrometry

    Science.gov (United States)

    Bodner, G.; Schwen, A.; Scholl, P.; Kammerer, G.; Buchan, G.; Kaul, H.-P.; Loiskandl, W.

    2010-05-01

    approaches (direct vs. inverse evaluation, capillary vs. flow weighted pore radius). We will show the influence of the distinct evaluation procedures on the resulting effective macroporosity, as well as on the relationships between macropore radius and hydraulic conductivity (Moret and Arrúe, 2007) and pore fraction respectively (Carey et al., 2007). The infiltration measurements used in this study were obtained in a long-term tillage trial located in the semi-arid region of Eastern Austria. Measurements were taken five times over the vegetation period, starting immediately after tillage until harvest of the winter wheat crop. Three tillage systems were evaluated, being conventional tillage with plough, minimum tillage with chisel and no-tillage. Additional to infiltration measurements, also soil water content was monitored continuously by a capacitance probe in all three replicates of each tillage treatment in 10, 20 and 40 cm soil depth. Water content time series are used to derive flow velocity in the wet range by cross-correlation analysis (Wu et al., 1997). This effective parameter of water transmission will then be compared to the flow behaviour expected from the characterization of soil macroporosity. We will show that mainly in no-tillage systems large macropores contribute essentially to flow and therefore the decision on pore measure and evaluation procedure to be used leads to substantial differences. For a detailed comparison of tillage effects on soil hydraulic properties it is therefore essential to analyse the contribution of different tension infiltrometry based evaluation methods to explain effective water transmission through the complex porous network of the soil. References Carey, S.K., Quinton, W.L., Goeller, N.T. 2007. Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils. Hydrol. Process. 21, 2560-2571. Moret, D., Arrúe, J.L. 2007. Characterizing soil water conducting macro- and mesoporosity

  14. [Analysis of soil respiration and influence factors in wheat farmland under conservation tillage in southwest hilly region].

    Science.gov (United States)

    Zhang, Sai; Zhang, Xiao-Yu; Wang, Long-Chang; Luo, Hai-Xiu; Zhou, Hang-Fei; Ma, Zhong-Lian; Zhang, Cui-Wei

    2013-07-01

    In order to investigate the effect of conservation tillage on soil respiration in dry cropping farmland in southwest purple hilly region, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Beibei, Chongqing. The respiration and the hydrothermal and biotic factors of soil were measured and analyzed during the growth period of wheat in the triple intercropping system of wheat/maize/soybean. There were four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching) and RS (ridge tillage + straw mulching), which were all in triplicates. The results indicated that the soil respiration rate changed in the range of 1.100-2.508 micromol x (m2 x s)(-1) during the reproductive growth stage of wheat. There were significant differences in soil respiration rate among different treatments, which could be ranked as RS > R > TS > T. The soil temperature in the 10cm layer was ranked as T > R > TS > RS. The relationship between soil respiration and soil temperature fitted well with an exponential function, in which the Q10 values were 1.25, 1.20, 1.31 and 1.26, respectively. The soil moisture in the 5cm layer was ranked as TS > RS > T > R. The best fitting model between soil moisture and soil respiration was a parabolic curve, indicating the presence of soil moisture with the strongest soil respiration. The response threshold of wheat to soil moisture was 14.80%-17.47% during the reproductive stage. The dominant groups of soil animals were Collembola and Acarina, which were correlated with soil respiration to some extent. The correlation was high in the treatments T and R, ranged from 0.669-0.921, whereas there was no remarkable correlation in the other treatments.

  15. Performance of super hybrid rice cultivars grown under no-tillage and direct seeding

    Directory of Open Access Journals (Sweden)

    Min Huang

    2012-04-01

    Full Text Available Good progress has been made in the super hybrid rice (Oryza sativa L. breeding in China. However, rice yield not only depends on the genetic characteristics but also on the agronomic practices. No-tillage and direct seeding (NTDS is a simplified cultivation technology that greatly simplifies both land preparation and crop establishment. Aiming to determine the grain yield performance of super hybrid rice under NTDS and to identify critical factors that determine grain yield, field experiments were conducted in Nanxian, Hunan Province, China in 2009 and 2010. Two super hybrid cultivars, Liangyoupeijiu and Y-liangyou 1, were grown under conventional tillage and transplanting (CTTP and NTDS. Grain yield, yield components, biomass production, crop growth rate and biomass accumulation during sowing to heading (HD and HD to maturity were measured for each cultivar. There was no difference in grain yield under NTDS and CTTP. However, grain yield differed with cultivar and year. Y-liangyou 1 produced 4 % higher grain yield than Liangyoupeijiu in 2009, whereas in 2010 both cultivars yielded similarly. Grain yields of both cultivars were higher in 2009 than in 2010. Higher grain yield of Y-liangyou 1 in 2009 was associated with higher spikelet filling (spikelet filling percentage and grain weight, which resulted from higher biomass production. Crop growth rate after HD was critical for biomass production by the super hybrid rice. We suggest that increasing the crop growth rate after HD is an effective approach to increase grain yield of super hybrid rice under NTDS.

  16. Indicadores da condição hídrica do solo com soja em plantio direto e preparo convencional Indicators of soil water condition for soy bean under no-tillage and conventional tillage

    Directory of Open Access Journals (Sweden)

    Lucieta G. Martorano

    2009-08-01

    Full Text Available Indicadores da condição hídrica do solo foram avaliados em um experimento de campo, em Eldorado do Sul, RS, Brasil. Utilizou-se um Argissolo Vermelho Distrófico típico, utilizado durante oito anos em sistema plantio direto e preparo convencional. A cultivar de soja Fepagro Rs(-10, foi semeada em 20/11/2003, com 0,40 m entre fileiras e 300 mil plantas por hectare, em tratamentos irrigados e não irrigados. Variáveis do sistema solo-planta-atmosfera foram monitoradas e a ênfase neste trabalho visou aos períodos secos; monitoraram-se, também, variações no potencial matricial da água no solo, entre 0,075 e 1,20 m de profundidade. Verificou-se que o tempo de secagem do solo foi mais prolongado nas parcelas sob plantio direto indicando, em períodos de secagem, potenciais matriciais menos negativos, menores temperaturas máximas e menor amplitude térmica que em preparo convencional; também, a altura de plantas e o índice de área foliar apontaram que maiores estoques de água em plantio direto podem reduzir efeitos do déficit hídrico em soja cultivada neste sistema de manejo. Esses indicadores reforçam a importância da análise integrada de respostas das culturas em um enfoque sistêmico de manejo de solo e água.Soil water condition indicators were assessed in a field experiment conducted in Eldorado do Sul, Brazil. The Paleudult soil of the experimental area has been managed during eight years under no-tillage and conventional tillage. Soy bean cultivar Fepagro Rs(-10 was sown on November 20, 2003, with 0.40 m of row spacing and 300,000 plants ha-1, with and without irrigation. Variables of soil, plant and atmosphere were monitored with emphasis during drought periods. Variations of the matrix water potential were monitored from 0.075 to 1.20 m of soil depth. A regular delay was observed in the soil drying process in no-tilled plots, in particular during drought periods, indicating higher water storage in no-tillage than in

  17. Avaliação da compressibilidade de um Nitossolo Vermelho distroférrico sob sistema plantio direto, preparo convencional e mata nativa Evaluation of compressibility of a dystroferric Red Nitosol under no-tillage and conventional tillage systems and a native forest

    Directory of Open Access Journals (Sweden)

    Renato Lara de Assis

    2005-07-01

    Full Text Available Os efeitos do tráfego de máquinas nos atributos do solo de acordo com o tempo de adoção do sistema plantio direto são ainda pouco pesquisados em ambientes tropicais, e muitas dúvidas ainda persistem sobre a variação dinâmica da estrutura do solo e a sua interação com máquinas e equipamentos. Objetivou-se com este estudo avaliar o efeito do tempo de adoção do sistema plantio direto, comparativamente com área de mata nativa e de preparo convencional, usando os modelos de compressibilidade do solo. O estudo foi realizado em um Nitossolo Vermelho distroférrico, sob mata nativa (MN, preparo convencional (PC, plantio direto com um ano (PD1, plantio direto com quatro anos (PD4, plantio direto com cinco anos (PD5 e plantio direto com 12 anos (PD12. Amostras indeformadas e deformadas foram coletadas em duas profundidades (0-5 e 10-15 cm. O tempo de adoção do sistema plantio direto alterou o comportamento compressivo dos solos em ambas as profundidades, por meio das mudanças na pressão de preconsolidação. A profundidade de 0-5 cm apresentou menor capacidade de suporte de carga do que a profundidade de 10-15 cm. A profundidade de 0-5 cm, em todos os sistemas de manejo, mostrou-se mais susceptível à compactação em relação à profundidade de 10-15 cm. Os sistemas de plantio direto e convencional apresentaram a capacidade de suporte de carga crescente na seguinte ordem: PD5 @ PC, para a profundidade de 0-5 cm e para a profundidade de 10-15 cm: MN @ PD12 @ PD4 The effects of machinery traffic on soil attributes following the adoption of no-till systems in tropical environments are still poorly documented. Numerous questions persist about the dynamic variation of soil structure and its interaction with machinery and equipments. The present study had the objective to evaluate the effect of time of adoption of no-tillage system and compare them to a conventionally tilled soil and a soil under a native forest using soil compressibility

  18. Effects of tillage operations and plant density on leaf spot disease ...

    African Journals Online (AJOL)

    Two seasons experiments conducted in 2002 and 2003 revealed that Tillage operations significantly influenced leafspot disease severity; Percentage lodging 3.14; 2.08 and Grain yield 3.02; 3.84 in 2002 and 2003 respectively. Plant density also had significant difference on leafspot disease severity; Percentage lodging ...

  19. Tillage for soil and water conservation in the semi-arid Tropics

    NARCIS (Netherlands)

    Hoogmoed, W.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In

  20. Effects of phosphorus and four tillage mulch systems on the physico ...

    African Journals Online (AJOL)

    Effects of phosphorus and four tillage mulch systems on the physico-chemical properties of an ultisol in Eastern Nigeria. ... Micro-porosity, macro-porosity, total porosity, mean weight diameter of water stable aggregates and saturated hydraulic conductivity, however, did not show significance. The infiltration rates of the TM, ...

  1. The dependence of the content of Cs137 forms in sod-podzolic sabulous soil of different degree of humidification on the basic soil tillage

    International Nuclear Information System (INIS)

    Tsybulko, N.N.; Ermolenko, A.V.; Lazarevich, S.S.

    2011-01-01

    The dependence of the content of 137 Cs-forms in sod-podzolic sabulous soils of different degree of humidification on the basic soil tillage is presented. Structure (in %) of plant available 137Cs in automorphic and semi-hydromorphic soils is shown. The influence of soil tillage type on 137Cs content is analyzed per 2007-2008. Content (in %) of plant available 137Cs in automorphic and semi-hydromorphic soils during moldboard plowing, beardless plowing, surface disc plowing and minimum tillage is evaluated. In sod-podzolic sabulous soils with 137 Cs pollution density which equals to 13-15 Cu/km2 the content of the accessible for plants forms (water-soluble, exchangeable, mobile forms) makes in average 9-11%; of those inaccessible (not exchangeable, fixed) 89-91%. It is established, that the degree of the hydromorphic feature in sod-podzolic sabolous soil influence the content of accessible forms of 1376cs in its top layer. The chisel tillage and the minimum tillage make it possible to decrease the accessible 137Cs connections by 2-4%

  2. Quantification of tillage, plant cover, and cumulative rainfall effects on soil surface microrelief by statistical, geostatistical and fractal indices

    Science.gov (United States)

    Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.

    2008-07-01

    Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of

  3. Geophysical characterization of soil moisture spatial patterns in a tillage experiment

    Science.gov (United States)

    Martinez, G.; Vanderlinden, K.; Giráldez, J. V.; Muriel, J. L.

    2009-04-01

    Knowledge on the spatial soil moisture pattern can improve the characterisation of the hydrological response of either field-plots or small watersheds. Near-surface geophysical methods, such as electromagnetic induction (EMI), provide a means to map such patterns using non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa. In this study ECa was measured using an EMI sensor and used to characterize spatially the hydrologic response of a cropped field to an intense shower. The study site is part of a long-term tillage experiment in Southern Spain in which Conventional Tillage (CT), Direct Drilling (DD) and Minimum Tillage (MT) are being evaluated since 1982. Soil ECa was measured before and after a rain event of 115 mm, near the soil surface and at deeper depth (ECas and ECad, respectively) using the EM38-DD EMI sensor. Simultaneously, elevation data were collected at each sampling point to generate a Digital Elevation Model (DEM). Soil moisture during the first survey was close to permanent wilting point and near field capacity during the second survey. For the first survey, both ECas and ECad, were higher in the CT and MT than in the DD plots. After the rain event, rill erosion appeared only in CT and MT plots were soil was uncovered, matching the drainage lines obtained from the DEM. Apparent electrical conductivity increased all over the field plot with higher increments in the DD plots. These plots showed the highest ECas and ECad values, in contrast to the spatial pattern found during the first sampling. Difference maps obtained from the two ECas and ECad samplings showed a clear difference between DD plots and CT and MT plots due to their distinct hydrologic response. Water infiltration was higher in the soil of the DD plots than in the MT and CT plots, as reflected by their ECad increment. Higher ECa increments were observed in the depressions of the terrain, where water and sediments accumulated. On the contrary, the

  4. Identifying the Tillage Effects on Phosphorus Export from Phaeozems-Dominated Agricultural Watershed: a Plot-Scale Rainfall-Runoff Study in Northeast China

    Science.gov (United States)

    Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min

    2017-12-01

    Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.

  5. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-09-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G-). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G- compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems.

  6. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage

    NARCIS (Netherlands)

    Groenigen, van K.J.; Bloem, J.; Baath, E.; Boeckx, P.; Rousk, J.; Bodé, S.; Forristal, P.D.; Jones, M.B.

    2010-01-01

    Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be

  7. Sistemas de preparo do solo, plantas de cobertura e produtividade da cultura da mandioca Soil tillage systems, cover crops and productivity in cassava

    Directory of Open Access Journals (Sweden)

    Auro Akio Otsubo

    2008-03-01

    to cover crops use, since it leads to a significant increase in cassava yield, particularly when using millet as cover crop. The use of cover crops before cassava cultivation, in a minimum tillage system, is an efficient alternative for a better crop management.

  8. NUTRIMENTAL POTENTIAL OF RED DOLICHOS, BROWN DOLICHOS AND COWPEA FOR GREEN MANURE PRODUCED UNDER THREE TILLAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Felix Alfredo Beltran-Morales

    2009-06-01

    Full Text Available The nutrimental content of N, NO3-N, P, K, Mg, Ca, Mn, Zn, Cu, Fe, and B, was evaluated in three bean cultivars of two species with potential to be used as green manure. Cultivars were the red lab-lab bean (RL (Lablab purpureus, brown lab-lab bean (BL (L. purpureus and cowpea (CW (Vigna unguiculata. Three tillage systems were assayed: conventional tillage (CT, minimum tillage (MT and optimal tillage (OT. Results showed that the nutrimental content of N, NO3, P, K did not evidence statistical differences (P≤0.05 among bean cultivars and tillage systems. However, the greater content of N was in BL-CT with 4.85%. The content of P varied from 0.38 to 0.41% and the concentration of K from 2.40 to 2.84%. Ca showed the highest concentration in RL-OT with 2.88%, while the lowest percentage was evidenced by CW-CT, with 2.12% (P≤0.05. The highest percentage of Mg appeared in CW-OT with 0.89% and the lowest concentration was registered for BL-CT, showing 0.52% (P≤0.05. The highest Fe concentration was observed in RL-OT with 0.15% and the lowest in BL-CT and RL-CT, with 0.10%. The Mn content was significantly greater in CW without concerning the tillage system with 0.39% and the smallest concentration was obtained in RL-MT with 0.17%. The greatest percentage content of nutriment B was observed in BL-OT, RL-CT, CW-MT and CW-OT, from 0.024 to 0.030%. In contrast, the lowest content of B was found in RL-MT with 0.015%. The content of Zn did not showed statistical differences respect to the cropping system; the lowest concentration of Zn was observed in CW-OT with 0.0026% and the highest percentage in BL-OT with 0.0040. Cu was significantly highest in BL-CT, BL-MT, BL-OT, RL-CT, RL-MT, RL-OT and CW-OT, being BL-MT and BL-OT the combinations with the highest concentration (0.0061%, while the lowest concentration was observed in CW-MT and CW-CT, with 0.0048% and 0.0044%, respectively.

  9. Longevity of shallow subsurface drip irrigation tubing under three tillage practices

    Science.gov (United States)

    Shallow Sub-Surface drip irrigation (S3DI) has drip tubing buried about 2-in below the soil surface. It is unknown how long drip tubing would be viable at this shallow soil depth using strip- or no-tillage systems. The objectives were to determine drip tube longevity, resultant crop yield, and parti...

  10. Qualidade e rendimento de sementes de soja produzidas sob cultivo orgânico em plantio direto e preparo reduzido do solo = Quality and production of soybean seeds in no tillage and reduced tillage soil systems

    Directory of Open Access Journals (Sweden)

    Márcia de Medeiros

    2006-01-01

    Full Text Available O objetivo deste trabalho foi determinar a qualidade das sementes de soja em cultivo orgânico sob dois sistemas de manejo do solo, plantio direto e preparo reduzido do solo (escarificação + gradagem na região Oeste do Paraná. Foram utilizados 6 tratamentos para o controle de pragas mais uma testemunha (1.Baculovirus anticarsia; 2.Baculovirus anticarsia + Extrato de Cinamomo; 3.Extrato de Cinamomo; 4.Bacillus thurigiensis; 5.Óleo de Neen; 6.Composto A; 7.Testemunha. Os parâmetros avaliados foram teor de água, peso de100 sementes, porcentagem de germinação, vigor determinado pelo envelhecimento acelerado e teste de tetrazólio e também rendimento de sementes. Os dados obtidos foram analisados pelo teste de Scott – Knott a 5% de significância e permitiram concluir que o alto grau dedeterioração das sementes, provocado pela baixa eficiência dos tratamentos, contribuiu para o decréscimo da qualidade. O sistema de manejo do solo não influenciou no rendimento de sementes e o tratamento com Composto A apresentou maior rendimento.This trial aimed at determining soybean seeds quality in an organic production under two soil management systems: no tillage and reduced tillage (scarification + grading in western region of the State of Paraná. Six treatments were designed to control some weeds plus one check treatment (1.Baculovirus anticarsia; 2.Baculovirus anticarsia +cinnamon extract; 3.Cinnamon extract; 4.Baculovirus thurigiensis; 5.Neen oil; 6.Composite A; 7.Check treatment. Parameters as water content, weight of one hundred seeds, seedling percentage, seeds vigor determined by fast aging, triphenyl tetrazolium chloride andseedling yield were evaluated. The data were analyzed by the Scott Knott test – 5% of significance – which allowed to conclude that the high level of seedling deterioration, derived from the low efficiency of treatments, contributed to the decreased seed quality. However, the soil tillage system did not influence

  11. Suitability of technical materials for machinery subsoilers for soil tillage

    Directory of Open Access Journals (Sweden)

    Radek Bednář

    2013-01-01

    Full Text Available Agricultural soil processing belongs to the basic elements in the process of crop production. Currently classic tillage method is decreasing and the only trend has stated as a shallow plowing. Suitable post harvest soil tillage greatly affects yields in the next cycle. The aim of the study is the analysis of abrasive wear of selected construction materials and their subsequent use for DXRV-HD cultivator. The performed tests are focused on monitoring the mechanical properties of the materials and their use for variable cutting tip of cultivator body. Tested materials are divided into four categories. These materials include tool steel (19436, carbon steel (12050, cast iron with globular graphite and welding material supplied as a functional complex on low carbon steel by the Abraweld company. These materials are tested together with the original part of share cultivator. The present experiment is focused on metallorgraphic, mechanical and abrasive analysis. Structural component of the material is identified by metallographic photos and then compared with the impact strength tested on Charpy hammer. Followed the abrasion resistance according to CSN 01 5084 and the total evaluation of the tested samples are done.

  12. Forms of phosphorus in an oxisol under different soil tillage systems and cover plants in rotation with maize

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    2014-06-01

    Full Text Available Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L., and Raphanus sativus L. were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.

  13. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Science.gov (United States)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  14. Mineralogy and phosphorus adsorption in soils of south and central-west Brazil under conventional and no-tillage systems

    Directory of Open Access Journals (Sweden)

    Jessé Rodrigo Fink

    2014-02-01

    Full Text Available The low phosphorus availability in tropical and subtropical soils, normally related to adsorption of phosphate to the minerals surfaces, can be attenuated when organic matter (OM accumulates in the soils. Herein, we report the results of long-term experiments (18–32 years aimed at quantifying the maximum phosphorus adsorption capacity (MPAC and its determinant mineralogical variables in Brazilian soils and at assessing the effect of no-tillage (NT in mitigating the phosphorus adsorption of soils. The MPAC of soils ranged from 297 to 4,561 mg kg-1 in the 0.00–0.10 m layer and from 285 to 4,961 mg kg-1 in the 0.10–0.20 m layer. The MPAC was correlated with the concentrations of iron oxides, goethite and ferrihydrite, gibbsite/(gibbsite+kaolinite ratio and the specific surface area. The OM increased in the 0.00–0.10 m layer of NT soils, which was not reflected on the decrease of MPAC for the no-tillage soils.

  15. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    Science.gov (United States)

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  16. Effect of tillage fertilizer treatments on maize fodder yield under rainfed conditions of Pakistan

    International Nuclear Information System (INIS)

    Khaliq, P.; Cheema, N.M.; Malik, M.A.

