WorldWideScience

Sample records for levels reduce iron

  1. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification

    NARCIS (Netherlands)

    Zimmermann, M.B.; Zeder, C.; Muthayya, S.; Winichagoon, P.; Chaouki, N.; Aeberli, I.; Hurrell, R.F.

    2008-01-01

    Background: Overweight is increasing in transition countries, while iron deficiency remains common. In industrialized countries, greater adiposity increases risk of iron deficiency. Higher hepcidin levels in obesity may reduce dietary iron absorption. Therefore, we investigated the association

  2. Ceruloplasmin deficiency reduces levels of iron and BDNF in the cortex and striatum of young mice and increases their vulnerability to stroke.

    Directory of Open Access Journals (Sweden)

    Sarah J Texel

    Full Text Available Ceruloplasmin (Cp is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF, known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF.

  3. Prediction of reducible soil iron content from iron extraction data

    NARCIS (Netherlands)

    Bodegom, van P.M.; Reeven, van J.; Denier van der Gon, H.A.C.

    2003-01-01

    Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among

  4. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  5. Association between iron deficiency anemia and blood level in egyptian children

    International Nuclear Information System (INIS)

    Nassar, E.M.; Moawad, A.T.; Abd Alla, A.M.

    2003-01-01

    The relationship between iron deficiency and blood lead levels was investigated in a cross-sectional study of 200 children of both sexes, aged 6-12 years with mean of 7.8 +- 2.6 years. They were randomly selected from governmental primary school located near a highly contaminated industrial area. Blood samples were collected for measuring blood lead levels, serum iron serum ferritin, hemoglobin, mean corpuscular volume (MCV) and total iron binding capacity (TIBC) and other hematological indices. According to iron status, children were classified into non-anemic healthy controls(n=37),iron depleted children(n=58)and children with iron deficiency anemia (n=105).Iron deficiency is defined when MCV 10 / dl were significantly lower than those for children with blood lead levels < 10 /dl. Comparison of blood lead concentrations between boys and girls revealed highly significant increase in blood lead level in boys than girls. A strong negative correlation was detected between blood lead levels and serum iron in all subjects. However, such correlation vanished between blood lead concentration and serum ferritin,so, it could be concluded from the present study that the blood lead levels were changed according to changes in iron status. Improving iron status, along with reducing exposure to environmental contamination with lead, may help in reducing blood lead levels among most children especially those living in contaminated environment

  6. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins

    Directory of Open Access Journals (Sweden)

    Aditya S. Gokhale

    2014-01-01

    Full Text Available The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron.

  7. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins.

    Science.gov (United States)

    Gokhale, Aditya S; Mahoney, Raymond R

    2014-01-01

    The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron.

  8. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

  9. Study of Ascorbic Acid as Iron(III Reducing Agent for Spectrophotometric Iron Speciation

    Directory of Open Access Journals (Sweden)

    Antesar Elmagirbi

    2012-10-01

    Full Text Available The study of ascorbic acid as a reducing agent for iron(III has been investigated in order to obtain an alternative carcinogenic reducing agent, hydroxylamine, used in spectrophotometric standard method based on the formation of a red-orange complex of Fe(II-o-phenanthroline. The study was optimised with regards to ascorbic acid concentration as well as pH solution. The results showed that ascorbic acid showed maximum capacity as reducing agent of iron(III under concentration of 4.46.10-4 M and pH solution of 1-4.Under these conditions, ascorbic acid reduced iron(III proportionally and performed similarly to that of hydroxylamine.  The method gave result to linear calibration over the range of 0.2-2 mg/L withhigh accuracy of 97 % and relative standard deviation of less than 2 %. This method was successfully applied to assay iron speciation in water samples.

  10. Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron

    Directory of Open Access Journals (Sweden)

    Yu-Fu Zhou

    2017-05-01

    Full Text Available Hemin plays a key role in mediating secondary neuronal injury after intracerebral hemorrhage (ICH and the cell toxicity of hemin is thought to be due to iron that is liberated when hemin is degraded. In a recent study, we demonstrated the iron regulatory hormone hepcidin reduces brain iron in iron-overloaded rats. Therefore, we hypothesized that hepcidin might be able to reduce iron and then protect neurons from hemin or iron-mediated neurotoxicity in hemin-treated neuronal cells. Here, we tested the hypothesis and demonstrated that ad-hepcidin and hepcidin peptide both have the ability to suppress the hemin-induced increase in LDH release and apoptotic cell numbers, to reduce cell iron and ferritin contents, and to inhibit expression of transferrin receptor 1, divalent metal transporter 1, and ferroportin 1 in hemin-treated neurons. We conclude that hepcidin protects neuron from hemin-mediated injury by reducing iron via inhibition of expression of iron transport proteins.

  11. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  12. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.

    Science.gov (United States)

    Yu, Wen-Bang; Ye, Bang-Ce

    2016-05-01

    Fusaricidins are a class of cyclic lipopeptide antibiotics that have strong antifungal activities against plant pathogenic fungi and excellent bactericidal activities against Gram-positive bacteria. The mechanism through which fusaricidin exerts its action is not yet entirely clear. To investigate the mode of action of fusaricidin, we determined the physiological and transcriptional responses of Bacillus subtilis to fusaricidin treatment by using a systems-level approach. Our data show that fusaricidin rapidly induced the expression of σ(W) regulon and caused membrane damage in B. subtilis. We further demonstrated that ferric ions play multiple roles in the action of fusaricidin on B. subtilis. Iron deprivation blocked the formation of hydroxyl radical in the cells and significantly inhibited the bactericidal activity of fusaricidin. Conversely, high levels of iron (>2 mM) repressed the expression of BkdR regulon, resulting in a smaller cellular pool of branched-chain precursors for iso- and anteiso-branched fatty acids, which in turn led to a decrease in the proportion of branched-chain fatty acids in the membrane of B. subtilis. This change in membrane composition reduced its bilayer fluidity and increased its resistance to antimicrobial agents. In conclusion, our experiments uncovered some novel interactions and a synergism between cellular iron levels and drug resistance in Gram-positive bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  15. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.B., E-mail: cefbli@soil.gd.c [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, X.M. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou, S.G.; Zhuang, L. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Cao, F. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Huang, D.Y.; Xu, W.; Liu, T.X. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Feng, C.H. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-05-15

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (alpha-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of alpha-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe{sup 2+} + alpha-FeOOH and the system of DIRB + alpha-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of alpha-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  16. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    Science.gov (United States)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  17. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron

    Science.gov (United States)

    Shen, Yi; Posavec, Lidija; Bolisetty, Sreenath; Hilty, Florentine M.; Nyström, Gustav; Kohlbrecher, Joachim; Hilbe, Monika; Rossi, Antonella; Baumgartner, Jeannine; Zimmermann, Michael B.; Mezzenga, Raffaele

    2017-07-01

    Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein-iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron-amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.

  18. Geobacteraceae community composition is related to hydrochemistry and biodegradetion in an iron-reducing aquifer polluted by a neigbour landfill

    NARCIS (Netherlands)

    Lin, B; van Breukelen, B.M.; van Verseveld, H.W.; Westerhoff, H.V.; Roling, W.F.M.

    2005-01-01

    Relationships between community composition of the iron-reducing Geobacteraceae, pollution levels, and the occurrence of biodegradation were established for an iron-reducing aquifer polluted with landfill leachate by using cultivation-independent Geobacteraceae 16S rRNA gene-targeting techniques.

  19. Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill.

    NARCIS (Netherlands)

    Lin, B.; Braster, M.; van Breukelen, B.M.; van Verseveld, H.W.; Westerhoff, H.V.; Roling, W.F.M.

    2005-01-01

    Relationships between community composition of the iron-reducing Geobacteraceae, pollution levels, and the occurrence of biodegradation were established for an iron-reducing aquifer polluted with landfill leachate by using cultivation-independent Geobacteraceae 16S rRNA gene-targeting techniques.

  20. Solubilization of plutonium hydrous oxide by iron-reducing bacteria

    International Nuclear Information System (INIS)

    Rusin, P.A.; Quintana, L.; Brainard, J.R.; Strietelmeler, B.A.; Tait, C.D.; Ekberg, S.A.; Palmer, P.D.; Newton, T.W.; Clark, D.L.

    1994-01-01

    The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for α-FeOOH(s) and hydrous PuO 2 (s) suggests that iron-reducing bacteria may also reduce and solubilize plutonium. Bacillus strains were used to demonstrate that iron-reducing bacteria mediate the solubilization of hydrous PuO 2 (s) under anaerobic conditions. Up to ∼90% of the PuO 2 was biosolubilized in the presence of nitrilotriacetic acid (NTA) within 6-7 days. Biosolubilization occurred to a lesser extent (∼ 40%) in the absence of NTA. Little PuO 2 solubilization occurred in sterile culture media or in the presence of a non-iron-reducing Escherichia coli. These observations suggest a potentially attractive, environmentally benign strategy for the remediation of Pu-contaminated soils. 26 refs., 5 figs., 2 tabs

  1. Effect of different iron levels on 65Zn uptake and transport in maize seedlings

    International Nuclear Information System (INIS)

    Rathore, V.S.; Sharma, D.; Kandala, J.C.

    1974-01-01

    Uptake and translocation of 65 Zn was studied in two week old maize seedlings at 0.01, 0.1, 1 and 5 ppm iron levels in half-strength Hoagland's solution. Four different zinc levels viz., 0.04, 0.4, 4 and 8 ppm were taken. Total 65 Zn uptake and translocation to shoots at 2, 4, 6 and 12 hours showed that increasing iron levels in the uptake medium reduced Zn-uptake in all combinations and at all uptake hours studied. This antagnnistic effect of iron on zinc uptake was more pronounced at the initial stages and could be partly inhibited by increasing zinc concentration in the uptake medium. Translocation of 65 Zn to shoots increased with increase in uptake time. Increasing iron levels in the medium decreased zinc dislocation to shoots at all zinc levels. (author)

  2. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Among livestock, domestic pig (Sus scrofa is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.

  3. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  4. Evaluation and association of serum iron and ferritin levels in children with dental caries.

    Science.gov (United States)

    Venkatesh Babu, N S; Bhanushali, Parin Vasant

    2017-01-01

    Iron deficiency anemia accounts for 90% of all types of anemia in the world. Although the prevalence has declined in recent years, it remains an important pediatric public health problem. Iron deficiency has also been associated with dental caries. It impairs salivary gland function causing reduced salivary secretion and buffering capacity leading to increased caries activity. The aim of the study is to explore an association between dental caries and serum levels of iron and ferritin in children aged 3-12 years. Subjectsand Methods: The study group included 120 children, hospitalized for uncomplicated medical problems. Blood reports were evaluated to determine serum iron and ferritin levels. Dental caries experience was assessed using deft index. The collected data were tabulated and analyzed using Student's t-test and Pearson's correlation coefficient. Out of 120 children, 38 children showed low serum iron levels of which 31 children had dental caries and nine out of 15 children in the high serum iron level group showed dental caries. High ferritin levels were seen in three children among which two children were caries-free and only one child had a low ferritin level who also had a positive deft score. Based on the results, it was concluded that there is an inverse association between serum iron levels and dental caries whereas there is no association between serum ferritin levels and dental caries.

  5. Personalised iron supply for prophylaxis and treatment of pregnant women as a way to ensure normal iron levels in their breast milk.

    Science.gov (United States)

    Marin, G H; Mestorino, N; Errecalde, J; Huber, B; Uriarte, A; Orchuela, J

    2012-02-22

    Because the characteristics of all body fluids depends on patient's health status, is it possible that disadvantaged and socially vulnerable mothers may have lower amounts of iron in their breast milk, and that their babies receive lower content of the mineral for their normal growth and development. Assuring a preventive treatment of the mother might solve this problem. To demonstrate breast milk iron content from disadvantaged mothers and impact of personalized iron supplementation program. cross-sectional study. Breast milk samples were obtained for ferritin analysis. Health's services usually provides free folic acid and iron treatment however, treatment compliance is low. Patients were random in two groups: "A: Controls" that had free iron tablets available from Health Centre; and "B: Intervention" group where patients accepted to be periodically contacted at home by health's team for personalized iron dispensation. 360 patients were included. Profilaxis and treatment compliance were 100% and 97,6% for B group while for "Control" one was 63% and 34%(p0.0001). Higher breast milk iron levels were detected in Intervention's mothers compared with control's patients (p0.007). Personalized iron prophylaxis and treatment increased breast milk iron levels. Public health policy must ensure iron dispensation for each underserved mother in order to reduce children problems associate to iron deficiency during the first year of their life.

  6. Iron and vitamin D levels among autism spectrum disorders children.

    Science.gov (United States)

    Bener, Abdulbari; Khattab, Azhar O; Bhugra, Dinesh; Hoffmann, Georg F

    2017-01-01

    The aim of this study was to investigate iron deficiency anemia and Vitamin D deficiency among autism children and to assess the importance of risk factors (determinants). This was a case-control study conducted among children suffering from autism at the Hamad Medical Corporation in Qatar. A total of 308 cases and equal number of controls were enrolled. The Autism Diagnostic Observation Schedule-Generic was the instrument used for diagnosis of Autism. The mean age (±standard deviation, in years) for autistic versus control children was 5.39 ± 1.66 versus 5.62 ± 1.81, respectively. The mean value of serum iron levels in autistic children was severely reduced and significantly lower than in control children (74.13 ± 21.61 μg/dL with a median 74 in autistic children 87.59 ± 23.36 μg/dL in controls) (P = 0.003). Similarly, the study revealed that Vitamin D deficiency was considerably more common among autistic children (18.79 ± 8.35 ng/mL) as compared to healthy children (22.18 ± 9.00 ng/mL) (P = 0.004). Finally, mean values of hemoglobin, ferritin, magnesium; potassium, calcium; phosphorous; glucose, alkaline phosphate, hematocrit, white blood cell, and mean corpuscular volume were all statistically significantly higher in healthy control children as compared to autistic children (P < 0.001). Multivariate logistic regression analysis revealed that serum iron deficiency, serum calcium levels, serum Vitamin D levels; ferritin, reduced physical activity; child order, body mass index percentiles, and parental consanguinity can all be considered strong predictors and major factors associated with autism spectrum disorders. This study suggests that deficiency of iron and Vitamin D as well as anemia were more common in autistic compared to control children.

  7. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  8. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  9. Tissue levels of iron, copper, zinc and magnesium in iron deficient rats

    African Journals Online (AJOL)

    The effects of iron deficiency on the levels of iron, copper, zinc and magnesium in the brain, liver, kidney, heart and lungs of albino rats (Rattus novergicus) was investigated. Forty rats were divided into two groups and the first group was fed a control diet containing 1.09g iron/kg diet while the test group was fed diet ...

  10. Increased iron level in phytase-supplemented diets reduces performance and nutrient utilisation in broiler chickens.

    Science.gov (United States)

    Akter, Marjina; Iji, P A; Graham, H

    2017-08-01

    1. The effect of different levels of dietary iron on phytase activity and its subsequent effect on broiler performance were investigated in a 3 × 2 factorial arrangement. A total of 360 day-old Ross 308 male broiler chicks were distributed to 6 experimental diets, formulated with three levels of Fe (60, 80 and 100 mg/kg) and two levels of phytase (0 and 500 FTU/kg). 2. Phytase supplemented to mid-Fe diets increased feed consumption more than the non-supplemented diet at d 24. From hatch to d 35, Fe × phytase interaction significantly influenced the feed intake (FI), body weight gain (BWG) and feed conversion ratio (FCR). The high-Fe diet supplemented with phytase significantly reduced FI and BWG of broilers than those supplemented with low- or mid-Fe diets. The overall FCR was significantly better in birds fed on the mid-Fe diets with phytase supplementation. 3. A significant improvement in ileal digestibility of N, P, Mg and Fe was observed in birds feed diets containing 60 mg Fe/kg, with significant interaction between Fe and phytase. 4. Phytase improved the bone breaking strength when supplemented to low- or mid-Fe diets, compared to the non-supplemented diets. There was a significant Fe × phytase interaction effect. Tibia Fe content was higher in birds fed on phytase-free diets with high Fe but the reverse was the case when phytase was added and their interaction was significant. High dietary Fe significantly increased the accumulation of Fe in liver. 5. Phytase improved Ca-Mg-ATPase, Ca-ATPase and Mg-ATPase activities in jejunum when supplemented to the diet containing 80 mg Fe/kg. 6. This study indicates that high (100 mg/kg) dietary Fe inhibited phytase efficacy and subsequently reduced the overall performance and nutrient utilisation of broilers.

  11. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    International Nuclear Information System (INIS)

    Son, Ahjeong; Schmidt, Carl J.; Shin, Hyejin; Cha, Daniel K.

    2011-01-01

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  12. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ahjeong, E-mail: ason@auburn.edu [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Schmidt, Carl J. [Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 (United States); Shin, Hyejin [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2011-01-30

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  13. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease.

    Science.gov (United States)

    Huang, Xiao-Tian; Qian, Zhong-Ming; He, Xuan; Gong, Qi; Wu, Ka-Chun; Jiang, Li-Rong; Lu, Li-Na; Zhu, Zhou-Jing; Zhang, Hai-Yan; Yung, Wing-Ho; Ke, Ya

    2014-05-01

    Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. CORRELATION OF GALLSTONE FORMATION WITH SERUM IRON LEVELS

    Directory of Open Access Journals (Sweden)

    Rohini Bipin Bhadre

    2016-07-01

    Full Text Available INTRODUCTION Gallstones are one of the most common problem associated with the gallbladder, affecting millions of people throughout the world. Bile is excreted from liver and gallbladder into Duodenum for digestion. After digestion, if the gallbladder is not emptied out completely, the Bile Juice that remains in the gallbladder can become too concentrated with cholesterol leading to gallstone formation. Cholesterol and calcium bilirubinate are the two main substances involved in gallstone formation. Gallstones derived from bile consists of mixture of cholesterol, bilirubin with or without calcium. Based on their chemical composition, gallstones found in the gallbladder are classified as cholesterol, pigmented or mixed stones. Iron deficiency has been shown to alter the activity of several hepatic enzymes, leading to increased gallbladder bile cholesterol saturation and promotion of cholesterol crystal formation. AIMS & OBJECTIVE Attempt to establish a correlation with gallstones and decreased serum iron levels. MATERIAL & METHODS This study was a prospective cohort study which included 100 consecutive patients with imaging studies suggestive of Cholelithiasis. The Gallstone surgically removed was crushed with mortar and pestle and then analysed for cholesterol, calcium, phosphate and bilirubin (pigment. Serum samples were analysed for Cholesterol, iron and iron binding capacity. RESULTS 86% patients had increased cholesterol levels (p=0.04 and 93% had decreased serum Iron levels (p=0.96. The most common type of gallstone was found to be Cholesterol type of gallstone followed by Mixed and Pigment gallstones. CONCLUSION Serum cholesterol levels were found to be raised in majority of the patients and serum iron was found to be low in these majority of the patients indicating iron deficiency may play a role in gallstone formation.

  15. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xin-Jun [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Graduate Univ., Chinese Academy of Sciences, BJ (China); Yang Jing; Chen Xue-Ping; Sun Guo-Xin [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Zhu Yong-Guan [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Key Lab. of Urban Environment and Health, Inst. of Urban Environment, Chinese Academy of Sciences, Xiamen (China)

    2009-12-15

    Purpose: Dissimilatory iron-reducing bacteria have been described by both culture-dependent and -independent methods in various environments, including freshwater, marine sediments, natural wetlands, and contaminated aquifers. However, little is known about iron-reducing microbial communities in paddy soils. The goal of this study was to characterize iron-reducing microbial communities in paddy soil. Moreover, the effect of dissolved and solid-phase iron (III) species on the iron-reducing microbial communities was also investigated by enrichment cultures. Methods: Ferric citrate and ferrihydrite were used respectively to set up enrichment cultures of dissimilatory ironreducing microorganisms using 1% inoculum of soil samples, and the iron reduction was measured. Moreover, bacterial DNA was extracted and 16S rRNA genes were PCR-amplified, and subsequently analyzed by the clone library and terminal restriction fragment length polymorphism (T-RFLP). Results: Phylogenetic analysis of 16S rRNA gene sequences extracted from the enrichment cultures revealed that Bradyrhizobium, Bacteroides, Clostridium and Ralstonia species were the dominant bacteria in the ferric citrate enrichment. However, members of the genera Clostridium, Bacteroides, and Geobacter were the dominant micro-organisms in the ferrihydrite enrichment. Analysis of enrichment cultures by T-RFLP strongly supported the cloning and sequencing results. Conclusions: The present study demonstrated that dissimilatory iron-reducing consortia in As-contaminated paddy soil are phylogenetically diverse. Moreover, iron (III) sources as a key factor have a strong effect on the iron (III)-reducing microbial community structure and relative abundance in the enrichments. In addition, Geobacter species are selectively enriched by ferrihydrite enrichment cultures. (orig.)

  16. Serum levels of iron in Sør-Varanger, Northern Norway--an iron mining municipality.

    Science.gov (United States)

    Broderstad, Ann R; Smith-Sivertsen, Tone; Dahl, Inger Marie S; Ingebretsen, Ole Christian; Lund, Eiliv

    2006-12-01

    The purpose of this study was to investigate iron status in a population with a high proportion of miners in the northernmost part of Norway. Cross-sectional, population-based study performed in order to investigate possible health effects of pollution in the population living on both sides of the Norwegian-Russian border. All individuals living in the community of Sør-Varanger were invited for screening in 1994. In 2000, blood samples from 2949 participants (response rate 66.8 %), age range 30-69 years, were defrosted. S-ferritin and transferrin saturation were analysed in samples from 1548 women and 1401 men. About 30 % (n = 893) were employed in the iron mining industry, 476 of whom were miners and 417 had other tasks in the company. Type and duration of employment and time since last day of work at the company were used as indicators of exposure. Both s-ferritin levels and transferrin saturation were higher in men than in women. S-ferritin increased with increasing age in women, while the opposite was true for men. Iron deficiency occurred with higher frequencies in women (16 %) than in men (4 %). Iron overload was uncommon in both sexes. Adjustment for smoking and self-reported pulmonary diseases did not show any effect on iron levels. Miners had non-significant higher mean s-ferritin and transferrin saturation than non-miners. Neither duration, nor time since employment in the mine, had any impact on iron status. Our analyses did not show any associations between being a miner in the iron mining industry and serum iron levels compared to the general population.

  17. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  18. Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model.

    Science.gov (United States)

    Millot, Sarah; Delaby, Constance; Moulouel, Boualem; Lefebvre, Thibaud; Pilard, Nathalie; Ducrot, Nicolas; Ged, Cécile; Lettéron, Philippe; de Franceschi, Lucia; Deybach, Jean Charles; Beaumont, Carole; Gouya, Laurent; De Verneuil, Hubert; Lyoumi, Saïd; Puy, Hervé; Karim, Zoubida

    2017-02-01

    Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis. Copyright© Ferrata Storti Foundation.

  19. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels

    KAUST Repository

    Tong, Winghang; Sourbier, Carole; Kovtunovych, Gennadiy; Jeong, Suhyoung; Vira, Manish A.; Ghosh, Manik Chandra; Romero, Vladimir Valera; Sougrat, Rachid; Vaulont, Sophie; Viollet, Benoî t; Kim, Yeongsang; Lee, Sunmin; Trepel, Jane B.; Srinivasan, Ramaprasad; Bratslavsky, Gennady; Yang, Youfeng; Linehan, William Marston; Rouault, Tracey A.

    2011-01-01

    Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.

  20. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels

    KAUST Repository

    Tong, Winghang

    2011-09-01

    Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.

  1. [Peritoneal fluid iron levels in women with endometriosis].

    Science.gov (United States)

    Polak, Grzegorz; Wertel, Iwona; Tarkowski, Rafał; Kotarski, Jan

    2010-01-01

    Endometriosis is characterized by a cyclic hemorrhage within the peritoneal cavity. Accumulating data suggests that iron homeostasis in the peritoneal cavity may be disrupted by endometriosis. The aim of our study was to evaluate iron levels in peritoneal fluid (PF) of women with and without endometriosis. Seventy-five women were studied: 50 women with endometriosis and, as a reference group, 25 patients with functional follicle ovarian cysts. Iron concentrations in the PF were measured using a commercially available colorimetric assay kit. Iron concentrations were significantly higher in PF from women with endometriosis as compared to the reference group. Patients with stages III/IV endometriosis had significantly higher PF iron concentrations than women with stages I/II of the disease. Disrupted iron homeostasis in the peritoneal cavity of women with endometriosis plays a role in the pathogenesis of the disease.

  2. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  3. Comparison of Deferoxamine, Activated Charcoal, and Vitamin C in Changing the Serum Level of Fe in Iron Overloaded Rats

    Directory of Open Access Journals (Sweden)

    Reza Ghafari

    2014-02-01

    Full Text Available Background: Iron is an essential mineral for normal cellular physiology but its overload can lead to cell injury. For many years, deferoxamine injection has been used as an iron chelator for treatment of iron overload. The aim of this study is to compare oral deferoxamine, activated charcoal, and vitamin C, as an absorbent factor of Fe, in changing the serum level of iron in iron overload rats. Methods: In this experimental study, all groups were administered 150 mg iron dextran orally by gavage. After eight hours, rats in the first group received oral deferoxamine while those in the second and third groups received oral activated charcoal 1 mg/kg and oral vitamin C 150 mg, respectively. Then, serum levels of iron ware measured in all rats. Results: The mean serum level of iron in rats that received oral deferoxamine was 258.11±10.49 µg/dl, whereas mean levels of iron in charcoal and vitamin C groups were 380.88±11.21 µg/dl and 401.22±13.28 µg/dl, respectively. None of the measurements were within safety limits of serum iron. Conclusion: It seems that oral deferoxamine per se may not help physicians in the management of cases presented with iron toxicity. Activated charcoal did not reduce serum iron significantly in this study and further investigations may be warranted to assess the potential clinical utility of its mixture with oral deferoxamine as an adjunct in the clinical management of iron ingestions.

  4. Prenatal Iron Supplementation Reduces Maternal Anemia, Iron Deficiency, and Iron Deficiency Anemia in a Randomized Clinical Trial in Rural China, but Iron Deficiency Remains Widespread in Mothers and Neonates.

    Science.gov (United States)

    Zhao, Gengli; Xu, Guobin; Zhou, Min; Jiang, Yaping; Richards, Blair; Clark, Katy M; Kaciroti, Niko; Georgieff, Michael K; Zhang, Zhixiang; Tardif, Twila; Li, Ming; Lozoff, Betsy

    2015-08-01

    Previous trials of prenatal iron supplementation had limited measures of maternal or neonatal iron status. The purpose was to assess effects of prenatal iron-folate supplementation on maternal and neonatal iron status. Enrollment occurred June 2009 through December 2011 in Hebei, China. Women with uncomplicated singleton pregnancies at ≤20 wk gestation, aged ≥18 y, and with hemoglobin ≥100 g/L were randomly assigned 1:1 to receive daily iron (300 mg ferrous sulfate) or placebo + 0.40 mg folate from enrollment to birth. Iron status was assessed in maternal venous blood (at enrollment and at or near term) and cord blood. Primary outcomes were as follows: 1) maternal iron deficiency (ID) defined in 2 ways as serum ferritin (SF) iron (BI) anemia [ID + anemia (IDA); hemoglobin 118 μmol/mol). A total of 2371 women were randomly assigned, with outcomes for 1632 women or neonates (809 placebo/folate, 823 iron/folate; 1579 mother-newborn pairs, 37 mothers, 16 neonates). Most infants (97%) were born at term. At or near term, maternal hemoglobin was significantly higher (+5.56 g/L) for iron vs. placebo groups. Anemia risk was reduced (RR: 0.53; 95% CI: 0.43, 0.66), as were risks of ID (RR: 0.74; 95% CI: 0.69, 0.79 by SF; RR: 0.65; 95% CI: 0.59, 0.71 by BI) and IDA (RR: 0.49; 95% CI: 0.38, 0.62 by SF; RR: 0.51; 95% CI: 0.40, 0.65 by BI). Most women still had ID (66.8% by SF, 54.7% by BI). Adverse effects, all minor, were similar by group. There were no differences in cord blood iron measures; >45% of neonates in each group had ID. However, dose-response analyses showed higher cord SF with more maternal iron capsules reported being consumed (β per 10 capsules = 2.60, P iron supplementation reduced anemia, ID, and IDA in pregnant women in rural China, but most women and >45% of neonates had ID, regardless of supplementation. This trial was registered at clinicaltrials.gov as NCT02221752. © 2015 American Society for Nutrition.

  5. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-01-01

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  6. Hypoadiponectinemia, elevated iron and high-sensitivity C-reactive protein levels and their relation with prostate size in benign prostatic hyperplasia.

    Science.gov (United States)

    Nandeesha, H; Eldhose, A; Dorairajan, L N; Anandhi, B

    2017-09-01

    Elevated iron, high-sensitivity C-reactive protein (CRP) and hypoadiponectinemia are known to initiate tumour development. There is paucity of data regarding the above-mentioned parameters and their relation with prostate size in benign prostatic hyperplasia (BPH). The present study was designed to assess the levels of iron, hs-CRP and adiponectin levels and their association with prostate size in BPH patients. A total of 37 BPH cases and 36 controls were enrolled in the study. Iron, hs-CRP and adiponectin were estimated in both the groups. Iron and hs-CRP were significantly increased and adiponectin was significantly reduced in BPH cases when compared with controls. Iron (r = .397, p = .015), hs-CRP (r = .341, p = .039) and adiponectin (r = -.464, p = .004) were significantly associated with prostate size in BPH cases. Multivariate linear regression analysis showed that iron acts as predictor of prostate size in BPH (R 2  = 0.395, β = 0.526, p = .001). We conclude that iron and hs-CRP are elevated and adiponectin is reduced in BPH cases and associated with prostate size. © 2016 Blackwell Verlag GmbH.

  7. Solubility measurement of iron-selenium compounds under reducing conditions. Research document

    International Nuclear Information System (INIS)

    Kitamura, Akira; Shibata, Masahiro

    2003-03-01

    Chemical behavior of selenium (Se), which was one of the important elements for performance assessment of geological disposal of high-level radioactive waste, was investigated under reducing and iron-containing conditions. A washing method for an iron diselenide (FeSe 2 (cr)) reagent with acidic and basic solutions (0.1 and 1 M HCl and 1 M NaOH) was carried out for the purification of FeSe 2 reagent, which was considered to be a solubility limiting solid for Se under the geological disposal conditions. Furthermore, solubility of FeSe 2 (cr) was measured in alkaline solution (pH: 11 - 13) under reducing conditions (E h vs SHE: -0.4 - 0 V), and thermodynamic data on equilibrium reactions between Se in solution and Se precipitate were obtained. The dependencies of solubility values on pH and redox potential (E h : vs. standard hydrogen electrode) were best interpreted that the solubility limiting solid was not FeSe 2 (cr) but Se(cr) and the aqueous species was SeO 3 2- in the present experimental conditions. The equilibrium constant between Se(cr) and SeO 3 2- at zero ionic strength was determined and compared with literature values. The chemical behavior of Se under geological disposal conditions was discussed. (author)

  8. Mossbauer and magnetic study of solid phases formed by dissimilatory iron-reducing bacteria

    Czech Academy of Sciences Publication Activity Database

    Chistyakova, N.I.; Rusakov, V.S.; Shapkin, A.A.; Pigalev, P.A.; Kazakov, A.P.; Zhilina, T.N.; Zavarzina, D.G.; Lančok, Adriana; Kohout, J.; Greneche, J. M.

    2012-01-01

    Roč. 190, JUNE (2012), s. 721-724 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z40320502 Keywords : Mossbauer spectroscopy * dissimilatory iron-reducing bacteria * iron oxides * biomagnetism Subject RIV: CA - Inorganic Chemistry

  9. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI. Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT and dopamine receptor D(1 (D1R levels were reduced and dopamine receptor D(2 (D2R levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.

  10. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  11. Ferritin and iron levels in children with autistic disorder.

    Science.gov (United States)

    Hergüner, Sabri; Keleşoğlu, Fatih Mehmet; Tanıdır, Cansaran; Cöpür, Mazlum

    2012-01-01

    Iron has an important role on cognitive, behavioral, and motor development. High prevalence of iron deficiency has been reported in autism. The aim of this study was to investigate iron status in a group of children with autistic disorder. The sample was composed of 116 children between 3 and 16 years with a diagnosis of autistic disorder according to DSM-IV criteria. Serum ferritin, iron, hemoglobin, hematocrit, mean corpuscular volume, and red cell distribution width values were measured. We found that 24.1% of subjects had iron deficiency, and 15.5% had anemia. There was a significant positive correlation between age and ferritin and hematological measures. Results of this study confirmed that iron deficiency and anemia are common in children with autistic disorder. These findings suggest that ferritin levels should be measured in subjects with autism as a part of routine investigation.

  12. System and method for making metallic iron with reduced CO.sub.2 emissions

    Science.gov (United States)

    Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-10-14

    A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

  13. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels

    Directory of Open Access Journals (Sweden)

    Aya Ishibashi

    2017-07-01

    Full Text Available Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily on the hepcidin-25 (hepcidin level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7 or a placebo condition (Control condition; CON, n = 7. They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1–3. The Fe condition took 12 mg of iron twice daily (24 mg/day, and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise (p < 0.05. In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition (p < 0.05. In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.

  14. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels.

    Science.gov (United States)

    Ishibashi, Aya; Maeda, Naho; Kamei, Akiko; Goto, Kazushige

    2017-07-30

    Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily) on the hepcidin-25 (hepcidin) level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7) or a placebo condition (Control condition; CON, n = 7). They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1-3). The Fe condition took 12 mg of iron twice daily (24 mg/day), and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise ( p < 0.05). In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition ( p < 0.05). In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.

  15. In situ iron-57 Moessbauer spectroscopic investigations of the effect of titania surface area on the reducibility of titania-supported iron oxide

    International Nuclear Information System (INIS)

    Berry, F.J.; Du Hongzhang

    1990-01-01

    Iron-57 Moessbauer spectroscopy has been used to monitor the reducibility in hydrogen of iron oxides supported on titania of differing surface areas. The results show that although Fe 3+ in the iron oxide supported on low surface area titania (11 m 2 g -1 ) is not amenable to facile reduction at low temperatures, complete reduction to metallic iron is achieved by treatment at 600deg C. The data also show that the extent of reduction at elevated temperatures exceeds that which is obtained on similar silica- and alumina-supported systems. Fe 3+ in iron oxide supported on higher surface area titania (50 m 2 g -1 and 240 m 2 g -1 ) is partially reduced in hydrogen at 235deg C to Fe 2+ but fails to attain complete reduction to the metallic state following treatment at 600deg C. The results are related to the different dispersions of iron oxide which can be attained on titania of differing surface area and the consequent interactions between the support and the supported phases. (orig.)

  16. Serum B/sub 12/ levels in iron definiency anemia

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, L A; Ohki, Keiichi

    1964-04-23

    As part of its research program to study the late effects of radiation in survivors of the atomic bombs, the Atomic Bomb Casualty Commission (ABCC) in conjunction with the Japanese National Institute of Health (JNIH), conducts biennial medical examinations on the selected population which comprises the ABCC-JHIN Adult Health Study sample. The patients herein described as Groups 1 and 2 were selected from among those examined in Nagasaki who had had a hemoglobin value of less than 11.0 g/100 ml at examination 2 years previously and who had responded to iron therapy sufficiently to justify a diagnosis of iron deficiency anemia. Almost all were women of child bearing age. The effect of iron therapy on the level of serum B/sub 12/ was investigated. Of 58 patients so studied, 46 showed some rise in post-treatment levels of B/sub 12/. This is evaluated as indicating that gastric secretion of intrinsic factor is depressed in the majority of iron deficient patients.

  17. Increased Plasmodium chabaudi malaria mortality in mice with nutritional iron deficiency can be reduced by short-term adjunctive iron supplementation

    DEFF Research Database (Denmark)

    Castberg, Filip C; Maretty, Lasse; Staalsoe, Trine

    2018-01-01

    infected mice had extramedullary splenic haematopoiesis, and iron-supplemented mice had visually detectable intracellular iron stores. CONCLUSIONS: Blood transfusions are the only currently available means to correct severe anaemia in children with malaria. The potential of carefully timed, short...... parts of the world. This has rendered interventions against iron deficiency in malaria-endemic areas controversial. METHODS: The effect of nutritional iron deficiency on the clinical outcome of Plasmodium chabaudi AS infection in A/J mice and the impact of intravenous iron supplementation with ferric...... deficiency was associated with increased mortality from P. chabaudi malaria. This increased mortality could be partially offset by carefully timed, short-duration adjunctive iron supplementation. Moribund animals were characterized by low levels of hepcidin and high levels of fibroblast growth factor 23. All...

  18. Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels.

    Directory of Open Access Journals (Sweden)

    Konstantinos Gkouvatsos

    Full Text Available Hemojuvelin (Hjv is a bone morphogenetic protein (BMP co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv-/- mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv-/- mice developed systemic iron overload under all regimens. Transferrin (Tf was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.

  19. Serum iron levels and the risk of Parkinson disease: a Mendelian randomization study.

    Directory of Open Access Journals (Sweden)

    Irene Pichler

    Full Text Available Although levels of iron are known to be increased in the brains of patients with Parkinson disease (PD, epidemiological evidence on a possible effect of iron blood levels on PD risk is inconclusive, with effects reported in opposite directions. Epidemiological studies suffer from problems of confounding and reverse causation, and mendelian randomization (MR represents an alternative approach to provide unconfounded estimates of the effects of biomarkers on disease. We performed a MR study where genes known to modify iron levels were used as instruments to estimate the effect of iron on PD risk, based on estimates of the genetic effects on both iron and PD obtained from the largest sample meta-analyzed to date.We used as instrumental variables three genetic variants influencing iron levels, HFE rs1800562, HFE rs1799945, and TMPRSS6 rs855791. Estimates of their effect on serum iron were based on a recent genome-wide meta-analysis of 21,567 individuals, while estimates of their effect on PD risk were obtained through meta-analysis of genome-wide and candidate gene studies with 20,809 PD cases and 88,892 controls. Separate MR estimates of the effect of iron on PD were obtained for each variant and pooled by meta-analysis. We investigated heterogeneity across the three estimates as an indication of possible pleiotropy and found no evidence of it. The combined MR estimate showed a statistically significant protective effect of iron, with a relative risk reduction for PD of 3% (95% CI 1%-6%; p = 0.001 per 10 µg/dl increase in serum iron.Our study suggests that increased iron levels are causally associated with a decreased risk of developing PD. Further studies are needed to understand the pathophysiological mechanism of action of serum iron on PD risk before recommendations can be made.

  20. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei (China); Zhao, Xin [Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei (China); Chang, Yanzhong [Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei (China); Zhang, Yuanyuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Xi [Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei (China); Zhang, Xuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Liu, Zhenyi; Guo, Hui [Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Wang, Na [Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Gao, Yonggang [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Zhang, Jianping, E-mail: zhangjianping14@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Li, E-mail: chuli0614@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei (China)

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and

  1. Serum iron and total iron binding capacity levels among the abo ...

    African Journals Online (AJOL)

    Iron deficiency anaemia is a common tropical disease. Iron plays a very important role in the human body. The understanding of the different blood groups ability to retain iron in their system can give an insight into their ability to handle the disease Iron deficiency anaemia. Serum Iron, Total Iron Binding Capacity (TIBC) and ...

  2. Hamp1 mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice.

    Science.gov (United States)

    McLachlan, Stela; Page, Kathryn E; Lee, Seung-Min; Loguinov, Alex; Valore, Erika; Hui, Simon T; Jung, Grace; Zhou, Jie; Lusis, Aldons J; Fuqua, Brie; Ganz, Tomas; Nemeth, Elizabeta; Vulpe, Chris D

    2017-11-01

    Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin ( Hamp1 ) mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains. Two studies were done: first, Hamp1 mRNA, liver iron, and plasma diferric transferrin levels were measured in 14 inbred strains on a control diet; and second, Hamp1 mRNA and plasma hepcidin levels in both sexes and iron levels in the heart, kidneys, liver, pancreas, and spleen in males were measured in nine inbred/recombinant inbred strains raised on an iron-sufficient or high-iron diet. Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). However, liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice fed iron-sufficient or high-iron diets, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males. We also measured plasma erythroferrone, performed RNA-sequencing analysis of liver samples from six inbred strains fed the iron-sufficient, low-iron, or high-iron diets, and explored differences in gene expression between the strains with the highest and lowest hepcidin levels. NEW & NOTEWORTHY Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). Liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least

  3. A budget impact analysis of parenteral iron treatments for iron deficiency anemia in the UK: reduced resource utilization with iron isomaltoside 1000

    Directory of Open Access Journals (Sweden)

    Pollock RF

    2017-08-01

    Full Text Available Richard F Pollock,1 Gorden Muduma2 1Ossian Health Economics and Communications GmbH, Basel, Switzerland; 2Pharmacosmos A/S, Holbaek, Denmark Background and aims: The reported prevalence of iron deficiency anemia (IDA varies widely but estimates suggest that 3% of men and 8% of women have IDA in the UK. Parenteral iron is indicated for patients intolerant or unresponsive to oral iron or requiring rapid iron replenishment. This study evaluated differences in the cost of treating these patients with iron isomaltoside (Monofer®, IIM relative to other intravenous iron formulations. Methods: A budget impact model was developed to evaluate the cost of using IIM relative to ferric carboxymaltose (Ferinject®, FCM, low molecular weight iron dextran (Cosmofer®, LMWID, and iron sucrose (Venofer®, IS in patients with IDA. To establish iron need, iron deficits were modeled using a simplified dosing table. The base case analysis was conducted over 1 year in patients with IDA with mean bodyweight of 82.4 kg (SD 22.5 kg and hemoglobin levels of 9.99 g/dL (SD 1.03 g/dL based on an analysis of patient characteristics in IDA trials. Costs were modeled using UK health care resource groups. Results: Using IIM required 1.3 infusions to correct the mean iron deficit, compared with 1.3, 1.8, and 7.7 with LMWID, FCM, and IS, respectively. Patients using IIM required multiple infusions in 35% of cases, compared with 35%, 77%, and 100% of patients with LMWID, FCM, and IS, respectively. Total costs were estimated to be GBP 451 per patient with IIM or LMWID, relative to GBP 594 with FCM (a GBP 143 or 24% saving with IIM or GBP 2,600 with IS (a GBP 2,149 or 83% saving with IIM. Conclusion: Using IIM or LMWID in place of FCM or IS resulted in a marked reduction in the number of infusions required to correct iron deficits in patients with IDA. The reduction in infusions was accompanied by substantial reductions in cost relative to FCM and IS over 1 year. Keywords: iron

  4. A budget impact analysis of parenteral iron treatments for iron deficiency anemia in the UK: reduced resource utilization with iron isomaltoside 1000.

    Science.gov (United States)

    Pollock, Richard F; Muduma, Gorden

    2017-01-01

    The reported prevalence of iron deficiency anemia (IDA) varies widely but estimates suggest that 3% of men and 8% of women have IDA in the UK. Parenteral iron is indicated for patients intolerant or unresponsive to oral iron or requiring rapid iron replenishment. This study evaluated differences in the cost of treating these patients with iron isomaltoside (Monofer ® , IIM) relative to other intravenous iron formulations. A budget impact model was developed to evaluate the cost of using IIM relative to ferric carboxymaltose (Ferinject ® , FCM), low molecular weight iron dextran (Cosmofer ® , LMWID), and iron sucrose (Venofer ® , IS) in patients with IDA. To establish iron need, iron deficits were modeled using a simplified dosing table. The base case analysis was conducted over 1 year in patients with IDA with mean bodyweight of 82.4 kg (SD 22.5 kg) and hemoglobin levels of 9.99 g/dL (SD 1.03 g/dL) based on an analysis of patient characteristics in IDA trials. Costs were modeled using UK health care resource groups. Using IIM required 1.3 infusions to correct the mean iron deficit, compared with 1.3, 1.8, and 7.7 with LMWID, FCM, and IS, respectively. Patients using IIM required multiple infusions in 35% of cases, compared with 35%, 77%, and 100% of patients with LMWID, FCM, and IS, respectively. Total costs were estimated to be GBP 451 per patient with IIM or LMWID, relative to GBP 594 with FCM (a GBP 143 or 24% saving with IIM) or GBP 2,600 with IS (a GBP 2,149 or 83% saving with IIM). Using IIM or LMWID in place of FCM or IS resulted in a marked reduction in the number of infusions required to correct iron deficits in patients with IDA. The reduction in infusions was accompanied by substantial reductions in cost relative to FCM and IS over 1 year.

  5. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  6. Oral vitamin C supplementation reduces erythropoietin requirement in hemodialysis patients with functional iron deficiency.

    Science.gov (United States)

    Sultana, Tanjim; DeVita, Maria V; Michelis, Michael F

    2016-09-01

    Functional iron deficiency (FID) is a major cause of persistent anemia in dialysis patients and also contributes to a suboptimal response to erythropoietin (Epo) administration. Vitamin C acts as an enzyme cofactor and enhances mobilization of the ferrous form of iron to transferrin thus increasing its bioavailability. High-dose intravenous vitamin C has been shown to decrease the Epo requirement and improve hemoglobin levels in previous studies. This study assessed the effect of low-dose oral vitamin C on possible reduction in Epo dose requirements in stable hemodialysis patients with FID. This prospective study included 22 stable hemodialysis patients with FID defined as transferrin saturation (T sat) 100 mcg/L with Epo requirement of ≥4000 U/HD session. Patients received oral vitamin C 250 mg daily for 3 months. Hemoglobin, iron and T sat levels were recorded monthly. No one received iron supplementation during the study period. There was a significant reduction in median Epo dose requirement in the 15 patients who completed the study, from 203.1 U/kg/week (95 % CI 188.4-270.6) to 172.8 U/kg/week (95 % CI 160.2-214.8), (P = 0.01). In the seven responders, there was 33 % reduction in Epo dose from their baseline. Despite adjustment of Epo dose, the mean hemoglobin level was significantly increased from 10.1 ± 0.6 to 10.7 ± 0.6 mg/dL (P = 0.03). No adverse effects of oral vitamin C were observed. Daily low-dose oral vitamin C supplementation reduced Epo dose requirements in hemodialysis patients with FID. Limitations of this study include a small sample size and the lack of measurements of vitamin C and oxalate levels. Despite concerns regarding oral vitamin C absorption in dialysis patients, this study indicates vitamin C was well tolerated by all participants without reported adverse effect.

  7. Predictors of iron levels in 14,737 Danish blood donors

    DEFF Research Database (Denmark)

    Rigas, Andreas Stribolt; Sørensen, Cecilie Juul; Pedersen, Ole Birger

    2014-01-01

    BACKGROUND: Dietary studies show a relationship between the intake of iron enhancers and inhibitors and iron stores in the general population. However, the impact of dietary factors on the iron stores of blood donors, whose iron status is affected by blood donations, is incompletely understood....... STUDY DESIGN AND METHODS: In the Danish Blood Donor Study, we assessed the effect of blood donation frequency, physiologic factors, lifestyle and supplemental factors, and dietary factors on ferritin levels. We used multiple linear and logistic regression analyses stratified by sex and menopausal status....... RESULTS: Among high-frequency donors (more than nine donations in the past 3 years), we found iron deficiency (ferritin below 15 ng/mL) in 9, 39, and 22% of men, premenopausal women, and postmenopausal women, respectively. The strongest predictors of iron deficiency were sex, menopausal status, the number...

  8. Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure.

    Directory of Open Access Journals (Sweden)

    Andrew D Govus

    Full Text Available To investigate the influence of daily oral iron supplementation on changes in hemoglobin mass (Hbmass and iron parameters after 2-4 weeks of moderate altitude exposure.Hematological data collected from 178 athletes (98 males, 80 females exposed to moderate altitude (1,350-3,000 m were analysed using linear regression to determine how altitude exposure combined with oral iron supplementation influenced Hbmass, total iron incorporation (TII and blood iron parameters [ferritin and transferrin saturation (TSAT].Altitude exposure (mean ± s: 21 ± 3 days increased Hbmass by 1.1% [-0.4, 2.6], 3.3% [1.7, 4.8], and 4.0% [2.0, 6.1] from pre-altitude levels in athletes who ingested nil, 105 mg and 210 mg respectively, of oral iron supplement daily. Serum ferritin levels decreased by -33.2% [-46.9, -15.9] and 13.8% [-32.2, 9.7] from pre-altitude levels in athletes who supplemented with nil and 105 mg of oral iron supplement daily, but increased by 36.8% [1.3, 84.8] in athletes supplemented with 210 mg of oral iron daily. Finally, athletes who ingested either 105 mg or 210 mg of oral iron supplement daily had a greater TII compared with non-supplemented athletes (0 versus 105 mg: effect size (d = -1.88 [-2.56, -1.17]; 0 versus 210 mg: effect size (d = -2.87 [-3.88, -1.66].Oral iron supplementation during 2-4 weeks of moderate altitude exposure may enhance Hbmass production and assist the maintenance of iron balance in some athletes with low pre-altitude iron stores.

