WorldWideScience

Sample records for level swell results

  1. Full length cluster level swell data at pressures from 2 to 40 bar

    International Nuclear Information System (INIS)

    Pearson, K.G.

    1987-11-01

    This paper gives results of level swell experiments at pressures up to 40 bar, performed at Winfrith in 1981 as described elsewhere. The results have been used by a number of workers to develop voidage correlations and to assess safety codes. The experiment and experimental rig used are described. The results are tabulated. (author)

  2. Swelling pressures of a potential buffer material for high-level waste repository

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik

    1999-01-01

    The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure. The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled to nearly constant value. (author). 21 refs., 10 figs., 4 tabs

  3. Erosion experiments in swelling clays and result evaluation

    International Nuclear Information System (INIS)

    Sane, Petri; Turtiainen, M.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. The performance of the bentonite buffer in KBS-3-nuclear waste repository concept relies strongly on the sufficient dry density of the buffer layer surrounding the deposition canister. As the buffer density is essentially fixed during the installation process, erosive mass loss of the buffer material remains as the most significant process reducing the density of the buffer. Most important parameters affecting the mass loss in the erosion process are the groundwater flow rate through the deposition hole from fractures in the surrounding rock and groundwater chemistry. Based on the rock suitability criteria for individual deposition holes in ONKALO, the Finnish spent nuclear fuel repository, the groundwater flow conditions in a single deposition hole/deposition hole tunnel section can be characterized in sufficient certainty in terms of maximum groundwater inflow rate; 0.1 L/min, i.e., deposition holes with larger inflows will not be used. Based on different climate scenarios the evolution of the groundwater chemistry can also be assessed and certain reference bounding salinities can be determined and corresponding fixed laboratory use reference solutions can be defined, most important being the current groundwater composition at deposition depth, which can be defined as 10 g/L reference solution as Total Dissolved Solids (TDS) per a liter of groundwater, relevant salts being NaCl and CaCl 2 . Additional reference salinities relevant to the ONKALO-repository are 1 g/L and 70 g/L, salt composition varying. Based on these fixed environmental parameters, testing of the erosive properties of the buffer can be performed with sufficient reliability. The current material type chosen for the Posiva buffer material in deposition hole is Wyoming MX-80 bentonite with sufficiently high montmorillonite content ensuring sufficient swelling. The dry density and water ratio of the buffer are also currently fixed in the design to

  4. Swelling, mechanical properties, and microstructure of Type 316 stainless steel at fusion reactor damage levels

    International Nuclear Information System (INIS)

    Horak, J.A.; Bloom, E.E.; Grossbeck, M.L.; Maziasz, P.J.; Stiegler, J.O.; Wiffen, F.W.

    1979-01-01

    Alloys such as AISI 316 stainless steel exhibit more swelling and larger decreases in ductility when irradiated to produce fusion reactor He and dpa levels than at fast reactor He and dpa levels. For T approx. 0 C to ensure adequate ductility for long-term service

  5. Level-Swell Prediction With RETRAN-3D And Its Application To A BWR Steam-Line-Break Analysis

    International Nuclear Information System (INIS)

    Aounallah, Y.; Hofer, K.

    2003-01-01

    Level-swell experiments have often been simulated using system codes, such as TRAC and RELAP, but only cursory assessments have been performed with the operational-transient code RETRAN-3D, the main system code used within the STARS project. The present study, initiated in the framework of a BWR Steam-Line-Break (SLB) accident scenario, addresses this lacuna by performing RETRAN simulations of the General Electric Level-Swell experiments, and by investigating their implications on power plant accident analyses. Parameters to which the predicted level swell is sensitive have been identified, and recommendations on code options are made. The SLB analysis objective was to determine the amount of steam and liquid discharged through the break under specified boundary conditions, and to gauge the results against reference values. The impact of the nodalization of the upper part of the reactor pressure vessel was investigated and found to play an important role, whereas the level swell induced from flashing was found not to be the predominant factor for these simulations. (author)

  6. Void swelling of proton-irradiated stainless steel at large displacement levels

    International Nuclear Information System (INIS)

    Kumar, A.; Garner, F.A.

    1982-01-01

    The purpose of this study is to determine whether saturation of void swelling in AISI 316 stainless steel can be made to occur at any level relevant to engineering design and to decide whether saturation is sensitive to irradiation variables such as helium/dpa ratio or simulation artifacts such as injected interstitials

  7. Determination of the swelling velocity of different wood species and tissues depending on the cutting direction on microtome section level

    Science.gov (United States)

    Stuckenberg, Peter; Wenderdel, Christoph; Zauer, Mario

    2018-06-01

    Swelling velocity in dependence on the anatomical cutting direction of yew [Taxus baccata L.] and boxwood [Buxus sempervirens L.] was determined at temperature of 20 °C and at relative humidity of 10% and 100%. The investigations, conducted on a microtome section level, showed a similar behaviour for specimens of both wood species. It was possible to determine that the swelling velocity for yew and boxwood increases in its anatomical cutting directions. The longitudinal direction showed the lowest value, the tangential direction, by distinction, the highest value. Furthermore, a significant influence of early wood and late wood content on the swelling velocity for yew was detected.

  8. Two-phase mixture level swell and liquid entrainment/off-take in a vessel during rapid depressurization

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    2004-02-01

    swelled two-phase mixture level. The ultrasonic sensor measured the two-phase mixture level with a maximum error of 1.77% and has been adopted for the measurement of two-phase mixture level in the entrainment and off-take experiment. The capacitance probe highly under-predicted the level data in the high void fraction region. The cause of the error is identified as the change of the dielectric constant when the probe is applied to the measurement of the two-phase mixture levels. A correction method for the capacitance probe is proposed by correcting the change of the dielectric constant of the two-phase mixture. The correction method for the capacitance probe produces an r.m.s. error of 5.4%. The RELAP5/MOD3 code has been assessed with the present experimental data and the existing pool void correlations based on the drift flux model. The Kataoka-Ishii correlation shows the best agreement with the present experimental data with an r.m.s. error of 2.5%. The RELAP5/MOD3 results are very similar to the present experimental data when j g + is higher than 1.768. However, RELAP5/MOD3 code over-predicts the present void fraction data when j g + is lower than 1.768 since linear interpolation is used between Zuber-Findlay and Kataoka-Ishii correlations with the coefficients proposed by Rouhani. In the third experiment, an experimental study has been performed in order to investigate the effects of the superficial air velocity in the vessel and the distance between the surface and the break on the liquid entrainment and off-take through the break at the top of a vessel. A correlation for the droplet entrainment, E fg , through the break at the top of a vessel has been developed in terms of j g * /h * . The present experimental data are proportional to the 7 th power of j g * /h * and have higher values of E fg than those of the existing pool entrainment data due to (a) the pulling toward the break of the liquid deen trained on the top wall of the vessel and (b) the existence of a

  9. Prediction for swelling characteristics of compacted bentonite

    International Nuclear Information System (INIS)

    Komine, H.; Ogata, N.

    1996-01-01

    Compacted bentonites are attracting greater attention as back-filling (buffer) materials for high-level nuclear waste repositories. For this purpose, it is very important to quantitatively evaluate the swelling characteristics of compacted bentonite. New equations for evaluating the relationship between the swelling deformation of compacted bentonite and the distance between two montmorillonite layers are derived. New equations for evaluating the ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of compacted bentonite, are proposed. Furthermore, a prediction method for the swelling characteristics of compacted bentonite is presented by combining the new equations with the well-known theoretical equations of repulsive and attractive forces between two montmorillonite layers. The applicability of this method was investigated by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites. (author) 31 refs., 8 tabs., 12 figs

  10. Evaluation for swelling characteristics of buffer and backfill materials for high-level nuclear waste disposal. Influence of sand-bentonite content and cation compositions in bentonite

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1999-01-01

    Compacted bentonite and sand-bentonite mixture are attracting greater attention as buffer and backfill materials for disposal pits and access tunnels in the underground facilities for repositories of high-level nuclear waste. Buffer and backfill materials must have the swelling characteristics and are expected to fill up the space between these materials and surrounding ground by swelling. This role is called as 'Self-sealing'. To design the specifications, such as dry density, bentonite content and size, of buffer and backfill materials for the disposal facilities of high-level nuclear wastes described above, we must evaluate the swelling characteristics of compacted bentonite and sand-bentonite mixtures. For this purpose, this study proposed the evaluation formula for swelling characteristics of buffer and backfill materials containing bentonite. This study derived new equations for evaluating the relationship between the swelling deformation of compacted bentonite and sand-bentonite mixtures, and the swelling behavior of montmorillonite minerals, which are swelling clay minerals. This study also proposed new equations for evaluating the ion compositions of bentonite, ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of buffer and backfill materials. The evaluation formula proposed in this study is presented by combining the above-mentioned new equations with theoretical equations, of which are the Gouy-Chapman diffuse double layer theory and the van der Waals force, of repulsive and attractive forces of montmorillonite minerals. (author)

  11. Characterization of Swelling Clays as Components of the Engineered Barrier System for Geological Repositories. Results of an IAEA Coordinated Research Project 2002-2007

    International Nuclear Information System (INIS)

    2013-11-01

    At the request of the Member States, the IAEA coordinates research into subjects of common interest in the context of the peaceful application of nuclear technology. The coordinated research projects (CRPs) are intended to promote knowledge and technology transfer between Member States and are largely focused on subjects of prime interest to the international nuclear community. This report presents the results of a CRP carried out between 2002 and 2007 on the subject of swelling clays proposed for use as a component in the engineered barrier system (EBS) of the multibarrier concept for disposal of radioactive waste. In 2002, under the auspices of the IAEA, a number of Member States came together to form a Network of Centres of Excellence on Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities (URF Network). This network identified the general subject of the application of high swelling clays to seal repositories for radioactive waste, with specific emphasis on the isolation of high level radioactive waste from the biosphere, as being suitable for a CRP. Existing concepts for geological repositories for high level radioactive waste and spent nuclear fuel require the use of EBSs to ensure effective isolation of the radioactive waste. There are two major materials proposed for use in the EBS, swelling clay based materials and cementitious/concrete materials. These materials will be placed between the perimeter of the excavation and the waste container to fill the existing gap and ensure isolation of the waste within the canister (also referred to as a container in some EBS concepts) by supporting safety through retardation and confinement. Cementitious materials are industrially manufactured to consistent standards and are readily available in most locations and therefore their evaluation is of less value to Member States than that of swelling clays. There exists a considerable range of programme development regarding

  12. Results of the freeze resistance test, swelling index and coefficient of permeability of finegrained mining waste reinforced with cements

    Science.gov (United States)

    Morman, Justyna

    2018-04-01

    The article presents the result of laboratory tests for mining waste with grain size of 0 to 2 mm stabilized with cement. Used for stabilization of cement CEM I 42.5 R and blast furnace cement CEM III / A 42.5N - LH / HSR / NA and a plasticizer sealant. Cement was added to the mining waste test in the proportions of 5 - 8% in relation to the skeleton's weight. For the cemented samples, the freeze resistance test, swelling index, coefficient of permeability and pH of water leachate were tested. The addition of a cement binder resulted in diminishing the water permeability of mining waste and limiting the leaching of fine particles from the material.

  13. Effects of stress on swelling in reactor fuel cladding

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1977-01-01

    The purpose of this report is to describe the effect of stress on swelling in both annealed and 20% cold worked 316 stainless steel. An effect of stress on swelling in irradiated metals has been postulated for some time. Low fluence data confirmed that indeed a tensile stress can increase swelling in irradiated annealed 316 stainless steel and that the maximum swelling occurs at an intermediate stress level which is approximately equal to the proportional elastic limit of the material. The specimens discussed above were examined by transmission electron microscopy and an effect of stress on the microstructure of the annealed and 20% cold worked 316 specimens has been observed. Howver, as yet, copious swelling had not occurred in the 20% cold worked material. Specimens of 20% cold worked 316 fabricated from the same heat of material as those described above have now been irradiated to sufficiently high neutron fluences that swelling has occurred in both the annealed and cold worked conditions. Swelling increases linearly with stress for both materials. However, for solution annealed 316, swelling reaches a maximum at approximately 136 MPa, whereupon further increases in stress result in reduced swelling. It is felt that this reduction in swelling is related to the onset of plastic yielding in the material. The swelling observed in the 20% CW 316 and the solution annealed 316 below the maximum swelling stress can be adequately described by an equation of the form: S = S 0 (1 + Psigma). No strong effect of stress on changing the incubation period associated with void nucleation was found. (Auth.)

  14. Swelling characteristics of buffer material

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Fujita, Tomoo

    1999-12-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanism, infiltration of groundwater from the surrounding rock into the EBS, generation of swelling pressure in the buffer due to water infiltration and the stress imposed by the overburden pressure. These phenomena are not all independent, but can be strongly influenced by, and coupled with, each other. Evaluating these coupled thermo-hydro-mechanical phenomena is important in order to clarify the initial transient behavior of the engineered barrier system within the near-field. This report describes the results on measurement of swelling amount and stress at boundary built up under restraint condition with water uptake. The following results are identified. (1) The swelling stress of buffer material at saturated condition tends to be independent of effects of pore water pressure and synthetic sea water, and to decrease with increasing temperature. The swelling stress can be explained by the effective dry density. (2) The strain due to swelling estimated from the results of the swelling amount of buffer material is proportional to swelling stress. (3) The swelling stress and strain under unsaturated condition increase with water uptake. (author)

  15. Efficacy of low-level laser therapy in the management of pain, facial swelling, and postoperative trismus after a lower third molar extraction. A preliminary study.

    Science.gov (United States)

    López-Ramírez, Marta; Vílchez-Pérez, Miguel Angel; Gargallo-Albiol, Jordi; Arnabat-Domínguez, Josep; Gay-Escoda, Cosme

    2012-05-01

    Pain, swelling, and trismus are the most common complications after surgical removal of impacted lower third molars. The aim of this study was to evaluate the analgesic and anti-inflammatory effects of a low-level laser therapy (Laser Smile™, Biolase®, San Clemente, USA) applied to the wound appeared after the surgical removal of impacted lower third molars. A prospective, randomized, and double-blind study was undertaken in 20 healthy patients with two symmetrically impacted lower third molars. The application of a low-level laser was made randomly on one of the two sides after surgery. The experimental side received 5 J/cm(2) of energy density, a wavelength of 810 nm, and an output power of 0.5 W. On the control side, a handpiece was applied intraorally, but the laser was not activated. Evaluations of postoperative pain, trismus, and swelling were made. The sample consisted of 11 women and nine men, and mean age was 23.35 years (18-37). The pain level in the first hours after surgery was lower in the experimental side than in the placebo side, although without statistically significant differences (p = 0.258). Swelling and trismus at the 2nd and 7th postoperative days were slightly higher in the control side, although not statistically significant differences were detected (p > 0.05). The application of a low-level laser with the parameters used in this study did not show beneficial affects in reducing pain, swelling, and trismus after removal of impacted lower third molars.

  16. Experimental investigations of two-phase mixture level swell and axial void fraction distribution under high pressure, low heat flux conditions in rod bundle geometry

    International Nuclear Information System (INIS)

    Anklam, T.M.; White, M.D.

    1981-01-01

    Experimental data is reported from a series of quasi-steady-state two-phase mixture level swell and void fraction distribution tests. Testing was performed at ORNL in the Thermal Hydraulic Test Facility - a large electrically heated test loop configured to produce conditions similar to those expected in a small break loss of coolant accident. Pressure was varied from 2.7 to 8.2 MPa and linear power ranged from 0.33 to 1.95 kW/m. Mixture swell was observed to vary linearly with the total volumetric vapor generation rate over the power range of primary interest in small break analysis. Void fraction data was fit by a drift-flux model and both the drift-velocity and concentration parameter were observed to decrease with increasing pressure

  17. The effect of low-level laser therapy on trismus and facial swelling following surgical extraction of a lower third molar.

    Science.gov (United States)

    Aras, Mutan Hamdi; Güngörmüş, Metin

    2009-02-01

    The purpose of this study was to evaluate the effect of low-level laser therapy (LLLT) on postoperative trismus and edema after the removal of mandibular third molars. Thirty-two patients who were to undergo surgical removal of lower third molars were studied. Patients were randomly allocated to two groups, LLLT and placebo. Patients in the LLLT group received 12 J (4 J/cm(2)) low-level laser irradiation to the operative side intraorally 1 cm from the target tissue, and to the masseter muscle extraorally immediately after surgery. In the placebo group the handpiece was inserted into the operative side intraorally and was applied to the masseter muscle extraorally each for 1 min, but laser power was not activated. Inter-incisal opening and facial swelling were evaluated on postoperative days 2 and 7. Student's t-test used to analyze the data. It was determined that the trismus and the swelling in LLLT group were significantly less than in the placebo group on postoperative days 2 and 7. Within the limitations of this study it can be concluded that LLLT can be beneficial for the reduction of postoperative trismus and swelling after third molar surgery.

  18. Study of 316 stainless steel swelling due to neutron irradiation

    International Nuclear Information System (INIS)

    Furutani, Gen; Konishi, Takao

    2000-01-01

    Large stresses will be generated in the austenitic stainless steel core internals of pressurized water reactors (PWRs) if excessive swelling occurs after long periods of operation. As a result, deformation or stress corrosion cracking (SCC) could occur in the core internals. However, data on the swelling of irradiated austenitic stainless steel in actual PWRs is limited. In this study, mechanical tests, measurement of produced helium amount and analysis using transmission electron microscopes were carried out on a cold-worked (CW) 316 stainless steel flux thimble tube irradiated up to approximately 35 dpa in a Japanese PWR. The swelling was evaluated to be approximately 0.02%. This level of swelling was much lower than the swelling of the more than several percent that has been observed in fast breeder reactors. (author)

  19. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  20. Differential Response of Neural Cells to Trauma-Induced Swelling In Vitro.

    Science.gov (United States)

    Jayakumar, A R; Taherian, M; Panickar, K S; Shamaladevi, N; Rodriguez, M E; Price, B G; Norenberg, M D

    2018-02-01

    Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na-K-Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.

  1. Effect of metallurgical variables on void swelling

    International Nuclear Information System (INIS)

    Johnston, W.G.; Lauritzen, T.; Rosolowski, J.H.; Turkalo, A.M.

    1976-01-01

    The mechanism of void swelling is reviewed briefly and the anticipated effects of metallurgical variables are described. Experimental results showing the effects of metallurgical variables are reviewed, most of the work being done by simulation methods employing charged particle bombardments to simulate reactor damage. Although the early emphasis was on structural variables such as grain size, cold work and precipitates to control swelling, it now seems that the practical reduction of swelling will be achieved by modifying alloy composition. Void swelling is strongly influenced by the relative amounts of Fe, Cr, and Ni in an alloy; the amount of swelling can be varied by three orders of magnitude by changing the relative amounts of the three elements in an austenitic ternary alloy. The effect of composition on swelling of a simple ferritic alloy will also be described. The swelling of a simple austenitic alloy of Fe, Cr, and Ni can be reduced by certain minor element additions. The most effective swelling inhibitors are Si, Ti, Zr, and Nb, and combinations of Si and Ti are synergetic. Swelling reductions of two orders of magnitude have been achieved with combined additions. Predictions of swelling in commercial solid solution alloys are made on the basis of the present knowledge of the effects of major composition and minor element additions. The predictions agree with experimental results. For more complex commercial alloys, predictions are made for the effects on swelling of heat treatments that cause changes in matrix composition. In some cases, heat treatment is expected to change the peak swelling by more than a factor of ten, and to shift the peak swelling temperature by almost 100 0 C. Sensitivity of swelling to detailed matrix composition places emphasis on the need for developing understanding of the stability of structure and local composition in an irradiation environment

  2. Swelling kinetics of several residues from Shenhua coal extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Mei-xia; Shui, Heng-fu; Wang, Zhi-cai [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering

    2008-08-15

    In order to understand the mechanism of swelling and the relation between swelling behavior and solvent extraction, the swelling kinetics of residues from Shenhua coal extracted by CS{sub 2}/NMP with different mixing ratios were studied in different solvents. The result shows that the swelling rates of extraction residues increase along with swelling temperature. The swelling rate in polar solvent NMP is much higher than that in non-polar solvent THN. Solvent extraction has a great effect on the swelling of extraction residues. The swelling activation energy of extraction residues increases and the swelling rate decreases with the increase of extraction yield. The swelling activation energies of extraction residues in NMP and THN are less than 10 kJ/mol, suggesting that the swelling process is controlled by solvent molecular diffusion in coal structure. 22 refs., 2 figs., 7 tabs.

  3. Side Effects: Edema (Swelling)

    Science.gov (United States)

    Edema is a condition in which fluid builds up in your body’s tissues. The swelling may be caused by chemotherapy, cancer, and conditions not related to cancer. Learn about signs of edema, including swelling in your feet, ankles, and legs.

  4. The swelling hadrons

    International Nuclear Information System (INIS)

    Rho, M.

    1992-01-01

    The notion of a 'swelled world' for strong interactions is introduced, followed by a discussion on some phenomenological consequences of the 'dropping' meson and baryon masses in dense and/or hot nuclear matter. (author) 26 refs

  5. Swelling of spinel after low-dose neutron irradiation

    International Nuclear Information System (INIS)

    Coghlan, W.A.; Clinard, F.W. Jr.; Itoh, N.; Greenwood, L.R.

    1986-01-01

    Swelling was determined in samples of single-crystal MgAl 2 O 4 spinel, irradiated to doses as high as 8 x 10 22 n/m 2 (E > 0.1 MeV) at approx. =50 0 C in the Omega West Reactor. Swelling effectively saturated at approx. =2 x 10 22 n/m 2 which corresponds to a damage level of only approx. =2 x 10 -3 dpa. In addition subsequent measurements after irradiation have revealed that the samples continued swelling for several weeks. These results imply that irradiation defects begin to interact by recombination and aggregation at low damage levels in this material at 50 0 C and perhaps continue to cluster at room temperature after irradiation. Rate equations have been employed to determine defect concentrations at saturation. Results to date show that the observed swelling is consistent with the number of surviving defects if swelling per Frenkel defect pair is taken to be one atomic volume

  6. Swelling of copper-aluminum and copper-nickel alloys in FFTF-MOTA at approximately 4500C

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Pure copper appears to swell with an S-shaped behavior at 450 0 C, tending to saturate at higher fluence levels. The addition of solutes such as aluminum and nickel at 5 wt % leads to an extended transient regime and thereby a reduction in swelling at low to moderate fast neutron exposures. The addition of these elements also leads to an increase in the saturation level of swelling, however, resulting in an increase in swelling relative to that of pure copper at high fluence

  7. Water-Triggered Dimensional Swelling of Cellulose Nanofibril Films: Instant Observation Using Optical Microscope

    International Nuclear Information System (INIS)

    Qing, Y.; Wu, Y.; Li, X.; Qing, Y.; Cai, Z.

    2013-01-01

    To understand the swelling behavior of cellulose nano fibril (CNF) films, the dimensional variation of untreated and phenol formaldehyde modified CNF (CNF/PF) films soaked in distilled water was examined in situ with microscopic image recording combined with pixel calculation. Results showed that a dramatic thickness increase exhibited in both CNF and CNF/PF films, despite being at different swelling levels. Compared to thickness swelling, however, the width expansion for these films is negligible. Such significant difference in dimensional swelling for CNF and PF modified films is mainly caused by nano fibril deposition and their meso structure. However, addition of PF modifier has a positive effect on the constraint of water absorption and thickness swelling, which is strongly dependent on PF loadings

  8. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    Science.gov (United States)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  9. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8–12% Cr ferritic-martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kupriiyanova, Y.E., E-mail: fomenkoj@kipt.kharkov.ua [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Bryk, V.V.; Borodin, O.V.; Kalchenko, A.S.; Voyevodin, V.N.; Tolstolutskaya, G.D. [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States)

    2016-01-15

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe–Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr{sup +3}, 40 keV He{sup +}, and 20 keV H{sup +}. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  10. Ultrasound-assisted swelling of bacterial cellulose

    OpenAIRE

    Song, J.; Su, Jing; Loureiro, Ana; Sá, M.; Cavaco-Paulo, Artur; Kim, Hye Rim; Silva, Carla

    2017-01-01

    Bacterial cellulose (BC) was obtained by static cultivation using commercial BC gel from scoby. BC membranes (oven dried and freeze-dried) were swelled with 8% NaOH, in absence and in presence of ultrasound (US), for 30, 60 and 90 min. The influence of swelling conditions on both physico-chemical properties and molecules entrapment was evaluated. Considering the highest levels of entrapment, an optimum swelling procedure was established: 8% NaOH for 30 min. at room temperature in the presence...

  11. Swelling characteristics of Gaomiaozi bentonite and its prediction

    Directory of Open Access Journals (Sweden)

    De'an Sun

    2014-04-01

    Full Text Available Gaomiaozi (GMZ bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW in China. In the Gaomiaozi deposit area, calcium bentonite in the near surface zone and sodium bentonite in the deeper zone are observed. The swelling characteristics of GMZ sodium and calcium bentonites and their mixtures with sand wetted with distilled water were studied in the present work. The test results show that the relationship between the void ratio and swelling pressure of compacted GMZ bentonite-sand mixtures at full saturation is independent of the initial conditions such as the initial dry density and water content, but dependent on the ratio of bentonite to sand. An empirical method was accordingly proposed allowing the prediction of the swelling deformation and swelling pressure with different initial densities and bentonite-sand ratios when in saturated conditions. Finally, the swelling capacities of GMZ Na- and Ca-bentonites and Kunigel Na-bentonite are compared.