    2012-01-01

    The effect of deep and shallow tillage and fertilizer treatments i.e., recommended dose of fertilizer (RF), farm yard manure (FYM) and recommended dose of fertilizer plus farmyard manure (RF+FYM) on maize fodder yield was studied under rainfed conditions of Pakistan. It was observed that the emergence count m-2, maize fodder biomass, plant height, number of leaves per plant and maize fodder yield enhanced, with the application of RF+FYM. However, the effect of FYM+RF and recommended dose of fertilizer was statistically non-significant and on average basis RF+FYM treatment produced higher green fodder (19971.5 kg ha/sup -1/) than fodder yield of 18349.1 kg ha/sup -1/ produced by applying recommended dose of fertilizer. However, green fodder yield produced with these two fertilizer treatments were significantly higher than that of the FYM and control treatments. The FYM treatment gave lowest fodder yield (16997 kg ha/sup -1/) and was significantly lower than the fodder yield (17278.7 kg ha/sup -1/) obtained in control treatment. The nutrient availability in RF+FYM treatment significantly increased the biomass production, however, application of FYM promoted the weed infestation that reduced the green fodder yield of maize, but it improved the overall forage yield as recorded in RF+FYM treatment. The effect of deep tillage on maize fodder yield was non-significant. (author)

  17. Economic feasibility of no-tillage and manure for soil carbon sequestration in corn production in northeastern Kansas.

    Science.gov (United States)

    Pendell, Dustin L; Williams, Jeffery R; Rice, Charles W; Nelson, Richard G; Boyles, Scott B

    2006-01-01

    This study examined the economic potential of no-tillage versus conventional tillage to sequester soil carbon by using two rates of commercial N fertilizer or beef cattle manure for continuous corn (Zea mays L.) production. Yields, input rates, field operations, and prices from an experiment were used to simulate a distribution of net returns for eight production systems. Carbon release values from direct, embodied, and feedstock energies were estimated for each system, and were used with soil carbon sequestration rates from soil tests to determine the amount of net carbon sequestered by each system. The values of carbon credits that provide an incentive for managers to adopt production systems that sequester carbon at greater rates were derived. No-till systems had greater annual soil carbon gains, net carbon gains, and net returns than conventional tillage systems. Systems that used beef cattle manure had greater soil carbon gains and net carbon gains, but lower net returns, than systems that used commercial N fertilizer. Carbon credits would be needed to encourage the use of manure-fertilized cropping systems.

  18. Growth and yield of cucumber under no-tillage cultivation using rye as a cover crop

    Directory of Open Access Journals (Sweden)

    Małgorzata Jelonkiewicz

    2012-12-01

    Full Text Available In the first two years of study, method of cultivation did not affect the emergence of cucumber seedlings. In the third year, a drought occurring during the spring was the cause of poor seedling emergence on no-tilled plots. Six weeks after seed sowing, the shoots of cucumbers grown on the no-tilled plots were much shorter, especially in the last study year. At the time of cucumber seed sowing, no-tilled soil contained less phosphorus and potassium and in the middle of the fructification period the content of these elements in cucumber leaves was higher under no-tillage cultivation. Additional spring fertilization of rye with ammonium nitrate resulted in a higher N-NO3 content in soil and later in a higher nitrogen content of cucumber leaves. The content of calcium and magnesium in soil and than in cucumber leaves was independent of the cultivation method. In the first two years, method of cultivation did not affect the yield of cucumber fruits and in the third year the yield was much lower under no-tillage because of poor seedling emergence. Moreover, in the third year the fruits were smaller and dry matter content of the fruit was significantly higer under no-tillage cultivation.

  19. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    International Nuclear Information System (INIS)

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  20. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components in Dobrudzha region

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2017-06-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute on slightly leached chernozem soil. In order to clarify the effect of some types of pre-sowing soil tillage for wheat on the crop structure and certain yield components, the following variants of a stationary field experiment were analyzed: double disking at depth 10-12 cm (check variant; ploughing at 14-16 cm + disking; no-tillage (direct sowing – pre-sowing treatment of the area with total herbicides. Wheat was sown after previous crop grain maize and was fertilized with N P K . Wheat cultivar Enola was planted at norm 550 germinating 140 120 80 2 seeds/m . The number of emerging wheat plants was read using square sampling frames sized 50 cm x 50 cm. Using the same sampling frames, the tillering in autumn prior to the wintering of the crops was followed, and in spring – prior to booting stage. The number of productive tillers was also read using these sampling frames. To determine the length of spike, the number of grains in it, and their weight, 30 spikes from 8 replications of each variant were analyzed. The emerging of the wheat plants, under the conditions of slightly leached chernozem soil in Dobrudzha region, was more uniform after sowing following disking, and after direct sowing. The minimal pre-sowing tillage and no-tillage for wheat ensured better autumn development of the crop and the plants. In these variants, higher number of overwintering plants and productive tillers per unit area were registered. Spike length was the highest after ploughing as pre-sowing tillage. Significant variations in the number of grains per spike of the investigated variants were not found. Grain weight per spike was the lowest under direct sowing.

  2. Vertical Mulching e manejo da água em semeadura direta Vertical Mulching and water management in no tillage system

    Directory of Open Access Journals (Sweden)

    Sandra Maria Garcia

    2008-04-01

    soil structure degradation, soil compaction below the arable layer, and decreased macroporosity. These changes resulted in reduced soil water infiltration rate and increased runoff, soil erosion and sedimentation in rivers and reservoirs. In the no tillage system the water erosion from the soil surface is practically controlled, and the terraces were eliminated by the farmers. Nevertheless, the surface flow is higher than it was in the conventional tillage system. With the objective of evaluating the hydrological behavior of vertical mulching in no tillage systems as related to runoff, this study was developed in the growing seasons of 2002/2003 and 2003/2004 on a Red Latosol (Oxisol in the Planalto Médio region of Rio Grande do Sul State, Brazil. A field experiment was installed using plots without vertical mulching, with vertical mulching at every 10 m and with vertical mulching at every 5 m. It was used a randomized block design with three replications. Leveled furrows of vertical mulching, perpendicular to the soil slope (0.08 m wide by 0.38 m deep were dug and filled with straw compacted enough to stabilize the furrow sides. Rainfall intensities of 70 and 106 mm h-1 were simulated on soybean and wheat to determine runoff, soil water infiltration rate, and nutrient and organic carbon concentration in the runoff. The results showed that vertical mulching in no tillage significantly reduces surface runoff and increases the water infiltration rate into the soil. It also reduces the total nutrient and organic carbon losses due to the reduction of water runoff.

  3. Reducing CO2 flux by decreasing tillage in Ohio: overcoming conjecture with data

    Science.gov (United States)

    Soil could become an important sink for atmospheric carbon dioxide (CO2) as global agricultural greenhouse gas emissions continue to grow, but data to support this conjecture are few. Sequestering soil carbon (C) depends upon many factors including soil type, climate, crop, tillage, nitrogen fertili...

  4. The effects of mulching, tillage, and herbicides on weed control and watermelon yield

    Science.gov (United States)

    Currently few producers in the Southeast US have adopted conservation tillage practices in specialty crop production. The lack of conservation adoption is likely due to the added challenges in producing vegetables in cover crop residues, especially high biomass cover crop systems. The objective of t...

  5. Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia

    NARCIS (Netherlands)

    Aravindakshan, Sreejith; Rossi, Frederick; Amjath-Babu, T.S.; Veettil, Prakashan Chellattan; Krupnik, Timothy J.

    2018-01-01

    Conservation tillage (CT) options are among the most rapidly spreading land preparation and crop establishment techniques globally. In South Asia, CT has spread dramatically over the last decade, a result of strong policy support and increasing availability of appropriate machinery. Although many

  6. Propriedades físicas de um Latossolo Bruno afetadas pelos sistemas plantio direto e preparo convencional Physical properties of a south Brazilian Oxisol as affected by no-tillage and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    F. S. Costa

    2003-06-01

    0.2 m top layer of an Oxisol from Paraná, southern Brazil. In comparison with an adjacent forest soil used as reference, the use of CT system increased the soil bulk density, penetrometer resistance and soil temperature; and decreased the mean geometric diameter of soil aggregates The main changes in soil attributes by using NT in comparison with CT were: decrease in soil bulk density in subsurface layer (0.1-0.2 m from 1.08 to 0.99 Mg m-3; decrease in maximum soil temperature in the 0-0.05 m layer from 27.9 to 24.7 ºC; increase in mean geometric diameter of soil aggregates from 1.6 to 3.7 mm at 0-0.05 m layer; and increase in volumetric soil water content in the 0-0.1 m layer from 0.38 to 0.48 m³ m-3. However, there were no differences between effects of tillage systems on soil porosity (total, macro and microporosity, saturated hydraulic conductivity, penetrometer resistance, and clay flocculation degree. The amelioration of physical properties in no-tilled soil may be related to increases of 42% in soybean and 22% in corn yields in this conservation tillage system, in comparison with CT system.

  7. Sistemas de cultivo no cerrado e dinâmica de populações de plantas daninhas Tillage systems in the cerrado and dinamics of weed populations

    Directory of Open Access Journals (Sweden)

    F.A.R. Pereira

    2003-12-01

    Full Text Available O trabalho teve como objetivo avaliar os efeitos de sistemas de plantio direto, utilizando diferentes programas de rotação de culturas, de preparo convencional e de cultivo mínimo sobre a dinâmica de populações de plantas daninhas nas condições edafoclimáticas do cerrado. Utilizou-se o delineamento experimental de blocos ao acaso, com quatro repetições e cinco tratamentos, sendo dois de plantio direto que constaram de programas de rotação constituídos por culturas de verão e de outono/inverno e dois em monocultivo, nos sistemas de preparo convencional e cultivo mínimo respectivamente. Avaliou-se a dinâmica das populações de plantas daninhas. A maior eficiência de controle cultural da comunidade infestante foi obtida com o sistema de plantio direto, por meio dos seguintes programas de rotação: (sorgo/soja - crotalária/milho - milheto/soja - milho safrinha/soja; (milho safrinha/soja - girassol/milho - sorgo/soja - girassol/milho e (guandu/soja - milheto/soja - milho safrinha/milho - girassol/soja.This research aimed to evaluate the effects of no-tillage systems using crop rotation variations, conventional tillage, and minimum tillage on the dynamics of weed populations in the cerrado region in Brazil. The experiment was arranged in a randomized block design, four replications and five treatments, (two no tillage treatments consisting of summer and fall/winter crop rotations and two single crop treatments under conventional tillage and minimum tillage. Weed population dynamics was evaluated. The results showed that the no-tillage system was the most efficient for weed control with the following programs: soybean/sorghum - Crotalaria/corn - millet/soybean, winter corn/soybean; (winter corn/soybean - sunflower/corn - sorghum/soybean - sunflower/corn and (Pigeon/pea/soybean - millet/soybean - winter corn/corn - sunflower/soybean .

  8. Particulate emissions calculations from fall tillage operations using point and remote sensors.

    Science.gov (United States)

    Moore, Kori D; Wojcik, Michael D; Martin, Randal S; Marchant, Christian C; Bingham, Gail E; Pfeiffer, Richard L; Prueger, John H; Hatfield, Jerry L

    2013-07-01

    Soil preparation for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric particulate matter (PM). Efforts to reduce PM emissions from tillage through a variety of conservation management practices (CMPs) have been made, but the reductions from many of these practices have not been measured in the field. A study was conducted in California's San Joaquin Valley to quantify emissions reductions from fall tillage CMP. Emissions were measured from conventional tillage methods and from a "combined operations" CMP, which combines several implements to reduce tractor passes. Measurements were made of soil moisture, bulk density, meteorological profiles, filter-based total suspended PM (TSP), concentrations of PM with an equivalent aerodynamic diameter ≤10 μm (PM) and PM with an equivalent aerodynamic diameter ≤2.5 μm (PM), and aerosol size distribution. A mass-calibrated, scanning, three-wavelength light detection and ranging (LIDAR) procedure estimated PM through a series of algorithms. Emissions were calculated via inverse modeling with mass concentration measurements and applying a mass balance to LIDAR data. Inverse modeling emission estimates were higher, often with statistically significant differences. Derived PM emissions for conventional operations generally agree with literature values. Sampling irregularities with a few filter-based samples prevented calculation of a complete set of emissions through inverse modeling; however, the LIDAR-based emissions dataset was complete. The CMP control effectiveness was calculated based on LIDAR-derived emissions to be 29 ± 2%, 60 ± 1%, and 25 ± 1% for PM, PM, and TSP size fractions, respectively. Implementation of this CMP provides an effective method for the reduction of PM emissions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis.

    Science.gov (United States)

    Feng, Jinfei; Li, Fengbo; Zhou, Xiyue; Xu, Chunchun; Ji, Long; Chen, Zhongdu; Fang, Fuping

    2018-01-01

    The effect of no- and reduced tillage (NT/RT) on greenhouse gas (GHG) emission was highly variable and may depend on other agronomy practices. However, how the other practices affect the effect of NT/RT on GHG emission remains elusive. Therefore, we conducted a global meta-analysis (including 49 papers with 196 comparisons) to assess the effect of five options (i.e. cropping system, crop residue management, split application of N fertilizer, irrigation, and tillage duration) on the effect of NT/RT on CH4 and N2O emissions from agricultural fields. The results showed that NT/RT significantly mitigated the overall global warming potential (GWP) of CH4 and N2O emissions by 6.6% as compared with conventional tillage (CT). Rotation cropping systems and crop straw remove facilitated no-tillage (NT) to reduce the CH4, N2O, or overall GWP both in upland and paddy field. NT significantly mitigated the overall GWP when the percentage of basal N fertilizer (PBN) >50%, when tillage duration > 10 years or rainfed in upland, while when PBN agronomy practices and land use type.

  10. Análisis de los escurrimientos de una microcuenca de Pampa Ondulada bajo diferentes sistemas de labranza Runoff analysis of a watershed belonging to the rolling Pampa under different tillage systems

    Directory of Open Access Journals (Sweden)

    Mario G. Castiglioni

    2006-12-01

    Rolling Pampa. However, scarce studies have been carried out in a watershed scale about its effects on runoff dynamics, as compared to other tillage systems. The aim of the present study was to compare different parameters related to the surface runoff response of a watershed associated with changes in the tillage systems. The studied watershed has 300 ha and is located in the Northern part of the mid basin of the Tala river in San Pedro, Buenos Aires Province. The soils belong to the Ramallo Series (Vertic Argiudoll and its eroded phases. Hydrographs and hietographs belonging to different storms that took place through the period 1995-2002 were calculated and runoff was analyzed, first globally and then the increasing and decreasing branches of the flow separately. No tillage system originated larger curve number values than the conventional tillage system. The runoff duration was larger under no tillage due to the enlargement of the decreasing branch of the hydrograph. The runoff flow generated per rainfall unit was always lower under no tillage compared to conventional tillage. The amount of runoff during the decreasing branch of the hydrographs was not different between tillage systems because the lesser flow recorded under no tillage was compensated by the larger duration of this phase compared to conventional tillage.

  11. What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis

    International Nuclear Information System (INIS)

    Aravindakshan, Sreejith; Rossi, Frederick J.; Krupnik, Timothy J.

    2015-01-01

    Escalating energy costs are an increasing concern for South Asian farmers growing rice and wheat in rotation. Millions of people in the IGP (Indo-Gangetic Plains) depend on this cropping system for food and income security. CT (conservation tillage) practices, including mechanical BP (bed planting), PTOS (power-tiller operated seeding), and ST (strip tillage), are advocated by donors and development organizations as profitable, high yielding, and energy-efficient alternatives to TT (traditional tillage). However, most studies on the EUE (energy input use efficiency) of CT originate from researcher-controlled and on-station experiments. Comparatively little information is available on the EUE of CT practices as farmers apply them in their own fields, and under their own management decisions. This research responds to this gap, and analyzes EUE of each of these three CT options, compared to TT, by surveying 328 rice-wheat farmers in north-western Bangladesh. Concentrating on wheat production, we employed a non-parametric benchmarking technique involving slack-based measures of technical efficiency, along with a fractional regression model to identify and compute the wasteful use of energy. PTOS achieved the highest EUE score (0.92), followed closely by BP and ST (both 0.91), whereas TT (0.68) was significantly (p < 0.001) different and lower than the CT practices. - Highlights: • On-farm evidence of the energy efficiency of CT (conservation tillage) is lacking. • We benchmark and analyze CT vs. TT (traditional tillage) energy input slacks. • Fertilizers and pesticides had the highest component slack values across CT options. • Slacks for TT were comparatively large for labor, fuel, pesticides, and irrigation. • Under farmer adaptation, CT is more efficient than TT, though both can be improved.

  12. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management.

    Science.gov (United States)

    Elias, Daniel; Wang, Lixin; Jacinthe, Pierre-Andre

    2018-01-12

    Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985-2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models.

  13. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage

    Directory of Open Access Journals (Sweden)

    Caio Fortes

    2013-01-01

    Full Text Available The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009. Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application. In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows. In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH, and samples were collected in the field for analysis of sugar content (TSH. Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.

  14. Compressibilidade de um Argissolo sob plantio direto escarificado e compactado Compressibility of a Paleudalf chisel plough and compacted under no-tillage

    Directory of Open Access Journals (Sweden)

    Cláudia Liane Rodrigues de Lima

    2006-12-01

    Full Text Available A compressibilidade do solo é dependente do tipo, da intensidade, da freqüência da força aplicada por máquinas agrícolas e dos sistemas de manejo adotados. O objetivo deste estudo foi avaliar o efeito da intensidade do tráfego de máquinas agrícolas na compressibilidade de um Argissolo Vermelho distrófico arênico sob plantio direto escarificado e compactado. Foram testados os tratamentos: PD = plantio direto desde o ano de 1989; PDE1 = plantio direto escarificado em dezembro de 2002 e fevereiro de 2004; PDE2 = plantio direto escarificado em dezembro de 2004; PDC1, PDC2 e PDC3 = plantio direto com quatro passadas de máquina com massa total de 10Mg em dezembro, respectivamente para os anos agrícolas 2001/2002, 2002/2003 e 2001/2002 - 2002/2003. Amostras com estrutura de solo preservada, na camada de 0,08-0,13m, foram utilizadas para avaliar os parâmetros compressivos do solo. No sistema de plantio direto sob compactação adicional, foram obtidos maiores e menores valores, respectivamente, de densidade e índice de compressão do solo. A densidade e o índice de compressão do solo são parâmetros consistentes e sensíveis para detectar alterações na estrutura do solo. O modelo não-linear (McNabb & BOERSMA, 1993 é uma ferramenta potencial para determinação da densidade do solo sob plantio direto, a partir da densidade inicial e das pressões aplicadas ao solo.Soil compressibility depends on the type, intensity and frequency of the load applied by agricultural machinery and on soil management. This study was aimed at evaluating the effect of traffic of agricultural machines on the compressibility of a Paleudalf chisel plough and compacted under no-tillage. In an area under no tillage since 1989, the following treatments were used for sampling: PD = no tillage since 1989; PDE1 = no tillage plus chisel plough in december the year 2002 and february 2004; PDE2 = no tillage plus chisel plough in december 2004; PDC1, PDC2 and PDC3

  15. 35-40 The Effect of Tillage Frequency and Weed Control on Yield of ...

    African Journals Online (AJOL)

    The objective of the experiment was to determine the optimum tillage frequency, time and weeding frequency for tef production in the Yielmana ... post-harvest management cost, low risk crop and the straw provides better animal feed than ..... Kalyani publishers, New Delhi- 110 002, India. Rezene, F. and Zerihun, T. 2001.

  16. Produção orgânica de rabanete em plantio direto sobre cobertura morta e viva Organic cropping of radish in no-tillage under died and live mulching

    Directory of Open Access Journals (Sweden)

    Regina Lúcia F Ferreira

    2011-09-01

    to the conventional soil tillage, both superior to the crop on the no-tillage with live mulch. The productivity of the radish cv. Cometa, was not affected by increasing doses of organic compost, being possible to apply only 5 t ha-1, whereas in the conventional tillage, the increasing productivity was higher compared to the direct planting only in the higher dose of compost (15 t ha-1.

  17. The effect of soil extracts from a monoculture of spring wheat (Triticum aestivum L. grown under different tillage systems on the germination of its seeds

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present experiment was carried out in the period 2006-2008. The aim of this study was to determine the effect of aqueous soil extracts from the soil of a spring wheat monoculture on seed germination energy and capacity, the length of the first leaf and of the longest radicle as well as the number of radicles. Moreover, the content of 0-dihydroxyphenols in the soil was compared in the last year of the study. The soil used to prepare the solutions came from a field experiment established on medium heavy mixed rendzina soil. Spring wheat, cv. Zebra, was grown using plough tillage and two conservation tillage methods in the presence of undersown crops (red clover, Westerwolds ryegrass and stubble crops (lacy phacelia, white mustard. Germination energy of the seeds watered with the soil extracts from the ploughed plots was significantly higher than this trait in the seeds watered with the extracts from the conservation tillage treatments with spring disking of the catch crops. Germination energy and capacity of spring wheat in the control treatment watered with distilled water were significantly higher compared to the other treatments under evaluation. Spring wheat watered with the aqueous extract prepared from the soil obtained from the plough tillage treatment produced a significantly longer first leaf compared to the treatments in which both conservation tillage methods had been used. The shortest leaf and the lowest number of radicles were produced by the seedlings watered with the soil extract from the treatment with the white clover stubble crop. Radicle length was not significantly differentiated by the soil extracts under consideration. The content of 0-dihydroxyphenols in the rendzina soil determined during the spring period was higher than that determined in the autumn. The content of 0-dihydroxyphenols in the soil was lower in the conservation tillage treatments with autumn incorporation of the catch crops than in the plots in which

  18. The Effect of Tillage on Organic Carbon Stabilization in Microaggregates in Different Climatic Zones of European Russia

    Directory of Open Access Journals (Sweden)

    Zinaida S. Artemyeva

    2016-12-01

    Full Text Available Tillage may affect the microstructural organization of soil, including the distribution of microaggregates with different mechanical strengths. We quantified the impact of tillage treatment on the amount and distribution of free organic matter, microaggregates (unstable and stable under low intensity sonification and their components, in the upper horizons of zonal soils of the Center of the Russian Plain. Under plowing, the carbon content decreases, both in unstable and stable microaggregates. The loss of carbon in unstable microaggregates was ~24%, whereas in stable microaggregates, it was ~37%, relative to native soils. The carbon content of organic (LFoc and organo-clay (Clayrd fractions in unstable microaggregates (CLFoc/CClayrd was almost identical in the upper horizons of native soils: the ratio of these components is for Albeluvisols (1.1, Phaeozem (0.8 and Chernozems (1.0. Under plowing, these decrease to: Albeluvisols and Chernozems (0.6 and Phaeozem (0.5. The shares of carbon accumulated within the unstable and stable microaggregates (Cunstable/Cstable are constant under equilibrium conditions and show a tendency to decrease from north to south on the order of: Albeluvisols and Phaeozem (2.2 > Chernozems (1.0. Under plowing, they increase to: Albeluvisols (3.0 and Phaeozem (3.2 > Chernozems (1.5.