  9. Importance of different physiological groups of iron reducing microorganisms in an acidic mining lake remediation experiment.

    Science.gov (United States)

    Porsch, Katharina; Meier, Jutta; Kleinsteuber, Sabine; Wendt-Potthoff, Katrin

    2009-05-01

    Iron- and sulfate-reducing microorganisms play an important role for alkalinity-generating processes in mining lakes with low pH. In the acidic mining lake 111 in Lusatia, Germany, a passive in situ remediation method was tested in a large scale experiment, in which microbial iron and sulfate reduction are stimulated by addition of Carbokalk (a mixture of the nonsugar compounds of sugar beets and lime) and straw. The treated surface sediment consisted of three layers of different pH and geochemical composition. The top layer was acidic and rich in Fe(III), the second and third layer both showed moderately acidic to circum-neutral pH values, but only the second was rich in organics, strongly reduced and sulfidic. Aim of the study was to elucidate the relative importance of neutrophilic heterotrophic, acidophilic heterotrophic, and acidophilic autotrophic iron-reducing microorganisms in each of the three layers. In order to distinguish between them, the effect of their respective characteristic electron donors acetate, glucose, and elemental sulfur on potential iron reduction rates was investigated. Limitation of iron reduction by the availability of Fe(III) was revealed by the addition of Fe(OH)(3). The three groups of iron-reducing microorganisms were quantified by most probable number (MPN) technique and their community composition was analyzed by cloning and sequencing of 16S rRNA genes. In the acidic surface layer, none of the three electron donors stimulated iron reduction; acetate even had an inhibiting effect. In agreement with this, no decrease of the added electron donors was observed. Iron reduction rates were low in comparison to the other layers. Iron reduction in layers 2 and 3 was enhanced by glucose and acetate, accompanied by a decrease of these electron donors. Addition of elemental sulfur did not enhance iron reduction in either layer. Layer 2 exhibited the highest iron reduction rate (4.08 mmol dm(-3) d(-1)) and the highest cell numbers in MPN

  10. Noninvasive analysis of skin iron and zinc levels in beta-thalassemia major and intermedia

    International Nuclear Information System (INIS)

    Gorodetsky, R.; Goldfarb, A.; Dagan, I.; Rachmilewitz, E.A.

    1985-01-01

    Diagnostic x-ray spectrometry, a method based on x-ray fluorescence analysis, was used for noninvasive determination of iron and zinc in two distinct skin areas, representing predominantly dermal and epidermal tissues, in 56 patients with beta-thalassemia major and intermedia. The mean iron levels in the skin of patients with beta-thalassemia major and intermedia were elevated by greater than 200% and greater than 50%, respectively, compared with control values. The zinc levels of both skin areas examined were within the normal range. The data indicate that the rate and number of blood transfusions, which correlated well with serum ferritin levels (r . 0.8), are not the only factors that determine the amount of iron deposition in the skin (r less than 0.6). Other sources of iron intake contribute to the total iron load in the tissues, particularly in patients who are not given multiple transfusions. The noninvasive quantitation of skin levels may reflect the extent of iron deposition in major parenchymal organs. Repeated DXS examinations of the skin could monitor the clearance of iron from the tissues of patients with iron overload in the course of therapy with chelating agents

  11. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    Science.gov (United States)

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  12. Changes in iron levels, total iron binding capacity, transferrin saturation in race horses, before and after of physical exercise

    Directory of Open Access Journals (Sweden)

    Gláucia Abramovitc

    2014-09-01

    Full Text Available ABSTRACT. Abramovitc G., Parra A.C. & Fernandes W.R. [Changes in iron levels, total iron binding capacity, transferrin saturation in race horses, before and after of physical exercise]. Variação de níveis séricos de ferro, da capacidade total de ligação do ferro e da saturação da transferrina em equinos de corrida, antes e após exercício físico. Revista Brasileira de Medicina Veterinária, 36(3:289-293, 2014. Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Rua Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, Butantã, São Paulo, SP 05508-270, Brasil. Email: wilsonrf@usp.br The preparation of the horse for physical activities in competition is directly related to important factors such as nutrition, muscle adaptation and blood profile, related to the concentration of serum iron, total capacity total iron binding capacity (TIBC and saturation of transferrin. This study aimed to evaluate the influence of exercise in iron levels, the total iron and transferrin saturation in race horses. One hundred and eleven samples of blood serum were collected from Thoroughbred horses, from the Jockey Club of São Paulo, aged between 3 and 4 years old, male and female, clinically healthy, practitioners turf competition, in sand or grass. The samples were obtained before exercise (control time and 30 minutes after exercise (post exercise. These animals were submitted to gallop training, of high intensity and short duration for this research. As a result, it was observed that the serum concentration of iron (Fe showed a statistically significant lowering post-exercise, due to organic re-balance of iron, while TIBC (total iron binding capacity showed a clear and significant increase in their serum levels due to increased needs of iron during and after exercise. The percentage of transferrin saturation in serum was shown to be lower post-exercise, probably due to the recruitment of

  13. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  14. Phase change of iron ore reduction process using EFB as reducing agent at 900-1200°C

    Science.gov (United States)

    Purwanto, H.; Salleh, H. M.; Rozhan, A. N.; Mohamad, A. S.; Zakiyuddin, A.

    2018-04-01

    Treatment of low grade iron ore involved reduction of oxygen in iron oxide by using reductant such as carbon monoxide or hydrogen gas. Presently, carboneous materials such as coke/coal are widely used as a source to provide reducing gas, but some problem arises from this material as the gas can harm the environments. Therefore, empty fruit bunch biomass from oil palm becomes an alternative to replace the usage of coke/coal as their major composition is carbon and hydrogen. The idea of replacing coke with biomass will reduce the amount of carbon dioxide release as biomass is a carbon neutral and renewable source, and at the same time abundance of waste from oil palm industries can be overcome. Therefore, the aim of this research is to upgrade the low grade iron with reducibility more than 50% being used in iron and steel making. In this research, low grade iron ore are mixed together with EFB then is making into composite pellet before being reduced at certain parameter chosen. The variables involved in this research is composition EFB (10%, 30% and 50%), temperature (1000°C, 1100°C and 1200°C) and reduction time is fixed with 30 minutes. From the experiment conducted, the highest reducibility achieved is 76.37% at temperature 1200°C. While XRD analysis shows the existence of metallic iron phase started to form at 1000°C with composition of 30% of EFB. Meanwhile, from magnetization test show that at 1200°C the highest magnetic susceptibility is achieved as the dominance phase at 1200°C is metallic phase. Therefore it is an interesting alternative to replace coke with biomass for reducing agent in upgrading low grade iron into workable ores.

  15. In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women

    NARCIS (Netherlands)

    Cepeda-Lopez, A.C.; Melse, A.; Zimmermann, M.B.; Herter-Aeberli, I.

    2015-01-01

    Background: Iron deficiency is common in overweight and obese individuals. This deficiency may be due to adiposity-related inflammation that increases serum hepcidin and decreases dietary iron absorption. Because hepcidin reduces iron efflux from the basolateral enterocyte, it is uncertain whether

  16. Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products

    International Nuclear Information System (INIS)

    Shin, Dong Man; Hur, Nam Yong; Kim, Waang Bae

    2011-01-01

    The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper

  17. Iron deficiency anaemia: with the conclusion of a need for iron reader

    Science.gov (United States)

    Lim, Wai Feng; Yap, Boon Kar; Lai, Mei I.; Talik, Noorazrina; Nasser, Ammar Ahmed; Al-Haiqi, Ahmed Mubarak Ahmed; Sankar Krishnan, Prajindra

    2017-10-01

    In our bloodstream, there are plenty of red blood cells (RBC), which function as an important oxygen carrier in our bodies. Each RBC consists of millions of haemoglobin (Hb), which is made up from globin and iron. If any deficiency/malfunction of any globin, it will lead to anaemia as indicated in low Hb level while iron deficiency anaemia (IDA) is anaemic due to the lacking of iron as indicated in low Hb and ferritin levels. IDA affects almost two billion people globally while anaemia without iron deficiency, such as thalassaemia, affects almost 4.5% in Malaysian population. These anaemic conditions have similar clinical symptoms like fatigue, dizziness, in which disturb their cognitive development and productivity in workplace. In areas without proper medical access, many anaemic individuals were misdiagnosed and treated with iron tablets because they were thought to have iron deficiency anaemia due to low Hb content. But, excess iron is toxic to the body. Misdiagnosis can be avoided by iron status assessment. We hereby review the currently available iron status parameters in laboratory and field study with the conclusion of demonstrating the importance of a need for iron reader, in the effort to reduce the prevalence of IDA globally.

  18. An iron-57 Moessbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1992-01-01

    57 Fe Moessbauer spectroscopy shows that titania-supported iron is reduced by treatment in hydrogen at significantly lower temperatures than corresponding silica- and alumina-supported catalysts. The metallic iron formed under hydrogen at 600deg C is partially converted to carbide by treatment in carbon monoxide and hydrogen. In contrast to its alumina- and silica-supported counterparts, the remainder of the titania-supported iron is unchanged by this gaseous mixture. The 57 Fe Moessbauer spectra of EXAFS show that iron and iridium in the titania-supported iron-iridium catalysts are reduced in hydrogen at even lower temperatures and, after treatment at 600deg C, are predominantly present as the iron-iridium alloy. The treatment of these reduced catalysts in carbon monoxide and hydrogen is shown by Moessbauer spectroscopy and EXAFS to induce the segregation of iron from the iron-iridium alloy and its conversion to iron oxide. (orig.)

  19. Obesity alters adipose tissue macrophage iron content and tissue iron distribution.

    Science.gov (United States)

    Orr, Jeb S; Kennedy, Arion; Anderson-Baucum, Emily K; Webb, Corey D; Fordahl, Steve C; Erikson, Keith M; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K; Hasty, Alyssa H

    2014-02-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.

  20. Natural radioactivity in iron and steel materials by low-level gamma spectrometry

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, Maria

    2003-01-01

    High resolution low-level gamma spectrometry was applied to perform a radioactivity measurement in iron and steel raw materials (coal, coke, iron ore, pellets, manganese ore, limestone, dolomite), auxiliary materials (scorialite, oxide of Ti, bentonite), and some related final products (cast iron, slag, blast-furnace, flue dust) involved in iron making processing. We control the activity of materials in various kinds of samples and we investigate for transfer of radioactivity during the blast-furnace process. Artificial radioisotopes are rarely encountered. (authors)

  1. Effect of zinc and/or iron supplementations on ICF-level in prepubertal anaemic girls

    International Nuclear Information System (INIS)

    Ayad, S.K.; Noure Eldin, A.M.

    2003-01-01

    The study was carried out to evaluate the effects of iron and zinc supplementations separated or combined on levels of iron, zinc and insulin like growth factor-1 (IGF-) in prepuberal girls suffering from iron deficiency anaemia. Hematological and biochemical changes of thirty two anaemic prepubertal girls (mean age 10.5 ± 2.01 year) were compared with normal fifteen girls have the same age. The anaemic girls were divided into three groups according to treatment; groupA (iron, group B(zinc) and group C (iron+zinc)and received supplementations for 8 weeks. Significant decreases in erythrocytic counts (RBCs), hemoglobin (Hb), hematocrit % (Hct%) and reticulocytes%(Rt%) were recorded in blood samples of the three groups before supplementations while non-significant differences were detected in the values of other blood indices. Significant decreases were detected in iron, zinc and IGF-1 levels while non-significant decrease in ferritin was detected in group (A). Erythropoietin and total iron binding capacity (TIBC) showed significant increases in the same group. Total iron binding capacity, iron, zinc and IGF-1 levels showed significant decreases while there were significant increases in erythropoetin and ferritin in group (B). The results revealed that ferritin,iron, zinc and IGF-1 levels were significantly decreased while erythropoietin and TIBC were significantly increased in group (C). After treatment, group (B) showed sligh significant increases in the concentration of Hb, Hct% and Rt%. with non-significant increase in RBCs count but in group (C) the results revealed significant increases in RBCs count, Hb, Hct% and Rt%. Non- significant differences were detected in RBCs count, Hb and Hct% in group (A) while significant increase was detected in Rt% in the same group

  2. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.

    Science.gov (United States)

    Grettenberger, Christen L; Pearce, Alexandra R; Bibby, Kyle J; Jones, Daniel S; Burgos, William D; Macalady, Jennifer L

    2017-04-01

    Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens , a species that is associated with high rates of Fe(II) oxidation in laboratory studies. IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two

  3. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  4. Iron and Vitamin C Co-Supplementation Increased Serum Vitamin C Without Adverse Effect on Zinc Level in Iron Deficient Female Youth

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khoshfetrat

    2014-01-01

    Full Text Available Background: Iron supplementation can decrease the absorption of zinc and influence other antioxidants levels such as vitamin C. This study aimed to investigate the effect of iron supplements alone and in combination with vitamin C on zinc and vitamin C status in iron deficient female students. Methods: In a double-blind randomized clinical trail, 60 iron deficient students were selected from 289 volunteers residing in dormitory. After matching, subjects were randomly assigned into two groups: Group I (50 mg elemental iron supplements and Group II (50 mg elemental iron + 500 mg ascorbic acid. Serum ferritin, iron, serum zinc, and plasma vitamin C concentrations were measured by using enzyme-linked immunosorbent assay, spectrophotometer, atomic absorption spectrometer, and colorimeter, respectively after 6 and 12 weeks supplementation. Student′s t-test and repeated measures analysis of variance were applied to analyze the data using SPSS software. Results: Serum zinc levels had no significant differences between 2 groups at the baseline; however, its concentration decreased from 80.9 ± 4.2-68.9 ± 2.7 μg/dl to 81.2 ± 4.5-66.1 ± 2.9 μg/dl (P < 0.001 in Groups I and II, respectively after 6 weeks of supplementation. Continuous supplementation increased serum zinc concentration to baseline levels (79.0 ± 2.9 μg/dl; P < 0.01 in Group I and 70.5 ± 3.1 μg/dl in Group II following 12 weeks of supplementation. Plasma vitamin C increased from 3 ± 0/1-3.3 ± 0.2 mg/dl to 2.7 ± 0. 1-4.2 ± 0.2 mg/dl (P < 0.01 in Groups I and II, respectively. At the end of study, plasma vitamin C significantly increased from 3.3 ± 0.3-4.7 ± 0.3 (P < 0.01 to 4.2 ± 0.2-7.1 ± 0.2 (P < 0.001 in Groups I and II, respectively. Conclusions: Iron supplementation with and without vitamin C led to reduction in serum Zn in iron-deficient female students after 6 weeks. However, the decreasing trend stops after repletion of iron stores and Zn levels returned to the

  5. Hydrogenation of carbon to methane in reduced sponge iron, chromium, and ferrochromium

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, M A; Reeve, D A

    1976-01-01

    Hydrogenation of excess carbon to methane in reduced sponge iron, chromium and ferrochromium under isothermal and temperature-programmed conditions indicates that it is possible to control the residual carbon content of the metallized products which may be an advantage if further processing of the products is contemplated. Hydrogenation starts above 800/sup 0/C and a shrinking-core kinetic model fits the experimental data. The mean apparent activation energy for the hydrogenation of residual carbon to methane in sponge iron, chromium and ferrochromium is 21 kcal/mole.

  6. Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: current perspectives

    Directory of Open Access Journals (Sweden)

    Bayanzay K

    2016-08-01

    Full Text Available Karim Bayanzay, Lama Alzoebie Department of Hematology, Gulf Medical University, Ajman, United Arab Emirates Abstract: Hypertransfusion regimens for thalassemic patients revolutionized the management of severe thalassemia; transforming a disease which previously led to early infant death into a chronic condition. The devastating effect of the accrued iron from chronic blood transfusions necessitates a more finely tuned approach to limit the complications of the disease, as well as its treatment. A comprehensive approach including carefully tailored transfusion protocol, continuous monitoring and assessment of total body iron levels, and iron chelation are currently the mainstay in treating iron overload. There are also indications for ancillary treatments, such as splenectomy and fetal hemoglobin induction. The main cause of death in iron overload continues to be related to cardiac complications. However, since the widespread use of iron chelation started in the 1970s, there has been a general improvement in survival in these patients. Keywords: hematology, chelators, deferoxamine, deferiserox, deferiprone, liver iron concentration, iron overload, serum ferritin concentration, hepatic iron storage, iron chelation therapy

  7. Iron stores and obesity are negatively associated with ovarian volume and anti-Müllerian hormone levels in women with polycystic ovary syndrome.

    Science.gov (United States)

    Yang, Jehn-Hsiahn; Chou, Chia-Hung; Yang, Wei-Shiung; Ho, Hong-Nerng; Yang, Yu-Shih; Chen, Mei-Jou

    2015-12-01

    Obesity and insulin resistance are associated with increased iron stores, but have conflicting effects on ovarian reserve in women with polycystic ovary syndrome (PCOS). Iron-catalyzed oxidative stress might be detrimental to ovarian tissue and granulosa cell function. In this study we determined the association between body iron stores, obesity, and ovarian reserve in women with PCOS. One hundred and fifty-six women diagnosed with PCOS according to Rotterdam criteria and 30 normoweight healthy control women were enrolled in this cross-sectional study. Ovarian volume, total antral follicle count, and the anti-Müllerian hormone (AMH) level were measured as an indicator of ovarian reserve. Ferritin and transferrin-bound iron levels were significantly higher in women with PCOS than normoweight controls. Obese women with PCOS had higher ferritin levels (p = 0.006), but lower AMH levels (p ovarian volume were inversely related to the ferritin level, homeostasis model assessment of insulin resistance, and body mass index in women with PCOS. Body mass index and ferritin level remained significantly correlated with a lower AMH level and reduced ovarian volume, respectively, after considering other confounding variables. An elevated ferritin level and obesity were negatively associated with ovarian volume and the AMH level, respectively, in women with PCOS. Copyright © 2015. Published by Elsevier B.V.

  8. Association between iron level, glucose impairment and increased DNA damage during pregnancy.

    Science.gov (United States)

    Zein, Salam; Rachidi, Samar; Shami, Nadine; Sharara, Iman; Cheikh-Ali, Khawla; Gauchez, Anne-Sophie; Moulis, Jean-Marc; Ayoubi, Jean-Marc; Salameh, Pascale; Hininger-Favier, Isabelle

    2017-09-01

    Elevated circulating ferritin has been reported to increase the risk of gestational diabetes mellitus (GDM). When high ferritin translates into high iron stores, iron excess is also a condition leading to free radical damage. We aimed to evaluate the relationship between oxidative stress (OS) induced by iron status and GDM risk in non iron-supplemented pregnant women. This was a pilot observational study conducted on 93 non-anemic pregnant women. Iron status was assessed at the first trimester of gestation. Blood sampling was done at 24-28 weeks' gestation for oral glucose tolerance test (OGTT), insulin and biological markers of oxidative damage tests. A significant increase in DNA damage was found in patients who developed GDM. Women with elevated DNA damage had a six-fold increased risk of developing GDM (Exp (B)=6.851, P=0.038; 95% CI [1.108-42.375]). The serum ferritin levels at first trimester were significantly correlated to lipid peroxidation (rho=0.24, p=0.012). The stratified analysis suggests that ferritin is a modifying factor for the correlation of oxidative stress (OS) and glucose intolerance. Moderate ferritin levels due to iron intake without iron-supplement, at early pregnancy is a modifying factor for the correlation of oxidative damage and glucose intolerance in pregnant women. Larger studies to evaluate the risk of food iron intake induced increased oxidative damage in offspring are warranted to propose nutrition advice regarding iron intake in women with a high risk of GDM. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Iron Isotope Variations in Reduced Groundwater and in Drinking Water Supplies: A Case Study of Hanoi, Vietnam

    Science.gov (United States)

    Teutsch, N.; Berg, M.; von Gunten, U.; Halliday, A.

    2004-12-01

    In reduced groundwater iron is involved in biotic and abiotic transformation processes, both of which could lead to iron isotope fractionation. The reduced groundwater aquifers in the area of the Vietnamese capital of Hanoi are the main drinking water sources for the city. These groundwaters contain arsenic, which imposes a serious health threat to millions of people. Dissolved arsenic is related to the reducing conditions prevalent in the groundwater, and iron and arsenic contents are correlated in the sediments. We are employing iron isotope composition as a tool to better understand the processes leading to the transformation of iron in the groundwater and its role in various biogeochemical processes in reduced environments. Drinking water is supplied to the city of Hanoi from several water treatment plants (WTP) which pump the raw groundwater from a lower aquifer, while the rural surroundings pump untreated groundwater from an upper aquifer by private tubewells. Surface water from the Red River delta is the main source of recharge to these two aquifers. Due to high content of particulate natural organic matter (NOM) in the sediment leading to extensive microbial activity, the groundwaters are anoxic and rich in dissolved iron(II). The iron(II) removal in the WTPs is carried by a multi-step treatment including aeration, settling, filtration, and chlorination. We have collected natural groundwater samples for isotopic analysis from two aquifers at several locations, a groundwater depth profile and its corresponding sediment phases from the upper aquifer and the underlying aquitard, raw and treated water from several WTPs, as well as the corresponding iron(III) precipitates. The iron concentrations of groundwaters analysed in this study range from 3 to 28 mg/L and δ 57Fe (57/54 deviation from IRMM 014) values vary between -1.2 and +1.5 ‰ . The sediment depth profile has a δ 57Fe around +0.3 ‰ , which implies that the high values obtained in the groundwater

  10. Raoultella sp. SM1, a novel iron-reducing and uranium-precipitating strain.

    Science.gov (United States)

    Sklodowska, Aleksandra; Mielnicki, Sebastian; Drewniak, Lukasz

    2018-03-01

    The main aim of this study was the characterisation of novel Raoutella isolate, an iron-reducing and uranium-precipitating strain, originating from microbial mats occurring in the sediments of a closed down uranium mine in Kowary (SW Poland). Characterisation was done in the context of its potential role in the functioning of these mats and the possibility to use them in uranium removal/recovery processes. In our experiment, we observed the biological precipitation of iron and uranium's secondary minerals containing oxygen, potassium, sodium and phosphor, which were identified as ningyoite-like minerals. The isolated strain, Raoultella sp. SM1, was also able to dissimilatory reduce iron (III) and uranium (VI) in the presence of citrate as an electron donor. Our studies allowed us to characterise a new strain which may be used as a model microorganism in the study of Fe and U respiratory processes and which may be useful in the bioremediation of uranium-contaminated waters and sediments. During this process, uranium may be immobilised in ningyoite-like minerals and can then be recovered in nano/micro-particle form, which may be easily transformed to uraninite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  12. Plasma iron levels appraised 15 days after spinal cord injury in a limb movement animal model.

    Science.gov (United States)

    Reis, F M; Esteves, A M; Tufik, S; de Mello, M T

    2011-03-01

    Experimental, controlled trial. The purpose of this study was to evaluate plasma iron and transferrin levels in a limb movement animal model with spinal cord injury (SCI). Universidade Federal de São Paulo, Departamento de Psicobiologia. In all, 72 male Wistar rats aged 90 days were divided into four groups: (1) acute SCI (1 day, SCI1), (2) 3 days post-SCI (SCI3), (3) 7 days post-SCI (SCI7) and (4) 15 days post-SCI (SCI15). Each of these groups had corresponding control (CTRL) and SHAM groups. Plasma iron and transferrin levels of the different groups were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's test. We found a significant reduction in iron plasma levels after SCI compared with the CTRL group: SCI1 (CTRL: 175±10.58 μg dl(-1); SCI: 108.28±11.7 μg dl(-1)), SCI3 (CTRL: 195.5±11.00 μg dl(-1); SCI: 127.88±12.63 μg dl(-1)), SCI7 (CTRL: 186±2.97 μg dl(-1); SCI: 89.2±15.39 μg dl(-1)) and SCI15 (CTRL: 163±5.48 μg dl(-1); SCI: 124.44±10.30 μg dl(-1)) (P<0.05; ANOVA). The SHAM1 group demonstrated a reduction in iron plasma after acute SCI (CTRL: 175±10.58 μg dl(-1); SHAM: 114.60±7.81 μg dl(-1)) (P<0.05; ANOVA). Reduced iron metabolism after SCI may be one of the mechanisms involved in the pathogenesis of sleep-related movement disorders.

  13. Urinary hepcidin level as an early predictor of iron deficiency in children: A case control study

    Directory of Open Access Journals (Sweden)

    Gharib Amal F

    2011-08-01

    Full Text Available Abstract Background The ideal screening test would be capable of identifying iron deficiency in the absence of anemia. We tried to detect role of urinary hepcidin-25 level in early prediction of iron deficiency in children. Methods This is a case control study performed on 100 children in Hematology Unit of Pediatric Department, Zagazig University Hospital, Egypt. Our study included 25 cases of iron deficiency (ID stage-1 (iron depletion, 25 cases ID stage-2 (iron-deficient erythropoiesis, 25 cases ID stage-3 (iron deficiency anemia and 25 healthy children as a control group. Estimation of iron status parameters was done. Urinary hepcidin-25 level was detected. Results Urinary hepcidin-25 level was significantly lower in all stages of iron deficiency than in control group, more significant reduction in its level was observed with the progress in severity of iron deficiency. Urinary hepcidin showed significant positive correlation with hemoglobin, mean corpuscular volume, hematocrit value, serum iron and ferritin and transferrin saturation. In contrary, it showed significant negative correlation with serum transferrin and total iron binding capacity. Urinary hepcidin at cutoff point ≤0.94 nmol/mmol Cr could Predict ID stage-1 with sensitivity 88% and specificity 88%. Cutoff point ≤0.42 nmol/mmol Cr could predict ID stage-2 with sensitivity 96% and specificity 92%. Cutoff point ≤0.08 nmol/mmol Cr could Predict ID stage-3 with Sensitivity 96% and specificity 100%. Conclusions We can conclude that detection of urinary hepcidin-25 level was a simple and non invasive test and could predict iron deficiency very early, before appearance of hematological affections.

  14. Weekly iron folic acid supplementation plays differential role in maintaining iron markers level in non-anaemic and anaemic primigravida: A randomized controlled study

    Directory of Open Access Journals (Sweden)

    Hari Shankar

    2016-11-01

    Full Text Available Anaemia during pregnancy is most commonly observed and highly prevalent in South-East Asia. Various effective programmes have been laid down for its management, mainly daily supplementation of iron folic acid (IFA tablets. Following the same, standard obstetrical practice has included the IFA supplementation without requiring the determination of iron deficiency. In this study, a total of 120 primigravida (N = 60; non-anaemic (Hb > 11 g/dl and N = 60 anaemic (Hb = 8–11 g/dl were selected among those attending the Antenatal Clinic in Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India. They were supplemented with daily and weekly IFA tablets till 6 weeks postpartum. Corresponding changes in haemoglobin level on advance of pregnancy, side effects and compliance associated with daily and weekly IFA supplementation and its associations with iron status markers were studied. The inflammatory markers were also estimated. The statistical significance level (p < 0.05 between the groups were assessed by applying unpaired t-test using SPSS (version 16.0. The obtained results publicized the salutary role of daily IFA supplementation in improving the haemoglobin level and iron status markers in anaemic pregnant women though the levels could not reach up to the non-anaemic haemoglobin levels. However, weekly IFA supplementation seems to be a better approach in non-anaemic pregnant women where almost comparable results were obtained in terms of haematological parameters, gestation length and birth weight. Conclusion: Weekly IFA supplementation found to be as effective as daily supplementation in iron sufficient non-anaemic pregnant women whereas anaemic pregnant women should be prescribed daily IFA supplementation irrespective of iron replete/deplete state. Keywords: Anaemia, Iron folic acid supplementation, Iron status markers, Pregnancy

  15. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  16. Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols

    Directory of Open Access Journals (Sweden)

    Sergey I. Dikalov

    2017-11-01

    Full Text Available Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of “antioxidant” effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low physiological fluxes of nitric oxide (20 nM/min on superoxide and hydrogen peroxide production by ESR spin probes and Amplex Red in isolated rat brain mitochondria. Indeed, low levels of nitric oxide substantially attenuated both basal and antimycin A-stimulated production of reactive oxygen species in the presence of succinate or glutamate/malate as mitochondrial substrates. Furthermore, slow releasing NO donor DPTA-NONOate (100 μM did not change oxygen consumption in State 4 and State 3. However, the NO-donor strongly inhibited oxygen consumption in the presence of uncoupling agent CCCP, which is likely associated with inhibition of the over-reduced complex IV in uncoupled mitochondria. We have examined accumulation of dinitrosyl iron complexes and nitrosothiols in mitochondria treated with fast-releasing NO donor MAHMA NONOate (10 μM for 30 min until complete release of NO. Following treatment with NO donor, mitochondria were frozen for direct detection of dinitrosyl iron complexes using Electron Spin Resonance (ESR while accumulation of nitrosothiols was measured by ferrous-N-Methyl-D-glucamine dithiocarbamate complex, Fe(MGD2, in lysed mitochondria. Treatment of mitochondria with NO-donor gave rise to ESR signal of dinitrosyl iron complexes while ESR

  17. An unusual case of iron deficiency anemia is associated with extremely low level of transferrin receptor.

    Science.gov (United States)

    Hao, Shuangying; Li, Huihui; Sun, Xiaoyan; Li, Juan; Li, Kuanyu

    2015-01-01

    A case study of a female patient, diagnosed with iron deficiency anemia, was unresponsive to oral iron treatment and only partially responsive to parenteral iron therapy, a clinical profile resembling the iron-refractory iron deficiency anemia (IRIDA) disorder. However, the patient failed to exhibit microcytic phenotype, one of the IRIDA hallmarks. Biochemical assays revealed that serum iron, hepcidin, interluekin 6, and transferrin saturation were within the normal range of references or were comparable to her non-anemic offspring. Iron contents in serum and red blood cells and hemoglobin levels were measured, which confirmed the partial improvement of anemia after parenteral iron therapy. Strikingly, serum transferrin receptor in patient was almost undetectable, reflecting the very low activity of bone-marrow erythropoiesis. Our data demonstrate that this is not a case of systemic iron deficiency, but rather cellular iron deficit due to the low level of transferrin receptor, particularly in erythroid tissue.

  18. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    Science.gov (United States)

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  20. A randomized, controlled study evaluating effects of amlodipine addition to chelators to reduce iron loading in patients with thalassemia major.

    Science.gov (United States)

    Eghbali, Aziz; Kazemi, Hamideh; Taherahmadi, Hassan; Ghandi, Yazdan; Rafiei, Mohammad; Bagheri, Bahador

    2017-12-01

    Cardiomyopathy due to iron overload can be fatal in patients with thalassemia major. Calcium channel blockers seem to be effective to reduce iron loading. Our goal was to study effects of amlodipine addition to chelators on iron loading in patients with thalassemia major. This randomized, controlled, and single-center trial was performed on 56 patients with thalassemia major. Patients were randomized 1:1 to combined group (iron chelator plus amlodipine) or control group (iron chelator) for 1 year. Iron content was measured by magnetic resonance imaging; heart T2*, and liver T2*. Serum ferritin was also measured. After 12 months of treatment, myocardial T2* values had significant improvement in combined group (21.9 ± 8.0 ms to 24.5 ± 7.6 ms; P < .05); Difference between two groups was significant (P = .02). Combined treatment had no effect on hepatic T2* value (9.6 ± 2.8 ms to 9.5 ± 3.6 ms); difference between two groups was not significant (P = .2). In addition, a significant reduction was seen in serum ferritin levels in two groups. Mild gastrointestinal upset was the most common untoward effect. Addition of amlodipine to iron chelators has beneficial effects for reduction of iron loading in patients with thalassemia major. This combination therapy seems safe. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Therapeutic Depletion of Iron Stores Is Not Associated with a Reduced Hemoglobin Mass in a Hemochromatosis Patient

    Directory of Open Access Journals (Sweden)

    Nina Wrobel

    2016-08-01

    Full Text Available Introduction: Hereditary hemochromatosis features a dysregulated iron absorption leading to iron overload and organ damage. The regulation of total hemoglobin mass during depletion of iron deposits by therapeutic phlebotomy has not been studied. Case Presentation: The initial ferritin level of the 52-year-old male subject was 1,276 μg/l. Despite successful depletion of iron stores (ferritinmin: 53 μg/l through phlebotomies, total hemoglobin mass stabilized at the pretherapy level. However, regeneration of total hemoglobin mass was accelerated (up to 10.8 g/day. Conclusion: In this hemochromatosis patient, the total hemoglobin mass was not altered in the long term, but regeneration was accelerated, possibly due to elevated body iron content.

  2. Effect of iron deficiency anemia and iron supplementation on HbA1c levels - Implications for diagnosis of prediabetes and diabetes mellitus in Asian Indians.

    Science.gov (United States)

    Madhu, S V; Raj, Abhishek; Gupta, Stuti; Giri, S; Rusia, Usha

    2017-05-01

    We investigated the effect of iron deficiency anemia (IDA) on levels of glycated hemoglobin (HbA1c) and to compare its levels before and after iron supplementations. Age and sex matched subjects were enrolled and clustered in 2 groups: IDA (n=62) and healthy controls (HC; n=60). HbA1c levels were estimated by HPLC. Hemogram were estimated by hematology analyser. Serum ferritin (ELISA) and other parameters of iron profile were measured by standard guidelines of ICSH. HbA1c values and iron studies were repeated after 3months of iron supplementation to determine the effect of iron therapy on HbA1c levels. Significantly higher HbA1c levels were observed in IDA subjects compared to HC (5.51±0.696 v/s 4.85±0.461%, pHbA1c and hemoglobin, hematocrit, RBC count, MCH, MCHC and serum ferritin in IDA subjects (r=-0.632, -0.652, -0.384, -0.236, -0.192 and -0.441). Significant decline was noticed in HbA1c levels in IDA subjects after iron supplementation (5.51±0.696 before treatment v/s 5.044±0.603 post-treatment; pHbA1c in pre-diabetes range normalised to normal glucose tolerance (NGT) range and out of 6 patients with pre-treatment HbA1c in diabetes range, 5 reverted to pre-diabetes range while 1 of them reverted to the NGT range. Caution must be exercised in interpreting the results of HbA1c in patients of IDA and iron deficiency must be corrected before diagnosing diabetes and pre-diabetes solely on the basis of HbA1c criteria. Copyright © 2016. Published by Elsevier B.V.

  3. Pilot scale evaluation of biological and pressure clarification processes for the removal of high level of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Yannoni, C.C.; Kinsley, B.P. [Fay, Spofford & Thorndike, Inc., Burlington, MA (United States); Marston, T.R. [Connecticut Water Company, Clinton, CT (United States)

    1996-11-01

    Iron and manganese originating from groundwater supplies have a long history of causing consumer complaints in water distribution systems. Although iron and manganese are not public health concerns, they are a major concern from an aesthetic standpoint. The elevated awareness of consumers in regard to the quality of drinking water, an increase in regulations requiring additional treatment and the cost associated with developing new sources of supply, has required many utilities to implement improvements to existing facilities. Historical water quality data collected from the Connecticut Water Company`s (CWC) Westbrook Well revealed an increasing trend in iron and manganese concentrations. As a result, the existing greensand filtration facility located at the well, provides insufficient removal rates and inefficient operating cycles. Variations in operating procedures were not successful in correcting these problems. A water treatment feasibility study recommended evaluation of biological and pressure clarification processes to reduce iron (9 mg/l) and manganese (1.5 mg/l) levels below the secondary maximum contaminant levels of 0.30 and 0.05 mg/l, respectively. Assessment of these processes was accomplished through the construction and operation of a 5 gallon per minute (gpm) capacity pilot plant at the Westbrook Water Treatment Plant. Application of biological treatment for iron removal was then piloted on the existing full-scale treatment facility.

  4. Role of tin as a reducing agent in iron containing heat absorbing ...

    Indian Academy of Sciences (India)

    Unknown

    infrared region and a narrow weak band for Fe3+ ion at its λmax at around 380 nm was observed in the silicate glass. ... Tin reducing agent; iron heat absorption; silicate glass. 1. ... ing point of aluminium metal is far below than the glass.

  5. Anomalous electrical signals associated with microbial activity: Results from Iron and Nitrate-Reducing Columns

    Science.gov (United States)

    Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.

    2008-12-01

    Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S

  6. Iron and genome stability: An update

    International Nuclear Information System (INIS)

    Prá, Daniel; Franke, Silvia Isabel Rech; Henriques, João Antonio Pêgas; Fenech, Michael

    2012-01-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  7. Iron and genome stability: An update

    Energy Technology Data Exchange (ETDEWEB)

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  8. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  9. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong

    2015-01-01

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  10. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  11. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  12. ANALYSIS OF BILIARY CHOLESTEROL LEVELS IN IRON-DEFICIENT PATIENTS OPERATED FOR GALLSTONE DISEASE

    Directory of Open Access Journals (Sweden)

    R. Kannan

    2017-01-01

    Full Text Available BACKGROUND Gallstone disease is a common gastrointestinal problem in day-to-day practice. The old concept that a typical gallstone sufferer is fat, fertile, flatulent female of 50. This is partially true as the disease has been found in women soon after their first delivery who are thin and underweight and in males also. Conditions that favour the formation of cholesterol gallstones are super saturation of bile with cholesterol, kinetically favourable nucleation and presence of cholesterol crystals in the gallbladder long enough to agglomerate into a stone. Recent studies have defined the role of trace elements (Fe, Ca, Zn and Cu and defective pH in the formation of gallstones. The aim of the study is to determine the association of iron deficiency in super saturation of bile. This cross-sectional study of 50 patients was conducted over a period of 12 months in the Department of General Surgery, Kilpauk Medical College, Chennai, India. Biliary cholesterol and serum cholesterol were compared in iron deficient and non-iron deficient patients having gallstones. A low serum iron level is a factor in bile super saturation with respect to cholesterol leading to gallstone formation. MATERIALS AND METHODS This study was conducted over a period of 12 months in the Department of General Surgery, Kilpauk Medical College, Chennai, India. 50 patients suffering from cholelithiasis confirmed by USG were divided into two groups based on serum iron values. Group A consists of patients with normal serum iron (non-anaemic and Group B of patients with less than normal serum iron (anaemic. RESULTS Serum total cholesterol of the patients of cholelithiasis was not different among groups categorised based on serum iron levels. There were no significant variations in the serum cholesterol contents of both the groups. Also, there was no significant variation of the above parameter in the male and female patients. CONCLUSION Though, it is difficult to draw a causal

  13. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    Science.gov (United States)

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.

  14. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  15. Development of a method for determination of metallic iron content within hot briquette iron (HBI for steelmaking

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2016-01-01

    Full Text Available The growing use of metallic iron in metallurgy and industrial chemical applications requires a fast, easy and cheap method for the determination of metallic iron, not merely in recyclable materials, such as iron pellets, reduced iron mill scale dust, electric arc furnace dust and pig iron, but from hot briquette iron (HBI as well. This study investigates a new method for determination of metallic iron within HBI used for steel-making materials. The effects of reaction time, temperature, and stirring rate were studied. The concentration of iron was determined via Atomic Absorption Spectroscopy (AAS. After the optimization study, high-purity metallic iron powder (Sigma-Aldrich, PubChem Substance ID 24855469 was used to compare efficiencies and identify the optimum conditions; The present study was matched with international standard methods (BS ISO 5416:2006, IS 15774:2007. Results were consistent with certified values and metallic iron content could be determined within the 95% confidence level. The purposed method is easy, straightforward, and cheap.

  16. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  17. Analysis of serum copper and iron levels in oral submucous fibrosis patients: A case–control study

    Directory of Open Access Journals (Sweden)

    Harshal Kumar

    2016-01-01

    Full Text Available Background: Oral submucous fibrosis (OSF is a chronic debilitating disease and a potentially malignant disorder of the oral cavity. The pathogenesis of the disease is not well established. Trace elements such as copper and iron play an important role in the pathogenesis of OSF. Estimation of these elements in serum of the patients may be helpful in understanding the pathologic mechanism. Therefore, a study was carried out to analyze the level of serum copper and iron in the population of Central India. Materials and Methods: A case–control study was carried out on 35 patients with clinically diagnosed of OSF and 35 healthy controls. OSF patients were categorized by clinical staging. Serum copper and iron concentrations were measured by atomic absorption spectrophotometry. Results: Results of the study shows that the mean serum copper concentration was greater in study group (133.3 ± 19.2 compared to control group (113.9 ± 22.1 and the mean serum iron was lower in study group (116.0 ± 24.1 compared to control group (128.2 ± 23.4. The result obtained was statistically significant. The serum copper level increases as the clinical staging of OSF progresses, whereas serum iron level decreases as clinical staging progresses. Conclusion: There was an increase in copper level and decrease in iron level in study group compared to control group; this suggests that there is an increase in copper level with the advancement of clinical staging of OSF.

  18. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    Science.gov (United States)

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Studies on the pathogenesis in iron deficiency anemia Part 1. Urinary iron excretion in iron deficiency anemia patients and rats in various iron states

    OpenAIRE

    中西,徳彦

    1991-01-01

    In the "iron excretion test" , urinary iron excretion after injection of saccharated iron oxide has been reported to be accelerated in relapsing idiopathic iron deficiency anemia. To determine the relevance of urinary iron excretion to clinical factors other than iron metabolism, 15 clinical parameters were evaluated. The serum creatinine level was positively and the serum albumin level was negatively correlated with urinary iron excretion, showing coefficients of r=0.97,-0.86 respectively, a...

  20. MicroRNA-related genetic variants in iron regulatory genes, dietary iron intake, microRNAs and lung cancer risk.

    Science.gov (United States)

    Zhang, L; Ye, Y; Tu, H; Hildebrandt, M A; Zhao, L; Heymach, J V; Roth, J A; Wu, X

    2017-05-01

    Genetic variations in MicroRNA (miRNA) binding sites may alter structural accessibility of miRNA binding sites to modulate risk of cancer. This large-scale integrative multistage study was aimed to evaluate the interplay of genetic variations in miRNA binding sites of iron regulatory pathway, dietary iron intake and lung cancer (LC) risk. The interplay of genetic variant, dietary iron intake and LC risk was assessed in large-scale case-control study. Functional characterization of the validated SNP and analysis of target miRNAs were performed. We found that the miRNA binding site SNP rs1062980 in 3' UTR of Iron-Responsive Element Binding protein 2 gene (IREB2) was associated with a 14% reduced LC risk (P value = 4.9×10 - 9). Comparing to AA genotype, GG genotype was associated with a 27% reduced LC risk. This association was evident in males and ever-smokers but not in females and never-smokers. Higher level of dietary iron intake was significantly associated with 39% reduced LC risk (P value = 2.0×10 - 8). This association was only present in individuals with AG + AA genotypes with a 46% reduced risk (P value = 1.0×10 - 10), but not in GG genotype. The eQTL-analysis showed that rs1062980 significantly alters IREB2 expression level. Rs1062980 is predicted to alter a miR-29 binding site on IREB2 and indeed the expression of miR-29 is inversely correlated with IREB2 expression. Further, we found that higher circulating miR-29a level was significantly associated with 78% increased LC risk. The miRNA binding site SNP rs1062980 in iron regulatory pathway, which may alter the expression of IREB2 potentially through modulating the binding of miR-29a, together with dietary iron intake may modify risk of LC both individually and jointly. These discoveries reveal novel pathway for understanding lung cancer tumorigenesis and risk stratification. © The Author 2017. Published by Oxford University Press on behalf of the European Society for

  1. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Figueiredo, Luciana Silva; de Freitas, Betânia Souza; Garcia, Vanessa Athaíde; Dargél, Vinícius Ayub; Köbe, Luiza Machado; Kist, Luiza Wilges; Bogo, Maurício Reis; Schröder, Nadja

    2016-11-01

    Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th-14th day of postnatal life) on the expression of proteasome β-1, β-2, and β-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits β1 and β5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.

  2. Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity.

    Science.gov (United States)

    Moreno-Navarrete, José María; Moreno, María; Puig, Josep; Blasco, Gerard; Ortega, Francisco; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel

    2017-10-01

    Serum hepcidin concentration is known to increase in parallel to circulating markers of iron stores. We aimed to investigate whether this is reflected at the tissue level in subjects with obesity. Serum hepcidin and ferritin levels (ELISA) and hepatic iron content (using magnetic resonance imaging) were analyzed longitudinally in 44 participants (19 without obesity and 25 with obesity). In a subgroup of 16 participants with obesity, a weight loss intervention was performed. Serum hepcidin, ferritin and hepatic iron content (HIC) were significantly increased in participants with obesity. Age- and gender-adjusted serum hepcidin was positively correlated with BMI, hsCRP, ferritin and HIC. In addition, age- and gender-adjusted serum hepcidin was positively correlated with ferritin and HIC in both non-obese and obese participants. In multivariate regression analysis, hepatic iron content (p obesity. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    Science.gov (United States)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  4. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  5. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  6. Evaluation of a new tablet formulation of deferasirox to reduce chronic iron overload after long-term blood transfusions

    Directory of Open Access Journals (Sweden)

    Chalmers AW

    2016-02-01

    Full Text Available Anna W Chalmers, Jamile M Shammo Department of Internal Medicine, Division of Hematology/Oncology, Rush University Medical Center, Chicago, IL, USA Abstract: Transfusion-dependent anemia is a common feature in a wide array of hematological disorders, including thalassemia, sickle cell disease, aplastic anemia, myelofibrosis, and myelodysplastic syndromes. In the absence of a physiological mechanism to excrete excess iron, chronic transfusions ultimately cause iron overload. Without correction, iron overload can lead to end-organ damage, resulting in cardiac, hepatic, and endocrine dysfunction/failure. Iron chelating agents are utilized to reduce iron overload, as they form a complex with iron, leading to its clearance. Iron chelation has been proven to decrease organ dysfunction and improve survival in certain transfusion-dependent anemias, such as β-thalassemia. Several chelating agents have been approved by the United States Food and Drug Administration for the treatment of iron overload, including deferoxamine, deferiprone, and deferasirox. A variety of factors have to be considered when choosing an iron chelator, including dosing schedule, route of administration, tolerability, and side effect profile. Deferasirox is an orally administered iron chelator with proven efficacy and safety in multiple hematological disorders. There are two formulations of deferasirox, a tablet for suspension, and a new tablet form. This paper is intended to provide an overview of iron overload, with a focus on deferasirox, and its recently approved formulation Jadenu® for the reduction of transfusional iron overload in hematological disorders. Keywords: iron chelation therapy, transfusional iron overload, deferasirox

  7. Ironing out industrial wastes

    International Nuclear Information System (INIS)

    Valenti, M.

    1996-01-01

    This article describes a hazardous waste treatment known as the catalytic extraction process, which also stabilizes and reduces low-level radioactive wastes to a fraction of their original volume, easing their disposal. It uses molten iron and other metals to convert hazardous wastes into useful materials

  8. Dietary Factors Modulate Iron Uptake in Caco-2 Cells from an Iron Ingot Used as a Home Fortificant to Prevent Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Ildefonso Rodriguez-Ramiro

    2017-09-01

    Full Text Available Iron deficiency is a major public health concern and nutritional approaches are required to reduce its prevalence. The aim of this study was to examine the iron bioavailability of a novel home fortificant, the “Lucky Iron Fish™” (LIF (www.luckyironfish.com/shop, Guelph, Canada and the impact of dietary factors and a food matrix on iron uptake from LIF in Caco-2 cells. LIF released a substantial quantity of iron (about 1.2 mM at pH 2 but this iron was only slightly soluble at pH 7 and not taken up by cells. The addition of ascorbic acid (AA maintained the solubility of iron released from LIF (LIF-iron at pH 7 and facilitated iron uptake by the cells in a concentration-dependent manner. In vitro digestion of LIF-iron in the presence of peas increased iron uptake 10-fold. However, the addition of tannic acid to the digestion reduced the cellular iron uptake 7.5-fold. Additionally, LIF-iron induced an overproduction of reactive oxygen species (ROS, similar to ferrous sulfate, but this effect was counteracted by the addition of AA. Overall, our data illustrate the major influence of dietary factors on iron solubility and bioavailability from LIF, and demonstrate that the addition of AA enhances iron uptake and reduces ROS in the intestinal lumen.

  9. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  10. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  11. Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field.

    Science.gov (United States)

    Rajabbeigi, Elham; Ghanati, Faezeh; Abdolmaleki, Parviz; Payez, Atefeh

    2013-12-01

    This study was aimed to evaluate antioxidant response of parsley cells to 21 ppm iron and static magnetic field (SMF; 30 mT). The activity of catalase (CAT) and ascorbate peroxidase (APX) and the contents of malonyldialdehyde, iron and ferritin were measured at 6 and 12 h after treatments. Exposure to SMF increased the activity of CAT in treated cells, while combination of iron and SMF treatments as well as iron supply alone decreased CAT activity, compared to that of control cells. Combination of SMF with iron treatment reduced iron content of the cells and ameliorated mal effect of iron on CAT activity. All treatments reduced APX activity; however, the content of total ascorbate increased in response to iron and SMF+iron. The results showed that among the components of antioxidant system of parsley cells, enhanced activity of CAT in SMF-treated cells and increase of ascorbate in SMF+Fe-treated ones were responsible for the maintenance of membranes integrity. Ferritin contents of SMF- and SMF+Fe-treated cells also decreased significantly 12 h after treatments, compared to those of the control cells. These results cast doubt on the proposed functions of ferritin as a putative reactive oxygen species detoxifying molecule.