  12. A STUDY ON PAROTID SWELLINGS

    Directory of Open Access Journals (Sweden)

    Alli Muthiah

    2017-03-01

    Full Text Available BACKGROUND Swellings of the parotid gland are of special interest to a surgeon’s keen eye. These lesions are not only involved in diseases isolated to the parotid, but can also present as a part of a generalised systemic disorder, medical or surgical. For a surgeon, the interests lie in the probable origin of the swelling, its involvement of the facial nerve, the variability in behaviour, regarding the operability criteria and its postoperative complications. 1 A comprehensive knowledge of the anatomy of the parotid and the prediction of the swelling behaviour can help not only in the diagnosis, but also in ensuring an apt management of the lesion and the patient. 2 This cohort study was conducted to analyse the following in our institution. The incidence of various parotid swellings to discuss accuracy of FNAC in comparison to the histopathological reports. The various surgical modalities of treatment of parotid swellings applied. MATERIALS AND METHODS The cohort study, which included 45 patients was conducted at Kilpauk Medical College Hospital and Government Royapettah Hospital from September 2010 to October 2012. Data was collected from the patients after obtaining an informed consent. The demographic details of the patients and history of their swelling was taken. The patients were examined and basic investigations performed. Details regarding the FNAC report, surgical and nonsurgical management were noted. Postoperative complications were documented. The final histopathological report was analysed and compared with the FNAC report. RESULTS Parotid lesions are commonest cases in our study. Benign tumours are more common than malignant lesions. This study found to correlate with world statistics. Investigations, clinical findings and treatment correlate well with world statistical records. CONCLUSION The analysis of the data of the study conducted at our institution provided us with the following results- Parotid lesions comprised of the

  13. Hotspot swells revisited

    Science.gov (United States)

    King, Scott D.; Adam, Claudia

    2014-10-01

    The first attempts to quantify the width and height of hotspot swells were made more than 30 years ago. Since that time, topography, ocean-floor age, and sediment thickness datasets have improved considerably. Swell heights and widths have been used to estimate the heat flow from the core-mantle boundary, constrain numerical models of plumes, and as an indicator of the origin of hotspots. In this paper, we repeat the analysis of swell geometry and buoyancy flux for 54 hotspots, including the 37 considered by Sleep (1990) and the 49 considered by Courtillot et al. (2003), using the latest and most accurate data. We are able to calculate swell geometry for a number of hotspots that Sleep was only able to estimate by comparison with other swells. We find that in spite of the increased resolution in global bathymetry models there is significant uncertainty in our calculation of buoyancy fluxes due to differences in our measurement of the swells’ width and height, the integration method (volume integration or cross-sectional area), and the variations of the plate velocities between HS2-Nuvel1a (Gripp and Gordon, 1990) and HS3-Nuvel1a (Gripp and Gordon, 2002). We also note that the buoyancy flux for Pacific hotspots is in general larger than for Eurasian, North American, African and Antarctic hotspots. Considering that buoyancy flux is linearly related to plate velocity, we speculate that either the calculation of buoyancy flux using plate velocity over-estimates the actual vertical flow of material from the deep mantle or that convection in the Pacific hemisphere is more vigorous than the Atlantic hemisphere.

  14. An analysis of the factors affecting the hydraulic conductivity and swelling pressure of Kyungju ca-bentonite for use as a clay-based sealing material for a high level waste repository

    International Nuclear Information System (INIS)

    Cho, Won Jin; Lee, Jae Owen; Kwon, Sang Ki

    2012-01-01

    The buffer and backfill are important components of the engineered barrier system in a high-level waste repository, which should be constructed in a hard rock formation at a depth of several hundred meters below the ground surface. The primary function of the buffer and backfill is to seal the underground excavation as a preferred flow path for radionuclide migration from the deposited high-level waste. This study investigates the hydraulic conductivity and swelling pressure of Kyungju Ca-bentonite, which is the candidate material for the buffer and backfill in the Korean reference high-level waste disposal system. The factors that influence the hydraulic conductivity and swelling pressure of the buffer and backfill are analyzed. The factors considered are the dry density, the temperature, the sand content, the salinity and the organic carbon content. The possibility of deterioration in the sealing performance of the buffer and backfill is also assessed.

  15. Fuel swelling importance in PCI mechanistic modelling

    International Nuclear Information System (INIS)

    Arimescu, V.I.

    2005-01-01

    Under certain conditions, fuel pellet swelling is the most important factor in determining the intensity of the pellet-to-cladding mechanical interaction (PCMI). This is especially true during power ramps, which lead to a temperature increase to a higher terminal plateau that is maintained for hours. The time-dependent gaseous swelling is proportional to temperature and is also enhanced by the increased gas atom migration to the grain boundary during the power ramp. On the other hand, gaseous swelling is inhibited by a compressive hydrostatic stress in the pellet. Therefore, PCMI is the net result of combining gaseous swelling and pellet thermal expansion with the opposing feedback from the cladding mechanical reaction. The coupling of the thermal and mechanical processes, mentioned above, with various feedback loops is best simulated by a mechanistic fuel code. This paper discusses a mechanistic swelling model that is coupled with a fission gas release model as well as a mechanical model of the fuel pellet. The role of fuel swelling is demonstrated for typical power ramps at different burn-ups. Also, fuel swelling plays a significant role in avoiding the thermal instability for larger gap fuel rods, by limiting the potentially exponentially increasing gap due to the positive feedback loop effect of increasing fission gas release and the associated over-pressure inside the cladding. (author)

  16. Evaluation of adjunctive effect of low-level laser Therapy on pain, swelling and trismus after surgical removal of impacted lower third molar: A double blind randomized clinical trial.

    Science.gov (United States)

    Farhadi, Farrokh; Eslami, Hosein; Majidi, Alireza; Fakhrzadeh, Vahid; Ghanizadeh, Milad; KhademNeghad, Sahar

    2017-09-30

    Wisdom teeth remains impacted in the jaw due to several reasons and surgery of impacted wisdom teeth is one of the most common surgeries in dental clinics. Pain, swelling and trismus are the common complications after this surgery which affect quality of life. In articles, various methods are introduced to control immediate inflammatory-response associated with third-molar surgery. The aim of this study is to evaluate the adjunctive effect of low-level laser Therapy on pain, swelling and trismus after surgical removal of impacted lower third molar. This double-blind randomized controlled trial (RCT) was conducted on two groups of 24 patients (age range of 18-35) that had referred to surgical ward of Faculty of Dentistry, Tabriz University of Medical Sciences for surgery of their mandibular third molar(2015-16). All the subjects were systemically healthy and had at least one impacted mandibular third molar. After surgery, in experimental group, the laser was applied intraorally (inside the tooth socket) and extraorally (at the insertion point of the masseter muscle) immediately after surgery in contact with the target area for 25 seconds each. The laser energy was 2.5 J per area with an energy density of 5 J/ cm 2 at the surface of the probe (spot size= 0.5 cm 2 ). In the other group, as the control group, it was pretended to radiate. Trismus, pain, and swelling were evaluated on the first and seventh days after surgery. The obtained data were evaluated using SPSS 16 software and independent samples T-test. In the group where LLLT had been used, P> 0.05 was calculated for pain, swelling, and trismus on days 1 and 7 after surgery that was not statistically significant. Under limitations of this study, using low-power laser with mentioned parameters, clinically reduces pain, swelling and trismus after surgical removal of impacted mandibular wisdom, but not statistically significant.

  17. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.

    2001-03-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)

  18. Spinal cord swelling and candidiasis

    International Nuclear Information System (INIS)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-01-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was cauused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunsupporessed cancer patient. (orig.)

  19. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  20. Study of swelling by simulation

    International Nuclear Information System (INIS)

    Gilbon, D.; Le Naour, L.; Didout, G.

    1983-06-01

    Fuel cans and hexagonal tubes containing the pins must withstand high irradiation doses (220 or even 275 dpa) with a low swelling. Qualification of a new alloy for claddings requires several years of irradiation on a reactor. For a fast first selection simulation by 1MeV electron or heavy ions enhance radiation damages. Principles of these techniques are recalled and some examples mainly with steel 316 are given. Results are compared with results obtained in reactor to determine simulation limits. The method is not valid in the case of a structural instability of the irradiated material in a reactor [fr

  1. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    Science.gov (United States)

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Void swelling behaviour of austenitic stainless steel during electron irradiation

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Ti Zhongxin

    1994-04-01

    The irradiation swelling behaviour of 00Cr17Ni14Mo2 austenitic stainless steel (AISI 316L) was investigated by means of high voltage electron microscope. Results showed that in solution annealed condition almost no swelling incubation period existed, and the swelling shifted from the transition period to the steady-state one when the displacement damage was around 40 dpa. In cold rolled condition there was evidently incubation period, and when the displacement damage was up to 84 dpa the swelling still remained in the transition period. The average size and density of voids in both conditions were measured, and the factors, which influenced the void swelling, were discussed. (3 figs.)

  3. Mitochondrial Swelling Induced by Glutathione

    Science.gov (United States)

    Lehninger, Albert L.; Schneider, Marion

    1959-01-01

    Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn-+ is a very potent inhibitor, but Mg++ is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium. PMID:13630941

  4. Assessment of void swelling in austenitic stainless steel PWR core internals

    International Nuclear Information System (INIS)

    Chung, H.M.

    2006-01-01

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  5. Low level processing of diode spectrometry results

    International Nuclear Information System (INIS)

    Philippot, J.C.

    1975-01-01

    Systematic measurements in gamma spectrometry on slightly radioactive samples have led to study low levels existing in the spectra and to develop suitable processing methods. These methods and the advance that they represent in reading sensitivity are now applicable to all types of spectrum. The principles of this automatic reading are briefly summarized, leading to a description of the modifications which proved necessary to increase sensitivity. Three sample spectra are used to illustrate the arguments employed to achieve this result. The conclusions from the corresponding measurements provide a clearer understanding of the quality of the responses obtained during the initial reading. The application of these methods to systematic measurements is considered in the case of atmospheric aerosols. The owerall results obtained since 1969 are presented [fr

  6. Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Cai Wei; Zhao Yunmei; Gong Xin; Ding Shurong; Huo Yongzhong

    2015-01-01

    The dispersion nuclear fuel was regarded as a kind of special particle composites. Assuming that the fuel particles are periodically distributed in the dispersion nuclear fuel meat, the finite element model to calculate its equivalent irradiation swelling was developed with the method of computational micro-mechanics. Considering irradiation swelling in the fuel particles and the irradiation hardening effect in the metal matrix, the stress update algorithms were established respectively for the fuel particles and metal matrix. The corresponding user subroutines were programmed, and the finite element simulation of equivalent irradiation swelling for the fuel meat was performed in Abaqus. The effects of the particle size and volume fraction on the equivalent irradiation swelling were investigated, and the fitting formula of equivalent irradiation swelling was obtained. The results indicate that the main factors to influence equivalent irradiation swelling of the fuel meat are the irradiation swelling and volume fraction of fuel particles. (authors)

  7. Morphing of geometric composites via residual swelling.

    Science.gov (United States)

    Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P

    2015-08-07

    Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.

  8. Radiation swelling diagram of chromium-nickel austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gol' tsev, V.P.; Bulyga, V.V.

    1983-01-01

    The diagram of radiation swelling of the gas-cooled reactor core materials is presented. The swelling diagram is built on the basis of the relationships existing between the damaging dose and maximum swelling and takes an account of the temperature corresponding to maximum swelling. The analysis of the estimated data on swelling show that for the same temperatures especially with damaging dose above 30 displ./at., large scattering of swelling absolute values obtained during utilization of different empirical expressions, is observed. The scattering of material swelling values of the fuel elements irradiated under identical conditions results from a variety of gas content in the material of cans in the process of void formation. The displacement of swelling temperature maximum finds explanation in various rates of damaging dose attainment, the temperature swelling maximum being displaced to the side of large values during the increase of the velocity of atomic displacement upon irradiation (displ./atx sec). The suggested characteristic of steel swelling gives the idea about the behaviour of materisls upon neutron irradiation and can be useful for developing of the core elements of the gas-cooled reactors.

  9. Placebo-controlled randomized clinical trial of the effect two different low-level laser therapies (LLLT)--intraoral and extraoral--on trismus and facial swelling following surgical extraction of the lower third molar.

    Science.gov (United States)

    Aras, Mutan Hamdi; Güngörmüş, Metin

    2010-09-01

    The purpose of this study is to compare the effects of extraoral and intraoral low-level laser therapies (LLLT) on postoperative trismus and oedema following the removal of mandibular third molars. Forty-eight patients who were to undergo surgical removal of their lower third molars were studied. Patients were randomly allocated to one of three groups: extraoral LLLT, intraoral LLLT, or placebo. In the study, a Ga-Al-As diode laser device with a continuous wavelength of 808 nm was used, and the laser therapy was applied by using a 1 x 3-cm handpiece. The flat-top laser beam profile was used in this therapy. For both of the LLLT groups, laser energy was applied at 100 mW (0.1 W) for a total of 120 s (0.1 W x 120 s = 12 J). Patients in the extraoral-LLLT group (n = 16) received 12-J (4 J/cm(2)) low-level laser irradiation, and the laser was applied at the insertion point of the masseter muscle immediately after the operation. Patients in the intraoral-LLLT group (n = 16) received 12-J (4 J/cm(2)) low-level laser irradiation intraorally at the operation site 1 cm from the target tissue. In the placebo group (n = 16), the handpiece was inserted intraorally at the operation site and then was touched extraorally to the masseter muscle for 1 min at each site (120 s total), but the laser was not activated. The size of the interincisal opening and facial swelling were evaluated on the second and seventh postoperative days. At the second postoperative day, trismus (29.0 +/- 7.6 mm [p = 0.010]) and swelling (105.3 +/- 5.0 mm [p = 0.047]) in the extraoral-LLLT group were significantly less than in the placebo group (trismus: 21.1 +/- 7.6 mm, swelling: 109.1 +/- 4.4 mm). Trismus (39.6 +/- 9.0 mm [p = 0.002]) in the extraoral-LLLT group at the seventh postoperative day was also significantly less than in the placebo group (29.0 +/- 6.2 mm). However, at the seventh postoperative day in the intraoral-LLLT group, only trismus (35.6 +/- 8.5 [p = 0.002]) was significantly less than

  10. Helium-induced blistering and volume swelling in nickel

    International Nuclear Information System (INIS)

    Fenske, G.R.

    1980-01-01

    The results of an experimental investigation of helium-induced blistering are presented. The goal of the research was to examine the mechanisms involved in blistering by observing the microstructure of the implanted region using transmission electron microscopy (TEM). In particular, the volume swelling was measured as a function of the implant depth, and compared to experimental skin thicknesses in order to determine if the skin separated at the maximum volume swelling, or at the end of the swelling profile

  11. Swelling behavior of titanium-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.; Puigh, R.J.

    1984-01-01

    It appears that titanium additions to stainless steels covering a wide compositional range around the specifications of AISI 316 result only in an increased delay period before neutron-induced void swelling proceeds. Once swelling is initiated the post transient behavior of both annealed and cold-worked titanium-modified steels is quite consistent with that of AISI 316, approaching a relatively temperature-independent swelling rate of approx. 1% per dpa

  12. Tracking the attenuation and nonbreaking dissipation of swells using altimeters

    Science.gov (United States)

    Jiang, Haoyu; Stopa, Justin E.; Wang, He; Husson, Romain; Mouche, Alexis; Chapron, Bertrand; Chen, Ge

    2016-02-01

    A method for systematically tracking swells across oceanic basins is developed by taking advantage of high-quality data from space-borne altimeters and wave model output. The evolution of swells is observed over large distances based on 202 swell events with periods ranging from 12 to 18 s. An empirical attenuation rate of swell energy of about 4 × 10-7 m-1 is estimated using these observations, and the nonbreaking energy dissipation rates of swells far away from their generating areas are also estimated using a point source model. The resulting acceptance range of nonbreaking dissipation rates is -2.5 to 5.0 × 10-7 m-1, which corresponds to a dissipation e-folding scales of at least 2000 km for steep swells, to almost infinite for small-amplitude swells. These resulting rates are consistent with previous studies using in-situ and synthetic aperture radar (SAR) observations. The frequency dispersion and angular spreading effects during swell propagation are discussed by comparing the results with other studies, demonstrating that they are the two dominant processes for swell height attenuation, especially in the near field. The resulting dissipation rates from these observations can be used as a reference for ocean engineering and wave modeling, and for related studies such as air-sea and wind-wave-turbulence interactions.

  13. Effect of gas atoms on swelling of austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.; Eguchi, N.; Nishibe, E.; Naito, A.

    1994-01-01

    There have been many studies on the effect of He on swelling, however not so many on the effect of nitrogen on swelling. In this study the effect of nitrogen on swelling of 316 steel was investigated under HVEM irradiation for establishing a model of swelling. The nitrogen content was changed from 0.083 to 0.002 wt%, and for the comparison 321 steel containing Ti was used. Irradiation was performed by HVEM at 500 C under 2x10 -3 dpa/s. The dislocation loop number density in the early stage was nearly equal to the cavity number density formed later and both increased with nitrogen content. The swelling increased and decreased through the maximum as the nitrogen content increased. The result was explained by the model of swelling. As for 321 steel, no cavities were found under HVEM until 6 dpa at 500 C. This suggests the effect of scavenging of nitrogen by Ti. ((orig.))

  14. Investigation of voltage swell mitigation using STATCOM

    International Nuclear Information System (INIS)

    Razak, N A Abdul; Jaafar, S; Hussain, I S

    2013-01-01

    STATCOM is one of the best applications of a self commutated FACTS device to control power quality problems in the distribution system. This project proposed a STATCOM model with voltage control mechanism. DQ transformation was implemented in the controller system to achieve better estimation. Then, the model was used to investigate and analyse voltage swell problem in distribution system. The simulation results show that voltage swell could contaminate distribution network with unwanted harmonic frequencies. Negative sequence frequencies give harmful effects to the network. System connected with proposed STATCOM model illustrates that it could mitigate this problems efficiently.

  15. Effect of gamma irradiation on nylon 6 films : swelling study

    International Nuclear Information System (INIS)

    Singh, L.P.; Chaudhuri, N.K.

    1980-01-01

    This paper reports on swelling studies of γ-irradiated nylon 6 films undertaken to investigate the effects of γ-irradiation in finer details. Benzyl alcohol has been used as the swelling agent. The kinetics of weight swelling of γ-irradiated nylon 6 films in benzyl alcohol was studied at different irradiation doses in the range 0 - 28.8 Mrad. It is observed that with increasing irradiation dose upto 14.4 Mrad the swelling, and hence the diffusion process are retarded; moreover, the sigmoidal nature of the percentage weight swelling vs (time)sup(1/2) plot is augmented. Above this critical dose the swelling and diffusion processes are accelerated. Besides, the sigmoidal behaviour recedes and is converted into linear behaviour at 28.8 Mrad. This behaviour indicates that a relaxation-controlled non-Fickian diffusion process is at work below 28.8 Mrad while at 28.8 Mrad a Fickian process is established. A significant effect on the equilibrium swelling in benzyl alcohol is observed. The plot of equilibrium weight swelling vs irradiation dose at 23deg C shows an initial decrease of swelling upto 3.6 Mrad at which swelling starts decreasing at accelerated rate in the dose range 3.6 - 7.6 Mrad. The rate slows down appreciably between 7.00 and 14.4 Mrad, above which there is a rapid fall. The results are correlated with scission and crosslinking processes through relative viscosity determination of formic acid solutions of the irradiated samples. It is established by combining viscosity data with kinetics and equilibrium swelling data that, besides scission, crosslinking processes are also at work in nylon 6 in the irradiation dose range 0 - 3.6 Mrad. It has been possible to bring out this point because the swelling technique seems to be preferentially sensitive towards crosslinking. (author)

  16. PREVENTION OF PHOSPHATE - INDUCED MITOCHONDRIAL SWELLING

    Science.gov (United States)

    Kroll, Arnold J.; Kuwabara, Toichiro

    1962-01-01

    The prevention of phosphate-induced mitochondrial swelling in the whole retina of the rabbit was studied with the electron microscope. It was found that a mixture of ATP, Mg++, and bovine serum albumin protected the mitochondria in vitro. This finding confirmed the results obtained spectrophotometrically with isolated rat liver mitochondria by Lehninger. PMID:13927020

  17. Swelling and outgassing of heavily-irradiated lithium hydride

    International Nuclear Information System (INIS)

    Souers, P.C.; Ackerman, F.J.; Biel, T.J.; Bigwood, J.; Brite, V.; Christensen, L.D.; Folkers, C.L.; Gede, V.; Griffith, C.M.; Huss, E.B.; Lindahl, R.; McCreary, T.; Otsuki, H.H.; Pond, R.L.; Snider, G.D.; Stanhope, C.; Stump, R.K.; Vanderhoofven, F.; Tsugawa, R.T.; Anderson, J.L.; Carstens, D.W.H.; Drumhiller, W.L.; Lewis, W.B.; Nasise, J.E.; Pretzel, F.E.; Szklarz, E.G.; Vier, D.T.; Bowman, R.C. Jr.; Attalla, A.

    1988-01-01

    Twenty-two years worth of data on lithium deuteride-tritide (Li(D, T)) from three national laboratories is presented. The percent linear swelling and the outgassing of hydrogen isotopes and 3 He for samples stored at 243 to 438 K are presented in summary tables. In some cases, up to a full half-life of tritium (12 years) has been spent in the study. Initial tritium concentrations range from 2 to 98 at%. The precision of the swelling is considered, and the evidence is ambiguous as to whether temperature cycling and handling affects swelling. The early outgassing is all hydrogen, but it turns to helium at long lines. The outgassing levels out for each sample but the amount outgassed varies wildly from sample to sample. At linear swellings beyond 11%, behavior becomes erratic. A maximum linear swelling of 23% is seen for one sample at 5000 days. (orig.)

  18. The extrudate swell of HDPE: Rheological effects

    Science.gov (United States)

    Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.

    2017-05-01

    The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.

  19. Effect of Rhodococcus sp. on desulfurization, swelling and extraction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang De-qiang; Shui Heng-fu [University of Technology of Anhui, Maanshang (China). School of Chemical Engineering

    2006-08-15

    Bio-desulfurization of coal by rhodococcus sp. was studied. Some kinds of coal were swelled with different organic solvents, and then the swelled coals were treated by rhodococcus sp. The results show that the ratios of desulfurization of coals increase after they are swelled, especially swelled with NMP, the ratio is more than 80%. The swelling and extraction of coal were also studied after the coal had been treated by rhodococcus sp. The results show that the ratios of swelling increase more than 65%, but the extraction yield decreases for the coal treated by rhodococcus sp. 11 refs., 5 tabs.

  20. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled...... regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  1. Osmotic de-swelling and swelling of latex dispersions

    International Nuclear Information System (INIS)

    Bonnet-Gonnet, Cecile

    1993-01-01

    This research thesis reports the comparison of, on the one hand, direct measurements of de-swelling resistance of latex dispersions obtained by osmotic pressure with, on the other hand, predictions made by models of electrostatic interactions. This resistance is explained in the case of sulphate-stabilised polystyrene particles (direct repulsion between charged particles), and in the case of copolymer (ps-pba) particles covered by an amphiphilic polymer (interactions between surface macromolecules and polymers). The study of de-swelling and swelling cycles highlights the existence of thresholds beyond which the concentrated dispersion has some cohesion. This irreversibility can be modelled by a Van der Waals attraction. The role of hydrophobic forces in latex destabilisation is studied [fr

  2. Ageing effects on swelling behaviour of compacted GMZ01 bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Ye, W.M., E-mail: ye_tju@tongji.edu.cn [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, the Ministry of Education, China, Shanghai 200092 (China); Lai, X.L.; Liu, Y. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Chen, Y.G. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, the Ministry of Education, China, Shanghai 200092 (China); Cui, Y.J. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Ecole des Ponts Paris Tech, UR Navier/CERMES (France)

    2013-12-15

    Highlights: • Ageing effects on compacted GMZ01 bentonite are investigated. • Swelling property decreases with ageing and influenced by initial conditions. • Ageing effects are mainly attributed to the bonding effects and the hydration of smectites. - Abstract: Ageing effects on the swelling properties of compacted GMZ01 bentonite are investigated in this paper. Samples were compacted to prescribed dry densities and water contents and kept for ageing under constant volume and K{sub 0} confined conditions for target days of 0, 1, 7, 15, 30 and 90. Then, swelling deformation and swelling pressure tests were performed on the aged samples. Results indicate that both the swelling deformation and swelling pressure decrease with ageing time, with a more significant decrease at the first few days of ageing. Ageing effects are more pronounced for samples with large dry density and high water content. At the same initial dry density and water content, samples aged under constant volume conditions show much smaller decrease of swelling pressure compared to that of samples aged under K{sub 0} confined conditions. The decrease of swelling potential of samples with ageing days is mainly attributed to the bonding effects and the internal redistribution of water within the bentonite, which was confirmed by the changes of microstructure of samples with ageing.

  3. Swelling behavior of manganese-bearing AISI 216 steel

    International Nuclear Information System (INIS)

    Gelles, D.S.; Garner, F.A.

    1984-01-01

    The inclusion of 8.5 wt % manganese in AISI 216 does not appear to alter the swelling behavior from that found to be typical of austenitic alloys with comparable levels of other austentite-stabilizing elements. The swelling in AISI 216 in EBR-II is quite insensitive to irradiation temperature in the range 400-650 0 C. Microscopy reveals that this may arise from the low level of precipitation that occurs in the alloy

  4. Use of additive material to stabilize the soil swelling

    Science.gov (United States)

    Parsaee, B.; Estabragh, A. R.; Bordbar, A. T.; Eskandari, G. H.

    2009-04-01

    Change volume increasing of soil, because of increase in its humidity content causes appearing of swelling phenomenon in the soil. This phenomenon has created a lot of damages in the building which is constructed on this kind of soils. Usage the additive materials which stabilize the swelling, has been the subject of many researches. In this research the Potential expansibility of the expansive soils, which were stabilized by additive materials such as Lime, cement and coal ash, was investigated. To get this purpose, by preparing soil samples mixed with upper additive material, changes of potential swelling of stabilized soils were compared. The results revealed that usage of these stabilizing materials caused the decrease in destructive effects due to swelling of soils to some extent. Keywords: swelling, soil stabilizing, additive material, coal ash

  5. Swelling of the buffer of KBS-3V deposition hole

    International Nuclear Information System (INIS)

    Lempinen, A.