  19. Leaching of pesticides through normal-tillage and low-tillage soil--a lysimeter study. I. Isoproturon.

    Science.gov (United States)

    Fomsgaard, Inge S; Spliid, Niels Henrik; Felding, Gitte

    2003-01-01

    Isoproturon is a herbicide, which was used in Denmark against grass weeds and broad-leaved weeds until 1998. Isoproturon has frequently been detected in ground water monitoring studies. Leaching of isoproturon (N,N-dimethyl-N'-(4-(1-methylethyl)-phenyl)urea) and its metabolites, N'-(4-isopropylphenyl)-N-methylurea and N'-(4-isopropylphenyl)urea was studied in four lysimetres, two of them being replicates from a low-tillage field (lysimeter 3 and 4), the other two being replicates from a normal tillage field (lysimeter 5 and 6). In both cases the soil was a sandy loam soil with 13-14% clay. The lysimetres had a surface area of 0.5 m2 and a depth of 110 cm. Lysimeter 3 and 4 were sprayed with unlabelled isoproturon while lysimeter 5 and 6 was sprayed with a mixture of 14C-labelled and unlabelled isoproturon. The total amount of isoproturon sprayed onto each lysimeter was 63 mg, corresponding to 1.25 kg active ingredient per ha. The lysimeters were sprayed with isoproturon on October 26, 1997. The lysimetres were installed in an outdoor system in Research Centre Flakkebjerg and were thus exposed to normal climatic conditions of the area. A mean of 360 l drainage water were collected from lysimeter 3 and 4 and a mean of 375 litres from lysimeter 5 and 6. Only negligible amounts of isoproturon and its primary metabolites were found in the drainage water samples, and thus no significant difference between the two lysimeter sets was shown. In a total of 82 drainage water samples, evenly distributed between the four lysimetres isoproturon was found in detectable amounts in two samples and N'-(4-isopropylphenyl)urea was found in detectable amounts in two other samples. The detection limit for all the compounds was 0.02 microg/l. 48% and 54% of the added radioactivity were recovered from the upper 10 cm soil layer in lysimeter 5 and 6, respectively, and 17 and 14% from 10-20 cm's depth. By extraction first with an aquatic CaCl2 solution 0.49% of the added radioactivity was

  20. Atributos químicos e estoques de carbono em Latossolo sob plantio direto no cerrado do Piauí Chemical attributes and carbon stocks in an Oxisol under no-tillage in savannah of Piauí state

    Directory of Open Access Journals (Sweden)

    Luiz F. C. Leite

    2010-12-01

    Full Text Available O sistema de plantio direto é uma alternativa viável para o uso sustentável dos solos. O objetivo do presente trabalho foi avaliar a influência do sistema plantio direto com diferentes tempos de implantação e do plantio convencional sobre os atributos químicos e os estoques de C de um Latossolo Vermelho-Amarelo do cerrado piauiense. Amostras de solo foram coletadas nas camadas de 0-5, 5-10, 10-20 e 20-40 cm em sistema de plantio convencional (PC e plantio direto (PD com 2 (PD2, 4 (PD4 e 6 (PD6 anos de implantação, além de uma área sob floresta nativa de cerrado (FNC. Foram determinados o pH em água, P extraível (Pext, bases trocáveis, Al, acidez potencial (H+Al, carbono orgânico total (COT e carbono da biomassa microbiana (Cmic. A adoção do sistema plantio direto aumentou o pH, os teores de P e de bases trocáveis do solo, em comparação com o PC. Em relação ao PC, os estoques de COT e Cmic aumentaram 34 e 99% no PD2, 47 e 92% no PD4 e 61 e 108% no PD6, respectivamente, na camada superficial de 0-20 cm. A implantação do sistema plantio direto melhora os atributos químicos e aumenta os estoques de carbono orgânico total e microbiano do solo e seu uso contínuo contribui para a qualidade do solo em áreas do cerrado piauiense.No-tillage adoption has been considered a viable alternative for sustainable soil use. This work aimed to evaluate the influence of no-tillage system with different times of adoption and conventional tillage on chemical attributes and carbon stocks in an Oxisol of the savannah of Piauí in Northeastern Brazil. Soil samples in the 0-5, 5-10, 10-20 and 20-40 cm layers were collected in conventional tillage (CT no-tillage (NT with 2 (NT2, 4 (NT4 and 6 (NT6 years of adoption and native forest (NF. The following chemical properties were evaluated: pH, extractable P, exchangeable cations, Al, potential acidity (H+Al, total organic carbon (TOC and microbial biomass carbon (Cmic. NT adoption increased p

  1. Evolution of physical properties of soils according to tillage systems on annual crops/ Evolução de propriedades físicas do solo em função dos sistemas de manejo em culturas anuais

    Directory of Open Access Journals (Sweden)

    Rogério R. M. Ferreira

    2006-06-01

    Full Text Available Soil management must keep the soil physical properties next to the original conditions in natural systems to assure the sustainability of agricultural systems. This review synthesizes the effects of conventional tillage, minimum tillage and no-tillage systems of annual crops, on soil physical properties as bulk density, porosity, soil resistance to root penetration, infiltration speed, hydraulic conductivity,compressibility, organic matter level, soil aggregate size and stability. No-tillage presents advantages on organic matter level, size and stability of aggregates, compressibility and hydraulic conductivity but has limitations on bulk density and resistance to root penetration. Minimum tillage with chisel plow is specially efficient in relation to infiltration speed and hydraulic conductivity, and intermediate between conventional and no-tillage in other aspects. Conventional tillage with total pulverization of soil surface,mainly on tropical conditions, presents the less favorable scores on soil physical properties, close to minimum tillage and no-till only in few circumstances, and frequently the most different from the natural conditions. The conservation systems by their side, despite of similarities in some aspects with natural conditions, are not able to reproduce the conditions of natural forests, savannas or natural pastures, but are in the sustainability direction.Para assegurar a sustentabilidade do sistema produtivo, o manejo do solo deve manter as propriedades físicas do solo o mais próximo das condições originais em que este se encontrava na natureza. Esta revisão sintetiza os efeitos de três sistemas de manejo de solo (convencional, mínimo e direto em culturas anuais sobre as propriedades físicas do solo como densidade, porosidade, resistência à penetração, velocidade de infiltração, condutividade hidráulica, compressibilidade, nível de matéria orgânica, tamanho e estabilidade de agregados. O plantio direto

  2. Efeito de sistemas de manejo de solo e de rotação de culturas na fertilidade do solo, após vinte anos Soil tillage and crop rotation systems on soil fertility attributes after twenty years

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2008-01-01

    conventional tillage using moldboard plow followed by disk harrow - and three crop rotation systems (CRS: I (wheat/soybean, II (wheat/soybean and common vetch/corn, and III (wheat/soybean, common vetch/corn, and white oat/soybean were evaluated, including as check a fragment of subtropical forest (FST. A randomized complete block design, with split-plots and three replicates, was used. The main field plots (4 x 90 m in a total of 12, were the soil tillage systems, whereas the subplots (4 x 10 m, in a total of 72 comprised the crop rotation systems. Values of soil pH, soil organic carbon, extractable P, and exchangeable K were affected by soil tillage systems (STSs. Higher levels of soil organic matter and contents of soil carbon, extractable P, and exchangeable K were observed in the 0-0,05 m layer for the no-tillage system. No statistical differences were found in soil organic matter levels between no-tillage and tropical forest, in any soil layer. Values of soil organic matter, P, and K were higher in the 0-0,05 m layer, when compared to the ones observed in the 0,15-0,20 m layer, in no-tillage and II and III CRSs. Values of pH, Ca, P, and K observed in all STSs and CRSs were higher than in the tropical forest area.

  3. Perdas de solo e água num Latossolo Vermelho aluminoférrico submetido a diferentes sistemas de preparo e cultivo sob chuva natural Water erosion caused by natural rainfall in a clayey Hapludox with different cropland tillage systems

    Directory of Open Access Journals (Sweden)

    J. F. Beutler

    2003-06-01

    active agents of water erosion, furthermore influenced by soil cover and roughness, crop and soil tillage. Compared to conventional tillage, water erosion is reduced in soil conservation tillage because this method is less intensive, preserves the cover longer, and sometimes increases soil roughness. Erosion losses (soil and water of a clayey Hapludox with a slope of 0.09 m m-1 were evaluated in Chapecó, Santa Catarina State, Brazil, from November 1994 to October 1999 under natural rainfall. The treatments, in two replications, consisted of the following downslope soil tillage systems: no-tillage, conventional tillage, minimum tillage, and tillage rotation, with some summer and winter crop rotation combinations, and conventional tillage without crop (standard unit of the Universal Soil Loss Equation-USLE as control. In no-tillage with crop rotation there was a soil loss reduction of 45 % in relation to summer conventional tillage and to winter no-tillage crop rotation systems, and of 99 % in relation to bare soil. Conservation tillage reduced the mean soil loss by 80 % in relation to conventional tillage. Mean soil losses were twice as high during the spring/summer as in the fall/winter period in no-tillage treatments, while in the other treatments average losses of the crop years were 3.3 higher in fall/winter. Water losses were small, with a behavior similar to that of the soil losses, in spite of the quantity difference.

  4. Responses of reniform nematode and browntop millet to tillage, cover crop, and herbicides in cotton

    Science.gov (United States)

    Cropping practices that reduce competition from reniform nematode (Rotylenchulus reniformis) and browntop millet (Urochlora ramosum) may help minimize losses in cotton (Gossypium hirsutum). The impacts of tillage, rye cover crop, and preemergence and postemergence herbicides on cotton yields, renifo...

  5. Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest

    Science.gov (United States)

    Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...

  6. Temperature and water pressure head effects on the degradation of the diketonitrile metabolite of isoxaflutole in a loamy soil under two tillage systems

    Energy Technology Data Exchange (ETDEWEB)

    Alletto, Lionel [Universite de Toulouse - Ecole d' ingenieurs de Purpan, Agronomy Department, 75, voie du TOEC BP 57 611, 31 076 Toulouse Cedex 3 (France); UMR 1091 INRA/AgroParisTech Environment and Arable Crops, Institut National de la Recherche Agronomique/Institut National des Sciences et Industries du Vivant et de l' Environnement, BP 01, 78 850 Thiverval-Grignon (France)], E-mail: lionel.alletto@purpan.fr; Benoit, Pierre [UMR 1091 INRA/AgroParisTech Environment and Arable Crops, Institut National de la Recherche Agronomique/Institut National des Sciences et Industries du Vivant et de l' Environnement, BP 01, 78 850 Thiverval-Grignon (France)], E-mail: benoit@grignon.inra.fr; Bergheaud, Valerie [UMR 1091 INRA/AgroParisTech Environment and Arable Crops, Institut National de la Recherche Agronomique/Institut National des Sciences et Industries du Vivant et de l' Environnement, BP 01, 78 850 Thiverval-Grignon (France)], E-mail: bergheau@grignon.inra.fr; Coquet, Yves [UMR 1091 INRA/AgroParisTech Environment and Arable Crops, Institut National de la Recherche Agronomique/Institut National des Sciences et Industries du Vivant et de l' Environnement, BP 01, 78 850 Thiverval-Grignon (France)], E-mail: Yves.Coquet@agroparistech.fr

    2008-12-15

    Laboratory studies were conducted to evaluate the effects of temperature and water pressure head on the degradation of the diketonitrile metabolite (DKN) of isoxaflutole during 84 d in samples collected in a loamy soil under conventional (CT) and conservation (MT) tillage systems. Soil temperature was the major factor controlling DKN degradation in the two tillage systems. The shortest half-lives (T{sub 1/2}) were measured in the seedbed samples under MT at 25 deg. C and -33 cm water pressure head. We found that mouldboard ploughing under CT was responsible for the spatial variability of herbicide degradation properties, whereas under MT herbicide degradation was associated to the vertical distribution of organic matter. - Tillage practices influence the spatial variability of diketonitrile degradation in soil and its sensitivity to pedoclimatic conditions.

  7. Temperature and water pressure head effects on the degradation of the diketonitrile metabolite of isoxaflutole in a loamy soil under two tillage systems

    International Nuclear Information System (INIS)

    Alletto, Lionel; Benoit, Pierre; Bergheaud, Valerie; Coquet, Yves

    2008-01-01

    Laboratory studies were conducted to evaluate the effects of temperature and water pressure head on the degradation of the diketonitrile metabolite (DKN) of isoxaflutole during 84 d in samples collected in a loamy soil under conventional (CT) and conservation (MT) tillage systems. Soil temperature was the major factor controlling DKN degradation in the two tillage systems. The shortest half-lives (T 1/2 ) were measured in the seedbed samples under MT at 25 deg. C and -33 cm water pressure head. We found that mouldboard ploughing under CT was responsible for the spatial variability of herbicide degradation properties, whereas under MT herbicide degradation was associated to the vertical distribution of organic matter. - Tillage practices influence the spatial variability of diketonitrile degradation in soil and its sensitivity to pedoclimatic conditions

  8. Entomofauna associated to soybean [Glycine max (L. Merr.] in direct seeding and conventional tillage

    Directory of Open Access Journals (Sweden)

    Arahis Cruz Limonte

    2016-01-01

    Full Text Available The main purpose of this research work was to investigate the effect of the direct seeding and conventional tillage of soybean on the incidence of plagues and natural enemies. The study was carried out on the farm “Día y Noche” of the Basic Unit of Cooperative Production “28 de Octubre” (UBPC, for its Spanish acronym, and in the Laboratories of the Agricultural Research Center of Central University of Las Villas. Field experiments were conducted on an Inceptisol, since November 2013 to May 2014. The soybean cultivar Incasoy – 27 was used. The insects in relation to the development stages of the plant were identified and quantified. In both systems 10 species of phytophagous insects and one of entomophagous insects were quantified; Hedylepta indicata L. stands out with more presence in the direct seeding, while Diabrotica balteata LeConte and the species belong to the family Pentatomidae caused most damage to the plants in conventional tillage.

  9. Residual nitrogen-15 recovery by corn as influenced by tillage and fertilization method

    International Nuclear Information System (INIS)

    Timmons, D.R.; Cruse, R.M.

    1991-01-01

    Tillage systems that create different surface residue conditions may also affect the recovery of residual fertilizer N during subsequent growing seasons. This study evaluated the recovery of residual labeled N fertilizer in the soil by corn (Zea mays L.) for two tillage systems and two fertilization methods. Five atom % 15 N-enriched 28% urea-ammonium nitrate solution (UAN) at 224 kg N ha -1 was either surface-applied in the fall before any primary tillage or banded (knifed in) just before planting in the spring. Continuous corn was grown with either fall moldboard-plow (MP) or ridge-till (RT) systems. After the initial growing season, the recovery of residual labeled N in the soil by corn was determined for three consecutive growing seasons, and the soil profile was sampled periodically to measure residual 15 N in the organic and inorganic pools. One year after labeled UAN application, from 16 to 27% of the initial 15 N applied was found in the organic N pool and only 1% as inorganic N[NH 4 +(NO 2 +NO 3 )-N]. After four seasons, residual 15 N in the organic N pool ranged from 13 to 24%. Less than 0.5% remained as inorganic N. Regression analyses indicated that about 5 kg 15 N ha -1 year -1 became available for both MP and RT systems with banded N, so the amounts were small. Total residual 15 N recovery by corn grain plus stover for three seasons ranged from 1.7 to 3.5%, and was greatest for spring-banded fertilizer. Because the amounts of residual 15 N utilized were too small to affect corn growth, this N source appears to be negligible when considering corn-N needs

  10. Earthworm populations are affected from Long-Term Crop Sequences and Bio-Covers under No-Tillage

    Science.gov (United States)

    Earthworms are crucial for improving soil biophysical properties in cropping systems. Consequently, effects of cropping rotation and bio-covers were assessed on earthworm populations under no-tillage sites. Main effects of 6 different cropping sequences [corn (Zea mays), cotton (Gossypium hirsutum),...

  11. Influence of fertilizer placement on gaseous loss (CO2, CH4, N2O, and NH4) under different tillage management practices in a corn cropping system

    Science.gov (United States)

    Tillage and fertilizer application methods could alter plant yield and quality of corn production. Thus, a field experiment was conducted at the Sand Mountain Research Station located in the Appalachian Plateau region of Northeast Alabama on a Hartsells fine sandy loam to evaluate tillage (conventi...

  12. Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.

    1996-01-01

    We evaluated water-level fluctuation (maximum water depth - minimum water depth/catchment size) in 12 temporary, 12 seasonal, and 12 semipermanent wetlands equally distributed among landscapes dominated by tilled agricultural lands and landscapes dominated by grassland. Water levels fluctuated an average of 14.14 cm in wetlands within tilled agricultural landscapes, while water levels in wetlands within grassland landscapes fluctuated an average of only 4.27 cm. Tillage reduces the natural capacity of catch meets to mitigate surface flow into wetland basins during precipitation events, resulting in greater water-level fluctuations in wetlands with tilled catchments. In addition, water levels in temporary and seasonal wetlands fluctuated an average of 13.74 cm and 11.82 cm, respectively, while water levels in semipermanent wetlands fluctuated only 2.77 cm. Semipermanent wetlands receive a larger proportion of their water as input from ground water than do either temporary or seasonal wetlands. This input of water from the ground has a stabilizing effect on water-levels of semipermanent wetlands. Increases in water-level fluctuation due to tillage or due to alteration of ground-water hydrology may ultimately affect the composition of a wetland's flora and fauna. In this paper, we also describe an inexpensive device for determining absolute maximum and minimum water levels in wetlands.

  13. Combining Old and New Stable Isotope Techniques to Evaluate the Impact of Conservation Tillage on Soil Organic Carbon Dynamics and Stability

    International Nuclear Information System (INIS)

    De Clercq, T.; Xu, H.; Mercklx, R.; Heiling, M.; Dercon, G.; Resch, C.

    2016-01-01

    Soil organic matter (SOM) is a major carbon pool. It is a crucial factor for soil quality including several soil physical properties and a major nutrient source for crops. It also plays a significant role in the global carbon cycle. Soils can act as a carbon sink or source depending on land use and agricultural management practices. Some practices such as conservation tillage or no-tillage could increase SOM stocks, particularly in the topsoil, but in the long term it remains to be seen if and how this SOM is stabilized (De Clercq et al., 2015; Govaerts et al., 2009). In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and the impact of different management and environmental factors, information on SOM stability and mean residence time (MRT) is required. However, this information on SOM stability and MRT is expensive to determine via radiocarbon dating, precluding a wide spread use of stability measurements in soil science. But alternative methods based on stable carbon and nitrogen isotopes, can provide this information at a fraction of the cost

  14. Effect of no-tillage crop rotation systems on nutrient status of a rhodic ...

    African Journals Online (AJOL)

    In this study the effects of no-tillage and eight crop rotations (established in 1985) on chemical properties of a Rhodic Ferralsol (Typic Haplorthox, Soil Taxonomy) and on nutrient uptake by maize (Zea mays L.) and soybean (Glycine max L. Merrill) leaves were assessed in the state of São Paulo, Brazil, using a randomized ...

  15. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.J.; Goede, de R.G.M.

    2016-01-01

    Though soil physical and soil biological properties are intrinsically linked in the soil environment they are often studied separately. This work adds value to analyses of soil biophysical quality of tillage systems under organic and conventional farming systems by correlating physical and

  16. Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage.

    Science.gov (United States)

    Gong, Daozhi; Hao, Weiping; Mei, Xurong; Gao, Xiang; Liu, Qi; Caylor, Kelly

    2015-01-01

    Effects of agricultural practices on ecosystem carbon storage have acquired widespread concern due to its alleviation of rising atmospheric CO2 concentrations. Recently, combining of furrow-ridge with plastic film mulching in spring maize ecosystem was widely applied to boost crop water productivity in the semiarid regions of China. However, there is still limited information about the potentials for increased ecosystem carbon storage of this tillage method. The objective of this study was to quantify and contrast net carbon dioxide exchange, biomass accumulation and carbon budgets of maize (Zea maize L.) fields under the traditional non-mulching with flat tillage (CK) and partial plastic film mulching with furrow-ridge tillage (MFR) on the China Loess Plateau. Half-hourly net ecosystem CO2 exchange (NEE) of both treatments were synchronously measured with two eddy covariance systems during the growing seasons of 2011 through 2013. At same time green leaf area index (GLAI) and biomass were also measured biweekly. Compared with CK, the warmer and wetter (+1.3°C and +4.3%) top soil at MFR accelerated the rates of biomass accumulation, promoted greater green leaf area and thus shortened the growing seasons by an average value of 10.4 days for three years. MFR stimulated assimilation more than respiration during whole growing season, resulting in a higher carbon sequestration in terms of NEE of -79 gC/m2 than CK. However, after considering carbon in harvested grain (or aboveground biomass), there is a slight higher carbon sink (or a stronger carbon source) in MFR due to its greater difference of aboveground biomass than that of grain between both treatments. These results demonstrate that partial plastic film mulched furrow-ridge tillage with aboveground biomass exclusive of grain returned to the soil is an effective way to enhance simultaneously carbon sequestration and grain yield of maize in the semiarid regions.