  12. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.

    Science.gov (United States)

    Gloaguen, Frederic

    2016-01-19

    Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.

  13. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  14. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4

  15. Serum Iron Protects from Renal Postischemic Injury.

    Science.gov (United States)

    Vaugier, Céline; Amano, Mariane T; Chemouny, Jonathan M; Dussiot, Michael; Berrou, Claire; Matignon, Marie; Ben Mkaddem, Sanae; Wang, Pamella H M; Fricot, Aurélie; Maciel, Thiago T; Grapton, Damien; Mathieu, Jacques R R; Beaumont, Carole; Peraldi, Marie-Noëlle; Peyssonnaux, Carole; Mesnard, Laurent; Daugas, Eric; Vrtovsnik, François; Monteiro, Renato C; Hermine, Olivier; Ginzburg, Yelena Z; Benhamou, Marc; Camara, Niels O S; Flamant, Martin; Moura, Ivan C

    2017-12-01

    Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients ( n =169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF- κ B and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants. Copyright © 2017 by the American Society of Nephrology.

  16. Can hydroxyurea serve as a free radical scavenger and reduce iron overload in β-thalassemia patients?

    Science.gov (United States)

    Italia, Khushnooma; Chandrakala, S; Ghosh, Kanjaksha; Colah, Roshan

    2016-09-01

    In this study, we hypothesize that hydroxyurea could provide an additional benefit as a free radical scavenger and/or iron chelator in β-thalassemia patients with iron overload. Twenty-one β-thalassemia intermedia patients who presented between 3 and 17 years but later required regular blood transfusions were enrolled for hydroxyurea therapy for a year. Fourteen patients responded to the therapy with hemoglobin levels maintained above 7.5 g/dl without transfusions. Hydroxyurea was discontinued after 6 months in seven patients who did not respond to the therapy and had to be continued on regular blood transfusions. We observed a statistically significant decrease in serum ferritin levels from 4194 ± 4850 ng/ml to 2129 ± 2380 ng/ml among the responders and from 2955 ± 2909 ng/ml to 2040 ± 2432 ng/ml among the non-responders and statistically significant decrease in labile iron pool from 18678.7 ± 10067.4 mean fluorescence intensity (MFI) to 14888.5 ± 5284.0 MFI among responders and from 17986.3 ± 9079.8 MFI to 15634.8 ± 8976.9 MFI among the non-responders after therapy. Phosphatidylserine externalization also showed a statistically significant decrease from 44.2 ± 22.2 MFI to 16.6 ± 6.7 MFI among the responders and from 46.9 ± 33.1 MFI to 39.8 ± 7.4 MFI among the non-responders along with a statistically significant decrease in the levels of reactive oxygen species from 72.8 ± 35.5 MFI to 29.0 ± 8.3 MFI among the responders and from 80.9 ± 41.4 MFI to 40.5 ± 15.8 MFI among the non-responders after therapy. A statistically significant increase in reduced glutathione levels was also observed from 430.8 ± 201.1 MFI to 715.5 ± 292.4 MFI among the responders and from 359.6 ± 165.6 MFI to 450.3 ± 279.5 MFI among the non-responders after therapy. This suggests the possible additional role of hydroxyurea as a free radical scavenger and

  17. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  18. Uranium Immobilization in an Iron-Rich Rhizosphere of a Native Wetland Plant from the Savannah River Site under Reducing Conditions

    Science.gov (United States)

    The hypothesis of this study was that iron plaque formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted usin...

  19. Rethinking Iron Regulation and Assessment in Iron Deficiency, Anemia of Chronic Disease, and Obesity: Introducing Hepcidin

    Science.gov (United States)

    Tussing-Humphreys, Lisa; Pustacioglu, Cenk; Nemeth, Elizabeta; Braunschweig, Carol

    2012-01-01

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins, has a pivotal role in cellular metabolism, and is essential to cell growth and differentiation. Inadequate dietary iron intake, chronic and acute inflammatory conditions, and obesity are each associated with alterations in iron homeostasis. Tight regulation of iron is necessary because iron is highly toxic and human beings can only excrete small amounts through sweat, skin and enterocyte sloughing, and fecal and menstrual blood loss. Hepcidin, a small peptide hormone produced mainly by the liver, acts as the key regulator of systemic iron homeostasis. Hepcidin controls movement of iron into plasma by regulating the activity of the sole known iron exporter ferroportin-1. Downregulation of the ferroportin-1 exporter results in sequestration of iron within intestinal enterocytes, hepatocytes, and iron-storing macrophages reducing iron bioavailability. Hepcidin expression is increased by higher body iron levels and inflammation and decreased by anemia and hypoxia. Importantly, existing data illustrate that hepcidin may play a significant role in the development of several iron-related disorders, including the anemia of chronic disease and the iron dysregulation observed in obesity. Therefore, the purpose of this article is to discuss iron regulation, with specific emphasis on systemic regulation by hepcidin, and examine the role of hepcidin within several disease states, including iron deficiency, anemia of chronic disease, and obesity. The relationship between obesity and iron depletion and the clinical assessment of iron status will also be reviewed. PMID:22717199

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ... and lifestyle changes to avoid complications. Follow your treatment plan Do not stop taking your prescribed iron ...

  1. Direct Biohydrometallurgical Extraction of Iron from Ore

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  2. IRON CONTENT OF FOOD COOKED IN IRON UTENSILS: A TRADITIONAL INDIAN WAY

    Directory of Open Access Journals (Sweden)

    Bibifatima Bawakhan

    2016-08-01

    Full Text Available BACKGROUND Since most of the Indian population depends on vegetarian diet, prevalence of iron deficiency status is higher in India compared to other developing countries. In spite of many national programs and treatment options available in correcting this, the incidence is increasing due to poor patient compliance and intolerance to treatment. This study was an effort to show how iron content of Indian food can be increased just by following the traditional way of cooking. OBJECTIVE To compare the iron levels in the Jowar roti cooked in iron and non-iron utensils. METHODOLOGY A cross-sectional study was conducted at KIMS, Hubli. Jowar rotis were prepared from equal quantity of jowar flour in iron and non-iron tawa. Another sample of roti was prepared in iron tawa after treating with lemon juice. Six samples were homogenised and filtered. The filtrates were replicated and analysed for iron levels by FerroZine method. RESULTS In the present study, we found no change in iron levels in the roti prepared in non-iron utensil, 1.45 and 1.94 fold increase in the roti prepared in new iron tawa without water boiled in it and with water boiled in it for dough preparation respectively when compared with iron levels of plain jowar flour. There was 5.77 fold rise in iron levels in lemon juice treated roti which signifies the bioavailability of iron in food. The study showed statistical significance at ‘p’- value < 0.05. CONCLUSION Several studies have shown the similar results and this was done to strengthen the findings in our staple food. Hence, the daily iron requirement can be met easily and effectively by taking the food cooked with lemon juice in iron utensils.

  3. Altered protein and iron levels of patients with active tuberculosis in ...

    African Journals Online (AJOL)

    Backgound: Tuberculosis as a state of chronic inflammation impacts on haematologic functions of the body. Objectives: This study aimed at assessing iron parameters and serum protein levels of ninety tuberculosis patients aged fifteen to sixty years, enrolled from Dr Lawrence Henshaw Memorial Hospital, Calabar, Nigeria.

  4. Assessment of irradiated rice bran as iron source

    International Nuclear Information System (INIS)

    Wada, Heden Katsue

    2002-01-01

    Rice is the largest cereal crop in Brazil. To obtain the polish grain, its external peel is extracted after abrasive process. As a result, rice bran is obtained. It has low cost and high nutritional level, which has been include into malnourished children feeding. There is a considerable controversy related to the rice bran effect on the prevention and control of undernutrition and iron deficiency. The aim os this study was to assess the availability of in vitro iron of in natura and treated rice brans, after different levels of irradiation were applied. Both sorts of bran had their composition analyzed emphasizing the iron and phytate contents. The microbiological quality of the rice bran was also assessed. The pathogenic microorganisms were destroyed only in the in natura rice bran. As the irradiation level applied on the stabilized bran increased, its lipidic fraction reduced an the progressive destruction of the phytates occurred. The high iron content follow its availability in the rice bran, despite of the irradiation level applied, on the rice bran products and its dietetic preparations. (author)

  5. Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk.

    Science.gov (United States)

    Zhang, De-Liang; Wu, Jian; Shah, Binal N; Greutélaers, Katja C; Ghosh, Manik C; Ollivierre, Hayden; Su, Xin-Zhuan; Thuma, Philip E; Bedu-Addo, George; Mockenhaupt, Frank P; Gordeuk, Victor R; Rouault, Tracey A

    2018-03-30

    Malaria parasites invade red blood cells (RBCs), consume copious amounts of hemoglobin, and severely disrupt iron regulation in humans. Anemia often accompanies malaria disease; however, iron supplementation therapy inexplicably exacerbates malarial infections. Here we found that the iron exporter ferroportin (FPN) was highly abundant in RBCs, and iron supplementation suppressed its activity. Conditional deletion of the Fpn gene in erythroid cells resulted in accumulation of excess intracellular iron, cellular damage, hemolysis, and increased fatality in malaria-infected mice. In humans, a prevalent FPN mutation, Q248H (glutamine to histidine at position 248), prevented hepcidin-induced degradation of FPN and protected against severe malaria disease. FPN Q248H appears to have been positively selected in African populations in response to the impact of malaria disease. Thus, FPN protects RBCs against oxidative stress and malaria infection. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... normally stores but has used up. Increase your intake of vitamin C to help your body absorb iron. Avoid drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron-deficiency anemia, your doctor may recommend ...

  8. New insights into iron deficiency and iron deficiency anemia.

    Science.gov (United States)

    Camaschella, Clara

    2017-07-01

    Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study on Renal Anemia: A Double Tracer Study on Metabolism and Red Cell Life Span in Chronic Renal Diseases using Radioactive Iron (59Fe) and Chromium (51Cr)

    International Nuclear Information System (INIS)

    Jung, Kyung Tae; Lee, Mun Ho

    1968-01-01

    The ferrokinetics and red cell life spans of the patients with chronic glomerulonephritis were investigated by the double tracing method using radioactive iron ( 59 Fe) and chromium ( 51 Cr). According to the serum NPN levels, the patients were subdivided into 3 groups: Group 1. 6 patients, had the levels below 40 mg/dl. Group 2. 6 patients, had the levels between 41 mg/dl to 80 mg/dl. Group 3. 10 patients had the levels above 80 mg/dl. The results were as follows: 1) Red blood cell, hematocrit and hemoglobin values were moderately reduced in patients with normal serum NPN levels, while markedly reduced in patients with elevated serum NPN levels. 2) The plasma volume was increased, while the red cell volume was decreased in patients with elevated serum NPN levels, hence, total blood volume was unchanged. 3) The serum iron level was slightly reduced in patients of groups 1 and 2, while was within the normal ranges in patients of group 3. 4) i) In patients with normal serum NPN levels, the plasma iron disappearance rate, red cell iron utilization rate, red cell iron turnover rate, daily red cell iron renewal rate, circulating red cell iron and red cell iron concentration were within the normal ranges, while the plasma iron turnover rate was slightly reduced. ii) In patients with elevated serum NPN levels, the plasma iron disappearance rate was delayed, while the plasma iron turnover rate was within the normal ranges. The red cell iron utilization rate, red cell iron turnover rate and circulating red cell iron were decreased and the period in which the red cell iron utilization rate reached its peak was delayed in Group 3 patients. The daily red cell iron renewal rate and the red cell iron concentration were unchanged. iii) The mean red cell life span was within the normal ranges in patients with normal serum NPN levels, while was shortened in patients with elevated serum NPN levels.

  10. Antioxidant responses of cortex neurons to iron loading

    Directory of Open Access Journals (Sweden)

    PABLA AGUIRRE

    2006-01-01

    Full Text Available Brain cells have a highly active oxidative metabolism, yet they contain only low to moderate superoxide dismutase and catalase activities. Thus, their antioxidant defenses rely mainly on cellular reduced glutathione levels. In this work, in cortical neurons we characterized viability and changes in reduced and oxidized glutathione levels in response to a protocol of iron accumulation. We found that massive death occurred after 2 days in culture with 10 mM Fe. Surviving cells developed an adaptative response that included increased synthesis of GSH and the maintenance of a glutathione-based reduction potential. These results highlight the fundamental role of glutathione homeostasis in the antioxidant response and provide novel insights into the adaptative mechanisms of neurons subjected to progressive iron loads.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This is sometimes used to deliver iron through a blood vessel to increase iron levels in the blood. One benefit of IV iron ... over 65 years of age had low hemoglobin levels. This was associated with a greater risk of death even with mild anemia. ...

  12. The iron chelator deferasirox protects mice from mucormycosis through iron starvation

    Science.gov (United States)

    Ibrahim, Ashraf S.; Gebermariam, Teclegiorgis; Fu, Yue; Lin,, Lin; Husseiny, Mohamed I.; French, Samuel W.; Schwartz, Julie; Skory, Christopher D.; Edwards, John E.; Spellberg, Brad J.

    2007-01-01

    Mucormycosis causes mortality in at least 50% of cases despite current first-line therapies. Clinical and animal data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the US FDA, is a highly effective treatment for mucormycosis. Deferasirox effectively chelated iron from Rhizopus oryzae and demonstrated cidal activity in vitro against 28 of 29 clinical isolates of Mucorales at concentrations well below clinically achievable serum levels. When administered to diabetic ketoacidotic or neutropenic mice with mucormycosis, deferasirox significantly improved survival and decreased tissue fungal burden, with an efficacy similar to that of liposomal amphotericin B. Deferasirox treatment also enhanced the host inflammatory response to mucormycosis. Most importantly, deferasirox synergistically improved survival and reduced tissue fungal burden when combined with liposomal amphotericin B. These data support clinical investigation of adjunctive deferasirox therapy to improve the poor outcomes of mucormycosis with current therapy. As iron availability is integral to the pathogenesis of other infections (e.g., tuberculosis, malaria), broader investigation of deferasirox as an antiinfective treatment is warranted. PMID:17786247

  13. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats.

    Science.gov (United States)

    Márquez-Ibarra, Adriana; Huerta, Miguel; Villalpando-Hernández, Salvador; Ríos-Silva, Mónica; Díaz-Reval, María I; Cruzblanca, Humberto; Mancilla, Evelyn; Trujillo, Xóchitl

    2016-01-01

    Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin

  14. Use of radionuclides in the study of iron metabolism in iron deficient states

    International Nuclear Information System (INIS)

    Anatkov, A.; Karakostov, K.; Iliev, Z.; Dimitrov, L.

    1977-01-01

    A study of erythropoiesis in iron deficient anemias by simultaneous labelling with the radionuclides iron 59 and chromium 51 revealed accelerated iron circuit, higher percentage of daily hemolysis, severely reduced or even absent labile reserves, decreased volume of packed red cells with no decrease of blood volume. Adequate iron 59 utilization was observed after administration of large doses of iron (500 mg) in the treatment of iron deficient anemias. (author)

  15. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-01-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ( 60 Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  16. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome.

    Science.gov (United States)

    Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang

    2017-07-01

    Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Iron Supplementation in Suckling Piglets: How to Correct Iron Deficiency Anemia without Affecting Plasma Hepcidin Levels

    NARCIS (Netherlands)

    Starzynski, R.R.; Laarakkers, C.M.; Tjalsma, H.; Swinkels, D.W.; Pieszka, M.; Stys, A.; Mickiewicz, M.; Lipinski, P.

    2013-01-01

    The aim of the study was to establish an optimized protocol of iron dextran administration to pig neonates, which better meets the iron demand for erythropoiesis. Here, we monitored development of red blood cell indices, plasma iron parameters during a 28-day period after birth (till the weaning),

  18. Utilization of waste polyethylene terephthalate as a reducing agent in the reduction of iron ore composite pellets

    Science.gov (United States)

    Polat, Gökhan; Birol, Burak; Sarıdede, Muhlis Nezihi

    2014-08-01

    The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450°C for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450°C for 10 min using composite pellets containing 60% PET and 40% coke.

  19. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  20. Effects of a reduced dose of injected iron on health, iron status and growth of suckling piglets with access to iron enriched soil.

    Science.gov (United States)

    Thanner, S; Gutzwiller, A

    2018-02-01

    The effects of the recommended dose of 200 mg iron and of half that dose injected on the first day of life on health, iron status and performance during the 4 week suckling period were studied in 2'123 piglets. All piglets received creep feed and soil which was supplemented with 14 g iron per kg. Neither mortality nor the prevalence of arthritis, meningitis and foot abscess (each disease affecting about 1% of the piglets) differed between the two groups. The low dose of 100 mg iron decreased blood haemoglobin concentration at weaning (110 ± 19 vs.120 ± 15 g/l), but did not affect growth rate.

  1. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins

    OpenAIRE

    Gokhale, Aditya S.; Mahoney, Raymond R.

    2014-01-01

    The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For u...

  2. The influence of high iron diet on rat lung manganese absorption

    International Nuclear Information System (INIS)

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  3. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    Science.gov (United States)

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  4. Collarless, close-in, shaped iron aperture designs for the SSC [Superconducting Super Collider] dipole

    International Nuclear Information System (INIS)

    Gupta, R.C.; Morgan, G.H.

    1989-01-01

    The nominal-design SSC (Superconducting Super Collider) dipole encloses the coil in an iron yoke having a circular aperture. The radial gap between the coil and the iron is about 15 mm to provide space for a strong annular collar around the coil, and also to reduce the effects of iron saturation on central field harmonics. The 15 mm gap also reduces the desirable dipole field contributed by the iron. The present paper gives a coil and aperture configuration in which the gap is reduced to 5 mm at the midplane, in which the aperture is shaped to reduce the unwanted effects of iron saturation. The transfer function is increased about 5% at 6.6 Tesla and the unwanted harmonics are within SSC tolerances at all field levels. These designs would require that the yoke and containment vessel absorb the stresses due to assembly and magnetic forces. A short magnet is being built with a close-in shaped iron aperture and existing coil geometry to assess the benefits of this concept. 7 refs., 3 figs., 6 tabs

  5. Hemochromatosis enhances tumor progression via upregulation of intracellular iron in head and neck cancer.

    Directory of Open Access Journals (Sweden)

    Michelle Lenarduzzi

    Full Text Available Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC, outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC.Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS, clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry.In a panel of HNSCC cell lines, hemochromatosis (HFE was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX, significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression.Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management.

  6. Hemochromatosis Enhances Tumor Progression via Upregulation of Intracellular Iron in Head and Neck Cancer

    Science.gov (United States)

    Lenarduzzi, Michelle; Hui, Angela B. Y.; Yue, Shijun; Ito, Emma; Shi, Wei; Williams, Justin; Bruce, Jeff; Sakemura-Nakatsugawa, Noriko; Xu, Wei; Schimmer, Aaron; Liu, Fei-Fei

    2013-01-01

    Introduction Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC. Experimental Design Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry. Results In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression. Conclusions Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management. PMID:23991213

  7. Production of iron from metallurgical waste

    Science.gov (United States)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  8. Iron Therapy in Patients with Heart Failure and Iron Deficiency: Review of Iron Preparations for Practitioners.

    Science.gov (United States)

    Drozd, Marcin; Jankowska, Ewa A; Banasiak, Waldemar; Ponikowski, Piotr

    2017-06-01

    In patients with heart failure (HF), iron deficiency (ID) correlates with decreased exercise capacity and poor health-related quality of life, and predicts worse outcomes. Both absolute (depleted iron stores) and functional (where iron is unavailable for dedicated tissues) ID can be easily evaluated in patients with HF using standard laboratory tests (assessment of serum ferritin and transferrin saturation). Intravenous iron therapy in iron-deficient patients with HF and reduced ejection fraction has been shown to alleviate HF symptoms and improve exercise capacity and quality of life. In this paper, we provide information on how to diagnose ID in HF. Further we discuss pros and cons of different iron preparations and discuss the results of major trials implementing iron supplementation in HF patients, in order to provide practical guidance for clinicians on how to manage ID in patients with HF.

  9. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    Science.gov (United States)

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Transient Ischemic Attack Caused by Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Ufuk Emre

    2006-02-01

    Full Text Available Transient Ischemic Attack Caused by Iron Deficiency Anemia Transient ischemic attacks are episodes of transient focal ischemia involving the brain or brainstem. They are commonly two to thirty minutes in duration and lasting less than 24 hours. Anemia of iron deficiency isn’t frequently cause for transient ischemic attack. It has been reported as a risk factor for childhood ischemic strokes. In the iron deficiency anemia, T‹A may develop as result of hypercoagulable state and increased viscosity that is caused by anemic hypoxia that is result of reduce hemoglobine level, seconder thrombosis and microcytose As iron deficiency anemia has been reported so rarely in adult patients with transient ischemic attacks as a cause, we aimed to discuss the clinical and outcome features of two cases with iron deficiency anemia and transient ischemic attacks in this study. Materials and methods: Routine neurologic examination, biochemical screen, serological tests, vasculitic markers, thyroid function tests, vitamin B 12 level, cranial imaging, vertebral carotid doppler USG examination was conducted in the two patients. Anemia of iron deficiency was found as the only risk factor for TIA and the two patients were treated with replacement of iron and antiagregan therapy. Neurological examination revealed no abnormality through the two years of follow-up. The iron deficiency anemia may be cause of many neurologic problems such a irritability, lethargy, headache, development retardation except from T‹A. In the iron deficiency anemia, early diagnosis and treatment is important

  11. Production of a carbon reducing agent and hydrogen by the thermocatalytic decomposition of hydrocarbons on the surface of iron

    Energy Technology Data Exchange (ETDEWEB)

    Borok, B A; Kel' tsev, V V

    1973-01-01

    In a series of laboratory experiments, natural gas containing 98.7% methane and 1.3% nitrogen was passed through a tube packed with particles of a reduced material containing 62% iron. At 900/sup 0/C and 25 vol/vol/hr space velocity, conversion was 99%, and the exit gas contained 98.4% hydrogen. The solid product, called sooty iron, obtained in the experiments contained 20 to 60% carbon; the volume of sponge iron treated with methane at 900/sup 0/C increased when the carbon content reached 30%. Runs with natural gas at a range of temperatures and constant space velocity or at 900/sup 0/C and increasing space velocity, runs with propane feed instead of methane, and the activity of the iron-carbon complex are discussed.

  12. A study of the levels of vanadium, cadmium, chromium and iron in ...

    African Journals Online (AJOL)

    Background: There is conflicting information on the adverse health effects of photocopier toner powder on operators.This study aims to determine the possible nephrotoxic effects of some commercially available photocopier toners and the levels of selected heavy metals (vanadium, cadmium, chromium and iron) for ...

  13. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  14. Iron colloids reduce the bioavailability of phosphorus to the green alga Raphidocelis subcapitata.

    Science.gov (United States)

    Baken, Stijn; Nawara, Sophie; Van Moorleghem, Christoff; Smolders, Erik

    2014-08-01

    Phosphorus (P) is a limiting nutrient in many aquatic systems. The bioavailability of P in natural waters strongly depends on its speciation. In this study, structural properties of iron colloids were determined and related to their effect on P sorption and P bioavailability. The freshwater green alga Raphidocelis subcapitata was exposed to media spiked with radiolabelled (33)PO4, and the uptake of (33)P was monitored for 1 h. The media contained various concentrations of synthetic iron colloids with a size between 10 kDa and 0.45 μm. The iron colloids were stabilised by natural organic matter. EXAFS spectroscopy showed that these colloids predominantly consisted of ferrihydrite with small amounts of organically complexed Fe. In colloid-free treatments, the P uptake flux by the algae obeyed Michaelis-Menten kinetics. In the presence of iron colloids at 9 or 90 μM Fe, corresponding to molar P:Fe ratios between 0.02 and 0.17, the truly dissolved P (<10 kDa) was between 4 and 60% of the total dissolved P (<0.45 μm). These colloids reduced the P uptake flux by R. subcapitata compared to colloid-free treatments at the same total dissolved P concentration. However, the P uptake flux from colloid containing solutions equalled that from colloid-free ones when expressed as truly dissolved P. This demonstrates that colloidal P did not contribute to the P uptake flux. It is concluded that, on the short term, phosphate adsorbed to ferrihydrite colloids is not available to the green alga R. subcapitata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Oxidized Carbo-Iron causes reduced reproduction and lower tolerance of juveniles in the amphipod Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Mirco, E-mail: m.weil@ect.de [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany); Meißner, Tobias, E-mail: tmeiss@gmx.net [Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstrasse 28, 01277 Dresden (Germany); Springer, Armin, E-mail: armin.springer@nano.tu-dresden.de [Dresden University of Technology, Budapesterstrasse 27, 01069 Dresden (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala (Sweden); Institute for Environmental Sciences, University of Koblenz-Landau, Forststrasse 7, 76829 Landau (Germany); Hübler, Lydia, E-mail: lydia.huebler@gmail.com [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany); Schulz, Ralf, E-mail: schulz@uni-landau.de [Institute for Environmental Sciences, University of Koblenz-Landau, Forststrasse 7, 76829 Landau (Germany); Duis, Karen, E-mail: k-duis@ect.de [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany)

    2016-12-15

    Highlights: • Effects on growth, reproduction and survival at ≥12.5 mg of oxidized Carbo-Iron/L were studied. • Carbo-Iron significantly increases sensitivity of offspring from exposed amphipods. • Toxicity is most likely mediated by an impaired uptake of nutrients and energy. - Abstract: For in situ remediation of groundwater contaminated by halogenated hydrocarbons Carbo-Iron{sup ®}, a composite of microscale activated carbon and nano Fe{sup 0}, was developed. Against the background of intended release of Carbo-Iron into the environment in concentrations in the g/L-range, potential ecotoxicological consequences were evaluated in the present study. The nano Fei{sup 0} in Carbo-Iron acts as reducing agent and is oxidized in aqueous systems by chlorinated solvents, groundwater constituents (e.g. dissolved oxygen) and anaerobic corrosion. As Carbo-Iron is generally oxidized rapidly after application into the environment, the oxidized state is environmentally most relevant, and Carbo-Iron was used in its oxidized form in the ecotoxicological tests. The amphipod Hyalella azteca was selected as a surrogate test species for functionally important groundwater crustaceans. Effects of Carbo-Iron on H. azteca were determined in a 10-d acute test, a 7-d feeding activity test and a 42-d chronic test. Additionally, a 56-d life cycle test was performed with a modified design to further evaluate effects of Carbo-Iron on adult H. azteca and their offspring. The size of Carbo-Iron particles in stock and test suspensions was determined via dynamic light scattering. Potential uptake of particles into test organisms was investigated using transmission and scanning electron microscopy. At the termination of the feeding and acute toxicity test (i.e. after 7 and 10 d of exposure, respectively), Carbo-Iron had a significant effect on the weight, length and feeding rate of H. azteca at the highest test concentration of 100 mg/L. While an uptake of Carbo-Iron into the gut was

  16. Ebselen inhibits iron-induced tau phosphorylation by attenuating DMT1 up-regulation and cellular iron uptake.

    Science.gov (United States)

    Xie, Ling; Zheng, Wei; Xin, Na; Xie, Jing-Wei; Wang, Tao; Wang, Zhan-You

    2012-08-01

    Dysregulation of iron homeostasis is involved in the pathological process of Alzheimer's disease (AD). We have recently reported that divalent metal transporter 1 (DMT1) is upregulated in an AD transgenic mouse brain, and that silencing of DMT1, which reduces cellular iron influx, results in inhibition of amyloidogenesis in vitro, suggesting a potential target of DMT1 for AD therapy. In the present study, we tested the hypothesis that inhibition of DMT1 with ebselen, a DMT1 transport inhibitor, could affect tau phosphorylation. Human neuroblastoma SH-SY5Y cells were pre-treated with ebselen and then treated with ferrous sulfate (dissolved in ascorbic acid), and the effects of ebselen on tau phosphorylation and the relative signaling pathways were examined. Our results showed that ebselen decreased iron influx, reduced iron-induced ROS production, inhibited the activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3β, and ultimately attenuated the levels of tau phosphorylation at the sites of Thr205, Ser396 and Thr231. The present study indicates that the neuroprotective effect of ebselen on AD is not only related to its antioxidant activity as reported previously, but is also associated with a reduction in tau phosphorylation by inhibition of DMT1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Association between baseline serum hepcidin levels and infection in kidney transplant recipients: Potential role for iron overload.

    Science.gov (United States)

    Fernández-Ruiz, Mario; Parra, Patricia; Ruiz-Merlo, Tamara; López-Medrano, Francisco; San Juan, Rafael; Polanco, Natalia; González, Esther; Andrés, Amado; Aguado, José María

    2018-02-01

    The liver-synthesized peptide hepcidin is a key regulator of iron metabolism and correlates with total iron stores. We analyzed the association between pre-transplant hepcidin-25 levels and infection after kidney transplantation (KT). Serum hepcidin-25 levels were measured at baseline by high-sensitivity ELISA in 91 patients undergoing KT at our institution between December 2011 and March 2013. The impact of this biomarker on the incidence of post-transplant infection (excluding lower urinary tract infection) during the first year was assessed by Cox regression. Mean hepcidin-25 level was 82.3 ± 67.4 ng/mL and strongly correlated with serum ferritin (Spearman's rho = 0.703; P role for iron overload in the individual susceptibility to post-transplant infection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The Effect of Date (Phoenix dactylifera Juice on Haemoglobin Level An Experimental Study in Iron Supplemented Rats

    Directory of Open Access Journals (Sweden)

    Ady Try Himawan Zen

    2013-06-01

    Full Text Available There has been more research on the iron supplementation. Date juice has been shown to be rich in iron. It has been reported to increase the hemoglobin level in rats. Few studies has been conducted on the effect of date juice on the hemoglobin level in male white Wistar rats fed low iron diet.This research was conducted to evaluate the effect of (Phoenix dactylifera juice on haemoglobin level in iron supplemented rats. In this experimental study using post test control group design, 24 male white Wistar rats were divided into 4 groups. G-I served as the control group (standard diet and aquadest. G II was given the low Fe diet and aquadest for 21 d. G-III,IV were given the low fe diet and aquadest plus date juice at the concentration of 50%, 100% respectively. The treatment was given for 14 days. Spectrophotometer was used to assess the haemoglobin level of rats. One way anova followed by Post Hoc LSD was applied for the data analysis. Mean of hemoglobin (g/dl level for the four groups were 12,03, 7.72, 9.25, 10.35 respectively. Test resulted in p<0.05. Post Hoc LSD test resulted in a significant different between K-I and G-II, G-III, G-IV ;G-II and G-III, G-IV ;G-III and G-IV. In conclusion, date juice increases the haemoglobin level in male white rats fed on the low fe diet.

  19. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Direct Reduction of Iron Ore

    Science.gov (United States)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  1. Clinical consequences of iron overload in patients with myelodysplastic syndromes: the case for iron chelation therapy.

    Science.gov (United States)

    Shammo, Jamile M; Komrokji, Rami S

    2018-06-14

    Patients with myelodysplastic syndromes (MDS) are at increased risk of iron overload due to ineffective erythropoiesis and chronic transfusion therapy. The clinical consequences of iron overload include cardiac and/or hepatic failure, endocrinopathies, and infection risk. Areas covered: Iron chelation therapy (ICT) can help remove excess iron and ultimately reduce the clinical consequences of iron overload. The authors reviewed recent (last five years) English-language articles from PubMed on the topic of iron overload-related complications and the use of ICT (primarily deferasirox) to improve outcomes in patients with MDS. Expert Commentary: While a benefit of ICT has been more firmly established in other transfusion-dependent conditions such as thalassemia, its role in reducing iron overload in MDS remains controversial due to the lack of prospective controlled data demonstrating a survival benefit. Orally administered chelation agents (e.g., deferasirox), are now available, and observational and/or retrospective data support a survival benefit of using ICT in MDS. The placebo-controlled TELESTO trial (NCT00940602) is currently examining the use of deferasirox in MDS patients with iron overload, and is evaluating specifically whether use of ICT to alleviate iron overload can also reduce iron overload-related complications in MDS and improve survival.

  2. Microbial reduction of iron ore

    Science.gov (United States)

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  3. Nitrogenase activity of Herbaspirillum seropedicae grown under low iron levels requires the products of nifXorf1 genes.

    Science.gov (United States)

    Klassen, Giseli; de Oliveira Pedrosa, Fábio; de Souza, Emanuel M; Yates, M Geoffrey; Rigo, Liu Un

    2003-07-29

    Herbaspirillum seropedicae strains mutated in the nifX or orf1 genes showed 90% or 50% reduction in nitrogenase activity under low levels of iron or molybdenum respectively. Mutations in nifX or orf1 genes did not affect nif gene expression since a nifH::lacZ fusion was fully active in both mutants. nifX and the contiguous gene orf1 are essential for maximum nitrogen fixation under iron limitation and are probably involved in synthesis of nitrogenase iron or iron-molybdenum clusters.

  4. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    International Nuclear Information System (INIS)

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-01-01

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics

  5. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis.

    Science.gov (United States)

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; Kist, Luiza Wilges; Oliveira, Giovanna Medeiros Tavares de; Bogo, Maurício Reis; Carli, Geraldo Atillio de; Macedo, Alexandre José; Tasca, Tiana

    2015-04-01

    Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5'-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5'-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.

  6. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Patrícia de Brum Vieira

    2015-04-01

    Full Text Available Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB and haemin (HM enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.

  7. Dynamics of Phenol Degrading—Iron Reducing Bacteria in Intensive Rice Croopping System

    Institute of Scientific and Technical Information of China (English)

    LUWENJING; W.REICHARDT; 等

    2001-01-01

    Field and greenhouse experiments were conducted to investigate the effects of cropping season,nitrogen fertilizer input and aerated fallow o the dynamics of phenol degrading-iron reducing bacteria(PD-IRB)in tropical irrigated rice(Oryza sativa L.)systems,The PD-IRB population density was monitored at different stages of rice growth in two cropping seasons (dry and early wet) in a continuous annual triple rice cropping system under irrigated condition,In this system,the high nitrogen input (195 and 135 kg N ha-1 in dry and ewt seasons ,respectively)plots and control plots receiving no N fertilizer were compared to investigate the effect of nitrogen rate on population size.The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under croppin systems of tropical irrigated rice.However,density of the bacterial populations varied with rice growth stages.Cropping seasons,rhizosphere,and aerated fallow could affect the dynamics of PD-IRB,In the field trial,viable counts of PD-IRB in the topsoil layer(15 cm)ranged between 102 and 108 cells per gram of dry soil.A steep increase in viable counts during the second half of the cropping season suggested that the population density of PD-IRB increased ant advanced crop-growth stages.Population growth of PD-IRB was accelerated during the dry season compared to the wet season,In the greenhouse experiment,the adjacent aerated fallow revealed 1-2 orders of magnitude higher in most probable number(MPN)of PD-IRB than the wet fallow treated plots.As a prominent group of Fe reducing bacteria,PD-IRB predominated in the rhizosphere of rice,since maximum MPN of PD-IRB (2.62×108 g-1 soil) was found in rhizosphere soil.Mineral N fertilizer rates showed no significant effect on PD-IRB population density.

  8. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  9. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  10. [2,3-diphosphoglycerate level during the active and maintenance treatment of iron-deficiency anemia patients].

    Science.gov (United States)

    Iordanova, E; Dosheva, I; Lulcheva, F; Tsvetkova, N; Dobrev, K

    1985-01-01

    The objective of the present study was to obtain information about the duration of tissue hypoxia in patients with iron deficiency anemia. That fact is of importance for the determination of the duration of maintenance iron therapy. The level of 2,3-diphosphoglycerate was studied during the treatment, after the correction of anemic syndrome and after 60-day out-patient department treatment. The data obtained revealed that the level of 2,3-diphosphoglycerate was considerably elevated, as compared with the norm, before the treatment. After the active treatment and correction of anemic syndrome it was decreased, but remaining above the norm. By the 60th day of the out-patient department treatment the decrease continued and the level of 2,3-diphosphoglycerate approached the norm.

  11. Evaluation of the Effects of Iron Oxides on Soil Reducing Conditions and Methane Generation in Cambodian Wetland Rice Fields

    Science.gov (United States)

    Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.

    2007-12-01

    Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... C to help your body absorb iron. Avoid drinking black tea, which reduces iron absorption. Other treatments ... improve health through research and scientific discovery. Improving health with current research Learn about the following ways ...

  13. The actin-binding protein profilin 2 is a novel regulator of iron homeostasis.

    Science.gov (United States)

    Luscieti, Sara; Galy, Bruno; Gutierrez, Lucia; Reinke, Michael; Couso, Jorge; Shvartsman, Maya; Di Pascale, Antonio; Witke, Walter; Hentze, Matthias W; Pilo Boyl, Pietro; Sanchez, Mayka

    2017-10-26

    Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that bind cis -regulatory iron-responsive elements (IRE) on target messenger RNAs (mRNA). We identified profilin 2 ( Pfn2 ) mRNA, which encodes an actin-binding protein involved in endocytosis and neurotransmitter release, as a novel IRP-interacting transcript, and studied its role in iron metabolism. A combination of electrophoretic mobility shift assay experiments and bioinformatic analyses led to the identification of an atypical and conserved IRE in the 3' untranslated region of Pfn2 mRNA. Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with intestinal IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA expression in vivo. Overexpression of Pfn2 in HeLa and Hepa1-6 cells reduced their metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation in discrete areas of the brain (olfactory bulb, hippocampus, and midbrain) and reduction of the hepatic iron store without anemia. Despite low liver iron levels, hepatic hepcidin expression remained high, likely because of compensatory activation of hepcidin by mild inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that Pfn2 contributes to maintaining iron homeostasis in cell lines and mice. © 2017 by The American Society of Hematology.

  14. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  15. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A., E-mail: jimfield@email.arizona.edu

    2016-05-05

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  16. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    International Nuclear Information System (INIS)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A.

    2016-01-01

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  17. Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Bruce; Zhou, Chen; Vannela, Raveender

    2013-12-31

    This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... an MCV of less than 80 femtoliters (fL). Prevention strategies If you have certain risk factors , such ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ...

  19. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4?7H2O. By adjusting reaction temperature, ?-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from ?-Fe2O3 to Fe3O4 via ?-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...

  20. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  1. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    International Nuclear Information System (INIS)

    Thakur, Suman; Karak, Niranjan

    2014-01-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb 2+ and Cd 2+ within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous

  2. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Suman; Karak, Niranjan, E-mail: karakniranjan@yahoo.com

    2014-04-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb{sup 2+} and Cd{sup 2+} within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous.

  3. Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs.

    Science.gov (United States)

    Zhang, Yiming; Wan, Dan; Zhou, Xihong; Long, Ciming; Wu, Xin; Li, Lan; He, Liuqin; Huang, Pan; Chen, Shuai; Tan, Bie; Yin, Yulong

    2017-09-02

    Diurnal variations in serum iron levels have been well documented in clinical studies, and serum iron is an important diagnostic index for iron-deficiency anemia. However, the underlying mechanism of dynamic iron regulation in response to the circadian rhythm is still unclear. In this study, we investigated daily variations in iron status in the plasma and liver of pigs. The transcripts encoding key factors involved in iron uptake and homeostasis were evaluated. The results showed that iron levels in the plasma and liver exhibited diurnal rhythms. Diurnal variations were also observed in transcript levels of divalent metal transporter 1 (DMT1), membrane-associated ferric reductase 1 (DCYTB), and transferrin receptor (TfR) in the duodenum and jejunum, as well as hepcidin (HAMP) and TfR in the liver. Moreover, the results showed a network in which diurnal variations in systemic iron levels were tightly regulated by hepcidin and Tf/TfR via DCYTB and DMT1. These findings provide new insights into circadian iron homeostasis regulation. The diurnal variations in serum iron levels may also have pathophysiological implications for clinical diagnostics related to iron deficiency anemia in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... is blood loss during dialysis. People who have chronic kidney disease also often take other medicines—such as proton ... reduces iron absorption. Other treatments If you have chronic kidney disease and iron-deficiency anemia, your doctor may recommend ...

  6. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  7. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  8. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions.

    Science.gov (United States)

    Xu, Yan; Sun, Xiangli; Zhang, Qiqiong; Li, Xiuzhen; Yan, Zhongzheng

    2018-05-30

    Tidal flat elevation in the estuarine wetland determines the tidal flooding time and flooding frequency, which will inevitably affect the formation of iron plaque and accumulations of heavy metals (HMs) in wetland plants. The present study investigated the formation of iron plaque and HM's (copper, zinc, lead, and chromium) accumulation in S. alterniflora, a typical estuarine wetland species, at different tidal flat elevations (low, middle and high) in filed and at different time (3, 6, 9, 12 h per day) of waterlogging treatment in greenhouse conditions. Results showed that the accumulation of copper, zinc, lead, and chromium in S. alterniflora was proportional to the exchangeable fraction of these metals in the sediments, which generally increased with the increase of waterlogging time, whereas the formations of iron plaque in roots decreased with the increase of waterlogging time. Under field conditions, the uptake of copper and zinc in the different parts of the plants generally increased with the tidal levels despite the decrease in the metals' exchangeable fraction with increasing tidal levels. The formation of iron plaque was found to be highest in the middle tidal positions and significantly lower in low and high tidal positions. Longer waterlogging time increased the metals' accumulation but decreased the formation of iron plaque in S. alterniflora. The binding of metal ions on iron plaque helped impede the uptake and accumulation of copper and chromium in S. alterniflora. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Direct Biohydrometallurgical Extraction of Iron from Ore. Final Technical Report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  10. Direct Biohydrometallurgical Extraction of Iron from Ore. Final technical report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  11. Effect of molybdenum and iron supply on molybdenum (99Mo) and iron (59Fe) uptake and activity of certain enzymes in tomato plants grown in sand culture

    International Nuclear Information System (INIS)

    Chatterjee, C.; Agarwala, S.C.

    1979-01-01

    Tomato (Lycopersicon esculentum Mill. var. Marglobe) plants were raised under controlled sand culture to study the interaction of molybdenum and iron supply on the uptake of molybdenum and iron and activity of certain enzymes affected by iron and/or molybdenum supply. Iron deficiency caused a decrease in the molybdenum uptake and accentuated the effect of molybdenum deficiency in reducing the uptake and more so the translocation of molybdenum from roots to shoots, thus inducing more severe molybdenum deficiency. The deficiency of iron and molybdenum decreased the activity of catalase, succinate dehydrogenase and nitrate reductase, the most marked decrease being found in plants supplied with both iron and molybdenum at low levels. Changes in the activities of nitrate reductase and catalase can be attributed to the interaction of iron and molybdenum supply in their absorption and translocation. (auth.)

  12. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum.

    Science.gov (United States)

    Tavsan, Zehra; Ayar Kayali, Hulya

    2015-05-01

    The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L.

  13. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.; Ehmann, W.D. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levels to those in the pituitary gland of AD and control subjects.

  14. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    Science.gov (United States)

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. System and method for producing metallic iron

    Science.gov (United States)

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  16. Efficacy of iron fortification compared to iron supplementation among Vietnamese schoolchildren.

    Science.gov (United States)

    Thi Le, Huong; Brouwer, Inge D; Burema, Jan; Nguyen, Khan Cong; Kok, Frans J

    2006-12-05

    The effect of iron fortification is generally assumed to be less than iron supplementation; however, the magnitude of difference in effects is not known. The present study aims to compare the efficacy of these two strategies on anaemia and iron status. After screening on low Hb, 425 anaemic children in six primary schools in Tam Nong district of Phu Tho province were included in a randomized, placebo-controlled trial comparing two groups receiving iron fortified instant noodles or iron supplementation for 6 months and a control group, with children in all groups having been dewormed. Blood samples were collected before and after intervention for haemoglobin, serum ferritin (SF), serum transferrin receptor (TfR), C-reactive protein (CRP), and haemoglobinopathies analysis. Regression analysis was used to assess the effect of iron fortification and iron supplementation on haemoglobin concentration, SF, TfR, body iron, and anaemic status as outcome variables. The improvement of haemoglobin, SF, and body iron level in the group receiving iron fortification was 42% (2.6 g/L versus 6.2 g/L), 20% (23.5 microg/L versus 117.3 microg/L), and 31.3% (1.4 mg/kg versus 4.4 mg/kg) of that in the iron supplementation group. The prevalence of anaemia dropped to 15.1% in the control group, with an additional reduction of anaemia of 8.5% in the iron supplementation group. The additional reduction due to iron fortification was 5.4%, which amounts to well over 50% of the impact of supplementation. In conclusion, the efficacy of iron fortification based on reduction of prevalence of anaemia, and on the change in haemoglobin level, is about half of the maximum impact of supplementation in case of optimal compliance. Thus, in a population of anaemic children with mild iron deficiency, iron fortification should be the preferred strategy to combat anaemia.

  17. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Huiying [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Hao, Shuangying; Sun, Xiaoyan [Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province (China); Zhang, Dingding; Gao, Xin; Yu, Zhuang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Li, Kuanyu, E-mail: likuanyu@nju.edu.cn [Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province (China); Hang, Chun-Hua, E-mail: hang_neurosurgery@163.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2015-01-24

    Highlights: • Iron accumulation was involved in the acute phase following SAH. • Blockage of MCU could attenuate cellular iron accumulation following SAH. • Blockage of MCU could decrease ROS generation and improve cell energy supply following SAH. • Blockage of MCU could alleviate apoptosis and brain injury following SAH. - Abstract: Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague–Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH + RR, and SAH + Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron–sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH.

  18. Iron crud supply device to reactor coolant

    International Nuclear Information System (INIS)

    Baba, Takao.

    1993-01-01

    In a device for supplying iron cruds into reactor coolants in a BWR type power plant, a system in which feed water containing iron cruds is supplied to the reactor coolants after once passing through an ion exchange resin is disposed. As a result, iron cruds having characteristics similar with those of naturally occurring iron cruds in the plant are obtained and they react with ionic radioactivity, to form composite oxides. Then, iron cruds having high performance of being secured to the surface of a fuel cladding tube can be supplied to the reactor coolants, thereby enabling to greatly reduce the density of reactor water ionic radioactivity. In its turn, dose rate on the surface of pipelines can be reduced, thereby enabling to reduce operators' radiation exposure dose in the plant. Further, contamination of a condensate desalting device due to iron cruds can be prevented, and further, the density of the iron cruds supplied can easily be controlled. (N.H.)

  19. Iron deficiency among blood donors

    DEFF Research Database (Denmark)

    Rigas, A S; Pedersen, O B; Magnussen, K

    2017-01-01

    Blood components collected from blood donors are an invaluable part of modern-day medicine. A healthy blood donor population is therefore of paramount importance. The results from the Danish Blood Donor Study (DBDS) indicate that gender, number of previous donations, time since last donation...... and menopausal status are the strongest predictors of iron deficiency. Only little information on the health effects of iron deficiency in blood donors exits. Possibly, after a standard full blood donation, a temporarily reduced physical performance for women is observed. However, iron deficiency among blood...... donors is not reflected in a reduced self-perceived mental and physical health. In general, the high proportion of iron-deficient donors can be alleviated either by extending the inter-donation intervals or by guided iron supplementation. The experience from Copenhagen, the Capital Region of Denmark...

  20. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  1. Altered erythropoiesis and iron metabolism in carriers of thalassemia

    Science.gov (United States)

    Guimarães, Jacqueline S.; Cominal, Juçara G.; Silva-Pinto, Ana Cristina; Olbina, Gordana; Ginzburg, Yelena Z.; Nandi, Vijay; Westerman, Mark; Rivella, Stefano; de Souza, Ana Maria

    2014-01-01

    The thalassemia syndromes (α- and β-thalassemia) are the most common and frequent disorders associated with ineffective erythropoiesis. Imbalance of α- or β-globin chain production results in impaired red blood cell synthesis, anemia and more erythroid progenitors in the blood stream. While patients affected by these disorders show definitive altered parameters related to erythropoiesis, the relationship between the degree of anemia, altered erythropoiesis and dysfunctional iron metabolism have not been investigated in both α-thalassemia carriers (ATC) and β-thalassemia carriers (BTC). Here we demonstrate that ATC have a significantly reduced hepcidin and increased soluble transferrin receptor levels but relatively normal hematological findings. In contrast, BTC have several hematological parameters significantly different from controls, including increased soluble transferrin receptor and erythropoietin levels. These changings in both groups suggest an altered balance between erythropoiesis and iron metabolism. The index sTfR/log ferrin and (hepcidin/ferritin)/sTfR are respectively increased and reduced relative to controls, proportional to the severity of each thalassemia group. In conclusion, we showed in this study, for the first time in the literature, that thalassemia carriers have altered iron metabolism and erythropoiesis. PMID:25307880

  2. Efficacy of a low-dose ferric-EDTA in reducing iron deficiency ...

    African Journals Online (AJOL)

    Iron deficiency anaemia is a public health problem in Tanzania especially among children under the age of five years. In malaria holoendemic areas, control of anaemia by supplementation with iron has been reported to increase serious adverse events. The World Health Organization recommends that, programs to control ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Precision Medicine Activities Obesity, Nutrition, and Physical Activity Population and Epidemiology Studies Women’s Health All Science A- ... to help your body absorb iron. Avoid drinking black tea, which reduces iron ... was associated with a greater risk of death even with mild anemia. Now, anemia in older ...