    2006-12-01

    At the time of the installation of spent nuclear fuel canister in the KBS-3V deposition hole, empty space is left around bentonite buffer for technical reasons. The gap between the buffer and the canister is about 10 mm, and the gap between the buffer and the rock is 30 to 35 mm. In this study, the swelling of the buffer to fill the gaps was simulated, when the gaps are initially filled with water and no external water is available. The model used here is a thermodynamical model for swelling clay, with parameters determined for bentonite. The simulations presented here were performed with Freefem++ software, which is a finite element application for partial differential equations. These equations come from the material model. The simulation results show that the swelling fills the outer gaps in few years, but no significant swelling pressure is generated. For swelling pressure, external water supply is required. (orig.)

  6. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema.

    Science.gov (United States)

    Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A

    2010-03-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.

  7. Swelling of structural materials in fast neutron reactors

    International Nuclear Information System (INIS)

    Seran, J.L.

    1983-06-01

    The physical origin of swelling in irradiated materials and the main parameters acting on swelling of SS 316 are examined: temperature, neutron dose, dose rate, chemical composition, strain hardening. Results obtained, in Rapsodie and Phenix reactors, with fuel cans and with the hexagonal tube containing the fuel pins are analyzed and compared with results found in litterature. In conclusion hot swelling of SS 316 is too important at high doses and is will be replaced by austenitic steels stabilized by Ti and ferritic steels or high nickel steels with structural hardening [fr

  8. Influence of network topology on the swelling of polyelectrolyte nanogels.

    Science.gov (United States)

    Rizzi, L G; Levin, Y

    2016-03-21

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.

  9. Radiation-induced creep and swelling

    International Nuclear Information System (INIS)

    Heald, P.T.

    1977-01-01

    The physical basis for radiation induced creep and swelling is reviewed. The interactions between the point defects and dislocations are recalled since these interactions are ultimately responsible for the observable deformation phenomena. Both the size misfit interaction and the induced inhomogeneity interaction are considered since the former gives rise to irradiation swelling while the latter, which depends on both internal and external stresses, results in irradiation creep. The defect kinetics leading to the deformation processes are discussed in terms of chemical rate theory. The rate equations for the spatially averaged interstitial and vacancy concentrations are expressed in terms of the microstructural sink strengths and the solution of these equations leads to general expressions for the deformation rates

  10. Swelling of austenitic iron-nickelchromium ternary alloys during fast neutron irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1984-01-01

    Swelling data are now available for 15 iron-nickel-chromium ternary alloys irradiated to exposures as high as 110 displacements per atom (dpa) in Experimental Breeder Reactor-II (EBR-II) between 400 and 650 0 C. These data confirm trends observed at lower exposure levels and extend the generality of earlier conclusions to cover a broader range of composition and temperature. It appears that all austenitic iron-nickel-chromium ternary alloys eventually approach an intrinsic swelling rate of about1%/dpa over a range of temperature even wider than studied in this experiment. The duration of the transient regime that precedes the attainment of this rate is quite sensitive to nickel and chromium content, however. At nickel and chromium levels typical of 300 series steels, swelling does not saturate at engineering-relevant levels. However, there appears to be a tendency toward saturation that increases with declining temperature, increasing nickel and decreasing chromium levels. Comparisons of these results are made with those of similar studies conducted with charged particles. Conclusions are then drawn concerning the validity of charged particle simulation studies to determine the compositional and temperature dependence of swelling

  11. Effects of tensile and compressive stresses on irradiation-induced swelling in AISI 316

    International Nuclear Information System (INIS)

    Lauritzen, T.; Bell, W.L.; Konze, G.M.; Rosa, J.M.; Vaidyanathan, S.; Garner, F.A.

    1985-05-01

    The results of two recent experiments indicate that the current perception of stress-affected swelling needs revision. It appears that compressive stresses do not delay swelling as previously modeled but actually accelerate swelling at a rate comparable to that induced by tensile stresses

  12. Effect of seawater and high-temperature history on swelling characteristics of bentonite

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko

    2005-01-01

    In the case of construction of repository for nuclear waste near the coastal area, the effect of seawater on swelling characteristics of bentonite as an engineering as an engineering barrier should be considered. Effects of high-temperature history on swelling characteristics of bentonite should also be considered because nuclear waste generates heat. Thus, in this study, swelling characteristics of bentonite on the conditions of high temperature history and seawater are investigated. The results of this study imply that : (1) Swelling strain of sodium bentonite or transformed sodium bentonite decrease as the salinity of water increases, whereas those of calcium bentonite are not affected by salinity of the water. (2) Quantitative evaluation method for swelling strain and swelling pressure of several kinds of bentonites under brine is proposed. (3) Using distilled water, swelling strain and swelling pressure of sodium bentonite with high-temperature history is less than those without high-temperature history. (author)

  13. Nucleon swelling and the Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Epele, L.N.; Garcia Canal, C.A.; Fanchiotti, H.; Mendez Galain, R.

    1987-01-01

    A previously proposed explanation of the Nolen-Schiffer anomaly based on the nucleon swelling inside a nuclei is reanalyzed. We found a clear incompatibility beetween this proposal and the experimental results. (orig.)

  14. Mechanisms affecting swelling in alloys with precipitates

    International Nuclear Information System (INIS)

    Mansur, L.K.; Haynes, M.R.; Lee, E.H.

    1980-01-01

    In alloys under irradiation many mechanisms exist that couple phase instability to cavity swelling. These are compounded with the more familiar mechanisms associated with point defect behavior and the evolution of microstructure. The mechanisms may be classified according to three modes of operation. Some affect cavity swelling directly by cavity-precipitate particle association, others operate indirectly by precipitate-induced changes in sinks other than cavities and finally there are mechanisms that are mediated by precipitate-induced changes in the host matrix. The physics of one mechanism of each type is developed in detail and the results compared where possible to experimental measurements. In particular, we develop the theory necessary to treat the effects on swelling of precipitation-induced changes in overall sink density; precipitation-induced changes in point defect trapping by solute depletion and creation of precipitate particle-matrix interfacial trap sites; and preciwill come from waste wood available locally requiring minimal energy for recovery and transportation to the site. The applicant is strongly considering the use of a solar preheating unit anium southward as well as to deeper dened al half-lives with experimental ones, over a range of 24 orders of magnitude was obtained. This is a strong argument that the alpha decay could be considered a fission process with very high mass asymmetry and charge density asymmetry

  15. Molecular accessibility in solvent swelled coals

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  16. Se of polymers to control clay swelling

    Energy Technology Data Exchange (ETDEWEB)

    Slobod, R L; Beiswanger, J P.G.

    1968-01-01

    The injection of water to displace oil is one of the main methods used to increase oil recovery. High injection rates are generally desired, and in some cases the flood will not be economic unless high rates are maintained. The presence of clays which swell in the presence of water offers a complication to the problem of maintaining adequate injectivity. In the course of this study it was observed that certain polymers, when present in dilute concentrations in the water, had the ability to reduce the response of these clays to fresh water. Two polymers, one an anionic and the other nonionic, were found to be very effective in controlling the clays present in Berea cores. Successful control of clay swelling was obtained by use of solutions containing as little as 1.0 ppM of polymer, but at this low concentration appreciable volumes of treating solution were required. These results suggest that some minimum amount of polymer must be adsorbed to prevent clay swelling. In Berea sandstone this minimum amount appeared to be of the order of 0.03 mg per cc of pore space. A series of tests made using 10.0 ppM polymer showed that the polymer could be made through the porous system in which 0.066 per mg of polymer was adsorbed per cc of pore space.

  17. Swelling

    Science.gov (United States)

    ... Liver failure from cirrhosis Nephrotic syndrome Poor nutrition Pregnancy Thyroid disease Too little albumin in the blood (hypoalbuminemia) Too much salt or sodium Use of certain drugs, such as corticosteroids or ...

  18. Swelling pressure in compacted bentonite below 0°C

    International Nuclear Information System (INIS)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf

    2010-01-01

    pressure response is fully explained by a single pore-type model of compacted bentonite which considers thermodynamic equilibrium between water in the clay and in the external reservoirs. This model predicts a linear dependence of swelling pressure on temperature. The observed pressure responses below and above 0 deg. C is explained by a large difference in partial molar entropies between clay water and ice and a much smaller difference between clay water and liquid bulk water. At T c , the chemical potentials of ice and clay water is equal which explains the complete loss of swelling pressure. This mechanism is completely analogous to the effect of freezing point depression in an ordinary salt solution. The success of the single pore-type model to describe the process together with the observation that no pressure peaks was observed as the 0 deg. C level was passed suggests that water saturated bentonite do contain a negligible amount of larger pores (> 50 nm) since these should freeze at temperatures close to 0 deg. C with a resulting pressure increase. Not until temperatures are below T c will water start to be transferred from the clay (montmorillonite interlayers) to a bulk ice phase, i.e ice lens formation will not occur at temperatures above Tc. From a safety assessment point of view it can be concluded that no complications are expected when freezing bentonite above T c . For KBS-3 conditions this corresponds to a temperature of -7 - -6 deg. C. The situation with a lost swelling pressure only occurs when the surroundings already are frozen and transport is very much restricted. As temperature increases from below 0 deg. C, swelling pressure is regained before the surroundings have thawed. Furthermore, no possibly hazardous pressure peaks are expected as the 0 deg. C is passed. It can further be concluded that measurements of the swelling pressure response to temperature changes is a convenient way to quantify the partial molar entropy of water in the clay which is

  19. Cell swelling and volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    1992-01-01

    The extracellular space in the brain is typically 20% of the tissue volume and is reduced to at least half its size under conditions of neural insult. Whether there is a minimum size to the extracellular space was discussed. A general model for cell volume regulation was presented, followed...... by a discussion on how many of the generally involved mechanisms are identified in neural cells and (or) in astrocytes. There seems to be clear evidence suggesting that parallel K+ and Cl- channels mediate regulatory volume decrease in primary cultures of astrocytes, and a stretch-activated cation channel has...... been reported. The role of the different channels was discussed. A taurine leak pathway is clearly activated after cell swelling both in astrocytes and in neurones. The relations between the effect of glutamate and cell swelling were discussed. Discussion on the clearance of potassium from...

  20. Engineering Significant of Swelling Soils

    OpenAIRE

    Behzad Kalantari

    2012-01-01

    This study describes some of the most important swelling characters of expansive soils when used as foundation materials to support various types of civil engineering structures. Expansive soils are considered among difficult foundation materials and expand upon wetting and shrink upon losing moisture. They are considered problematic soils for architectural and civil engineers. These types of soils may cause minor to major structural damages to pavements as well as buildings. It is therefore ...

  1. Segmentation of knee injury swelling on infrared images

    Science.gov (United States)

    Puentes, John; Langet, Hélène; Herry, Christophe; Frize, Monique

    2011-03-01

    Interpretation of medical infrared images is complex due to thermal noise, absence of texture, and small temperature differences in pathological zones. Acute inflammatory response is a characteristic symptom of some knee injuries like anterior cruciate ligament sprains, muscle or tendons strains, and meniscus tear. Whereas artificial coloring of the original grey level images may allow to visually assess the extent inflammation in the area, their automated segmentation remains a challenging problem. This paper presents a hybrid segmentation algorithm to evaluate the extent of inflammation after knee injury, in terms of temperature variations and surface shape. It is based on the intersection of rapid color segmentation and homogeneous region segmentation, to which a Laplacian of a Gaussian filter is applied. While rapid color segmentation enables to properly detect the observed core of swollen area, homogeneous region segmentation identifies possible inflammation zones, combining homogeneous grey level and hue area segmentation. The hybrid segmentation algorithm compares the potential inflammation regions partially detected by each method to identify overlapping areas. Noise filtering and edge segmentation are then applied to common zones in order to segment the swelling surfaces of the injury. Experimental results on images of a patient with anterior cruciate ligament sprain show the improved performance of the hybrid algorithm with respect to its separated components. The main contribution of this work is a meaningful automatic segmentation of abnormal skin temperature variations on infrared thermography images of knee injury swelling.

  2. Measurement of void swelling in thick non-uniformly irradiated 304 stainless steel blocks using nondestructive ultrasonic techniques

    International Nuclear Information System (INIS)

    Garner, F.A.; Okita, T.; Isobe, Y.; Etoh, J.; Sagisaka, M.; Matsunaga, T.; Freyer, P.D.; Huang, Y.; Wiezorek, J.M.K.; Porter, D.L.

    2015-01-01

    Void swelling is of potential importance in PWR austenitic internals, especially in components that will see higher doses during plant lives beyond 40 years. Proactive surveillance of void swelling is required to identify its emergence before swelling reaches levels that cause high levels of embrittlement and distortion. Non-destructive measurements of ultrasonic velocity can measure swelling at fractions of a percent. To demonstrate the feasibility of this technique for PWR application we have investigated five blocks of 304 stainless steel that were irradiated in the EBR-II fast reactor. These blocks were of hexagonal cross-section, with thickness of about 50 mm and lengths of about 218-245 mm. They were subjected to significant axial and radial gradients in gamma heating, temperature and dpa rate, producing complex internal distributions of swelling, reaching about 3.5% maximum at an off-center mid-core position. Swelling decreases both the density and the elastic moduli, thereby impacting the ultrasonic velocity. Concurrently, carbide precipitates form, producing increases in density and decreases in elastic moduli. Using blocks from both low and high dpa levels it was possible to separate the ultrasonic contributions of voids and carbides. Time-of-flight ultrasonic measurements were used to non-destructively measure the internal distribution of void swelling. These distributions were confirmed using non-destructive profilometry followed by destructive cutting to provide density change and electron microscopy data. It was demonstrated that the four measurement types produce remarkably consistent results. Therefore ultrasonic measurements offer great promise for in-situ surveillance of voids in PWR core internals. (authors)

  3. Radiation swelling of steels with lath martensite-austenic structure

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Pavlov, V.A.; Alyab'ev, V.M.; Lapin, S.S.; Ermishkin, V.A.; Antonova, O.V.

    1987-01-01

    Influence of electron radiation in the column of the JEM-1000 electron microscope on radiation swelling of austenite as austenitic fields and thin plates surrounded by α-martensite crystals is investigated. Formation of lath structure of alternating dispersive plates of martensite and invert austenite formed as a result of partial inverse martensite transformation α→γ is shown to restrain radiation swelling and formation of vacancy voids in stainless steels

  4. Laboratory study of the Flandres clay swelling

    International Nuclear Information System (INIS)

    Khaddaj, Said

    1992-01-01

    The first chapter contains a survey about the swelling of soils, and about the experimental methods used to characterize this phenomenon. A classification of soils in function of their swelling potential is proposed. The second chapter deals with the properties of Flandres clay. Chemical and mineralogical compositions, mechanical properties and free swell index are given. The third chapter contains a presentation of the study of the swelling potential of Flandres clay using the oedometer. Four methods are described and used (free-swell, different pressures, pre-swell and direct-swell). A numerical simulation of free-swell tests is also given. The fourth chapter includes a presentation of the study of the swelling behaviour of Flandres clay using a triaxial cell. Three methods are used: free-swell, pre-swell and different-pressures. The last chapter contains a parametric study of the swelling behaviour of Flandres clay. The influence of some parameters such as sample thickness, initial water content, vertical load and load history is presented. (author) [fr

  5. Effect of pressure on the transient swelling rate of oxide fuel

    International Nuclear Information System (INIS)

    Gruber, E.E.

    1982-04-01

    An analysis of the transient swelling rate of oxide fuel, based on fission-gas bubble conditions calculated with the FRAS3 code, has been developed and implemented in the code. The need for this capability arises in the coupling of the FRAS3 fission-gas analysis code to the FPIN fuel-pin mechanics code. An efficient means of closely coupling the calculations of swelling strains and stresses between the modules is required. The present analysis provides parameters that allow the FPIN calculation to proceed through a fairly large time step, using estimated swelling rates, to calculate the stresses. These stress values can then be applied in the FRAS3 detailed calculation to refine the swelling calculation, and to provide new values for the parameters to estimate the swelling in the next time step. The swelling rates were calculated for two representative transients and used to estimate swelling over a short time period for various stress levels

  6. Swelling and microstructure of neutrons irradiated 316 Ti SS

    International Nuclear Information System (INIS)

    Seran, J.L.; Le Naour, L.; Grosjean, P.; Hugon, M.P.; Carteret, Y.; Maillard, A.

    1984-06-01

    The analysis of the behaviour of fuel pins irradiated in the same RAPSODIE subassembly, shows that titanium has a marked beneficial effect on the swelling resistance of CW 316 SS in a large range of temperature. This effect is particularly visible at high temperature since CW 316 Ti SS does not swell above 550 0 C up to a dose of 100 French dpa. The results obtained on samples irradiated in a RAPSODIE experimental rig give us confirmation of the good behaviour of CW 316 Ti SS which swells less and at smaller temperature than the other steels of the 316 series such as SA 316 Ti or aged SA 316 Ti. The swelling differences between some of these materials can be associated to different microstructures which are also very different from the ones obtained on the irradiated steels aged in the same time and temperature conditions

  7. Swelling and infusion of tea in tea bags.

    Science.gov (United States)

    Yadav, Geeta U; Joshi, Bhushan S; Patwardhan, Ashwin W; Singh, Gurmeet

    2017-07-01

    The present study deals with swelling and infusion kinetics of tea granules in tea bags. The swelling and infusion kinetics of tea bags differing in tea loading and tea bag shapes were compared with loose tea. Increment in temperature and dipping frequency of tea bag in hot water increased the infusion kinetics of tea bags. Reduction in particle size enhanced the swelling and infusion kinetics of tea in a tea bag. The effects of tea particle size, tea bag dipping rate, loading of tea granules in tea bag and tea bag shapes on infusion kinetics were investigated. Increase in tea loading in tea bags resulted in reduced infusion kinetics. Double chambered tea bag showed the highest swelling (30%) and infusion kinetics (8.30% Gallic acid equivalence) while single chambered tea bags showed the lowest kinetics, amongst the various bags studied. The swelling and infusion kinetics of loose tea was always faster and higher than that of tea bags. It was found that overall effect of percentage filling of tea granules and height of tea bed in a tea bag affects tea infusion kinetics the most. Weibull model was found to be in good agreement with the swelling data.

  8. Irradiation swelling in self-ion irradiated niobium

    International Nuclear Information System (INIS)

    Bajaj, R.; Shiels, S.A.; Hall, B.O.; Fenske, G.R.

    1987-01-01

    This paper presents initial results of an investigation of swelling mechanisms in a model body centered cubic (bcc) metal, niobium, irradiated at elevated temperatures (0.3 T/sub m/ to 0.6 T/sub m/) where T/sub m/ = melting point in K. The objective of this work is to achieve an understanding of the elevated temperature swelling in bcc metals, which are the prime candidate alloys and composite matrix materials for space reactor applications. Niobium was irradiated with 5.3 MeV Nb ++ ions, at temperatures ranging from 700 0 C to 1300 0 C, to a nominal dose of 50 dpa at a dose rate of 6 x 10 -3 dpas. Swelling was observed over a temperature range of 700 0 C to 1200 0 C, with a peak swelling of 7% at 900 0 C. The microstructural data, obtained from transmission electron microscopy, were compared to the predictions of the theoretical model developed during this program. A reasonable agreement was obtained between the experimental measurements of swelling and theoretical predictions by adjusting both the niobium-oxygen binding energy and the incubation dose for swelling to realistic values

  9. Helium-induced blistering and volume swelling in nickel

    International Nuclear Information System (INIS)

    Fenske, G.R.

    1979-01-01

    The results of an experimental investigation of He-induced blistering are presented. The mechanisms involved in blistering were examined by observing the microstructure of the implanted region using TEM. The volume swelling was measured as a function of the implant depth. The investigation revealed factors important in understanding the mechanisms involved in blister formation. First, a direct comparison of measured skin-thicknesses with the location of the maximum volume swelling demonstrated that the skin separates at the peak swelling depth, not at the end of the swelling profile. Second, an examination of the assumptions that have been used to predict skin-thicknesses revealed that the differences between predicted and measured skin thicknesses at low energies can be attributed to: failure to account for volume swelling in the skin, using a Gaussian approximation to the range profile, or one generated with a Monte-Carlo code, and uncertainties in the electronic stopping powers. Beyond a certain dose, the density of cavities in the peak-swelling region decreased with increasing dose; indicating that cavity coalescence does occur. A calculation of the He concentration required to fracture the load-bearing cross section between the cavities revealed that a sufficient quantity of He was available to generate the required gas pressures. These observations indicate that models based on coalescence followed by gas-driven deformation provide an accurate description of the mechanisms involved in blistering; and they can accurately predict skin thicknesses at low energies

  10. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  11. The physical properties and compaction characteristics of swelling soils

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1990-01-01

    Expansive soils have recently attracted increasing attention as the back filling material for the repositories of high level nuclear wastes or as the material for improving extremely soft grounds. However, since very little has been known concerning the physical and mechanical properties of such materials, it is necessary to clarify the swelling, compaction and thermal characteristics of expansive soils. For this purpose, various kinds of index tests and a series of static compaction tests were performed using several kinds of swelling soils in order to investigate the relationship between the fundamental physical properties and the compaction characteristics. Since the ordinary testing method stipulated in JIS is difficult to perform for such expansive soils, the new method was proposed to obtained the reliable values of specific gravity, grain size distribution and liquid/plastic limits. By this method, some representative values were presented for various kinds of clay including bentonite. As the results of static compaction tests, the compaction characteristics of clay were strongly dependent on the plastic limit of clay. The maximum dry density and optimum water content were strongly dependent on both plastic limit and compaction pressure. (K.I.)

  12. Site-Specific Pre-Swelling-Directed Morphing Structures of Patterned Hydrogels.

    Science.gov (United States)

    Wang, Zhi Jian; Hong, Wei; Wu, Zi Liang; Zheng, Qiang

    2017-12-11

    Morphing materials have promising applications in various fields, yet how to program the self-shaping process for specific configurations remains a challenge. Herein we show a versatile approach to control the buckling of individual domains and thus the outcome configurations of planar-patterned hydrogels. By photolithography, high-swelling disc gels were positioned in a non-swelling gel sheet; the swelling mismatch resulted in out-of-plain buckling of the disc gels. To locally control the buckling direction, masks with holes were used to guide site-specific swelling of the high-swelling gel under the holes, which built a transient through-thickness gradient and thus directed the buckling during the subsequent unmasked swelling process. Therefore, various configurations of an identical patterned hydrogel can be programmed by the pre-swelling step with different masks to encode the buckling directions of separate domains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Methodology for determining void swelling at very high damage under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Getto, E., E-mail: embecket@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Sun, K. [Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Taller, S.; Monterrosa, A.M.; Jiao, Z. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-08-15

    At very high damage levels in ion irradiated samples, the decrease in effective density of the irradiated material due to void swelling can lead to errors in quantifying swelling. HT9 was pre-implanted with 10 appm He and subjected to a raster-scanned beam with a damage rate of ∼1 × 10{sup −3} dpa/s at 460{sup o}C. Voids were characterized from 0 to 1300 nm. Fixed damage rate and fixed depth methods were developed to account for damage-dependent porosity increase and resulting dependence on depth. The fixed depth method was more appropriate as it limits undue effects from the injected interstitial while maintaining a usable void distribution. By keeping the depth fixed and accounting for the change in damage rate due to reduced density, the steady state swelling rate was 10% higher than calculation of swelling from raw data. This method is easily translatable to other materials, ion types and energies and limits the impact of the injected interstitial.

  14. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  15. Mitigation of Voltage Swells by Static Series Compensator

    DEFF Research Database (Denmark)

    Awad, Hilmy; Blaabjerg, Frede

    2004-01-01

    Swells and overvoltages can cause overheating, tripping or even destruction of industrial equipment such as motor drives and control relays. This paper investigates the possibility of employing the Static Series Compensator (SSC) to mitigate voltage swells/overvoltages. In the case of voltage...... is lower than a predetermined voltage level, the active power is employed to charge the ESC to this voltage level; 2) otherwise, the overvoltage protection of the SSC must operate. This paper also applies an overvoltage protection scheme based on a combination of a dc resistor with a chopper and the valves...

  16. Influence of microorganisms on swelling behavior of smectites

    International Nuclear Information System (INIS)

    Viefhaus, Hanna; Schanz, Tom

    2012-01-01

    Document available in extended abstract form only. Considerable interaction of smectitic clay minerals and water leads to the pronounced seal effect needed for barrier materials in the toxic and nuclear waste storage. Nano-structural processes on the molecular level cause macroscopic material properties such as fluid/ion permeability and volume change/swelling pressure development, that are taken into account when characterizing the barrier material. In situ behavior results from a combination of specific influence factors (e.g. electrolyte concentration, temperature, pH-value) due to the great dependence on the environmental conditions of clay water interaction. Considering this aspect, the origin of change in chemical and physical variables become relevant. Particularly in terms of naturally existing and rapid changing factors such as microbial activity. Due to the biodiversity of microorganisms and their individual diversity of metabolism processes, many species have been studied with respect to the influence on the different soil properties. In this study, the effects created by microbial biocenose have been the object of investigation. This corresponds to natural conditions rather than the isolated species. The present study concerns the swelling behavior of smectitic clay with respect to the influence of induced microbial accumulation. Two types of smectites were studied, Calcigel (Ca 2+ -ions embedded between the silicate layers) and MX80 (Na + -ions embedded). A natural silt was mixed at a ratio of 70:30 for the dry mass with smectites, this provided an amount of microbial portfolio. Using the mixtures, samples were created (20 mm height, 70 mm diameter) with two types of water contents. They exhibited the same dry densities of 1.495 g/cm 3 (Calcigel) and 1.386 g/cm 3 (MX80). Water adsorption was permitted through the contact of the sample with the liquid phase and also unhindered volume change in one dimension. The addition of nutrients to the liquid phase

  17. Experimental study on swelling character of statics-compacted bentonite-sand mixture

    International Nuclear Information System (INIS)

    Cui Suli; Zhang Huyuan; Liu Jisheng; Liang Jian

    2010-01-01

    In the high-level radioactive waste (HLW) geological disposal projects barrier system, there are two types for constructing buffer/backfill material in preconceived: locale field-pressed and locale-build by prefab lock. Statics-Compacted is needed for both footrill padding in the locale field-pressed and locale-build by prefab lock. Laboratory tests were conducted on statics-compacted mixture of GMZ001 bentonite and quartz sand in different addition. The results obtained indicated that in the semi-log coordinates, the form of the P-time and e-time curves were sigmoid,the same as dynamic-compacted specime. The swelling character of statics-compacted specime were also as well as dynamic-compacted specime, that is with the increase of initial dry density, the maximum swelling pressure were exponential increase and maximum swelling strain increase linearly. These made it clear that the methods of making specime have no effect on the swelling character of bentonite-sand mixture, so methods for constructing buffer/backfill material can be selected free as needed in the construction site. The validity of regression relationship received by dynamic-compacted specime test was verified, and the coefficients for the regression equation were revised in a greater range of initial dry density. Based on the comprehensive analysis of experimental results, it is concluded that addition of 10-30% quartz sand and 1.60-1.80 g/cm 3 for initial dry density to GMZ001 bentonite-sand mixture is suitable for the swelling quality. (authors)

  18. Recent experimental results on level densities for compound reaction calculations

    International Nuclear Information System (INIS)

    Voinov, A.V.