  17. Evapotranspiration in winter wheat under different grazing and tillage practices in the southern Great Plains

    Science.gov (United States)

    Precipitation in the Southern Great Plains (SGP) is highly variable both spatially and temporally with recurring periods of severe drought. Winter wheat (Triticum aestivum L.) – summer fallow system with conventional tillage is the principal dryland cropping system in this region for both grazing an...

  18. Descompactación de suelos franco limosos en siembra directa: efectos sobre las propiedades edáficas y los cultivos Decompaction of no-tillage soils: effects on soil properties and crops

    Directory of Open Access Journals (Sweden)

    Carina R Álvarez

    2009-12-01

    Full Text Available La descompactación mecánica puede mejorar las condiciones físicas de suelos franco limosos que sufren compactación en siembra directa. Los objetivos del presente trabajo fueron: 1-evaluar la influencia de la descompactación mecánica (e.g. paratill o cultivie sobre algunas propiedades físicas y químicas de suelos manejados bajo siembra directa; 2- cuantificar el impacto de la descompactación sobre el rendimiento de maíz; 3-evaluar la perdurabilidad de la descompactación sobre variables físicas edáficas, desarrollo de raíces y rendimiento de los cultivos implantados luego del maíz. Durante la campaña 2006/07 se condujeron seis ensayos de campo en lotes de producción de maíz ubicados en la Pampa Ondulada. Se compararon parcelas apareadas en siembra directa continua (TEST vs. parcelas con pasaje de equipo descompactador a 30 cm (DESC. La resistencia a la penetración disminuyó 37 y 24% (p Mechanical decompaction may improve the physical properties of no-tillage silty loam soils. The aims of this study were to: 1- evaluate the influence of mechanical tilling (e.g. paratill or cultivie on soil physical (gravimetric water content, bulk density, penetration resistance and infiltration rate and chemical (nitrate content properties in no-tillage soils; 2- quantify the impact of soil decompaction on maize yield; and 3- evaluate the persistence of soil compaction alleviation on soil penetration resistance, root abundance and crop yields after maize. Six field experiments were conducted in no-tillage maize plots in the Rolling Pampa region. Paired plots were compared: continuous no tillage (TEST vs. soil compaction alleviation by deep tillage (DESC. Soil penetration resistance decreased by 37and 24 % (p < 0.05 at the 0-25 cm and 0-40 cm soil layers, respectively, and the soil infiltration rate increased (p= 0.07 from TEST to DESC at the V5-V6 maize growing stage. No deep tillage effect was observed on soil bulk density and nitrate content

  19. Efeito de três sistemas de preparo do solo sobre a rentabilidade econômica da mandioca (Manihot esculenta Crantz = Effects of three tillage systems on economic profitability of cassava crop (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    Manoel Genildo Pequeno

    2007-07-01

    Full Text Available O objetivo deste estudo foi avaliar a rentabilidade econômica da cultura damandioca em três sistemas de preparo de solo durante os anos agrícolas de 1999/2000 a2002/2003, em Araruna, Estado do Paraná. O delineamento experimental utilizado foi o deblocos completos casualizados, com oito repetições. Os tratamentos foram constituídos deplantio direto; preparo mínimo (escarificação e preparo convencional (aração + gradagemniveladora. A força de tração e o consumo de combustível requeridos nas operações depreparo do solo e de plantio da mandioca foram maiores no sistema de preparoconvencional. Os maiores custos com combustível, preparo do solo e plantio da mandioca, ecusto operacional relativo às culturas de inverno e à cultura da mandioca, bem como a maiorrenda bruta foram observados no sistema de preparo convencional, seguidos pelo preparomínimo e plantio direto. A maior renda líquida e a melhor relação benefício/custo foramobservadas no sistema de preparo convencional que proporcionou maior produtividade deraízes tuberosas em relação aos sistemas de preparo mínimo e de plantio direto.The objective of this paper was to evaluate the economicprofitability of cassava crop submitted to the three soil tillage systems during the years1999/2000 to 2002/2003, in Araruna, state of Parana. The treatments consisted of three soiltillage systems: no-tillage, minimum tillage using chiseling, and conventional tillage withmoldboard plow and disking, arranged in a randomized complete blocks with eightreplications. The traction strength and fuel consumption in the soil tillage and in the cassavasowed operation were more required in the conventional tillage system. The conventionaland the minimum tillage systems showed the highest costs for fuel, soil tillage and cassavasowed. They also presented the highest gross income. The greatest net income and the bestbenefit/cost relation were observed in the conventional tillage system, which

  20. Atmospheric LiDAR coupled with point measurement air quality samplers to measure fineparticulate matter (PM) emissions from agricultural operations. Part 2 of the California 2007 - 2008 Tillage Campaigns: Spring 2008 Data Analysis

    Science.gov (United States)

    Concern with health effects resulting from PM10 exposure is drawing increased regulatory scrutiny and research toward local agricultural tillage operations. To investigate the control effectiveness of one of the current Conservation Management Practices (CMPs) written for agricul...

  1. Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations

    Science.gov (United States)

    The winter wheat (Triticum aestivum L.) summer fallow rotation typically practiced in the intermediate precipitation zone [300-450 mm (12-18 in)] of the inland Pacific Northwest has proven to be economically stable for producers in this region. However multiple tillage operations are used to control...

  2. Effect of tillage and crop residue management on nematode densities on corn.

    Science.gov (United States)

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P cover crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  3. Retenção e disponibilidade de água às plantas, em solo sob plantio direto e preparo convencional Retention and availability of water to plants in soils under no-tillage and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    Genei A. Dalmago

    2009-12-01

    mesoporosity showed an exponential distribution in NT, with highest values for largest mesopores, but it tended to a normal curve in CT. Considering the entire soil profile, the soil water storage was about 53% higher in CT than in NT. However, close to the soil surface (at 2.5 cm deep it was 80% higher in NT than in CT. From the soil surface to 15 cm deep, 70% of the available water was retained above the limit of -80 kPa in NT, in comparison to 50% in CT. The no-tillage system increases the water availability to plants and reduces the energy of retention in the upper soil layers, in comparison to the conventional tillage.

  4. Minidisk against ring infiltrometer measurements to assess the saturated hydraulic conductivity in Mediterranean vineyards (Vitis vinifera L.) under Tillage and No-Tillage managements

    Science.gov (United States)

    Burguet, Maria; Di Prima, Simone; Prosdocimi, Massimo; Taguas, Encarnación V.; Cerdà, Artemi

    2016-04-01

    Vineyard is one of the main crops in the Mediterranean region and it forms, along with wheat and olive, what it is known as the 'Mediterranean triad'. According to the Food and Agriculture Organization of the United Nations (FAO, 2010), the European Union has 4.5 million hectares of land occupied by vineyards. Out of all, the Mediterranean region has the largest total area of vineyards. France, Italy and Spain together are responsible for 48% of global wine production. In Spain, the total surface occupied by vineyards is 1.048.104 ha (Ministry of Agriculture, Food and Environment, 2009), which is translated in a 13% of world total (Wine Institute, 2014). In terms of environmental factors, vineyards are a source of sediments and water due to the tillage and the soil compaction, the lack of vegetation cover and the soil organic matter depletion (Novara et al., 2011; Lieskovsky' et al., 2014; Rodrigo Comino et al., 2015). The infiltration capacity of soils is a key component of the hydrological cycle that can control the non-sustainable rates of runoff and erosion (Cerdà, 1997,1999). In this way research focused on the soil hydrological properties will bring knowledge on how to control the high erosion rates (Cammeraat et al., 2010). Saturated hydraulic conductivity, ks, is the most determining physical parameter in terms of quantifying the components of the global water balance as it interferes in all those processes which are related with water and solute movement and transport through the soil. ks values are required for an adequate modelling of the infiltration and runoff generation processes. However, it is a variable with high variability when it comes to agricultural soils due to different soil managements and the fact that the soil is not a continuous media (Polo et al., 2003). For instance, Leonard and Andrieux (1998) reported in a study done in untilled vineyards in France high differences in infiltration rates through the use of rainfall simulations, which

  5. Adsorption of P and forms of iron in no-tillage areas in the ‘Cerrado’ biome

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2014-11-01

    Full Text Available The objective of this study was to evaluate the forms of iron extracted as sodium dithionite-citrate-bicarbonate (Fed, acid ammonium oxalate (Feo and sodium pyrophosphate (Fep and the relationship between these variables and the total organic carbon content and maximum adsorption capacity of P (MACP. The areas selected for this study had been using a no-tillage system (NTS for varying periods of time: 3 years (NTS3, 15 years (NTS15 and 20 years (NTS20. These areas were compared with an area of native ‘Cerrado’ (CE and a pasture area planted with Brachiaria decumbens (PA. The soil of the areas studied was classified as dystrophic oxisol. In each area, samples were collected at 0–5 cm and 5–10 cm. A correlation was observed between the C content and the different forms of Fe in the areas studied. There was a significant positive correlation between the carbon content and the forms of iron (Feo, Feo/Fed and Fep and a negative correlation with the level of Fed. The areas of CE and PA had the highest MACP, which diminished as the amount of time of NTS use increased.

  6. Produtividade e qualidade de frutos de melão em resposta à cobertura do solo com plástico preto e ao preparo do solo Yield and quality of melon fruits in response to plastic mulch and soil tillage

    Directory of Open Access Journals (Sweden)

    Neyton O. Miranda

    2003-09-01

    influenced by tillage depth. While deep tillage increased yield of export type melons, it reduced internal market yield.

  7. Carbon Storage and Carbon Dioxide Emission as Influenced by Long-term Conservation Tillage and Nitrogen Fertilization in Corn-Soybean Rotation

    Directory of Open Access Journals (Sweden)

    Rahmat Saleh

    2012-01-01

    Full Text Available Although agriculture is a victim of environmental risk due to global warming, but ironically it also contributes toglobal greenhouse gas (GHG emission. The objective of this experiment was to determine the influence of long-termconservation tillage and N fertilization on soil carbon storage and CO2 emission in corn-soybean rotation system. Afactorial experiment was arranged in a randomized completely block design with four replications. The first factorwas tillage systems namely intensive tillage (IT, minimum tillage (MT and no-tillage (NT. While the second factorwas N fertilization with rate of 0, 100 and 200 kg N ha-1 applied for corn, and 0, 25, and 50 kg N ha-1 for soybeanproduction. Samples of soil organic carbon (SOC after 23 year of cropping were taken at depths of 0-5 cm, 5-10cm and 10-20 cm, while CO2 emission measurements were taken in corn season (2009 and soybean season (2010.Analysis of variance and means test (HSD 0.05 were analyzed using the Statistical Analysis System package. At 0-5 cm depth, SOC under NT combined with 200 kg N ha-1 fertilization was 46.1% higher than that of NT with no Nfertilization, while at depth of 5-10 cm SOC under MT was 26.2% higher than NT and 13.9% higher than IT.Throughout the corn and soybean seasons, CO2-C emissions from IT were higher than those of MT and NT, whileCO2-C emissions from 200 kg N ha-1 rate were higher than those of 0 kg N ha-1 and 100 kg N ha-1 rates. With any Nrate treatments, MT and NT could reduce CO2-C emission to 65.2 %-67.6% and to 75.4%-87.6% as much of IT,respectively. While in soybean season, MT and NT could reduce CO2-C emission to 17.6%-46.7% and 42.0%-74.3% as much of IT, respectively. Prior to generative soybean growth, N fertilization with rate of 50 kg N ha-1could reduce CO2-C emission to 32.2%-37.2% as much of 0 and 25 kg N ha-1 rates.

  8. Effect of tillage and rainfall on transport of manure-applied Cryptosporidium parvum oocysts through soil.

    Science.gov (United States)

    Ramirez, Norma E; Wang, Ping; Lejeune, Jeff; Shipitalo, Martin J; Ward, Lucy A; Sreevatsan, Srinand; Dick, Warren A

    2009-01-01

    Most waterborne outbreaks of cryptosporidiosis have been attributed to agricultural sources due to the high prevalence of Cryptosporidium oocysts in animal wastes and manure spreading on farmlands. No-till, an effective conservation practice, often results in soil having higher water infiltration and percolation rates than conventional tillage. We treated six undisturbed no-till and six tilled soil blocks (30 by 30 by 30 cm) with 1 L liquid dairy manure containing 10(5) C. parvum oocysts per milliliter to test the effect of tillage and rainfall on oocyst transport. The blocks were subjected to rainfall treatments consisting of 5 mm or 30 mm in 30 min. Leachate was collected from the base of the blocks in 35-mL increments using a 64-cell grid lysimeter. Even before any rain was applied, approximately 300 mL of water from the liquid manure (30% of that applied) was transported through the no-till soil, but none through the tilled blocks. After rain was applied, a greater number and percentage of first leachate samples from the no-till soil blocks compared to the tilled blocks tested positive for Cryptosporidium oocysts. In contrast to leachate, greater numbers of oocysts were recovered from the tilled soil, itself, than from the no-till soil. Although tillage was the most important factor affecting oocyst transport, rainfall timing and intensity were also important. To minimize transport of Cryptosporidium in no-till fields, manure should be applied at least 48 h before heavy rainfall is anticipated or methods of disrupting the direct linkage of surface soil to drains, via macropores, need to be used.

  9. Matéria orgânica e aumento da capacidade de troca de cátions em solo com argila de atividade baixa sob plantio direto Soil organic matter and cation exchange capacity increase in a low activity clay soil under no-tillage system

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2003-12-01

    Full Text Available O sistema de manejo afeta a matéria orgânica do solo, o que pode ter expressivo efeito na CTC de solos com argila de atividade baixa. Neste estudo, avaliou-se o efeito da utilização durante 21 anos do sistema plantio direto (SPD sobre os estoques de carbono orgânico (CO, bem como a sua relação com o aumento da CTC de um Latossolo bruno (629 g kg-1 de argila, em Guarapuava, PR. O SPD promoveu acúmulo de CO na camada superficial do solo (0-6cm, o que refletiu-se num aumento de 2,63t ha-1 no estoque de CO, na camada de 0-20cm, em comparação ao preparo convencional. A baixa taxa de acúmulo de CO (0,12t ha-1 ano-1 foi relacionada à alta estabilidade física da matéria orgânica neste solo argiloso e oxídico. Apesar do pequeno acúmulo de CO no solo sob SPD, este teve reflexo positivo na CTC do solo, com um aumento médio, na camada de 0-8cm, de 15,2mmol c kg-1 na CTC efetiva, e de 20,7mmol c kg-1 na CTC a pH 7,0, em comparação ao solo em preparo convencional. Os resultados obtidos reforçam a importância do SPD quanto ao seu efeito nos estoques de matéria orgânica e, em consequência, na CTC de solos tropicais e subtropicais com predominância de argila de atividade baixa.Soil management affects the organic matter stocks, and thus the CEC especially in low activity clay soils. The main goal of this study was to evaluate the long-term (21 years effect of the no-tillage on soil organic carbon (SOC stocks and its relationship with CEC increase in a clayey Oxisol (Hapludox, in Guarapuava (PR, Southern Brazil. No-tillage soil had only 2.63t ha-1 more SOC than conventionally tilled soil at 0-20cm, and the highest net accumulation occurred in soil surface layers (0-6cm. The low accumulation rate of SOC in the no-tilled soil (0,12t ha-1 yr-1 was related to the high physical stability of soil organic matter in this clayey Oxisol. Despite the small effect on SOC contents, the no-tilllage had an expressive influence on the CEC of 0-8cm soil

  10. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  11. Soil carbon storage and stratification under different tillage/residue-management practices in double rice cropping system

    NARCIS (Netherlands)

    Chen, Z.; Zhang, H.; dikgwatlhe, S.B.; Xue, J.; Qiu, K.; Tang, H.; Chen, F.

    2015-01-01

    The importance of soil organic carbon (SOC) sequestration in agricultural soils as climate-change-mitigating strategy has become an area of focus by the scientific community in relation to soil management. This study was conducted to determine the temporal effect of different tillage systems and

  12. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    DEFF Research Database (Denmark)

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    -toxin producing transgenic maize line MON810 was studied for 1 year. At a Danish study site, Foulum (Jutland), one year of Bt corn was followed by 2 years of herbicide tolerant corn. At the French study site the most prominent effects observed were due to the tillage method where RT significantly reduced...

  13. Analysis and evaluation of tillage on an alfisol in a semi-arid tropical region of India

    NARCIS (Netherlands)

    Klaij, M.C.

    1983-01-01

    Tillage field experiments were conducted on Alfisols in a semi-arid tropical environment in India. The research was conducted within the framework of the Farming Systems Research Program of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

    To put the

  14. Erosion and sediment deposition evaluation on slopes under different tillage systems in the Cerrado region using the {sup 137}Cs fallout technique; Analise da distribuicao do fallout do {sup 137}Cs na avaliacao da erosao e deposicao de sedimentos em sistemas de manejo de solo sob Cerrado

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Robson Clayton Jacques

    2010-07-01

    In Brazil, the expansion of agricultural areas causes several problems on natural resources. With the increasing occupation of the Cerrado region by agriculture, a series of environmental problems like deforestation, soil erosion and soil compaction are appearing and causing radical transformations in the natural landscape due to removing almost all native vegetation. The conventional tillage system (CTS) is considered an inadequate form of soil management for its frequently irremediable consequences of soil compaction and soil erosion, and the no till system (NTS) makes the maintenance of the soil conditions possible, letting them close to the natural environment, thus reducing rates of soil erosion. The objective of this work was to evaluate the efficiency of riparian forests in the retention of sediments originated for three different tillage systems, through the fallout {sup 137}CS redistribution technique, the Universal Soil Loss Equation (USLE) and some physical and chemical parameters that indicate the structural conditions of the soils of Goiatuba and Jandaia-GO. In the three areas, soil profiles were collected in three layers of 20 cm (0-20, 20-40 and 40-60 cm) at distinct points located along linear transects in the direction of the maximum slope until the riparian forest. In the riparian forest of each area, trenches were opened and soil was sampled to evaluate the activity of {sup 137}Cs and the physical and chemical parameters of soil. Detection of the activity of {sup 137}Cs was made with a gamma ray detector model (GEM-20180P, EG and ORTEC) connected to a multichannel analyzer. The comparison of averages was made using the Tukey test at 5% level of significance. The. results indicated that, the three soil tillage systems presented high rates of soil erosion and deposition of sediments and the riparian forest of the areas under CTS, NTS and pasture, located downstream received great amounts of sediments, and that only the riparian forest of CTS was

  15. Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage.

    Directory of Open Access Journals (Sweden)

    Daozhi Gong

    Full Text Available Effects of agricultural practices on ecosystem carbon storage have acquired widespread concern due to its alleviation of rising atmospheric CO2 concentrations. Recently, combining of furrow-ridge with plastic film mulching in spring maize ecosystem was widely applied to boost crop water productivity in the semiarid regions of China. However, there is still limited information about the potentials for increased ecosystem carbon storage of this tillage method. The objective of this study was to quantify and contrast net carbon dioxide exchange, biomass accumulation and carbon budgets of maize (Zea maize L. fields under the traditional non-mulching with flat tillage (CK and partial plastic film mulching with furrow-ridge tillage (MFR on the China Loess Plateau. Half-hourly net ecosystem CO2 exchange (NEE of both treatments were synchronously measured with two eddy covariance systems during the growing seasons of 2011 through 2013. At same time green leaf area index (GLAI and biomass were also measured biweekly. Compared with CK, the warmer and wetter (+1.3°C and +4.3% top soil at MFR accelerated the rates of biomass accumulation, promoted greater green leaf area and thus shortened the growing seasons by an average value of 10.4 days for three years. MFR stimulated assimilation more than respiration during whole growing season, resulting in a higher carbon sequestration in terms of NEE of -79 gC/m2 than CK. However, after considering carbon in harvested grain (or aboveground biomass, there is a slight higher carbon sink (or a stronger carbon source in MFR due to its greater difference of aboveground biomass than that of grain between both treatments. These results demonstrate that partial plastic film mulched furrow-ridge tillage with aboveground biomass exclusive of grain returned to the soil is an effective way to enhance simultaneously carbon sequestration and grain yield of maize in the semiarid regions.

  16. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Operations included in âcultivation and tillage of the soil.â 780.110 Section 780.110 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSIN...

  17. Sorghum-sudangrass responses to nitrogen and tillage following polyphenol-containing legumes, alfalfa, reed canarygrass, and kale

    Science.gov (United States)

    The collective effects of protein-binding polyphenols (PBP), preceding forage type, tillage, and fertilizer N on soil NO3-N production, N uptake, and dry matter yield (DMY) of N-demanding crops such as sorghum-sudangrass [SS, Sorghum bicolor (L.) Moench x S. sudanese Piper] are poorly understood. Th...