  4. Effects of sulfur in flooded paddy soils: Implications for iron chemistry and arsenic mobilization

    Science.gov (United States)

    Avancha, S.; Boye, K.

    2013-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (amplified by erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Iron and sulfur both interact strongly with arsenic in paddy soils: iron oxides are strong adsorbents for arsenic in oxic conditions, and sulfur (in the form of sulfide) is a strong adsorbent under anoxic conditions. In the process of reductive dissolution of iron oxides, arsenic, which had been adsorbed to the iron oxides, is released. Therefore, higher levels of reduced iron (ferrous iron) will likely correlate with higher levels of mobilized arsenic. However, the mobilized arsenic may then co-precipitate with or adsorb to iron sulfides, which form under sulfate-reducing conditions and with the aid of certain microbes already present in the soil. In a batch experiment, we investigated how these processes correlate and which has the greatest influence on arsenic mobilization and potential plant availability. The experiment was designed to measure the effects of various sources of sulfur (dried rice straw, charred rice straw, and gypsum) on the iron and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. The two types of rice straw were designed to introduce the same amount of organic sulfur (7.7 μg/g of soil), but different levels of available carbon, since carbon stimulates microbial activity in the soil. In comparison, two different levels of gypsum (calcium sulfate) were used, 7.7 and 34.65 μg/g of soil, to test the effect of directly available inorganic sulfate without carbon addition. The soil was flooded with a buffer solution at pH 7.07 in airtight serum vials and kept as a slurry on a shaker at 25 °C. We measured pH, alkalinity, ferrous iron, ferric iron, sulfide, sulfate, total iron, sulfur, and arsenic in the

  5. Efficacy of iron fortification compared to iron supplementation among Vietnamese schoolchildren

    Directory of Open Access Journals (Sweden)

    Nguyen Khan

    2006-12-01

    Full Text Available Abstract The effect of iron fortification is generally assumed to be less than iron supplementation; however, the magnitude of difference in effects is not known. The present study aims to compare the efficacy of these two strategies on anaemia and iron status. After screening on low Hb, 425 anaemic children in six primary schools in Tam Nong district of Phu Tho province were included in a randomized, placebo-controlled trial comparing two groups receiving iron fortified instant noodles or iron supplementation for 6 months and a control group, with children in all groups having been dewormed. Blood samples were collected before and after intervention for haemoglobin, serum ferritin (SF, serum transferrin receptor (TfR, C-reactive protein (CRP, and haemoglobinopathies analysis. Regression analysis was used to assess the effect of iron fortification and iron supplementation on haemoglobin concentration, SF, TfR, body iron, and anaemic status as outcome variables. The improvement of haemoglobin, SF, and body iron level in the group receiving iron fortification was 42% (2.6 g/L versus 6.2 g/L, 20% (23.5 μg/L versus 117.3 μg/L, and 31.3% (1.4 mg/kg versus 4.4 mg/kg of that in the iron supplementation group. The prevalence of anaemia dropped to 15.1% in the control group, with an additional reduction of anaemia of 8.5% in the iron supplementation group. The additional reduction due to iron fortification was 5.4%, which amounts to well over 50% of the impact of supplementation. In conclusion, the efficacy of iron fortification based on reduction of prevalence of anaemia, and on the change in haemoglobin level, is about half of the maximum impact of supplementation in case of optimal compliance. Thus, in a population of anaemic children with mild iron deficiency, iron fortification should be the preferred strategy to combat anaemia.

  6. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    Science.gov (United States)

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Simple educational intervention will improve the efficacy of routine antenatal iron supplementation.

    Science.gov (United States)

    Senanayake, Hemantha M; Premaratne, Samanthi P; Palihawadana, Thilina; Wijeratne, Sumeda

    2010-06-01

    Sri Lanka has a policy of free provision of iron supplements to pregnant women. However, iron deficiency anemia remains common in pregnancy. We tested the hypothesis that educating women regarding improving bioavailability could improve the efficacy of iron supplementation. The education focused on how best supplements could be taken and on how they should be stored. We carried out a study using a quasi-experimental design on a group of women attending for antenatal care at a suburban University Obstetric Unit in Sri Lanka. The control group had care free of charge including iron supplementation and antihelminthic therapy. In addition, the study group received an education in small groups regarding maximizing bioavailability of iron. Hemoglobin and iron status of the women were compared between the groups at recruitment and at 34 weeks of gestation. The two groups were equally matched in demographic data, and hemoglobin and iron status. There were significant differences between the two groups at 34 weeks in the hemoglobin levels, serum ferritin levels, anemia rates and the number with low ferritin (P tablets in ways that improved their bioavailability. A simple health education improved the efficacy of iron supplementation in this population. Such interventions should be an integral part of iron supplementation programs, especially in populations whose habits tend to reduce the bioavailability of iron.

  8. Increased levels of advanced glycation end products positively correlate with iron overload and oxidative stress markers in patients with β-thalassemia major.

    Science.gov (United States)

    Mirlohi, Maryam Sadat; Yaghooti, Hamid; Shirali, Saeed; Aminasnafi, Ali; Olapour, Samaneh

    2018-04-01

    The impaired biosynthesis of the β-globin chain in β-thalassemia leads to the accumulation of unpaired alpha globin chains, failure in hemoglobin formation, and iron overload due to frequent blood transfusion. Iron excess causes oxidative stress and massive tissue injuries. Advanced glycation end products (AGEs) are harmful agents, and their production accelerates in oxidative conditions. This study was conducted on 45 patients with major β-thalassemia who received frequent blood transfusions and chelation therapy and were compared to 40 healthy subjects. Metabolic parameters including glycemic and iron indices, hepatic and renal functions tests, oxidative stress markers, and AGEs (carboxymethyl-lysine and pentosidine) levels were measured. All parameters were significantly increased in β-thalassemia compared to the control except for glutathione levels. Blood glucose, iron, serum ferritin, non-transferrin-bound iron (NTBI), MDA, soluble form of low-density lipoprotein receptor, glutathione peroxidase, total reactive oxygen species (ROS), and AGE levels were significantly higher in the β-thalassemia patients. Iron and ferritin showed a significant positive correlation with pentosidine (P overload in β-thalassemia major patients and highlight the enhanced formation of AGEs, which may play an important role in the pathogenesis of β-thalassemia major.

  9. First order study for an iron core OH system for TNS

    International Nuclear Information System (INIS)

    Ballou, J.K.; Schultz, J.

    1977-01-01

    A simple comparison has been made between an air core and an iron core ohmic heating system for a particular device, and it was shown that the peak power requirements can be substantially reduced by the use of an iron core to power levels handled by industry today. It was also shown that for an ohmic heating system initiated plasma that the cost of the iron core ohmic heating power system (iron core, dual rectifier, and DC switch) is less than the cost for a subset of the power system for an air core system (dual rectifier and DC switch). There is considerable work being done on other methods of initiating the plasma none of which seem to be incompatible with the use of an iron core system

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... grams per deciliter (g/dl) for men and less than 12 g/dl for women is diagnostic of anemia. In iron-deficiency anemia, ... blood levels of iron will be low, or less than 10 micromoles per liter (mmol/L) for both men and women. Normal levels are 10 to 30 mmol/L. ...

  11. Iron and zinc absorption from weaning foods prepared from germinated cereals and legumes

    International Nuclear Information System (INIS)

    Kuizon, M.D.

    1992-01-01

    Iron deficiency anaemia is a public health problem in the Philippines especially in infants, children and pregnant women. The immediate cause is inadequate intake of available iron to meet increased iron requirements. Iron supplementation studies on pregnant women showed improvement in haemoglobin level and reduction of prevalence of anaemia. A project on iron fortification of rice with ferrous sulphate is going on. It is proposed to study iron and zinc absorption from weaning food prepared from germinated rice: mungbean, germinated rice: cowpea, and germinated corn:mungbean to support the finding that these formulations will alleviate not only protein-energy malnutrition but contribute to improvement of iron status as well since iron contents are higher and anti-nutritional factors (phytates and tannin) are either reduced or eliminated. This study aims to measure the iron and zinc absorption from weaning foods prepared from germinated rice-mungbean, germinated rice-cowpea, and germinated corn-mungbean and to indicate usefullness of modifying local foods to improve iron absorption. 24 refs, 4 figs

  12. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.

    Science.gov (United States)

    Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao

    2018-04-18

    Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.

  13. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    Science.gov (United States)

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  14. On iron radionuclide interactions and in situ measurement of iron corrosion products

    International Nuclear Information System (INIS)

    Puranen, A.; Jonsson, M.; Cui, D.; Scheidegger, A.M.; Wersin, P.; Spahiu, K.

    2005-01-01

    Full text of publication follows: In performance assessments of hard rock repositories, it is conservatively assumed that waste canisters are breached and that the spent fuel will get into contact with groundwater after 1000 years. When the canister eventually fails to protect HLW from groundwater, dissolved radionuclides from HLW will react with iron canister materials. The reactivity will depend on the conditions in solution and at the iron-water interface. To improve our understanding on the redox chemistry at near field conditions, batch experiments are conducted by contacting polished iron foils with a synthetic groundwater solution containing 10 mM NaCl, 2 mM NaHCO 3 and 5 ppm Se(IV), Se(VI), Tc(VII) and U(VI) in a glove box filled with Ar + 0.03% CO 2 gas mixture. The reaction rates are measured by analysing Se, Tc and U concentrations by ICP-MS. Iron corrosion products formed during the reaction(s) is monitored in-situ by a Layer Raman spectrometer through an optical window. The corrosion potential of the iron foil as well as the Eh and pH values of the bulk solution are recorded continuously during the experiment. The reacted iron foil is embedded with EPOXY resin, and the cross section will be analysed by SEM-EDS and XAS. The preliminary experimental results shows that with the formation of iron green rust FeII 4 FeIII 2 (OH) 12 CO 3 on iron foil, the rates of redox reactions between iron and the negatively charged radionuclides species are increased. The observation is explained by the fact that radionuclide anionic species can be first adsorbed then reduced on the positively charged outer surface of iron green rust. The positive charge is a result of the electrical balance of the negative charges of carbonate contained between the layered iron hydroxides in the green rust. Reduced forms of radionuclides are identified in the iron corrosion products. The results suggest that the formation of iron green rust as a corrosion product on the surface of iron

  15. Anti frictional materials iron-pig iron-brass manufacture using shaving waste products of pig-iron

    International Nuclear Information System (INIS)

    Nasamov, S. N.; Krivij, N.; Gudenau, H. W.; Babich, A. I.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    Parts based on iron and steel powders are widely used in the manufacture of automobile and domestic equipment. This work was done to study the anti-friction properties of iron-pig iron-brass compositions of materials which were obtained by pressing and sintering from a mix of iron powders and industrial by products of cast-iron turnings, brass, talc and technical sulphur. Experiments were performed using cold pressure technology in the flowing matrix of the powder composite without solid lubricants. The subsequent sintering was carried out at 1200 degree centigree under isothermal conditions in a nitrogen atmosphere in the sintering zone during 1 h. The physical-mechanical and anti-friction properties were almost double by the active drainage of the gases from the compression mould. The study of the microstructure of the sintered materials showed that free cementite existed between the particle limits and around the pores. large agglomerations of dark inclusions could be observed, consisting of graphite, zinc and iron oxides, which were points of tension in the materials that reduce its durability and, therefore, its wear resistance to dry friction. (Author) 34 refs

  16. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, Stephan, E-mail: s.kaufhold@bgr.de [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); Hassel, Achim Walter [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sanders, Daniel [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Dohrmann, Reiner [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover (Germany)

    2015-03-21

    Graphical abstract: Corrosion at the bentonite iron interface proceeds unaerobically with formation of an 1:1 Fe silicate mineral. A series of exposure tests with different types of bentonites showed that Na–bentonites are slightly less corrosive than Ca–bentonites and highly charges smectites are less corrosive compared to low charged ones. The formation of a patina was observed in some cases and has to be investigated further. - Highlights: • At the iron bentonite interface a 1:1 Fe layer silicate forms upon corrosion. • A series of iron–bentonite corrosion products showed slightly less corrosion for Na-rich and high-charged bentonites. • In some tests the formation of a patina was observed consisting of Fe–silicate, which has to be investigated further. - Abstract: Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na–bentonites compared to the Ca–bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe

  17. Is There a Role for Preoperative Iron Supplementation in Patients Preparing for a Total Hip or Total Knee Arthroplasty?

    Science.gov (United States)

    Petis, Stephen M; Lanting, Brent A; Vasarhelyi, Edward M; Naudie, Douglas D R; Ralley, Fiona E; Howard, James L

    2017-09-01

    Several treatment modalities exist for the treatment of perioperative anemia. We determined the effect of oral iron supplementation on preoperative anemia, and the use of blood-conserving interventions before total hip arthroplasty (THA) and total knee arthroplasty (TKA). A total of 3435 total joint arthroplasties (1461 THAs and 1974 TKAs) were analyzed during 2 phases of a blood conservation program. The first phase used erythropoietin alfa (EPO) or intravenous (IV) iron for patients at risk for perioperative anemia. The second phase included these interventions, as well as preoperative iron supplementation. The effect on preoperative hemoglobin (Hb) and serum ferritin, as well as EPO and IV iron utilization, was determined. Oral iron therapy increased preoperative Hb level by 6 g/L (P iron reduced from 4% to 2% (P = .05) and 5% to 2% (P iron therapy reduced the burden of perioperative anemia and reduced utilization of other blood-conserving therapies before THA and TKA. Future research should delineate the cost-effectiveness of oral iron therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. INTRAVENOUS IRON-SUCROSE COMPLEX THERAPY IN PREGNANT WOMEN WITH IRON DEFICIENCY ANAEMIA- A STUDY IN TERTIARY CENTRE

    Directory of Open Access Journals (Sweden)

    Todak Taba

    2017-11-01

    Full Text Available BACKGROUND Anaemia in pregnancy continues to be a major public health problem with 54.96% of the pregnant population suffering from it in our setup. Despite the National Anaemia Prophylaxis Programme, anaemia complicating pregnancy continues to be a widespread problem with adverse effects on maternal and foetal outcome. The aim of the study is to find out an alternate iron therapy in the form of intravenous iron-sucrose and to determine its therapeutic effectiveness, safety and compliance in the management of anaemic expectant mother and to compare it with that of conventional oral iron therapy. MATERIALS AND METHODS The study was a randomised controlled clinical trial carried out in the Department of Obstetrics and Gynaecology in collaboration with the Department of Biochemistry, Regional Institute of Medical Sciences (RIMS, Imphal. 100 pregnant women in second or third trimester with mild or moderate anaemia were selected, 50 as study group (intravenous iron and 50 as controls (oral iron. Initial evaluation included complete blood count and serum ferritin level and reevaluated on the 14th and 28th day of initiation of therapy. RESULTS Majority of patients (42% in the study as well as control group were between 26-30 years of age. The mean ± SD increase in haemoglobin and ferritin levels on 28th day were 2.66 ± 0.34 gm/dL and 27.65 ± 1.80 ng/mL in study group and 1.55 ± 0.23 gm/dL and 16.89 ± 0.76 ng/mL in control group respectively, both of which were statistically significant. CONCLUSION The mean haemoglobin and serum ferritin levels throughout the treatment were significantly higher in the intravenous ironsucrose group than in the orally administered iron group and significantly higher number of patients achieved the target haemoglobin of 11.0 gm/dL after 28 days of treatment. This reduces the blood transfusion rates in pregnant women with severe anaemia near term.

  19. The effect of haem biosynthesis inhibitors and inducers on intestinal iron absorption and liver haem biosynthetic enzyme activities

    International Nuclear Information System (INIS)

    Laftah, A.H.; Simpson, R.J.; Peters, T.J.; Raja, K.B.

    2008-01-01

    The relation between haem biosynthesis and intestinal iron absorption is not well understood, we therefore investigated the effect of compounds that alter haem metabolism on duodenal iron absorption. CD1 mice were treated with either an inhibitor (succinyl acetone (SA)) or stimulator (2-allyl-2-isopropylacetamide (AIA)) of haem biosynthesis. 5-Aminolaevulinic acid (ALA) dehydratase and urinary ALA and porphobilinogen (PBG) levels, were determined. Intestinal iron absorption was assayed with in vivo and in vitro techniques. Liver hepcidin (Hamp1) and duodenal iron transporter mRNA levels were measured using RT-PCR. AIA caused increased hepatic ALA synthase (1.6-fold) and ALA dehydratase (1.4-fold, both p < 0.005) activities and increased urinary ALA and PBG excretion (2.1- and 1.4-fold, p < 0.005, p < 0.05, respectively). In vivo intestinal iron absorption was reduced to 49% of control (p < 0.005). Mice treated with SA showed decreased urinary ALA and PBG levels (75 and 55% control, both p < 0.005) and reductions in both ALA synthase and ALA dehydratase activities (77 and 56% control, p < 0.05, p < 0.005, respectively) in the liver. Liver and duodenal haem and cytochrome oxidase levels were not significantly decreased. Iron absorption was enhanced (1.26-fold, p < 0.05) and hepatic Hamp1 mRNA was reduced (53% of control, p < 0.05). In vitro duodenal iron uptake after mice were injected with SA also demonstrated an increase in Fe(III) reduction and uptake (1.27- and 1.41-fold, p < 0.01 respectively). Simultaneous injections of SA and ALA blocked the enhancing effect on iron absorption seen with SA alone. We conclude that alterations in haem biosynthesis can influence iron absorption and in particular, the intermediate ALA seems to be an inhibitor of iron absorption

  20. Determination of iron content in whole blood in different mouse strains using a portable XRFS spectrometer

    International Nuclear Information System (INIS)

    Zamboni, C.B.; Metairon, Sabrina; Suzuki, M.F.; Bahovschi, Vanessa; Rizzutto, M.A.

    2016-01-01

    Iron has an important role in blood as an indicator of a great number of anomalies. Anemia due to iron-deficiency in the world is a public health problem in all ages and socioeconomic levels. Nowadays, Brazil's pharmaceutical companies are testing iron compounds to reduce the costs of those new drugs. In this study, Energy Dispersive X-Ray Fluorescence Technique was applied to determine Fe concentrations in blood samples of different mice strains using a Portable XRF Spectrometer. These data may help researchers choose the convenient mice strain that best meets its medical investigation, reducing costs and optimizing their researches. (author)

  1. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area.

    Science.gov (United States)

    Swain, James H; Newman, Samuel M; Hunt, Janet R

    2003-11-01

    Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.

  2. Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa

    KAUST Repository

    Radecker, Nils; Pogoreutz, Claudia; Ziegler, Maren; Ashok, Ananya; Barreto, Marcelle M.; Chaidez, Veronica; Grupstra, Carsten G. B.; Ng, Yi Mei; Perna, Gabriela; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so-called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals. Among others, the micronutrient iron has been proposed to limit primary productivity due to its essential role in photosynthesis and bacterial processes. Here, we tested the effect of iron enrichment on the physiology of the coral Pocillopora verrucosa from the central Red Sea during a 12-day experiment. Contrary to previous reports, we did not see an increase in zooxanthellae population density or gross photosynthesis. Conversely, respiration rates were significantly increased, and microbial nitrogen fixation was significantly decreased. Taken together, our data suggest that iron is not a limiting factor of primary productivity in Red Sea corals. Rather, increased metabolic demands in response to iron enrichment, as evidenced by increased respiration rates, may reduce carbon (i.e., energy) availability in the coral holobiont, resulting in reduced microbial nitrogen fixation. This decrease in nitrogen supply in turn may exacerbate the limitation of other nutrients, creating a negative feedback loop. Thereby, our results highlight that the effects of iron enrichment appear to be strongly dependent on local environmental conditions and ultimately may depend on the availability of other nutrients.

  3. Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa

    KAUST Repository

    Radecker, Nils

    2017-07-31

    The productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so-called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals. Among others, the micronutrient iron has been proposed to limit primary productivity due to its essential role in photosynthesis and bacterial processes. Here, we tested the effect of iron enrichment on the physiology of the coral Pocillopora verrucosa from the central Red Sea during a 12-day experiment. Contrary to previous reports, we did not see an increase in zooxanthellae population density or gross photosynthesis. Conversely, respiration rates were significantly increased, and microbial nitrogen fixation was significantly decreased. Taken together, our data suggest that iron is not a limiting factor of primary productivity in Red Sea corals. Rather, increased metabolic demands in response to iron enrichment, as evidenced by increased respiration rates, may reduce carbon (i.e., energy) availability in the coral holobiont, resulting in reduced microbial nitrogen fixation. This decrease in nitrogen supply in turn may exacerbate the limitation of other nutrients, creating a negative feedback loop. Thereby, our results highlight that the effects of iron enrichment appear to be strongly dependent on local environmental conditions and ultimately may depend on the availability of other nutrients.

  4. c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro

    International Nuclear Information System (INIS)

    Habel, Marie-Eve; Jung, Daniel

    2006-01-01

    Burkitt's lymphoma is an aggressive B-cell neoplasm resulting from deregulated c-myc expression. We have previously shown that proliferation of Burkitt's lymphoma cell lines such as Ramos is markedly reduced by iron treatment. It has been shown that iron induces expression of c-myc which, owing to its transcriptional regulatory functions, regulates genes involved in iron metabolism. Transient enhancement of c-myc expression by iron could increase the expression of genes involved in iron incorporation, which could lead to an accumulation of intracellular free iron. Here, we have investigated whether cells with a high basal level of c-Myc were more likely to accumulate free iron. Our results suggest that the basal level of c-Myc in Ramos cells is twofold higher than what is seen in HL-60 cells. Moreover, in Ramos cells, where c-Myc is expressed at a high level, H-ferritin expression is down-regulated, transferrin receptor (CD71) expression is increased, and ferritin translation is inhibited. These modifications in iron metabolism, resulting from the strong basal expression of c-Myc, and amplified by iron addition, could lead to a disruption in homeostasis and consequently to growth arrest

  5. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    International Nuclear Information System (INIS)

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P.

    2007-01-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin

  6. Serum Iron and Haemoglobin Estimation in Oral Submucous Fibrosis and Iron Deficiency Anaemia: A Diagnostic Approach.

    Science.gov (United States)

    Bhardwaj, Divya; Dinkar, Ajit D; Satoskar, Sujata K; Desai, Sapna Raut

    2016-12-01

    Oral Submucous Fibrosis (OSMF) is a premalignant condition with potential malignant behaviour characterized by juxta-epithelial fibrosis of the oral cavity. In the process of collagen synthesis, iron gets utilized, by the hydroxylation of proline and lysine, leading to decreased serum iron levels. The trace element like iron is receiving much attention in the detection of oral cancer and precancerous condition like OSMF as it was found to be significantly altered in these conditions. The aim of this study was to compare the haemoglobin and serum iron values of OSMF subjects with that of iron deficiency anaemia subjects. Total of 120 subjects were included, 40 subjects with the OSMF, 40 with the iron deficiency anemia without tobacco chewing habit, 40 healthy control subjects without OSMF and iron deficiency anaemia. A total of 5ml of venous blood was withdrawn from all the subjects and serum iron and haemoglobin levels were estimated for all the subjects. Estimation of iron was done using Ferrozine method and haemoglobin by Sahli's method. The statistical method applied were Kruskal Wallis, Mann Whitney and Pearson correlation coefficient test. There was a statistically significant difference in serum iron and haemoglobin level in all three groups (pauxillary test in assessment of prognosis of the disease.

  7. Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Mehmet Akin

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. METHODS: 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5 mg kg-1 propofol, 1 mg kg-1 lidocaine and 0.6 mg kg-1 rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4 L min-1, 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4 L min-1 6 mg kg h-1 propofol and 1 µg kg h-1 fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. RESULTS: It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. CONCLUSION: According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system.

  8. Long-term intake of iron fortified wholemeal rye bread appears to benefit iron status of young women

    DEFF Research Database (Denmark)

    Hansen, Max; Nielsen, Sussi Bæch; Thomsen, A.D.

    2005-01-01

    The efficacy of intake of iron fortified, wholemeal rye bread on iron status of young women with low iron stores was evaluated in a 5 month single-blind intervention study. Two parallel groups of women (20-38 y) were given 144 g of rye bread/d either fortified with 6 mg iron as ferrous fumarate/100...... stores of young women with poor iron status which were otherwise reduced by intake of the unfortified control bread....

  9. Results of the First American Prospective Study of Intravenous Iron in Oral Iron-Intolerant Iron-Deficient Gravidas.

    Science.gov (United States)

    Auerbach, Michael; James, Stephanie E; Nicoletti, Melissa; Lenowitz, Steven; London, Nicola; Bahrain, Huzefa F; Derman, Richard; Smith, Samuel

    2017-12-01

    Anemia affects up to 42% of gravidas. Neonatal iron deficiency is associated with low birth weight, delayed growth and development, and increased cognitive and behavioral abnormalities. While oral iron is convenient, up to 70% report significant gastrointestinal toxicity. Intravenous iron formulations allowing replacement in one visit with favorable side-effect profiles decrease rates of anemia with improved hemoglobin responses and maternal fetal outcomes. Seventy-four oral iron-intolerant, second- and third-trimester iron-deficient gravidas were questioned for oral iron intolerance and treated with intravenous iron. All received 1000 mg of low-molecular-weight iron dextran in 250 mL normal saline. Fifteen minutes after a test dose, the remainder was infused over the balance of 1 hour. Subjects were called at 1, 2, and 7 days to assess delayed reactions. Four weeks postinfusion or postpartum, hemoglobin levels and iron parameters were measured. Paired t test was used for hemoglobin and iron; 58/73 women were questioned about interval growth and development of their babies. Seventy-three of 74 enrolled subjects completed treatment. Sixty had paired pre- and posttreatment data. The mean pre- and posthemoglobin concentrations were 9.7 and 10.8 g/dL (P iron deficiency anemia. Intravenous iron has less toxicity and is more effective, supporting moving it closer to frontline therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may be diagnosed with iron-deficiency anemia if you have low iron or ferritin levels in your blood. More testing may be needed to rule out other types of anemia. Tests for gastrointestinal ...

  11. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  12. Level densities of iron isotopes and lower-energy enhancement of y-strength function

    International Nuclear Information System (INIS)

    Voinov, A V; Grimes, S M; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T N; Mitchell, G; Rekstad, J; Schiller, A; Siem, S

    2005-01-01

    The neutron spectrum from the 55 Mn(d,n) 56 Fe reaction has been measured at E d = 7 MeV. The level density of 56 Fe obtained from neutron evaporation spectrum has been compared to the level density from Oslo-type 57 Fe( 3 He, aγ) 56 Fe experiment [1]. The good agreement supports the recent results [1, 8] including an availability of a low-energy enhancement in the γ-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy

  13. Iron exclusion in rice genotypes as affected by different vapor pressure deficit conditions

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    2015-08-01

    Full Text Available Root iron (Fe exclusion capacity of four lowland rice genotypes were evaluated in increasing rate of Fe2+ stresses (0, 500, 1000 and 1500 mg/L in growing medium under the conditions of low and high vapor pressure deficit. Rice root excluded significantly higher amount of iron under dry atmospheric condition (655 mg Fe/g root dry matter than moist atmospheric condition (118 mg Fe/g root dry matter. But their iron exclusion capacity reduced when they were gradually exposed to the higher levels of Fe stress. Tolerant genotype such as TOX3107 excluded more iron when they were exposed to dry atmospheric condition.

  14. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  15. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation.

    Science.gov (United States)

    Basu, Tapasree; Panja, Sourav; Shendge, Anil Khushalrao; Das, Abhishek; Mandal, Nripendranath

    2018-05-01

    Tannic acid (TA), a water soluble natural polyphenol with 8 gallic acids groups, is abundantly present in various medicinal plants. Previously TA has been investigated for its antimicrobial and antifungal properties. Being a large polyphenol, TA chelates more than 1 metal. Hence TA has been explored for potent antioxidant activities against reactive oxygen species (ROS), reactive nitrogen species (RNS) and as iron chelator in vitro thereby mitigating iron-overload induced hepatotoxicity in vivo. Iron dextran was injected intraperitoneally in Swiss albino mice to induce iron-overload triggered hepatotoxicity, followed by oral administration of TA for remediation. After treatment, liver, spleen, and blood samples were processed from sacrificed animals. The liver iron, serum ferritin, serum markers, ROS, liver antioxidant status, and liver damage parameters were assessed, followed by histopathology and protein expression studies. Our results show that TA is a prominent ROS and RNS scavenger as well as iron chelator in vitro. It also reversed the ROS levels in vivo and restricted the liver damage parameters as compared to the standard drug, desirox. Moreover, this natural polyphenol exclusively ameliorates the histopathological and fibrotic changes in liver sections reducing the iron-overload, along with chelation of liver iron and normalization of serum ferritin. The protective role of TA against iron-overload induced apoptosis in liver was further supported by changed levels of caspase 3, PARP as well as Bax/BCl-2 ratio. Thus, TA can be envisaged as a better orally administrable iron chelator to reduce iron-overload induced hepatotoxicity through ROS regulation. © 2018 Wiley Periodicals, Inc.

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend changes to help you meet the recommended daily amount of iron. If you ... stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron levels, your doctor may ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. ... are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who ...

  18. Whole-body iron-59 retention measurements for estimating the iron status of piglets

    International Nuclear Information System (INIS)

    Pfau, A.; Rudolphi, K.; Heinrich, H.C.; Gabbe, E.E.

    1976-01-01

    A large-volume, 4π whole-body liquid scintillation detector was used to determine 59 Fe absorption in 173 one-to-six-weeks-old piglets with normal and depleted iron stores. Values of intestinal absorption from a 10 μmole (corresponds to 0.558 mg) 59 Fe 2+ test dose were compared with levels of haemoglobin, haematocrit, and serum iron as well as with stainable diffuse iron of bone marrow reticuloendothelial cells, and the dose relationship of intestinal iron absorption from 59 Fe-labelled FeSO 4 and methaemoglobin was measured. The investigations indicated that neither blood parameters, cytochemical gradings nor absorption levels from the 59 Fe test dose alone were sufficient to describe quantitatively the various stages of iron deficiency in piglets. A synopsis of all parameters appeared to be necessary for defining normal iron status and prelatent, latent and manifest iron deficiency. Piglets fed on sows' milk only developed manifest iron deficiency within the first three weeks of age. After an access to soil and/or creep feed from the eighth day of age, or intramuscular injections of 200 mg Fe as iron-dextran at three days of age, or injections of 200 or 400 mg Fe combined with access to creep feed, stages of manifest, latent or prelatent iron deficiency could be observed. For an iron-dextran dose of 800 mg Fe injected in amounts of 400 mg Fe at 3 and 10 days of age, a normal iron status was obtained in three-week-old piglets. The iron dose relationship indicated that 20 mg Fe administered orally as FeSO 4 or 40 mg Fe as methaemoglobin-Fe daily should cover the iron requirement of piglets for the first three weeks of life, whereas a three-week total of iron given orally in a single dose would lead to unphysiological or fatal conditions in nursing pigs. (author)

  19. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Science.gov (United States)

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years

    Directory of Open Access Journals (Sweden)

    Bárbara C.A. Saraiva

    2014-12-01

    Full Text Available OBJECTIVE: To analyze the occurrence of anemia and iron deficiency in children aged 1 to 5 years and the association of these events and retinol deficiency. METHODS: This was an observational analytic cross-sectional study conducted in Vitoria, ES, Brazil, between April and August of 2008, with healthy children aged 1 to 5 years (n = 692 that lived in areas covered by primary healthcare services. Sociodemographic and economic conditions, dietary intake (energy, protein, iron, and vitamin A ingestion, anthropometric data (body mass index-for-age and height-for-age, and biochemical parameters (ferritin, hemoglobin, and retinol serum were collected. RESULTS: The prevalence of anemia, iron deficiency, and retinol deficiency was 15.7%, 28.1%, and 24.7%, respectively. Univariate analysis showed a higher prevalence of anemia (PR: 4.62, 95% CI: 3.36, 6.34, p < 0.001 and iron deficiency (PR: 4.51, 95% CI: 3.30, 6.17, p < 0.001 among children with retinol deficiency. The same results were obtained after adjusting for socioeconomic and demographic conditions, dietary intake, and anthropometric variables. There was a positive association between ferritin vs. retinol serum (r = 0.597; p < 0.001 and hemoglobin vs. retinol serum (r = 0.770; p < 0.001. CONCLUSIONS: Anemia and iron deficiency were associated with low levels of serum retinol in children aged 1 to 5 years, and a positive correlation was verified between serum retinol and serum ferritin and hemoglobin levels. These results indicate the importance of initiatives encouraging the development of new treatments and further research regarding retinol deficiency.

  1. Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Kim F. [Univ. of Michigan, Ann Arbor, MI (United States); Bi, Yuqiang [Univ. of Michigan, Ann Arbor, MI (United States); Carpenter, Julian [Univ. of Michigan, Ann Arbor, MI (United States); Hyng, Sung Pil [Univ. of Michigan, Ann Arbor, MI (United States); Rittmann, Bruce E. [Arizona State Univ., Tempe, AZ (United States); Zhou, Chen [Arizona State Univ., Tempe, AZ (United States); Vannela, Raveender [Arizona State Univ., Tempe, AZ (United States); Davis, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-12-31

    This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide

  2. Serum-ferritin and iron absorption for the study of body iron stored in the Thai population

    International Nuclear Information System (INIS)

    Plehachinda, R.

    1984-05-01

    Measurements of serum ferritin by an ''in-house'' immunoradiometric assay (IRMA) method were used in conjunction with estimations of gastro-intestinal iron absorption from a standard test dose of ferrous ascorbate, measurements of blood haemoglobin and measurements of other haematological parameters to study body iron status in various population groups and to assess changes in body iron status after food-iron fortification. The IRMA method particularly covered the lower range of serum ferritin levels from 0.5 to 10 μg/litre, corresponding to iron deficiency. Quality control indicated satisfactory assay performance. In preliminary studies, serum ferritin level was found to be well correlated with gastro-intestinal iron absorption as an indicator of body iron status. Normal adult male subjects in Bangkok showed levels of 21-314 μg/litre and normal adult female levels of 13-173 μg/litre, in general agreement with values reported by other authors. Measurements were then extended to subjects in an area of north-eastern Thailand where iron-deficiency was common, to assess the effectiveness of food-iron fortification programmes. Measurements were also made on male blood donors in Bangkok, pregnant female subjects in Bangkok and north-eastern Thailand, school children in an area of southern Thailand where hookworm infestation was common and schoolchildren and adult female subjects in an area of northern Thailand where goitre was endemic. The results of all these studies are presented

  3. Iron deficiency anaemia in pregnancy: The role of parenteral iron.

    Science.gov (United States)

    Esen, Umo I

    2017-01-01

    Maternal and perinatal morbidity and mortality remain major challenges in the delivery of safe maternity care worldwide. Anaemia in pregnancy is an important contributor to this dismal picture, especially where blood transfusion services are poorly developed. An early diagnosis and treatment of iron deficiency anaemia in pregnancy using the new generation dextran-free parenteral iron preparations can save lives and reduce morbidity in selected pregnancies. It is time to cast aside the fears associated with the use of the old parenteral iron preparations which were associated a high incidence of anaphylaxis, and embrace the use of new parenteral iron products which have better side effect profiles and can deliver total dose infusions without the need for test dosing. In selected women, the benefits of this treatment far outweigh any disadvantages.

  4. Heart failure in patients with kidney disease and iron deficiency; the role of iron therapy.

    Science.gov (United States)

    Cases Amenós, Aleix; Ojeda López, Raquel; Portolés Pérez, José María

    Chronic kidney disease and anaemia are common in heart failure (HF) and are associated with a worse prognosis in these patients. Iron deficiency is also common in patients with HF and increases the risk of morbidity and mortality, regardless of the presence or absence of anaemia. While the treatment of anaemia with erythropoiesis-stimulating agents in patients with HF have failed to show a benefit in terms of morbidity and mortality, treatment with IV iron in patients with HF and reduced ejection fraction and iron deficiency is associated with clinical improvement. In a posthoc analysis of a clinical trial, iron therapy improved kidney function in patients with HF and iron deficiency. In fact, the European Society of Cardiology's recent clinical guidelines on HF suggest that in symptomatic patients with reduced ejection fraction and iron deficiency, treatment with IV ferric carboxymaltose should be considered to improve symptoms, the ability to exercise and quality of life. Iron plays a key role in oxygen storage (myoglobin) and in energy metabolism, and there are pathophysiological bases that explain the beneficial effect of IV iron therapy in patients with HF. All these aspects are reviewed in this article. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Role of phenolics from Spondias pinnata bark in amelioration of iron overload induced hepatic damage in Swiss albino mice.

    Science.gov (United States)

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Panja, Sourav; Mandal, Nripendranath

    2016-07-26

    Crude Spondias pinnata bark extract was previously assessed for its antioxidant, anticancer and iron chelating potentials. The isolated compounds gallic acid (GA) and methyl gallate (MG) were evaluated for their curative potential against iron overload-induced liver fibrosis and hepatocellular damage. In vitro iron chelation property and in vivo ameliorating potential from iron overload induced liver toxicity of GA and MG was assessed by different biochemical assays and histopathological studies. MG and GA demonstrated excellent reducing power activities but iron chelation potential of MG is better than GA. Oral MG treatment in mice displayed excellent efficacy (better than GA) to significantly restore the levels of liver antioxidants, serum markers and cellular reactive oxygen species in a dose-dependent fashion. Apart from these, MG exceptionally prevented lipid peroxidation and protein oxidation whereas GA demonstrated better activity to reduce collagen content, thereby strengthening its position as an efficient drug against hepatic damage/fibrosis, which was further supported by histopathological studies. Alongside, MG efficiently eliminated the cause of liver damage, i.e., excess iron, by chelating free iron and reducing the ferritin-bound iron. The present study confirmed the curative effect of GA and MG against iron overload hepatic damage via their potent antioxidant and iron-chelating potential.

  6. The Study of HFE Genotypes and Its Expression Effect on Iron Status of Iranian Haemochromatosis, Iron Deficiency Anemia Patients, Iron-Taker and Non Iron-Taker Controls.

    Science.gov (United States)

    Beiranvand, Elham; Abediankenari, Saeid; Rostamian, Mosayeb; Beiranvand, Behnoush; Naazeri, Saeed

    2015-01-01

    The role of HFE gene mutations or its expression in regulation of iron metabolism of hereditary haemochromatosis (HH) patients is remained controversial. Therefore here the correlation between two common HFE genotype (p.C282Y, p.H63D) and HFE gene expression with iron status in HH, iron deficiency anemia (IDA) and healthy Iranian participants was studied. For this purpose genotype determination was done by polymerase chain reaction--restriction fragment length polymorphism (PCR-RFLP). Real-Time PCR was applied for evaluation of HFE gene expression. Biochemical parameters and iron consumption were also assessed. Homozygote p.H63D mutation was seen in all HH patients and p.C282Y was not observed in any member of the population. A significant correlation was observed between serum ferritin (SF) level and gender or age of HH patients. p.H63D homozygote was seen to be able to significantly increase SF and transferrin saturation (TS) level without affecting on liver function. Our results also showed that iron consumption affects on TS level increasing. HFE gene expression level of IDA patients was significantly higher than other groups. Also the HFE gene expression was negatively correlated with TS. Finally, the main result of our study showed that loss of HFE function in HH is not derived from its gene expression inhibition and much higher HFE gene expression might lead to IDA. However we propose repeating of the study for more approval of our finding.

  7. A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.

    Directory of Open Access Journals (Sweden)

    Javier Encinar del Dedo

    2015-03-01

    Full Text Available Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters.

  8. The Relationship Between Intestinal Iron Absorption and Hepatic Parenchymal Cell Damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mok Hyun; Hahn, Shin Suck [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1971-09-15

    Since the iron balance is maintained by regulated intestinal absorption rather than regulated excretion, there have been many reports concerning the factors which may influence the intestinal iron absorption. As the liver is the largest iron storage organ of the body, any hepatocellular damage may result in disturbances in iron metabolism, e,g., frequent co-existence of haemochromatosis and liver cirrhosis, or elevated serum iron level and increased iron absorption rate in patients with infectious hepatitis or cirrhosis. In one effort to demonstrate the influence of hepatocellular damage on intestinal iron absorption, the iron absorption rate was measured in the rabbits whose livers were injured by a single subcutaneous injection of carbon tetrachloride (doses ranging from 0.15 to 0.5 cc per kg of body weight) or by a single irradiation of 2, 000 to 16, 000 rads with Co on the liver locally. A single oral dose of 1muCi of Fe-citrate with 0.5 mg of ferrous citrate was fed in the fasting state, 24 hours after hepatic damage had been induced, without any reducing or chelating agents, and stool was collected for one week thereafter. Serum iron levels, together with conventional liver function teats, were measured at 24, 48, 72, 120 and 168 hours after liver damage had been induced. All animals were sacrificed upon the completing of the one week's test period and tissue specimens were prepared for H-E and Gomori's iron stain. Following are the results. 1. Normal iron absorption rate of the rabbit was 41.72+-3.61% when 0.5 mg of iron was given in the fasting state, as measured by subtracting the amount recovered in stool collected for 7 days from the amount given. The test period of 7 days is adequate, for only 1% of the iron given was excreted thereafter. 2. The intestinal iron absorption rate and serum iron level were significantly increased when the animal was poisoned by a single subcutaneous injection of 0.15 cc, per kg. of body weight of carbon tetrachloride or

  9. The Relationship Between Intestinal Iron Absorption and Hepatic Parenchymal Cell Damage

    International Nuclear Information System (INIS)

    Kim, Mok Hyun; Hahn, Shin Suck

    1971-01-01

    Since the iron balance is maintained by regulated intestinal absorption rather than regulated excretion, there have been many reports concerning the factors which may influence the intestinal iron absorption. As the liver is the largest iron storage organ of the body, any hepatocellular damage may result in disturbances in iron metabolism, e,g., frequent co-existence of haemochromatosis and liver cirrhosis, or elevated serum iron level and increased iron absorption rate in patients with infectious hepatitis or cirrhosis. In one effort to demonstrate the influence of hepatocellular damage on intestinal iron absorption, the iron absorption rate was measured in the rabbits whose livers were injured by a single subcutaneous injection of carbon tetrachloride (doses ranging from 0.15 to 0.5 cc per kg of body weight) or by a single irradiation of 2, 000 to 16, 000 rads with Co on the liver locally. A single oral dose of 1μCi of Fe-citrate with 0.5 mg of ferrous citrate was fed in the fasting state, 24 hours after hepatic damage had been induced, without any reducing or chelating agents, and stool was collected for one week thereafter. Serum iron levels, together with conventional liver function teats, were measured at 24, 48, 72, 120 and 168 hours after liver damage had been induced. All animals were sacrificed upon the completing of the one week's test period and tissue specimens were prepared for H-E and Gomori's iron stain. Following are the results. 1. Normal iron absorption rate of the rabbit was 41.72±3.61% when 0.5 mg of iron was given in the fasting state, as measured by subtracting the amount recovered in stool collected for 7 days from the amount given. The test period of 7 days is adequate, for only 1% of the iron given was excreted thereafter. 2. The intestinal iron absorption rate and serum iron level were significantly increased when the animal was poisoned by a single subcutaneous injection of 0.15 cc, per kg. of body weight of carbon tetrachloride or

  10. IRON BIOAVAILABILITY IN CAMEROON WEANING FOODS AND ...

    African Journals Online (AJOL)

    Dialyzable iron value were enhanced with lime juice and significantly reduced by legumes (beans, soy bean, and groundnut), egg and egg yolk. Irish potatoes based diets were the best sources of dialyzable iron. Iron intakes were sufficient for most balanced diets to cover the recommended daily intakes of iron for children ...

  11. The pH dependence of silicon-iron interaction in rats.

    Science.gov (United States)

    Jia, X; Emerick, R J; Kayongo-Male, H

    1997-01-01

    A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

  12. Modulation of the antioxidative response of Spartina densiflora against iron exposure.

    Science.gov (United States)

    Martínez Domínguez, David; Torronteras Santiago, Rafael; Córdoba García, Francisco

    2009-06-01

    Spartina densiflora, an invader cordgrass living in polluted salt marshes of the Odiel estuary (SW Spain), was collected and cultured under controlled laboratory conditions. After acclimation to non-polluted soils for 28 days, both metabolites and enzymes activities used as indicators of oxidative stress were reduced significantly. Then, plants were exposed to 500 and 1000 ppm Fe-ethylenediamine-N,N'-2-hydroxyphenyl acetic acid (EDDHA) for 28 days. Our data demonstrate that iron content in leaves was enhanced by iron exposure. This iron increase caused an enhancement in the concentration of H2O2, hydroperoxides and lipid peroxidation, and a decrease in chlorophyll levels. Thus, iron exposure led to oxidative stress conditions. However, oxidative indicators stabilised after first 2 weeks of exposure, although the highest iron levels in leaves were reached at the end of treatments. Iron exposure induced an enhancement of catalase, ascorbate peroxidase and guaiacol peroxidase activities, together with an increase in total and oxidised ascorbate. This response may be defensive against oxidative stress and thus help to explain why cell oxidative damages were stabilised. Thus, by using a sensitive long-time protocol, iron-dependent oxidative damages may be controlled and even reverted successfully by the activation of the antioxidative defences of S. densiflora. This efficient antioxidative system, rapidly modulated in response to excess iron and other environmental stressors, may account for S. densiflora's successful adaptation to stress conditions in its habitat.

  13. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  14. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review

    OpenAIRE

    Delimont, Nicole M.; Rosenkranz, Sara K.; Haub, Mark D.; Lindshield, Brian L.

    2017-01-01

    Background Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. Aim To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme ir...

  15. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  16. Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model

    Directory of Open Access Journals (Sweden)

    Morin Guillaume

    2007-11-01

    Full Text Available Abstract High levels of arsenic in groundwater and drinking water are a major health problem. Although the processes controlling the release of As are still not well known, the reductive dissolution of As-rich Fe oxyhydroxides has so far been a favorite hypothesis. Decoupling between arsenic and iron redox transformations has been experimentally demonstrated, but not quantitatively interpreted. Here, we report on incubation batch experiments run with As(V sorbed on, or co-precipitated with, 2-line ferrihydrite. The biotic and abiotic processes of As release were investigated by using wet chemistry, X-ray diffraction, X-ray absorption and genomic techniques. The incubation experiments were carried out with a phosphate-rich growth medium and a community of Fe(III-reducing bacteria under strict anoxic conditions for two months. During the first month, the release of Fe(II in the aqueous phase amounted to only 3% to 10% of the total initial solid Fe concentration, whilst the total aqueous As remained almost constant after an initial exchange with phosphate ions. During the second month, the aqueous Fe(II concentration remained constant, or even decreased, whereas the total quantity of As released to the solution accounted for 14% to 45% of the total initial solid As concentration. At the end of the incubation, the aqueous-phase arsenic was present predominately as As(III whilst X-ray absorption spectroscopy indicated that more than 70% of the solid-phase arsenic was present as As(V. X-ray diffraction revealed vivianite Fe(II3(PO42.8H2O in some of the experiments. A biogeochemical model was then developed to simulate these aqueous- and solid-phase results. The two main conclusions drawn from the model are that (1 As(V is not reduced during the first incubation month with high Eh values, but rather re-adsorbed onto the ferrihydrite surface, and this state remains until arsenic reduction is energetically more favorable than iron reduction, and (2 the

  17. NCOA4 Deficiency Impairs Systemic Iron Homeostasis

    Directory of Open Access Journals (Sweden)

    Roberto Bellelli

    2016-01-01

    Full Text Available The cargo receptor NCOA4 mediates autophagic ferritin degradation. Here we show that NCOA4 deficiency in a knockout mouse model causes iron accumulation in the liver and spleen, increased levels of transferrin saturation, serum ferritin, and liver hepcidin, and decreased levels of duodenal ferroportin. Despite signs of iron overload, NCOA4-null mice had mild microcytic hypochromic anemia. Under an iron-deprived diet (2–3 mg/kg, mice failed to release iron from ferritin storage and developed severe microcytic hypochromic anemia and ineffective erythropoiesis associated with increased erythropoietin levels. When fed an iron-enriched diet (2 g/kg, mice died prematurely and showed signs of liver damage. Ferritin accumulated in primary embryonic fibroblasts from NCOA4-null mice consequent to impaired autophagic targeting. Adoptive expression of the NCOA4 COOH terminus (aa 239–614 restored this function. In conclusion, NCOA4 prevents iron accumulation and ensures efficient erythropoiesis, playing a central role in balancing iron levels in vivo.