    2012-01-01

    There is a problem related to the choice of the level density input for Hauser-Feshbach model calculations. Modern computer codes have several options to choose from but it is not clear which of them has to be used in some particular cases. Availability of many options helps to describe existing experimental data but it creates problems when it comes to predictions. Traditionally, different level density systematics are based on experimental data from neutron resonance spacing which are available for a limited spin interval and one parity only. On the other hand reaction cross section calculations use the total level density. This can create large uncertainties when converting the neutron resonance spacing to the total level density that results in sizable uncertainties in cross section calculations. It is clear now that total level densities need to be studied experimentally in a systematic manner. Such information can be obtained only from spectra of compound nuclear reactions. The question is does level densities obtained from compound nuclear reactions keep the same regularities as level densities obtained from neutron resonances- Are they consistent- We measured level densities of 59-64 Ni isotopes from proton evaporation spectra of 6,7 Li induced reactions. Experimental data are presented. Conclusions of how level density depends on the neutron number and on the degree of proximity to the closed shell ( 56 Ni) are drawn. The level density parameters have been compared with parameters obtained from the analysis of neutron resonances and from model predictions

  19. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  20. A SIPA-based theory of irradiation creep in the low swelling rate regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Woo, C.H.

    1991-11-01

    A model is presented which describes the major facets of the relationships between irradiation creep, void swelling and applied stress. The increasing degree of anisotropy in distribution of dislocation Burger's vectors with stress level plays a major role in this model. Although bcc metals are known to creep and swell at lower rates than fcc metals, it is predicted that the creep-swelling coupling coefficient is actually larger

  1. Experimental evidence for stress enhanced swelling

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1976-01-01

    Experimental evidence is presented which shows that the application of a biaxial stress during irradiation can increase the magnitude of irradiation-induced swelling observed in tubular specimens. It is shown that this increase in swelling is linear below the proportional elastic limit of the material and decreases above this value of stress. In the linear region a relationship is found between total swelling and stress free swelling. The phenomenon of reduced swelling is evaluated on the basis of increased cold work due to pre-irradiation straining. This analysis yields a relationship of dislocation density proportional to stress to the 3.82 power. Additional analyses using dislocation density proportional to sigma 2 (sigma = hoop stress) yield a similar but sharper decrease in swelling after the proportional elastic limit is reached. (Auth.)

  2. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  3. Recurrent painful calf swelling associated with gout.

    Science.gov (United States)

    Kovarsky, J; Young, M B

    1978-01-01

    A 30-year-old man had a recurrent painful calf swelling associated with gout that mimicked thrombophlebitis and possibly muscle tear. This painful calf swelling occurred in the absence of a subjective history of arthritis of the knee. A constellation of clinical signs was highly suggestive that gout was the cause of the painful calf swellings. Patients with similar conditions, after careful exclusion of thrombophlebitis, might be spared unnecessary and potentially dangerous anticoagulation or surgical intervention by early diagnosis of gout.

  4. Counterion-induced swelling of ionic microgels

    Science.gov (United States)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  5. Critical parameters controlling irradiation swelling in beryllium

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1995-01-01

    Radiation effects in beryllium can hardly be explained within a framework of the conventional theory based on the bias concept due to elastic interaction difference (EID) between vacancies and self-interstitial atoms (SIAs) since beryllium belongs to hexagonal close-packed metals where diffusion has been shown to be anisotropic. Diffusional anisotropy difference (DAD) between point defects changes the cavity bias for their absorption and leads to dependence of the dislocation bias on the distribution of dislocations over crystallographic directions. On the other hand, the elastic interaction between point defects and cavities gives rise to the size and gas pressure dependencies of the cavity bias, resulting in new critical quantities for bubble-void transition effects at low temperature irradiation. In the present paper, we develop the concept of the critical parameters controlling irradiation swelling with account of both DAD and EID, and take care of thermal effects as well since they are of major importance for beryllium which has an anomalously low self-diffusion activation energy. Experimental data on beryllium swelling are analyzed on the basis of the present theory. (orig.)

  6. STUDY OF A SOIL WITH SWELLING AND SHRINKING PHENOMENA

    Directory of Open Access Journals (Sweden)

    G. Rogobete

    2012-12-01

    Full Text Available Vertisols are deep clayey soils, with more than 45 % clay, dominated by clay minerals, such as smectites, that expand upon wetting and shrink upon drying. The most important physical characteristics of Vertisols are a low hydraulic conductivity and stickiness when wet and high flow of water through the cracks when dry. They become very hard when dry and in all the time are difficult to work. During the rainy season, the cracks disappear and the soil becomes sticky and plastic with a very slippery surface which makes Vertisols in – trafficable when wet. Water movement in soil that change volume with water content is not well understood and management of swelling soil remains problematic. Swelling or shrinking result in vertical displacement of the wet soil, which involves gravitational work and contributes to an overburden component to the total potential of the soil water. Many swelling soil crack and the network of cracks provides pathways for rapid flow of water which prejudice application of theory based on Darcian flow. One – dimensional flow of water in a swelling system requires material balance equation for both the aqueous and solid phases. The analytical data offers some values particle – size distribution, compression, swelling degree and pressure, plasticity index, elastic modulus, triaxial shear, angle of shear and load carrying capacity in order to realize a foundation study for some constructions.

  7. Swelling and fracturing of borides under neutron irradiation

    International Nuclear Information System (INIS)

    Krainy, A.G.; Ogorodnikov, V.V.; Grinik, E.U.; Chirko, L.I.; Shinakov, A.A.

    1994-01-01

    The neutron irradiation of high temperature borides, which are included in boron-containing reactor materials, results in high internal stresses, leading to considerable swelling and micro- and macro-fracturing. Experimental results over a large range of temperature and fluences, show a change of damage mechanism for borides within 400-530 C: the macro-cracking with formation of annular and radial cracks is observed below this temperature zone. The accumulation of micro-fractures and the process of gas swelling take place at irradiation temperatures above 530 C. The effect of the high internal stresses is compared to external pressure. 12 refs., 4 figs

  8. Reliability of Arch dams subject to concrete swelling

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.M.; Silva, H.S.; Pinho, S. de [Laboratorio Nacional de Engenharia Civil (LNEC), Lisboa (Portugal)] [and others

    1995-12-31

    In this report, results of several studies are presented. The main aim of those studies was to assess the reliability of the three arch dams, in which swelling occurred due to alkali- aggregate reactions in various stages of development and having different effects on their reliability: the Cahora-Bassa dam, in Mozambique, where swelling accumulated up to the moment are very moderate and their development is apparently homogeneous; Santa-Luzia dam, in Portugal, where accumulated swelling have already considerable magnitude, nevertheless, important fissuration has not been observed up to the moment due to the homogeneous development of the swelling process; Alto-Ceira dam, also in Portugal, where accumulated swelling have also considerable magnitude but with a heterogeneous development, causing in conjunction with thermal variations important fissuration. Mention is made of mineralogical, chemical and petrographic analyses carried out for identification of the nature of reactions developed in each case and the back-analysis and other technics used in the assessment of the magnitude and distribution of swelling. Results are presented of measurement tests of the ultrasonic pulse velocity, used both in the assessment of alterations in the physical properties of concretes and in the determination of the depth of fissuration. Results are also presented of tests for characterisation of the rheology of integral concrete. Lastly, considerations are made about the reliability of the works on the basis of studies and the results of analyses of the state of stress, performed by means of the finite element method, by assuming for either visco-elastic or visco-elastic-plastic behaviour.

  9. Results of level 1 PSA in Trillo 1 NPP

    International Nuclear Information System (INIS)

    Gomez, F.; Lopez, C.

    1998-01-01

    In July 1991, C. N. Trillo I was requested by the Spanish Regulatory Body (CSN) to perform a PSA that should include: - Level 1 PSA at power - Internal flooding analysis - Level 2 PSA including containment capacity analysis. - External event analyses (fires, external flooding, seismic events and other external events) - Risk analysis for off power conditions (shutdown and low power) - Risk analysis due to other sources of radioactivity In 1992 the Project Plan was issued and the PSA team for the performance of Level 1 PSA was established. Before finishing the Project, it was decided to develop a Phase B to take into account some important modifications that had been accomplished in the Plant and that, probably, could affect the results. Level 1 PSA was finished in March 1998. Both the results of the study and the main conclusions derived from the importance, uncertainty and sensibility analysis performed are presented in this paper. These results de not include the internal flooding analysis conclusions and correspond to PSA revision 0 that is currently being evaluated by the Spanish Regulatory Body. (Author)

  10. Comparison of swelling for structural materials on neutron and ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.

    1986-03-01

    The swelling of V-base alloys, Type 316 stainless steel, Fe-25Ni-15Cr alloys, ferritic steels, Cu, Ni, Nb-1% Zr, and Mo on neutron irradiation is compared with the swelling for these materials on ion irradiation. The results of this comparison show that utilization of the ion-irradiation technique provides for a discriminative assessment of the potential for swelling of candidate materials for fusion reactors.

  11. Relationship between equivalent chromium content and irradiation-induced swelling in 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.; Guthrie, G.L.

    1974-12-01

    A correlation is noted between equivalent chromium content and resistance to irradiation induced swelling in various 316 stainless steel specimens which have slightly different chemical compositions. Several examples are cited where an increased concentration of an α-stabilizing minor constituent results in decreased swelling. It is shown that the relative swelling resistance of alloys having the same carbon and equivalent nickel contents is higher for those alloys with the higher equivalent chromium content

  12. CFD modeling of pool swell during large break LOCA

    International Nuclear Information System (INIS)

    Yan, Jin; Bolger, Francis; Li, Guangjun; Mintz, Saul; Pappone, Daniel

    2009-01-01

    GE had conducted a series of one-third scale three-vent air tests in support the horizontal vent pressure suppression system used in Mark III containment design for General Electric BWR plants. During the test, the air-water interface has been tracked by conductivity probes. There are many pressure monitors inside the test rig. The purpose of the test was to provide a basis for the pool swell load definition for the Mark III containment. In this paper, a transient 3-Dimensional CFD model of the one-third scale Mark III suppression pool swell process is constructed. The Volume of Fluid (VOF) multiphase model is used to explicitly track the interface between the water liquid and the air. The CFD results such as flow velocity, pressure, interface locations are compared to those from the test. Through the comparisons, a technical approach to numerically model the pool swell phenomenon is established and benchmarked. (author)

  13. Buoy observations of the influence of swell on wind waves in the open ocean

    Energy Technology Data Exchange (ETDEWEB)

    Violante-Carvalho, N.; Robinson, I.S. [University of Southampton (United Kingdom). Oceanography Centre; Ocampo-Torres, F.J. [CICESE, Ensenada (Mexico). Dpto. de Oceanografia Fisica

    2004-04-01

    The influence of longer (swell) on shorter, wind sea waves is examined using an extensive database of directional buoy measurements obtained from a heave-pitch-roll buoy moored in deep water in the South Atlantic. This data set is unique for such an investigation due to the ubiquitous presence of a young swell component propagating closely in direction and frequency with the wind sea, as well as a longer, opposing swell. Our results show, within the statistical limits of the regressions obtained from our analysis when compared to measurements in swell free environments, that there is no obvious influence of swell on wind sea growth. For operational purposes in ocean engineering this means that power-laws from fetch limited situations describing the wind sea growth can be applied in more realistic situations in the open sea when swell is present. (author)

  14. Encephalocele presenting as lower lid swelling: A rare case report

    Directory of Open Access Journals (Sweden)

    Vaibhav Kumar Jain

    2018-01-01

    Full Text Available Encephalocele is a rare congenital abnormality characterized by abnormal protrusion of brain and meninges through an opening in the skull. We report an 8-year-old girl who presented with a swelling in the right lower lid for the last 6 years. In her infancy, she had undergone surgery for a very small swelling located in the right nasolacrimal area. On further clinicoradiological evaluation, anterior encephalocele was diagnosed. This case highlights the uncommon site of anterior encephalocele; misdiagnosis and mismanagement of which could result in dreaded complications such as meningitis and cerebrospinal fluid leaking fistula formation.

  15. Evaluating forensic biology results given source level propositions.

    Science.gov (United States)

    Taylor, Duncan; Abarno, Damien; Hicks, Tacha; Champod, Christophe

    2016-03-01

    The evaluation of forensic evidence can occur at any level within the hierarchy of propositions depending on the question being asked and the amount and type of information that is taken into account within the evaluation. Commonly DNA evidence is reported given propositions that deal with the sub-source level in the hierarchy, which deals only with the possibility that a nominated individual is a source of DNA in a trace (or contributor to the DNA in the case of a mixed DNA trace). We explore the use of information obtained from examinations, presumptive and discriminating tests for body fluids, DNA concentrations and some case circumstances within a Bayesian network in order to provide assistance to the Courts that have to consider propositions at source level. We use a scenario in which the presence of blood is of interest as an exemplar and consider how DNA profiling results and the potential for laboratory error can be taken into account. We finish with examples of how the results of these reports could be presented in court using either numerical values or verbal descriptions of the results. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Study on the irradiation swelling of U3Si2-Al dispersion fuel

    International Nuclear Information System (INIS)

    Xing Zhonghu; Ying Shihao

    2001-01-01

    The dominant modeling mechanisms on irradiation swelling of U 3 Si 2 -Al dispersion fuel are introduced. The core of dispersion fuel is looked to as micro-fuel elements of continuous matrix. The formation processes of gas bubbles in the fuel phase are described through the behavior mechanisms of fission gases. The swelling in the fuel phase causes the interaction between fuel particles and metal matrix, and the metal matrix can restrain the irradiation swelling of fuel particles. The developed code can predict irradiation-swelling values according to the parameters of fuel elements and irradiation conditions, and the predicted values are in agreement with the measured results

  17. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  18. High dose stainless steel swelling data on interior and peripheral oxide fuel pins

    International Nuclear Information System (INIS)

    Boltax, A.; Foster, J.P.; Nayak, U.P.

    1983-01-01

    High dose (2 x 10 23 n/cm 2 , E > 0.1 Mev) swelling data obtained on 20% cold-worked AISI 316 stainless steel (N-lot) cladding from mixed-oxide fuel pins show large differences in swelling incubation dose due to pre-incubation dose temperature changes. Circumferential swelling variations of 1.5 to 4 times were found in peripheral fuel pin cladding which experienced 30 to 60 deg C temperature changes due to movement in a temperature gradient. Consideration is given to the implications of these results to low swelling materials development and core design. (author)

  19. The imaging diagnosis of diffuse brain swelling due to severe brain trauma

    International Nuclear Information System (INIS)

    Shen Jianqiang; Hu Jiawang

    2008-01-01

    Objective: To discuss the clinical and pathological characteristics and the imaging types of the diffuse brain swelling due to severe brain trauma. Methods: The clinical data and CT and MR images on 48 cases with diffuse brain swelling due to severe brain trauma were analyzed. Results: Among these 48 cases of the diffuse brain swelling due to severe brain trauma, 33 cases were complicated with brain contusions (including 12 cases brain diffuse axonal injury, 1 case infarct of the right basal ganglion), 31 cases were complicated with hematoma (epidural, subdural or intracerebral), 27 cases were complicated with skull base fracture, and 10 cases were complicated with subarachnoid hematoma. The CT and MR imaging of the diffuse brain swelling included as followed: (1) Symmetrically diffuse brain swelling in both cerebral hemispheres with cerebral ventricles decreased or disappeared, without median line shift. (2)Diffuse brain swelling in one side cerebral hemisphere with cerebral ventricles decreased or disappeared at same side, and median line shift to other side. (3) Subarachnoid hematoma or little subcortex intracerebral hematoma were complicated. (4) The CT value of the cerebral could be equal, lower or higher comparing with normal. Conclusion: The pathological reason of diffuse brain swelling was the brain vessel expanding resulting from hypothalamus and brainstem injured in severe brain trauma. There were four CT and MR imaging findings in diffuse brain swelling. The diffuse brain swelling without hematoma may be caused by ischemical reperfusion injury. (authors)

  20. Uprated OMS Engine Status-Sea Level Testing Results

    Science.gov (United States)

    Bertolino, J. D.; Boyd, W. C.

    1990-01-01

    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.

  1. Research on swelling clays and bitumen as sealing materials for radioactive waste repositories

    International Nuclear Information System (INIS)

    Allison, J.A.; Wilson, J.; Mawditt, J.M.; Hurt, J.C.

    1991-01-01

    This report describes a programme of research to investigate the performance of composite seals incorporating adjacent blocks of swelling clay and bitumen. It is shown that the interaction of the materials can promote a self-sealing mechanism which prevents water penetration, even when defects are present in the bitumen layer. A review of the swelling properties of highly compacted bentonite and magnesium oxide is presented, and the characteristic sealing properties of bituminous materials are described. On the basis of this review, it is concluded that bentonite is the preferred candidate material for use in composite clay/bitumen seals for intermediate-level radioactive waste repositories. However, it is thought that magnesium oxide may have other sealing applications for high-level waste repositories. A programme of laboratory experiments is described in which relevant swelling and intrusion properties of highly compacted bentonite blocks and the annealing characteristics of oxidised and hard-grade industrial bitumens are examined. The results of composite sealing experiments involving different water penetration routes are reported, and factors governing the mechanism of self-sealing are described. The validation of the sealing concept at a laboratory scale indicates that composite bentonite/bitumen seals could form highly effective barriers for the containment of radioactive wastes. Accordingly, recommendations are made concerning the development of the research, including the implementation of full-scale demonstration experiments to simulate conditions in an underground repository. 13 tabs., 41 figs., 62 refs

  2. Pool swell sub-scale testing and code comparison

    International Nuclear Information System (INIS)

    Elisson, K.

    1981-01-01

    The main objective of the experiment was to investigate the pool swell dynamics in general and the forces on the lowered central part of the diaphragm between drywell and wetwell in particular. Apart from the high speed camera pressure transducers and strain gauges were used to monitor the transient. Data was recorded on a 14 channel FM recorder and then digitalised and plotted. In total more than one hundred tests were performed including parametric variations of for example geometry, break flow, initial drywell pressure and initial water level. In parallel to this experiment pool swell calculations have been performed with the computer codes COPTA and STEALTH. COPTA which is a lumped mass code for pressure suppression containment analysis has a slug pool swell mode. STEALTH which is a general purpose lagrangian hydrodynamics code has been used in a 2-D axisymmetric version. The STEALTH code has been used to calculate the radial variations in the vertical displacement and velocity of the pool surface and to predict the load on the lowered central part of the diaphragm. A comparison between the calculations and the experimental data indicates that both codes are sufficiently correct in their description of the pool swell transient. (orig.)

  3. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment.

    Science.gov (United States)

    Yousefi, Azizeh-Mitra; Smucker, Byran; Naber, Alex; Wyrick, Cara; Shaw, Charles; Bennett, Katelyn; Szekely, Sarah; Focke, Carlie; Wood, Katherine A

    2018-02-01

    Tissue engineering using three-dimensional porous scaffolds has shown promise for the restoration of normal function in injured and diseased tissues and organs. Rigorous control over scaffold architecture in melt extrusion additive manufacturing is highly restricted mainly due to pronounced variations in the deposited strand diameter upon any variations in process conditions and polymer viscoelasticity. We have designed an I-optimal, split-plot experiment to study the extrudate swell in melt extrusion additive manufacturing and to control the scaffold architecture. The designed experiment was used to generate data to relate three responses (swell, density, and modulus) to a set of controllable factors (plotting needle diameter, temperature, pressure, and the dispensing speed). The fitted regression relationships were used to optimize the three responses simultaneously. The swell response was constrained to be close to 1 while maximizing the modulus and minimizing the density. Constraining the extrudate swell to 1 generates design-driven scaffolds, with strand diameters equal to the plotting needle diameter, and allows a greater control over scaffold pore size. Hence, the modulus of the scaffolds can be fully controlled by adjusting the in-plane distance between the deposited strands. To the extent of the model's validity, we can eliminate the effect of extrudate swell in designing these scaffolds, while targeting a range of porosity and modulus appropriate for bone tissue engineering. The result of this optimization was a predicted modulus of 14 MPa and a predicted density of 0.29 g/cm 3 (porosity ≈ 75%) using polycaprolactone as scaffold material. These predicted responses corresponded to factor levels of 0.6 μm for the plotting needle diameter, plotting pressure of 2.5 bar, melt temperature of 113.5 °C, and dispensing speed of 2 mm/s. The validation scaffold enabled us to quantify the percentage difference for the predictions, which was 9.5% for the

  4. Managing Chemotherapy Side Effects: Swelling (Fluid Retention)

    Science.gov (United States)

    N ational C ancer I nstitute Managing Chemotherapy Side Effects Swelling (Fluid retention) “My hands and feet were swollen and puffy. My nurse helped me understand why I had to stop eating salty ...

  5. Swell propagation across a wide continental shelf

    OpenAIRE

    Hendrickson, Eric J.

    1996-01-01

    The effects of wave refraction and damping on swell propagation across a wide continental shelf were examined with data from a transect of bottom pressure recorders extending from the beach to the shelf break near Duck, North Carolina. The observations generally show weak variations in swell energy across the shelf during benign conditions, in qualitative agreement with predictions of a spectral refraction model. Although the predicted ray trajectories are quite sensitive to the irregular she...

  6. Surface depression of glass and surface swelling of ceramics induced by ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Saitoh, Kazuo; Nakao, Setsuo; Niwa, Hiroaki; Tanemura, Seita; Miyagawa, Yoshiko; Miyagawa, Souji

    1994-01-01

    By the measurement of the change of the surface shapes of the glass and ceramics in which ion implantation was performed, it was clarified that glass surface was depressed, and ceramic surface swelled. These depression and swelling changed according to the kinds of ions, energy and the amount to be implanted and the temperature of samples. It became clear that the depression of glass surface was nearly proportional to the range of flight of the implanted ions, and the swelling of ceramic surface showed different state in the silicon nitride with strong covalent bond and the alumina and sapphire with strong ionic bond. For the improvement of the mechanical characteristics of solid materials such as hardness, strength, toughness, wear resistance, oxidation resistance and so on, attention has been paid to the surface reforming by high energy ion implantation at MeV level. The change of shapes of base materials due to ion implantation is not always negligible. The experiment was carried out on sintered silicon nitride and alumina, polished sapphire single crystals and quartz glass. The experimental method and the results are reported. (K.I.)

  7. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  8. Long-term water absorption and thickness swelling and determine their characteristics in wood flour/polypropylene/Nano SiO2 nanocomposite

    Directory of Open Access Journals (Sweden)

    Saeed Ismaeilimoghadam

    2016-09-01

    Full Text Available The objective of this study was to investigate the effect of nano SiO2 on long-term water absorption and thickness swelling, humidity coefficient diffusion and thickness swelling rate of wood plastic composite. For this purpose, 60% wood flour, 40% polypropylene, 2 per hundred compound (phc MAPP in internal mixer (HAAKE were mixed. Nano SiO2 with 0, 1, 3 and 5 (phc ratios as a reinforcing was used too. Finally test samples were fabricated by using the injection molding machine. Then long-term water absorption and thickness swelling for 1848 hours according to the ASTM standard on the samples were measured. Humidity coefficient diffusion and thickness swelling rate for closer look long-term water absorption and thickness swelling behavior in wood plastic nanocomposite were calculated too. For ensure to the formation of hydrogen bonds between hydroxyl grope of SiO2 nanoparticles with hydroxyl grope of wood flour form Fourier transform infrared (FTIR spectroscopy tests was used. The results showed that water absorption behavior of nanocomposite is according to Fick's law, in addition with increasing to SiO2 nanoparticles, long-term water absorption and thickness swelling and humidity coefficient diffusion in wood plastic nanocomposite decreased. The results of infrared spectroscopy showed that hydrogen bond between the nano SiO2 and wood flour confirmed. Statistical analysis showed that after 1848 hours of immersion, nano SiO2 showed a significant effect at a confidence level of 99% on water absorption and thickness swelling, so the sample with 5% silica nanoparticles was chosen as the best treatment.

  9. Study of swelling behavior in ArF resist during development by the QCM method (3): observations of swelling layer elastic modulus

    Science.gov (United States)

    Sekiguchi, Atsushi

    2013-03-01

    The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.