  18. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  19. Economic analysis of nitrogen fertilization in winter bean plant under no-tillage system

    Directory of Open Access Journals (Sweden)

    Michelle Traete Sabundjian

    2014-09-01

    Full Text Available With the expansion and diversity of the no-tillage system, it is necessary to evaluate the economic benefits generated throughout the production cycle, especially those related to remnants of previous crops and nitrogen fertilizer management of succeeding crops. This study aimed to evaluate the economic viability of four cover nitrogen doses on winter bean grain yield grown under no-tillage system after different crops. The experimental design was randomized blocks with four replications, in a 8x4 factorial scheme, with 32 treatments consisting of a combination of crop remnants (mayze; mayze - Azospirillum brasilense; Urochloa ruziziensis; Urochloa ruziziensis - Azospirillum brasilense; mayze + U. ruziziensis; mayze -A. brasilense + U. ruziziensis; mayze + U. ruziziensis - A. brasilense; mayze -A. brasilense + U. ruziziensis - A. brasilense and cover nitrogen doses (0 kg ha-1, 30 kg ha-1, 60 kg ha-1 and 90 kg ha-1. It was possible to conclude that the highest grain yield of winter bean plants irrigated by aspersion was obtained with the use of 90 kg ha-1 of cover nitrogen in succession to Urochloa ruziziensis without the inoculation of Azospirillum brasilense. In order to improve profits, it is recommended to apply 90 kg ha-1 of cover nitrogen to bean crops succeeding the other crops, except for inoculated Urochloa ruziziensis.

  20. PORE SIZE DISTRIBUTION AND SOIL HYDRO PHYSICAL PROPERTIES UNDER DIFFERENT TILLAGE PRACTICES AND COVER CROPS IN A TYPIC HAPLUSULT IN NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2017-05-01

    Full Text Available Tillage practices influence soil physical, chemical and biological qualities which in-turn alters plant growth and crop yield. In the Northern Guinea Savanna (NGS ecological zone of Nigeria, agricultural production is mainly constrained by low soil nutrient and water holding capacity, it is therefore, imperative to develop appropriate management practices that will give optimal soil hydro-physical properties for proper plant growth, effective soil and water management and environmental conservation. This study investigated the effect of three tillage practices (no till, reduced till and conventional till and four cover crops (Centrosema pascuorum, Macrotyloma uniflorum, Cucurbita maxima and Glyine max and a bare/control (no cover crop on some soil physical properties of a Typic Haplusult during the rainy seasons of 2011, 2012 and 2013 in Samaru, NGS ecological zone of Nigeria. The field trials were laid out in a split plot arrangement with tillage practices in the main plots and cover crops in the subplots, all treatments were replicated three times. Auger and core soil samples were collected at the end of each cropping season each year in three replicates from each treatment plot at four depths (0-5, 5-10, 10-15 and 15-20 cm. Particle size distribution, bulk density, total pore volume and water retention at various soil matric potentials were determined using standard methods. Data obtained were compared with optimum values and fitted into a RETC computer code for quantifying soil hydraulic behavior and physical quality. Results showed that different tillage practices had varied effect on soil physical properties. No-till had the highest water holding capacity at most suction points evaluated, it had 4.3 % and 12.9 % more soil moisture than the reduced till  and conventionally tilled systems across all matric potentials while Centrosema pascuorum (3.1% and Cucurbita maxima (5.5% were best among evaluated cover crops in retaining soil moisture

  1. Atributos físicos do solo em sistemas de manejo de solo e de rotação de culturas Soil tillage and crop rotation systems on the soil physical attributes

    Directory of Open Access Journals (Sweden)

    Silvio Tulio Spera

    2009-01-01

    attributes were assessed after twenty years of implementation (1985 to 2005 on a typical Dystrophic Red Latosol (Rodic Hapludox located in Passo Fundo, Rio Grande do Sul State, Brazil. Four soil tillage systems were evaluated: 1 no-tillage; 2 minimum tillage; 3 conventional tillage using a disk plow plus disk harrow, and 4 conventional tillage using a moldboard plow plus disk harrow. Three crop rotation systems were evaluated: I (wheat/soybean, II (wheat/soybean and common vetch/corn or sorghum, and III (wheat/soybean, common vetch/corn or sorghum and white oats/soybean. A randomized complete block design, with split-plots and three replicates, was used. The main plots were formed by the soil tillage systems, while split-plots were composed by crop rotation systems. As control, soil samples were collected in a subtropical forest fragment adjacent to the experiment. Soil tillage systems and crop rotation systems influenced soil physical parameters when compared to the samples collected in a fragment of subtropical forest. During four years (2001 to 2005 the physical attributes were altered among different soil tillage management. The no-tillage system (PD presented higher soil bulk density and microporosity in comparison to the other systems, mainly in 0.10 to 0.15 m layer, characterizing high soil compaction levels. Crop systems did not promote favorable changes in physical attributes independent of the type of soil management.

  2. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    higher in cotton fields previously planted in crimson clover compared with control cotton fields for all combined sampling dates in 2001. Intercropping cotton in live strips of cover crop was probably responsible for the relay of G. punctipes onto cotton in these crimson clover fields. Density of O. insidiosus was not significantly different between cover crop and control cotton fields. Lady beetles seemed to relay from cover crops into cotton. Conservation of the habitat of fire ants during planting probably was responsible for the higher density of red imported fire ants observed in all conservation tillage cotton fields relative to control cotton fields. Reduction in the number of times in which economic thresholds for heliothines were exceeded in crimson clover and rye compared with control fields indicated that the buildup of predaceous fire ants and G. punctipes in these cover crops subsequently resulted in reduction in the level of heliothines in conservation tillage cotton with these cover crops compared with conventional tillage cotton without cover crops.

  3. Farm-level economics of innovative tillage technologies: the case of no-till in the Altai Krai in Russian Siberia.

    Science.gov (United States)

    Bavorova, Miroslava; Imamverdiyev, Nizami; Ponkina, Elena

    2018-01-01

    In the agricultural Altai Krai in Russian Siberia, soil degradation problems are prevalent. Agronomists recommend "reduced tillage systems," especially no-till, as a sustainable way to cultivate land that is threatened by soil degradation. In the Altai Krai, less is known about the technologies in practice. In this paper, we provide information on plant cultivation technologies used in the Altai Krai and on selected factors preventing farm managers in this region from adopting no-till technology based on our own quantitative survey conducted across 107 farms in 2015 and 2016. The results of the quantitative survey show that farm managers have high uncertainty regarding the use of no-till technology including its economics. To close this gap, we provide systematic analysis of factors influencing the economy of the plant production systems by using a farm optimization model (linear programming) for a real farm, together with expert estimations. The farm-specific results of the optimization model show that under optimal management and climatic conditions, the expert Modern Canadian no-till technology outperforms the farm min-till technology, but this is not the case for suboptimal conditions with lower yields.

  4. TILLAGE OPERATIONS IN AGRICULTURAL LANDSCAPES IN THE CONTEXT OF GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    G. N. Gasanov

    2016-01-01

    Full Text Available Aim. The aim was to identify the possibility of recycling the carbon in the atmosphere and the efficient use of photosynthetically active radiation (PAR coming to the soil surface by means of the formation of highly natural phytocenosis in the back half of the summer and to minimize soil preparation period for the next crop in the rotation.Methods. We studied two systems of soil management in the stubble period, they cause: Firstly, CO2 emissions from the soil under the existing soil cultivation methods for crop rotation in the region. Secondly, the accumulation of CO2 in the organic mass of natural phytocenosis followed by plowing the green mass in the stage of milk-wax ripeness of the seeds – the dominants, and minimizing the period of preparing the ground for the next crop rotation.Result. According to the obtained data, it shows that a nutritious regime of soil under the winter wheat during plowing of green mass of natural phytocenosis is substantially improved compared to the tillage system. Similar findings were obtained by other researchers that justify the fact that the green manure crops, in this case natural phytocoenosis, throughout its life involves hard compound subarable soil layers in the biological cycle which is used to create organic matter.Conclusion. We provide a scientific rationale for the inexpediency of the use of existing tillage systems in agricultural landscapes, which are causing systematic destruction of weed - field vegetation during the periods free from agrocenoses.

  5. Response of a two-year sugar beet-sweet sorghum rotation to an agronomic management approach diversified by soil tillage and nitrogen fertilisation

    Directory of Open Access Journals (Sweden)

    A. Domenico Palumbo

    2014-08-01

    Full Text Available Conservative agriculture and nitrogen fertilisation have been evaluated for the purpose of assessing their impact on the sustainability of a cropping system based on a two-year rotation with two crops considered for the bio-ethanol supply chain: sugar beet (Beta vulgaris L. subsp. vulgaris and sweet sorghum (Sorghum bicolor L. Moench. The experimental activity started in 2009 in Foggia (Apulia, southern Italy. We discuss the results obtained in the 2010-2011 period. Soil minimum tillage (MT vs no tillage (NT combined with two doses of nitrogen fertilisation (75 and 150 kg ha–1 of mineral nitrogen as ammonium nitrate were compared. The experimental system, which is still operational (soil tillage plus nitrogen fertilisation, was arranged with a split-plot design with three replicates. Treatments were applied on the same plots every year with both crops present at the same time. At the first harvest in 2010, no difference was observed. As to the second year, the comparison between NT vs MT treatments showed that sugar beet had lower total yield (35 vs 42 t ha–1, dry biomass (10 vs 14 t ha–1, and sucrose yield (6.7 vs 8.2 t ha–1. Total soluble solids, on average 19%, were not influenced by the experimental treatments. Nitrogen (N control was less productive than the fertilised treatments (average between N75 and N150 in terms of total fresh root yield (32 vs 42 t ha–1, dry biomass (10 vs 14 t ha–1, and sucrose yield (6.0 vs 8.1 t ha–1. As with sugar beet, during the second year, also sweet sorghum sown in NT vs MT plots had a reduced yield, although the difference was more marked for fresh biomass (–35% than for dry biomass (–20%. No interaction in terms of soil tillage nitrogen fertilisation occurred. In summary, in the first two-year period (2010-2011 of the experimental trial, no tillage soil management showed decreased yields of both crops. Sugar beet displayed a higher sensitivity to the lack of nitrogen supply than sweet

  6. Inversion tillage, high residue covers, and different herbicide regimes for palmer amaranth control in liberty link systems

    Science.gov (United States)

    Glyphosate-resistant Palmer amaranth is adversely affecting cotton production in the Southeast US. A field experiment was established in fall 2008 at the E.V. Smith Research Center, Field Crops Unit near Shorter, AL, to investigate the role of inversion tillage, high residue cover crops, and differ...

  7. Chaos emerging in soil failure patterns observed during tillage: Normalized deterministic nonlinear prediction (NDNP) and its application.

    Science.gov (United States)

    Sakai, Kenshi; Upadhyaya, Shrinivasa K; Andrade-Sanchez, Pedro; Sviridova, Nina V

    2017-03-01

    Real-world processes are often combinations of deterministic and stochastic processes. Soil failure observed during farm tillage is one example of this phenomenon. In this paper, we investigated the nonlinear features of soil failure patterns in a farm tillage process. We demonstrate emerging determinism in soil failure patterns from stochastic processes under specific soil conditions. We normalized the deterministic nonlinear prediction considering autocorrelation and propose it as a robust way of extracting a nonlinear dynamical system from noise contaminated motion. Soil is a typical granular material. The results obtained here are expected to be applicable to granular materials in general. From a global scale to nano scale, the granular material is featured in seismology, geotechnology, soil mechanics, and particle technology. The results and discussions presented here are applicable in these wide research areas. The proposed method and our findings are useful with respect to the application of nonlinear dynamics to investigate complex motions generated from granular materials.

  8. Actividad radical, removilización y absorción de N en trigo en postantesis bajo dos sistemas de labranza y fertilización nitrogenada Postanthesis root activity, removilisation and N absortion in wheat under two tillage systems and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    S.I. Golik

    2007-06-01

    Full Text Available El objetivo del trabajo fue analizar la actividad radical y su relación con la acumulación, removilización y absorción de N en trigo durante postantesis bajo dos sistemas de labranza y distintas dosis de fertilización nitrogenada. La mayor acumulación de N bajo la labranza convencional se tradujo en un mayor aporte de N al grano (10,36 g m- 2 en 2002 y 10,19 g m- 2 en 2003 y en un mayor rendimiento (485,78 g m- 2 en 2002 y 468,2 g m- 2 en 2003. La siembra directa no presentó diferencias con la labranza convencional en el N absorbido postantesis, pero sí en el removilizado. La fertilización aumentó el N acumulado en cada etapa fenológica, el N removilizado y el N absorbido postantesis. La materia seca radical disminuyó desde antesis hacia madurez. No obstante su tasa de absorción específica de N (SARn se mantuvo, lo que sugiere que el N acumulado en el grano no sólo proviene del N removilizado sino también del absorbido postantesis. Durante el llenado de granos la MSR no mostró relación con la tasa de absorción de N, pero sí lo hizo su SARn (r= 0,99** y 0,97 ** para 2002 y 2003 respectivamente. Los cultivares presentaron un comportamiento diferencial frente a los distintos tratamientos analizados.The objective of this work was to evaluate postanthesis root activity and N accumulation, removilisation and absorption under two tillage systems and three N fertilizer levels. The higher N accumulation under the conventional tillage resulted in a greater contribution of N to the grain (10,36 g m- 2 in 2002 and 10,19 g m- 2 in 2003 and a greater yield (485,78 g m- 2 in 2002 and 468,2 g m- 2 in 2003. No-tillage did not present differences with the conventional tillage in the postanthesis N absorbed, but in the remobilised N differences between two tillage systems were observed. The fertilization increased postanthesis N accumulated, N remobilised and N absorbed. Root dry matter decreased from anthesis towards maturity. However, its

  9. IMPACT OF TILLAGE, FERTILIZATION AND PREVIOUS CROP ON CHEMICAL PROPERTIES OF LUVISOL UNDER BARLEY FARMING SYSTEM

    Directory of Open Access Journals (Sweden)

    VLADIMÍR ŠIMANSKÝ

    2012-01-01

    Full Text Available In this paper, we report on the results of our investigation into the effects of different tillage, fertilization and previous crop on the chemical properties of loamy soil under spring barley and winter barley. We observed an increase of humus quality. More marked changes were in CT (r = 0.663, P < 0.05 than in RT (0.648, P < 0.05 and N fertilization (r = 0.678, P < 0.05 and SB (r = 0.761, P < 0.01 as well. A higher amount of TOC positively affected on parameters of soil sorptive complex in CT as well as in N and in SM treatments. A higher amount of TOC positively effected the portion of Ca2+ under CT (r= 0.795, P < 0.05, but also increased exchangeable Na+ (r= 0.830, P < 0.05 and K+ (r= 0.881, P < 0.01 in RT and N treatments.

  10. IMPACT OF TILLAGE, FERTILIZATION AND PREVIOUS CROP ON CHEMICAL PROPERTIES OF LUVISOL UNDER BARLEY FARMING SYSTEM

    Directory of Open Access Journals (Sweden)

    VLADIMÍR ŠIMANSKÝ

    2011-01-01

    Full Text Available In this paper, we report on the results of our investigation into the effects of different tillage, fertilization and previous crop on the chemical properties of loamy soil under spring barley and winter barley. We observed an increase of humus quality. More marked changes were in CT (r = 0.663, P < 0.05 than in RT (0.648, P < 0.05 and N fertilization (r = 0.678, P < 0.05 and SB (r = 0.761, P < 0.01 as well. A higher amount of TOC positively affected on parameters of soil sorptive complex in CT as well as in N and in SM treatments. A higher amount of TOC positively effected the portion of Ca2+ under CT (r= 0.795, P < 0.05, but also increased exchangeable Na+ (r= 0.830, P < 0.05 and K+ (r= 0.881, P < 0.01 in RT and N treatments.

  11. Chemical and physical soil attributes in integrated crop-livestock system under no-tillage

    OpenAIRE

    Silva,Hernani Alves da; Moraes,Anibal de; Carvalho,Paulo César de Faccio; Fonseca,Adriel Ferreira da; Caires,Eduardo Fávero; Dias,Carlos Tadeu dos Santos

    2014-01-01

    Although integrated crop-livestock system (ICLS) under no-tillage (NT) is an attractive practice for intensify agricultural production, little regional information is available on the effects of animal grazing and trampling, particularly dairy heifers, on the soil chemical and physical attributes. The objective of this study was to evaluate the effects of animal grazing on the chemical and physical attributes of the soil after 21 months of ICLS under NT in a succession of annual winter pastur...

  12. Rendimento de grãos de soja em função de diferentes sistemas de manejo de solo e de rotação de culturas Soybean yield associated to different soil tillage methods and crop rotations systems

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2006-02-01

    Full Text Available O objetivo do presente trabalho foi avaliar sistemas de manejo de solo e de rotação de culturas sobre o rendimento de grãos e componentes do rendimento de soja durante seis anos. Foram comparados quatro sistemas de manejo de solo - 1 plantio direto, 2 cultivo mínimo, no inverno e semeadura direta, no verão, 3 preparo convencional de solo com arado de discos, no inverno e semeadura direta, no verão e 4 preparo convencional de solo com arado de aivecas, no inverno e semeadura direta, no verão - e três sistemas de rotação de culturas: sistema I (trigo/soja, sistema II (trigo/soja e ervilhaca/milho ou sorgo e sistema III (trigo/soja, ervilhaca/milho ou sorgo e aveia branca/soja. O delineamento experimental foi de blocos ao acaso, com parcelas subdivididas e três repetições. O rendimento de grãos e o peso de 1.000 grãos de soja cultivada sob plantio direto e sob cultivo mínimo foi superior ao de soja cultivada sob preparo convencional de solo com arado de discos e com arado de aivecas. A maior estatura de plantas de soja ocorreu no plantio direto. O rendimento de grãos de soja cultivada após trigo, no sistema II, foi superior ao de soja cultivada após aveia branca e após trigo, no sistema III, e após trigo, no sistema I. O menor rendimento de grãos, peso de grãos por planta de soja e peso de 1.000 grãos ocorreu quando em monocultura (trigo/soja.The objective of this six-year study was to assess the soil tillage systems and crop rotation systems on soybean grain and yield components were evaluated at Embrapa Trigo in Passo Fundo, RS, Brazil. Four soil tillage systems - 1 no-tillage, 2 minimum tillage in winter and no-tillage in summer, 3 conventional tillage with disk plow in winter and no-tillage in summer, and 4 tillage using a moldboard plow in winter and no-tillage in summer - and three crop rotation systems [system I (wheat/soybean, system II (wheat/soybean and common vetch/corn or sorghum, and system III (wheat

  13. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    Science.gov (United States)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through

  14. Rotação de culturas e propriedades físicas e químicas em Latossolo Vermelho de Cerrado sob preparo convencional e semeadura direta em adoção Crop rotation and physical and chemical properties of a Red Latosol in the Cerrado under conventional tillage and recent no-tillage

    Directory of Open Access Journals (Sweden)

    Vicente Pereira de Almeida

    2008-06-01

    Full Text Available O manejo inadequado do solo tem promovido a degradação de suas propriedades físicas, químicas e biológicas. O objetivo deste trabalho foi avaliar, após três anos da instalação de sistemas de manejo do solo, os efeitos da rotação com adubo verde, soja ou milho (verão e feijão "de inverno", sendo utilizadas as seguintes espécies na adubação verde: mucuna-preta, milheto, crotalária e guandu, nas propriedades físicas e químicas de um Latossolo Vermelho distroférrico e na produtividade das culturas. Outro tratamento foi adicionado como alternativa à adubação verde, o pousio. Os sistemas de manejo do solo foram: semeadura direta não consolidada e preparo convencional. O estudo foi realizado em Selvíria-MS, no ano agrícola de 1999/2000. O delineamento experimental foi em blocos casualizados com parcelas subdivididas e quatro repetições. O sistema de semeadura direta, após três anos de instalada a rotação, degradou mais as propriedades físicas do solo na camada superficial. Por outro lado, neste sistema e camada de solo, houve acréscimo no teor de matéria orgânica e no pH, bem como na produtividade do milho, superior à do sistema de preparo convencional. O feijão em rotação à cultura do milho, na semeadura convencional, e em rotação à soja, na semeadura direta, foi a melhor opção quanto à produtividade.Inadequate soil management has led to the degradation of physical, chemical and biological soil properties. The purpose of this work was to evaluate the yields and physical and chemical soil properties of a dystropherric Red Latosol (Oxisol in the third year of a crop rotation that included green manures, with soybean or corn (summer and common bean (winter crops. The following green manure species were used: velvet bean, millet, sunnhemp, pigeon pea, cultivated under conventional tillage and recently adopted no-tillage. The experiment was conducted in Selvíria, Mato Grosso do Sul, Brazil, in the 1999

  15. Sistemas de cultivo de arroz irrigado e a compactação de um Planossolo Tillage systems of irrigated rice and compaction of a Planosol

    Directory of Open Access Journals (Sweden)

    Alceu Pedrotti

    2001-04-01

    Full Text Available Em 1993 foi avaliada a compactação de um Planossolo cultivado sob diferentes sistemas de manejo, medindo-se a densidade do solo, por meio do método do anel volumétrico, em três camadas de solo. Os tratamentos consistiram de seis sistemas de manejo, selecionados de um experimento conduzido na Embrapa-Centro de Pesquisa Agropecuária de Clima Temperado, desde 1985. Observaram-se, de maneira geral, valores altos de densidade do solo; na primeira camada de solo (0-10 cm o sistema que apresentou o menor valor foi o cultivo de arroz em plantio direto sob a resteva do azevém e nos sistemas que envolvem maior mobilização do solo (arroz contínuo e rotação arroz-soja-milho os valores de densidade do solo foram maiores em relação aos sistemas de preparo reduzido do solo (azevém x arroz plantio direto e soja x arroz plantio direto. Ocorreu maior compactação, em relação à primeira camada, na camada intermediária (1020 cm, em todos os sistemas de cultivo, exceto no sistema de rotação arroz-soja-milho, no qual não houve diferença de densidade entre as camadas de solo.In 1993, it was evaluated the compaction of a Planosol (Albaqualf submitted to different tillage systems, measuring soil density through the volumetric ring method, in three layers. Treatments consisted of six tillage systems selected from an experiment conducted at Embrapa-Centro de Pesquisa Agropecuária de Clima Temperado, Pelotas, RS, Brazil, since 1985. High soil density values were obtained; in the first layer (0-10 cm, the no-tillage rice cultivation on the rye-grass straw was the system with the lowest value. The systems that involved more soil mobilization (rice continuous and rotation rice-soybeans-maize resulted in higher soil density values compared to the reduced preparing systems (rye-grass x rice in zero tillage and soybean x rice in zero tillage. Compacted structures were identified in the intermediate layer (10-20 cm in all tillage systems, except for the

  16. Tillage effects on topsoil structural quality assessed using X-ray CT, soil cores and visual soil evaluation

    DEFF Research Database (Denmark)

    Garbout, Amin; Munkholm, Lars Juhl; Hansen, Søren Baarsgaard

    2013-01-01

    stratification of the 0–20 cm topsoil layer for both tillage treatments. The stratification of the direct drilled soil was in accordance with our expectations whereas it was surprising for the ploughed soil. The dense lower topsoil layer for the ploughed soil was probably caused by compaction during secondary...