  18. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  19. State of cognitive development in children 5-6 years of age with nutritional iron deficiency

    Directory of Open Access Journals (Sweden)

    Chechel V.V.

    2014-06-01

    Full Text Available Features of the development of cognitive functions in children 5-6 years of age with iron deficiency (ID were studied and the relationship of the revealed features of iron deficiency degree was established. After clinical and laboratory examination 205 children aged 5-6 years, pupils of pre-school institutions were included in the study. The core group consisted of 155 children, including 105 children with latent iron deficiency (LID and 50 children with iron deficiency anemia (IDA I degree. The control group consisted of 50 healthy children. To study cognitive function, "Approximate comprehensive program of study of children's readiness for school" was used. A significant decrease of average data of all mental functions (perception, memory, language, thinking, ima¬gination in children 5-6 years old with ID, most pronounced in children with IDA was revealed. Indicators of cognitive functions correspond predominantly to a mild and moderate level of development in children with IDA, the average - in children with LID, good and high - in healthy children. There was a significant direct correlation between the level of cognitive functioning and the level of hemoglobin, serum iron and ferritin. The effect of iron deficiency on the development of indicators of cognitive function toward their reduce in preschool children was established. The level of cognitive functioning depends on the degree of iron deficiency.

  20. [Iron absorption of the habitual diet in a population of low socioeconomic level].

    Science.gov (United States)

    Morón, C; Kremenchuzky, S; Passamai, M I; D'Andrea de Rivero, S; Pérez de Galíndez, G; Gerschcovich, C

    1985-06-01

    Iron absorption using the extrinsic double-tag method was determined in the habitual diet consumed by a group of 32 volunteers of both sexes, pertaining to the low socioeconomic strata. The diet was made up of bread, spaghetti, vegetables and meat, totalling 2,022 kcal, 65.0 g protein, 17.57 mg iron, and 28.75 mg ascorbic acid. According to our findings, men were found to be neither anemic nor iron-deficient. Among the women, however, 4.8% had anemia and 57.1% suffered from iron deficiency. The non-heme iron absorption was very low: 1.35% at breakfast, 3.29% at lunch, and 3.82% at dinner. Among those subjects found to be normal, the absorption was half the above figures, whereas among those with iron deficiency it was threefold, the differences being highly significant. The absorption of heme-iron for lunch and dinner was 17.53%. The iron deficient group had an absorption value four times greater than the normal group, the differences also being highly significant. The daily availability of non-heme, heme and total iron was 0.44, 1.13 and 1.57 mg, respectively. In the subjects who formed the normal group, total iron available was 1.14 mg, barely covering a man's daily requirements, but not those of a woman. In the iron-deficient group, it was 4.31 mg, that is, four times greater than in the normal group; while this value improves the balance, it does not prevent deficiency in women, with great blood losses. Bearing these results in mind, it is suggested that measures tending to improve dietary iron content and bio-availability, be enforced.

  1. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  2. Iron binding to caseins in the presence of orthophosphate.

    Science.gov (United States)

    Mittal, V A; Ellis, A; Ye, A; Edwards, P J B; Das, S; Singh, H

    2016-01-01

    As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Preparation of yttrium iron garnet (YIG) by modified domestic iron oxide

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian

    2002-01-01

    Iron oxide by product of a local steel complex was modified to use for preparation of Yttrium iron garnet (YIG). The improvement was necessary to reduce impurities, especially the Si0 2 and Cl contents, which have deteriorative effects on magnetic properties and equipment used for preparation of the samples. The modified iron oxide was then mixed with Yttrium oxide of Merck Company in appropriate proportion to obtain a stoichiometric single phase YIG, using the conventional ceramic technique. XRD and SEM equipments were used to identify the resulting phases and microstructure respectively. Magnetic parameters were measured by VSM. Curie temperature of the samples was obtained by DTG (M) method. The results were compared with those obtained from samples that made by Merck iron oxide. There are small differences between the results. This was discussed according to extra pores and minute secondary phase in the samples made by domestic iron oxide. (Author)

  4. Green tea or rosemary extract added to foods reduces nonheme- iron absorption

    DEFF Research Database (Denmark)

    Samman, S.; Sandstrøm, B.; Toft, M.B.

    2001-01-01

    the effect of phenolic-rich extracts obtained from green tea or rosemary on nonheme-iron absorption. Design: Young women aged 19-39 y consumed test meals on 4 separate occasions. The meals were identical except for the absence (meal A) or presence (meal B) of a phenolic-rich extract from green tea (study 1......-body retention of 59Fe and the ratio of Fe-55 to 59Fe activity in blood samples. Results: The presence of the phenolic-rich extracts resulted in decreased nonheme-iron absorption. Mean (+/-SD) iron absorption decreased from 12.1 +/- 4.5% to 8.9 +/- 5.2% (P tea extract and from 7...

  5. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    International Nuclear Information System (INIS)

    Jin, C.; Li, Y.; Li, Y.L.; Zou, Y.; Zhang, G.L.; Normura, M.; Zhu, G.Y.

    2008-01-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 A and the Fe-Np bond length slightly increases, but the Fe-N ε bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases

  6. Glasses Containing Iron (II, III) Oxides For Immobilization Of Radioactive Technetium

    International Nuclear Information System (INIS)

    Kruger, A.A.; Heo, J.; Xu, K.; Choi, J.K.; Hrma, P.R.; Um, W.

    2011-01-01

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as ∼ 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to ∼50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  7. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  8. Mechanical properties of ductile cast iron and cast steel for intermediate level waste transport containers

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Egid, B.; Ajayi, F.; Donelan, P.

    1994-01-01

    UK Nirex Ltd is developing Type B re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses to transport intermediate level radioactive waste (ILW) to a deep repository. The designs are of an essentially monolithic construction and rely principally on the plastic flow of their material to absorb the energies involved in impact events. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. However, cast materials are perceived to lack toughness and ductility and it is necessary to show that sufficient fracture toughness can be obtained to preclude brittle failure modes, particularly at low temperatures. The mechanical testing carried out as part of that programme is described. It shows how the measured properties have been used to demonstrate avoidance of brittle fracture and provide input to computer modelling of the drop tests. (author)

  9. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    Science.gov (United States)

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  10. Pyrimethanil degradation by photo-Fenton process: Influence of iron and irradiance level on treatment cost.

    Science.gov (United States)

    Cabrera Reina, A; Miralles-Cuevas, S; Casas López, J L; Sánchez Pérez, J A

    2017-12-15

    This study evaluates the combined effect of photo-catalyst concentration and irradiance level on photo-Fenton efficiency when this treatment is applied to industrial wastewater decontamination. Three levels of irradiance (18, 32 and 46W/m 2 ) and three iron concentrations (8, 20 and 32mg/L) were selected and their influence over the process studied using a raceway pond reactor placed inside a solar box. For 8mg/L, it was found that there was a lack of catalyst to make use of all the available photons. For 20mg/L, the treatment always improved with irradiance indicating that the process was photo-limited. For 32mg/L, the excess of iron caused an excess of radicals production which proved to be counter-productive for the overall process efficiency. The economic assessment showed that acquisition and maintenance costs represent the lowest relative values. The highest cost was found to be the cost of the reagents consumed. Both sulfuric acid and sodium hydroxide are negligible in terms of costs. Iron cost percentages were also very low and never higher than 10.5% while the highest cost was always that of hydrogen peroxide, representing at least 85% of the reagent costs. Thus, the total costs were between 0.76 and 1.39€/m 3 . Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reduced ferritin levels in individuals with non-O blood group

    DEFF Research Database (Denmark)

    Rigas, Andreas S; Berkfors, Adam A; Pedersen, Ole B

    2017-01-01

    stores expressed as ferritin levels. STUDY DESIGN AND METHODS: Ferritin levels were measured at least once for 30,595 Danish Blood Donor Study participants. Linear regression analyses were performed with the ABO blood group as explanatory variable and adjusted for age, number of donations 3 years before......BACKGROUND: Genomewide association studies have reported alleles in the ABO locus to be associated with ferritin levels. These studies warrant the investigation of a possible association between the ABO blood group and ferritin levels. We aimed to explore if ABO blood group is associated with iron...... blood group was associated with a ferritin level of less than 15 ng/mL. RESULTS: Non-O blood group donors had lower ferritin levels than blood group O donors, regardless of sex. Accordingly, risk of ferritin level of less than 15 ng/mL was increased for individuals with non-O blood group compared with O...

  12. The effect of the OSHA lead exposure in construction standard on blood lead levels among iron workers employed in bridge rehabilitation.

    Science.gov (United States)

    Levin, S M; Goldberg, M; Doucette, J T

    1997-03-01

    Over 50,000 workers are at risk of occupational exposure to lead in the course of renovating the nation's deteriorating infrastructure. In mid-1993, to control exposure to lead in the construction setting OSHA promulgated a Lead in Construction Standard. In this study, we assessed the effect of the mandated changes in exposure conditions which followed the introduction of this new standard. We analyzed changes in baseline and maximum blood lead concentrations and in maximum increments in blood lead levels before and after introduction of the standard among iron workers employed in the renovation of a large, lead-painted, steel bridge in New York City. Results indicated that baseline and maximum blood lead levels fell significantly after the implementation of the provisions of the standard, as did maximum increments in blood lead concentrations. Seventy-six percent of the workers maintained blood lead concentrations below 20 micrograms/dl after the OSHA standard, as compared with 66% prior to its implementation. Increments of 20 micrograms/dl or more occurred considerably more frequently before introduction of the standard (13% before vs. 4% after; p = 0.01). Evidence of decreased exposure to lead was observed among iron workers who were present both before and after the introduction of the OSHA standard, as well as among iron workers newly hired after the OSHA provisions were put in place. These findings document the effectiveness of the OSHA construction lead standard in controlling exposure to lead in this complex and variable environment. The data indicate the utility of blood lead determinations in assessing the outcome of industrial hygiene interventions to reduce exposures to lead in the construction setting.

  13. Mathematical model of the reformer sponge iron cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.; Hacker, V.; Evers, B.; Hierzer, J.; Besenhard, J.O. [Graz University of Technology, Graz (Austria). Inst. for Chemical Technology of Inorganic Materials Christian Doppler Pilot-Lab. for Fuel Cell Systems

    2003-07-01

    An innovative hydrogen production process called the Reformer Sponge Iron Cycle (RESC), based on redox reactions of iron ore pellets, was mathematically modeled. The hydrogen is produced by blowing steam over hot iron pellets in the oxidation stage, resulting in the oxidation of the iron. Synthesis gas coming from a reformer mixed with a fraction of recycled off-gas was used to reduce the iron oxide pellets (wuestite and-or magnetite) in the reduction stage, leading once more to iron . Once the mathematical model was developed, it was verified utilizing experimental data. Based on calculations of the equilibrium gas concentrations for reformer and sponge iron reactor (SIR), the model computes mass fluxes, molar fluxes, partial pressures, and variations of them throughout the complete cycle. The recycle rate, which determines the fraction of SIR off-gas recycled and added to the input gas stream, was optimized to maximize the amount of iron oxide reduced for a certain input gas flow. 5 refs., 4 figs.

  14. Adherence to iron supplements among women receiving antenatal care at Mulago National Referral Hospital, Uganda-cross-sectional study.

    Science.gov (United States)

    Kiwanuka, Tusuubira S; Ononge, Sam; Kiondo, Paul; Namusoke, Fatuma

    2017-10-25

    Antenatal iron supplementation is a cost effective way of reducing iron deficiency anaemia among pregnant women in resource limited countries like Uganda. Poor adherence to iron supplements has limited its effectiveness in reducing maternal anaemia as evidenced by the high burden of iron deficiency anemia in Sub-saharan Africa. The aim of this study was to determine the level of and factors associated with adherence to iron supplementation among women attending antenatal clinic at Mulago National Referral Hospital, Kampala, Uganda. Three hundred and seventy pregnant women were recruited in a cross sectional survey in Mulago National Referral Hospital antenatal clinic after informed consent between February and April 2014. Levels of adherence to iron supplements were assessed using visual analogue scale and factors associated collected using an interviewer administered questionnaire. About 12% (11.6%) of the mothers attending the antenatal clinic adhered to iron supplements over 30 day period. Mothers who had had four or more antenatal visits prior to the survey [odds ratio (OR) = 1.49, 95% confidence interval (CI) 1.12-1.97], had more than 2 week supply of iron supplements in the previous visit (OR 2.81, 95% CI 1.02-1.09), prior health education (OR 1.56, 95% CI 1.07-2.29) were more likely to adhere to iron supplements. Inadequate drug supplies and fear for side effects were the main reasons why participants missed the iron supplements. There was low adherence to iron supplements among mothers attending antenatal clinic at Mulago National Referral  Hospital. We recommend a national evaluation of adherence to iron supplements and look at ways of increasing adherence.

  15. Iron Supplementation, Response in Iron-Deficiency Anemia: Analysis of Five Trials.

    Science.gov (United States)

    Okam, Maureen M; Koch, Todd A; Tran, Minh-Ha

    2017-08-01

    Oral iron-replacement therapy is the mainstay of treatment for iron-deficiency anemia, but it is often poorly tolerated or ineffective. Hemoglobin response at day 14 of oral iron may be useful in assessing whether and when to transition patients from oral to intravenous (IV) iron. Pooled data from 5 randomized trials were analyzed to compare oral and IV iron-replacement therapy for iron-deficiency anemia. Treatment criteria and assignment to oral versus IV iron were defined per protocol; this analysis included only subjects receiving oral iron. Responders were subjects with ≥1.0-g/dL increases in hemoglobin at day 14, and nonresponders were those with smaller increases. Demographic and clinical characteristics were evaluated for association with hemoglobin response at multiple timepoints. Most subjects (72.8%) were classified as responders. The proportion of subjects with hemoglobin increases ≥1.0, ≥2.0, and ≥3.0 g/dL was greatest among those with postpartum anemia, intermediate among those with heavy uterine bleeding or gastrointestinal-related causes of anemia, and lowest among those with other causes; this proportion was also significantly greater among responders than nonresponders. A ≥1.0-g/dL increase in hemoglobin on day 14 most accurately predicted satisfactory overall hemoglobin response to oral iron on day 42/56 (sensitivity 90.1%; specificity 79.3%; positive and negative predictive values of 92.9% and 72.7%, respectively). Iron-replacement therapy improved quality of life and reduced fatigue. Hemoglobin responses <1.0 g/dL at day 14 of oral iron identify subjects with iron-deficiency anemia who should be transitioned to IV iron supplementation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats.

    Science.gov (United States)

    Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua

    2018-06-05

    Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Anemia and iron deficiency before and after bariatric surgery.

    Science.gov (United States)

    Salgado, Wilson; Modotti, Caue; Nonino, Carla Barbosa; Ceneviva, Reginaldo

    2014-01-01

    Iron deficiency and anemia are changes often associated with obesity. Bariatric surgery is responsible for increasing the iron loss and reducing its absorption. The objective of this study was to evaluate anemia and iron deficiency before and after bariatric surgery and to relate them to possible predisposing factors. A retrospective study was conducted on obese patients submitted to open Roux-en-Y gastric bypass, in which clinical and laboratory data were obtained up to 48 months postoperatively. Patients were divided into groups according to the presence or absence of anemia and to the presence or absence of iron deficiency (even without anemia), and all data were compared between these groups. Preoperatively, 21.5% of patients had anemia and 20% had iron deficiency. The number of patients with anemia did not vary through the 4 years of the study, but ferritin levels significantly decreased with time (Panemia. Female gender was a variable associated with a greater incidence of iron deficiency. Anemia and iron deficiency are frequent in obese patients and must be treated before surgery. Medical and nutritional surveillance is important in the postoperative period of bariatric surgery. Management of each condition must be directed at correcting the 2 major sources of iron deficiency and anemia: food intolerance (mostly meat intolerance) and losses (frequently due to menstruation). These are the factors more related to iron deficient anemia. Copyright © 2014 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  18. Effect of improved vitamin A status on response to iron supplementation in Pakistani infants.

    Science.gov (United States)

    Northrop-Clewes, C A; Paracha, P I; McLoone, U J; Thurnham, D I

    1996-11-01

    We report an apparently protective effect of vitamin A in infants who received iron supplements (15 mg/d) for 3 mo. Those receiving iron showed increases in hemoglobin (8 g/L), ferritin (3.7 micrograms/L), and the acute-phase protein alpha 1-antichymotrypsin (ACT; 0.06 g/L). In both the placebo and iron-supplemented groups there were increases in plasma retinol, lutein, alpha-tocopherol, immunoglobulin A, and immunoglobulin G. The improvement in vitamin A status could only have been from a seasonal increase in dietary sources of vitamin A, eg, breast milk and early weaning foods, and there were no obvious effects on iron utilization (hemoglobin concentrations). However, in the infants receiving iron, those whose retinol concentrations increased also showed reductions in ACT, ferritin, immunoglobulin A, and immunoglobulin M. Vitamin A is well known for its antiinfective properties and we suggest that these observations illustrate the importance of even small increases in dietary vitamin A or differences in vitamin A status in reducing the potentially toxic effects of iron supplements in persons in developing countries. These conclusions should now be confirmed with an intervention study to show that the benefits of vitamin A on iron status are due to reduced levels of infection.

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the Eunice Kennedy Shriver National Institute of Child Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. We also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... with the Eunice Kennedy Shriver National Institute of Child Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. We also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children ...

  1. Iron Supplementation Associated With Loss of Phenotype in Autosomal Dominant Hypophosphatemic Rickets.

    Science.gov (United States)

    Kapelari, Klaus; Köhle, Julia; Kotzot, Dieter; Högler, Wolfgang

    2015-09-01

    Autosomal dominant hypophosphatemic rickets (ADHR) is the only hereditary disorder of renal phosphate wasting in which patients may regain the ability to conserve phosphate. Low iron status plays a role in the pathophysiology of ADHR. This study reports of a girl with ADHR, iron deficiency, and a paternal history of hypophosphatemic rickets that resolved without treatment. The girl's biochemical phenotype resolved with iron supplementation. A 26-month-old girl presented with typical features of hypophosphatemic rickets, short stature (79 cm; -2.82 SDS), and iron deficiency. Treatment with elemental phosphorus and calcitriol improved her biochemical profile and resolved the rickets. The girl's father had presented with rickets at age 11 months but never received medication. His final height was reduced (154.3 cm; -3.51 SDS), he had undergone corrective leg surgery and had an adult normal phosphate, fibroblast growth factor 23, and iron status. Father and daughter were found to have a heterozygous mutation in exon 3 of the FGF23 gene (c.536G>A, p.Arg179Gln), confirming ADHR. Withdrawal of rickets medication was attempted off and on iron supplementation. Withdrawal of rickets medication in the girl was unsuccessful in the presence of low-normal serum iron levels at age 5.6 years but was later successful in the presence of high-normal serum iron levels following high-dose iron supplementation. We report an association between iron supplementation and a complete loss of biochemical ADHR phenotype, allowing withdrawal of rickets medication. Experience from this case suggests that reduction and withdrawal of rickets medication should be attempted only after iron status has been optimized.

  2. Effect of rhodium traces on the reducibility of silica-supported iron particles

    KAUST Repository

    Bonnefille, Eric; Millet, Jean Marc M M; Candy, Jean Pierre; Thivolle-Cazat, Jean; Bellabarba, Roñ an M.; Tooze, Robert P.; Basset, Jean-Marie

    2012-01-01

    Fe/SiO 2 and Rh-Fe/SiO 2 catalysts with increasing Fe/Rh ratio have been prepared and characterized by TEM, XRD, oxygen adsorption and Mössbauer spectroscopy. It was confirmed that Fe/SiO 2 catalysts cannot be reduced under hydrogen flow, to more than 50 % whatever the temperature in the 200-500 °C range and shown that the presence of even a small amount of Rh (Fe/Rh ≤2,000) promoted the reduction of iron up to 85-95 %. This promoting effect also took place with a Fe/SiO 2 + Rh/SiO 2 physical mixture (Fe/Rh B2,000). Therefore, the occurrence of a hydrogen spillover effect may be involved in the observed process. © 2012 Springer Science+Business Media, LLC.

  3. Effect of rhodium traces on the reducibility of silica-supported iron particles

    KAUST Repository

    Bonnefille, Eric

    2012-06-19

    Fe/SiO 2 and Rh-Fe/SiO 2 catalysts with increasing Fe/Rh ratio have been prepared and characterized by TEM, XRD, oxygen adsorption and Mössbauer spectroscopy. It was confirmed that Fe/SiO 2 catalysts cannot be reduced under hydrogen flow, to more than 50 % whatever the temperature in the 200-500 °C range and shown that the presence of even a small amount of Rh (Fe/Rh ≤2,000) promoted the reduction of iron up to 85-95 %. This promoting effect also took place with a Fe/SiO 2 + Rh/SiO 2 physical mixture (Fe/Rh B2,000). Therefore, the occurrence of a hydrogen spillover effect may be involved in the observed process. © 2012 Springer Science+Business Media, LLC.

  4. Iron requirements of infants and toddlers

    DEFF Research Database (Denmark)

    Domellöf, Magnus; Braegger, Christian; Campoy, Cristina

    2014-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency worldwide and young children are a special risk group since their rapid growth leads to high iron requirements. Risk factors associated with a higher prevalence of iron deficiency anemia (IDA) include low birth weight, high cow's milk.......There is no evidence that iron supplementation of pregnant women improves iron status in their offspring in a European setting. Delayed cord clamping reduces the risk of iron deficiency. There is insufficient evidence to support general iron supplementation of healthy, European infants and toddlers of normal birth...... intake, low intake of iron-rich complementary foods, low socioeconomic status and immigrant status.The aim of this position paper is to review the field and provide recommendations regarding iron requirements in infants and toddlers, including those of moderately or marginally low birth weight...

  5. Comparison of response between food supplemented with powdered iron and iron in syrup form for iron deficiency anemia

    International Nuclear Information System (INIS)

    Ahmed, P.

    2003-01-01

    Objective: To evaluate and compare the response between food supplemented with iron in powdered and iron in syrup forms for the treatment of iron deficiency anemia in children aged 1-5 years. Results: Over half (51 %) of the patients were between 1-2 years of age. One hundred thirty-two were males and 68 females. Most of the patients belonged to poor socioeconomic class. The iron in powder form was better tolerated than iron syrup as this group witnessed fewer episodes of gastrointestinal disturbances. The rise in mean Hb level after 6 weeks of treatment in group A and B was 1.6 g/dl and 1.9 g/dl respectively. Hemoglobin rise in group B was more than group A but this was statistically non-significant (p>0.05). There was small but significant (p<0.05) rise in serum ferritin in both the groups. There was no significant difference between the two groups for response to the two forms of iron administration. Conclusion: The powdered form of iron is a cost-effective and better tolerated method of iron administration in children and can be considered as an alternate option for the treatment of iron deficiency anemia in children. (author)

  6. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    Science.gov (United States)

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.

  7. Effect of Andrographolide‭ Extract on Blood Glucose and Lipid Profile in Rats with Secondary Iron Overload

    Directory of Open Access Journals (Sweden)

    َArash Mehri Pirayvatlo

    2017-01-01

    Full Text Available Background & objectives: Iron overload is involved in the pathophysiology of many diseases including diabetes. In fact, the excess iron by creating free radicals makes damage to pancreas and leads to insulin resistance and diabetes. Andrographolide extract has hypoglycemic and antioxidant properties. This study has surveyed the effects of andrographolide on blood glucose and lipid profile in rats with secondary iron overload. Methods: In this experimental study, 36 male Wistar rats were randomly divided into 6 groups: the healthy control group, secondary iron overload group, secondary iron overload groups treated with a dose of 3.5 and 7 mg/kg of andrographolide extract, and andrographolide groups treated with a dose of 3.5 and 7 mg/kg of extract. Iron and extract were injected for 6 and 12 days, respectively. Blood samples were taken for measurement of blood glucose and lipid profiles. Data were analyzed using ANOVA test. Results: The pathological results of samples from liver of animals receiving iron showed that the iron was deposited in the liver tissues. Iron injection significantly increased blood glucose levels compared to healthy control group (p<0.05. In the iron overload group, andrographolide extract with a dose of 3.5 mg/kg or 7 mg/kg significantly decreased blood glucose levels (p<0.05. Iron injections did not increase the serum triglyceride and cholesterollevels. Injections of andrographolide extract with a dose of 3.5 mg/kg and 7 mg/kg, significantly decreased the cholesterol levels compared to iron receiving group (p<0.05. Conclusion: Results of this study showed that the andrographolide with different doses may be effective in the treatment of diabetes by reducing serum glucose and cholesterol levels.

  8. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years.

    Science.gov (United States)

    Saraiva, Bárbara C A; Soares, Michele C C; Santos, Luana C dos; Pereira, Simone C L; Horta, Paula M

    2014-01-01

    To analyze the occurrence of anemia and iron deficiency in children aged 1 to 5 years and the association of these events and retinol deficiency. This was an observational analytic cross-sectional study conducted in Vitoria, ES, Brazil, between April and August of 2008, with healthy children aged 1 to 5 years (n=692) that lived in areas covered by primary healthcare services. Sociodemographic and economic conditions, dietary intake (energy, protein, iron, and vitamin A ingestion), anthropometric data (body mass index-for-age and height-for-age), and biochemical parameters (ferritin, hemoglobin, and retinol serum) were collected. The prevalence of anemia, iron deficiency, and retinol deficiency was 15.7%, 28.1%, and 24.7%, respectively. Univariate analysis showed a higher prevalence of anemia (PR: 4.62, 95% CI: 3.36, 6.34, piron deficiency (PR: 4.51, 95% CI: 3.30, 6.17, pdeficiency. The same results were obtained after adjusting for socioeconomic and demographic conditions, dietary intake, and anthropometric variables. There was a positive association between ferritin vs. retinol serum (r=0.597; pAnemia and iron deficiency were associated with low levels of serum retinol in children aged 1 to 5 years, and a positive correlation was verified between serum retinol and serum ferritin and hemoglobin levels. These results indicate the importance of initiatives encouraging the development of new treatments and further research regarding retinol deficiency. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  9. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  10. A Bacillus paralicheniformis Iron-Containing Urease Reduces Urea Concentrations in Rice Wine.

    Science.gov (United States)

    Liu, Qingtao; Chen, Yuqi; Yuan, Minglai; Du, Guocheng; Chen, Jian; Kang, Zhen

    2017-09-01

    Urease, a nickel-containing metalloenzyme, was the first enzyme to be crystallized and has a prominent position in the history of biochemistry. In the present study, we identified a nickel urease gene cluster, ureABCEFGDH , in Bacillus paralicheniformis ATCC 9945a and characterized it in Escherichia coli Enzymatic assays demonstrate that this oxygen-stable urease is also an iron-containing acid urease. Heterologous expression assays of UreH suggest that this accessory protein is involved in the transmembrane transportation of nickel and iron ions. Moreover, this iron-containing acid urease has a potential application in the degradation of urea in rice wine. The present study not only enhances our understanding of the mechanism of activation of urease but also provides insight into the evolution of metalloenzymes. IMPORTANCE An iron-containing, oxygen-stable acid urease from B. paralicheniformis ATCC 9945a with good enzymatic properties was characterized. This acid urease shows activities toward both urea and ethyl carbamate. After digestion with 6 U/ml urease, approximately 92% of the urea in rice wine was removed, suggesting that this urease has great potential in the food industry. Copyright © 2017 American Society for Microbiology.

  11. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    Science.gov (United States)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  12. Vitamin A status affects the efficacy of iron repletion in rats with mild iron deficiency.

    NARCIS (Netherlands)

    Roodenburg, A.J.C.; West, C.E.; Beynen, A.C.

    1996-01-01

    In populations with vitamin A deficiency, vitamin A administration in addition to supplemental iron has been shown to further improve blood indicators of iron status. To obtain clues to associated changes at the level of organ indicators of iron status, we have attempted to mimic previous human

  13. Strategies to reduce blood product utilization in obstetric practice.

    Science.gov (United States)

    Neb, Holger; Zacharowski, Kai; Meybohm, Patrick

    2017-06-01

    Patient blood management (PBM) aims to improve patient outcome and safety by reducing the number of unnecessary RBC transfusions and vitalizing patient-specific anemia reserves. Although PBM is increasingly recognized as best clinical practice in elective surgery, implementation of PBM is restrained in the setting of obstetrics. This review summarizes recent findings to reduce blood product utilization in obstetric practice. PBM-related evidence-based benefits should be urgently adopted in the field of obstetric medicine. Intravenous iron can be considered a safe, effective strategy to replenish iron stores and to correct both pregnancy-related and hemorrhage-related iron deficiency anemia. In addition to surgical techniques and the use of uterotonics, recent findings support early administration of tranexamic acid, fibrinogen and a coagulation factor concentrate-based, viscoelastically guided practice in case of peripartum hemorrhage to manage coagulopathy. In patients with cesarean section, autologous red cell blood salvage may reduce blood product utilization, although its use in this setting is controversial. Implementation of PBM in obstetric practice offers large potential to reduce blood loss and transfusion requirements of allogeneic blood products, even though large clinical trials are lacking in this specific field. Intravenous iron supplementation may be suggested to increase peripartum hemoglobin levels. Additionally, tranexamic acid and point-of-care-guided supplementation of coagulation factors are potent methods to reduce unnecessary blood loss and blood transfusions in obstetrics.

  14. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils

    Science.gov (United States)

    Ghorbanzadeh, N.; Lakzian, A.; Haghnia, G. H.; Karimi, A. R.

    2014-12-01

    Iron is an essential element for all organisms which plays a crucial role in important biochemical processes such as respiration and photosynthesis. Iron deficiency seems to be an important problem in many calcareous soils. Biological dissimilatory Fe(III) reduction increases iron availability through reduction of Fe(III) to Fe(II). The aim of this study was to isolate, identify and evaluate some bacterial isolates for their abilities to reduce Fe(III) in two calcareous soils. Three bacterial isolates were selected and identified from paddy soils by using 16S rRNA amplification and then inoculated to sterilized and non-sterilized calcareous soils in the presence and absence of glucose. The results showed that all isolates belonged to Bacillus genus and were capable of reducing Fe(III) to Fe(II) in vitro condition. The amount of Fe(III) reduction in sterilized calcareous soils was significantly higher when inoculated with PS23 isolate and Shewanella putrefaciens ( S. putrefaciens) (as positive control) compared to PS16 and PS11 isolates. No significant difference was observed between PS11 and PS16 isolates in the presence of indigenous microbial community. The results also revealed that glucose had a significant effect on Fe(III) reduction in the examined calcareous soil samples. The amount of Fe(III) reduction increased two-fold when soil samples were treated with glucose and inoculated by S. putrefaciens and PS23 in non-sterilized soils.

  15. Corrosion investigation for iron artifacts dug out at the 6th Yamato ancient tomb

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Honda, Takashi; Gunji, Eiichi

    2005-09-01

    We analyzed corrosion depth for some iron artifacts dug out at the 6th Yamato ancient tomb in Nara prefecture using X-ray CT for the purpose of estimation for long stability of iron material in the ground as a part of the natural analog study related to the research of the high-level nuclear waste disposal. These samples are three big and 17 small iron artifacts which are called 'Tetsutei' like as horseshoe iron plate. It is considered that the most of them had been buried in a slightly oxidizing or reducing environment. The analysis result shows the maximum corrosion depth is 1.6 mm for about 1500 years. This paper presents an outline of this study. (author)

  16. Ironic effects of antiprejudice messages: how motivational interventions can reduce (but also increase) prejudice.

    Science.gov (United States)

    Legault, Lisa; Gutsell, Jennifer N; Inzlicht, Michael

    2011-12-01

    Although prejudice-reduction policies and interventions abound, is it possible that some of them result in the precise opposite of their intended effect--an increase in prejudice? We examined this question by exploring the impact of motivation-based prejudice-reduction interventions and assessing whether certain popular practices might in fact increase prejudice. In two experiments, participants received detailed information on, or were primed with, the goal of prejudice reduction; the information and primes either encouraged autonomous motivation to regulate prejudice or emphasized the societal requirement to control prejudice. Ironically, motivating people to reduce prejudice by emphasizing external control produced more explicit and implicit prejudice than did not intervening at all. Conversely, participants in whom autonomous motivation to regulate prejudice was induced displayed less explicit and implicit prejudice compared with no-treatment control participants. We outline strategies for effectively reducing prejudice and discuss the detrimental consequences of enforcing antiprejudice standards.

  17. The treatment of iron deficiency without anaemia (in otherwise healthy persons).

    Science.gov (United States)

    Clénin, German E

    2017-06-21

    Iron deficiency is the most widespread and frequent nutritional disorder in the world. It affects a high proportion of children and women in developing countries and is also significantly prevalent in the industrialised world, with a clear predominance in adolescents and menstruating females. Iron is essential for optimal cognitive function and physical performance, not only as a binding site of oxygen but also as a critical constituent of many enzymes. Therefore iron deficiency at all its levels - nonanaemic iron deficiency, iron deficiency with microcytosis or hypochromia and iron deficiency anaemia - should be treated. In the presence of normal stores, however, preventative iron administration is inefficient, has side effects and seems to be harmful. In symptomatic patients with fatigue or in a population at risk for iron deficiency (adolescence, heavy or prolonged menstruation, high performance sport, vegetarian or vegan diet, eating disorder, underweight), a baseline set of blood tests including haemoglobin concentration, haematocrit, mean cellular volume, mean cellular haemoglobin, percentage of hypochromic erythrocytes and serum ferritin levels are important to monitor iron deficiency. To avoid false negative results (high ferritin levels in spite of iron deficiency), an acute phase reaction should be excluded by history and measurement of C-reactive protein. An algorithm leads through this diagnostic process and the decision making for a possible treatment. For healthy males and females aged >15 years, a ferritin cut-off of 30 µg/l is appropriate. For children from 6-12 years and younger adolescents from 12-15 years, cut-offs of 15 and 20 µg/l, respectively, are recommended. As a first step in treatment, counselling and oral iron therapy are usually combined. Integrating haem and free iron regularly into the diet, looking for enhancers and avoiding inhibitors of iron uptake is beneficial. In order to prevent reduced compliance, mainly as a result of

  18. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  19. Internal and External Factors Related to Burnout among Iron and Steel Workers: A Cross-Sectional Study in Anshan, China.

    Science.gov (United States)

    Guo, Haiqiang; Guo, Huifang; Yang, Yilong; Sun, Baozhi

    2015-01-01

    Burnout is a syndrome of emotional exhaustion, cynicism and reduced professional efficacy, which can result from long-term work stress. Although the burnout level is high among iron and steel workers, little is known concerning burnout among iron and steel worker. This study aimed to evaluate the burnout and to explore its associated internal and external factors in iron and steel workers. A cross-sectional survey was conducted in iron and steel workers at the Anshan iron-steel complex in Anshan, northeast China. Self-administered questionnaires were distributed to 1,600 workers, and finally 1,300 questionnaires were returned. Burnout was measured using the Chinese version of the Maslach Burnout Inventory-General Survey (MBI-GS). Effort-reward imbalance (ERI), perceived organizational support (POS), and psychological capital (PsyCap) were measured anonymously. A hierarchical regression model was applied to explore the internal and external factors associated with burnout. Mean MBI-GS scores were 13.11±8.06 for emotional exhaustion, 6.64±6.44 for cynicism, and 28.96±10.39 for professional efficacy. Hierarchical linear regression analysis showed that ERI and POS were the most powerful predictors for emotional exhaustion and cynicism, and PsyCap was the most robust predictor for high professional efficacy. Chinese iron and steel workers have a high level of burnout. Burnout might be associated with internal and external factors, including ERI, POS, and PsyCap. Further studies are recommended to develop an integrated model including both internal and external factors, to reduce the level of ERI, and improve POS and workers' PsyCap, thereby alleviating the level of burnout among iron and steel workers.

  20. Internal and External Factors Related to Burnout among Iron and Steel Workers: A Cross-Sectional Study in Anshan, China.

    Directory of Open Access Journals (Sweden)

    Haiqiang Guo

    Full Text Available Burnout is a syndrome of emotional exhaustion, cynicism and reduced professional efficacy, which can result from long-term work stress. Although the burnout level is high among iron and steel workers, little is known concerning burnout among iron and steel worker. This study aimed to evaluate the burnout and to explore its associated internal and external factors in iron and steel workers.A cross-sectional survey was conducted in iron and steel workers at the Anshan iron-steel complex in Anshan, northeast China. Self-administered questionnaires were distributed to 1,600 workers, and finally 1,300 questionnaires were returned. Burnout was measured using the Chinese version of the Maslach Burnout Inventory-General Survey (MBI-GS. Effort-reward imbalance (ERI, perceived organizational support (POS, and psychological capital (PsyCap were measured anonymously. A hierarchical regression model was applied to explore the internal and external factors associated with burnout.Mean MBI-GS scores were 13.11±8.06 for emotional exhaustion, 6.64±6.44 for cynicism, and 28.96±10.39 for professional efficacy. Hierarchical linear regression analysis showed that ERI and POS were the most powerful predictors for emotional exhaustion and cynicism, and PsyCap was the most robust predictor for high professional efficacy.Chinese iron and steel workers have a high level of burnout. Burnout might be associated with internal and external factors, including ERI, POS, and PsyCap. Further studies are recommended to develop an integrated model including both internal and external factors, to reduce the level of ERI, and improve POS and workers' PsyCap, thereby alleviating the level of burnout among iron and steel workers.

  1. Mathematical model of the reformer sponge iron cycle

    International Nuclear Information System (INIS)

    Fraser, S.; Hacker, V.; Evers, B.; Hierzer, J.; Besenhard, J.O.

    2003-01-01

    A mathematical model of the Reformer Sponge Iron Cycle (RESC), an innovative hydrogen production process based on redox reactions of iron ore pellets is presented. In the oxidation stage of the RESC, hydrogen is produced by blowing steam over hot iron pellets, hence oxidizing the iron. In the reduction stage, synthesis gas coming from a reformer mixed with a fraction of recycled off-gas is used to reduce the iron oxide pellets (wuestite and/or magnetite) back into iron again. A mathematical model of the complete RESC was developed and verified with experimental data. The model is based on calculations of the equilibrium gas concentrations for reformer and Sponge Iron Reactor (SIR). The current model computes mass fluxes, molar fluxes, partial pressures and variations of the respective throughout the complete cycle. The recycle rate, determining the fraction of SIR off-gas recycled and added to the input gas stream was subsequently optimized in order to maximize the amount of iron oxide reduced for a certain input gas flow. (author)

  2. Influence of iron supply on toxic effects of manganese, molybdenum and vanadium on soybean, peas, and flax

    Energy Technology Data Exchange (ETDEWEB)

    Warington, K

    1954-01-01

    The investigations were carried out in nutrient solution with iron as ferric citrate and nitrogen in the form of nitrate. The addition of 2.5 ppm vanadium to plants in which iron chlorosis was already established, either by a lack of iron or by excess manganese, failed to counteract the condition, and caused toxic symptoms. The reduction of the standard iron supply to 1/2 or 1/3 accentuated the toxicity of 2.5 or 5 ppm V to soybean and flax, but a similar reduction in phosphorus had no influence. The toxicity to peas, however, was increased when the phosphorus was reduced to 1/10, provided the iron level was high (20 ppm Fe). Raising the iron supply to 20 or 30 ppm counteracted the toxicity of manganese (10 ppm), molybdenum (40 ppm) and vanadium (2.5 ppm), but the result was less marked when these three elements were combined. Iron supplied in successive, small doses proved less efficient in overcoming molybdenum or vanadium, but not manganese excess, than the same amount of iron supplied in fewer and larger quantities. Varying the iron supply had little effect when the concentration of the three elements was low. When increased iron supply had reduced the chlorosis caused by high manganese or vanadium, it also reduced the manganese and vanadium contents of the shoot (ppm/dm), but the molybdenum content was only lowered by high iron when given in non-toxic concentrations (0.1 ppm Mo) combined with excess manganese. Yield data for soybean and flax indicated an interaction between manganese with both molybdenum and vanadium if the iron supply was low, but none between molybdenum and vanadium. The effect of all three metals was additive in respect to iron.

  3. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  4. Comparison of efficacy of ferrous and iron polymaltose salts in the treatment of childhood iron deficiency anemia

    International Nuclear Information System (INIS)

    Marwat, I.U.; Hassan, K.A.; Javed, T.; Chishti, A.L.

    2013-01-01

    Iron deficiency of anemia (IDA) is defined as reduced number of red blood cells, and / or reduced concentration hemoglobin (Hb) due to deficiency of iron. Treatment involves dietary modifications and inorganic iron salt supplements like ferrous sulfate (FS) or Iron polymaltose complex (IPC). The decision to select either drug rests on therapeutic efficacy, untoward side effects; cost of complete course, patient's compliance and discretion of physician. Both drugs can be prescribed in oral form. This study aimed at comparing the efficacy of two iron preparations (ferrous sulphate and iron polymaltose complex salts) in childhood iron deficiency anemia. Objective: To compare the efficacy of Ferrous Sulphate and Iron Polymaltose Complex salts in the treatment of childhood Iron Deficiency Anemia. Methodology: This randomized controlled trial was conducted at Department of Pediatric Medicine Unit-II Mayo Hospital, Lahore, for a period of 6 months. One hundred and fifty children aged 6 months to 5 years suffering from iron deficiency anemia were selected and randomly divided into two groups of 75 each (Group A and B prescribed FS and IPC respectively). Results were analyzed in terms of rise in Hb from the baseline after three months. Increase in Hb level 2 gm/dl after three months of treatment was considered as effective. Results were analyzed by SPSS version 17. Efficacy of both the drugs, was compared by chi square test. P value 0.05 was accepted as significant. Results: There were 34 cases (22.7%) in 6-12 months age, 77 cases (51.3%) between 1-3 years age and 39 cases (26%) between 3-5 years age. The number of male and female children was 82 (54.7%) and 68 (45.3%) respectively. The baseline hemoglobin of all study cases was 6.64+-1.08 gm/dl (6.59+-1.13 gm/dl in Group A and 6.69+-1.04 gm/dl in Group B). At completion of therapy, the mean hemoglobin of all study cases was 9.15+-1.21 gm/dl (9.20+9-1.17 gm/dl in Group A and 9.11+-1.25 gm/dl in Group B). The difference

  5. Assessment of Iron Overload in Homozygous and Heterozygous Beta Thalassemic Children below 5 Years of Age

    Directory of Open Access Journals (Sweden)

    Dhiraj J. Trivedi

    2014-07-01

    Full Text Available Background: Thalassemia is a genetic disease having 3-7% carrier rate in Indians. It is transfusion dependent anemia having high risk of iron overloading. A clinical symptom of iron overload becomes detectable in second decade causing progressive liver, heart and endocrine glands damage. There is a need to assess iron overload in thalassemics below 5 years of age to protect them from complications at later age of life. Aims and objectives: Present study was undertaken to estimate serum iron status and evaluate serum transferrin saturation in both homozygous & heterozygous form of thalassemia as an index of iron overload among children of one to five years of age. Materials and Methods: Clinically diagnosed thirty cases of β thalassemia major & thirty cases of β thalassemia minor having severe anemia, hepatospleenomegaly and between 1 year to 5 years of age were included in study group and same age matched healthy controls were included in the study. RBC indices and HbA, HbA2 and HbF were estimated along with serum iron & serum Total Iron Binding Capacity (TIBC and serum transferrin levels. Results: Significant difference was observed in hemoglobin levels between control and both beta thalassemia groups. Mean Corpuscular Volume (MCV and Mean Corpuscular Hemoglobin (MCH values were reduced. Hemoglobin electrophoresis showed the elevated levels of HbF and HbA2 in both beta thalassemia groups. Among serum iron parameters, serum iron, TIBC and transferrin saturation were elevated whereas serum transferrin levels were low in thalassemia major in children below 5 years of age. Conclusion: Although clinical symptoms of iron overload have been absent in thalassemic children below five years of age, biochemical iron overloading has started at much lower age which is of great concern.

  6. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years

    Directory of Open Access Journals (Sweden)

    Bárbara C.A. Saraiva

    2014-11-01

    Conclusions: Anemia and iron deficiency were associated with low levels of serum retinol in children aged 1 to 5 years, and a positive correlation was verified between serum retinol and serum ferritin and hemoglobin levels. These results indicate the importance of initiatives encouraging the development of new treatments and further research regarding retinol deficiency.

  7. Acute loss of the hepatic endo-lysosomal system in vivo causes compensatory changes in iron homeostasis.

    Science.gov (United States)

    Metzendorf, Christoph; Zeigerer, Anja; Seifert, Sarah; Sparla, Richard; Najafi, Bahar; Canonne-Hergaux, François; Zerial, Marino; Muckenthaler, Martina U

    2017-06-22

    Liver cells communicate with the extracellular environment to take up nutrients via endocytosis. Iron uptake is essential for metabolic activities and cell homeostasis. Here, we investigated the role of the endocytic system for maintaining iron homeostasis. We specifically depleted the small GTPase Rab5 in the mouse liver, causing a transient loss of the entire endo-lysosomal system. Strikingly, endosome depletion led to a fast reduction of hepatic iron levels, which was preceded by an increased abundance of the iron exporter ferroportin. Compensatory changes in livers of Rab5-depleted mice include increased expression of transferrin receptor 1 as well as reduced expression of the iron-regulatory hormone hepcidin. Serum iron indices (serum iron, free iron binding capacity and total iron binding capacity) in Rab5-KD mice were increased, consistent with an elevated splenic and hepatic iron export. Our data emphasize the critical importance of the endosomal compartments in hepatocytes to maintain hepatic and systemic iron homeostasis in vivo. The short time period (between day four and five) upon which these changes occur underscore the fast dynamics of the liver iron pool.

  8. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    corrosion product alteration, magnetite and hematite mainly (c). For that, an optimised method of H2 measure at weak pressure has been realised by gaseous phase chromatography coupled with a sensitive pressure captor. - H 2 + Fe 3+ magnetite → Fe 2+ solution + 2H + (c) The interest of this study is to determine and to understand the reactivity of one model microbe species, the ferric-reducing bacterium 'Schewanella oneidensis strain MR-1', on a Fe(0) corrosion and these corrosion products (magnetite, hematite mainly) in presence or not of clay minerals (bentonite MX80). The introduction of short-term experiments in the scattered environment (batch) over reactivity Iron-bacteria with or without clay mineral is here studied through a kinetic study of H 2 bio-consumed or product, chemical analysis in solution, and by use a crystallo-chemistry tool (XRD and SEM). The main results are bio-alteration of corrosion products with development of ferri-reducing bacterial community. This microbial alteration entails an increase of aqueous corrosion by consumption of corrosion products (passivation layer). In such condition, corrosion process could be reactivated. (authors)

  9. Shigella Iron Acquisition Systems and their Regulation.

    Science.gov (United States)

    Wei, Yahan; Murphy, Erin R

    2016-01-01

    Survival of Shigella within the host is strictly dependent on the ability of the pathogen to acquire essential nutrients, such as iron. As an innate immune defense against invading pathogens, the level of bio-available iron within the human host is maintained at exceeding low levels, by sequestration of the element within heme and other host iron-binding compounds. In response to sequestration mediated iron limitation, Shigella produce multiple iron-uptake systems that each function to facilitate the utilization of a specific host-associated source of nutrient iron. As a mechanism to balance the essential need for iron and the toxicity of the element when in excess, the production of bacterial iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This review summarizes the current state of knowledge on the iron-uptake systems produced by Shigella species, their distribution within the genus, and the molecular mechanisms that regulate their production.

  10. Expression of Hepcidin and Growth Differentiation Factor 15 (GDF-15 Levels in Thalassemia Patients with Iron Overload and Positive Anti Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Nuri Dyah Indrasari

    2016-09-01

    Full Text Available Background: Thalassemia patients who undergo life-long recurrent blood transfusion will experience iron overload in various organs including the liver and possibly suffer from chronic hepatitis C infection which may lead to liver impairment. The liver produces hepcidin, a hormone which plays role in the regulation of iron level in the blood. Various factors may influence hepcidin level in the blood. Chronic hepatitis C causes iron overload and liver impairment. Liver impairment and haemolytic anaemia due to haemoglobinopathy will suppress hepcidin production. Anaemia stimulates growth differentiation factor 15 (GDF-15 to increase erythropoiesis and suppress hepcidin production. Iron overload causes increase in hepcidin level. Presence of factors which decrease or increase hepcidin production will express various levels of hepcidin. This study aimed to identify the expression of hepcidin and GDF-15 levels in thalassemia patients with iron overload and positive anti-HCV. Information on hepcidin and GDF-15 levels are beneficial in the management of iron overload in thalassemia with positive anti-HCV. Method: This study was a descriptive analytic study in thalassemia patients who had received recurrent blood transfusion ≥ 12 times, suffered from iron overload (transferrin saturation > 55% and ferritin > 1,000 ng/mL, which consisted of 31 individuals with positive anti-HCV and 27 individuals with negative anti-HCV. This study was performed in Thalassemia Centre Department of Child Health and Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, in October 2011–January 2012. Serum hepcidin and GDF-15 examinations were performed using enzyme-linked immunosorbent assay (ELISA method. Aspartate aminotransferase (AST and alanine aminotransferase (ALT examinations were performed using colorimetry method. Data on ferritin and transferrin saturation were obtained from medical records in the last 3

  11. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  12. Mechanism for iron control of the Vibrio fischeri luminescence system: involvement of cyclic AMP and cyclic AMP receptor protein and modulation of DNA level.