  10. Clinical and Radiographic Characteristics as Predictive Factors of Swelling and Trismus after Mandibular Third Molar Surgery: A Longitudinal Approach

    Directory of Open Access Journals (Sweden)

    José Manuel Pérez-González

    2018-01-01

    Full Text Available Introduction. Factors that contribute to swelling and trismus are complex, and they are originated by surgical trauma. The aim of the present study was to determine whether clinical and radiographic factors could predict the level of swelling and trismus after lower third molar surgery, through longitudinal approach. Methodology. A prospective longitudinal trial was carried out. Forty-five patients of both genders with clinical and radiographic diagnosis of asymptomatic mandibular impacted third molar and with no intake of analgesic or anti-inflammatory drugs 12 h prior to surgery were recruited and evaluated in a 72 h follow-up period. A mixed repeated measures model and backward and restricted maximal likelihood methods were used to analyze the data. Results. Male gender, body mass index (BMI, the relation to the lingual and buccal walls, and age were determinants for predicting postoperative swelling and for exerting a significant influence (P<0.05. Conclusions. This study suggests the association of male gender, the relation to lingual and buccal walls, BMI, and age with measurement of swelling.

  11. Heat treatments of irradiated uranium oxide in a pressurised water reactor (P.W.R.): swelling and fission gas release

    International Nuclear Information System (INIS)

    Zacharie, I.

    1997-01-01

    In order to keep pressurised water reactors at a top level of safety, it is necessary to understand the chemical and mechanical interaction between the cladding and the fuel pellet due to a temperature increase during a rapid change in reactor. In this process, the swelling of uranium oxide plays an important role. It comes from a bubble precipitation of fission gases which are released when they are in contact with the outside. Therefore, the aim of this thesis consists in acquiring a better understanding of the mechanisms which come into play. Uranium oxide samples, from a two cycles irradiated fuel, first have been thermal treated between 1000 deg C and 1700 deg C for 5 minutes to ten hours. The gas release amount related to time has been measured for each treatment. The comparison of the experimental results with a numerical model has proved satisfactory: it seems that the gases release, after the formation of intergranular tunnels, is controlled by the diffusion phenomena. Afterwards, the swelling was measured on the samples. The microscopic examination shows that the bubbles are located in the grain boundaries and have a lenticular shape. The swelling can be explained by the bubbles coalescence and a model was developed based on this observation. An equation allows to calculate the intergranular swelling in function of time and temperature. The study gives the opportunity to predict the fission gases behaviour during a fuel temperature increase. (author)

  12. Intraplate seismicity across the Cape Verde swell

    Science.gov (United States)

    Vales, Dina; Matias, Luís.; Haberland, Christian; Silveira, Graça.; Weber, Michael; Carrilho, Fernando; Dias, Nuno

    2010-05-01

    The Cape Verde Archipelago ((15-17°N, 23-26°W) is located within the African plate, about 500km west of Senegal, in the African coast. The islands are located astride the Cape Verde mid-plate topographic swell, one of the largest features of its type in the world's ocean basins. The origin of this Cape Verde swell is still in debate. Previous determinations of the elastic thickness (Te) reveal a normal Te and a modest heat flow anomaly which suggest that the swell cannot be fully explained by uplift due to thermal reheating of the lithosphere by an underlying ‘‘hot spot'' and that other, deep-seated, mantle processes must be involved. The CV-PLUME (An investigation on the geometry and deep signature of the Cape Verde mantle plume) project intends to shape the geometry and deep origin of the Cape Verde mantle plume, via a combined study of seismic, magnetic, gravimetric and geochemical observations. Through this study we intend to characterize the structure beneath the archipelago from the surface down to the deep mantle. The core of this 3-year project was a temporary deployment of 39 Very Broad Band seismometers, across all the inhabited islands, to recorder local and teleseismic earthquakes. These instruments were operational from November 2007 to September 2008. In this work we report on the preliminary results obtained from the CV-PLUME network on the characterization of the local and regional seismicity. To detect the small magnitude seismic events the continuous data stream was screened using spectrograms. This proved to be a very robust technique in the face of the high short-period noise recorded by many of the stations, particularly during day time. The 10 month observation time showed that the background seismic activity in the Archipelago and surrounding area is low, with only a very few events recorded by the complete network. However, two clusters of earthquakes were detected close to the Brava Island, one to the NW and a second one, more active

  13. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    Science.gov (United States)

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Vascular Impulse Technology versus elevation in the treatment of posttraumatic swelling of extremity fractures: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Schnetzke, Marc; Swartman, Benedict; Bonnen, Isabel; Keil, Holger; Schüler, Svenja; Grützner, Paul A; Franke, Jochen

    2017-02-16

    Fractures of the extremities are often complicated by a variable degree of swelling secondary to hemorrhage and soft tissue injury. Patients typically require up to 7 days of inpatient bed rest and elevation to reduce swelling to an acceptable level for operative treatment with internal fixation. Alternatively, an intermittent pneumatic compression device, such as the Vascular Impulse Technology (VIT) system, can be used at the injured extremity to reduce the posttraumatic swelling. The VIT system consists of a pneumatic compressor that intermittently rapidly inflates a bladder positioned under the arch of the hand or the foot, which results in compression of the venous hand or foot plexus. That intermittent compression induces an increased venous velocity and aims to reduce the soft tissue swelling of the affected extremity. The VIT study is a prospective, monocenter, randomized controlled trial to compare the VIT system with elevation in the treatment of posttraumatic swelling in the case of a fracture of the upper and lower extremity. This study will include 280 patients with fractures of the upper and the lower extremity with nine different injury types. For each of the nine injury types a separate randomization to the two intervention groups (VIT group or control group) will be performed. The primary outcome parameter is the time taken for the swelling to resolve sufficiently to permit surgery. A separate analysis for each of the nine injury types will be performed. In the proposed study, the effectiveness of the VIT system in the treatment of posttraumatic swelling of upper and lower extremity fractures will be evaluated. German Clinical Trial Register, No. DRKS00010510 . Registered on 17 July 2016.

  15. The Time Course of Knee Swelling Post Total Knee Arthroplasty and Its Associations with Quadriceps Strength and Gait Speed.

    Science.gov (United States)

    Pua, Yong-Hao

    2015-07-01

    This study examines the time course of knee swelling post total knee arthroplasty (TKA) and its associations with quadriceps strength and gait speed. Eighty-five patients with unilateral TKA participated. Preoperatively and on post-operative days (PODs) 1, 4, 14, and 90, knee swelling was measured using bioimpedance spectrometry. Preoperatively and on PODs 14 and 90, quadriceps strength was measured using isokinetic dynamometry while fast gait speed was measured using the timed 10-meter walk. On POD1, knee swelling increased ~35% from preoperative levels after which, knee swelling reduced but remained at ~11% above preoperative levels on POD90. In longitudinal, multivariable analyses, knee swelling was associated with quadriceps weakness (P<0.01) and slower gait speed (P=0.03). Interventions to reduce post-TKA knee swelling may be indicated to improve quadriceps strength and gait speed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Mechanism of swelling suppression in phosphorous-modified Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    1986-01-01

    Five simple alloys were ion irradiated at 948 0 K in an experiment designed to investigate the mechanism of swelling suppression associated with phosphorous additions. One of the alloys was the simple ternary Fe-15Ni-13Cr, another had 0.05% P added and the other three had further additions of the phosphide precipitate-forming elements Ti and/or Si. Ion irradiations were carried out with heavy ions only (Ni or Fe) or with heavy ions followed by dual heavy ions and helium. The ternary with and without P swelled readily early in dose with or without helium. The other three alloys only showed swelling in the presence of helium and exhibited a long delay in dose prior to the onset of swelling. These displayed fine distributions of Fe 2 P type phosphide precipitates enhanced by irradiation. The phosphide particles gave rise to very high concentrations of stable helium filled cavities at the precipitate matrix interfaces. The results were analyzed in terms of the theory of cavity swelling. The accumulation of the critical number of gas atoms in an individual cavity is required in the theory for point defect driven swelling to begin. It is concluded that the primary mechanism leading to swelling suppression is therefore the dilution of injected helium over a very large number of cavities. It is suggested that this mechanism may offer a key for alloy design for swelling resistance in high helium environments

  17. Swelling pressure and water absorption property of compacted granular bentonite during water absorption

    International Nuclear Information System (INIS)

    Oyamada, T.; Komine, H.; Murakami, S.; Sekiguchi, T.; Sekine, I.

    2012-01-01

    the start of water supply continues longer as the dry density increases. According to Komine et al. (1994), the resistance pressure at the start of filling the voids are concluded that to be larger than the resistance pressure during filling of the void and consequently the peak during the process of swelling pressure is observed. Therefore, it is considered that the resistance pressure at the start of filling the voids in the compacted granular bentonite is relatively low. From the relationship between amount of water absorption per square root of time and initial dry density, the amount of water absorption per square root of time is dependent on the initial dry density of compacted bentonite. In both samples, the amount of water absorption per square root of time From the above experimental results and the discussion on the swelling mechanism of compacted bentonite by Komine et al. (1994), this study considered the mechanism on the swelling pressure of compacted granular bentonite. The dry density of granular part was reported as 1.701 Mg/m 3 and consequently it is considered that compacted granular bentonite includes the granular parts which have relatively high dry density. The montmorillonite excluding the granular parts, swells on ahead by absorbing water, because these parts are considered to be easier to absorb water than the granular parts which have relatively high dry density. The time starting swelling of granular parts is later than that of the montmorillonite excluding the granular parts. The period of time during swelling pressure reaches peak observed continues longer as the dry density increases. Therefore, swelling pressure increases by mainly the swelling of granular parts at the time at stage of 3. Furthermore, the swelling pressure continues to increase due to the relatively low resistance pressure caused by the filling of compacted granular bentonite occupying the voids. Afterward, the voids are filled up and the pressure caused by the swelling

  18. Measurements and observations on microscopic swelling in MX-type fuels

    International Nuclear Information System (INIS)

    Ronchi, C.; Ray, I.L.F.; Thiele, H.; Laar, J. van de.

    1978-01-01

    Microscopic swelling has been investigated by electron microscopy in several MX-type fuels, irradiated in fast and thermal neutron flux. The results show that fission gas bubbles in these compounds grow to large sizes if the in-pile fuel temperature rises above a critical value (swelling critical temperature Tsub(C)). A comparison has been made of the swelling rates in fuels of different composition, showing that Tsub(C) increases from carbides to nitrides. In fuels subjected to in-pile restructuring (highly rated) He-bonded pins microscopic swelling is affected by pore and grain boundary migration. The influence of these phenomena on the fuel swelling performance has been discussed

  19. Swelling behavior of PEMFC during conditioning

    Directory of Open Access Journals (Sweden)

    J. Parrondo

    2007-09-01

    Full Text Available Polymeric cation exchange membranes (PEMFC are used in fuel cell technology. These membranes act as a physical barrier between anode and cathode, but diffusion through the membrane should allow protons to be carried from anode to cathode at a rate sufficient to supply energy requirements. They avoid any direct reaction of oxygen and hydrogen that would diminish fuel cell efficiency. Membranes have to be conditioned before use. This conditioning step changes membrane counterions and modifies their water content, which has an effect on their diffusion coefficients. In order to analyse and quantify the effect of conditioning techniques on membrane performance various experiments with Nafion 117 cation exchange membranes were carried out. Membranes were conditioned using various methods to change the charged cation in the membrane. The reactives used were ultrapure water, nitric acid, hydrochloric acid, hydrogen peroxide, sodium chloride, potassium chloride and ethylene glycol, all at room temperature. Some conditioning methods were carried out using solvents heated to 100 ºC. Water content was indirectly monitored by measuring membrane swelling. Results show that membrane conditioning with strong acids followed by treatment with water increases membrane water content by about 5%. Using high-temperature treatment the water content also increases. Water uptake or release from membranes is analysed in terms of water activity.

  20. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation

  1. Swelling in neutron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Peterson, D.T.

    1982-04-01

    Immersion density measurements have been performed on a series of titanium alloys irradiated in EBR-II to a fluence of 5 x 10 22 n/cm 2 (E > 0.1 MeV) at 450 and 550 0 C. The materials irradiated were the near-alpha alloys Ti-6242S and Ti-5621S, the alpha-beta alloy Ti-64, and the beta alloy Ti-38644. Swelling was observed in all alloys with the greater swelling being observed at 550 0 C. Microstructural examination revealed the presence of voids in all alloys. Ti-38644 was found to be the most radiation resistant. Ti-6242S and Ti-5621S also displayed good radiation resistance, whereas considerable swelling and precipitation were observed in Ti-64 at 550 0 C

  2. Interaction of irradiation creep and swelling in the creep disappearance regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1992-01-01

    The objective of this effort is to determine the relationship between applied stresses and irradiation-induced dimensional changes in structural metals for fusion applications. Reanalysis of an earlier data set derived from irradiation of long creep tubes in EBR-II at 550 C has shown that the creep-swelling coupling coefficient is relatively independent of temperature at ∼0.6 x 10 -2 MPa -1 , but falls with increases in the swelling rate, especially at high stress levels. The action of stress-affected swelling and carbide precipitation exert different influences on the derivation of this coefficient

  3. Void swelling and segregation in dilute nickel alloys

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Five binary alloys containing 1 at.% of Al, Ti, Mo, Si and Be in nickel were irradiated at temperatures from 525 to 675 0 C with 3.5-MeV 58 Ni + ions. The resultant microstructures were examined by TEM, and void diameters, number densities and swelling are presented for each alloy over the temperature interval investigated. A systematic relation between solute misfit (size factor) and void swelling is established for these alloys. Solute concentration profiles near the irradiated surface were determined and these also exhibited a systematic behavior--undersize solutes segregated to the surface, whereas oversize solutes were depleted. The results are consistent with calculations based on strong interstitial-solute trapping by undersize solutes and vacancy-solute trapping by oversize solutes that are weak interstitial traps

  4. Influence of network topology on the swelling of polyelectrolyte nanogels

    OpenAIRE

    Rizzi, Leandro G.; Levin, Yan

    2016-01-01

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density, however it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration $C_s$ and the fraction $f$ of ionizable groups in a polyelectrolyte network formed by cross-links of functionality $z$. Our results indicate that the network wit...

  5. Brain Cell Swelling During Hypocapnia Increases with Hyperglycemia or Ketosis

    Science.gov (United States)

    Glaser, Nicole; Bundros, Angeliki; Anderson, Steve; Tancredi, Daniel; Lo, Weei; Orgain, Myra; O'Donnell, Martha

    2014-01-01

    Severe hypocapnia increases the risk of DKA-related cerebral injury in children, but the reason for this association is unclear. To determine whether the effects of hypocapnia on the brain are altered during hyperglycemia or ketosis, we induced hypocapnia (pCO2 20 ± 3 mmHg) via mechanical ventilation in three groups of juvenile rats: 25 controls, 22 hyperglycemic rats (serum glucose 451± 78 mg/dL) and 15 ketotic rats (beta-hydroxy butyrate 3.0 ± 1.0 mmol/L). We used magnetic resonance imaging to measure cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) values in these groups and in 17 ventilated rats with normal pCO2 (40±3 mmHg). In a subset (n=35), after 2 hrs of hypocapnia, pCO2 levels were normalized (40±3 mmHg) and ADC and CBF measurements repeated. Declines in CBF with hypocapnia occurred in all groups. Normalization of pCO2 after hypocapnia resulted in striatal hyperemia. These effects were not substantially altered by hyperglycemia or ketosis, however, declines in ADC during hypocapnia were greater during both hyperglycemia and ketosis. We conclude that brain cell swelling associated with hypocapnia is increased by both hyperglycemia and ketosis, suggesting that these metabolic conditions may make the brain more vulnerable to injury during hypocapnia. PMID:24443981

  6. Stress-enhanced swelling of metal during irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.; Porter, D.L.

    1980-04-01

    Data are available which show that stress plays a major role in the development of radiation-induced void growth in AISI 316 and many other alloys. Earlier experiments came to the opposite conclusion and are shown to have investigated stress levels which inadvertantly cold-worked the material. Stress-affected swelling spans the entire temperature range in fast reactor irradiations and accelerates with increasing irradiatin temperature. It also appears to operate in all alloy starting conditions investigated. Two major microstructural mechanisms appear to be causing the enhancement of swelling, which for tensile stresses is manifested primarily as a decrease in the incubation period. These mechanisms are stress-induced changes in the interstitial capture efficiency of voids and stress-induced changes in the vacancy emission rate of various microstructural components. There also appears to be an enhancement of intermetallic phase formation with applied stress and this is shown to increase swelling by accelerating the microchemical evolution that precedes void growth at high temperature. This latter consideration complicates the extrapolation of these data to compressive stress states

  7. Effect of seawater on consistency, infiltration rate and swelling characteristics of montmorillonite clay

    Directory of Open Access Journals (Sweden)

    Mohie Eldin Elmashad

    2016-08-01

    Full Text Available This paper presents the results of an experimental investigation performed to quantify the effect of mixing clayey soils with saltwater on consistency and swelling characteristics of clays. Massive natural clay deposits and compacted clay backfills either exist or are used in certain important and sensitive applications such as dams, liners, barriers and buffers in waste disposal facilities. In many cases, the clay deposits in these applications are subjected to saltwater. However, in standard laboratory classification tests, distilled or potable water are usually used in mixing test samples. This may lead to faulty interpretation of the actual in-situ consistency and volume change behaviors. In this research, an attempt is made to quantify the changes in consistency and swelling of clay soils from various locations around the Nile valley and possessing a wide range of consistency, when mixed with natural seawater with different salt concentrations. The results showed that the increase of the salt concentration of the mixing water may result in major decrease in the liquid limit and swelling characteristics of high plasticity montmorillonite clays. The reduction in the swelling of the clay soils is also proportional to the rate of saltwater infiltration. In an attempt to correlate the swelling of clays to the rate of water infiltration, a new simplified laboratory apparatus is proposed where swelling and infiltration are measured in one simple test “the swelling infiltrometer”.

  8. Unusual presentation of ulcerative postauricular swelling as ...

    African Journals Online (AJOL)

    The swelling became ulcerative and associated with progressive tinnitus and hoarseness of voice. The patient was investigated. Fine‑needle aspiration cytology suggested sebaceous cell carcinoma. Then excision biopsy was done, and histopathological examination of excised tissue confirmed the diagnosis. Extraorbital ...

  9. [A woman with a postoperative lumbar swelling].

    Science.gov (United States)

    Hulshof, Hanna M; Elsenburg, Patric H J M; Frequin, Stephan T F M

    2013-01-01

    A 65-year-old woman had developed a large lumbar swelling in a period of four weeks following lumbar laminectomy. An MRI-scan revealed a large fluid collection, which had formed from the spinal canal. The diagnosis 'liquorcele', a rare complication of spine surgery, was established.

  10. Preliminary results about Electrodeposition of Cobalt at laboratory level

    International Nuclear Information System (INIS)

    Cornejo, N.

    1992-01-01

    As of an organic compound, an extraction and Cobalt electrodeposition method had been developed as a part of fabrication aim of a sealed radioactive source with objective to the construction of density meter prototype. It was performed preliminary test of electrodeposition in the laboratory level in a simple cell. The used electrolyte had been a sulphate solution obtained by extraction of an organic solution. It is obtained a Co film by electrodeposition at 55 o C temperature and with an approximately Co concentration in 70 g/lt. (Author) 3 refs., 1 fig., 1 tab

  11. Evaluation on therapeutic effect of de-compressive craniectomies for patients with diffuse brain swelling

    International Nuclear Information System (INIS)

    Xiao Sanchao; Zhang Changrong; Zuo Yi; Zhou Xiaowei; Li Jian

    2000-01-01

    Objective: To evaluate the therapeutic effect of de-compressive craniectomies in acute traumatic patients with diffuse brain swelling. Methods: 23 patients with acute posttraumatic diffuse brain swelling admitted and confirmed by X-CT were randomly treated by surgical de-compressive craniectomies (operative group). Their treated results were compared with those of another 11 patients treated conservatively (non-operative group) at the same period. Results: The mortality rate was similar in both operative and nonoperative groups. Conclusion: The de-compressive craniectomy operation has no value and not valid for treatment of acute posttraumatic diffuse brain swelling

  12. Swelling behavior of several bituminous coals and their thermally treated coals

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Heng-fu; Cao, Mei-xia; Wang, Zhi-cai [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2007-07-01

    The swelling behavior in different solvents of 4 bituminous coals with different ranks and their residues from extraction by CS{sub 2}/NMP mixed solvent (l:1 in volume) were measured. The change in swelling property of the four coals thermally treated at different temperature was observed. The results show that the swelling ratio decreases with increasing rank of coal. For lower rank bituminous coals the swelling ratios in polar solvent are higher than those in non-polar solvent, and this difference decreases with increasing rank. The cross-linking densities of the four residues decrease, and the swelling ratios increase compared with those of raw coals. The swelling ratios of the four thermally treated coals under 150{sup o}C in CS{sub 2} increase, suggesting the decrease in crosslinking density of them. When the thermal treatment temperature increases to 240{sup o}C, the swelling rations of the other three coals in NMP and CS{sub 2} increase again except gas coal, demonstrating the further decrease in crosslinking density. This result is coincident with the extraction yield change in the mixed solvent of the thermally treated coal. For example, the extraction yield of lean coal treated at 240{sup o}C increases from 6.9% to 17.3%. FT-IR results show the removal of oxygen group of the thermally treated coals. This may explain the increase in swelling ratio and extraction yield in the mixed solvent of coal after thermal treatment. The cross-linking density of the thermally treated coal decreases because of the break of hydrogen bonds due to removal of C = 0 and -OH oxygen groups during the thermal treatment, resulting in the increases of swelling ratio and extraction yield in the mixed solvent of thermally treated coal compared with those of raw coal. 15 refs., 3 figs., 6 tabs.

  13. Swell Propagation over Indian Ocean Region

    Directory of Open Access Journals (Sweden)

    Suchandra A. Bhowmick

    2011-06-01

    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  14. Investigating the swelling pressure of compacted crushed-Callovo-Oxfordian clay-stone

    International Nuclear Information System (INIS)

    Tang, C. S.; Tang, A. M.; Cui, Y. J.; Delage, P.; Schroeder, C.; De Laure, E.

    2011-01-01

    This paper presents an experimental study on the swelling pressure of heavily compacted crushed Callovo-Oxfordian (COx) clay-stone at a dry unit mass ρ d =2.0 Mg/m 3 using four different methods: constant-volume, swell-reload, zero-swell and adjusted constant-volume method. Results show that the swelling pressure varies in the range of 1-5 MPa and depends significantly on the test method. From the constant-volume tests, it is observed that the swelling behavior during wetting is a function of the suction and depends on both the hydration paths and wetting conditions (e.g. vapor-wetting or liquid-wetting). The swelling pressure decreases significantly with saturation time. To identify the microstructure changes of specimens before and after wetting, mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) tests were performed. It is observed that, after wetting, the large inter-aggregate pores observed in the as-compacted specimen are no longer apparent; the whole pattern is characterized by a general swell of hydrated clay particles, rendering the soil more homogenous. Results from MIP indicated that wetting caused a significant reduction of the entrance diameter of the dominant inter-aggregate pores from 2.1 to 0.5μm whereas intra-aggregate pores were not significantly influenced. (authors)

  15. The evaluation of temperature and pH influences on equilibrium swelling of poly(n-isopropylacrylamide-co-acrylic acid hydrogels

    Directory of Open Access Journals (Sweden)

    Zdravković Aleksandar S.

    2017-01-01

    Full Text Available Hydrogels are synthesized by the method of radical polymerization of monomers: N-isopropylacrylamide (NIPAM and acrylic acid (AA. Characterization of poly(N-isopropylacrylamide- co-acrylic acid hydrogels, p(NIPAM/AA, has been performed by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and by determination of the swelling behaviour in aqueous solutions at different temperatures (25, 31 and 37°C and pH values (2.2, 4.5, 6 and 6.8. After lyophilisation in the solution at pH 6 and temperature of 25°C, p(NIPAM/AA hydrogels have rapidly reached equilibrium degree of swelling, αe, in comparison to non-lyophilized samples. The mechanism of solvent transport within matrix in lyophilized samples corresponds to less Fickian diffusion, whereas Super case II diffusion is characteristic for non-lyophilized samples. p(NIPAM/AA hydrogel with 1.5 mol% of ethylene glycol dimethacrylate (EGDM at the temperature of 25°C and pH 6.8, has reached the highest swelling equilibrium degree, αe = 259.8. The results of swelling studies have shown that p(NIPAM/AA hydrogels can be classified as superabsorbent polymers (SAPs. For the evaluation of pH and temperature influences on synthesized hydrogels swelling, a full three-level experimental design has been used. Two-factor interaction model (2FI is the most optimal model of a full three-level experimental design for representing the swelling equilibrium degree of p(NIPAM/AA hydrogels as a function of investigated parameters, i.e., temperature and pH. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-34012

  16. PSA results for Hanford high level waste Tank 101-SY

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

    1993-10-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (``burps``) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections.

  17. PSA results for Hanford high level waste Tank 101-SY

    International Nuclear Information System (INIS)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1993-01-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (''burps'') a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections

  18. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.

    2002-01-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain......-size-dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under...

  19. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-10-15

    Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal. 21 refs., 4 figs., 3 tabs.

  20. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    Science.gov (United States)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  1. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.

    Science.gov (United States)

    Li, Qinghai; Shi, Weiping; Yang, Renshu

    2016-01-01

    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  2. Impurities effect on the swelling of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-01-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found

  3. Molecular accessibility in solvent swelled coals. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  4. Clayey landslide initiation and acceleration strongly modulated by soil swelling

    Science.gov (United States)

    Schulz, William; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-01-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement 5–6 months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  5. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice.

    Science.gov (United States)

    Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee

    2017-12-30

    In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

  6. Relationship between swelling and elastic properties in neutron-irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.

    1976-04-01

    The results encompass elastic property measurements on several alloys, which differ in silicon, molybdenum and phosphorus contents but have a nominal 316 stainless steel composition. It is shown that there is a good correlation between the initial shear modulus of the material and the resultant swelling rate of that material. It is also shown that the bias factor concept does not satisfactorily account for the observed compositional sensitivity of swelling in the alloys investigated. 6 fig

  7. Analysis of the General Electric Company swell tests with RELAP4/MOD7

    International Nuclear Information System (INIS)

    Fischer, S.R.; Hendrix, C.E.