  17. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes

    OpenAIRE

    Florine Degrune; Florine Degrune; Nicolas Theodorakopoulos; Gilles Colinet; Marie-Pierre Hiel; Marie-Pierre Hiel; Bernard Bodson; Bernard Taminiau; Georges Daube; Micheline Vandenbol; Martin Hartmann

    2017-01-01

    Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct conseq...

  18. Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees Mineralização do carbono e nitrogênio sob diferentes preparos de solo e coberturas permanentes intercalares em pomar de laranjeira

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-06-01

    Full Text Available The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1 CT and annual cover crop with the leguminous Calopogonium mucunoides; (2 CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and cover crop with spontaneous B. humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.No presente trabalho, foi avaliada a mineralização do Carbono e Nitrogênio devido ao cultivo intercalar de diferentes coberturas permanentes em pomar de laranjeira. O experimento foi

  19. Sediment yield control in vineyards covered with cereal. Effect of tillage; Control de la perdida de suelo en vinedos con cubiertas de gramineas. Efecto del laboreo

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Colmenero, M.; Bienes, R.; Marques, M. J.

    2009-07-01

    A study has been carried out about the use of plant cover treatment to avoid land degradation in a hillside rainfed vineyard in Madrid under Mediterranean semiarid climate. Three treatments were tested: traditional tillage (lab) soil covered by Brachypodium distachyon (bra) with self-sowing, soil covered by Scale cereale (sec) mown in Spring. Three erosion plots per treatment were placed in the middle of the strips and 2 simulated rainfalls were carried out at each plot in autumn, before and after the tillage. (Author) 7 refs.

  20. THE ECO-PEDOLOGICAL AND PEDO- FUNCTIONAL FRAMEWORK OF CHERNOZEM SUITABILITY TO UNCONVENTIONAL TILLAGE SYSTEMS FROM THE DNIESTER-PRUT INTERFLUVE

    Directory of Open Access Journals (Sweden)

    Gheorghe Jigau

    2009-10-01

    Full Text Available Some elements, even unconventional tillage systems have come to the attention of both research and production activities starting from the early nineteen eighties. Although research in the pilot lands have revealed promising results, until recently they remained unsolicited. The main factor that has supported such a situation was the total dependence to conventional farming systems, based on plowing, and this is supported by the low prices practiced by energy agents and also by the low prices of mineral fertilizers. In addition, in relation to economic interests, conventional systems materialized into increased land productivity and income. At the same time, in relation to ecologic balance, they have produced profound changes, evidenced by increased vulnerability to the actions of various soil degradation processes, diseases and pests and the emergence of new limiting factors.

  1. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  2. Characterization of cover crops by NMR spectroscopy: impacts on soil carbon, nitrogen and phosphorus under tillage regimes

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    Full Text Available The objective of this study was to investigate the chemical composition of cover crops by solid-state CPMAS 13C NMR spectroscopy and its effects on carbon, nitrogen and phosphorus in a Typic Acrustox. Cover crops (Crotalaria juncea, Canavalia brasiliensis, Cajanus cajan, Mucuna pruriens and Raphanus sativus and natural fallow were studied in rotation with maize under conventional and no-tillage regimes. Tissues of Crotalaria juncea, Canavalia brasiliensis, Mucuna pruriens and Raphanus sativus were analyzed using CPMAS 13C NMR spectroscopy. Soil samples were collected at the end of the growing season of the cover crops (September 2002 and during the grain filling period in corn from 0-5 and 5-10 cm layers. Cajanus cajan presented the lowest content of polysaccharides and along with Mucuna pruriens presented the highest percentage of aromatic carbon compounds, reflecting the slow decomposition of highly lignified material. Carbon stocks were higher in the superficial soil layer and under no-tillage due to the accumulation and slower decomposition of plant tissues under these conditions. Increases in the C/N ratio of the soil with Mucuna pruriens and the C/P ratio with Cajanus cajan in the dry season were also related to slower rates of decomposition, caused by the large concentration of aromatic compounds in the tissues of these species. The higher C/P ratios found at 0-5 cm layer are due to higher values of P (Mehlich-1 at 5-10 cm (25 mg kg-1 layer and the higher concentration of carbon in the superficial soil layer as a result of the accumulation of plant residues.

  3. Carbon sequestration in clay and silt fractions of Brazilian soils under conventional and no-tillage systems

    Directory of Open Access Journals (Sweden)

    Cecília Estima Sacramento dos Reis

    2014-08-01

    Full Text Available The capacity of soils to sequestrate carbon (C is mainly related to the formation of organo-mineral complexes. In this study, we investigated the influence of soil management systems on the C retention capacity of soil with an emphasis on the silt and clay fractions of two subtropical soils with different mineralogy and climate. Samples from a Humic Hapludox and a Rhodic Hapludox, clayey soils cultivated for approximately 30 years under no-tillage (NT and conventional tillage (CT were collected from six layers distributed within 100-cm soil depth from each site and from an adjacent native forest. After the removal of particulate organic matter (POM, the suspension (<53 µm was sonicated, the silt and clay fractions were separated in accordance with Stokes' law and the carbon content of whole soil and physical fractions was determined. In the Humic Hapludox, the clay and silt fractions under NT showed a higher maximum C retention (72 and 52 g kg-1, respectively in comparison to those under CT (54 and 38 g kg-1, respectively. Moreover, the C concentration increase in both fractions under NT occurred mainly in the topsoil (up to 5 cm. The C retention in physical fractions of Rhodic Hapludox varied from 25 to 32 g kg-1, and no difference was observed whether under an NT or a CT management system. The predominance of goethite and gibbsite in the Humic Hapludox, as well as its exposure to a colder climate, may have contributed to its greater C retention capacity. In addition to the organo-mineral interaction, a mechanism of organic matter self-assemblage, enhanced by longer periods of soil non-disturbance, seems to have contributed to the carbon stabilization in both soils.

  4. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  5. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China

    NARCIS (Netherlands)

    Wang, X.B.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.

    2011-01-01

    Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming

  6. On-farm tillage trials for rice-wheat cropping system in Indo-Gangetic plains of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Prasad, L.K.; Prasad, S.S.; Bhupendra Singh; Singh, S.R.; Gaunt, J.L.

    2002-05-01

    Demonstration plots of deep summer ploughing (DSP) with rice followed by wheat and other winter crops and fields of zero tilled wheat have been established and monitored at head, middle and tail sections of RP distributory Channel - 5 of Patna Canal during kharif (wet) and rabi (winter) seasons of 2001 and 2002, respectively at four different villages. The DSP plots were large (6 acres, 2.42 ha) in each village enabling farmers and researchers to see and assess a new practice at a farming scale. Zero tillage of wheat has involved a total of 181 farmers and total area of 50.4 ha. The plots were not only monitored but also information from farmers on how they view the ploughing/tillage practices was gathered. This information indicates that farmers are assessing the practices from a range of view points relative to their usual practices including land preparation and sowing costs, quality of crop establishment, weed growth and species composition, pest and disease incidence. Main findings are that DSP does not significantly only alter the yield of rice, wheat, lentil and gram and but also reduces the weed burden. Participatory budgeting indicated cost savings for land preparation and crop management costs. Over 60 percent of farmers in a total sample of 86 farmers had a positive reaction to practice during wet season. Similarly farmers recognized cost savings and potential yield gains (due to early and good crop establishment) in zero tilled wheat. After the harvest of winter crops like wheat, lentil and gram in May 2002, farmers dropped their reservation about DSP and there was a change in their attitude from reluctance to partial agreement and now they are ready for tillage operations on self-payment. For both practices, there are some limitations in respect of availability of implements and suitable tractor couplings. Findings indicate that if tractor owners perceive a demand, they would take steps to offer these new practices as land preparation services. (author)

  7. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    OpenAIRE

    Daniel F. de Carvalho; Eliete N. Eduardo; Wilk S. de Almeida; Lucas A. F. Santos; Teodorico Alves Sobrinho

    2015-01-01

    ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L.) development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models...

  8. Efeitos de sistemas de preparo nas propriedades físicas de um Latossolo Vermelho distrófico Effects of tillage systems on the soil physical properties of a dystrophic Red Latosol

    Directory of Open Access Journals (Sweden)

    Karina Maria Vieira Cavalieri

    2006-02-01

    residue management are essential for the sustainability of cassava production in sandy and sandy loam soils of Northwestern Paraná State, Southern Brazil. The objective of this study was to evaluate the effects of different tillage systems used for planting cassava: no-tillage (NT, minimum tillage using chiseling (MT and conventional tillage with moldboard plow and disking (CT on some physical properties of a dystrophic Red Latosol. The following soil physical properties were evaluated in the 0-0.15 m and 0.15-0.30 m soil layers: soil bulk density (BD, soil water retention curve, soil resistance to penetration curve and least limiting water range (LLWR. Higher values of BD and soil resistance to penetration were verified in the NT and MT treatments. The soil water retention curve was only influenced by BD, which incorporated the effects of the soil tillage systems independent of sampled layers. The soil resistance curve to penetration was influenced by tillage systems and layers, indicating that the soil resistance to root penetration was higher in NT > MT > CT, and was accentuated at the 0.15-0.30 m depth. The increase in the BD led to a reduction in the LLWR due to the effects of soil resistance to penetration and air-filled porosity, which in turn determined the range of soil available water. Results indicated that LLWR value followed the sequence: PC = PM > PSR in the 0-0.15 m soil layer, and was not influenced by tillage systems in the 0.15-0.30 soil layer The critical bulk density value (BDc, the BD value at which LLWR = 0, was lower in NT and MT tillage systems compared with CT, therefore resulting in a smaller frequency of higher BD values than BDc in the soil under CT.

  9. Spatial Distribution of Soil Fauna In Long Term No Tillage

    Science.gov (United States)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial

  10. Número de curva de escurrimiento para una microcuenca de Pampa Ondulada bajo labranza convencional y siembra directa Runoff curve number for a Rolling Pampa watershed under conventional and no-tillage

    Directory of Open Access Journals (Sweden)

    Celio I Chagas

    2008-07-01

    Full Text Available El objetivo del presente trabajo fue estudiar la aplicabilidad del método de Número de Curva (CN del USDA para una microcuenca agrícola de 300 ha de Pampa Ondulada, bajo labranza convencional (LC durante el período 1994-1998 y posteriormente bajo siembra directa (SD durante el período 1999-2004 a partir del análisis de lluvias y escurrimientos medidos in situ. El uso de la tierra consistió predominantemente en cultivos anuales, siendo la soja el cultivo más frecuente. De las 583 lluvias analizadas, tan solo el 11% provocó escurrimientos registrables. La mayoría de los escurrimientos ocurrió bajo condición antecedente de humedad (AMC I, situación que fue definida por la lluvia caída los 5 días anteriores al evento considerado, lo cual muestra un aspecto de discusión crítica para el uso de esta metodología. A través del análisis de la serie ordenada de datos, se observó que LC y SD presentaban valores prácticamente coincidentes entre sí tanto para AMC II (CN 82 como para AMC III (CN 96. Sin embargo, al considerar AMC I (correspondiente al 10% inferior de dicha serie, la labranza convencional presentó una tendencia a generar menores escurrimientos que siembra directa (CN 56 y 68, respectivamente particularmente durante el período otoño invernal, época en que se realizaron las labores primarias de remoción del suelo que dejaron el suelo rugoso y por ende, con alta capacidad de infiltración.The aim of this paper was to study the applicability of the Curve Number method (CN, USDA for a small arable watershed of 300 ha belonging to the Rolling Pampa under conventional tillage from 1994 to 1998 and subsequently under no tillage until 2004. This analysis was performed by studying rainfall and runoff paired data recorded in situ. Land use consisted mainly of annual crops, particularly soybean. Considering a data pool of 583 rainfall events, only 11% produced appreciable surface runoff. Most of the runoff occurred under

  11. Effect of tillage on water advance and distribution under surge and continuous furrow irrigation methods for cotton in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.

    2006-01-01

    A field experiment was carried out to assess the effect of tillage on water advance and water distribution in the root zone area (0.5 m) under continuous and surge flow irrigation in a cotton field. The experiment was conducted at the Agriculture Experimental Station, Assiut University, Assiut,

  12. Soil Aggregation, Organic Carbon Concentration, and Soil Bulk Density As Affected by Cover Crop Species in a No-Tillage System

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    2015-06-01

    Full Text Available Soil aggregation and the distribution of total organic carbon (TOC may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS and conventional tillage system (CTS, one plowing and two disking. This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum. An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 % than fallow plus CTS (ranging from 74.62 to 85.94 %. Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.

  13. Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria.

    Science.gov (United States)

    Ehigiator, O A; Anyata, B U

    2011-11-01

    This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ' West bank' project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha(-1) yr(-1) versus 13.8 t ha(-1) yr(-1)) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha(-1) yr(-1) versus 12.1 t ha(-1) yr(-1)). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Structural changes and degradation of Red Latosols under different management systems for 20 years

    Directory of Open Access Journals (Sweden)

    João Tavares Filho

    2014-08-01

    Full Text Available Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference. Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.

  15. Erosion and sediment deposition evaluation in two slopes under different tillage systems using the '137Cs fallout' technique

    International Nuclear Information System (INIS)

    Arthur, Robson C.J.; Oliveira, Roberto A.S.; Bacchi, Osny O.S.; Correchel, Vladia; Santos, Dileia S.; Sparovek, Gerd

    2007-01-01

    With the increasing of occupation of the Brazilian Cerrado a series of environmental problems followed by the deforestation as soil erosion and soil compaction are appearing, and many of than are being related to the CT used. The NT cropping system which is being adopted more recently in the 'cerrado' region, has revealed benefic to the soil, mainly in terms of soil erosion control. The objective of the present work was to analyze the effect of the No Tillage NT and Conventional Tillage CT systems on the erosion process and to measure the efficiency of the riparian forest in trapping the sediments produced by erosion coming from crop areas cultivated by both systems trough the technique of 137Cs 'fallout' redistribution analysis. The study was carried out in Goiatuba/GO in two sampling dowslope transects located in areas of CT and NT cropping systems. Samples were taken from five points in transects of 200 and 140 meters long respectively, as well as from three soil profiles of a 30 m transect in the downstream riparian forests of each area. Incremental depth samples were also taken from two pits inside each transect in the forest down to 40 and 60 cm depth for the CT and NT respectively. The soil samples were air dried and sieved and the 137 Cs activity was analyzed for in a gamma ray detector (GEM-20180P, EG and ORTEC) coupled to a multichannel analyzer at CENA/USP. The results indicate variation of 137 Cs in soil profiles and high erosion rates for both cropping areas also indicate a movement of sediments from the two cropping areas to the riparian forest. (author)

  16. Impact of glyphosate resistant corn, glyphosate applications, and tillage on soil nutrient ratios, exoenzyme activities, and nutrient acquisition ratios

    Science.gov (United States)

    We report results of the last two years of a 7-year (2008-2014) field experiment designed to test the null hypothesis that applications of glyphosate on glyphosate resistant corn (Zea mays L.) as a routine weed control practice under both conventional and reduced tillage practices would have no effe...

  17. A New Strategy for Utilizing Rice Forage Production Using a No-Tillage System to Enhance the Self-Sufficient Feed Ratio of Small Scale Dairy Farming in Japan

    Directory of Open Access Journals (Sweden)

    Windi Al Zahra

    2014-08-01

    Full Text Available Rice forage systems can increase the land use efficiency in paddy fields, improve the self-sufficient feed ratio, and provide environmental benefits for agro-ecosystems. This system often decreased economic benefits compared with those through imported commercial forage feed, particularly in Japan. We observed the productivities of winter forage after rice harvest between conventional tillage (CT and no-tillage (NT in a field experiment. An on-farm evaluation was performed to determine the self-sufficient ratio of feed and forage production costs based on farm evaluation of the dairy farmer and the rice grower, who adopted a rice forage system. The field experiment detected no significant difference in forage production and quality between CT and NT after rice harvest. However, the production cost was dramatically decreased by 28.1% in NT compared with CT. The self-sufficient ratio was 5.4% higher when dairy farmers adopted the rice forage system compared with those using the current management system. Therefore, this study demonstrated the positive benefits for dairy farmers and rice growers in Japan when adopting a rice forage system with NT, which could improve the self-sufficient feed ratio and reduce production costs.

  18. Efeitos de sistemas de cultivo na densidade e macroporosidade do solo e no desenvolvimento radicular do milho em latossolo roxo Effects of tillage systems on bulk density, aeration porosity and root development of corn in a typic haplorthox soil

    Directory of Open Access Journals (Sweden)

    Paulo César Corsini

    1999-02-01

    fourth agricultural year. From there on these values increased and had returned to corresponding levels of immediate effects of mechanical tillage performed in the experimental area at the eighth consecutive agricultural year. The relationships between root development, bulk density and macroporosity were established by equations and as a range of root development classes.

  19. Did tillage erosion play a role in millennial scale landscape development? - an evaluation in SE Spain using a landscape evolution model

    NARCIS (Netherlands)

    Baartman, J.E.M.; Temme, A.J.A.M.; Schoorl, J.M.; Braakhekke, M.H.A.; Veldkamp, A.

    2012-01-01

    Landscape evolution models (LEMs) quantitatively simulate processes of sedimentation and erosion on millennial timescales. An important aspect of human impact on erosion is sediment redistribution due to agriculture, referred to herein as tillage erosion. In this study we aim to analyse the

  20. Cover plants and mineral nitrogen: effects on organic matter fractions in an oxisol under no-tillage in the cerrado

    Directory of Open Access Journals (Sweden)

    Isis Lima dos Santos

    2014-12-01

    Full Text Available Cover plants are essential for the sustainability of no-tillage systems in tropical regions. However, information on the effects of these plants and N fertilization on soil organic matter fractions is still scarce. This study evaluated the effect of cover crops with different chemical composition and of N topdressing on the labile and humified organic matter fractions of an Oxisol of the Cerrado (savanna-like vegetation. The study in a randomized complete block design was arranged in split-plots with three replications. Four cover species were tested in the plots and the presence or absence of N topdressing in the subplot. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis; Canavalia brasiliensis M. ex Benth; Cajanus cajan (L. Millsp; and Sorghum bicolor (L. Moench. In general, the cultivation of U. ruziziensis increased soil C levels, particularly of C in the humic acid and particulate organic C fractions, which are quality indicators of soil organic matter. The C in humic substances and mineral organic C accounted for the highest proportions of total organic C, demonstrating the strong interaction between organic matter, Fe and Al oxides and kaolinite, which are predominant in these weathered soils of the Cerrado.

  1. The Transformation of Agriculture in Brazil Through Development and Adoption of Zero Tillage Conservation Agriculture

    Directory of Open Access Journals (Sweden)

    P.L. de Freitas

    2014-03-01

    These were the turning points in the sustainable development of annual crop farming in Brazil. Today, society recognizes the role of these pioneers as key to achieving social, economic and environmental sustainability. ZT/CA reversed the historically accelerating degradation of soil organic matter and soil structure by abandoning conventional tillage, thus improving soil physical and chemical characteristics. This was achieved by promoting cover cropping and permanent soil cover with crop residues, crop rotations, and complementary, environmentally suitable soil management technologies.

  2. EFECTOS A LARGO PLAZO DE LA LABRANZA CONVENCIONAL Y LA SIEMBRA DIRECTA SOBRE LAS PROPIEDADES FÍSICAS DE UN ARGIUDOL TÍPICO DE LA PAMPA ONDULADA ARGENTINA LONG TERM EFFECTS OF NO TILLAGE AND CONVENTIONAL TILLAGE IN A TYPIC ARGIUDOLL OF THE ARGENTINA ROLLING PAMPA

    Directory of Open Access Journals (Sweden)

    Ramiro Ramírez Pisco

    2006-06-01

    Full Text Available Una creciente proporción de argiudoles franco limosos es manejada con siembra directa, lo cual genera incertidumbre en cuanto a la posible evolución a largo plazo de las propiedades físicas. En Pergamino, el INTA posee ensayos de labranzas donde los suelos son manejados con labranza convencional (LC y con siembra directa (SD continua desde hace 16 años. En estas parcelas fueron evaluadas la densidad aparente (cilindro, la resistencia (medida en laboratorio a distintos contenidos hídricos, la distribución de tamaño de poros (desorción de agua en mesa de tensión, la conductividad hidráulica saturada K sat (cilindros en laboratorio, y la estabilidad de agregados. Los resultados fueron comparados con un suelo no degradado (reserva botánica. Los parámetros más sensibles fueron la conductividad hidráulica y la inestabilidad de agregados cuyos valores fueron respectivamente de 1,41- 0,16 mm h-1 y 2,78 mm bajo LC, y de 23,61- 4,61 mm h-1 y 1,07 mm bajo SD. En este tratamiento el suelo recuperó su distribución original bimodal de poros, con prevalecía de las clases > 100 mm y 50- 20 mm.No tillage is applied to an increasing proportion of silty loam argiudolls. little is known about the possible longterm evolution of soil physical properties. In Pergamino, INTA has 16 yr field trials for comparing soil behavior under longterm conventional tillage (CT and no tillage (NT. In these treatments soil bulk density (cores, resistance (measured in the laboratory at different water contents, pore size distribution (water desorption in the tension table, saturated hydraulic conductivity, K sat (measured in the laboratory, and aggregate instability were determined. Results were compared to a nondegraded condition (a botanic reserve. Soil K sat and aggregate instability were the most sensitive parameters, which were respectively 1,41 - 0,16 mm h-1 and 1,07 mm under CT and 23,61 - 4,61 mm h-1 and 1,07 mm under NT. In this treatment soil recovered its

  3. Socio-ecological Niches for Minimum Tillage and Crop-residue Retention in Continuous Maize Cropping Systems in Smallholder Farms of Central Kenya

    NARCIS (Netherlands)

    Guto, S.N.; Pypers, P.; Vanlauwe, B.; Ridder, de N.; Giller, K.E.