    Science.gov (United States)

    Dunlap, P V

    1992-07-01

    Iron controls luminescence in Vibrio fischeri by an indirect but undefined mechanism. To gain insight into that mechanism, the involvement of cyclic AMP (cAMP) and cAMP receptor protein (CRP) and of modulation of DNA levels in iron control of luminescence were examined in V. fischeri and in Escherichia coli containing the cloned V. fischeri lux genes on plasmids. For V. fischeri and E. coli adenylate cyclase (cya) and CRP (crp) mutants containing intact lux genes (luxR luxICDABEG), presence of the iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid) (EDDHA) increased expression of the luminescence system like in the parent strains only in the cya mutants in the presence of added cAMP. In the E. coli strains containing a plasmid with a Mu dl(lacZ) fusion in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the lux operon promoter) were both 2-3-fold higher in the presence of EDDHA in the parent strain, and for the mutants this response to EDDHA was observed only in the cya mutant in the presence of added cAMP. Therefore, cAMP and CRP are required for the iron restriction effect on luminescence, and their involvement in iron control apparently is distinct from the known differential control of transcription from the luxR and luxICDABEG promoters by cAMP-CRP. Furthermore, plasmid and chromosomal DNA levels were higher in E. coli and V. fischeri in the presence of EDDHA. The higher DNA levels correlated with an increase in expression of chromosomally encoded beta-galactosidase in E. coli and with a higher level of autoinducer in cultures of V. fischeri. These results implicate cAMP-CRP and modulation of DNA levels in the mechanism of iron control of the V. fischeri luminescence system.

  13. Estimates of the effect on hepatic iron of oral deferiprone compared with subcutaneous desferrioxamine for treatment of iron overload in thalassemia major: a systematic review

    Directory of Open Access Journals (Sweden)

    Caro J

    2002-11-01

    Full Text Available Abstract Background Beta thalassemia major requires regular blood transfusions and iron chelation to alleviate the harmful accumulation of iron. Evidence on the efficacy and safety of the available agents, desferrioxamine and deferiprone, is derived from small, non-comparative, heterogeneous observational studies. This evidence was reviewed to quantitatively compare the ability of these chelators to reduce hepatic iron. Methods The literature was searched using Medline and all reports addressing the effect of either chelator on hepatic iron were considered. Data were abstracted independently by two investigators. Analyses were performed using reported individual patient data. Hepatic iron concentrations at study end and changes over time were compared using ANCOVA, controlling for initial iron load. Differences in the proportions of patients improving were tested using χ2. Results Eight of 11 reports identified provided patient-level data relating to 30 desferrioxamine- and 68 deferiprone-treated patients. Desferrioxamine was more likely than optimal dose deferiprone to decrease hepatic iron over the average follow-up of 45 months (odds ratio, 19.0, 95% CI, 2.4 to 151.4. The degree of improvement was also larger with desferrioxamine. Conclusions This analysis suggests that desferrioxamine is more effective than deferiprone in lowering hepatic iron. This comparative analysis – despite its limitations – should prove beneficial to physicians faced with the challenge of selecting the optimal treatment for their patients.

  14. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  15. Industrial study of iron oxide reduction by injection of carbon particles into the electric arc furnace

    International Nuclear Information System (INIS)

    Conejo, A. N.; Torres, R.; Cuellar, E.

    1999-01-01

    An industrial study was conducted in electric arc furnaces (EAF) employing 100% direct reduced iron to evaluate the oxidation level of the slag-metal system. Energy consumption is decreased by injecting gaseous oxygen, however, slag oxidation also increases. In order to reduce the extent of oxidation while keeping a high volume of the oxygen injected , it is required: a) to optimize the carbon injection practice, b) to increase the carbon concentration of sponge iron, c) to operate with soluble carbon in both the metal and the slag beyond a critical level and d) to employ a low temperature profile, on average 1,650 degree centigrade. A method to define the proper amount of carbon in sponge iron which considers their metallization as well as the amount of oxygen injected is proposed. The position of the lance is critical in order to optimize the practice of carbon injection and assure a better residence time of the carbon particles within the furnace. (Author) 23 refs

  16. Superoxide scavenging activity of pirfenidone-iron complex

    International Nuclear Information System (INIS)

    Mitani, Yoshihiro; Sato, Keizo; Muramoto, Yosuke; Karakawa, Tomohiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-01-01

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O 2 ·- ) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O 2 ·- produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount of O 2 ·- released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O 2 ·- scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis

  17. Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms.

    Science.gov (United States)

    Macchi, Chiara; Steffani, Liliana; Oleari, Roberto; Lettieri, Antonella; Valenti, Luca; Dongiovanni, Paola; Romero-Ruiz, Antonio; Tena-Sempere, Manuel; Cariboni, Anna; Magni, Paolo; Ruscica, Massimiliano

    2017-10-15

    Iron overload leads to multiple organ damage including endocrine organ dysfunctions. Hypogonadism is the most common non-diabetic endocrinopathy in primary and secondary iron overload syndromes. To explore the molecular determinants of iron overload-induced hypogonadism with specific focus on hypothalamic derangements. A dysmetabolic male murine model fed iron-enriched diet (IED) and cell-based models of gonadotropin-releasing hormone (GnRH) neurons were used. Mice fed IED showed severe hypogonadism with a significant reduction of serum levels of testosterone (-83%) and of luteinizing hormone (-86%), as well as reduced body weight gain, body fat and plasma leptin. IED mice had a significant increment in iron concentration in testes and in the pituitary. Even if iron challenge of in vitro neuronal models (GN-11 and GT1-7 GnRH cells) resulted in 10- and 5-fold iron content increments, respectively, no iron content changes were found in vivo in hypothalamus of IED mice. Conversely, mice placed on IED showed a significant increment in hypothalamic GnRH gene expression (+34%) and in the intensity of GnRH-neuron innervation of the median eminence (+1.5-fold); similar changes were found in the murine model HFE -/- , resembling human hemochromatosis. IED-fed adult male mice show severe impairment of hypothalamus-pituitary-gonadal axis without a relevant contribution of the hypothalamic compartment, which thus appears sufficiently protected from systemic iron overload. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  19. Duodenal Cytochrome b (DCYTB in Iron Metabolism: An Update on Function and Regulation

    Directory of Open Access Journals (Sweden)

    Darius J. R. Lane

    2015-03-01

    Full Text Available Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB; may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent “IRP1-HIF2α axis”; DCYTB and ascorbate in relation to iron metabolism.

  20. Extending hydraulic lifetime of iron walls

    International Nuclear Information System (INIS)

    Mackenzie, P.D.; Sivavec, T.M.; Horney, D.P.

    1997-01-01

    Iron walls for control of groundwaters contaminated with chlorinated solvents and reducible metals are becoming much more widely used and field studies of this technology have proven successful to date. However, there is still much uncertainty in predicting long-term performance. This work focuses on two factors affecting the lifetime of the iron media: plugging at the treatment zone entrance and precipitation in the bulk iron media. Plugging at the system entrance is due principally to dissolved oxygen in the incoming water and is an issue in aerobic aquifers or in ex-situ canister tests. In an in-situ treatment system, plugging would result in a dramatic reduction in flow through the iron zone. Designs to minimize plugging in field applications include use of larger iron particles and admixing sand of comparable size with the iron particles. Mineral precipitation in the bulk iron media can lead to porosity losses in the media, again reducing flow through the treatment zone. Decreases in reactivity of the iron media may also occur. The nature of the mineral precipitation and the factors that affect extent of mineral precipitation are examined by a variety of tools, including tracer tests, aqueous inorganic profiles, and surface analysis techniques. At short treatment times, measured porosity losses are due mainly to entrapment of a film of H 2 gas on the iron surfaces and also to Fe(OH) 2 precipitation. Over longer treatment times precipitation of Fe(OH) 2 and FeCO 3 in low carbonate waters and of Fe(OH) 2 , FeCO 3 and CaCO 3 in higher carbonate waters will begin to dominate porosity losses. Preliminary results of an on-going study to control pH in an iron zone by admixing iron sulfide with iron show no difference in extent of carbonate precipitation versus a 100% iron system, suggesting that these systems are supersaturated with respect to carbonate precipitation

  1. [Can venous iron and tranexamic acid reduce the transfusion need? Report on a non randomized, case control study].

    Science.gov (United States)

    Essola, L; Kouégnigan Rérambiah, L; Obame, R; Issembè, H; Sima Zué, A

    2017-06-01

    To evaluate if the association of injectable iron and tranexamic acid allows a significant saving in transfusion, in cases of myomectomies and hysterectomies. This is a prospective, non randomized study done over 8 months (from January 2013 to August 2013). Were included, patients undergoing hysterectomy or myomectomy who had a hemoglobin level greater than or equal to 8g/dl and less than 12g/dl. Two groups were compared: group A consisting of patients for whom a pack red cells was ordered and the group B which patients received intravenous iron preoperatively and tranexamic acid perioperatively. The level of hemoglobin, pre- and postoperative, the average number of blood units per patient and estimated blood loss was compared. The transfusion economy was evaluated. During this period, 87 patients with a mean age of 40±9 years (range: 23 and 70years) were included according to our criteria: 44 patients in group A and 43 patients in group B. Initial mean hemoglobin in both groups was 9.1±0.7g/dl. In group B, after iron administration, the mean hemoglobin was 11.3±0.7g/dl. The average number of red blood cells received intraoperative patient in group A was 1.54±0.51. The estimated blood loss was significant greater (P=0.0002) in group A (571.6±237.1ml) than in group B (213.7±131.7ml). No transfusion was performed in group B. The association intravenous iron and tranexamic acid resulted in the reduction of transfusion requirements in our setting. It could be integrated in the strategy for sparing blood transfusion in scheduled surgery with hemorrhagic risks. Copyright © 2017. Published by Elsevier SAS.

  2. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    , allowing a higher degree of partial oxidation, irrespective of increasing environmental oxygen levels. Alternatively, increasing oxygen levels would have led to a higher proportion of Fe(II) being oxidized, without decreasing the initial size of the ferrous seawater iron pool. We consider the latter explanation as the most likely. According to this hypothesis, the δ 56Fe record reflects the redox evolution of Earth's surface environments. δ 56Fe values in pre-Sturtian samples significantly heavier than bulk crust and hydrothermal iron imply partial oxidation of a ferrous seawater iron reservoir. In contrast, mean δ 56Fe values closer to that of hydrothermal iron in post-Sturtian shales reflects oxidation of a larger proportion of the ferrous seawater iron reservoir, and by inference, higher environmental oxygen levels. Nevertheless, significant iron isotopic variation in post-Sturtian shales suggest redox heterogeneity and possibly a dominantly anoxic deep ocean, consistent with results from recent studies using iron speciation and redox sensitive trace metals. However, the interpretation of generally increasing environmental oxygen levels after the Sturtian glaciation highlights the need to better understand the sensitivity of different redox proxies to incremental changes in oxygen levels to enable us to reconcile results from different paleoredox proxies.

  3. The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposal

    International Nuclear Information System (INIS)

    Kerber-Schutz, Marta

    2013-01-01

    The nuclear industry must to demonstrate the feasibility and safety of high level nuclear waste (HLNW) disposal. The generally recognised strategy for HLNW disposal is based on a multi-barrier system made by metallic packages surrounded by geological formation. The nuclear waste repository will be water re-saturated with time, and then the metallic corrosion process will take place. The aqueous corrosion will produce dihydrogen (H 2 ) that represents a new energetic source (electron donor) for microbial development. Moreover, the formation of Fe(II,III) solid corrosion products, such as magnetite (Fe 3 O 4 ), will provide electron acceptors favoring the development of iron-reducing bacteria (IRB). The activity of hydrogenotrophic and IRB can potentially alter the protective properties of passivating oxide layers (i.e. magnetite) which could reactivate corrosion. The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. Shewanella oneidensis strain MR-1 was chosen as model organism, and both abiotic and biotic conditions were investigated. In a first setup of experiments, our results indicate that synthetic magnetite is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H 2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H 2 concentration in the system: 4% H 2 ≤ 10% H 2 ≤ 60% H 2 . In a second setup of experiments, our results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). Moreover, the solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is

  4. Hydroxyurea could be a good clinically relevant iron chelator.

    Science.gov (United States)

    Italia, Khushnooma; Colah, Roshan; Ghosh, Kanjaksha

    2013-01-01

    Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  5. Hydroxyurea could be a good clinically relevant iron chelator.

    Directory of Open Access Journals (Sweden)

    Khushnooma Italia

    Full Text Available Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  6. Screening for iron deficiency and iron deficiency anaemia in pregnancy: a structured review and gap analysis against UK national screening criteria.

    Science.gov (United States)

    Rukuni, Ruramayi; Knight, Marian; Murphy, Michael F; Roberts, David; Stanworth, Simon J

    2015-10-20

    Iron deficiency anaemia is a common problem in pregnancy despite national recommendations and guidelines for treatment. The aim of this study was to appraise the evidence against the UK National Screening Committee (UKNSC) criteria as to whether a national screening programme could reduce the prevalence of iron deficiency anaemia and/or iron deficiency in pregnancy and improve maternal and fetal outcomes. Search strategies were developed for the Cochrane library, Medline and Embase to identify evidence relevant to UK National Screening Committee (UKNSC) appraisal criteria which cover the natural history of iron deficiency and iron deficiency anaemia, the tests for screening, clinical management and evidence of cost effectiveness. Many studies evaluated haematological outcomes of anaemia, but few analysed clinical consequences. Haemoglobin and ferritin appeared the most suitable screening tests, although future options may follow recent advances in understanding iron homeostasis. The clinical consequences of iron deficiency without anaemia are unknown. Oral and intravenous iron are effective in improving haemoglobin and iron parameters. There have been no trials or economic evaluations of a national screening programme for iron deficiency anaemia in pregnancy. Iron deficiency in pregnancy remains an important problem although effective tests and treatment exist. A national screening programme could be of value for early detection and intervention. However, high quality studies are required to confirm whether this would reduce maternal and infant morbidity and be cost effective.

  7. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  8. Correlations between iron content in knee joint tissues and chosen indices of peripheral blood morphology.

    Science.gov (United States)

    Brodziak-Dopierała, Barbara; Roczniak, Wojciech; Jakóbik-Kolon, Agata; Kluczka, Joanna; Koczy, Bogdan; Kwapuliński, Jerzy; Babuśka-Roczniak, Magdalena

    2017-10-01

    Iron as a cofactor of enzymes takes part in the synthesis of the bone matrix. Severe deficiency of iron reduces the strength and mineral density of bones, whereas its excess may increase oxidative stress. In this context, it is essential to determine the iron content in knee joint tissues. The study objective was to determine the level of iron in the tissues of the knee joint, i.e., in the femoral bone, tibia and meniscus. Material for analysis was obtained during endoprosthetic surgery of the knee joint. Within the knee joint, the tibia, femur and meniscus were analyzed. Samples were collected from 50 patients, including 36 women and 14 men. The determination of iron content was performed with the ICP-AES method, using Varian 710-ES. The lowest iron content was in the tibia (27.04 μg/g), then in the meniscus (38.68 μg/g) and the highest in the femur (41.93 μg/g). Statistically significant differences were noted in the content of iron in knee joint tissues. In patients who underwent endoprosthesoplasty of the knee joint, statistically significant differences were found in the levels of iron in various components of the knee joint. The highest iron content was found in the femoral bone of the knee joint and then in the meniscus, the lowest in the tibia. The differences in iron content in the knee joint between women and men were not statistically significant.

  9. Why do adult women in Vietnam take iron tablets?

    Directory of Open Access Journals (Sweden)

    Zhao Yun

    2006-06-01

    Full Text Available Abstract Background Conducting iron supplementation programs has been a major strategy to reduce iron deficiency anemia in pregnancy. However, only a few countries have reported improvements in the anemia rate at a national level. The strategies used for control of nutrition problems need regular review to maintain and improve their effectiveness. The objective of this study was to analyze the factors in compliance with taking iron tablets, where daily doses of iron (60 mg and folic acid (400 μg were distributed in rural Vietnamese communes. Methods A cross sectional survey was conducted in Nghe An province, Vietnam in January, 2003. The study population was adult women aged less than 35 years who delivered babies between August 1st 2001 and December 1st 2002 (n = 205, of which 159 took part in the study. Data for the study were collected from a series of workshops with community leaders, focus group discussions with community members and a questionnaire survey. Results Improvements in the rate of anemia was not given a high priority as one of the commune's needs, but the participants still made efforts to continue taking iron tablets. Two major factors motivated the participants to continue taking iron tablets; their experience of fewer spells of dizziness (50%, and their concern for the health of their newborn baby (54%. When examining the reasons for taking iron tablets for at least 5–9 months, the most important factor was identified as 'a frequent supply of iron tablets' (OR = 11.93, 95% CI: 4.33–32.85. Conclusion The study found that multiple poor environmental risk factors discouraged women from taking iron tablets continuously. The availability (frequent supply of iron tablets was the most effective way to help adult women to continue taking iron tablets.

  10. Determine the Optimal Levels of Bio-fertilizers and Foliar Application of Iron on Yield and Quality Indices of Roselle (Hibiscus sabdariffa L.

    Directory of Open Access Journals (Sweden)

    zahra mir

    2018-02-01

    Full Text Available Introduction In conventional agricultural systems to obtain the highest performance continuous use of chemical fertilizers is inevitable. The health of the plant, soil and living matter depends on the rotation of food elements in the ecosystem. This cycle is disrupted as a result of the loss of soil fertility, its food imbalance and inappropriate cultivation practices. Bio-fertilizers are composed of beneficial microorganisms, each for a specific purpose, such as nitrogen fixation, release of phosphate ions, potassium, iron. It should be noted that most studies in the field for sour Roselle (Hibiscus sabdariffa are based on the use of various chemical fertilizers, but the reaction of this plant to bio-fertilizers and iron solubilization has not been considered. Therefore, this study aimed to investigate the effect of bio fertilizers and iron on yield and quality traits of Roselle in hot and dry weather conditions. Materials and Methods In order to investigate the effects of bio-fertilizers and foliar application iron on yield and quality indicators Roselle (Hibiscus sabdariffa experiment in Research field of Zabol University Agriculture Institute in 2015-2016 years was performed with split-plot based on completely randomized design and three replications. Treatments consisted of four levels of bio-fertilizers: control (without fertilizer, vermicompost, cow manure, seaweed and iron foliar applications include: lack of iron, foliar application at a rate of 3cc per thousand, 6cc per thousand was considered. As a source of bio-fertilizer treatments and foliar application iron levels were considered as sub plots. Before sowing Roselle seeds, vermicompost and manure were added to the soil and inoculation operation . Measurements were: economic yield, biological yield, harvest index, chlorophyll a, b and carotenoids, anthocyanins, carbohydrates and protein. Statistical analysis of data was done with SAS software version 9.1 and mean comparison with

  11. Innocuous oil as an additive for reductive reactions involving zero valence iron

    International Nuclear Information System (INIS)

    Cary, J.W.; Cantrell, K.J.

    1994-11-01

    Reductive reactions involving zero valence iron appear to hold promise for in situ remediation of sites containing chlorinated hydrocarbon solvents and certain reducible metals and radionuclides. Treatment involves the injection of metallic iron and the creation of low levels of dissolved oxygen in the aqueous phase through oxidation of the metallic iron. The use of a biodegradable immiscible and innocuous organic liquid such as vegetable oil as an additive offers several intriguing possibilities. The oil phase creates a large oil-water interface that is immobile with respect to flow in the aqueous phase. This phase will act as a trap for chlorinated hydrocarbons and could potentially increase the reaction efficiency of reductive dehalogenation of chlorinated hydrocarbons by the metallic iron. When iron particles are suspended in the oil before injection they are preferentially held in the oil phase and tend to accumulate at the oil-water interface. Thus oil injection can serve as a mechanism for creating a stable porous curtain of metallic iron in the vadose to maintain a low oxygen environment which will minimize the consumption of the iron by molecular oxygen

  12. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  13. Myelodysplastic syndromes and the role of iron overload.

    Science.gov (United States)

    Harvey, R Donald

    2010-04-01

    The epidemiology of myelodysplastic syndromes (MDS) and iron overload, recent clinical findings that highlight the importance of actively managing iron overload, and recommendations for initiating and maintaining iron chelation therapy (ICT) are summarized. MDS are a variety of hematological disorders with differing time courses. Disease morbidities are primarily due to cytopenias and evolution to acute myeloid leukemia. Iron overload is a serious complication in patients with MDS due to the long-term use of red blood cell transfusions in patients with symptomatic anemia. Clinical consequences of iron overload include end-organ damage and dysfunction, an increased frequency of transplant-related complications, and reduced survival rates. To prevent these complications, recommendations for initiating and maintaining ICT should be followed by clinicians caring for patients with MDS and iron overload. As current therapeutic options for patients with MDS do not always reduce the transfusion burden, many patients will still need long-term transfusion therapy. Strategies for the management of iron overload in MDS should be considered early in the disease course and in appropriate patients in order to prevent negative clinical outcomes associated with excessive iron accumulation.

  14. Experimental oral iron administration: Histological investigations and expressions of iron handling proteins in rat retina with aging.

    Science.gov (United States)

    Kumar, Pankaj; Nag, Tapas Chandra; Jha, Kumar Abhiram; Dey, Sanjay Kumar; Kathpalia, Poorti; Maurya, Meenakshi; Gupta, Chandan Lal; Bhatia, Jagriti; Roy, Tara Sankar; Wadhwa, Shashi

    2017-12-01

    Iron is implicated in age-related macular degeneration (AMD). The aim of this study was to see if long-term, experimental iron administration with aging modifies retinal and choroidal structures and expressions of iron handling proteins, to understand some aspects of iron homeostasis. Male Wistar rats were fed with ferrous sulphate heptahydrate (500mg/kg body weight/week, oral; elemental iron availability: 20%) from 2 months of age onward until they were 19.5 month-old. At 8, 14 and 20 months of age, they were sacrificed and serum and retinal iron levels were detected by HPLC. Oxidative stress was analyzed by TBARS method. The retinas were examined for cell death (TUNEL), histology (electron microscopy) and the expressions of transferrin, transferrin receptor-1 [TFR-1], H- and L-ferritin. In control animals, at any age, there was no difference in the serum and retinal iron levels, but the latter increased significantly in 14- and 20 month-old iron-fed rats, indicating that retinal iron accumulation proceeds with progression of aging (>14 months). The serum and retinal TBARS levels increased significantly with progression of aging in experimental but not in control rats. There was significant damage to choriocapillaris, accumulation of phagosomes in retinal pigment epithelium and increased incidence of TUNEL+ cells in outer nuclear layer and vacuolation in inner nuclear layer (INL) of 20 month-aged experimental rats, compared to those in age-matched controls. Vacuolations in INL could indicate a long-term effect of iron accumulation in the inner retina. These events paralleled the increased expression of ferritins and transferrin and a decrease in the expression of TFR-1 in iron-fed rats with aging, thereby maintaining iron homeostasis in the retina. As some of these changes mimic with those happening in eyes with AMD, this model can be utilized to understand iron-induced pathophysiological changes in AMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Prion Protein Regulates Iron Transport by Functioning as a Ferrireductase

    Science.gov (United States)

    Singh, Ajay; Haldar, Swati; Horback, Katharine; Tom, Cynthia; Zhou, Lan; Meyerson, Howard; Singh, Neena

    2017-01-01

    Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP−/−). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP−/− mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP−/− mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP−/− mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP−/− BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates. PMID:23478311

  16. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy.

    Science.gov (United States)

    Garcia-Valdes, L; Campoy, C; Hayes, H; Florido, J; Rusanova, I; Miranda, M T; McArdle, H J

    2015-04-01

    Obesity is associated with decreased iron status, possibly due to a rise in hepcidin, an inflammatory protein known to reduce iron absorption. In animals, we have shown that maternal iron deficiency is minimised in the foetus by increased expression of placental transferrin receptor (pTFR1), resulting in increased iron transfer at the expense of maternal iron stores. This study examines the effect of obesity during pregnancy on maternal and neonatal iron status in human cohorts and whether the placenta can compensate for decreased maternal iron stores by increasing pTFR1 expression. A total of 240 women were included in this study. One hundred and fifty-eight placentas (Normal: 90; Overweight: 37; Obese: 31) were collected at delivery. Maternal iron status was measured by determining serum transferrin receptor (sTFR) and ferritin levels at 24 and 34 weeks and at delivery. Hepcidin in maternal and cord blood was measured by ELISA and pTFR1 in placentas by western blotting and real-time RT-PCR. Low iron stores were more common in obese women. Hepcidin levels (ng ml(-1)) at the end of the pregnancy were higher in obese than normal women (26.03±12.95 vs 18.00±10.77, PMaternal hepcidin levels were correlated with maternal iron status (sTFR r=0.2 P=0.025), but not with neonatal values. mRNA and protein levels of pTFR1 were both inversely related to maternal iron status. For mRNA and all women, sTFR r=0.2 P=0.044. Ferritin mRNA levels correlated only in overweight women r=-0.5 P=0.039 with hepcidin (r=0.1 P=0.349), irrespective of maternal body mass index (BMI). The data support the hypothesis that obese pregnant women have a greater risk of iron deficiency and that hepcidin may be a regulatory factor. Further, we show that the placenta responds to decreased maternal iron status by increasing pTFR1 expression.

  17. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  18. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Y. C. Eeu

    2013-01-01

    Full Text Available Polypyrrole (PPy was reinforced with reduced graphene oxide (RGO and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO and individual (PPy counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge.

  19. Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease

    Directory of Open Access Journals (Sweden)

    Joana Neves

    2017-06-01

    Full Text Available Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1C326S, increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder.

  20. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  1. Effects of maternal education on diet, anemia, and iron deficiency in Korean school-aged children

    Directory of Open Access Journals (Sweden)

    Choi Hyeon-Jeong

    2011-11-01

    Full Text Available Abstract Background We investigated the relationship among socioeconomic status factors, the risk of anemia, and iron deficiency among school-aged children in Korea. Methods The sample consisted of fourth-grade students aged 10 y recruited from nine elementary schools in Korean urban areas in 2008 (n = 717. Anthropometric and blood biochemistry data were obtained for this cross-sectional observational study. Anemia was defined as hemoglobin levels lower than 11.5 g/dl. Iron deficiency was defined as serum iron levels lower than 40 ug/dl. We also obtained data on parental education from questionnaires and on children's diets from 3-day food diaries. Parental education was categorized as low or high, with the latter representing an educational level beyond high school. Results Children with more educated mothers were less likely to develop anemia (P = 0.0324 and iron deficiency (P = 0.0577 than were those with less educated mothers. This group consumed more protein (P = 0.0004 and iron (P = 0.0012 from animal sources than did the children of less educated mothers, as reflected by their greater consumption of meat, poultry, and derivatives (P Conclusions As a contributor to socioeconomic status, maternal education is important in reducing the risk of anemia and iron deficiency and in increasing children's consumption of animal food sources.

  2. Oral sucrosomial iron versus intravenous iron in anemic cancer patients without iron deficiency receiving darbepoetin alfa: a pilot study.

    Science.gov (United States)

    Mafodda, Antonino; Giuffrida, D; Prestifilippo, A; Azzarello, D; Giannicola, R; Mare, M; Maisano, R

    2017-09-01

    similar increase in Hb levels and Hb response, with higher tolerability without the risks or side effects of IV iron.

  3. Management of Iron Deficiency Anemia

    Science.gov (United States)

    Jimenez, Kristine; Kulnigg-Dabsch, Stefanie

    2015-01-01

    Anemia affects one-fourth of the world’s population, and iron deficiency is the predominant cause. Anemia is associated with chronic fatigue, impaired cognitive function, and diminished well-being. Patients with iron deficiency anemia of unknown etiology are frequently referred to a gastroenterologist because in the majority of cases the condition has a gastrointestinal origin. Proper management improves quality of life, alleviates the symptoms of iron deficiency, and reduces the need for blood transfusions. Treatment options include oral and intravenous iron therapy; however, the efficacy of oral iron is limited in certain gastrointestinal conditions, such as inflammatory bowel disease, celiac disease, and autoimmune gastritis. This article provides a critical summary of the diagnosis and treatment of iron deficiency anemia. In addition, it includes a management algorithm that can help the clinician determine which patients are in need of further gastrointestinal evaluation. This facilitates the identification and treatment of the underlying condition and avoids the unnecessary use of invasive methods and their associated risks. PMID:27099596

  4. Milk iron content in breast-feeding mothers after administration of intravenous iron sucrose complex.

    Science.gov (United States)

    Breymann, Christian; von Seefried, Bettina; Stahel, Michele; Geisser, Peter; Canclini, Camillo

    2007-01-01

    To study the transfer of parenteral iron sucrose into maternal milk in the postpartum period. Ten healthy lactating mothers with functional iron deficiency 2-3 days after delivery received 100 mg intravenous iron sucrose and were observed together with a control group (n=5) without iron treatment during four days. Milk samples were taken before the treatment and every day afterwards. Mean milk iron levels at baseline were 0.43 and 0.46 mg/kg in the treatment and control group and decreased until the end of observation in both groups by 0.11 mg/kg. No significant difference between the groups was found on any study day as well as in the mean change from baseline over all four days. We could not show transfer of iron-sucrose into maternal milk for the given dosage. Since parenteral iron sucrose is widely used in obstetrics, the results provide information about safety of parenteral iron sucrose in the lactation period. The findings are also in agreement with other reports on active biological mammary gland regulation of milk iron concentration.

  5. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  6. Iron Fortified Complementary Foods Containing a Mixture of Sodium Iron EDTA with Either Ferrous Fumarate or Ferric Pyrophosphate Reduce Iron Deficiency Anemia in 12- to 36-Month-Old Children in a Malaria Endemic Setting: A Secondary Analysis of a Cluster-Randomized Controlled Trial.

    Science.gov (United States)

    Glinz, Dominik; Wegmüller, Rita; Ouattara, Mamadou; Diakité, Victorine G; Aaron, Grant J; Hofer, Lorenz; Zimmermann, Michael B; Adiossan, Lukas G; Utzinger, Jürg; N'Goran, Eliézer K; Hurrell, Richard F

    2017-07-14

    Iron deficiency anemia (IDA) is a major public health problem in sub-Saharan Africa. The efficacy of iron fortification against IDA is uncertain in malaria-endemic settings. The objective of this study was to evaluate the efficacy of a complementary food (CF) fortified with sodium iron EDTA (NaFeEDTA) plus either ferrous fumarate (FeFum) or ferric pyrophosphate (FePP) to combat IDA in preschool-age children in a highly malaria endemic region. This is a secondary analysis of a nine-month cluster-randomized controlled trial conducted in south-central Côte d'Ivoire. 378 children aged 12-36 months were randomly assigned to no food intervention ( n = 125; control group), CF fortified with 2 mg NaFeEDTA plus 3.8 mg FeFum for six days/week ( n = 126; FeFum group), and CF fortified with 2 mg NaFeEDTA and 3.8 mg FePP for six days/week ( n = 127; FePP group). The outcome measures were hemoglobin (Hb), plasma ferritin (PF), iron deficiency (PF anemia (Hb iron deficiency with or without anemia ( p = 0.068). IDA prevalence sharply decreased in the FeFum (32.8% to 1.2%, p anemia. These data indicate that, despite the high endemicity of malaria and elevated inflammation biomarkers (C-reactive protein or α-1-acid-glycoprotein), IDA was markedly reduced by provision of iron fortified CF to preschool-age children for 9 months, with no significant differences between a combination of NaFeEDTA with FeFum or NaFeEDTA with FePP. However, there was no overall effect on anemia, suggesting most of the anemia in this setting is not due to ID. This trial is registered at clinicaltrials.gov (NCT01634945).

  7. Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products

    International Nuclear Information System (INIS)

    Adeleye, Adeyemi S.; Keller, Arturo A.; Miller, Robert J.; Lenihan, Hunter S.

    2013-01-01

    The use of nanoscale zero-valent iron (nZVI) for in situ remediation of a wide scale of environmental pollutants is increasing. Bench and field pilot studies have recorded successful cleanup of many pollutants using nZVI and other iron-mediated nanoparticles. However, a major question remains unanswered: what is the long-term environmental fate of the iron nanoparticles used for remediation? We aged three types of commercial nZVI in different aqueous media, including a groundwater sample, under aerobic and anaerobic conditions for 28 days, and found that the bulk of the nZVI injected into polluted sites will end up in the sediment phase of the aquifer. This is mainly due to aggregation-induced sedimentation of the nZVI and the insoluble iron oxides formed when nZVI undergoes corrosion. Iron concentrations >500 g/kg were detected in sediment, a loading level of iron that may potentially affect some organisms and also reduce the permeability of aquifers. Dissolved and suspended iron concentrations initially surged when nZVI was applied, but iron decreased steadily in the supernatant and suspended sediment as the bulk of the iron partitioned into the sediment. Solution and surface chemistry of the iron species showed that nZVI remains reactive for more than 1 month, and that the reactivity of iron and its transformations are governed by environmental factors, including the presence of different ions, ionic strength, natural organic matter, and pH.

  8. Rust dissolution and removal by iron-reducing bacteria: A potential rehabilitation of rusted equipment

    International Nuclear Information System (INIS)

    Starosvetsky, J.; Kamari, R.; Farber, Y.; Bilanović, D.; Armon, R.

    2016-01-01

    Highlights: • The present study demonstrated the high reductive capacity of both strains: the collection S. oneidensis and the wild strain Geobacter spp. (soil isolate). • The experimental strains were successful in Fe 3+ reduction for both states: soluble and crystalline (originally prepared from rust). • Rust dissolution can be improved by: addition of AFC at low concentration (0.2 g/l), increasing bacterial initial inoculum and rust reactive surface. • Both experimental IRB strains were able to completely remove previously formed rust on carbon steel coupons. • Additional results (not showed) revealed that culture S. oneidensis and the environmental isolate Geobacter spp., apparently have a different mechanism of iron reduction that requires further study. - Abstract: Iron reducing bacteria (IRB), to be used in rust dissolution and removal, have been isolated and enriched from different environmental sources. Comparative measurements revealed that a soil isolate (Geobacter sulfurreducens sp.) had the highest reductive activity equivalent to Shewanella oneidensis (strain CIP 106686, pure culture). Both reductive microorganisms can use Fe 3+ ions as electron acceptors from soluble as well as from crystalline sources. In nutrient medium containing soluble Fe 3+ , the highest reductive activity obtained for G. sulfurreducens sp. and S. oneidensis was 93 and 97% respectively. Successful removal of rust from carbon steel coupons has been achieved with both experimental bacteria.

  9. Intravenous iron treatments for iron deficiency anemia in inflammatory bowel disease: a budget impact analysis of iron isomaltoside 1000 (Monofer) in the UK.

    Science.gov (United States)

    Pollock, R F; Muduma, G

    2017-12-01

    Iron deficiency is the leading cause of anemia in patients with inflammatory bowel disease (IBD). Intravenous iron is the first-line treatment for clinically active IBD or previous oral iron intolerance. The aim of the present study was to develop a comparative model of iron deficiency and delivery for iron isomaltoside (IIM), ferric carboxymaltose (FCM), low molecular weight iron dextran (LMWID), and iron sucrose (IS) in the treatment of iron deficiency anemia associated with IBD. Areas covered: A model was developed to evaluate iron delivery characteristics, resource use and costs associated with IIM, FCM, LMWID and IS. Iron deficiency was modeled using dosing tables and retreatments were modeled based on a pooled retrospective analysis. The analyses were conducted over 5 years in patients with IBD with mean bodyweight of 75.4 kg and hemoglobin levels of 10.77 g/dL based on observational data. Expert opinion: The modeling analysis showed that using IIM required 1.2 infusions (per treatment) to correct the mean iron deficit, compared with 1.6, 1.2, and 7.1 with FCM, LMWID and IS, respectively. Costs were estimated to be 2,518 pounds sterling (GBP) per patient with IIM or LMWID, relative to GBP 3,309 with FCM or GBP 14,382 with IS.

  10. Performance of Iron Plaque of Wetland Plants for Regulating Iron, Manganese, and Phosphorus from Agricultural Drainage Water

    Directory of Open Access Journals (Sweden)

    Xueying Jia

    2018-01-01

    Full Text Available Agricultural drainage water continues to impact watersheds and their receiving water bodies. One approach to mitigate this problem is to use surrounding natural wetlands. Our objectives were to determine the effect of iron (Fe-rich groundwater on phosphorus (P removal and nutrient absorption by the utilization of the iron plaque on the root surface of Glyceria spiculosa (Fr. Schmidt. Rosh. The experiment was comprised of two main factors with three regimes: Fe2+ (0, 1, 20, 100, 500 mg·L−1 and P (0.01, 0.1, 0.5 mg·L−1. The deposition and structure of iron plaque was examined through a scanning electron microscope and energy-dispersive X-ray analyzer. Iron could, however, also impose toxic effects on the biota. We therefore provide the scanning electron microscopy (SEM on iron plaques, showing the essential elements were iron (Fe, oxygen (O, aluminum (Al, manganese (Mn, P, and sulphur (S. Results showed that (1 Iron plaque increased with increasing Fe2+ supply, and P-deficiency promoted its formation; (2 Depending on the amount of iron plaque on roots, nutrient uptake was enhanced at low levels, but at higher levels, it inhibited element accumulation and translocation; (3 The absorption of manganese was particularly affected by iron plague, which also enhanced phosphorus uptake until the external iron concentration exceeded 100 mg·L−1. Therefore, the presence of iron plaque on the root surface would increase the uptake of P, which depends on the concentration of iron-rich groundwater.

  11. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  12. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease.

    Science.gov (United States)

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J; Bain, Peter G; Düzel, Emrah; Husain, Masud

    2013-12-01

    In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Modern Cast Irons in Chemical Engineering

    Science.gov (United States)

    1934-11-09

    fl’ceew. T I SOCIETY OF CHEMICAL INDUSTRY CHEMICAL ENGINEERING GROUP MODERN CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to chemical or thermal resistance. Small blow-holes Any...consideration of modern cast irons in chemical seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition

  14. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Ana B. Walter-Nuno

    2018-02-01

    Full Text Available Iron is an essential element for most organisms However, free iron and heme, its complex with protoporphyrin IX, can be extremely cytotoxic, due to the production of reactive oxygen species, eventually leading to oxidative stress. Thus, eukaryotic cells control iron availability by regulating its transport, storage and excretion as well as the biosynthesis and degradation of heme. In the genome of Rhodnius prolixus, the vector of Chagas disease, we identified 36 genes related to iron and heme metabolism We performed a comprehensive analysis of these genes, including identification of homologous genes described in other insect genomes. We observed that blood-meal modulates the expression of ferritin, Iron Responsive protein (IRP, Heme Oxygenase (HO and the heme exporter Feline Leukemia Virus C Receptor (FLVCR, components of major pathways involved in the regulation of iron and heme metabolism, particularly in the posterior midgut (PM, where an intense release of free heme occurs during the course of digestion. Knockdown of these genes impacted the survival of nymphs and adults, as well as molting, oogenesis and embryogenesis at different rates and time-courses. The silencing of FLVCR caused the highest levels of mortality in nymphs and adults and reduced nymph molting. The oogenesis was mildly affected by the diminished expression of all of the genes whereas embryogenesis was dramatically impaired by the knockdown of ferritin expression. Furthermore, an intense production of ROS in the midgut of blood-fed insects occurs when the expression of ferritin, but not HO, was inhibited. In this manner, the degradation of dietary heme inside the enterocytes may represent an oxidative challenge that is counteracted by ferritins, conferring to this protein a major antioxidant role. Taken together these results demonstrate that the regulation of iron and heme metabolism is of paramount importance for R. prolixus physiology and imbalances in the levels of

  15. Efficacy of iron supplementation may be misinterpreted using conventional measures of iron status in iron-depleted, nonanemic women undergoing aerobic exercise training.

    Science.gov (United States)

    Pompano, Laura M; Haas, Jere D

    2017-12-01

    Background: Despite its known detrimental effects, iron deficiency remains the most common micronutrient deficiency in the world. Many interventions that aim to improve iron status involve physically active populations. Intense aerobic exercise training negatively affects iron status; however, the impact of regular moderate aerobic exercise on the effectiveness of iron supplementation remains unclear. Objective: This study aimed to determine whether aerobic training modifies the assessment of the effectiveness of iron supplementation in improving conventional iron status measures. Design: Seventy-two iron-depleted, nonanemic Chinese women [serum ferritin (sFer) 110 g/L] were included in an 8-wk, partially blinded, randomized controlled trial with a 2 × 2 factorial design including iron supplements (42 mg elemental Fe/d) or placebo and aerobic training (five 25-min sessions/wk at 75-85% of maximum heart rate) or no training. Linear mixed models were used to evaluate the relation between supplement type, training, and changes in iron status over time, measured by sFer, hemoglobin, soluble transferrin receptor (sTfR), and estimated total body iron. Results: After treatment, both the iron-supplemented trained and untrained groups showed significantly improved sFer, sTfR, and body iron values compared with either of the placebo groups. Similarly, trained participants had significantly higher aerobic fitness measures than untrained participants. Training modified the sFer response to supplementation (training by supplement interaction, P = 0.07), with the iron-supplemented trained group having significantly lower sFer than the iron-supplemented untrained group at week 8 (mean ± SD: 31.8 ± 13.5 and 47.6 ± 15.7 μg/L, respectively; P = 0.042), whereas there was no significant difference between the placebo trained and untrained groups (21.3 ± 12.2 and 20.3 ± 7.0 μg/L, respectively; P = 1.00). Conclusions: Regular aerobic training reduces the apparent effectiveness

  16. Effectiveness and feasibility of weekly iron and folic acid supplementation to adolescent girls and boys through peer educators at community level in the tribal area of Gujarat

    Directory of Open Access Journals (Sweden)

    Shobha P Shah

    2016-01-01

    Full Text Available Background: Anemia during adolescence affects growth and development of girls and boys increasing their vulnerability to dropping out-of-school. Hence investing in preventing anemia during adolescence is critical for their survival, growth and development. Objective: To find out the burden of anemia on adolescent age group in the tribal area of Jhagadia block and to assess the change in the hemoglobin level through the weekly Iron and Folic Acid IFA (DOTS directly observed treatment supplementation under Supervision by Peer Educators at Community level among adolescents. Methods: Community based intervention study conducted with adolescents (117 girls and 127 boys aged 10-19 years, through supplementation of IFA (DOTS by trained Peer Educators for 52 weeks in 5 tribal villages of Jhagadia. Hemoglobin level was determined by HemoCue method before and after intervention and sickle cell anemia by Electrophoresis method. Primary data on hemoglobin and number of tablets consumed was collected and statistically analyzed in SPSS 16.0 software by applying paired t-test. Results: The overall findings suggest that the prevalence of anemia reduced from 79.5% to 58% among adolescent girls and from 64% to 39% among boys. Mean rise of hemoglobin seen was 1.5 g/dl among adolescent boys and 1.3 g/dl among girls. A significant association was found in change in hemoglobin before and after intervention (P = 0.000 Conclusion: Prevalence of anemia among girls and boys can be reduced in their adolescent phase of life, through weekly supplementation of iron folic acid tablets under direct supervision and Nutrition Education by Peer Educator at community level.

  17. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron.

    Science.gov (United States)

    Pradhan, Arnab; Herrero-de-Dios, Carmen; Belmonte, Rodrigo; Budge, Susan; Lopez Garcia, Angela; Kolmogorova, Aljona; Lee, Keunsook K; Martin, Brennan D; Ribeiro, Antonio; Bebes, Attila; Yuecel, Raif; Gow, Neil A R; Munro, Carol A; MacCallum, Donna M; Quinn, Janet; Brown, Alistair J P

    2017-05-01

    Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand

  18. Intravenous iron isomaltoside 1000 (Monofer®) reduces postoperative anaemia in preoperatively non-anaemic patients undergoing elective or subacute coronary artery bypass graft, valve replacement or a combination thereof: a randomized double-blind placebo-controlled clinical trial (the PROTECT trial).

    Science.gov (United States)

    Johansson, P I; Rasmussen, A S; Thomsen, L L

    2015-10-01

    This trial explores whether intravenous iron isomaltoside 1000 (Monofer®) results in a better regeneration of haemoglobin levels and prevents anaemia compared to placebo in preoperative non-anaemic patients undergoing cardiac surgery. The trial is a prospective, double-blind, comparative, placebo-controlled trial of 60 non-anaemic patients undergoing cardiac surgery. The patients were randomized 1:1 to either 1000 mg intravenous iron isomaltoside 1000 administered perioperatively by infusion or placebo. Mean preoperative haemoglobin in the active treatment group was 14·3 g/dl vs. 14·0 g/dl in the placebo group. At discharge 5 days after surgery, haemoglobin levels were reduced to 10·7 and 10·5 g/dl, respectively. One month after surgery, haemoglobin concentration had increased to an average of 12·6 g/dl vs. 11·8 g/dl (p = 0·012) and significantly more patients were non-anaemic in the intravenous iron isomaltoside 1000-treated group compared to the placebo group (38·5% vs. 8·0%; p = 0·019). There were no differences in side-effects between the groups. A single perioperative 1000 mg dose of intravenous iron isomaltoside 1000 significantly increased the haemoglobin level and prevented anaemia 4 weeks after surgery, with a short-term safety profile similar to placebo. Future trials on potential clinical benefits of preoperative treatment with intravenous iron in non-anaemic patients are needed. © 2015 The Authors ISBT Science Series published by John Wiley & Sons Ltd on behalf of International Society of Blood Transfusion.

  19. Dinitrogen binding and cleavage by multinuclear iron complexes.

    Science.gov (United States)

    McWilliams, Sean F; Holland, Patrick L

    2015-07-21

    The iron-molybdenum cofactor of nitrogenase has unprecedented coordination chemistry, including a high-spin iron cluster called the iron-molybdenum cofactor (FeMoco). Thus, understanding the mechanism of nitrogenase challenges coordination chemists to understand the fundamental N2 chemistry of high-spin iron sites. This Account summarizes a series of studies in which we have synthesized a number of new compounds with multiple iron atoms, characterized them using crystallography and spectroscopy, and studied their reactions in detail. These studies show that formally iron(I) and iron(0) complexes with three- and four-coordinate metal atoms have the ability to weaken and break the triple bond of N2. These reactions occur at or below room temperature, indicating that they are kinetically facile. This in turn implies that iron sites in the FeMoco are chemically reasonable locations for N2 binding and reduction. The careful evaluation of these compounds and their reaction pathways has taught important lessons about what characteristics make iron more effective for N2 activation. Cooperation of two iron atoms can lengthen and weaken the N-N bond, while three working together enables iron atoms to completely cleave the N-N bond to nitrides. Alkali metals (typically introduced into the reaction as part of the reducing agent) are thermodynamically useful because the alkali metal cations stabilize highly reduced complexes, pull electron density into the N2 unit, and make reduced nitride products more stable. Alkali metals can also play a kinetic role, because cation-π interactions with the supporting ligands can hold iron atoms near enough to one another to facilitate the cooperation of multiple iron atoms. Many of these principles may also be relevant to the iron-catalyzed Haber-Bosch process, at which collections of iron atoms (often promoted by the addition of alkali metals) break the N-N bond of N2. The results of these studies teach more general lessons as well. They

  20. Effects of iron and multimicronutrient supplementation on geophagy

    DEFF Research Database (Denmark)

    Nchito, Mbiko; Geissler, P Wenzel; Mubila, Likezo

    2004-01-01

    Geophagy has been associated with iron deficiency and anaemia, but no causal relationship has been established. To clarify this, we conducted a two-by-two factorial randomised, controlled trial on the effect of iron and multimicronutrient supplementation on geophagy in Zambian schoolchildren...... was prevalent and associated with iron deficiency, but iron supplementation had no effects on geophageous behaviour. Geophagy could be a copied behaviour and the association between geophagy and iron deficiency due to impaired iron absorption following earth eating....... followed-up. In bivariate analysis, non-iron supplementation reduced the prevalence of geophagy more than iron supplementation did, but this was not confirmed in the multiple logistic regression analysis. Multimicronutrients had no effect on either geophagy prevalence or earth intake. Geophagy...

  1. Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA

    KAUST Repository

    Call, D. F.