    1979-01-01

    The RELAP4/MOD7 nuclear reactor transient analysis code, presently being developed by EG and G Idaho, Inc., will incorporate several significant improvements over earlier versions of RELAP4. As part of the development of RELAP4/MOD7, a thorough assessment of the capability of the code to simulate water reactor LOCA phenomena is being made. This assessment is accomplished in part by comparing results from code calculations with test data from experimental facilities. Simulations of the General Electric Company (GE) level swell tests were performed as part of the code checkout. In these tests, a pressurized vessel partially filled with nearly saturated water was blown down through a simulated break located near the top of the vessel. Comparison of RELAP4 calculations with data from these experiments indicates that the code has the capability to model the unequal phase velocity flow and resulting density gradients that might occur in a BWR steam line break transient. Comparisons of RELAP4 calculations with data from two level swell experiments are presented

  8. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    Directory of Open Access Journals (Sweden)

    Arumugam R. Jayakumar

    2016-12-01

    Full Text Available Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF. Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs, as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB, have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3, we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1 protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.

  9. Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Subing [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Zhanbing, E-mail: yangzhanbing@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Hui [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Watanabe, Seiichi; Shibayama, Tamaki [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2017-05-15

    Large amounts of void swelling still limit the application of austenitic stainless steels in nuclear reactors due to radiation-induced lattice point defects. In this study, laser and/or beam irradiation was conducted in a temperature range of 573–773 K to explore the suppression of void swelling. The results show that during sequential laser-electron beam irradiation, the void nucleation is enhanced because of the vacancy clusters and void nuclei formed under pre-laser irradiation, causing greater void swelling than single electron beam irradiation. However, simultaneous laser-electron dual-beam irradiation exhibits an obvious suppression effect on void swelling due to the enhanced recombination between interstitials and vacancies in the temperature range of 573–773 K; especially at 723 K, the swelling under simultaneous dual-beam irradiation is 0.031% which is only 22% of the swelling under electron beam irradiation (0.137%). These results provide new insight into the suppression of void swelling during irradiation. - Highlights: •The temperature dependence of void swelling under simultaneous laser-electron dual-beam irradiation has been investigated. •Pre-laser irradiation enhances void nucleation at temperatures from 573 K to 773 K. •Simultaneous laser-electron dual-beam irradiation suppresses void swelling in the temperature range of 573–773 K.

  10. Kimura's Disease: A Rare Cause of Postauricular Swelling

    Directory of Open Access Journals (Sweden)

    Suman Kumar Das

    2017-04-01

    Full Text Available Introduction Kimura’s Disease is a chronic inflammatory disorder of lymph node which is very rare in Indian population. Case Report A 15 year old boy with multiple postauricular swelling for 18 months presenting in OPD and diagnosed having eosinophilia. Then excision biopsy was taken, which indicates Kimura’s Disease. Patient was treated with high dose of corticosteroid. Conclusion Kimura’s disease, though rare should be kept in mind for treating a patient with lymphadenopathy with eosinophilia or high IgE level, because it can spare the patient unnecessary invasive procedure.

  11. Effect of crosslinker on the swelling and adsorption properties of ...

    Indian Academy of Sciences (India)

    tinence products and as a material for improving the water retention ... showed lower swelling capacity and higher swelling rate than the other ..... The presence of mobile chlo- ...... We thank the Department of Science and Technology for the.

  12. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Garner, F.A.

    1991-11-01

    A new concept of point-defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The life times of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions

  13. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Singh, B.N.; Garner, F.A.

    1992-01-01

    A new concept of point defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The lifetimes of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions. (orig.)

  14. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  15. The Darfur Swell, Africa: Gravity constraints on its isostatic compensation

    Science.gov (United States)

    Crough, S. Thomas

    The free-air gravity anomaly observed over the Darfur Swell is explainable by local isostatic balance with a root approximately 50 km deep on average. This root depth is similar to that inferred beneath other African domes and beneath oceanic midplate swells, suggesting that the Darfur Swell is a hotspot uplift created by lithospheric reheating.

  16. Comparison of FISGAS swelling and gas release predictions with experiment

    International Nuclear Information System (INIS)

    Ostensen, R.W.

    1979-01-01

    FISGAS calculations were compared to fuel swelling data from the FD1 tests and to gas release data from the FGR39 test. Late swelling and gas release predictions are satisfactory if vacancy depletion effects are added to the code. However, early swelling predictions are not satisfactory, and early gas release predictions are very poor. Explanation of these discrepancies is speculative

  17. Factors which determine the swelling rate of austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Wolfer, W.G.

    1983-01-01

    Once void nucleation subsides, the swelling rate of many austenitic alloys becomes rather insensitive to variables that control the transient regime of swelling. Models are presented which describe the roles of nickel, chromium and silicon in void nucleation. The relative insensitivity of steady-state swelling to temperature, displacement rate and composition is also discussed

  18. Altered osmotic swelling behavior of proteoglycan-depleted bovine articular cartilage using high frequency ultrasound

    International Nuclear Information System (INIS)

    Wang, Q; Zheng, Y P; Leung, G; Mak, A F T; Lam, W L; Guo, X; Lu, H B; Qin, L

    2008-01-01

    Swelling behavior is an electrochemical mechanical property of articular cartilage. It plays an important role in weight bearing and joint lubrication. In this study, the altered transient and inhomogeneous swelling behavior of the degenerated articular cartilage was observed and quantified in situ using ultrasound. Three groups of bovine patellar articular cartilage samples (n = 10 x 3) were obtained and digested by trypsin for 10, 20 and 30 min respectively to mimic different levels of degeneration. The osmotic-free shrinkage and swelling behavior induced by changing the concentration of the bathing saline solution from 0.15 M to 2 M and then back to 0.15 M were characterized using high-frequency ultrasound (central frequency = 35 MHz) before and after digestion. It was found that the degenerated cartilage specimens showed a weaker shrinkage-swelling behavior compared with the normal cartilage samples. However, no significant differences in the peak shrinkage or swelling strains were observed between different groups. The absolute values of the peak shrinkage strain significantly (p < 0.05) decreased by 45.4%, 42.1% and 50.6% respectively after the trypsin digestion for 10, 20 and 30 min, but such significance was not demonstrated for the peak swelling strains. Due to the potential alterations in the collagen-PG matrix during trypsin digestion, the correlation between the swelling strain and the shrinkage strain of the degenerated samples changed slightly in comparison with the normal samples. The proposed ultrasound method has been successfully used to measure the transient and inhomogeneous swelling behavior of the degenerated articular cartilage and has the potential for the characterization of osteoarthritis

  19. The effect of swelling agent on the pore characteristics of mesoporous hydroxyapatite nanoparticles

    Directory of Open Access Journals (Sweden)

    L. Bakhtiari

    2015-06-01

    Full Text Available The effect of swelling agent on the physicochemical properties of mesoporous hydroxyapatite particles synthesized by self-assembly process has been investigated. Cetyl trimethylammonium bromide (CTAB and 1-dodecanethiol were used as soft template and swelling agent respectively. The results of the field emission scanning electron microscopy (FESEM, X-ray diffraction (XRD, simultaneous thermal analysis (STA, Brunauer-Emmett-Teller (BET surface area, small-angle X-ray diffraction and Fourier transform infrared spectroscopy (FTIR assessments revealed that in the case of low concentration, 1-dodecanethiol performed as swelling agent and caused an increase in the pore size. However, at higher concentrations it led to the formation of microemulsion and foamy structures. The optimum swelling agent: surfactant mass ratio in synthesis of mesoporous hydroxyapatite particles with high pore volume was determined to be around 2.1 in this study.

  20. Network Modelling of the Influence of Swelling on the Transport Behaviour of Bentonite

    Directory of Open Access Journals (Sweden)

    Ignatios Athanasiadis

    2016-12-01

    Full Text Available Wetting of bentonite is a complex hydro-mechanical process that involves swelling and, if confined, significant structural changes in its void structure. A coupled structural transport network model is proposed to investigate the effect of wetting of bentonite on retention conductivity and swelling pressure response. The transport network of spheres and pipes, representing voids and throats, respectively, relies on Laplace–Young’s equation to model the wetting process. The structural network uses a simple elasto-plastic approach without hardening to model the rearrangement of the fabric. Swelling is introduced in the form of an eigenstrain in the structural elements, which are adjacent to water filled spheres. For a constrained cell, swelling is shown to produce plastic strains, which result in a reduction of pipe and sphere spaces and, therefore, influence the conductivity and retention behaviour.

  1. The effect of swelling agent on the pore characteristics of mesoporous hydroxyapatite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    L. Bakhtiari; J. Javadpour; H.R. Rezaie; M. Erfan; M.A. Shokrgozar

    2015-01-01

    The effect of swelling agent on the physicochemical properties of mesoporous hydroxyapatite particles synthesized by self-assembly process has been investigated. Cetyl trimethylammonium bromide (CTAB) and 1-dodecanethiol were used as soft template and swelling agent respectively. The results of the field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), simultaneous thermal analysis (STA), Brunauer-Emmett-Teller (BET) surface area, small-angle X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) assessments revealed that in the case of low concentration, 1-dodecanethiol performed as swelling agent and caused an increase in the pore size. However, at higher concentrations it led to the formation of microemulsion and foamy structures. The optimum swelling agent:surfactant mass ratio in synthesis of mesoporous hydroxyapatite particles with high pore volume was determined to be around 2.1 in this study.

  2. Effect of compression therapy on knee swelling and pain after total knee arthroplasty

    DEFF Research Database (Denmark)

    Munk, Stig; Jensen, Niels J. F.; Andersen, Ida Bøgh

    2013-01-01

    PURPOSE: Knee swelling after total knee arthroplasty may impair postoperative mobilisation and training, and as medical elastic compression stockings are well tolerated and effective to prevent oedema, haematoma and postoperative pain after venous surgery, we wanted to study whether this effect...... could be transferred to total knee arthroplasty surgery reducing postoperative swelling and pain and thereby facilitating mobilisation and improving patient-reported knee function. METHODS: In a randomised controlled study, 88 patients were randomised to use either a medical elastic compression stocking...... or no stocking from the first postoperative day and the following 4 weeks after total knee arthroplasty. Outcome measures were knee, calf and ankle swelling, knee flexion, pain and patient-reported knee function. RESULTS: Seventy per cent of the swelling had occurred before application of the stocking the day...

  3. Swelling and irradiation creep of neutron irradiated 316Ti and 15-15Ti steels

    International Nuclear Information System (INIS)

    Maillard, A.; Touron, H.; Seran, J.L.; Chalony, A.

    1992-01-01

    The global behavior, the swelling and irradiation creep resistances of cold worked 316Ti and 15-15Ti, two variants of austenitic steels in use as core component materials of the French fast reactors, are compared. The 15-15Ti leads to a significant improvement due to an increase in the incubation dose swelling. The same phenomena observed on 316Ti are found on 15-15Ti. All species without fuel like samples, wrappers or empty clad swell and creep less than fuel pin cladding irradiated in the same conditions. To explain the swelling difference, as for 316Ti, thermal gradient is also invoked but the irradiation creep difference is not yet clearly understood. To predict the behavior of clads it is indispensable to study the species themselves and to use specific rules. All results confirm the good behavior of 15-15Ti, the best behavior being obtained with the 1% Si doped version irradiated up to 115 dpa

  4. The Future of Swelling Elastomers: An Elastomer Manufacturer's View of Swelling Elastomer Developments and Market Trends

    Directory of Open Access Journals (Sweden)

    R Seyger

    2013-06-01

    Full Text Available Swelling elastomers have gained acceptance as very effective products for creating sealing in various industries, including those creating energy from fossil fuels and geothermal resources. This paper outlines the research and development work being conducted not only in the application of these elastomers but also in the development work required to create new generations of elastomers. It touches on fundamental research into the mechanics of swelling with the intent to create a better and more predictable sealing as well as more advanced elastomers. It lifts the veil on the direction of work being done on new elastomers being developed in order to enable a better control of swelling. By doing so, the research is opening up field of applications for new equipment designs and mechanical possibilities in the future. Additionally, it addresses the need for a better and more in-depth dialogue between both chemical and mechanical engineers, and the elastomer companies and their customers on the potential that both swelling and non-swelling elastomers can offer to the industry as a whole.

  5. Granular MX-80 bentonite as buffer material: a focus on swelling characteristics

    International Nuclear Information System (INIS)

    Rizzi, M.; Laloui, L.; Salager, S.; Marschall, P.

    2010-01-01

    Document available in extended abstract form only. The Swiss High Level Waste (HLW) disposal concept envisages the emplacement of the waste canisters in horizontal tunnels excavated at a depth of several hundred meters in an over-consolidated clay-stone formation. After waste emplacement the disposal tunnels are backfilled with MX-80 granular bentonite. Research activities are presented in this paper, aimed at characterising the geomechanical behaviour of the MX-80 granular bentonite and at providing the theoretical framework for modelling its response to thermo-hydro- mechanical (THM) perturbations. From the experimental point of view, a series of tests has been designed in order to extract constitutive data and to assess the temperature and suction effects on the mechanical behaviour of the bentonite, paying particular attention in the investigation to the swelling behaviour of the material. As for the theoretical framework an elasto-plastic constitutive model has been developed to take into account those coupled processes of stress, capillary pressure, and temperature to which the bentonite will be submitted,. Bentonite is mainly composed of the smectite mineral montmorillonite with a high swelling capacity which may provide sufficient sealing properties to seal the tunnel without gaps and to restore the buffer continuity. In fact, as bentonite hydrates in the repositories it will expand in those areas where it is allowed and will exert a swelling pressure where the material is confined. The results of both confined and free swelling tests are presented. Confined tests are aiming at determining the pressure applied by the material during complete saturation under isochoric conditions, whereas in the free swelling tests the strain on hydration is measured. Some results from confined swelling tests at ambient temperature are presented. The specimen is compacted uniaxially directly in the cells, the initial dry density being chosen in the range between 1.6 and 1

  6. Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation.

    Science.gov (United States)

    Shrestha, Shikha; Diaz, Jairo A; Ghanbari, Siavash; Youngblood, Jeffrey P

    2017-05-08

    The coefficient of hygroscopic swelling (CHS) of self-organized and shear-oriented cellulose nanocrystal (CNC) films was determined by capturing hygroscopic strains produced as result of isothermal water vapor intake in equilibrium. Contrast enhanced microscopy digital image correlation enabled the characterization of dimensional changes induced by the hygroscopic swelling of the films. The distinct microstructure and birefringence of CNC films served in exploring the in-plane hygroscopic swelling at relative humidity values ranging from 0% to 97%. Water vapor intake in CNC films was measured using dynamic vapor sorption (DVS) at constant temperature. The obtained experimental moisture sorption and kinetic profiles were analyzed by fitting with Guggenheim, Anderson, and deBoer (GAB) and Parallel Exponential Kinetics (PEK) models, respectively. Self-organized CNC films showed isotropic swelling, CHS ∼0.040 %strain/%C. By contrast, shear-oriented CNC films exhibited an anisotropic swelling, resulting in CHS ∼0.02 and ∼0.30 %strain/%C, parallel and perpendicular to CNC alignment, respectively. Finite element analysis (FEA) further predicted moisture diffusion as the predominant mechanism for swelling of CNC films.

  7. Thermodynamic understanding on swelling pressure of bentonite buffer

    International Nuclear Information System (INIS)

    Sato, Haruo

    2007-01-01

    Smectite (montmorillonite) is a major clay mineral constituent of the bentonite buffer and backfilling materials to be used for the geological disposal of high-level radioactive waste. Swelling pressure of the bentonite buffer occurring in the permeation process of moisture was estimated based on thermodynamic theory and the thermodynamic data of interlayer water in smectite in this study. The relative partial molar Gibbs free energies (ΔG H2O ) of water on the smectite surface were measured as a function of water content (0-83%) in a dry density range of 0.6-0.9 Mg/m 3 . Purified Na-smectite of which interlayer cations were exchanged with Na + ions and soluble salts were completely removed, was used in this study. Obtained ΔG H2O decreased with an increase of water content in the range of water content lower than about 40%, and similar trends were obtained to data of Kunipia-F bentonite (Na-bentonite) of which smectite content was approximately 100 wt.%. From the specific surface area of smectite (ca. 800 m 2 /g) and the correlation between ΔG H2O and water content, water affected from the surface of smectite was estimated to be up to approximately 2 water layers. Swelling pressure versus smectite partial density (montmorillonite partial density) was estimated based on ΔG H2O from the chemical potential balance of water in equilibrium between the free water and moisturized smectite, and compared to data measured for various kinds of bentonites of which smectite contents were respectively different. The estimated swelling pressures were in good agreement with the measured data. (author)

  8. Stepwise Swelling of a Thin Film of Lamellae-Forming Poly(styrene-b-butadiene) in Cyclohexane Vapor

    DEFF Research Database (Denmark)

    Di, Zhenyu; Posselt, Dorthe; Smilgies, Detlef-M.

    2012-01-01

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each...

  9. Swelling of a Zirconium Oxide Film

    International Nuclear Information System (INIS)

    Henderson, Mark; Hawley, Adrian; White, John; Rennie, Adrian

    2005-01-01

    Full text: The structural changes that cause the change in the interlayer spacing of a surfactanttemplated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 Aangstroem on a lattice parameter of about 36 Aangstroem. The (001) and (002) diffraction peaks positions, widths and areas of a swollen film were then monitored by neutron diffraction as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals. (authors)

  10. Swelling of a mesostructured zirconium oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.J. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Rennie, A.R. [Uppsala University, Studsvik Neutron Research Laboratory, S-611 82 Nykoeping (Sweden); Hawley, A.M. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); White, J.W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)]. E-mail: jww@rsc.anu.edu.au

    2006-11-15

    The structural changes that cause the change in interlayer spacing of a surfactant-templated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 A on a lattice parameter of about 36 A. The (0 0 1) and (0 0 2) diffraction peak widths, positions and areas of a swollen film were monitored as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals.

  11. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  12. Structural evaluation of fast reactor core restraint with irradiation creep-swelling opposition effects

    International Nuclear Information System (INIS)

    Kalinowski, J.E.

    1979-01-01

    Irradiation creep and swelling correlations are derived from primary loading in-reactor experiments in which irradiation creep and swelling act in the same direction. When correlation uncertainty bands are applied in core restraint evaluations, significant variability in sub-assembly behavior is predicted. For example, sub-assemblies in the outer core region where neutron flux and duct temperature gradients are significant exhibit bowing responses ranging from a creep dominated outward bow to a swelling dominated inward bow. Furthermore, solutions based on upper bound and lower bound correlation uncertainty combinations are observed to cross-over indicating that such combinations are physically unrealistic in the assessment of creep-swelling opposition effects. In order to obtain realistic upper and lower bound sub-assembly responses, judgement must be applied in the selection of creep-swelling equation uncertainty combinations. Experimental programs have been defined which will provide the needed basic as well as prototypic creep-swelling opposition data for reference and advanced sub-assembly duct alloys. The first of these is an irradiation of cylindrical capsules subjected to a through-wall temperature gradient. This test which is presently underway in the EBR-II reactor will provide the data needed to refine irradiation creep and swelling correlations and their associated uncertainties when applied to core restraint evaluations. Restrained pin and duct bowing experiments in FFTF have also been defined. These will provide the prototypic data necessary to verify irradiated duct bowing methodology. The results of this experimental program are expected to reduce creep and swelling uncertainties and permit better definition of the design window for load plane gaps. (orig.)

  13. A simple operational gas release and swelling model. Pt. 1

    International Nuclear Information System (INIS)

    Wood, M.H.; Matthews, J.R.

    1980-01-01

    A new and simple model of fission gas release and swelling has been developed for oxide nuclear fuel under operational conditions. The model, which is to be incorporated into a fuel element behaviour code, is physically based and applicable to fuel at both thermal and fast reactor ratings. In this paper we present that part of the model describing the behaviour of intragranular gas: a future paper will detail the treatment of the grain boundary gas. The results of model calculations are compared with recent experimental observations of intragranular bubble concentrations and sizes, and gas release from fuel irradiated under isothermal conditions. Good agreement is found between experiment and theory. (orig.)

  14. The Compressibility and Swell of Mixtures for Sand-Clay Liners

    Directory of Open Access Journals (Sweden)

    Muawia A. Dafalla

    2017-01-01

    Full Text Available Sand-clay liners utilize expansive clay to act as a filler to occupy the voids in the sand and thus reduce the hydraulic conductivity of the mixture. The hydraulic conductivity and transfer of water and other substances through sand-clay mixtures are of prime concern in the design of liners and hydraulic barriers. Many successful research studies have been undertaken to achieve appropriate mixtures that satisfy hydraulic conductivity requirements. This study investigates compressibility and swelling properties of mixtures to ensure that they were acceptable for light structures, roads, and slabs on grade. A range of sand-expansive clay mixtures were investigated for swell and compression properties. The swelling and compressibility indices were found to increase with increasing clay content. The use of highly expansive material can result in large volume changes due to swell and shrinkage. The inclusion of less expansive soil material as partial replacement of bentonite by one-third to two-thirds is found to reduce the compressibility by 60% to 70% for 10% and 15% clay content, respectively. The swelling pressure and swell percent were also found significantly reduced. Adding less expansive natural clay to bentonite can produce liners that are still sufficiently impervious and at the same time less problematic.

  15. Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets.

    Science.gov (United States)

    Markl, Daniel; Yassin, Samy; Wilson, D Ian; Goodwin, Daniel J; Anderson, Andrew; Zeitler, J Axel

    2017-06-30

    Oral dosage forms are an integral part of modern health care and account for the majority of drug delivery systems. Traditionally the analysis of the dissolution behaviour of a dosage form is used as the key parameter to assess the performance of a drug product. However, understanding the mechanisms of disintegration is of critical importance to improve the quality of drug delivery systems. The disintegration performance is primarily impacted by the hydration and subsequent swelling of the powder compact. Here we compare liquid ingress and swelling data obtained using terahertz pulsed imaging (TPI) to a set of mathematical models. The interlink between hydration kinetics and swelling is described by a model based on Darcy's law and a modified swelling model based on that of Schott. Our new model includes the evolution of porosity, pore size and permeability as a function of hydration time. Results obtained from two sets of samples prepared from pure micro-crystalline cellulose (MCC) indicate a clear difference in hydration and swelling for samples of different porosities and particle sizes, which are captured by the model. Coupling a novel imaging technique, such as TPI, and mathematical models allows better understanding of hydration and swelling and eventually tablet disintegration. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2017-10-01

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gas bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.

  17. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs

  18. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs.

  19. Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan

    Science.gov (United States)

    Shimozono, Takenori; Tajima, Yoshimitsu; Kennedy, Andrew B.; Nobuoka, Hisamichi; Sasaki, Jun; Sato, Shinji

    2015-06-01

    Super typhoon Haiyan struck the Philippines on 8 November 2013, marking one of the strongest typhoons at landfall in recorded history. Extreme storm waves attacked the Pacific coast of Eastern Samar where the violent typhoon first made landfall. Our field survey confirmed that storm overwash heights of 6-14 m above mean sea level were distributed along the southeastern coast and extensive inundation occurred in some coastal villages in spite of natural protection by wide fringing reefs. A wave model based on Boussinesq-type equations is constructed to simulate wave transformation over shallow fringing reefs and validated against existing laboratory data. Wave propagation and runup on the Eastern Samar coast are then reproduced using offshore boundary conditions based on a wave hindcast. The model results suggest that extreme waves on the shore are characterized as a superposition of the infragravity wave and sea-swell components. The balance of the two components is strongly affected by the reef width and beach slope through wave breaking, frictional dissipation, reef-flat resonances, and resonant runup amplification. Therefore, flood characteristics significantly differ from site to site due to a large variation of the two topographic parameters on the hilly coast. Strong coupling of infragravity waves and sea swells produces extreme runup on steep beaches fronted by narrow reefs, whereas the infragravity waves become dominant over wide reefs and they evolve into bores on steep beaches.

  20. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...... factors that determine the level of fission gas release during a power bump. Release begins when gas bubbles on grain boundaries start o interlink. This occurred at r/r0 ~ 0.75. Release tunnels were fully developed at r/r0 ~ 0.55 with the result that gas release was 60–70% at this position....

  1. Swelling of biological and semiflexible polyelectrolytes.

    Science.gov (United States)

    Dobrynin, Andrey V; Carrillo, Jan-Michael Y

    2009-10-21

    We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).

  2. Modeling multidomain hydraulic properties of shrink-swell soils

    Science.gov (United States)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  3. Role of Defects in Swelling and Creep of Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Voyles, Paul [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-16

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  4. Role of Defects in Swelling and Creep of Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Voyles, Paul; Sridharan, Kumar; Katoh, Yutai

    2016-01-01

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  5. Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states

    NARCIS (Netherlands)

    Tambach, T.J.; Bolhuis, P.G.; Hensen, E.J.M.; Smit, B.

    2006-01-01

    We perform grand-canonical molecular simulations to study the molecular mechanism of clay swelling hysteresis as a function of the relative humidity. In particular, we focus on the transition from the one- to the two-layer hydrate and the influence of three types of counterions (Li+, Na+, and K+).

  6. Effects of Swelling Processes on the Particle Morphology of Porous P(MMA-EGDMA) Particles via Seeded Two-step Swelling Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Porous functional polymer particles have been drawing great interest for their applications in many fields such as ion exchange,polymeric carrier,biomedicine,biochemistry,cosmetics,plastic pigments,and were first prepared by suspension polymerization in 1 950 s.Since 1990's,some approaches such as seeded emulsion polymerization method,dynamic monomer swelling method,activated swelling method and multi-step seeded method[1-4] have been used by many researchers to synthesize this kind of polymer...