    2012-01-01

    Soil fertility gradients develop on smallholder farms due to preferential allocation of inputs. A multi-location on-farm trial was conducted in Meru South, Central Kenya whose overall aim was to test minimum tillage and crop-residue retention practices in socio-ecological niches across heterogeneous

  4. The influence of reduced tillage on water regime and nutrient leaching in a loamy soil

    OpenAIRE

    Baigys, Giedrius; Gaigalis, Kazimieras; Kutra, Ginutis

    2006-01-01

    The effect of tillage technologies and terms on soil moisture regime and nitrate leaching was studied in field trials carried out on 0.76-1.36-ha fields. The study site was arranged in Pikeliai village (Kėdainiai district). The soil prevailing in the study site is Endocalcari - Endohypogleic Cambisol, sandy light loam and sandy loam on deeper layers of sandy loam and sandy light loam. The arable horizon contains sandy light loam, which is characteristic of the soils prevailing in the Middle L...

  5. Design and evaluation of a no-tillage seeder for small scale vegetable production using a two-wheeled tractor in Coahuila, Mexico

    NARCIS (Netherlands)

    Vries, de J.; Cadena Zapata, M.; Hoogmoed, W.B.

    2009-01-01

    Currently used conventional tillage systems for small-scale vegetable production in the region of Saltillo, Coahuila, Mexico require a considerable amount of hand labor, energy and materials for all activities. Seedbed preparation can require up to 60% of the total production cost in some systems in

  6. Two years monitoring of soil N_{2}O emissions on durum wheat in a Mediterranean area: the effect of tillage intensity and N-fertilizer rate.

    Science.gov (United States)

    Volpi, Iride; Bosco, Simona; Triana, Federico; Di Nasso, Nicoletta Nassi o.; Laville, Patricia; Virgili, Giorgio; Bonari, Enrico

    2016-04-01

    Evaluating the magnitude and the key factors affecting N2O emissions from agriculture has a scientific and practical relevance, in fact emissions from agricultural and natural soils account for 56-70% of all global N2O sources (Syakila and Kroeze, 2011). Moreover, the necessity to increase the food production rate minimizing greenhouse gas emissions require a deeper understanding of the effect of the agricultural practices on direct soil emissions. Therefore, the aim of this work is to assess the effect of tillage intensity and nitrogen rate on soil N2O emissions on durum wheat. A two years monitoring campaign was carried out using a high-sensibility transportable instrument developed within the LIFE+ "Improved flux Prototypes for N2O emission from Agriculture" IPNOA project (Bosco et al., 2015; Laville et al., 2015). The project aims at improving the measurement technique of N2O flux directly in field using the flow-through non-steady state chamber technique. The monitoring campaign on durum wheat lasted for two growing seasons and two fallow periods (2013-14 and 2014-15). Treatment on the main plot was tillage intensity with two levels, ploughing and minimum tillage, and three different nitrogen rates were distributed to the subplots (N0: 0 kg ha-1, N1: 110 kg ha-1, N2: 170 kg ha-1). Ancillary measurements concerned meteorological data, soil temperature and moisture, NO3-, NH4+ soil concentration. Main results of the two years highlighted N rate as the main driver for both N2O daily flux and cumulative emissions during the growing season, while in the fallow period treatments did not affect the emission magnitude. Tillage intensity was not a key factor for N2O emissions. N2O emissions were significantly different in the two years. In particular, cumulative emissions of 2013-14 were about five times higher than in 2014-15, respectively on average 2885±260 g N-N2O ha-1 and 534±53 g N-N2O ha-1 for a similar monitoring period of about 300 days. Differences could be

  7. Vegetation barrier and tillage effects on runoff and sediment in an alley crop system on a Luvisol in Burkina Faso

    NARCIS (Netherlands)

    Spaan, W.P.; Sikking, A.F.S.; Hoogmoed, W.B.

    2005-01-01

    The effects of vegetation barriers and tillage on runoff and soil loss were evaluated in an alley crop system at a research station in central Burkina Faso. On a 2% slope of a sandy loam various local species (grasses, woody species and a succulent) were planted as conservation barriers in order to

  8. The impact of no-tillage cultivation and white mustard as a cover crop on weed infestation and yield of carrot and red beet

    Directory of Open Access Journals (Sweden)

    Andrzej Borowy

    2015-03-01

    Full Text Available In a two-year field experiment, no-tillage cultivation using white mustard (Sinapis alba L. ‘Bardena’, 30 kg ha−1, as a cover crop did not influence emergence of red beet (Beta vulgaris L. ‘Czerwona Kula REW’ and had a favorable effect on emergence of carrot (Daucus carota L. ‘Berlikumer 2 – Perfekcja REW’. However, further growth of both vegetables was significantly slower under no-tillage cultivation. Both vegetables produced a higher yield of roots and the diameter of these roots was bigger under conventional cultivation. The effect of cultivation method on the content of total nitrogen, phosphorus, potassium, calcium and magnesium in carrot and red beet leaves varied, while the content of dry matter, monosaccharides and total sugars was significantly higher in the roots of both vegetables harvested under no-tillage cultivation. The number of weeds growing on no-tilled plots covered with mustard mulch 4 weeks after seed sowing was lower by about 75%, but their fresh weight was higher more than 6 times in comparison to that under conventional cultivation. This was caused by the emergence of wintering and winter hardy weeds in places not covered by mustard plants in the autumn of the year preceding the cultivation of vegetables. Next year, they started to grow in the early spring and some of them produced a considerable amount of fresh weight and attained the flowering stage in the middle of April.

  9. Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan

    Science.gov (United States)

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational

  10. Atributos químicos de um Cambissolo Húmico após 12 anos sob preparo convencional e semeadura direta em rotação e sucessão de culturas Chemical properties of a Humic Dystrudept after 12 years under conventional and no tillage with crop succession and rotation

    Directory of Open Access Journals (Sweden)

    Andréia Patrícia Andrade

    2012-05-01

    , total nitrogen (TN and water pH. The no-tillage system increased TOC and nutrient levels in comparison with conventional tillage, especially in the surface soil layer. Maize and vetch crop succession had higher TOC and TN contents in the surface soil layer compared to crop rotation under no-tillage.

  11. Qualidade da colheita mecanizada de feijão (Phaseolus vulgaris em dois sistemas de preparo do solo Quality of the mechanical harvesting of beans (Phaseolus vulgaris under two tillage systems

    Directory of Open Access Journals (Sweden)

    Rouverson Pereira da Silva

    2013-03-01

    Full Text Available Dentre as etapas de produção do feijoeiro a colheita é uma das mais importantes, porque pode interferir de maneira decisiva na qualidade e no custo de produção. Assim, objetivou-se avaliar a qualidade da operação da colheita mecanizada de feijão (Phaseolus vulgaris, cultivado sob preparo convencional e plantio direto. As variáveis analisadas foram: o nível de ruído emitido, calculado através de um medidor de pressão sonora; o desempenho operacional, sendo monitorado o consumo de combustível, a patinagem dos rodados e a velocidade de deslocamento do conjunto coletados em uma central digital (datalogger; e a operação de colheita quanto à matéria seca e densidade de palhada, e as perdas na colheita. A velocidade e os consumos horário e operacional apresentaram distribuição normal dos dados, enquanto que o nível de ruído apresentou distribuição assimétrica. As perdas na colheita mecanizada de feijão e a densidade de palhada apresentaram baixa variabilidade e distribuição normal. Assim, apenas o consumo horário e a produção de matéria seca de palhada apresentaram comportamento instável em relação ao controle estatístico de processo, enquanto os demais indicadores mostraram condições de manter a qualidade da operação de colheita tanto no preparo convencional de solo quanto no plantio direto.Among the production stages of the bean plant, harvesting is one of the most important, because it can decisively affect both quality and production costs. Thus, the objective was to assess quality in the mechanized harvesting of beans (Phaseolus vulgaris, grown under conventional tillage and no-tillage systems. The variables analysed were: the noise level emitted, calculated using a sound-pressure meter; the operational performance, by monitoring fuel consumption, wheel-slippage, and displacement velocity of the machine, all collected digitally (datalogger; and the harvesting operation with regard to the dry matter and

  12. Cultivo orgânico de coentro em plantio direto utilizando cobertura viva e morta adubado com composto Organic faming of coriander in no-tillage system fertilized with compost using dead and living mulching

    Directory of Open Access Journals (Sweden)

    Leonardo Barreto Tavella

    2010-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o desempenho agronômico do coentro em sistema de plantio direto orgânico sob diferentes tipos de cobertura viva e palhada e doses crescentes de composto orgânico. Foi utilizado o delineamento em blocos aleatorizados em esquema de parcela subdividida com quatro repetições. As parcelas corresponderam aos sistemas de plantio direto com cobertura viva de Arachis pintoi, cobertura viva de plantas espontâneas e cobertura com palhada de resteva natural que foram comparados ao preparo convencional do solo com canteiro e sem cobertura. As subparcelas representavam as doses residuais de composto orgânico 10; 20 e 30 t ha-1 (base seca. O sistema de plantio direto com palhada de resteva natural e o preparo convencional proporcionaram os melhores resultados em todas as variáveis avaliadas na planta, comparado com os sistemas de plantio direto com cobertura viva de amendoim forrageiro e plantas espontâneas. O coentro respondeu linearmente a adubação orgânica, com produtividade de 4.554 t ha-1 a 6.542 t ha-1 quando adubado de 10 a 30 t ha-1, respectivamente.The objective of this work was to evaluate the agronomic behavior of the cilantro in organic no-tillage system under alive and dead mulching and fertilized with doses of compost. The experimental design was randomized blocks, in a split-plot arrangement with four replications. The plot corresponded to the planting system (no-tillage with live mulching of Arachis pintoi, with live mulching of native weed, with mulching of straw and conventional tillage. In each plot the split-plot were represented by the doses of organic compost 10; 20 e 30 t ha-1 of dry compost. The no-tillage system with straw and conventional tillage showed the best results in all variables in the plant compared with no-tillage systems with live mulching of peanut crop and native weed. Cilantro answered linearly to fertilization, with yields of 4,554 t ha-1 to 6,542 t ha-1 when fertilized

  13. Diferencias de las condiciones mecánicas de un suelo arcilloso sometido a diferentes sistemas de labranza Differences in mechanical conditions of a clayey soil under different tillage systems

    Directory of Open Access Journals (Sweden)

    Laura M. Draghi

    2005-03-01

    Full Text Available El objetivo del presente trabajo fue cuantificar la reacción mecánica del suelo al tránsito, a través de la resistencia a la penetración y la densidad aparente para visualizar posibles diferencias debido al sistema de labranza utilizado. El ensayo se instaló sobre un suelo Argiudol típico, sobre dos lotes, provenientes cada uno de seis años de cultivo trigo-soja bajo dos formas de labranza: siembra directa (SD y labranza convencional (LC. Se establecieron 4 tratamientos de tránsito, correspondientes a 6, 8, 10 y 12 pasadas de un tractor de diseño convencional (2WD Massey Fergusson 1175 de 52,25 kW (71 CV en el motor. Para determinar los efectos del tránsito sobre la compactación inducida, se determinaron la densidad global (DA y la resistencia a la penetración (RP. Luego de 6 años de rotación trigo-soja bajo estas dos formas de cultivo (siembra directa y labranza convencional la condición mecánica de los suelos resultó ser significativamente diferente, al menos en las capas más superficiales, resultando el suelo trabajado con SD mayores valores de RP que la condición de LC. La siembra directa registró valores de DA limitantes para el normal desarrollo radicular a menores intensidades de tráfico y desde menores profundidades. A medida que aumentó la intensidad de tráfico disminuyó la profundidad donde se alcanzaron valores de resistencia a la penetración potencialmente determinantes de la detención en el crecimiento radicular.With the aim to evaluate the soil mechanic reaction-traffic relationship to different tillage systems, penetration resistance and soil bulk density measurements were made. Four traffic conditions (6, 8, 10 and 12 passes of a 2WD, 52.25 kW tractor were evaluated in a typic Argiudol soil with six years of wheat-soybean rotation under no-tillage and conventional tillage. Bulk density and penetration resistance were used to evaluate the traffic effects on soil compaction. After the six-year rotation

  14. Effects of tillage, organic resources and nitrogen fertiliser on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa

    NARCIS (Netherlands)

    Ouédraogo, E.; Mando, A.; Stroosnijder, L.

    2006-01-01

    Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as

  15. Evalution of the healthiness of winter wheat cultivated in conventional tillage, direct sowing and direct sowing with underplant crop of white clover

    Directory of Open Access Journals (Sweden)

    Ewa Moszczyńska

    2012-12-01

    Full Text Available Research of the healthiness of winter wheat depending on the soil tillage system and rate of nitrogen fertilization were carried out in 1998-2001. The largest threat to the healthiness of plants was tan spot, which was caused by Pyrenophora tritici-repentis, especially in cropping season 1999/2000. The soil tillage system diversified the intensification of occurence of this pathogen, only in two last years of research. The most infected by P. tritici-i was wheat, which was cultivated in the direct sowing. Application of underplant crop of white clover in the direct sowing contributed to the improvement of the plants healthiness. The highest rate of nitrogen fertilization (120 kg N.ha-1 in the highest degree favoured the damage of wheat by P. tritici-repentis, but only in two first years of research. The second pathogen Blumeria graminis, which caused powdery mildew of cereals, occured in small amount and didn't have any influence on the healthiness of winter wheat.

  16. Effect of 15n-labeled hairy vetch and nitrogen fertilization on maize nutrition and yield under no-tillage

    International Nuclear Information System (INIS)

    Almeida Acosta, Jose Alan de; Amado, Telmo Jorge Carneiro; Silva, Leandro Souza da; Silveira Nicoloso, Rodrigo da

    2011-01-01

    This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: quantification of biological nitrogen fixation (BNF) in hairy vetch; estimation of the N release rate from hairy vetch residues on the soil surface; quantification of 15 N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrofico arenico (Brazilian Soil Classification), at a mean annual temperature of 18 deg C and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha -1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha -1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15 N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha -1 , without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha -1 , confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage. (author)

  17. Effects of long-term reduced tillage on weed infestation of pea (Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    Andrzej Woźniak

    2014-09-01

    Full Text Available The study evaluated weed infestation of pea (Pisum sativum L. cultivated under conditions of conventional (CT, reduced (RT and herbicide tillage (HT. It demonstrated the highest weed density per m2 in plots with the herbicide (HT and reduced (RT systems and significantly lower weed infestation in plots cultivated in the conventional system (CT. In addition, more weeds occurred at the third leaf stage (13/14 in BBCH scale than at the pod development stage (73/74 BBCH of pea. The highest biomass was produced by weeds in the herbicide system (HT, a lower one – in the reduced system (RT, and the lowest one – in the conventional system (CT. The air-dry weight of weeds depended also on pea development stage. At the pod development stage (73/74 BBCH, the air-dry weight of weeds was significantly higher than at the third leaf stage (13/14 BBCH. The tillage system was also observed to influence the species composition of weeds. This trait was also affected by the period of weed infestation assessment. At the third leaf stage of pea (13/14 BBCH, there occurred 26 weed species, including 24 annual ones. The most abundant species included: Chenopodium album L., Stellaria media (L. Vill., Capsella bursa-pastoris (L. Med., Matricaria inodora L., Thlaspi arvense L., and Fallopia convolvulus (L. A. Löve. At the pod development stage (73/74 BBCH, the pea crop was colonized by 24 weed species, including 3 perennial ones. At this stage the predominant species included: Avena fatua L., Amaranthus retroflexus L., Papaver rhoeas L., Echinochloa crus-galli (L. P.B., Matricaria inodora L., and Galeopsis tetrahit L.

  18. Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2003-10-01

    Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques

  19. Turbulent characteristics of a semiarid atmospheric surface layer from cup anemometers – effects of soil tillage treatment (Northern Spain

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    Full Text Available This paper deals with the characteristics of turbulent flow over two agricultural plots with various tillage treatments in a fallow, semiarid area (Central Aragon, Spain. The main dynamic characteristics of the Atmospheric Surface Layer (ASL measured over the experimental site (friction velocity, roughness length, etc., and energy budget, have been presented previously (Frangi and Richard, 2000. The current study is based on experimental measurements performed with cup anemometers located in the vicinity of the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. It reveals that the horizontal wind variance, the Eulerian integral scales, the frequency range of turbulence and the turbulent kinetic energy dissipation rate are affected by the surface roughness. In the vicinity of the ground surface, the horizontal wind variance logarithmically increases with height, directly in relation to the friction velocity and the roughness length scale. It was found that the time integral scale (and subsequently the length integral scale increased with the surface roughness and decreased with the anemometer height. These variations imply some shifts in the meteorological spectral gap and some variations of the spectral peak length scale. The turbulent energy dissipation rate, affected by the soil roughness, shows a z-less stratification behaviour under stable conditions. In addition to the characterization of the studied ASL, this paper intends to show which turbulence characteristics, and under what conditions, are accessible through the cup anemometer.

    Key words. Meteorology and atmospheric dynamics (climatology, turbulence, instruments and techniques

  20. Produtividade e viabilidade económica da cana-de-açúcar em diferentes sistemas de preparo do solo no centro-oeste do Brasil Productivity and economic feasibility of sugar cane in different systems of tillage in west-central Brazil

    Directory of Open Access Journals (Sweden)

    Laércio Alves de Carvalho

    2011-01-01

    Full Text Available Estudou-se o efeito de diferentes sistemas de preparos do solo onde foram analisadas a viabilidade econômica na produção e atributos técnológicos da cana-de-açúcar em áreas cultivadas anteriormente com soja no município de Rio Brilhante-MS, Brasil, considerando os atributos físicos de um Latossolo Vermelho distrófico. Os sistemas de preparo utilizados foram: preparos convencionais (PCI, PCII e PCIII, subsolagem (S e plantio direto (PD, formando um delineamento experimental em blocos inteiramente casualizados, com cinco repetições, que foram analisadas pelo teste F (p We studied the effect of different tillage systems where soil analyzed the economic feasibility of manufacturing and technological attributes of sugar cane cultivated in an area formely with soybean in Rio Brilhante-MS, Brazil, considering the physical attributes of an Acrustox. The tillage systems were: conventional tillage (CTI, CTII and CTIII, subsoiling (S and no-tillage (NT, forming a randomized complete block design, with five replicates, which were analyzed by F test (p < 0.05, followed by Tukey test (p < 0.05. Significant differences were found between treatments for variable bulk density and total porosity in layers 0.21 to 0.40 m depth. The yield and tiller number showed no significant differences, but looking at the implementation cost of each treatment, there was greater economic viability in the no-tillage (NT.

  1. In Winter Wheat, No-Till Increases Mycorrhizal Colonization thus Reducing the Need for Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Julien Verzeaux

    2016-06-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF play a major role in the uptake of nutrients by agricultural plants. Nevertheless, some agricultural practices can interrupt fungal-plant signaling and thus impede the establishment of the mycorrhizal symbiosis. A field experiment performed over a 5-year period demonstrated that both the absence of tillage and of nitrogen (N fertilization improved AMF colonization of wheat roots. Moreover, under no-till conditions, N uptake and aboveground biomass production did not vary significantly between N-fertilized and N-unfertilized plots. In contrast, both N uptake and above ground biomass were much lower when N fertilizer was not added during conventional tillage. This finding strongly suggests that for wheat, no-till farming is a sustainable agricultural system that allows a gradual reduction in N fertilizer use by promoting AMF functionality and at the same time increasing N uptake.

  2. Effect of {sup 15}n-labeled hairy vetch and nitrogen fertilization on maize nutrition and yield under no-tillage

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Acosta, Jose Alan de [Drakkar Solos, Santa Maria, RS (Brazil); Amado, Telmo Jorge Carneiro; Silva, Leandro Souza da, E-mail: tamado@smail.ufsm.b, E-mail: leandro@smail.ufsm.b [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Soil Dept.; Neergaard, Andreas de; Vinther, Mads, E-mail: adn@life.ku.d [University of Copenhagen (Denmark); Silveira Nicoloso, Rodrigo da, E-mail: rodrigo.nicoloso@cnpsa.embrapa.b [Embrapa Swine and Poultry, Concordia, SC (Brazil)

    2011-07-15

    This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: quantification of biological nitrogen fixation (BNF) in hairy vetch; estimation of the N release rate from hairy vetch residues on the soil surface; quantification of {sup 15}N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrofico arenico (Brazilian Soil Classification), at a mean annual temperature of 18 deg C and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha{sup -1} N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha{sup -1} of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch {sup 15}N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha{sup -1}, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha{sup -1}, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage. (author)

  3. Effects of different soil management practices on soil properties and microbial diversity

    Science.gov (United States)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga

    2018-01-01

    The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.

  4. Biologia e manejo de plantas daninhas em áreas de plantio direto Weed biology and management in no-tillage areas

    Directory of Open Access Journals (Sweden)

    F.G. Gomes JR.