    2011-10-14

    Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurreducens strains in metaland electrode-reducing communities supplied with lactate. © 2011, American Society for Microbiology.

  2. Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA

    KAUST Repository

    Call, D. F.; Logan, B. E.

    2011-01-01

    Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurreducens strains in metaland electrode-reducing communities supplied with lactate. © 2011, American Society for Microbiology.

  3. Online Hemodiafiltration Reduces Bisphenol A Levels.

    Science.gov (United States)

    Quiroga, Borja; Bosch, Ricardo J; Fiallos, Ruth A; Sánchez-Heras, Marta; Olea-Herrero, Nuria; López-Aparicio, Pilar; Muñóz-Moreno, Carmen; Pérez-Alvarsan, Miguel Angel; De Arriba, Gabriel

    2017-02-01

    Several uremic toxins have been identified and related to higher rates of morbidity and mortality in dialysis patients. Bisphenol A (BPA) accumulates in patients with chronic kidney disease. The aim of this study is to demonstrate the usefulness of online hemodiafiltration (OL-HDF) in reducing BPA levels. Thirty stable hemodialysis patients were selected to participate in this paired study. During three periods of 3 weeks each, patients were switched from high-flux hemodialysis (HF-HD) to OL-HDF, and back to HF-HD. BPA levels were measured in the last session of each period (pre- and post-dialysis) using ELISA and HPLC. Twenty-two patients (mean age 73 ± 14 years; 86.4% males) were included. Measurements of BPA levels by HPLC and ELISA assays showed a weak but significant correlation (r = 0.218, P = 0.012). BPA levels decreased in the OL-HDF period of hemodialysis, in contrast to the HF-HD period when they remained stable (P = 0.002). In conclusion, OL-HDF reduced BPA levels in dialysis patients. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  4. Mechanism and Influencing Factors of Iron Nuggets Forming in Rotary Hearth Furnace Process at Lower Temperature

    Science.gov (United States)

    Han, Hongliang; Duan, Dongping; Chen, Siming; Yuan, Peng

    2015-10-01

    In order to improve the efficiency of slag and iron separation, a new idea of "the separation of slag (solid state) and iron (molten state) in rotary hearth furnace process at lower temperature" is put forward. In this paper, the forming process of iron nuggets has been investigated. Based on those results, the forming mechanisms and influencing factors of iron nugget at low temperature are discussed experimentally using an electric resistance furnace simulating a rotary hearth furnace process. Results show that the reduction of iron ore, carburization of reduced iron, and the composition and quantity of slag are very important for producing iron nuggets at lower temperature. Reduction reaction of carbon-containing pellets is mainly at 1273 K and 1473 K (1000 °C and 1200 °C). When the temperature is above 1473 K (1200 °C), the metallization rate of carbon-containing pellets exceeds 93 pct, and the reduction reaction is substantially complete. Direct carburization is the main method for carburization of reduced iron. This reaction occurs above 1273 K (1000 °C), with carburization degree increasing greatly at 1473 K and 1573 K (1200 °C and 1300 °C) after particular holding times. Besides, to achieve the "slag (solid state) and iron (molten state) separation," the melting point of the slag phase should be increased. Slag (solid state) and iron (molten state) separation can be achieved below 1573 K (1300 °C), and when the holding time is 20 minutes, C/O is 0.7, basicity is less than 0.5 and a Na2CO3 level of 3 pct, the recovery rate of iron can reach 90 pct, with a proportion of iron nuggets more than 3.15 mm of nearly 90 pct. This study can provide theoretical and technical basis for iron nugget production.

  5. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron.

    Science.gov (United States)

    Sebastian, A; Prasad, M N V

    2016-11-01

    Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study. Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd-spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored. Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque-induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd-induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo-synthesis among plaque-induced plants. We conclude that ferrous sulphate-induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Hepatic iron overload: Quantitative MR imaging

    International Nuclear Information System (INIS)

    Gomori, J.M.; Horev, G.; Tamary, H.; Zandback, J.; Kornreich, L.; Zaizov, R.; Freud, E.; Krief, O.; Ben-Meir, J.; Rotem, H.

    1991-01-01

    Iron deposits demonstrate characteristically shortened T2 relaxation times. Several previously published studies reported poor correlation between the in vivo hepatic 1/T2 measurements made by means of midfield magnetic resonance (MR) units and the hepatic iron content of iron-overloaded patients. In this study, the authors assessed the use of in vivo 1/T2 measurements obtained by means of MR imaging at 0.5 T using short echo times (13.4 and 30 msec) and single-echo-sequences as well as computed tomographic (CT) attenuation as a measure of liver iron concentration in 10 severely iron-overloaded patients with beta-thalassemia major. The iron concentrations in surgical wedge biopsy samples of the liver, which varied between 3 and 9 mg/g of wet weight (normal, less than or equal to 0.5 mg/g), correlated well (r = .93, P less than or equal to .0001) with the preoperative in vivo hepatic 1/T2 measurements. The CT attenuation did not correlate with liver iron concentration. Quantitative MR imaging is a readily available noninvasive method for the assessment of hepatic iron concentration in iron-overloaded patients, reducing the need for needle biopsies of the liver

  7. Oral iron supplements for children in malaria-endemic areas

    Science.gov (United States)

    Neuberger, Ami; Okebe, Joseph; Yahav, Dafna; Paul, Mical

    2016-01-01

    , Development and Evaluation (GRADE) approach. We performed a fixed-effect meta-analysis for all outcomes and random-effects meta-analysis for hematological outcomes, and adjusted analyses for cluster RCTs. We based the subgroup analyses for anaemia at baseline, age, and malaria prevention or management services on trial-level data. Main results Thirty-five trials (31,955 children) met the inclusion criteria. Overall, iron does not cause an excess of clinical malaria (risk ratio (RR) 0.93, 95% confidence intervals (CI) 0.87 to 1.00; 14 trials, 7168 children, high quality evidence). Iron probably does not cause an excess of clinical malaria in both populations where anaemia is common and those in which anaemia is uncommon. In areas where there are prevention and management services for malaria, iron (with or without folic acid) may reduce clinical malaria (RR 0.91, 95% CI 0.84 to 0.97; seven trials, 5586 participants, low quality evidence), while in areas where such services are unavailable, iron (with or without folic acid) may increase the incidence of malaria, although the lower CIs indicate no difference (RR 1.16, 95% CI 1.02 to 1.31; nine trials, 19,086 participants, low quality evidence). Iron supplementation does not cause an excess of severe malaria (RR 0.90, 95% CI 0.81 to 0.98; 6 trials, 3421 children, high quality evidence). We did not observe any differences for deaths (control event rate 1%, low quality evidence). Iron and antimalarial treatment reduced clinical malaria (RR 0.54, 95% CI 0.43 to 0.67; three trials, 728 children, high quality evidence). Overall, iron resulted in fewer anaemic children at follow up, and the end average change in haemoglobin from base line was higher with iron. Authors' conclusions Iron treatment does not increase the risk of clinical malaria when regular malaria prevention or management services are provided. Where resources are limited, iron can be administered without screening for anaemia or for iron deficiency, as long as malaria

  8. Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil

    International Nuclear Information System (INIS)

    Sneath, Helen E.; Hutchings, Tony R.; Leij, Frans A.A.M. de

    2013-01-01

    Sites contaminated with mixtures of metals, metalloids and organics are difficult to remediate as each contaminant type may require a different treatment. Biochar, with high metal sorption capacity, used singly and in combination with iron filings, is investigated in microcosm trials to immobilise metal(loid)s within a contaminated spoil, thereby enabling revegetation and degradation of organic pollutants. A mine spoil, contaminated with heavy metals, arsenic and spiked with phenanthrene was treated with either 1%w/w biochar, 5%w/w iron or their combination, enhancing phenanthrene degradation by 44–65%. Biochar treatment reduced Cu leaching and enabled sunflower growth, but had no significant effect on As mobility. Iron treatment reduced Cu and As leaching but negatively impacted soil structure and released high levels of Fe causing sunflower plant mortality. The combined treatment reduced both Cu and As leaching and enabled sunflower growth suggesting this could be a useful approach for treating co-contaminated sites. -- Highlights: ► 56 day microcosm trials examine biochar for remediation of co-contaminated sites. ► Biochar reduces leachable Cu concentrations but phytotoxicity remains. ► Iron filings are investigated as a co-amendment with biochar to reduce As leaching. ► Removal of metal toxicity stimulates phenanthrene degradation. ► Biochar could enable revegetation of contaminated sites. -- Biochar and iron filings incorporated into contaminated spoils reduce Cu and As leaching and stimulate phenanthrene degradation, but do not prevent phytotoxicity to sunflowers

  9. Monocyte transferrin-iron uptake in hereditary hemochromatosis

    International Nuclear Information System (INIS)

    Sizemore, D.J.; Bassett, M.L.

    1984-01-01

    Transferrin-iron uptake by peripheral blood monocytes was studied in vitro to test the hypothesis that the relative paucity of mononuclear phagocyte iron loading in hereditary hemochromatosis results from a defect in uptake of iron from transferrin. Monocytes from nine control subjects and 17 patients with hemochromatosis were cultured in the presence of 59Fe-labelled human transferrin. There was no difference in 59Fe uptake between monocytes from control subjects and monocytes from patients with hemochromatosis who had been treated by phlebotomy and who had normal body iron stores. However, 59Fe uptake by monocytes from iron-loaded patients with hemochromatosis was significantly reduced compared with either control subjects or treated hemochromatosis patients. It is likely that this was a secondary effect of iron loading since iron uptake by monocytes from treated hemochromatosis patients was normal. Assuming that monocytes in culture reflect mononuclear phagocyte iron metabolism in vivo, this study suggests that the relative paucity of mononuclear phagocyte iron loading in hemochromatosis is not related to an abnormality in transferrin-iron uptake by these cells

  10. Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose.

    Science.gov (United States)

    Neiser, Susann; Rentsch, Daniel; Dippon, Urs; Kappler, Andreas; Weidler, Peter G; Göttlicher, Jörg; Steininger, Ralph; Wilhelm, Maria; Braitsch, Michaela; Funk, Felix; Philipp, Erik; Burckhardt, Susanna

    2015-08-01

    The advantage of the new generation IV iron preparations ferric carboxymaltose (FCM), ferumoxytol (FMX), and iron isomaltoside 1000 (IIM) is that they can be administered in relatively high doses in a short period of time. We investigated the physico-chemical properties of these preparations and compared them with those of the older preparations iron sucrose (IS), sodium ferric gluconate (SFG), and low molecular weight iron dextran (LMWID). Mössbauer spectroscopy, X-ray diffraction, and Fe K-edge X-ray absorption near edge structure spectroscopy indicated akaganeite structures (β-FeOOH) for the cores of FCM, IIM and IS, and a maghemite (γ-Fe2O3) structure for that of FMX. Nuclear magnetic resonance studies confirmed the structure of the carbohydrate of FMX as a reduced, carboxymethylated, low molecular weight dextran, and that of IIM as a reduced Dextran 1000. Polarography yielded significantly different fingerprints of the investigated compounds. Reductive degradation kinetics of FMX was faster than that of FCM and IIM, which is in contrast to the high stability of FMX towards acid degradation. The labile iron content, i.e. the amount of iron that is only weakly bound in the polynuclear iron core, was assessed by a qualitative test that confirmed decreasing labile iron contents in the order SFG ≈ IS > LMWID ≥ FMX ≈ IIM ≈ FCM. The presented data are a step forward in the characterization of these non-biological complex drugs, which is a prerequisite to understand their cellular uptake mechanisms and the relationship between the structure and physiological safety as well as efficacy of these complexes.

  11. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    Science.gov (United States)

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  12. Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal

    Directory of Open Access Journals (Sweden)

    Rajib Podder

    2018-03-01

    Full Text Available Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g−1 and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA, and relative Fe bioavailability (RFeB%. Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g−1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g−1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant (p ≤ 0.01 Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.

  13. Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal.

    Science.gov (United States)

    Podder, Rajib; M DellaValle, Diane; T Tyler, Robert; P Glahn, Raymond; Tako, Elad; Vandenberg, Albert

    2018-03-15

    Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g -1 ) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g -1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g -1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant ( p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.

  14. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Science.gov (United States)

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  15. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  16. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron.

    Science.gov (United States)

    Srinivasa Varadhan, A; Khodadoust, Amid P; Brenner, Richard C

    2011-10-01

    Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2-8.6) and an average hydrogen concentration of 0.75% (range of 0.3-1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of

  17. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.

    Science.gov (United States)

    Leal, Sixto M; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S; Di Pietro, Antonio; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

    2013-01-01

    Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

  18. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Sixto M Leal

    Full Text Available Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

  19. Influence of iron on plutonium absorption by the adult and neonatal rat

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Ruemmler, P.S.; Buschbom, R.L.

    1986-01-01

    To determine how iron affects plutonium absorption, adult rats were gavaged with 238 Pu nitrate (pH 2) after they had been fed an iron-deficient diet or treated with iron supplements. Neonatal rats born to dams on an iron-deficient diet were also gavaged with 238 Pu. An iron-deficient diet resulted in enhanced 238 Pu absorption both in the adults and in neonates born to iron-deficient dams. Ferric iron increased 238 Pu absorption 12-fold in adult rats; injected iron-dextran reduced that increase; gavaged ferrous iron reduced 238 Pu absorption to one-third of the control value. Rat neonates absorbed 30 to 40 times as much 238 Pu as adults; absorption was lowered in groups that received iron supplements: Iron-dextran caused a 50% reduction; ferric iron, 95%; and ferrous iron, greater than 95%. The results demonstrate an effect of the oxidation state of iron on plutonium absorption in adult rats different from that observed in suckling rats. The results suggest that the high rate of 238 Pu absorption by neonatal animals is due not only to the permeability of their intestines but also to their high demand for iron

  20. Divergence of iron metabolism in wild Malaysian yeast.

    Science.gov (United States)

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-09

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.

  1. Obesity Promotes Alterations in Iron Recycling

    Directory of Open Access Journals (Sweden)

    Marta Citelli

    2015-01-01

    Full Text Available Hepcidin is a key hormone that induces the degradation of ferroportin (FPN, a protein that exports iron from reticuloendothelial macrophages and enterocytes. The aim of the present study was to experimentally evaluate if the obesity induced by a high-fat diet (HFD modifies the expression of FPN in macrophages and enterocytes, thus altering the iron bioavailability. In order to directly examine changes associated with iron metabolism in vivo, C57BL/6J mice were fed either a control or a HFD. Serum leptin levels were evaluated. The hepcidin, divalent metal transporter-1 (DMT1, FPN and ferritin genes were analyzed by real-time polymerase chain reaction. The amount of iron present in both the liver and spleen was determined by flame atomic absorption spectrometry. Ferroportin localization within reticuloendothelial macrophages was observed by immunofluorescence microscopy. Obese animals were found to exhibit increased hepcidin gene expression, while iron accumulated in the spleen and liver. They also exhibited changes in the sublocation of splenic cellular FPN and a reduction in the FPN expression in the liver and the spleen, while no changes were observed in enterocytes. Possible explanations for the increased hepcidin expression observed in HFD animals may include: increased leptin levels, the liver iron accumulation or endoplasmic reticulum (ER stress. Together, the results indicated that obesity promotes changes in iron bioavailability, since it altered the iron recycling function.

  2. Dietary iron intake and iron status of German female vegans: results of the German vegan study.

    Science.gov (United States)

    Waldmann, Annika; Koschizke, Jochen W; Leitzmann, Claus; Hahn, Andreas

    2004-01-01

    As shown in previous studies vegetarians and especially vegans are at risk for iron deficiency. Our study evaluated the iron status of German female vegans. In this cross-sectional study, the dietary intakes of 75 vegan women were assessed by two 9-day food frequency questionnaires. The iron status was analyzed on the basis of blood parameters. Mean daily iron intake was higher than recommended by the German Nutrition Society. Still 42% of the female vegans or = 50 years (old women, OW). In all, 40% (tri-index model (TIM) 20%) of the YW and 12% (TIM 12%) of the OW were considered iron-deficient based on either serum ferritin levels of vegan diet should have their iron status monitored and should consider taking iron supplements in case of a marginal status. Copyright 2004 S. Karger AG, Basel

  3. Estrogen-dependent changes in serum iron levels as a translator of the adverse effects of estrogen during infection: a conceptual framework.

    Science.gov (United States)

    Hamad, Mawieh; Awadallah, Samir

    2013-12-01

    Elevated levels of estrogen often associate with increased susceptibility to infection. This has been attributed to the ability of estrogen to concomitantly enhance the growth and virulence of pathogens and suppress host immunity. But the exact mechanism of how estrogen mediates such effects, especially in cases where the pathogen and/or the immune components in question do not express estrogen receptors, has yet to be elucidated. Here we propose that translating the adverse effects of estrogen during infection is dependent to a significant degree upon its ability to manipulate iron homeostasis. For elevated levels of estrogen alter the synthesis and/or activity of several factors involved in iron metabolism including hypoxia inducible factor 1α (HIF-1α) and hepcidin among others. This leads to the inhibition of hepcidin synthesis in hepatocytes and the maintenance of ferroportin (FPN) integrity on the surface of iron-releasing duodenal enterocytes, hepatocytes, and macrophages. Intact FPN permits the continuous efflux of dietary and stored iron into the circulation, which further enhances pathogen growth and virulence on the one hand and suppresses host immunity on the other. This new conceptual framework may help explain a multitude of disparate clinical and experimental observations pertinent to the relationship between estrogen and infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dextran and Polymer Polyethylene Glycol (PEG Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    Directory of Open Access Journals (Sweden)

    Alisa Morss Clyne

    2012-05-01

    Full Text Available Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG. Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.

  5. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    Science.gov (United States)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  6. FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia.

    Science.gov (United States)

    Macdougall, Iain C; Bock, Andreas H; Carrera, Fernando; Eckardt, Kai-Uwe; Gaillard, Carlo; Van Wyck, David; Roubert, Bernard; Nolen, Jacqueline G; Roger, Simon D

    2014-11-01

    The optimal iron therapy regimen in patients with non-dialysis-dependent chronic kidney disease (CKD) is unknown. Ferinject® assessment in patients with Iron deficiency anaemia and Non-Dialysis-dependent Chronic Kidney Disease (FIND-CKD) was a 56-week, open-label, multicentre, prospective and randomized study of 626 patients with non-dialysis-dependent CKD, anaemia and iron deficiency not receiving erythropoiesis-stimulating agents (ESAs). Patients were randomized (1:1:2) to intravenous (IV) ferric carboxymaltose (FCM), targeting a higher (400-600 µg/L) or lower (100-200 µg/L) ferritin or oral iron therapy. The primary end point was time to initiation of other anaemia management (ESA, other iron therapy or blood transfusion) or haemoglobin (Hb) trigger of two consecutive values <10 g/dL during Weeks 8-52. The primary end point occurred in 36 patients (23.5%), 49 patients (32.2%) and 98 patients (31.8%) in the high-ferritin FCM, low-ferritin FCM and oral iron groups, respectively [hazard ratio (HR): 0.65; 95% confidence interval (CI): 0.44-0.95; P = 0.026 for high-ferritin FCM versus oral iron]. The increase in Hb was greater with high-ferritin FCM versus oral iron (P = 0.014) and a greater proportion of patients achieved an Hb increase ≥1 g/dL with high-ferritin FCM versus oral iron (HR: 2.04; 95% CI: 1.52-2.72; P < 0.001). Rates of adverse events and serious adverse events were similar in all groups. Compared with oral iron, IV FCM targeting a ferritin of 400-600 µg/L quickly reached and maintained Hb level, and delayed and/or reduced the need for other anaemia management including ESAs. Within the limitations of this trial, no renal toxicity was observed, with no difference in cardiovascular or infectious events. NCT00994318. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA.

  7. Heme Iron Concentrate and Iron Sulfate Added to Chocolate Biscuits: Effects on Hematological Indices of Mexican Schoolchildren.

    Science.gov (United States)

    Quintero-Gutiérrez, Adrián Guillermo; González-Rosendo, Guillermina; Pozo, Javier Polo; Villanueva-Sánchez, Javier

    2016-08-01

    Food fortification is one of the most effective strategies for increasing iron intake in the population. A simple blind trial was conducted to compare the effect of 2 forms of iron fortification and assess the changes in hemoglobin and iron status indices among preschool children from rural communities. Hemoglobin was evaluated in 47 children aged 3-6 years old. For 72 days (10-week period), children ate Nito biscuits. Thirteen pupils with elevated hemoglobin levels were assigned to the biscuit control group, and pupils with hemoglobin equal to 13.5 mg/dL or less were randomly allocated to consume fortified biscuits with a heme iron concentrate (n = 15) or iron sulfate (n = 19). Changes in hemoglobin, plasma ferritin, and other hematological indices were evaluated with analysis of variance (ANOVA) for repeated measurements. Except mean corpuscular hemoglobin concentrations (+1.27 ± 2.25 g/dL), hematological indices increased significantly across the study: Mean corpuscular volume (+2.2 ± 1.0 f/dL), red blood cells (+0.30 ± 0.37 M/μL), mean corpuscular hemoglobin (+1.8 ± 1.74 pg), hemoglobin (+1.68 ± 0.91 g/dL), hematocrit (+3.43% ± 3.03%), and plasma ferritin (+18.38 ± 22.1 μg/L) were all p effect of the iron-fortified chocolate biscuits in the hemoglobin levels was higher than the control group (+1.1 ± 0.2 g/dL) but no difference was found between consumers of fortified biscuits with heme iron concentrate or iron sulfate (+1.9 ± 0.2 g/dL and +2.0 ± 0.2 g/dL, respectively). Heme iron concentrate and iron sulfate were equally effective in increasing Hb levels and hematological indices. Processed foods were shown to be an effective, valuable, and admissible intervention to prevent anemia in preschool children.

  8. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  9. Assessment of iron status among preschool children (6 to 59 months) with and without malaria in Western Province, Kenya

    Science.gov (United States)

    Kisiangani, Isaac; Mbakaya, Charles; Makokha, Anzelimo; Magu, Dennis

    2015-01-01

    Introduction Iron deficiency is a major public health concern. Globally, iron deficiency ranks number 9 and is responsible for about 60% of all anemia cases among preschool children. In Africa iron deficiency is 43-52% while in Kenya, children under 5 years constitute the largest burden with 69% of them being deficient. There is limited iron deficiency data in Kenya. This study determined haemoglobin levels, serum ferritin levels, nutritional status and P.falciparum malaria infection in preschool children. Methods A household cross sectional study was undertaken among 125 preschoolers in Western province, drawn from 37 clusters. Systematic random sampling was used for sample selection. Data was collected using pretested structured questionnaires, entered in Microsoft package. Data analysis was done in Statistical package for social science (SPSS) version 20 using bivariate and multivariate logistic regression and differences were considered significant at P iron deficiency (Serum ferritin iron deficiency and anaemia (OR = 3.43, 95% CI: 1.33-8.84, p = 0.008). A preschool child with anaemia was 3.43 times likely to be iron deficient compared to a preschool child who was not anaemic. Conclusion Iron deficiency, anaemia and plasmodium falciparum malaria was prevalent among preschool children. The findings revealed a significant association between iron deficiency and anaemia. Therefore effective interventions to improve iron status will have large health benefits by greatly reducing anaemia in preschool children. PMID:26405498

  10. The effect of nutrition knowledge and dietary iron intake on iron status in young women.

    Science.gov (United States)

    Leonard, Alecia J; Chalmers, Kerry A; Collins, Clare E; Patterson, Amanda J

    2014-10-01

    Previous research on the relationships between general nutrition knowledge and dietary intake, and dietary iron intake and iron status has produced inconsistent results. Currently, no study has focused on knowledge of dietary iron and its effect on dietary iron intake. This study aimed to determine whether nutrition knowledge of iron is related to dietary iron intake in young women, and subsequently whether greater knowledge and intake translates into better iron status. A cross-sectional assessment of nutrition knowledge of iron, dietary iron intake and iron status was conducted in women aged 18-35 years living in Newcastle, NSW, Australia. Iron status was assessed by serum ferritin, haemoglobin, soluble transferrin receptor and alpha-1-glycoprotein. One hundred and seven women (27.8 ± 4.7 years) completed the nutrition knowledge questionnaire and FFQ. Of these, 74 (70%) also had biomarkers of iron status measured. Mean iron intake was 11.2 ± 3.8 mg/day. There was no association between nutrition knowledge score and whether the women met the RDI for iron (F (1, 102) = .40, P = .53). A positive correlation was shown between nutrition knowledge score and iron intake (mg/day) (r = 0.25, P = .01). Serum ferritin was positively associated with the frequency of flesh food intake (r = .27 P = .02). Vegetarians (including partial vegetarians) had significantly lower serum ferritin levels than non-vegetarians (F (1, 71) = 7.44, P = .01). Significant positive correlations found between higher flesh food intake and biomarkers of iron status suggest that educating non-vegetarians about the benefits of increased flesh food consumption and vegetarians about dietary iron enhancers and inhibitors may have potential for addressing the high rates of iron deficiency among young women. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  11. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    Science.gov (United States)

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  12. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  13. Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrugs.

    Science.gov (United States)

    Reelfs, Olivier; Eggleston, Ian M; Pourzand, Charareh

    2010-03-01

    In humans, prolonged sunlight exposure is associated with various pathological states. The continuing drive to develop improved skin protection involves not only approaches to reduce DNA damage by solar ultraviolet B (UVB) but also the development of methodologies to provide protection against ultraviolet A (UVA), the oxidising component of sunlight. Furthermore identification of specific cellular events following ultraviolet (UV) irradiation is likely to provide clues as to the mechanism of the development of resulting pathologies and therefore strategies for protection. Our discovery that UVA radiation, leads to an immediate measurable increase in 'labile' iron in human skin fibroblasts and keratinocytes provides a new insight into UVA-induced skin damage, since iron is a catalyst of biological oxidations. The main purpose of this overview is to bring together some of the new findings related to mechanisms underlying UVA-induced iron release and to discuss novel approaches based on the use of multiantioxidants and light-activated caged-iron chelators for efficient protection of skin cells against UVA-induced iron damage.

  14. The NIMO Scandinavian Study: A Prospective Observational Study of Iron Isomaltoside Treatment in Patients with Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Svein Oskar Frigstad

    2017-01-01

    Full Text Available Background. Intravenous iron allows for efficient and well-tolerated treatment in iron deficiency and is routinely used in diseases of the gastrointestinal tract. Objective. The aims of this study were to determine the probability of relapse of iron deficiency over time and to investigate treatment routine, effectiveness, and safety of iron isomaltoside. Methods. A total of 282 patients treated with iron isomaltoside were observed for two treatments or a minimum of one year. Results. Out of 282 patients, 82 had Crohn’s disease and 67 had ulcerative colitis. Another 133 patients had chronic blood loss, malabsorption, or malignancy. Patients who received an iron isomaltoside dose above 1000 mg had a 65% lower probability of needing retreatment compared with those given 1000 mg. A clinically significant treatment response was shown, but in 71/191 (37% of patients, anaemia was not corrected. The mean dose given was 1100 mg, lower than the calculated total iron need of 1481 mg. Adverse drug reactions were reported in 4% of patients. Conclusion. Iron isomaltoside is effective with a good safety profile, and high doses reduce the need for retreatment over time. Several patients were anaemic after treatment, indicating that doses were inadequate for full iron correction. This trial is registered with NCT01900197.

  15. Prevalence of Iron Deficiency Anaemia Among School Children in Kenitra, Northwest of Morocco.

    Science.gov (United States)

    Achouri, I; Aboussaleh, Y; Sbaibi, R; Ahami, A; El Hioui, M

    2015-04-01

    Iron deficiency anaemia is an important health problem in Morocco. This study was conducted to estimate the prevalence of anaemia among school children in Kenitra. The sample represents school children of all educational levels and age ranged between 6-15 years. The level of hemoglobin, haematocrit, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration was measured in a group of 271 school children. The seric iron was assessed and anaemia was defined when hemoglobin education of the mother and anaemia in children (p = 0.004) but not with the family income. It is concluded that improving the economic status of the family, women education and health education about balanced animal and plant food consumption are recommended strategies to reduce the burden of anaemia.

  16. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading

    OpenAIRE

    Makui, Hortence; Soares, Ricardo J.; Jiang, Wenlei; Constante, Marco; Santos, Manuela M.

    2005-01-01

    Hereditary hemochromatosis (HH), an iron overload disease associated with mutations in the HFE gene, is characterized by increased intestinal iron absorption and consequent deposition of excess iron, primarily in the liver. Patients with HH and Hfe-deficient (Hfe−/−) mice manifest inappropriate expression of the iron absorption regulator hepcidin, a peptide hormone produced by the liver in response to iron loading. In this study, we investigated the contribution of Hfe expression in macrophag...

  17. IRON-ZINC SUPPLEMENTATION AMONG ADOLESCENT GIRLS AT ELEMENTARY SCHOOL IN KUPANG CITY, EAST TIMOR PROVINCE.

    Directory of Open Access Journals (Sweden)

    Yustina Anie Indriastuti Kurniawan

    2014-09-01

    Full Text Available Anemia is the main micronutrient deficiency problem among adolescent girls in Indonesia. Anemia due to iron deficiency often coexists with zinc deficiency. Both iron deficiency anemia and zinc deficiency can increase the risk of obstetric complications among pregnant women i.e. bleeding during labor and post-partum hemorrhage. Iron-folate supplementation among pregnant women had been conducting since long time ago throughout this country; however, effort to improve the nutritional status particularly among adolescent girls prior to pregnancy is still lack behind. Iron and zinc have antagonistic interaction. Therefore it was challenging to alleviate anemia problem among adolescent girls with appropriate ratio of iron-zinc supplementation, and will give a benefit to improve their nutritional status. This study was aimed to investigate the different ratios of ironzinc supplementation on reducing the prevalence of anemia as improving the nutritional status of adolescent school girls.A female elementary school students age 10-12 years old (n= 137 were screened in rural area of Kupang City, East Timor Province. Subjects were assigned randomly to one of the three groups for daily iron-zinc supplementation for 12 weeks; Group 1 (iron; 60 mg/day, Group 2 (iron and zinc; 30 mg and 15 mg/day, Group 3 (iron and zinc; 60 mg and 15 mg/day. Hemoglobin concentration was measured by cyanmethemoglobin method (Hemocue to determine the prevalence of anemia (Hb level < 120 g/L, while anthropometric assessment was conducted for measuring weight and height to determine the nutritional status. General characteristics was assessed through interview. At base line, 29.1% of subjects suffered from anemia and in general, the prevalence was reduced to around 13.1% after they took iron supplements with or without zinc. Hemoglobin concentration was significantly increased among all subjects euther suffered from anemia or not. The result of this study showed that subject who

  18. Reduced iron associated with secondary nitrite maxima in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Moffetta, J.W.; Goepferta, T.J.; Naqvi, S.W.A.

    2007 Published by Elsevier Ltd. doi:10.1016/j.dsr.2007.04.004 ment of Biological Sciences, 3616 Trousedale Parkway, Los Angeles, CA 90079, USA. Dissolved iron (Fe) concentrations are generally very low in seawater, with primary production limited by Fe...

  19. The synthesis of chlorophyll-a biosynthetic precursors and methyl substituted iron porphyrins

    International Nuclear Information System (INIS)

    Matera, K.M.

    1988-01-01

    The biosynthetic intermediates were incubated in a plant system. The activity levels calculated show that magnesium 6-acrylate porphyrins and one of the magnesium 6-β-hydroxypropionate porphyrins are not intermediates. In addition, plant systems incubated with 18 O 2 were found to synthesize magnesium 2,4-divinyl pheoporphyrin-a 5 incorporated with 18 O at the 9-carbonyl oxygen. Mass spectroscopy confirmed the presence of the oxygen label, thus eliminating one of two hypothesized pathways to chlorophyll-a. An overall description is given of iron porphyrins and iron porphyrin containing proteins. The function of the propionic side chains of the heme prosthetic group during electron transport reactions will be investigated. The synthesis of a series of iron(III) hexamethyl porphyrins with increasingly longer substituents in the remaining two peripheral positions of the porphyrin is described. Models for NMR studies of iron chlorin containing enzymes are discussed. Iron(III) pyropheophorbide-a and methyl pyropheophorbide-a were synthesized in addition to 5-CD 3 , 10-CD 2 iron(III) pyropheophorbide-a and methyl pyropheophorbide-a. Together, these pyropheophorbides were used to assign NMR resonances and ultimately provide a model for other iron chlorins. The synthesis of nickel(II) anhydro-mesorhodoporphyrin from zinc(III) anhydromesorhodochlorin is described; this nickel porphyrin was used as a standard for ring current calculations of reduced nickel analogs of anhydromesorhodoporphyrin

  20. Quantitating Iron in Serum Ferritin by Use of ICP-MS

    Science.gov (United States)

    Smith, Scott M.; Gillman, Patricia L.

    2003-01-01

    A laboratory method has been devised to enable measurement of the concentration of iron bound in ferritin from small samples of blood (serum). Derived partly from a prior method that depends on large samples of blood, this method involves the use of an inductively-coupled-plasma mass spectrometer (ICP-MS). Ferritin is a complex of iron with the protein apoferritin. Heretofore, measurements of the concentration of serum ferritin (as distinguished from direct measurements of the concentration of iron in serum ferritin) have been used to assess iron stores in humans. Low levels of serum ferritin could indicate the first stage of iron depletion. High levels of serum ferritin could indicate high levels of iron (for example, in connection with hereditary hemochromatosis an iron-overload illness that is characterized by progressive organ damage and can be fatal). However, the picture is complicated: A high level of serum ferritin could also indicate stress and/or inflammation instead of (or in addition to) iron overload, and low serum iron concentration could indicate inflammation rather than iron deficiency. Only when concentrations of both serum iron and serum ferritin increase and decrease together can the patient s iron status be assessed accurately. Hence, in enabling accurate measurement of the iron content of serum ferritin, the present method can improve the diagnosis of the patient s iron status. The prior method of measuring the concentration of iron involves the use of an atomic-absorption spectrophotometer with a graphite furnace. The present method incorporates a modified version of the sample- preparation process of the prior method. First, ferritin is isolated; more specifically, it is immobilized by immunoprecipitation with rabbit antihuman polyclonal antibody bound to agarose beads. The ferritin is then separated from other iron-containing proteins and free iron by a series of centrifugation and wash steps. Next, the ferritin is digested with nitric acid

  1. Serum iron parameters in liver cirrhosis

    Science.gov (United States)

    Siregar, G. A.; Maail, W.

    2018-03-01

    The liver plays a fundamental role in iron homeostasis. Iron parameters change, especially ferritin, need to be evaluated in patients with liver cirrhosis. Serum ferritin could predict the prognosis of patients with decompensated cirrhosis since it reflects immunemediated and infectious stimuli. Ferritin could express the severity of liver disease and possible subsequent complications. Finally, it might reflect an iron overload condition resulting in significant morbidity and early mortality. 70 patients with decompensated liver cirrhosis divided into three Child-Pugh subgroups. Serum iron parameters include serum iron (SI), total iron binding capacity (TIBC) and ferritin was measured in these groups. From these 70 patients, 30 (42.9%) with HbsAg positive, 26 (37.1%) with anti-HCV positive and 14 (20%) with both HbsAg and anti-HCV positive. Of the 70 patients, 14 (20%) had CTP Class A cirrhosis, 17 (24.3%) had CTP Class B cirrhosis, and 39 (55.7%) had CTP C cirrhosis. The median (range) value of serum iron was 36 (10-345) μg/dl, TIBC was 160 (59-520) μg/dl, Ferritin was 253.5 (8-6078) ng/ml and the transferrin saturation was 22.9 (3.65-216.98) %.We found a significant difference in serum ferritin level with CTP score. Ferritin levels increased as Child-Pugh class progressed (p<0.001).

  2. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  3. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS environment: implications for passive bioremediation by tidal inundation

    Directory of Open Access Journals (Sweden)

    Yu-Chen eLing

    2015-07-01

    Full Text Available Coastal acid sulfate soils (CASS constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of passive CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from ten depths ranging from 0-20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia. Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical and lithological factors. The results illustrate spatial overlap, or close association, of iron- and sulfate-reducing bacteria in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  4. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  5. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    Science.gov (United States)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  6. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.

    Science.gov (United States)

    Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y

    2018-05-01

    Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key

  7. Daily oral iron supplementation during pregnancy

    Science.gov (United States)

    Peña-Rosas, Juan Pablo; De-Regil, Luz Maria; Dowswell, Therese; Viteri, Fernando E

    2014-01-01

    Background Iron and folic acid supplementation has been the preferred intervention to improve iron stores and prevent anaemia among pregnant women, and it may also improve other maternal and birth outcomes. Objectives To assess the effects of daily oral iron supplements for pregnant women, either alone or in conjunction with folic acid, or with other vitamins and minerals as a public health intervention. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (2 July 2012). We also searched the WHO International Clinical Trials Registry Platform (ICTRP) (2 July 2012) and contacted relevant organisations for the identification of ongoing and unpublished studies. Selection criteria Randomised or quasi-randomised trials evaluating the effects of oral preventive supplementation with daily iron, iron + folic acid or iron + other vitamins and minerals during pregnancy. Data collection and analysis We assessed the methodological quality of trials using standard Cochrane criteria. Two review authors independently assessed trial eligibility, extracted data and conducted checks for accuracy. Main results We included 60 trials. Forty-three trials, involving more than 27,402 women, contributed data and compared the effects of daily oral supplements containing iron versus no iron or placebo. Overall, women taking iron supplements were less likely to have low birthweight newborns (below 2500 g) compared with controls (8.4% versus 10.2%, average risk ratio (RR) 0.81; 95% confidence interval (CI) 0.68 to 0.97, 11 trials, 8480 women) and mean birthweight was 30.81 g greater for those infants whose mothers received iron during pregnancy (average mean difference (MD) 30.81; 95% CI 5.94 to 55.68, 14 trials, 9385 women). Preventive iron supplementation reduced the risk of maternal anaemia at term by 70% (RR 0.30; 95% CI 0.19 to 0.46, 14 trials, 2199 women) and iron deficiency at term by 57% (RR 0.43; 95% CI 0.27 to 0.66, seven trials, 1256 women

  8. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions

    DEFF Research Database (Denmark)

    Broholm, Mette; Arvin, Erik

    2000-01-01

    in the groundwater. The potential for biodegradation of the phenols in the sandstone aquifer at the site has been investigated in laboratory microcosms under aerobic (oxygen amended) and mixed nitrate and iron reducing (nitrate enriched and unamended) anaerobic conditions, at a range of concentrations (low: similar...... to 5 mg 1(-1): high: similar to 60 mg 1(-1), and very high: similar to 600 mg 1(-1)) and in the presence of other organic coal-tar compounds (mono- and polyaromatic hydrocarbons (BTEXs and PAHs) and heterocyclic compounds (NSOs)) and ammonia liquor. Sandstone cores and groundwater for the microcosms...

  9. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload.

    Science.gov (United States)

    Elalfy, Mohsen S; Saber, Maha M; Adly, Amira Abdel Moneam; Ismail, Eman A; Tarif, Mohamed; Ibrahim, Fatma; Elalfy, Omar M

    2016-03-01

    Vitamin C, as antioxidant, increases the efficacy of deferoxamine (DFO). To investigate the effects of vitamin C as an adjuvant therapy to the three used iron chelators in moderately iron-overloaded young vitamin C-deficient patients with β-thalassemia major (β-TM) in relation to tissue iron overload. This randomized prospective trial that included 180 β-TM vitamin C-deficient patients were equally divided into three groups (n = 60) and received DFO, deferiprone (DFP), and deferasirox (DFX). Patients in each group were further randomized either to receive vitamin C supplementation (100 mg daily) or not (n = 30). All patients received vitamin C (group A) or no vitamin C (group B) were followed up for 1 yr with assessment of transfusion index, hemoglobin, iron profile, liver iron concentration (LIC) and cardiac magnetic resonance imaging (MRI) T2*. Baseline vitamin C was negatively correlated with transfusion index, serum ferritin (SF), and LIC. After vitamin C therapy, transfusion index, serum iron, SF, transferrin saturation (Tsat), and LIC were significantly decreased in group A patients, while hemoglobin and cardiac MRI T2* were elevated compared with baseline levels or those in group B without vitamin C. The same improvement was found among DFO-treated patients post-vitamin C compared with baseline data. DFO-treated patients had the highest hemoglobin with the lowest iron, SF, and Tsat compared with DFP or DFX subgroups. Vitamin C as an adjuvant therapy possibly potentiates the efficacy of DFO more than DFP and DFX in reducing iron burden in the moderately iron-overloaded vitamin C-deficient patients with β-TM, with no adverse events. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: a substudy of the Iron (Fe) and Atherosclerosis Study (FeAST) Trial.

    Science.gov (United States)

    Depalma, Ralph G; Hayes, Virginia W; Chow, Bruce K; Shamayeva, Galina; May, Patricia E; Zacharski, Leo R

    2010-06-01

    This study delineated correlations between ferritin, inflammatory biomarkers, and mortality in a cohort of 100 cancer-free patients with peripheral arterial disease (PAD) participating in the Veterans Affairs (VA) Cooperative Study #410, the Iron (Fe) and Atherosclerosis Study (FeAST). FeAST, a prospective, randomized, single-blind clinical trial, tested the hypothesis that reduction of iron stores using phlebotomy would influence clinical outcomes in 1227 PAD patients randomized to iron reduction or control groups. The effects of statin administration were also examined in the Sierra Nevada Health Care (SNHC) cohort by measuring serum ferritin levels at entry and during the 6-year study period. No difference was documented between treatment groups in all-cause mortality and secondary outcomes of death plus nonfatal myocardial infarction and stroke. Iron reduction in the main study caused a significant age-related improvement in cardiovascular disease outcomes, new cancer diagnoses, and cancer-specific death. Tumor necrosis factor (TNF)-alpha, TNF-alpha receptors 1 and 2, interleukin (IL)-2, IL-6, IL-10, and high-sensitivity C reactive protein (hs-CRP) were measured at entry and at 6-month intervals for 6 years. Average levels of ferritin and lipids at entry and at the end of the study were compared. The clinical course and ferritin levels of 23 participants who died during the study were reviewed. At entry, mean age of entry was 67 +/- 9 years for the SNHCS cohort, comparable to FeAST and clinical and laboratory parameters were equivalent in substudy participants randomized to iron reduction (n = 51) or control (n = 49). At baseline, 53 participants on statins had slightly lower mean entry-level ferritin values (114.06 ng/mL; 95% confidence interval [CI] 93.43-134.69) vs the 47 off statins (127.62 ng/mL; 95% CI, 103.21-152.02). Longitudinal analysis of follow-up data, after adjusting for the phlebotomy treatment effect, showed that statin use was associated with

  11. Effect of iron deficiency on the biodistribution and tumor uptake of Ga-67 citrate in animals: concise communication

    International Nuclear Information System (INIS)

    Bradley, W.P.; Alderson, P.O.; Weiss, J.F.

    1979-01-01

    To investigate the effect of iron deficiency on the biodistribution and tumor uptake of Ga-67 citrate, 20 weanling Sprague-Dawley rats were maintained for 6 to 8 weeks on a low-iron diet. Eighteen littermates were maintained on a normal iron diet and served as controls. Animals received 10 μCi Ga-67 citrate, and urine and feces were collected for 48 h. The animals were then killed, tissue samples were obtained, and serum iron and unsaturated iron-binding capacity (UIBC) were measured. The accumulation of Ga-67 in the liver and spleen (% injected dose) was markedly increased in iron-deficient animals and urinary excretion was reduced. Tumor uptake was not significantly different in iron-deficient and control animals, but tumor-to-blood ratios were elevated (p < 0.001) in the iron-deficient animals because of low blood levels of Ga-67. The liver and spleen accumulation of Ga-67 correlated significantly (p < 0.001) with the UIBC. The results show that iron deficiency alters the distribution of Ga-67 citrate, and suggest that the variable liver-spleen uptake seen in clinical Ga-67 images may be explained, in part, by changes in serum iron and UIBC

  12. Aneuploidy assessed by DNA index influences the effect of iron status on plasma and/or supernatant cytokine levels and progression of cells through the cell cycle in a mouse model.

    Science.gov (United States)

    Kuvibidila, Solo; Porretta, Connie; Baliga, Surendra

    2014-02-01

    Aneuploidy, a condition associated with altered chromosome number, hence DNA index, is frequently seen in many diseases including cancers and affects immunity. Iron, an essential nutrient for humans, modulates the immune function and the proliferation of normal and cancer cells. To determine whether impaired immunity seen in iron-deficient subjects may be related to aneuploidy, we measured spleen cell DNA index, percent of cells in different phases of the cell cycle, plasma and/or supernatant IL-2, IL-10, IL-12, and interferon-gamma in control, pair-fed, iron-deficient, and iron-replete mice (N=20-22/group). The test and control diets differed only in iron content (0.09mmol/kg versus 0.9mmol/kg) and were fed for 68days. Mean levels of hemoglobin and liver iron stores of iron-deficient and iron-replete mice were 40-60% lower than those of control and pair-fed mice (P<0.05). Mean plasma levels of IL-10, interferon-gamma and percent of cells in S+G2/M phases were lower in mice with than in those without aneuploidy (P<0.05). Lowest plasma IL-12 and interferon-gamma concentrations were observed in iron-deficient mice with aneuploidy. Mean percents of cultures with aneuploidy and DNA indexes were higher in iron-deficient and iron-replete than in control and pair-fed mice likely due to delayed cell division (P<0.05). Aneuploidy decreased the concentration of IL-2 and interferon-gamma in baseline cultures while it increased that of interferon-gamma in anti-CD3 treated cultures. Aneuploidic indexes negatively correlated with cytokine levels, percents of cells in S+G2/M phases and indicators of iron status (P<0.05). Although chromosome cytogenetics was not performed, for the first time, we report that increased aneuploidy rate may modulate the immune function during iron-deficiency. Copyright © 2014. Published by Elsevier Ltd.

  13. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  14. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron.

    Directory of Open Access Journals (Sweden)

    Arnab Pradhan

    2017-05-01

    Full Text Available Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1. We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an

  15. Influence of food tannins on certain aspects of iron metabolism : Part 2 -- Storage and transport in normal and anemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S N [Albert Einstein Coll. of Medicine, Bronx, NY (USA); Mukherjee, S [Calcutta Univ. (India). Dept. of Applied Chemistry

    1979-04-01

    Administration of tannin (0.5 mg/kg body wt/day) from fruits and vegetables lowers the iron content in liver, spleen and bone marrow with an elevation in Total Iron Binding Capacity (TIBC) of serum and serum iron concentration in normal rats. The same dose of tannin increases the iron content in storage tissues, particularly bone marrow of hemolytic anemic rats. In anemic rats, TIBC is decreased and serum iron concentration is raised from anemic level to approximately normal value due to ingestion of tannin. Radioiron administration, either by oral or by intravenous route, also elicits similar results. Recovery of iron storage and transport values from the anemic to the normal condition by tannin (0.5 mg/kg) varies with the source of tannin used. Thus more iron required for compensating the anemic conditions is retained within their body by tannin (0.5 mg/kg) which appears to reduce the loss of peripheral iron probably by protecting the lysis of red cells.

  16. Iron status in obese women.

    Science.gov (United States)

    Stankowiak-Kulpa, Hanna; Kargulewicz, Angelika; Styszyński, Arkadiusz; Swora-Cwynar, Ewelina; Grzymisławski, Marian

    2017-12-23

    A decreased concentration of iron, and consecutively haemoglobin, ferritin and decreased level of saturated transferrin, were observed in obese individuals more often than in healthy subjects. The purpose of this study was to determine whether iron, ferritin, transferrin saturation are significantly diminished in obese female patients compared to non-obese counterparts, and whether excess adiposity and inflammation were associated with depleted iron. Female patients (n=48) diagnosed with obesity (BMI > 30 kg/m2), aged 18-40 were accepted for the study. A control group (n=30) encompassed normal weight women, aged 18-30. All obese women obtained an individually adjusted dietary plan with an energy content of 1,500 kcal. Blood glucose, insulin, lipids, ferritin, TIBC and iron concentrations were assayed in serum twice, initially and after 8 weeks of dieting. The obese women at the initial evaluation, in comparison to non-obese control women, were characterized by a significantly lower mean red blood cell volume (MCV; 84.2±12.4 vs. 91.3±9.3 fL; piron level (92.6±42.4 vs. 119.8±44.0 μg/dL; piron homeostasis. Weight loss leads to decrease in the CRP level, but it does not change haematologic parameters in the period of 8 weeks.

  17. Iron Refractory Iron Deficiency Anaemia: A Rare Cause of Iron Deficiency Anaemia

    LENUS (Irish Health Repository)

    McGrath, T

    2018-01-01

    We describe the case of a 17-month-old boy with a hypochromic microcytic anaemia, refractory to oral iron treatment. After exclusion of dietary and gastrointestinal causes of iron deficiency, a genetic cause for iron deficiency was confirmed by finding two mutations in the TMPRSS6 gene, consistent with a diagnosis of iron-refractory iron deficiency anaemia (IRIDA).