  7. Overnight corneal swelling with high and low powered silicone hydrogel lenses.

    Science.gov (United States)

    Moezzi, Amir M; Fonn, Desmond; Varikooty, Jalaiah; Simpson, Trefford L

    2015-01-01

    To compare central corneal swelling after eight hours of sleep in eyes wearing four different silicone hydrogel lenses with three different powers. Twenty-nine neophyte subjects wore lotrafilcon A (Dk, 140), balafilcon A (Dk, 91), galyfilcon A (Dk, 60) and senofilcon A (Dk, 103) lenses in powers -3.00, -10.00 and +6.00 D on separate nights, in random order, and on one eye only. The contra-lateral eye (no lens) served as the control. Central corneal thickness was measured using a digital optical pachometer before lens insertion and immediately after lens removal on waking. For the +6.00 D and -10.00 D, lotrafilcon A induced the least swelling and galyfilcon A the most. The +6.00 D power, averaged across lens materials, induced significantly greater central swelling than the -10.00 and -3.00 D (Re-ANOVA, p<0.001), (7.7±2.9% vs. 6.8±2.8% and 6.5±2.5% respectively) but there was no difference between -10.00 and -3.00 D. Averaged for power, lotrafilcon A induced the least (6.2±2.8%) and galyfilcon A the most (7.6±3.0%) swelling at the center (Re-ANOVA, p<0.001). Central corneal swelling with +6.00 D was significantly greater than -10.00 D lens power despite similar levels of average lens transmissibility of these two lens powers. The differences in corneal swelling of the lens wearing eyes are consistent with the differences in oxygen transmission of the silicone hydrogel lenses. In silicone hydrogel lenses central corneal swelling is mainly driven by central lens oxygen transmissibility. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  8. Midface swelling reveals nasofrontal dermal sinus

    International Nuclear Information System (INIS)

    Houneida, Zaghouani Ben Alaya; Manel, Limeme; Latifa, Harzallah; Habib, Amara; Dejla, Bakir; Chekib, Kraiem

    2012-01-01

    Nasofrontal dermal sinuses are very rare and generally occur in children. This congenital malformation can be revealed by midface swelling, which can be complicated by local infection or neuromeningitis. Such complications make the dermal sinus a life-threatening disease. Two cases of nasofrontal dermal sinuses are reported in this work. The first case is an 11-month-old girl who presented with left orbitonasal soft tissue swelling accompanied by inflammation. Physical examination found fever, left orbitonasal thickening, and a puncture hole letting out pus. Computed tomography revealed microabscesses located at the left orbitonasal soft tissues, a frontal bone defect, and an intracranial cyst. Magnetic resonance imaging showed the transosseous tract between the glabella and the brain and affirmed the epidermoid nature of the intracranial cyst. The second case is a 7-year-old girl who presented with a nasofrontal non-progressive mass that intermittently secreted a yellow liquid through an external orifice located at the glabella. MRI revealed a cystic mass located in the deep layer of the glabellar skin related to an epidermoid cyst with a nasofrontal dermal sinus tract. In both cases, surgical excision was performed, and pathological confirmation was made for the diagnoses of dermal sinuses. The postoperative course was favorable. Through these cases, the authors stress the role of imaging methods in confirming the diagnosis and looking for associated cysts (dermoid and epidermoid) to improve recognition of this rare disease. Knowledge of the typical clinical presentations, imaging manifestations, and most common sites of occurrence of this malformation are needed to formulate a differential diagnosis.

  9. Reassessment of the swelling behavior of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.; Porter, D.L.

    1982-03-01

    Published swelling data derived from EBR-II irradiations of AISI 304 and 304L have been reanalyzed in light of insights gained from irradiation of AISI 316 and Fe-15Cr-25Ni. The primary influence of temperature, displacement rate and compositional variations in the 300 series stainless steels lies in the duration of the transient regime of swelling and not in the steady-state or constant swelling rate regime

  10. The swelling of nucleons in nuclei and the Roper resonance

    International Nuclear Information System (INIS)

    Desplanques, B.

    1988-01-01

    Conditions where some swelling of the nucleon occurs, and, in particular the relation of this effect with the attractive character of the force acting on it, are studied. It is found that short range repulsive correlations can turn the swelling into a shrinking, in spite of a globally attractive interaction, whereas repulsive velocity dependent forces can lead to some swelling. The role of the Roper resonance in this nucleon change of size is considered in some detail

  11. Industrial tests of rock consolidation for fighting floor swelling

    Energy Technology Data Exchange (ETDEWEB)

    Pirskii, A A; Stovpnik, S N [KPI (USSR)

    1990-04-01

    Reports on investigations into the mechanism of floor swelling in main roadways and into rock mass stabilization by consolidating fluid injection combined with blasting. The principal cause of deterioration in the stability of workings is considered to be the state of stress in the rock mass, rock destruction in side walls where rock blocks are being pressed into the floor while the floor rock is squeezed out into the working space. A case study of fluid injection combined with blasting applied in several mines in the Donbass is presented where holes were drilled 1.5-3 m deep and explosive charges of 0.07-0.1 kg/hole and injection of hardening solutions (0.56-0.83 m{sup 3}/m of workings) were applied. As a result floor swelling rates were reduced by up to about 5 times (e.g. from 2.5 mm/d to 0.5 mm/d.). The period of maintenence free upkeep of workings was extended to 6-8 years. The economic effect in maintenance of 1 m of workings was 11.7 rubles for floor consolidation without sidewall bolting and 51.4 rubles for floor consolidation combined with sidewall bolting. Recommendations that concern the technology of floor consolidation by fluid injection and blasting are made. 4 refs.

  12. Textureless Macula Swelling Detection with Multiple Retinal Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Tobin Jr, Kenneth William [ORNL; Grisan, Enrico [University of Padua, Padua, Italy; Favaro, Paolo [Heriot-Watt University, Edinburgh; Ruggeri, Alfredo [University of Padua, Padua, Italy; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Retinal fundus images acquired with non-mydriatic digital fundus cameras are a versatile tool for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relatively low cost, these cameras can be employed by operators with limited training for telemedicine or Point-of-Care applications. We propose a novel technique that uses uncalibrated multiple-view fundus images to analyse the swelling of the macula. This innovation enables the detection and quantitative measurement of swollen areas by remote ophthalmologists. This capability is not available with a single image and prone to error with stereo fundus cameras. We also present automatic algorithms to measure features from the reconstructed image which are useful in Point-of-Care automated diagnosis of early macular edema, e.g., before the appearance of exudation. The technique presented is divided into three parts: first, a preprocessing technique simultaneously enhances the dark microstructures of the macula and equalises the image; second, all available views are registered using non-morphological sparse features; finally, a dense pyramidal optical flow is calculated for all the images and statistically combined to build a naiveheight- map of the macula. Results are presented on three sets of synthetic images and two sets of real world images. These preliminary tests show the ability to infer a minimum swelling of 300 microns and to correlate the reconstruction with the swollen location.

  13. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B., E-mail: mychailo.toloczko@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States); Voyevodin, V.N.; Bryk, V.V.; Borodin, O.V.; Mel’nychenko, V.V.; Kalchenko, A.S. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2014-10-15

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr{sup +} ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  14. Swelling and hydraulic properties of Ca-bentonite for the buffer of a waste repository

    International Nuclear Information System (INIS)

    Lee, J.O.; Cho, W.J.; Kang, C.H.; Chun, K.S.

    2001-01-01

    Swelling and hydraulic tests were carried out to provide the information for the selection of buffer material in a radioactive waste repository. Ca-bentonite and de-ionized water were used for the tests. The swelling pressures of compacted bentonite were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 , and they largely increased with an increase in the dry density and bentonite content. However, the swelling pressures decreased with increasing the initial water content and beyond about 12 wt.% of the initial water content, leveled off to a nearly constant value. The hydraulic conductivities were lower than 10 -11 m/s for the compacted bentonite with the dry density higher than 1.4 Mg/m 3 . They increased with increasing temperature in the range of 20 deg. C to 150 deg. C. (author)

  15. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    Science.gov (United States)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  16. Applications of the theory of cavity growth to dual-ion swelling experiments

    International Nuclear Information System (INIS)

    Hayns, M.R.; Mansur, L.K.

    1980-01-01

    The rate theory of cavity growth is applied to study the effects of helium gas on cavity swelling. The variation of swelling with temperature is emphasized: (1) expressions are derived showing that the primary effect of the helium is in pressurizing cavities and that a secondary effect is in altering the microstructural sink strengths. The expressions simplify in the parameter range of engineering interest such that the temperature regime of swelling is predicted to shift upward in approximately direct proportion to the cavity gas pressure; (2) recent experimental data on swelling of a pure stainless steel type alloy under dual-nickel and helium-ion bombardment is interpreted. Helium-free, helium-coimplanted, and helium-preimplanted swelling results can be explained by the theory. It is necessary to account for the partitioning of the helium to dislocations as well as to cavities in order to explain the experimental results for helium coimplantation; (3) model studies for physically reasonable parameters reveal the importance of the He/dpa ratio

  17. Evaluation of permeability and swelling pressure of compacted bentonite using a calcium hydroxide solution

    International Nuclear Information System (INIS)

    Aoyagi, Takayoshi; Maeda, Munehiro; Mihara, Morihiro; Tanaka, Masuhiro

    1998-12-01

    Tests to determine the swelling pressure, permeability, compressive strength and elastic modulus of Ca-Na exchanged bentonite, Na-bentonite and Ca-bentonite at the Power Reactor and Nuclear Fuel Development Corporation have mainly used distilled water. However, disposal facilities for TRU waste will use cementateous material for packaging, backfill as well as structural support. In this case, a large amount of calcium will dissolve in groundwater flowing through the cementateous material. Therefore, it is important to investigate the mechanical properties of bentonite in calcium-rich water as part of the disposal research program for TRU waste. In order to understand the effect of the chemical composition of water on the basic mechanical properties of bentonite - part of evaluating the disposal concepts for TRU waste disposal - we tested the permeability of compacted bentonite under saturated conditions using a calcium hydroxide solution. The aqueous solution represents water dominated by the calcium component. Na-bentonite, Ca-Na exchanged bentonite and Ca-bentonite were used for swelling pressure measurement tests and permeability testing. Measures of the maximum and equilibrium swelling pressure as well as permeability we obtained. The dry density of bentonite was varied between tests. Results show that swelling pressure and permeability are dependent on dry density. In separate tests using Ca-bentonite, the bentonite-mixing rate was varied as an independent parameter. Results show that there is little change in the swelling pressure and permeability between tests using calcium hydroxide solution and distilled water for all bentonite types. (author)

  18. Effect of light impurities on the early stage of swelling in austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.

    1998-01-01

    The objective of this study is to analyse the early stage of swelling and clarify the role of light impurities (nitrogen) in swelling of austenitic stainless steel. Recent results show that light impurities affect the swelling of 316 stainless steel under HVEM irradiation up to 10 dpa. At low concentration of light impurities the radiation swelling increases then decreases through the maximum as the concentration of light impurities increases. In the present paper the theoretical model is presented for the explanation of this effect. The model is based on the two factors: the influence of absorbed impurities on the voids caused by the production of an additional gas pressure in voids for their stabilization and the effect of impurities segregated around the surface of voids by the lowering of surface tension. These two affects are taken into account in the calculations of the critical size and the growth rate of cavities. The theoretical predictions on the radiation swelling rate dependent on the impurity concentration and temperature coincided with the experimental results on 316 stainless steel irradiated by HVEM. (orig.)

  19. NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture.

    NARCIS (Netherlands)

    Sinke, A.P.; Jayakumar, A.R.; Panickar, K.S.; Moriyama, M.; Reddy, P.V.; Norenberg, M.D.

    2008-01-01

    Astrocyte swelling and brain edema are major neuropathological findings in the acute form of hepatic encephalopathy (fulminant hepatic failure), and substantial evidence supports the view that elevated brain ammonia level is an important etiological factor in this condition. Although the mechanism

  20. Feet swelling in a multistage ultraendurance triathlete: a case study

    Directory of Open Access Journals (Sweden)

    Knechtle B

    2015-10-01

    Full Text Available Beat Knechtle,1 Matthias Alexander Zingg,2 Patrizia Knechtle,1 Thomas Rosemann,2 Christoph Alexander Rüst2 1Gesundheitszentrum St Gallen, St Gallen, 2Institute of Primary Care, University of Zurich, Zurich, Switzerland Abstract: Recent studies investigating ultraendurance athletes showed an association between excessive fluid intake and swelling of the lower limbs such as the feet. To date, this association has been investigated in single-stage ultraendurance races, but not in multistage ultraendurance races. In this case study, we investigated a potential association between fluid intake and feet swelling in a multistage ultraendurance race such as a Deca Iron ultratriathlon with ten Ironman triathlons within 10 consecutive days. A 49-year-old well-experienced ultratriathlete competed in autumn 2013 in the Deca Iron ultratriathlon held in Lonata del Garda, Italy, and finished the race as winner within 129:33 hours:minutes. Changes in body mass (including body fat and lean body mass, foot volume, total body water, and laboratory measurements were assessed. Food and fluid intake during rest and competing were recorded, and energy and fluid turnovers were estimated. During the ten stages, the volume of the feet increased, percentage body fat decreased, creatinine and urea levels increased, hematocrit and hemoglobin values decreased, and plasma [Na+] remained unchanged. The increase in foot volume was significantly and positively related to fluid intake during the stages. The poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. This case report shows that the volume of the foot increased during the ten stages, and the increase in volume was significantly and positively related to fluid intake during the stages. Furthermore, the poststage volume of the foot was related to poststage total body water, poststage creatinine, and poststage urea. The continuous feet swelling during the race was

  1. Swelling of uranium dioxide and deformation behavior of the fuel element at high temperature irradiation

    International Nuclear Information System (INIS)

    Gontar, A.S.; Gutnik, V.S.; Nelidov, M.V.; Nikolaev, Yu.V.

    1993-01-01

    As post-reactor investigations showed, significant difference of swelling rates is connected with the fact that swelling of UO 2 with the equiaxial structure is mainly the result of fission gas bubbles accumulation along grain boundaries, and, in the case of the column structure, with formation of fine bubbles inside grains. The data given testify to usefulness of such investigations to predict TFE lifetime. As proven in this study one can see rates of radial deformation of fuel element cladding of a multi-cell TFE as a result of UO 2 swelling. They were calculated using the code SDS. Typical sizes were taken for calculation: cladding diameter--20 mm, cladding temperature at the central section of the fuel element--1,900 K, energy generation rate--145 W/cm 3 . These parameters provide output electric power of the TFE 600 W at the active zone length--400 mm

  2. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    Science.gov (United States)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  3. Black liquor devolatilization and swelling - a detailed droplet model and experimental validation

    International Nuclear Information System (INIS)

    Jaervinen, M.; Zevenhoven, R.; Vakkilainen, E.; Forssen, M.

    2003-01-01

    In this paper, we present results from a new detailed physical model for single black liquor droplet pyrolysis and swelling, and validate them against experimental data from a non-oxidizing environment using two different reactor configurations. In the detailed model, we solve for the heat transfer and gas phase mass transfer in the droplet and thereby, the intra-particle gas-char and gas-gas interactions during drying and devolatilization can be studied. In the experimental part, the mass change, the swelling behaviour, and the volume fraction of larger voids, i.e. cenospheres in the droplets were determined in a non-oxidizing environment. The model gave a good correlation with experimental swelling and mass loss data. Calculations suggest that a considerable amount of the char can be consumed before the entire droplet has experienced the devolatilization and drying stages of combustion. Char formed at the droplet surface layer is generally consumed by gasification with H 2 O flowing outwards from the droplet interior. The extent of char conversion during devolatilization and the rate of devolatilization are greatly affected by swelling and the formation of larger voids in the particle. The more the particle swells and the more homogeneous the particle structure is, the larger is the conversion of char at the end of devolatilization

  4. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    Science.gov (United States)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  6. Multipurpose Compensation Scheme for Voltage Sag/Swell and Selective Harmonics Elimination in Distribution Systems

    Directory of Open Access Journals (Sweden)

    Mustafa Inci

    2018-01-01

    Full Text Available Voltage harmonics, sag, and swell are the most harmful disturbances in distribution systems. This paper introduces a novel effective controller method for simultaneous compensation of both voltage sag/swell and voltage harmonics by using multifunctional dynamic voltage restorer. In proposed controller method called FFT with integrated ISRF, ISRF detects the magnitudes of voltage sag/swell quickly and precisely, and FFT extracts the selective components of voltage harmonics very effectively. The proposed method integrates the superior properties of ISRF and FFT methods. FFT integrated ISRF is applied for the first time to provide the compensation of both sag/swell and selective harmonics together. The proposed system has ability to compensate symmetrical/asymmetrical sag/swell and symmetrical/asymmetrical selective harmonics which are 5th, 7th, 11th and 13th. The controlled system is modelled in PSCAD/EMDTC and compared with conventional methods. The performance results verify that the proposed method compensates voltage disturbances effectively in the system.

  7. Thermal effects on granules and direct determination of swelling ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... DEA. UAA. Abidjan. Côte d'Ivoire, pp. 25-28. Larrigue S, Alvarez G, Cuvelier G, Flick D (2008). Swelling kinetics of waxy maize and starches at high temperatures and heating rates. Carbohydr. Polym. 73: 148-155. Leach HW, MC Cowen LD, Schoch JJ (1959). Structure of the starch granule swelling and ...

  8. Swelling Characteristics and Tensile Properties of Natural Fiber ...

    African Journals Online (AJOL)

    The swelling behavior and tensile strength of natural fiber-reinforced plastic in premium motor spirit (PMS), dual purpose kerosene (DPK) and sea water have been studied. Composite formed by reinforcing polyester resin with Okam fibers was immersed in the selected solvents for 16 weeks (4 months). Swelling ...

  9. Prediction of Swelling Behavior of Addis Ababa Expansive Soil ...

    African Journals Online (AJOL)

    In this study a simple hyperbolic mathematical model is used to predict the swelling behavior of an expansive soil from Addis Ababa. The main parameters that are needed to run the model are the applied pressure and initial dry density. The other parameters of the model including the initial slope of the swell-time curve, the ...

  10. Neurofibromas as bilateral cystic chest wall swellings. | Ugare ...

    African Journals Online (AJOL)

    A 35 year old male farmer presented with soft bilateral posterior chest wall swellings. He had no similar swellings elsewhere. There were no associated symptoms, except cosmetic deformity and discomfort when he lies on his back. A clinical diagnosis of posterior chest wall lipomata was made. However at surgery, the two ...

  11. Spectral partitioning and swells in the black sea

    NARCIS (Netherlands)

    van Vledder, G.P.; Akpınar, Adem; Lynett, P.

    2016-01-01

    The swell climate of the Black Sea has been determined using a long-term 31-year wave hindcast with the thirdgeneration spectral wave model SWAN in combination with spectral partitioning. This technique enables decomposing wave spectra into individual wave systems representing wind seas or swells

  12. Partial swelling of latex particles by two monomers

    NARCIS (Netherlands)

    Noel, E.F.J.; Maxwell, I.A.; German, A.L.

    1993-01-01

    The swelling of polymeric latex particles with solvent and monomer is of great importance for the emulsion polymn. process in regard to compn. drift and rate of polymn. For the monomer combination, Me acrylate-vinyl acetate, both satn. and partial swelling were detd. exptl. Theories for satn.

  13. Theory of void swelling, irradiation creep and growth

    International Nuclear Information System (INIS)

    Wood, M.H.; Bullough, R.; Hayns, M.R.

    Recent progress in our understanding of the fundamental mechanisms involved in swelling, creep and growth of materials subjected to irradiation is reviewed. The topics discussed are: the sink types and their strengths in the lossy continuum; swelling and void distribution analysis, including recent work on void nucleation; and, irradiation creep and growth of zirconium and zircaloy are taken as an example

  14. Odontogenic facial swelling of unknown origin.

    Science.gov (United States)

    Ranjitkar, S; Cheung, W; Yong, R; Deverell, J; Packianathan, M; Hall, C

    2015-12-01

    Current radiography techniques have limitations in detecting subtle odontogenic anomalies or defects that can lead to dentoalveolar and facial infections. This report examines the application of micro-CT imaging on two extracted teeth to enable detailed visualization of subtle odontogenic defects that had given rise to facial swelling. Two extracted non-carious mandibular left primary canine teeth (73) associated with odontogenic infections were selected from two patients, and an intact contralateral tooth (83) from one of the patients was used as a control. All three teeth were subjected to three-dimensional micro-CT imaging at a resolution of 20 μm. Tooth 73 from the first case displayed dentine pores (channels) that established communication between the pulp chamber and the exposed dentine surface. In comparison, tooth 73 from the second case had a major vertical crack extending from the external enamel surface into the pulp chamber. The control tooth did not display any anomalies or major cracks. The scope of micro-CT imaging can be extended from current in vitro applications to establish post-extraction diagnosis of subtle odontogenic defects, in a manner similar to deriving histopathological diagnoses in extracted teeth. Ongoing technological advancements hold the promise for more widespread translatory applications. © 2015 Australian Dental Association.

  15. Mechanical properties of buffer materials for repositories of high-level nuclear waste, 2

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1993-01-01

    Compacted bentonites have attracted increasing attention as back filling (buffer) materials for repositories of high-level nuclear waste. However, since little has been known concerning the swelling characteristics of compacted bentonites, it is necessary to clarify the fundamental swelling characteristics and the quantitative evaluation on this characteristics is required. For this purpose, a theoretical model concerning the swelling characteristics (swelling deformation and swelling pressure) of compacted bentonites were developed. The following conclusions were drawn from this theoretical study; (1) The evaluation formula of the swelling characteristics of compacted bentonites based on the diffuse double layer theory has been proposed by combining the theoretical model and the theoretical equation to estimate the swelling characteristics of a crystal. (2) The applicability of the evaluation formula proposed in this study has been confirmed by the comparison of the experimental results with calculated results. The sensitivity of this evaluation formula has also been investigated to find that the swelling characteristics is strongly dependent on the ion concentration of pore water and on the montmorillonite content of bentonite. (author)

  16. Thyroid swellings in the art of the Italian Renaissance.

    Science.gov (United States)

    Sterpetti, Antonio V; De Toma, Giorgio; De Cesare, Alessandro

    2015-09-01

    Thyroid swellings in the art of the Italian Renaissance are sporadically reported in the medical literature. Six hundred paintings and sculptures from the Italian Renaissance, randomly selected, were analyzed to determine the prevalence of personages with thyroid swellings and its meaning. The prevalence of personages with thyroid swellings in the art of Italian Renaissance is much higher than previously thought. This phenomenon was probably secondary to iodine deficiency. The presence of personages with thyroid swelling was related to specific meanings the artists wanted to show in their works. Even if the function and the role of the thyroid were discovered only after thyroidectomy was started to be performed, at the beginning of the 19th century, artists of the Italian Renaissance had the intuition that thyroid swellings were related to specific psychological conditions. Artistic intuition and sensibility often comes before scientific demonstration, and it should be a guide for science development. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Erythrocyte swelling and membrane hole formation in hypotonic media as studied by conductometry.

    Science.gov (United States)

    Pribush, A; Meyerstein, D; Hatskelzon, L; Kozlov, V; Levi, I; Meyerstein, N

    2013-02-01

    Hypoosmotic swelling of erythrocytes and the formation of membrane holes were studied by measuring the dc conductance (G). In accordance with the theoretical predictions, these processes are manifested by a decrease in G followed by its increase. Thus, unlike the conventional osmotic fragility test, the proposed methodological approach allows investigations of both the kinetics of swelling and the erythrocyte fragility. It is shown that the initial rate of swelling and the equilibrium size of the cells are affected by the tonicity of a hypotonic solution and the membrane rheological properties. Because the rupture of biological membranes is a stochastic process, a time-dependent increase in the conductance follows an integral distribution function of the membrane lifetime. The main conclusion which stems from reported results is that information about rheological properties of red blood cell (RBC) membranes and the resistivity of RBCs to a certain osmotic shock may be extracted from conductance signals.

  18. Water uptake, migration and swelling characteristics of unsaturated and saturated, highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-09-01

    The report presents the results of a number of laboratory tests and field observations to form the basis of a physical and mathematical model that can be used for predicting water uptake and swelling in highly compacted bentonite components of an actual deposition plant. The clay buffer masses have been suggested as barriers in the Swedish KBS concepts. Two commercially available bentonites were used for the production of samples. The rate of water uptake suggests a mathematical model based on a simple diffusion equation. The rate is determined by the access of water and thousands of years may pass before saturation is obtained. The rate of swelling is governed by the negative pore pressure and the permeability. There is reasonable agreement with field observations. The observed swelling potential of old smectite-rich clays has offered the evidence. (G.B.)

  19. Hypoosmotic cell swelling as a novel mechanism for modulation of cloned HCN2 channels

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Elmedyb, Pernille; Olesen, Søren-Peter

    2005-01-01

    This work demonstrates cell swelling as a new regulatory mechanism for the cloned hyperpolarization-activated, cyclic nucleotide-gated channel 2 (HCN2). HCN2 channels were coexpressed with aquaporin1 in Xenopus laevis oocytes and currents were monitored using a two-electrode voltage-clamp. HCN2...... channels were activated by hyperpolarization to -100 mV and the currents were measured before and during hypoosmotic cell swelling. Cell swelling increased HCN2 currents by 30% without changing the kinetics of the currents. Injection of 50 nl intracellular solution resulted in a current increase of 20......%, indicating that an increase in cell volume also under isoosmotic conditions may lead to activation of HCN2. In the absence of aquaporin1 only negligible changes in oocyte cell volume occur during exposure to hypoosmotic media and no significant change in HCN2 channel activity was observed during perfusion...