    2008-01-01

    Full Text Available Procurou-se relacionar alguns aspectos importantes da biologia e do manejo das plantas daninhas infestantes em áreas cultivadas sob sistema de plantio direto, com o objetivo de mostrar que a viabilidade deste plantio depende do controle eficiente das plantas daninhas. Nesse sistema de cultivo ocorrem algumas espécies de plantas daninhas comumente não observadas no sistema convencional, sendo essas constatações relacionadas ao não-revolvimento do solo, favorecendo o desenvolvimento de espécies de plantas daninhas perenes, e às alterações nas condições de temperatura e incidência de luz no interior do solo, influenciando os mecanismos de dormência das sementes de algumas espécies. A estratégia adequada para o controle das plantas daninhas em plantio direto exige conhecimento da dinâmica populacional do banco de sementes do solo e deve reunir métodos integrados de controle para reduzir o uso de herbicidas. A liberação de substâncias alelopáticas de algumas culturas de cobertura e o efeito supressor da camada de palha são medidas importantes para integrar ao controle químico das plantas daninhas. Entretanto, deve-se atentar para os efeitos negativos sobre algumas espécies de plantas cultivadas. As pesquisas na área de biologia das plantas daninhas e alelopatia das culturas de cobertura, associadas com a tecnologia de aplicação de herbicidas e a agricultura de precisão, poderão contribuir para a otimização do controle das plantas daninhas em áreas de plantio direto.Some important aspects of weed biology and control under no tillage are described to show that the viability of this system depends on weed control efficiently performed. Some of the weeds infesting this cropping system are present in much greater density under the conventional system, this being probably due to the little soil disturbance under no tillage systems, where the occurrence of perennial weeds is more feasible, and changes in the temperature and

  5. Long-term Differences in Tillage and Land Use Affect Intra-aggregate Pore Heterogeneity

    International Nuclear Information System (INIS)

    Kravchenko, A.N.; Wang, A.N.W.; Smucker, A.J.M.; Rivers, M.L.

    2011-01-01

    Recent advances in computed tomography provide measurement tools to study internal structures of soil aggregates at micrometer resolutions and to improve our understanding of specific mechanisms of various soil processes. Fractal analysis is one of the data analysis tools that can be helpful in evaluating heterogeneity of the intra-aggregate internal structures. The goal of this study was to examine how long-term tillage and land use differences affect intra-aggregate pore heterogeneity. The specific objectives were: (i) to develop an approach to enhance utility of box-counting fractal dimension in characterizing intra-aggregate pore heterogeneity; (ii) to examine intra-aggregate pores in macro-aggregates (4-6 mm in size) using the computed tomography scanning and fractal analysis, and (iii) to compare heterogeneity of intra-aggregate pore space in aggregates from loamy Alfisol soil subjected to 20 yr of contrasting management practices, namely, conventional tillage (chisel plow) (CT), no-till (NT), and native succession vegetation (NS). Three-dimensional images of the intact aggregates were obtained with a resolution of 14.6 (micro)m at the Advanced Photon Source, Argonne National Laboratory, Argonne, IL. Proposed box-counting fractal dimension normalization was successfully implemented to estimate heterogeneity of pore voxel distributions without bias associated with different porosities in soil aggregates. The aggregates from all three studied treatments had higher porosity associated with large (>100 (micro)m) pores present in their centers than in their exteriors. Pores 15 to 60 (micro)m were equally abundant throughout entire aggregates but their distributions were more heterogeneous in aggregate interiors. The CT aggregates had greater numbers of pores 15 to 60 (micro)m than NT and NS. Distribution of pore voxels belonging to large pores was most heterogeneous in the aggregates from NS, followed by NT and by CT. This result was consistent with presence of

  6. Perdas de solo e água por erosão hídrica influenciadas por métodos de preparo, classes de declive e níveis de fertilidade do solo Soil and water losses by rainfall erosion influenced by tillage methods, slope-steepness classes, and soil fertility levels

    Directory of Open Access Journals (Sweden)

    N. P. Cogo

    2003-08-01

    " greatly increased the crop aerial biomass, consequently the crop residue mass and, thus, the percentage of mulch covering the soil and soil loss by rainfall erosion, especially in the conventional tillage, although it did not appreciably affect water losses. In spite of tillage and planting operations along contours, improved soil fertility, and a relative high resistance of soil to erosion, the black oat-soybean crop in conventional tillage presented annual soil losses by rainfall erosion that lay very close to the tolerable level on slopes steeper than 0.04 m m-1, even in the short slope-length of 21 m used in the experimental plots of this study.

  7. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    Directory of Open Access Journals (Sweden)

    Kenneth R. Olson

    2013-01-01

    Full Text Available The 24-year study was conducted in southern Illinois (USA on land similar to that being removed from Conservation Reserve Program (CRP to evaluate the effects of conservation tillage systems on: (1 amount and rates of soil organic carbon (SOC storage and retention, (2 the long-term corn and soybean yields, and (3 maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP −1.6 Mg C ha−1 less SOC in the soil than moldboard plow (MP during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1 during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.

  8. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin

    Science.gov (United States)

    P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang

    2016-01-01

    This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1–close to conservation, and reduced 2–close to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...

  9. Weed interference in sweet pepper in no-tillage and conventional planting systems = Períodos de interferência de plantas daninhas na cultura do pimentão nos sistemas de plantio direto e convencional

    Directory of Open Access Journals (Sweden)

    Jorge Luiz Xavier Lins Cunha

    2015-06-01

    Full Text Available The subject of this work is evaluate the periods of weeds interference on yield of sweet pepper (Capsicum annum L., cultivated in no-tillage and conventional systems. Therefore, an experiment was conducted in randomized blocks of a distributed split plots with four replications design. The no-tillage and conventional systems were evaluated in plots and subplots, during the seven periods of control and coexistence among sweet peppers and weeds: 0; 0–14; 0–28; 0–49; 0–70; 0–91 and 0–112 days after transplanting (DAT. Before weeding and harvest time, they were evaluated species, density and dry mass of weeds. In the sweet peppers crops, diameter, length, number, average fruit weight and yield were evaluated. It was observed less weeds in no-tillage than conventional system. Without competitors, these weet peppers productivity was 69.57% less in conventional than no-tillage system. The critical period of weeds interference was from 19 to 95 DAT in no-tillage system and from 11 to 100 DAT in convention tillage = Objetivou-se com este trabalho avaliar os períodos de interferências das plantas daninhas no pimentão (Capsicum annum L., cultivado nos sistemas de plantio direto (SPD e convencional (SPC. Para isso, foi realizado um experimento em esquema de parcelas subdivididas, distribuídas no delineamento em blocos casualizados com quatro repetições. O SPD e o SPC foram avaliados nas parcelas, e nas subparcelas, os sete períodos de controle e convivência entre as plantas daninhas e o pimentão: 0; 0–14; 0–28; 0–49; 0–70; 0–91 e 0–112 dias após transplantio (DAT. Antes de cada capina e na ocasião da colheita, foram avaliadas as espécies, a densidade e a matéria seca das plantas daninhas. Na cultura do pimentão foram avaliados diâmetro, comprimento, número, peso médio dos frutos e produtividade. Verificou-se menor incidência de plantas daninhas no SPD em relação ao SPC. Quando mantida livre da competição com as

  10. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

    Science.gov (United States)

    Malone, Robert W.; Nolan, Bernard T.; Ma, Liwang; Kanwar, Rameshwar S.; Pederson, Carl H.; Heilman, Philip

    2014-01-01

    Well tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model's ability to simulate pesticide transport to subsurface drain flow over a long term period under different tillage systems and application rates is not clear. Therefore, we calibrated and tested RZWQM using six years of data from Nashua, Iowa. In this experiment, atrazine was spring applied at 2.8 (1990–1992) and 0.6 kg/ha/yr (1993–1995) to two 0.4 ha plots with different tillage (till and no-till). The observed and simulated average annual flow weighted atrazine concentrations (FWAC) in subsurface drain flow from the no-till plot were 3.7 and 3.2 μg/L, respectively for the period with high atrazine application rates, and 0.8 and 0.9 μg/L, respectively for the period with low application rates. The 1990–1992 observed average annual FWAC difference between the no-till and tilled plot was 2.4 μg/L while the simulated difference was 2.1 μg/L. These observed and simulated differences for 1993–1995 were 0.1 and 0.1 μg/L, respectively. The Nash–Sutcliffe model performance statistic (EF) for cumulative atrazine flux to subsurface drain flow was 0.93 for the no-till plot testing years (1993–1995), which is comparable to other recent model tests. The value of EF is 1.0 when simulated data perfectly match observed data. The order of selected parameter sensitivity for RZWQM simulated FWAC was atrazine partition coefficient > number of macropores > atrazine half life in soil > soil hydraulic conductivity. Simulations from 1990 to 1995 with four different atrazine application rates applied at a constant rate throughout the simulation period showed concentrations in drain flow for the no-till plot to be twice those of the tilled plot. The differences were more pronounced in the early

  11. Demanda energética na subsolagem realizada antes e depois de diferentes sistemas de preparo periódico do solo Energy demand in the subsoiling performed before and after different systems of periodic soil tillage

    Directory of Open Access Journals (Sweden)

    Nilson Salvador

    2009-12-01

    Full Text Available A subsolagem é uma das operações mecanizadas de elevado custo e demanda energética por área, tradicionalmente utilizada pelos agricultores antes do preparo do solo na descompactação de camadas adensadas. Este trabalho teve como objetivo avaliar a demanda energética na operação de subsolagem realizada antes e depois de diferentes sistemas de preparo periódico num solo classificado como Nitossolo Vermelho Distroférrico. Os sistemas de preparo periódico foram: aração com discos; aração com discos mais uma gradagem de nivelamento; grade aradora; grade aradora mais gradagem de nivelamento e escarificação. O trator utilizado como fonte de potência no experimento foi um Valmet 128 (4x2tda. A demanda energética por área foi menor na subsolagem realizada depois do preparo periódico do solo, proporcionando uma economia de 21,9%. A realização da subsolagem depois do preparo periódico do solo resultou numa diminuição da exigência de força de tração em 21,1% e da potência disponível na barra de tração em 15%.Subsoiling is one of the mechanized operations of high cost and energy demand per area, traditionally utilized by farmers before soil tillage in the decompactation of hardened layers. This research was intended to evaluate the energy demand in the subsoiling operation performed before and after different systems of periodic tillage in a soil classified as Distroferric Red Nitossol. The periodic tillage systems were: plowing with disks; plowing with disks plus one leveling; plowing harrow; plowing harrow plus leveling and chiseling. The tractor utilized as a power source in the experiment was a Valmet 128 (4x2tda. The demand for energy area was lower in subsoiling held after the regular preparation of the soil, providing a saving of 21.9%. The completion of subsoiling after the preparation of the soil resulted in a decrease in demand for power to pull in 21% and 15% of the power available in the bar of traction.

  12. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model.

    Science.gov (United States)

    Liu, Ruimin; Zhang, Peipei; Wang, Xiujuan; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-12-01

    Best management practices (BMPs) have been widely used in managing agricultural nonpoint source pollution (ANSP) at the watershed level. Most BMPs are related to land use, tillage management, and fertilizer levels. In total, seven BMP scenarios (Reforest1, Reforest2, No Tillage, Contour tillage, and fertilizer level 1-4) that are related to these three factors were estimated in this study. The objectives were to investigate the effectiveness and cost-benefit of these BMPs on ANSP reduction in a large tributary of the Three Gorges Reservoir (TGR) in China, which are based on the simulation results of the Soil and Water Assessment Tool (SWAT) model. The results indicated that reforestation was the most economically efficient of all BMPs, and its net benefits were up to CNY 4.36×10(7) years(-1) (about USD 7.08×10(6) years(-1)). Regarding tillage practices, no tillage practice was more environmentally friendly than other tillage practices, and contour tillage was more economically efficient. Reducing the local fertilizer level to 0.8-fold less than that of 2010 can yield a satisfactory environmental and economic efficiency. Reforestation and fertilizer management were more effective in reducing total phosphorus (TP), whereas tillage management was more effective in reducing total nitrogen (TN). When CNY 10,000 (about USD 162) was applied to reforestation, no tillage, contour tillage, and an 0.8-fold reduction in the fertilizer level, then annual TN load can be reduced by 0.08, 0.16, 0.11, and 0.04 t and annual TP load can be reduced by 0.04, 0.02, 0.01 and 0.03 t, respectively. The cost-benefit (CB) ratios of the BMPs were as follows: reforestation (207 %) > contour tillage (129 %) > no tillage (114 %) > fertilizer management (96 and 89 %). The most economical and effective BMPs can be designated as follows: BMP1 (returning arable land with slopes greater than 25° to forests and those lands with slopes of 15-25° to orchards), BMP2 (implementing no tillage

  13. Uso da radiação solar pelo milho sob diferentes preparos do solo, espaçamento e disponibilidade hídrica Interception and use of solar radiation by maize, as modifying soil tillage, row spacing and irrigation water availability

    Directory of Open Access Journals (Sweden)

    Jefferson Horn Kunz

    2007-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficiência de interceptação e de uso da radiação fotossinteticamente ativa (RFA pela cultura do milho em diferentes sistemas de manejo do solo, arranjos de plantas e disponibilidade hídrica. O milho foi cultivado em plantio direto e preparo convencional, na combinação com duas disponibilidades hídricas (irrigado e sequeiro e espaçamentos de 40 e 80 cm entre fileiras de plantas. Em cada tratamento, foram instalados sensores para medida da RFA transmitida pela cultura, na superfície do solo, ao passo que a RFA incidente foi medida acima da cultura. A redução da distância entre fileiras aumentou a eficiência de interceptação em todos os tratamentos. Sob plantio direto, a cultura apresentou maior eficiência de interceptação em relação ao preparo convencional. O deficit hídrico diminuiu a eficiência de interceptação devido ao enrolamento foliar, e esse efeito foi mais pronunciado em preparo convencional, em ambos espaçamentos estudados. Embora a eficiência de interceptação tenha sido maior no espaçamento de 40 cm, a eficiência de uso não diferiu entre espaçamentos, mas diminuiu em condições de deficit hídrico.The objective of this work was to evaluate the efficiency of interception and use of photosynthetically active radiation (PAR by maize crops submitted to different conditions of soil tillage, plant arrangement, and water availability. Maize was cropped in no-tillage and conventional tillage, combined to treatments of soil water availability (irrigated and in rain fed, and plant row spacing (40 and 80 cm among rows. Sensors were installed in each treatment, for measuring the PAR transmitted by the canopy to the soil surface, while the incoming PAR was measured above the crop. Increments of efficiency of interception were obtained by reducing the row spacing in all treatments. Higher values of efficiency of interception were observedin no-tillage than in conventional

  14. Niacin treatment increases plasma homocyst(e)ine levels.

    Science.gov (United States)

    Garg, R; Malinow, M; Pettinger, M; Upson, B; Hunninghake, D

    1999-12-01

    Studies have reported high levels of plasma homocyst(e)ine as an independent risk factor for arterial occlusive disease. The Cholesterol Lowering Atherosclerosis Study reported an increase in plasma homocyst(e)ine levels in patients receiving both colestipol and niacin compared with placebo. Thus the objective of this study was to examine the effect of niacin treatment on plasma homocyst(e)ine levels. The Arterial Disease Multiple Intervention Trial, a multicenter randomized, placebo-controlled trial, examined the effect of niacin compared with placebo on homocyst(e)ine in a subset of 52 participants with peripheral arterial disease. During the screening phase, titration of niacin dose from 100 mg to 1000 mg daily resulted in a 17% increase in mean plasma homocyst(e)ine level from 13.1 +/- 4.4 micromol/L to 15.3 +/- 5.6 micromol/L (P ine levels in the niacin group and a 7% decrease in the placebo group (P =.0001). This difference remained statistically significant at the end of follow-up at 48 weeks. Niacin substantially increased plasma homocyst(e)ine levels, which could potentially reduce the expected benefits of niacin associated with lipoprotein modification. However, plasma homocyst(e)ine levels can be decreased by folic acid supplementation. Thus further studies are needed to determine whether B vitamin supplementation to patients undergoing long-term niacin treatment would be beneficial.

  15. Manejo do solo e o rendimento de soja, milho, feijão e arroz em plantio direto Yield of soybean, corn, common bean and rice under no-tillage management

    Directory of Open Access Journals (Sweden)

    João Kluthcouski

    2000-03-01

    soil management associated with three levels of phosphorus and potassium fertilization (no fertilizer application, recommended fertilization, reposition of nutrients removed by grains on the yield of corn, soybean, bean and rice crops in area submitted to eight years of no-tillage. The experiments of corn, soybean, upland rice and bean were conducted using a randomized complete block design, in strip plots with four replications on a Oxisol of high fertility. Soil management or fertility did not affect soybean yield while moldboard plowing significantly increased corn, rice and common bean yields. The bean crop also showed positive effects of phosphorus and potsassium applications.

  16. Evaluating Soil Carbon Sequestration in Central Iowa

    Science.gov (United States)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  17. Vibration analysis on driver’s seat of agricultural tractors during tillage tests

    International Nuclear Information System (INIS)

    Gialamas, T.; Gravalos, I.; Kateris, D.; Xyradakis, P.; Dimitriadis, C.

    2016-01-01

    The vibration of the driver’s seat of agricultural tractors was investigated during three alternative tillage operations. Three tractors including a range of specifications were considered, at a range of forward speeds. The interactions between the tractors, implements and speeds were examined using the SPSS program and the GLM-ANOVA method. The results analysis indicated that the tractors played the first major role in vibration development in the lateral axis and was followed by the implements. In contrast, the implements played the first major role in the development of vibration in the horizontal axis and are followed by factor tractors. The statistically significant effect in vertical and horizontal axes shows the factor implements. In addition, the statistically significant effect in the vertical and lateral axes shows again the implements to be the most significant factor. Of the implements, the plough shows the highest vibration and displays statistically significant difference in comparison with the other implements.

  18. Shallow tillage effects on soil properties for temperate-region hard-setting soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag

    2013-01-01

    Shallow tillage (ST; typically soil physical properties and hence modifies significantly the conditions for root growth and soil biotic activity as compared to mouldboard ploughing (MP; typically ∼25 cm). At field capacity in the spring, we measured cone...... quoted 1.5 MPa critical limit for root growth. Across the 11 field experiments, the untilled ST soil at 14–18 cm generally had lower ɛa and ka than the mechanically loosened soil at the same depth for MP. Also the specific air permeability (pore organization = ka/ɛa) was lower for ST than for MP. SOC...... penetration resistance (PR) of the top 40 cm soil and sampled intact soil cores (at 0–4 and 14–18 cm depths) in 11 field experiments (4–23% clay) after continued ST and MP management for mostly 4–8 years (two experiments >30 years). Bulk soil was sampled from 0 to ∼20 cm of the MP soil and from the two layers...

  19. Vibration analysis on driver’s seat of agricultural tractors during tillage tests

    Energy Technology Data Exchange (ETDEWEB)

    Gialamas, T.; Gravalos, I.; Kateris, D.; Xyradakis, P.; Dimitriadis, C.

    2016-07-01

    The vibration of the driver’s seat of agricultural tractors was investigated during three alternative tillage operations. Three tractors including a range of specifications were considered, at a range of forward speeds. The interactions between the tractors, implements and speeds were examined using the SPSS program and the GLM-ANOVA method. The results analysis indicated that the tractors played the first major role in vibration development in the lateral axis and was followed by the implements. In contrast, the implements played the first major role in the development of vibration in the horizontal axis and are followed by factor tractors. The statistically significant effect in vertical and horizontal axes shows the factor implements. In addition, the statistically significant effect in the vertical and lateral axes shows again the implements to be the most significant factor. Of the implements, the plough shows the highest vibration and displays statistically significant difference in comparison with the other implements.

  20. EDAPHIC PROPERTIES PLOTS CULTIVATED WITH MILPA USING MINIMUM TILLAGE IN THE MOUNTAINS OF OAXACA, WHERE THERE WAS MOUNTAIN CLOUD FOREST.

    Directory of Open Access Journals (Sweden)

    Irma Reyes-Jaramillo

    2016-03-01

    Full Text Available Soil fertility in the first 20 cm of six plots and a cloud forest (MCF still preserved in Sta. María Chilchotla, north of Oaxaca, where the predominant MCF and grown landraces were evaluated. The soils are on slopes are shallow, rocky and not suitable for agriculture. Yields are low, the Mazatec perform traditional cultural practices such as minimum tillage as the terrain does not allow entering tractor or oxen, farmers do not burn, and do not use chemicals. Soil sampling randomly obtaining composite samples were made​​ physical, chemical and biological properties were analyzed. The results showed that are medium textured soils, the pH of the MCF is extremely acid (4.5 and in the plots ranged from 5 to 6.9, organic carbon is high from 24 to 100 g kg -1, total nitrogen ranged from 1.4 - 8.3 g kg-1 medium and high values, available phosphorus was low with the exception of the plot three, the CEC ranged from 8.8 to 36 cmoles(+ kg-1. They have high iron content of 20.26 to 94.18 mg kg-1 on BMM standing there also high in copper, zinc and manganese. Analysis of variance (ANOVA showed a significant difference (р 0.5 between the means of soil properties and soil analyzed than sodium. The multiple comparison test of Tukey was applied. Trap pots mycorrhizal fungi were isolated from different species. It is concluded that the soils of most of the plots are fertile, are poor in phosphorus but everything indicates that they make up the AM fungi; no physical degradation was observed, its major limitation is the stoniness and steep slopes. The practice of minimum tillage, barriers of rocks that outcrop at the surface and leaving stumps of tree ferns prevent erosion. It aims to increase maize production experimenting with chemical fertilizers. To preserve the MCF recommends building their biological and ethnobotanical wealth, carbon sequestration mazatec could receive a financial benefit.