  18. Serum hepcidin levels, iron status, and HFE gene alterations during the first year of life in healthy Spanish infants.

    Science.gov (United States)

    Aranda, Nuria; Bedmar, Cristina; Arija, Victoria; Jardí, Cristina; Jimenez-Feijoo, Rosa; Ferré, Natalia; Tous, Monica

    2018-06-01

    The aims of this study were to describe hepcidin levels and to assess their associations with iron status and the main variants in the HFE gene in healthy and full-term newborns during the first year of life, as a longitudinal study conducted on 140 infants. Anthropometric and biochemical parameters, hepcidin, hemoglobin (Hb), serum ferritin (SF), transferrin saturation (TS), mean corpuscular volume (MCV), and C-reactive protein (CRP), were assessed in 6- and 12-month-olds. Infants were genotyped for the three main HFE variants: C282Y, H63D, and S65C. Hepcidin levels increased from 6 to 12 months of age (43.7 ± 1.5 to 52.0 ± 1.5 ng/mL; p HFE gene (p = 0.046 and p = 0.048 in 6- and 12-month-olds, respectively). However, this association was not found in HFE-alteration-carrying infants. Hepcidin levels increased in healthy infants during the first year of life and were positively associated with iron levels only in infants with wild-type HFE gene, a situation that requires further investigation.

  19. Reduction experiment of iron scale by adding waste plastics.

    Science.gov (United States)

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2009-01-01

    The special features of waste plastics in China are huge in total amount, various in type and dispersive in deposition. Therefore, it is necessary to try some new ways that are fit to Chinese situation for disposing waste plastics as metallurgical raw materials more effectively and flexibly. Owing to its high ferrous content and less impurity, the iron scale became ideal raw material to produce pure iron powder. One of the methods to produce pure iron powder is Hoganas Method, by which, after one or multistage of reduction steps, the iron scale can be reduced pure iron powder. However, combining utilization of waste plastics and iron powder production, a series of reduction experiments were arranged and investigated, which is hoped to take use of both thermal and chemical energy contained in waste plastics as well as to improve the reducing condition of iron scale, and hence to develop a new metallurgical way of disposing waste plastics. The results show that under these experimental conditions, the thermal-decomposition of water plastics can conduce to an increase of porosity in the reduction systems. Moreover, better thermodynamics and kinetics conditions for the reduction of scale can be reached. As a result, the reduction rate is increased.

  20. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    Directory of Open Access Journals (Sweden)

    Mariina Hiiob

    2012-08-01

    Full Text Available Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight different water treatment systems (aeration combined with Manganese Greensand, Birm, Nevtraco, Hydrolit-Mn, Magno-Dol and quartz sand filters in Võru County. The results demonstrate that in most cases the systems with pre-aeration effectively purify groundwater from iron, but only 13 out of 20 water treatment plants achieved a reduction of iron concentration to the level fixed in drinking water requirements (0.2 mg L–1. Manganese content decreased below the maximum allowed concentration in only 25% of systems and in cases where the filter media was Birm or quartz sand and pre-oxidation was applied. The study showed that the high level of iron purification does not guarantee effective removal of manganese.

  1. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Multi-Copper Oxidases and Human Iron Metabolism

    Science.gov (United States)

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  3. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  4. Reduction of iron-bearing lunar minerals for the production of oxygen

    Science.gov (United States)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  5. Chilean complementary feeding program reduces anemia and improves iron status in children aged 11 to 18 months.

    Science.gov (United States)

    Brito, Alex; Olivares, Manuel; Pizarro, Tito; Rodríguez, Lorena; Hertrampf, Eva

    2013-12-01

    Iron deficiency is the most prevalent nutritional deficiency in the world, primarily affecting infants, young children, and women of childbearing age. To evaluate the impact of the National Complementary Feeding Program (NCFP) on anemia and iron status in Chilean children aged 11 to 18 months. Two studies were performed. The first study was performed at one public outpatient health center in Santiago, using data collected in 1999 (n = 128) and 2000 (n = 125), before and after the national introduction of iron-fortified milk. Subsequently, a study of a representative sample (n = 320) from the two most populated areas of the country was performed in 2009. One year after fortification, the prevalence of anemia was 9%; significantly lower (p < .001) than the 27% prevalence observed 1 year before. Ten years after fortification, 14% of children were anemic and 77% of children with anemia (12% of all children) suffered from iron-deficiency anemia. In 2009, 11% of children consuming iron-fortified milk delivered by the NCFP (73%) were anemic, significantly lower (p = .028) than the 21% prevalence of anemia observed in children without consumption. Consumption of iron-fortified milk was positively associated with hemoglobin concentration (r = 0.28, p = .022) and was associated with a lower prevalence of anemia after adjusting for confounding factors (odds ratio, 0.50; 95% CI, 0.26 to 0.96). In Chile, the NCFP has had an impact on the reduction of anemia and improved the iron status of children aged 11 to 18 months. Increasing the consumption of this iron-fortified milk could enhance the impact of the NCFP.

  6. Simulation of a Sponge Iron Production Process

    Directory of Open Access Journals (Sweden)

    Tor Onshus

    1983-07-01

    Full Text Available A model for reduction of FeO with hydrogen in a countercurrent moving bed reactor is summarized. This model is a special case of a mor ecomplete model which also includes reduction of the higher oxides, hematite and magnetite, with a mixture of reducing gases, thus describing the production of direct-reduced iron from iron ores. Equations governing the heat and mass transfer between the gas and solid phase are not given here, but play an important role in the dynamic bahviour of the model.

  7. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  8. Subcellular Iron Localization Mechanisms in Plants

    Directory of Open Access Journals (Sweden)

    Emre Aksoy

    2017-12-01

    Full Text Available The basic micro-nutrient element iron (Fe is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

  9. The Role of Eating Habits on the Iron Status of Pregnant Women.

    Science.gov (United States)

    Bivolarska, Anelia V; Gatseva, Penka D; Maneva, Ana I

    2016-01-01

    This study highlights the relationship between some eating habits and iron status during pregnancy. The study included 219 healthy pregnant women aged 27.6 ± 5.7 years from southern Bulgaria. Subjects' iron status was assessed on the basis of the following iron indicators: hemoglobin (Hb), serum ferritin (SF), serum transferrin receptor (sTfR), and body iron index (mg/kg). Severe anemia among the women from southern Bulgaria was not observed. Advanced pregnancy and some eating habits are factors that deteriorate iron status. Women who had consumed fish at least 3 times a week had lower levels of sTfR (р = 0.008), higher levels of SF (р = 0.05), and lower levels of body iron (р = 0.018). Frequent legume consumption was related to increased levels of sTfR (р = 0.036). Pregnant women with a high frequency of coffee consumption had lower values of body iron (р < 0.0001). Women who had consumed cow's milk at least 3 times a week had lower levels of SF (р = 0.026) and body iron (р = 0.042). Regular consumption of fish and legumes, rarely drinking coffee, and milk consumption during the intervals between food intake are conditions for optimization of iron status during pregnancy.

  10. Magnetic resonance imaging of splenic iron overload

    International Nuclear Information System (INIS)

    Arrive, L.; Thurnher, S.; Hricak, H.; Price, D.C.

    1990-01-01

    The value of magnetic resonance (MR) imaging in assessing iron overload in the spleen was retrospectively investigated in 40 consecutive patients. MR appearance, mesaure of signal intensity and T1-and T2-relaxation times were correlated with the histologically determined level of iron in the spleen in each patient. Histologic examination revealed no iron overload in 19 patients, mild iron overload in seven, moderate iron overload in six, and severe iron overload in eight. All 19 patients with no splenic iron overload and 11 of the other 21 patients with splenic iron overload were correctly identified by MR imaging (sensitivity 52%, specificity 100%, accuracy 75%). Splenic iron overload was diagnosed when a decrease of signal intensity of the spleen compared with those of adipose tissue and renal cortex was demonstrated. MR images demonstrated all eight cases of severe, three of the six cases of moderate, and none of the seven cases of mild iron overload. Only spleens with severe iron overload had a significant mean decrease in signal intensity and T1- and T2-relaxation times. Although specific, MR imaging is poorly sensitive to splenic iron overload. (author). 15 refs.; 5 figs.; 3 tabs

  11. Improved crud iron removal efficiency for powder resin type condensate filters

    International Nuclear Information System (INIS)

    Nagai, Hiroshi; Ino, Takao

    1989-01-01

    In 1984, a precoat type condensate filtration system was delivered to The Tokyo Electric Power Co., Inc. by Ebara and stable operation of the system is reported ever since. Originally, condensate filtration systems are used to remove crud iron in condensate water. However, it has become desirable to freely control the crud iron in the outlet flow of such filtration system. The main source of radioactivity in a BWR plant, is Cobalt 60, and it is necessary to optimally control the amount of crud iron released into the reactor to match the nickel and cobalt amounts in the reactor feed water for achieving an overall reduction of the concentration of radioactivity within the BWR plant. The method of such control, developed by the authors, is outlined in the following. By this method, the radioactive level within the overall plant is significantly decreased. Consequently, the risk of radioactive exposure of personnel at time of periodical checkup is greatly reduced. (author)

  12. Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection.

    Science.gov (United States)

    da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja

    2014-02-01

    We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

  13. LABILE IRON IN CELLS AND BODY FLUIDS . Physiology, Pathology and Pharmacology

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2014-03-01

    Full Text Available In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI composition varies with metal concentration and substances with chelating groups but also with pH and the redox potential. Although physiologically in the lower µM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (that renders iron essentially non-labile, in systemic iron overload (IO, the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma transferrin approaches iron saturation, labile plasma iron (LPI emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of iron overload, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in iv iron formulations per se as well as in plasma (LPI following parenteral iron

  14. Iron and its complexes in silicon

    Science.gov (United States)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.

  15. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific.

    Science.gov (United States)

    Silver, Mary W; Bargu, Sibel; Coale, Susan L; Benitez-Nelson, Claudia R; Garcia, Ana C; Roberts, Kathryn J; Sekula-Wood, Emily; Bruland, Kenneth W; Coale, Kenneth H

    2010-11-30

    Near-surface waters ranging from the Pacific subarctic (58°N) to the Southern Ocean (66°S) contain the neurotoxin domoic acid (DA), associated with the diatom Pseudo-nitzschia. Of the 35 stations sampled, including ones from historic iron fertilization experiments (SOFeX, IronEx II), we found Pseudo-nitzschia at 34 stations and DA measurable at 14 of the 26 stations analyzed for DA. Toxin ranged from 0.3 fg·cell(-1) to 2 pg·cell(-1), comparable with levels found in similar-sized cells from coastal waters. In the western subarctic, descent of intact Pseudo-nitzschia likely delivered significant amounts of toxin (up to 4 μg of DA·m(-2)·d(-1)) to underlying mesopelagic waters (150-500 m). By reexamining phytoplankton samples from SOFeX and IronEx II, we found substantial amounts of DA associated with Pseudo-nitzschia. Indeed, at SOFeX in the Antarctic Pacific, DA reached 220 ng·L(-1), levels at which animal mortalities have occurred on continental shelves. Iron ocean fertilization also occurs naturally and may have promoted blooms of these ubiquitous algae over previous glacial cycles during deposition of iron-rich aerosols. Thus, the neurotoxin DA occurs both in coastal and oceanic waters, and its concentration, associated with changes in Pseudo-nitzschia abundance, likely varies naturally with climate cycles, as well as with artificial iron fertilization. Given that iron fertilization in iron-depleted regions of the sea has been proposed to enhance phytoplankton growth and, thereby, both reduce atmospheric CO(2) and moderate ocean acidification in surface waters, consideration of the potentially serious ecosystem impacts associated with DA is prudent.

  16. Blood Donation, Being Asian, and a History of Iron Deficiency Are Stronger Predictors of Iron Deficiency than Dietary Patterns in Premenopausal Women

    Directory of Open Access Journals (Sweden)

    Kathryn L. Beck

    2014-01-01

    Full Text Available This study investigated dietary patterns and nondietary determinants of suboptimal iron status (serum ferritin < 20 μg/L in 375 premenopausal women. Using multiple logistic regression analysis, determinants were blood donation in the past year [OR: 6.00 (95% CI: 2.81, 12.82; P<0.001], being Asian [OR: 4.84 (95% CI: 2.29, 10.20; P<0.001], previous iron deficiency [OR: 2.19 (95% CI: 1.16, 4.13; P=0.016], a “milk and yoghurt” dietary pattern [one SD higher score, OR: 1.44 (95% CI: 1.08, 1.93; P=0.012], and longer duration of menstruation [days, OR: 1.38 (95% CI: 1.12, 1.68; P=0.002]. A one SD change in the factor score above the mean for a “meat and vegetable” dietary pattern reduced the odds of suboptimal iron status by 79.0% [OR: 0.21 (95% CI: 0.08, 0.50; P=0.001] in women with children. Blood donation, Asian ethnicity, and previous iron deficiency were the strongest predictors, substantially increasing the odds of suboptimal iron status. Following a “milk and yoghurt” dietary pattern and a longer duration of menstruation moderately increased the odds of suboptimal iron status, while a “meat and vegetable” dietary pattern reduced the odds of suboptimal iron status in women with children.

  17. Effect of Iron Oxides (Ordinary and Nano and Municipal Solid Waste Compost (MSWC Coated Sulfur on Wheat (Triticum aestivum L. Plant Iron Concentration and Growth

    Directory of Open Access Journals (Sweden)

    S Mazaherinia

    2011-02-01

    Full Text Available Abstract A greenhouse study was conducted to compare the effects of ordinary iron oxide (0.02-0.06 mm and nano iron oxide (25-250 nm and five levels of both iron oxides (0, 0.05, 0.1, 0.5, and 1.0 %w/w and two levels of sulfurous granular compost (MSW (0 and 2% w/w on plant height, spike length, grain weight per spike, total plant dry matter weight and thousands grain weight of wheat. The experimental factors were combined in factorial arrangement in a completely randomized design with 3 replications. Results showed that nano iron oxide was superior over ordinary iron oxide in all parameters studied. Fe concentration, spike length, plant height, grain weight per spike, total plant dry weight and thousands grain weight showed increasing trend per increase in both of iron oxides levels. Also, all parameters studied in sulfurous granular compost (MSW treatment were superior over granular compost without sulfurous (MSW. This increase in all parameters were significantly higher when urban solid waste compost coated with sulfur coupled with nano iron oxide compared to urban sulfurous granular compost (MSW along with ordinary iron oxide. Keywords: Sulfurous granular compost (MSW, Nano and ordinary iron oxides, Wheat

  18. [The efficacy of phlebotomy with a low iron diet in the management of pulmonary iron overload].

    Science.gov (United States)

    Fukuda, Tomoko; Kimura, Fumiaki; Watanabe, Yoichi; Yoshino, Tadasi; Kimura, Ikuro

    2003-05-01

    Numerous studies have shown that workers in ferriferous industries have an elevated risk of respiratory tract neoplasia and other airway diseases. Evidence is presented that iron is a carcinogenic and tissue toxic hazard as regarding the inhalation of ferriferous substances. Elimination of the inhaled iron and prevention from accumulation of iron in the lung seems to be very important. A 26-year-old man was admitted to our hospital complaining of right chest pain. He had worked as an arc welder for two years without a mask. A chest CT showed diffuse ground glass opacity in the bilateral lung fields. A transbronchial lung biopsy specimen showed numerous alveolar and interstitial iron-laden macrophages. A 200 ml phlebotomy was carried out biweekly in combination with a low iron diet (8 mg/day). When serum ferritin reached 20 ng/ml, phlebotomy was stopped. After that, serum ferritin level was kept at around 20 ng/ml with the low iron diet alone. A transbronchial lung biopsy was carried out again 7 months later and the specimen showed remarkable reduction in the number of iron-laden alveolar and interstitial macrophages. Phlebotomy in combination with a low iron diet might become a useful strategy in the management of pulmonary conditions associated with iron loading.

  19. Noise pollution in iron and steel industry

    International Nuclear Information System (INIS)

    Bisio, G.; Piromalli, W.; Acerbo, P.

    1999-01-01

    Iron and steel industry is characterized by high energy consumption and thus present remarkable problems from the point of view of noise pollution. The aims of this paper is to examine characteristic and acoustical emissions and immisions of some fundamentals iron and steel plants with several remarks on the possible measures to reduce noise pollution. For a large integrate iron and steel system, some surveys are shown with all devices running and, in addition, comparisons are made with other surveys when the main devices were out of service owing to great maintenance works [it

  20. Serum levels of iron in Sør-Varanger northern Norway - An iron mining municipality

    OpenAIRE

    Broderstad, Ann R.; Smith-Sivertsen, Tone; Dahl, Inger Marie S.; Ingebretsen, Ole Christian; Lund, Elliv

    2006-01-01

    Objectives. The purpose of this study was to investigate iron status in a population with a high proportion of miners in the northernmost part of Norway. Study Design. Cross-sectional, population-based study performed in order to investigate possible health effects of pollution in the population living on both sides of the Norwegian-Russian border. Methods. All individuals living in the community of Sør-Varanger were invited for screening in 1994. In 2000, blood samples from 2949 participants...

  1. ARTICLE - Path analysis of iron and zinc contents and others traits in cowpea

    Directory of Open Access Journals (Sweden)

    Jeane de Oliveira Moura

    2012-12-01

    Full Text Available The objective of this study was to estimate the direct and indirect effects of agronomic and culinary traits on iron and zinc contents in 11 cowpea populations. Correlations between traits were estimated and decomposed into direct and indirect effects using path analysis. For the study populations, breeding for larger grain size, higher number of grains per pod, grain yield, reduced cooking time, and number of days to flowering can lead to decreases in the levels of iron and zinc in the grain. Genetic gains for the iron content can be obtained by direct selection for protein content by indirect effects on the number of grains per pod, 100-grain weight and grain yield. The positive direct effect of grain size and protein content on the zinc content indicates the possibility of simultaneous gain by combined selection of these traits.

  2. Concentration of 99Tc in seawater by coprecipitation with iron hydroxide

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Eto, Ichiro; Muhammad Sayad; Takashima, Yoshimasa

    1991-01-01

    A method for accumulation of 99 Tc in seawater has been developed. Technetium tracer in +VII oxidation state was added to the seawater together with reducing agent, potassium pyrosulfite, and coprecipitation agent, ferric chloride. After reduction of Tc(VII) at pH 4, Tc(IV) was coprecipitated as iron hydroxide by addition of sodium hydroxide to pH 9. The reduction and coprecipitation was quantitative and overall recovery of Tc was more than 98%. The green color of iron precipitate formed at pH 9 suggested that Tc(VII) as well as ferric ion was reduced under this condition. Adsorption of Tc(IV), however, was poor for iron hydroxide which was prepared in advance indicating active surface of freshly precipitated iron hydroxide is necessary for quantitative recovery of Tc(IV). A repeating coprecipitation technique was examined for enrichment of Tc in seawater that the same iron was used repeatedly as coprecipitater. After separation of iron hydroxide with Tc(IV) from supernatant, the precipitate was dissolved by addition of acid and then new seawater which contained reducing agent and Tc(VII) was added. Reduction and coprecipitation was again carried out. Good recovery was attained for 7 repeats. The proposed repeating coprecipitation technique was applicable to a large amount of seawater without increasing the amount of iron hydroxide which is subjected to radiochemical analysis. (author)

  3. Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis

    DEFF Research Database (Denmark)

    Srinivasan, Gayathri; Aitken, Jesse D; Zhang, Benyue

    2012-01-01

    Various states of inflammation, including sepsis, are associated with hypoferremia, which limits iron availability to pathogens and reduces iron-mediated oxidative stress. Lipocalin 2 (Lcn2; siderocalin, 24p3) plays a central role in iron transport. Accordingly, Lcn2-deficient (Lcn2KO) mice exhib...

  4. Evaluation of the daily iron intake by non-breastfed Egyptian infants ...

    African Journals Online (AJOL)

    Iron deficiency is frequently associated with anaemia. The prevalence of anaemia among Egyptian infants and young children is 25%. Fortification of infant and followup milk-based formulae remains a valuable method for delivering iron to reduce the incidence of iron deficiency anaemia. Percentage of Egyptian ...

  5. Effect of irradiation and storage in the iron availability in lamb meat treated with different diets

    International Nuclear Information System (INIS)

    Souza, Adriana Regia Marques de; Arthur, Valter

    2008-01-01

    Irradiation is an efficient method to increase the microbiological safety and to maintain the nutrients such as iron in the meat. The best absorption form, heme iron, should be preserved in order to increase the nutritional quality of stored meat. The diet can alter the nutrients contents and form in the meat. The iron is provided from the diet and it is an essential element for the metabolic processes such as oxygen transport, oxidative metabolism, and cellular growth. Meat lamb samples treated with different diets (it controls, TAC1, TAC2 and sorghum) were wrapped to vacuous, and irradiated in the doses 0, 2 and 4 kGy and stored at 4 deg C during 15 days. The values of total iron and heme iron were measured at 0 and 15 days of storage. The storage reduced the content of total iron (18.36 for 14.28 mg.100 g -1 ) and heme iron (13.78 for 10.52 mg.100 g -1 ). The diets affected the levels of total and heme iron of the meat, and the sorghum diet was the one that presented the larger content. The dose of 2 kGy was the one that affected the iron the most independently of the storage time. It was verified that the amounts of total and heme iron varied according to the storage time, irradiation doses, and lamb diets. (author)

  6. Suitability of instant noodles for iron fortification to combat iron-deficiency anemia among primary schoolchildren in rural Vietnam.

    Science.gov (United States)

    Le, Huong Thi; Brouwer, Inge D; de Wolf, Corine A; van der Heijden, Lidwien; Nguyen, Khan Cong; Kok, Frans J

    2007-09-01

    Anemia is a significant public health problem among schoolchildren in Vietnam. Food fortification is considered one of the most sustainable long-term strategies to control iron-deficiency anemia in Vietnam. The success of a food-fortification program depends on the choice of the food vehicle. The aim of the present study was to identify an appropriate vehicle for iron fortification to be used in a school-feeding program aimed at improving the iron and anemia status of schoolchildren in rural Vietnam. Children 6 to 8 years of age in two primary schools in Tam Nong District, Phu Tho Province, and their parents were included in this study. The study consisted of three substudies: a food-consumption study with 24-hour recalls of two nonconsecutive days; a food-beliefs study, with focus group discussions, a pile-sorting test, and a food attributes and differences exercise; and a food-acceptance study using noodles and biscuits fortified with sodium iron ethylenediaminetetraacetic acid (NaFeEDTA). The average number of meals consumed daily was 3.2 +/- 0.4, and the average intakes of energy and iron were 1,218 +/- 406 kcal and 7.5 +/- 4.0 mg, respectively. Compared with biscuits and instant rice soup, instant noodles were consumed more frequently and in larger portion sizes and are more acceptable as children's food in the culture of the local people. The iron level of the fortified product did not affect the mean consumption of noodles, but a higher level of iron was associated with a lower mean consumption of biscuits (p noodles; however, during preparation at least 70% of the iron is leaked into the soup. Instant noodles are a suitable vehicle for iron fortification for use in school-based intervention to improve iron-deficiency anemia among primary schoolchildren in rural Vietnam.

  7. Control of chilling tendency in grey cast iron reuse

    Directory of Open Access Journals (Sweden)

    Saliu Ojo Seidu

    2013-02-01

    Full Text Available In grey cast iron remelt and recycling, white iron can result in the cast product if careful control of the chilling tendency is not ensured. Many jobbing foundries are constrained in furnace types and available foundry additives that the operation always results in white irons. This study is towards ensuring grey iron is reproduced from cast iron scrap auto engine blocks, when using a diesel fired rotary furnace and a FeSi alloy for structural modification (inoculation. With varying addition rate of the FeSi alloy to the tapped molten metal, chill wedge tests were performed on two different wedge samples of type W (according to ASTM A367- wedge test with cooling modulus of 0.45 cm (W3½ and 0.54 cm (W4. The carbon equivalents for the test casts were within hypoeutectic range (3.85 wt. (% to 4.11 wt. (%. In the W4 wedge sample, at 2.0 wt. (% addition rate of the FeSi alloy, the relative clear chill was totally reduced to zero from 19.76%, while the relative mottled chill was brought down to 9.59% from 33.71%. The microstructure from the cast at this level of addition was free of carbidic phases; it shows randomly oriented graphite flakes evenly distributed in the iron matrix. Hardness assessment shows that increasing rate of FeSi addition results in decreasing hardness, with maximum effect at 2.0 wt. (% addition. With equivalent aspect ratio (cooling modulus in a target cast product, this addition rate for this FeSi alloy under this furnace condition will attain graphitized microstructure in the cast product.

  8. Control of chilling tendency in grey cast iron reuse

    Directory of Open Access Journals (Sweden)

    Saliu Ojo Seidu

    2012-01-01

    Full Text Available In grey cast iron remelt and recycling, white iron can result in the cast product if careful control of the chilling tendency is not ensured. Many jobbing foundries are constrained in furnace types and available foundry additives that the operation always results in white irons. This study is towards ensuring grey iron is reproduced from cast iron scrap auto engine blocks, when using a diesel fired rotary furnace and a FeSi alloy for structural modification (inoculation. With varying addition rate of the FeSi alloy to the tapped molten metal, chill wedge tests were performed on two different wedge samples of type W (according to ASTM A367- wedge test with cooling modulus of 0.45 cm (W3½ and 0.54 cm (W4. The carbon equivalents for the test casts were within hypoeutectic range (3.85 wt. (% to 4.11 wt. (%. In the W4 wedge sample, at 2.0 wt. (% addition rate of the FeSi alloy, the relative clear chill was totally reduced to zero from 19.76%, while the relative mottled chill was brought down to 9.59% from 33.71%. The microstructure from the cast at this level of addition was free of carbidic phases; it shows randomly oriented graphite flakes evenly distributed in the iron matrix. Hardness assessment shows that increasing rate of FeSi addition results in decreasing hardness, with maximum effect at 2.0 wt. (% addition. With equivalent aspect ratio (cooling modulus in a target cast product, this addition rate for this FeSi alloy under this furnace condition will attain graphitized microstructure in the cast product.

  9. Diagnosis and treatment of iron-deficiency anaemia in pregnancy and postpartum.

    Science.gov (United States)

    Breymann, C; Honegger, C; Hösli, I; Surbek, D

    2017-12-01

    Iron deficiency occurs frequently in pregnancy and can be diagnosed by serum ferritin-level measurement (threshold value iron-deficiency anemia is recommended in every pregnant women, and should be done by serum ferritin-level screening in the first trimester and regular hemoglobin checks at least once per trimester. In the case of iron deficiency with or without anaemia in pregnancy, oral iron therapy should be given as first-line treatment. In the case of severe iron-deficiency anemia, intolerance of oral iron, lack of response to oral iron, or in the case of a clinical need for rapid and efficient treatment of anaemia (e.g., advanced pregnancy), intravenous iron therapy should be administered. In the postpartum period, oral iron therapy should be administered for mild iron-deficiency anemia (haemorrhagic anemia), and intravenous iron therapy for moderately severe-to-severe anemia (Hb iron therapy in pregnancy or postpartum, iron-containing drugs which have been studied in well-controlled clinical trials in pregnancy and postpartum such as ferric carboxymaltose must be preferred for safety reasons. While anaphylactic reactions are extremely are with non-dextrane products, close surveillance during administration is recommended for all intravenous iron products.

  10. Spall behavior of cast iron with varying microstructures

    International Nuclear Information System (INIS)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-01-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  11. Spall behavior of cast iron with varying microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Plume, Gifford; Rousseau, Carl-Ernst, E-mail: rousseau@uri.edu [Mechanical Engineering, University of Rhode Island, 92 Upper College Rd., Kingston, Rhode Island 02881 (United States)

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  12. Factors Affecting Ballability of Mixture Iron Ore Concentrates and Iron Oxide Bearing Wastes in Metallurgical Processing

    Directory of Open Access Journals (Sweden)

    Mfon Udo

    2018-05-01

    Full Text Available Iron oxide bearing wastes (IROBEWAS are produced at every segment of processing stage of sinter, molten iron and steel production. They are hard to handle and in many cases are stockpiled only to be a source of environmental pollution but can be balled into pellets. Pellet of good ballability values are transportable and recyclable as they can withstand stress they will encounter without disintegrating back to dust. But ballability is affected by some factors like the grain sizes of the materials, the moisture and binder contents of the ball mix, wettability of the balled materials and the processing perimeters of the granulator. The objective of this research work is to investigate the factors affecting ballability of mixture of iron ore concentrates and iron oxide bearing wastes (IROBEWAS in metallurgical processing. The parameters under consideration were grain size of materials, the moisture contents, the speed of balling disc, IROBEWAS and Bentonite (Binder contents of the balled mix. This was carried out by balling different volume fractions of mix containing iron oxide concentrate and IROBEWAS using a balling disc and testing the resulting balls for green compressive strength using universal testing machine. It was found that the ballability of the mixture of iron ore concentrate and IROBEWAS increases as grain sizes of the materials reduce but increases as the moisture contents and IROBEWAS content increase up to an optimum value of moisture content in the mix before it starts to reduce. The ballability also increases as the speed of the granulator (Balling disc increases within the limit of this work. It was also observed that there was an increase in ballability with slight increase in bentonite content in the mix.

  13. Can iron oxides remove Cr(VI) from drinking water at sub-ppb levels?

    Science.gov (United States)

    Kaprara, Efthymia; Simeonidis, Konstantinos; Samaras, Petros; Zouboulis, Anastasios; Mitrakas, Manassis

    2013-04-01

    Hexavalent chromium [Cr(VI)] has long been recognized as a potential carcinogen via inhalation, in contrast to trivalent chromium [Cr(III)] which is 100 times less toxic and also a necessary nutrient, essential to human glucidic metabolism. Nowadays there is an increasing concern that Cr(VI) is also carcinogenic by the oral route of exposure, while an increased number of publications indicate that Cr(VI) is a common natural pollutant. Hexavalent chromium formation is attributed to natural oxidation of Cr(III) in ultramafic derived soils and ophiolithic rocks. To verify this theory, drinking water samples were collected from targeted areas of Greece e.g. areas in which the geological background is predominated by ultramafic minerals and the water supply depends mainly on groundwater resources. Valuable guide for the samples collection was the geological map of Greece and emphasis was given to regions where the natural occurrence of Cr(VI) is thought to be more possible. A wide range of Cr concentrations (2-100 μg/L) were detected in the areas studied, with most of them ranging below the current limit of 50 μg/L, and the Cr(VI) concentration being more than 90% of the total. Since the Cr(VI) affects significant part of population worldwide, a debate was established concerning the enforcement of stringent regulation, which also demands the drinking water treatment processes re-evaluation in view of Cr(VI) removal at sub-ppb level. In this regard, adsorption has evolved as the front line of defense for chromium removal. The motivation of this work was to investigate the efficiency of iron oxides for the adsorption of Cr(VI) from drinking water and its removal at sub-ppb levels. The adsorbents examined included iron oxy-hydroxides and magnetite prepared using common low cost iron salts. Their effectiveness as Cr(VI) adsorbents was evaluated through the decrease of a Cr(VI) concentration of 100μg/L prepared in NSF water at pH 7. Preliminary batch experiments did not

  14. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract.

    Science.gov (United States)

    Niu, Qiang; He, Ping; Xu, Shangzhi; Ma, Ruling; Ding, Yusong; Mu, Lati; Li, Shugang

    2018-01-01

    Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.

  15. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  16. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  17. Iron Acquisition in Bacillus cereus: The Roles of IlsA and Bacillibactin in Exogenous Ferritin Iron Mobilization

    Science.gov (United States)

    Buisson, Christophe; Daou, Nadine; Kallassy, Mireille; Lereclus, Didier; Arosio, Paolo; Bou-Abdallah, Fadi; Nielsen Le Roux, Christina

    2014-01-01

    In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis. PMID:24550730

  18. Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization.

    Directory of Open Access Journals (Sweden)

    Diego Segond

    2014-02-01

    Full Text Available In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis.

  19. Kinetics of chromium (VI) reduction by ferrous iron

    International Nuclear Information System (INIS)

    Batchelor, B.; Schlautman, M.; Hwang, I.; Wang, R.

    1998-09-01

    Chromium is a primary inorganic contaminant of concern at the Pantex Plant. Chromium concentrations have been found to be two orders of magnitude higher than the drinking water standards, particularly in certain wells in the perched aquifer below Zone 12. In situ reduction of a mobile form of chromium, Cr(VI) to an immobile form, Cr(III), was examined as a viable option to active soil restoration. Successfully immobilizing chromium in the vadose zone as Cr(III) will reduce the amount of chromium that reaches the groundwater table. The results from the solution experiments indicated that chromium was rapidly and stoichiometrically reduced by Fe(II) in solution. Also, the slurry experiments showed that the aquifer solids removed Fe(II) from solution, but a portion of the iron removed remained available for reaction with Cr(VI), but at a slower rate. A model to predict different amounts of iron pseudo-components was developed, which allowed prediction of iron amounts required to reduce chromium under in situ conditions

  20. Iron inhibits respiratory burst of peritoneal phagocytes in vitro

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Jurek, Aleksandra; Kubit, Piotr

    2011-01-01

    Objective. This study examines the effects of iron ions Fe(3+) on the respiratory burst of phagocytes isolated from peritoneal effluents of continuous ambulatory peritoneal dialysis (CAPD) patients, as an in vitro model of iron overload in end-stage renal disease (ESRD). Material and Methods....... Respiratory burst of peritoneal phagocytes was measured by chemiluminescence method. Results. At the highest used concentration of iron ions Fe(3+) (100 µM), free radicals production by peritoneal phagocytes was reduced by 90% compared to control. Conclusions. Iron overload may increase the risk of infectious...

  1. Iron behavior in the ozonation and filtration of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sallanko, J.; Lakso, E.; Ropelinen, J. [University of Oulu, Oulu (Finland)

    2006-08-15

    In Finnish groundwater, the main substances that require treatment are iron and manganese. In addition to this, groundwaters are soft and acidic. Iron removal is usually relatively effective by oxidizing dissolved iron into an insoluble form, either by aeration or chemical oxidation and removing the formed precipitate by sand filtration. Sometimes, if the untreated water contains high amounts of organic matter, problems may arise for iron removal. In Finland, it is quite common that groundwater contains high levels of both iron and natural organic matter, mainly as humic substances. The groundwater of the Kukkala intake plant in Liminka has been found to be problematic, due to its high level of natural organic matter. This research studied the removal of iron from this water by means of oxidation with ozone and filtration. While the oxidation of iron by ozone was rapid, the precipitate particles formed were small, and thus could not be removed by sand and anthracite filtration, and the iron residue in the treated water was more than 2 mg L{sup -1}. And while the filtration was able to remove iron well without the feed of ozone, the iron residue in the treated water was only 0.30 mg L{sup -1}. In this case, iron was led to the filter in a bivalent dissolved form. So, the result of iron removal was the best when the sand/anthracite filter functioned largely as an adsorption filter.

  2. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    Full Text Available Analysis of a global compilation of dissolved-iron observations provides insights into the processes controlling iron distributions and some constraints for ocean biogeochemical models. The distribution of dissolved iron appears consistent with the conceptual model developed for Th isotopes, whereby particle scavenging is a two-step process of scavenging mainly by colloidal and small particulates, followed by aggregation and removal on larger sinking particles. Much of the dissolved iron (<0.4 μm is present as small colloids (>~0.02 μm and, thus, is subject to aggregation and scavenging removal. This implies distinct scavenging regimes for dissolved iron consistent with the observations: 1 a high scavenging regime – where dissolved-iron concentrations exceed the concentrations of strongly binding organic ligands; and 2 a moderate scavenging regime – where dissolved iron is bound to both colloidal and soluble ligands. Within the moderate scavenging regime, biological uptake and particle scavenging decrease surface iron concentrations to low levels (<0.2 nM over a wide range of low to moderate iron input levels. Removal rates are also highly nonlinear in areas with higher iron inputs. Thus, observed surface-iron concentrations exhibit a bi-modal distribution and are a poor proxy for iron input rates. Our results suggest that there is substantial removal of dissolved iron from subsurface waters (where iron concentrations are often well below 0.6 nM, most likely due to aggregation and removal on sinking particles of Fe bound to organic colloids.

    We use the observational database to improve simulation of the iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC ocean model. Modifications to the model include: 1 an improved particle scavenging parameterization, based on the sinking mass flux of particulate organic material, biogenic silica, calcium carbonate, and mineral dust particles; 2 desorption of dissolved iron

  3. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2015-12-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  4. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2007-01-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  5. Effect of dietary iron source and iron status on iron bioavailability tests in the rat

    International Nuclear Information System (INIS)

    Zhang, D.; Hendricks, D.G.; Mahoney, A.W.

    1986-01-01

    Weanling male rats were made anemic in 7 days by feeding a low iron diet and bleeding. Healthy rats were fed the low iron diet supplemented with ferrous sulfate (29 ppm Fe). Each group was subdivided and fed for 10 days on test diets containing about 29 ppm iron that were formulated with meat:spinach mixtures or meat:soy mixtures to provided 100:0, 75:25, 50:50, 25:75, or 0:100% of the dietary iron from these sources or from a ferrous sulfate diet. After 3 days on the diets all rats were dosed orally with 2 or 5 micro curries of 59 Fe after a 18 hour fast and refeeding for 1.5 hours. Iron status influenced liver iron, carcass iron, liver radio activity and percent of radioactive dose retained. Diet influenced fecal iron and apparent absorption of iron. In iron bioavailability studies assessment methodology and iron status of the test subject greatly influences the estimates of the value of dietary sources of iron

  6. Effect of Iron Enriched Bread Intake on the Oxidative Stress Indices in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sharareh Heidari

    2016-08-01

    Full Text Available Background Contrary to the proven benefits of iron, few concerns in producing the oxidative stress is remained problematic. Objectives The aim of the study was to evaluate the oxidative stress in the male Wistar rats fed bread supplemented with iron in different doses i.e., 35 (basic, 70 (two fold, 140 (four fold, and 210 mg/kg (six fold with or without NaHCO3 (250 mg/kg. Methods In this experimental study Iron, ceruloplasmin, ferritin, total iron binding capacity (TIBC, albumin, total protein, uric acid and plasma superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase (CAT, malondialdehyde (MDA, and total antioxidant capacity (TAC, were evaluated in 30 rats at the first and last day of the experiment (day 30. In addition, phytic acid levels were detected in all baked breads. The data were analyzed by ANOVA and t test procedure though SPSS statistical software version 20. Results Serum iron level in rats that received basic level of iron plus NaHCO3 decreased significantly in the last day of the trial. Higher level of serum iron was seen in rats that received iron twofold, fourfold and sixfold and rats that received iron fourfold plus NaHCO3. Serum ceruloplasmin and ferritin in groups of rats that received fourfold level of iron plus NaHCO3 and rats that received iron sixfold showed a significant increase (P ≤ 0.05. Serum total protein and uric acid in rats that received basic level of iron plus NaHCO3 and rats that received twofold level of iron showed a significant decrease. Serum total protein levels in rats that received fourfold level of iron showed a significant decrease. Bread with NaHCO3 showed higher phytic acid levels than other groups. Conclusions These results indicate that oxidative stress was not induced, whereas some antioxidant activities were significantly changed in rats that received iron-enriched bread.

  7. Capture and storage of hydrogen gas by zero-valent iron.

    Science.gov (United States)

    Reardon, Eric J

    2014-02-01

    Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Correlations between abnormal iron metabolism and non-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Xu, Wu; Zhi, Yan; Yuan, Yongsheng; Zhang, Bingfeng; Shen, Yuting; Zhang, Hui; Zhang, Kezhong; Xu, Yun

    2018-07-01

    Despite a growing body of evidence suggests that abnormal iron metabolism plays an important role in the pathogenesis of Parkinson's disease (PD), few studies explored its role in non-motor symptoms (NMS) of PD. The present study aimed to investigate the relationship between abnormal iron metabolism and NMS of PD. Seventy PD patients and 64 healthy controls were consecutively recruited to compare serum iron, ceruloplasmin, ferritin, and transferrin levels. We evaluated five classic NMS, including depression, anxiety, pain, sleep disorder, and autonomic dysfunction in PD patients using the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), the short form of the McGill Pain Questionnaire, the Pittsburgh Sleep Quality Index and the Scale for Outcomes in Parkinson's disease for Autonomic Symptoms, respectively. Hierarchical multiple regression analysis was used to investigate the correlations between abnormal iron metabolism and NMS. No differences in serum ceruloplasmin and ferritin levels were examined between PD patients and healthy controls, but we observed significantly decreased serum iron levels and increased serum transferrin levels in PD patients in comparison with healthy controls. After eliminating confounding factors, HAMD scores and HAMA scores were both negatively correlated with serum iron levels and positively correlated with serum transferrin levels. In summary, abnormal iron metabolism might play a crucial role in the pathogenesis of depression and anxiety in PD. Serums levels of iron and transferrin could be peripheral markers for depression and anxiety in PD.

  9. Natural resources sustainability: iron ore mining

    International Nuclear Information System (INIS)

    De La Torre de Palacios, Luis

    2011-01-01

    In the present article, a new tool to determine environmental sustainability, the energy impact index (EII) was developed to classify different iron mine projects according to two main parameters including energy consumption and CO 2 emissions. The EII considers the characteristics of the mineral (such as the quality, size, hardness, iron ore grade, reducibility, mineral/waste rate, and type of deposit), mining processes (type of exploitation, ore processing, available technology), and transportation (distance to cover).

  10. Iron deficiency anaemia in Sri Lanka

    International Nuclear Information System (INIS)

    Liyanage, K.D.C.E.

    1992-01-01

    The commonest cause of nutritional anaemia in the Sri Lankan population is iron deficiency. The diets of the population belonging to the lower socio-economic groups contain little food of animal origin. Thus, their diets are deficient in easily absorbable (haem) iron; and are also heavily cereal-based. Therefore interference in the absorption of dietary iron also occurs. Iron-deficiency anaemia is not restricted to the so-called ''vulnerable groups'' in Sri Lanka, however, their greater demands make the problem not only commoner but also more severe. Among pregnant and lactating women anaemia is often associated with folate deficiency. It must also be noted that the low availability of dietary iron is compounded in large population groups. Malaria, presently raging on an epidemic scale is also a major contributory factor to the incidence of anaemia. The purpose of this study was to examine the iron status of pre-school children and pregnant women; to establish normal levels of biochemical indices at different trimesters; to record the effect of iron supplementation during pregnancy; and to record the bioavailability of iron from weaning foods and common adult diets. 6 figs, 14 tabs

  11. Maize porridge enriched with a micronutrient powder containing low-dose iron as NaFeEDTA but not Amaranth grain flour reduces anemia and iron deficiency in Kenyan preschool children

    NARCIS (Netherlands)

    Macharia-Mutie, C.W.; Moretti, D.; Briel, van den N.; Omusundi, A.M.; Mwangi, A.M.; Kok, F.J.; Zimmerman, J.B.; Brouwer, I.D.

    2012-01-01

    Few studies have evaluated the impact of fortification with iron-rich foods such as amaranth grain and multi-micronutrient powder (MNP) containing low doses of highly bioavailable iron to control iron deficiency anemia (IDA) in children. We assessed the efficacy of maize porridge enriched with

  12. Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    2016-09-01

    Full Text Available Iron toxicity is a major nutrient disorder that severely affects crop development and yield. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT members are involved in this process and play essential roles in iron storage and transport. In this study, a rapeseed VIT gene BnMEB2 (BnaC07g30170D was identified. BnMEB2 is a homolog to Arabidopsis MEB2 (At5g24290 and acts as a detoxifier in vacuolar sequestration of divalent metal. Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other vacuolar iron transporter genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.

  13. Iron overload in myelodysplastic syndromes (MDS).

    Science.gov (United States)

    Gattermann, Norbert

    2018-01-01

    Iron overload (IOL) starts to develop in MDS patients before they become transfusion-dependent because ineffective erythropoiesis suppresses hepcidin production in the liver and thus leads to unrestrained intestinal iron uptake. However, the most important cause of iron overload in MDS is chronic transfusion therapy. While transfusion dependency by itself is a negative prognostic factor reflecting poor bone marrow function, the ensuing transfusional iron overload has an additional dose-dependent negative impact on the survival of patients with lower risk MDS. Cardiac dysfunction appears to be important in this context, as a consequence of chronic anemia, age-related cardiac comorbidity, and iron overload. Another potential problem is iron-related endothelial dysfunction. There is some evidence that with increasing age, high circulating iron levels worsen the atherosclerotic phenotype. Transfusional IOL also appears to aggravate bone marrow failure in MDS, through unfavorable effects on mesenchymal stromal cells as well a hematopoietic cells, particularly erythroid precursors. Patient series and clinical trials have shown that the iron chelators deferoxamine and deferasirox can improve hematopoiesis in a minority of transfusion-dependent patients. Analyses of registry data suggest that iron chelation provides a survival benefit for patients with MDS, but data from a prospective randomized clinical trial are still lacking.

  14. Iron absorption from adequate Filipinos meals

    International Nuclear Information System (INIS)

    Trinidad, T.P.; Madriaga, J.R.; Valdez, D.H.; Cruz, E.M.; Mallillin, A.C.; Sison, C.C.; Kuizon, M.D.

    1989-01-01

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas, and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 +- 1.26%. Central Visayas, 6.3 +- 1.15% and Southern Mindanao, 6.4 +- 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P>0.01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry; and inhibitors: phytic acid and tannic acid, did not give significant results. The overall average of 6.4 +- 1.20% may be used as the iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976. (Auth.). 21 refs.; 3 tabs.; 3 annexes

  15. Iron absorption from adequate Filipino meals

    International Nuclear Information System (INIS)

    Trinidad, T.P.; Madriaga, J.R.; Valdez, D.H.; Cruz, E.M.; Mallillin, A.C.; Sison, C.C.; Kuizon, M.D.

    1991-01-01

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 ± 1.26%, Central Visayas, 6.3 ± 1.15% and Southern Mindanao, 6.4 ± 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P > .01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry and inhibitors: phytic acid and tannic acid did not give significant results. The overall bar x of 6.4 ± 1.20% may be used as the non-heme iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976

  16. Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia.

    Science.gov (United States)

    Bou-Fakhredin, Rayan; Bazarbachi, Abdul-Hamid; Chaya, Bachar; Sleiman, Joseph; Cappellini, Maria Domenica; Taher, Ali T

    2017-12-20

    Iron overload (IOL) due to increased intestinal iron absorption constitutes a major clinical problem in patients with non-transfusion-dependent thalassemia (NTDT), which is a cumulative process with advancing age. Current models for iron metabolism in patients with NTDT suggest that suppression of serum hepcidin leads to an increase in iron absorption and subsequent release of iron from the reticuloendothelial system, leading to depletion of macrophage iron, relatively low levels of serum ferritin, and liver iron loading. The consequences of IOL in patients with NTDT are multiple and multifactorial. Accurate and reliable methods of diagnosis and monitoring of body iron levels are essential, and the method of choice for measuring iron accumulation will depend on the patient's needs and on the available facilities. Iron chelation therapy (ICT) remains the backbone of NTDT management and is one of the most effective and practical ways of decreasing morbidity and mortality. The aim of this review is to describe the mechanism of IOL in NTDT, and the clinical complications that can develop as a result, in addition to the current and future therapeutic options available for the management of IOL in NTDT.

  17. Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia

    Directory of Open Access Journals (Sweden)

    Rayan Bou-Fakhredin

    2017-12-01

    Full Text Available Iron overload (IOL due to increased intestinal iron absorption constitutes a major clinical problem in patients with non-transfusion-dependent thalassemia (NTDT, which is a cumulative process with advancing age. Current models for iron metabolism in patients with NTDT suggest that suppression of serum hepcidin leads to an increase in iron absorption and subsequent release of iron from the reticuloendothelial system, leading to depletion of macrophage iron, relatively low levels of serum ferritin, and liver iron loading. The consequences of IOL in patients with NTDT are multiple and multifactorial. Accurate and reliable methods of diagnosis and monitoring of body iron levels are essential, and the method of choice for measuring iron accumulation will depend on the patient’s needs and on the available facilities. Iron chelation therapy (ICT remains the backbone of NTDT management and is one of the most effective and practical ways of decreasing morbidity and mortality. The aim of this review is to describe the mechanism of IOL in NTDT, and the clinical complications that can develop as a result, in addition to the current and future therapeutic options available for the management of IOL in NTDT.

  18. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion.

    Science.gov (United States)

    Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo

    2012-05-21

    Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Iron Requirement and Iron Uptake from Various Iron Compounds by Different Plant Species

    Science.gov (United States)

    Christ, Rudolf A.

    1974-01-01

    The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species. PMID:16658933

  20. Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific. [phytoplankton population growth support and atmospheric CO2 removal

    Science.gov (United States)

    Banse, Karl

    1991-01-01

    This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.