  20. Bearing and Swelling Properties of Randomly Distributed Waste Jute Reinforced Soil

    Directory of Open Access Journals (Sweden)

    Murat Ozturk

    2017-10-01

    Full Text Available In this study, waste jute, which was provided from textile companies, was investigated to define effect of waste jute on swelling and bearing behavior of the sand used. Three different water content (17, 19 and 21% and four different waste jute addition amount at different percentages (0, 1, 2, and 3 by mass of dry soil were selected as design variables. With defined variables Swelling Ratio and California Bearing Ratio (CBR tests were conducted. According to test results it is concluded that minimum swelling ratio was observed in the test containing 3% jute with 19% water content and the highest value of CBR was observed in the sample containing 2% jute with 16% water content. In addition to that, CBR values of unreinforced samples were decreased when water content increased from 16% to 21%. However, CBR values of reinforced samples increased with increasing water content from 19% to 21%.

  1. Tensile, swelling and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites

    Science.gov (United States)

    Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras

    2017-10-01

    Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.

  2. Extracranial soft-tissue swelling: a normal postmortem radiographic finding or a sign of trauma?

    International Nuclear Information System (INIS)

    Strouse, P.J.; Caplan, M.; Owings, C.L.

    1998-01-01

    Objective. To determine if extracranial soft-tissue swelling is an expected postmortem finding or a sign of trauma. Materials and methods. Extracranial soft-tissue thickness was measured at 5 standardized locations on postmortem skull films obtained of 18 infants with no evidence of trauma on autopsy. The same measurements were performed on the skull films of 100 living children, all less than 3 years old and without clinical history of trauma. Results. Extracranial soft tissues measured only slightly greater in the postmortem group than on films of living children; however, the difference did achieve statistical significance. Conclusion. Minimal extracranial soft-tissue swelling is a normal finding on a postmortem skeletal survey. The presence of substantial or asymmetric extracranial soft-tissue swelling should be viewed with suspicion for trauma. (orig.)

  3. [Octanol preconditioning alleviates mouse cardiomyocyte swelling induced by simulated ischemia/reperfusion challenge in vitro].

    Science.gov (United States)

    Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong

    2012-10-01

    To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, Poctanol preconditioning significantly attenuated the cell swelling [(113∓6)%, Poctanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, Poctanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.

  4. Extracranial soft-tissue swelling: a normal postmortem radiographic finding or a sign of trauma?

    Energy Technology Data Exchange (ETDEWEB)

    Strouse, P.J. [Section of Pediatric Radiology, University of Michigan Medical Center, Ann Arbor (United States); Caplan, M. [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Owings, C.L. [Department of Pediatrics and Communicable Diseases, C. S. Mott Children`s Hospital, Ann Arbor, Michigan (United States)

    1998-08-01

    Objective. To determine if extracranial soft-tissue swelling is an expected postmortem finding or a sign of trauma. Materials and methods. Extracranial soft-tissue thickness was measured at 5 standardized locations on postmortem skull films obtained of 18 infants with no evidence of trauma on autopsy. The same measurements were performed on the skull films of 100 living children, all less than 3 years old and without clinical history of trauma. Results. Extracranial soft tissues measured only slightly greater in the postmortem group than on films of living children; however, the difference did achieve statistical significance. Conclusion. Minimal extracranial soft-tissue swelling is a normal finding on a postmortem skeletal survey. The presence of substantial or asymmetric extracranial soft-tissue swelling should be viewed with suspicion for trauma. (orig.) With 2 tabs., 5 refs.

  5. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    increased from monovalent to divalent cation. For samples prepared with distilled water and inundated with simulated groundwater solutions, the swell potential reduced up to 50% for sample inundated with less saline granitic groundwater and up to 62% for sample inundated with moderately saline groundwater. For the samples prepared with salt solutions and were heated, the reduction in swell potential ranged from 30-42% compared with bentonite sand sample mixed with distilled water and without any heating. Comparing swell potentials of samples heated for similar conditions, the samples prepared with 1000 ppm Na and 1000 ppm K swelled little less (3.5-3.8%) then sample prepared with distilled water. The exchange of adsorbed cation on bentonite to K and heating did not cause collapse of montmorillonite layers. The samples prepared with 1000 ppm Ca and 1000 ppm Mg swelled to 12-20% less than distilled water sample. Presence of divalent cations in pore water and exchangeable cation positions, leads to substantial reduction in swelling ability of bentonite. For the samples prepared with distilled water and heated, and then inundated with simulated ground water solutions, the reduction in swell potential ranged from 11-47% with respect to samples mixed and inundated with distilled water and heated for similar conditions. High swelling ability is the one of the most characteristic property of bentonite and must be retained over a span of several thousand years to fulfill its role as a containment barrier successfully. The results show that heating of compacted bentonite sand mix samples to temperature 50-80 deg. C which is the temperature range expected to prevail in the bentonite buffer in repository for a long time leads to significant reduction in its swelling ability. Increasing the pore water salinity of bentonite with salts of monovalent (Na, K) and divalent cations (Ca, Mg) has the effect of reducing the swelling ability but to different degrees. The inundation of bentonite

  6. Void migration, coalescence and swelling in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2003-01-01

    A recent analysis of the migration of voids and bubbles, produced in neutron irradiated fusion materials, is outlined. The migration, brought about by thermal hopping of atoms on the surface of a void, is normally a random Brownian motion but, in a temperature gradient, can be slightly biassed up the gradient. Two effects of such migrations are the transport of voids and trapped transmutation helium atoms to grain boundaries, where embrittlement may result; and the coalescence of migrating voids, which reduces the number of non-dislocation sites available for the capture of knock-on point defects and thereby enables the dislocation bias process to maintain void swelling. A selection of candidate fusion power plant armour and structural metals have been analysed. The metals most resistant to void migration and its effects are tungsten and molybdenum. Steel and beryllium are least so and vanadium is intermediate

  7. MRI estimation of extraocular muscle swelling in dysthyroid ophthalmopathy

    International Nuclear Information System (INIS)

    Watanabe, Yoshihiro; Kakisu, Yonetsugu; Hatakeyama, Masayuki; Asanagi, Kaoru

    1988-01-01

    The thickness and width of superior, inferior and medial rectus muscles were measured via T1-weighted coronal images using a 0.5 T superconducting MRI (magnetic resonance imaging) system in 10 patients with dysthyroid ophthalmopathy and 27 normal orbits. Lateral rectus muscles were not measured because the partial volume effect obscured their contours. Patients were divided into 3 groups according to the severity of ophthalmopathy. Group A had no ophthalmopathy, group B had corneal involvement or restricted eye movement, group C had optic nerve involvement. Mean muscle thickness increased in the order A, B and C. Mean rectus muscle width was normal in group A, but dramatically increased in group C, results suggesting that swelling of the extraocular muscles is a characteristic pathologic change in dysthyroid ophthalmopathy. It is concluded that MRI is a safe and useful method of evaluating the severity of and prognosing dysthyroid ophthalmopathy. (author)

  8. Global ship accidents and ocean swell-related sea states

    Science.gov (United States)

    Zhang, Zhiwei; Li, Xiao-Ming

    2017-11-01

    With the increased frequency of shipping activities, navigation safety has become a major concern, especially when economic losses, human casualties and environmental issues are considered. As a contributing factor, the sea state plays a significant role in shipping safety. However, the types of dangerous sea states that trigger serious shipping accidents are not well understood. To address this issue, we analyzed the sea state characteristics during ship accidents that occurred in poor weather or heavy seas based on a 10-year ship accident dataset. Sea state parameters of a numerical wave model, i.e., significant wave height, mean wave period and mean wave direction, were analyzed for the selected ship accident cases. The results indicated that complex sea states with the co-occurrence of wind sea and swell conditions represent threats to sailing vessels, especially when these conditions include similar wave periods and oblique wave directions.

  9. Global ship accidents and ocean swell-related sea states

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2017-11-01

    Full Text Available With the increased frequency of shipping activities, navigation safety has become a major concern, especially when economic losses, human casualties and environmental issues are considered. As a contributing factor, the sea state plays a significant role in shipping safety. However, the types of dangerous sea states that trigger serious shipping accidents are not well understood. To address this issue, we analyzed the sea state characteristics during ship accidents that occurred in poor weather or heavy seas based on a 10-year ship accident dataset. Sea state parameters of a numerical wave model, i.e., significant wave height, mean wave period and mean wave direction, were analyzed for the selected ship accident cases. The results indicated that complex sea states with the co-occurrence of wind sea and swell conditions represent threats to sailing vessels, especially when these conditions include similar wave periods and oblique wave directions.

  10. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia

    DEFF Research Database (Denmark)

    Ryskamp, Daniel A; Jo, Andrew O; Frye, Amber M

    2014-01-01

    that were inhibited by TRPV4 antagonists and absent in TRPV4(-/-) Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca(2+) waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists...... and swelling with fast, inactivating Ca(2+) signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences...

  11. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    International Nuclear Information System (INIS)

    Meneghetti, D.

    1994-01-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement

  12. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  13. Effects of minor alloying additions on the strength and swelling behavior of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Gessel, G.R.

    1978-06-01

    A set of 32 alloys consisting of various additions of the elements Mo, W, Al, Ti, Nb, C and Si to an Fe-7.5 Cr-20 Ni alloy were made in order to investigate the effects of these solute additions on alloy swelling and strength. Both single and multiple additions were examined. The influence of various solute elements on the swelling behavior in the range 500 to 730 0 C was investigated using 4 MeV Ni ion bombardment to a dose 170 dpa. It was found that on an atomic percent basis, the elements may be arranged in order of decreasing effectiveness in reducing peak temperature swelling as follows: Ti, C, Nb, Si, and Mo. Small amounts of aluminum enhance swelling. Additions of Si, Ti, or Nb truncate the high temperature swelling regime of the ternary alloy. Mo, W, and C do not have a strong effect on the temperature dependence of swelling. The results may be interpreted in terms of the effect of point defect trapping on void growth rates, and it is suggested that the changes in peak temperature are the result of small changes in the free vacancy formation energy. A method for treating certain multiple additions is proposed. The effect of these alloying additions on short time high temperature strength properties was estimated using hot hardness measurements over the temperature range 22 to 850 0 C. On an atom percent basis Nb and Ti were most effective in conferring solid solution strengthening and Si the least effective. In the regime 22 to approximately 650 0 C, the hardness data was found to fit an equation of the form: H = H 0 + b/T; where H is the hardness, T is the temperature, and H 0 and b are constants for a given alloy. An empirical method was devised to estimate the hot hardness of alloys containing more than one solute addition

  14. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  15. EPR-spin probe studies of model polymers: separation of covalent cross-linking effects from hydrogen bonding effects in swelled Argonne Premium Coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Spears, D.R.; Sady, W.; Tucker, D.; Kispert, L.D. (University of Alabama, Tuscaloosa, AL (United States). Chemistry Dept.)

    The swelling behaviour of 2-12% cross-linked polystyrene-divinylbenzene (PSDVB) copolymers was examined by an EPR-spin probe technique. It was observed that the mechanism of spin probe inclusion was the intercalation into the matrix rather than diffusion into the pores. The disruption of van der Waals forces between adjacent aromatic rings appeared to be the primary mechanism for pyridine swelling of PSDVB. By comparing the data to results from coal swelling studies it was also inferred that the extent of hydrogen bonding in coal will have a much greater impact on its swelling properties than its covalently cross-linked character. 24 refs., 6 figs.

  16. Kinesio Taping does not decrease swelling in acute, lateral ankle sprain of athletes: a randomised trial

    Directory of Open Access Journals (Sweden)

    Guilherme S Nunes

    2015-01-01

    Full Text Available Question: Does Kinesio Taping reduce swelling in athletes who have suffered an acute, lateral ankle sprain? Design: Randomised controlled trial with concealed allocation, intention-to-treat analysis and blinded assessment. Participants: Thirty-six athletes who participated regularly in one of seven different sports modalities and suffered an acute ankle sprain. Intervention: The experimental group received Kinesio Taping application for 3 days, which was designed to treat swelling. The control group received an inert Kinesio Taping application. Outcome measures: For the comparison between groups, the swelling was measured via volumetry, perimetry, relative volumetry and two analyses of the difference in volume and perimetry between ankles of each participant. Data were collected immediately after the 3 days of intervention and at follow-up, which was 15 days post intervention. Results: At 3 days after intervention, there were no differences between groups for swelling in volumetry (MD –2 ml, 95% CI –28 to 32; perimetry (MD 0.2 cm, 95% CI –0.6 to 1.0; relative volumetry (MD 0.0 cm, 95% CI –0.1 to 0.1; and the other analyses. At day 15 follow-up, there were no significant between-group differences in outcomes. Conclusion: The application of Kinesio Taping, with the aim of stimulating the lymphatic system, is ineffective in decreasing acute swelling after an ankle sprain in athletes. Trial registration: Brazilian Registry of Clinical Trials, RBR-32sctf. [Nunes GS, Vargas VZ, Wageck B, dos Santos Hauphental DP, da Luz CM, de Noronha M (2015 Kinesio Taping does not decrease swelling in acute, lateral ankle sprain of athletes: a randomised trial. Journal of Physiotherapy 61: 28–33

  17. Numerical Simulation Of The Treatment Of Soil Swelling Using Grid Geocell Columns

    Directory of Open Access Journals (Sweden)

    Fattah Mohammed Y.

    2015-06-01

    Full Text Available In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model increase, the axial movement (swelling movement and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.

  18. The influence of fabrication procedure on the void swelling of an oxide dispersion strengthened ferritic alloy in a HVEM

    International Nuclear Information System (INIS)

    Snykers, M.; Biermans, F.; Cornelis, J.

    1982-01-01

    The influence of changes in the fabrication procedure of ferritic alloys with compositions Fe-13Cr-Ti-Mo-TiO 2 on the swelling behaviour are investigated. The fabrication procedures are: casting, powder metallurgy; milling in air and powder metallurgy; milling in argon. No difference is found for the results obtained for the materials fabricated by casting and by powder metallurgy; milling in air. Slightly different results are obtained for the material fabricated by powder metallurgy; milling in argon. This material contains argon in solution in the matrix, which causes a small shift of the peak swelling temperature and of the peak swelling helium concentration for tests carried out at 450 0 C. The overall swelling of this material is the lowest due to the small grain size and to the high density of inclusions. (orig.)

  19. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    Science.gov (United States)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    measure of clay distribution in extended samples during different physical processes such as swelling, dissolution, and sedimentation on the time scale from minutes to years [1-3]. To characterize the state of colloids that form after/during clay swelling the water self-diffusion coefficient was measured on a spatially resolved manner. Both natural clays and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. These results have a significant impact for engineering barriers for storage of spent nuclear fuel where clay erosion by low salinity water must be addressed. Presented methods were developed under the motivation of using bentonite clays as a buffer medium to build in-ground barriers for the encapsulation of radioactive waste. Nevertheless, the same approaches can be found suitable in other applications in soil and environmental science to study other types of materials as they swell, dissolve, erode, or sediment. Acknowledgements: This work has been supported by the Swedish Nuclear Fuel and Waste Management Co (SKB) and the Swedish Research Council VR. [1] N. Nestle, T. Baumann, R. Niessner, Magnetic resonance imaging in environmental science. Environ. Sci. Techn. 36 154A (2002). [2] S. V. Dvinskikh, K. Szutkowski, I. Furó. MRI profiles over a very wide concentration ranges: application to swelling of a bentonite clay. J. Magn. Reson. 198 146 (2009). [3] S. V. Dvinskikh, I. Furó. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems. Technical Report, TR-09-27, SKB (2009), www.skb.se.

  20. Swelling on the inner aspect of the lower lip

    Directory of Open Access Journals (Sweden)

    Irfan Mohamad

    2014-08-01

    Full Text Available A 14-year-old man presented with 1-month history of swelling on the inner aspect of his lower lip. The swelling was painless; however, it disturbed his speech. There was no contact bleeding but had a positive history of habitual lip biting. Examination showed a single 0.5 × 1 cm2 soft oval-shaped swelling with well-circumscribed margin (Figures 1 and 2. On palpation, the mass was non-tender and had a cystic or fluctuant sensation.

  1. Throat ache ans swelling of the neck: first symptoms of Lemierre's syndrome

    NARCIS (Netherlands)

    de Lange, J.; Ybema, A; Baas, E. M.

    2014-01-01

    Lemierre's syndrome, a thrombophlebitis of the internal jugular vein, is a rare disorder, usually caused by the microorganism Fusobacterium necrophorum. Throat ache and swelling of the neck are often the first symptoms. Without adequate treatment, Lemierre's syndrome may result in thrombosis of the

  2. HYPOOSMOTIC SPERM SWELLING TEST DOES NOT ASSESS FERTILIZING-CAPACITY OF HUMAN SPERMATOZOA

    NARCIS (Netherlands)

    JAGER, S; KREMER, J; WIJCHMAN, J

    1991-01-01

    The hypo-osmotic sperm swelling (HOSS) test was performed on semen samples of five normospermic men from couples with prolonged infertility. Previously, the men had negative results of the zona-free hamster oocyte (ZFHO) test on two different ejaculates and the wives subsequently had become pregnant

  3. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture

    Directory of Open Access Journals (Sweden)

    Simona Saba

    2014-04-01

    Full Text Available Pre-compacted elements (disks, torus of bentonite/sand mixture are candidate materials for sealing plugs of radioactive waste disposal. Choice of this material is mainly based on its swelling capacity allowing all gaps in the system to be sealed, and on its low permeability. When emplaced in the gallery, these elements will start to absorb water from the host rock and swell. Thereby, a swelling pressure will develop in the radial direction against the host rock and in the axial direction against the support structure. In this work, the swelling pressure of a small scale compacted disk of bentonite and sand was experimentally studied in both radial and axial directions. Different swelling kinetics were identified for different dry densities and along different directions. As a rule, the swelling pressure starts increasing quickly, reaches a peak value, decreases a little and finally stabilises. For some dry densities, higher peaks were observed in the radial direction than in the axial direction. The presence of peaks is related to the microstructure change and to the collapse of macro-pores. In parallel to the mechanical tests, microstructure investigation at the sample scale was conducted using microfocus X-ray computed tomography (μCT. Image observation showed a denser structure in the centre and a looser one in the border, which was also confirmed by image analysis. This structure heterogeneity in the radial direction and the occurrence of macro-pores close to the radial boundary of the sample can explain the large peaks observed in the radial swelling pressure evolution. Another interesting result is the higher anisotropy found at lower bentonite dry densities, which was also analysed by means of μCT observation of a sample at low bentonite dry density after the end of test. It was found that the macro-pores, especially those between sand grains, were not filled by swelled bentonite, which preserved the anisotropic microstructure caused by

  4. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    Science.gov (United States)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  5. Main factors determining the KNP units 5 and 6 safety level according to the PSA level 1 result

    International Nuclear Information System (INIS)

    Manchev, B.; Marinova, B.; Nenkova, B.

    2004-01-01

    The Probabilistic Safety Analysis (PSA) is a powerful tool for ascertainment of the safety level reached at nuclear power plants operation. The results of PSA determine very clearly the functions, systems, equipment or operator actions that have to be improved in order to increase the plant safety level as a whole. The present report presents the main results of the last upgraded revision of PSA level 1 of units 5 and 6 of KNPP. The objective of the report is to lay emphasis on the factors determining the result obtained, i.e. to demonstrate the scopes whose improvement leads to an increase of the safety level reached at the units power operation. In the frame of the study presented the following categories of initiating events are included: Internal initiating events; Initiating events result of internal fires; Initiating events result of seismic action; Floods. Only the reactor core is considered as a source of radioactive contamination. Only initiating events related to the reactor work on power are analyzed. Unit 5 of KNPP is accepted as a basic unit for the study. All modifications and design changes implemented up to year 2000 are taken into account. The results of PSA level 1 for units 5 and 6 of KNPP covering the risk of internal initiators are presented. The assessment of the core damage due to internal initiators is based on the analysis of 18 groups of initiating events. 932 consequences and two groups of initial events are identified, leading to core damage. As a result of the quantitative calculation, over 15000 minimal cuts for the core damage are obtained. The first 80 cuts bear over 75% of the frequency obtained, and the first 700 cuts bear over 90%. Distribution of the core damage frequency by different groups of initiators is presented in tables and diagrams. A comparison of the result obtained for the reactor core damage of KNPP units 5 and 6 with assessment obtained for similar power plants is presented. The data for different NPPs are taken

  6. Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling

    International Nuclear Information System (INIS)

    Neustroev, V.S.; Garner, F.

    2007-01-01

    Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)

  7. Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385?400$deg;C

    Science.gov (United States)

    Garner, F. A.; Porter, D. L.

    1988-07-01

    The creep and swelling of AISI 316 stainless steel have been studied at 385 to 400°C in EBR-II to doses of 130 dpa. Most creep capsules were operated at constant stress and temperature but mid-life changes in these variables were also made. This paper concentrates on the behavior of the 20% cold-worked condition but five other conditions were also studied. Swelling at ⩽ 400° C was found to lose the sensitivity to stress exhibited at higher temperatures while the creep rate was found to retain linear dependencies on both stress and swelling rate. The creep coefficients extracted at 400°C agree with those found in other experiments conducted at higher temperatures. In the temperature range of ⩽ 400° C, swelling is in the recombinationdominated regime and the swelling rate falls strongly away from the ~1%/dpa rate observed at higher temperatures. These lower rates of creep and swelling, coupled with the attainment of high damage levels without failure, encourage the use of AISI 316 in the construction of water-cooled fusion first walls operating at temperatures below 400°C.

  8. Hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends

    Science.gov (United States)

    Ahmad, Hazwani Syaza; Ismail, Hanafi; Rashid, Azura A.

    2017-07-01

    This recent work is to investigate the hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. ENR 50/NBRr blends were prepared by two-roll mills with five different loading of NBRr from 5 to 35 phr. Results indicated that the hardness of ENR 50/NBRr blends increased as recycled NBR increased due to the improvement in crosslink density of the blends. Increasing NBRr content gives ENR 50/NBRr blends better resistance towards swelling. Higher degree of crosslinking will increase the swelling resistance and reduce the penetration of toluene into the blends. The presence of polar group in ENR 50 and NBRr give better hardness properties and swelling behaviour of the ENR 50/NBRr blends compared to the NR/NBRr blends.

  9. Fission induced swelling of U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Uljoo-gun, Ulsan 689-798 (Korea, Republic of); Park, J.M. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2015-10-15

    Fission-induced swelling of U–Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U–Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U–Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U–Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U–Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  10. Postoperative Submandibular Gland Swelling following Craniotomy under General Anesthesia

    Directory of Open Access Journals (Sweden)

    Haruka Nakanishi

    2015-01-01

    Full Text Available Objective. Reporting of a rare case of postoperative submandibular gland swelling following craniotomy. Case Report. A 33-year-old male underwent resection for a brain tumor under general anesthesia. The tumor was resected via a retrosigmoid suboccipital approach and the patient was placed in a lateral position with his face down and turned to the right. Slight swelling of the right submandibular gland was observed just after the surgery. Seven hours after surgery, edematous change around the submandibular gland worsened and he required emergent reintubation due to airway compromise. The cause of submandibular gland swelling seemed to be an obstruction of the salivary duct due to surgical positioning. Conclusion. Once submandibular swelling and edematous change around the submandibular gland occur, they can worsen and compromise the air way within several hours after operation. Adequate precaution must be taken for any predisposing skull-base surgery that requires strong cervical rotation and flexion.

  11. Splenogonadal fusion: a forgotten cause of testicular swelling in ...

    African Journals Online (AJOL)

    swelling in children. Mohamad ... report describes a 25-month-old male child who presented with left .... conditions such as mumps, malaria, leukemia, trauma, and ... Splenogonadal fusion and testicular cancer: case report and review of.

  12. Mechanism of disintegrant action of polacrilin potassium: Swelling or wicking?

    Directory of Open Access Journals (Sweden)

    Mrudula Hemant Bele

    2012-02-01

    Full Text Available The effect of particle size, pH of medium, and presence of lubricant on the swelling behaviour, water uptake properties and disintegrant performance of polacrilin potassium was examined. Particle size did not affect the bulk swelling of disintegrant particles when measured as settling volume, but increased the water uptake and decreased the disintegration time of tablets containing this disintegrant. An increase in the pH of the medium from acidic to neutral increased the bulk swelling of the particles, whereas it decreased water uptake and disintegrant performance. Addition of lubricant had no effect on settling volume, but decreased the water uptake rate and the disintegrant performance significantly. It is concluded that wicking, i.e. capillary action, rather than swelling, is the major factor that contributes to the disintegration behaviour of polacrilin potassium.

  13. Clozapine- induced recurrent and transient parotid gland swelling

    African Journals Online (AJOL)

    effect of clozapine, may sometimes cause salivary gland swelling. Rarely, the ... side effect of clozapine to the attention of clinicians is to discuss its pathogenesis. Informed ... selective muscarinic M4 receptor agonist. Eur J Pharmacol 1994;.

  14. swelling characteristics and tensile properties of natural fiber rei

    African Journals Online (AJOL)

    USER

    The swelling behavior and tensile strength of natural fiber-reinforced plastic in premium motor spirit (PMS), dual ... with fibers usually of glass fiber, Kevlar and carbon have gained ... NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.2 ...

  15. Lepromatous leprosy presenting as a swelling in the neck

    Directory of Open Access Journals (Sweden)

    Dogra Devraj

    1999-01-01

    Full Text Available A 25-year-old electrician presented with gradually, asymptomatic swelling on left of the neck since 2 years. The swelling which was initially diagnosed as cervical lymphadenitis by the internist represented the enlarged left great auricular nerve. Cutaneous examination revealed an ill-defined, hypoaesthetic macule with minimal atrophy on the pinna of the left ear. The histopathology of the nerve showed a lepromatous neuritis with bacteriological index (BI of 5+.

  16. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofmann, G.L.; Ryu, Woo-Seog

    1991-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and micro structural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide dispersion fuel. (orig.)

  17. Stress-affected microstructural development and creep-swelling interrelationship

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.; Gilbert, E.R.; Flinn, J.E.; Wolfer, W.G.

    1977-05-01

    Macroscopic measurement of the deformations arising from swelling and creep during neutron irradiation indicate that both processes are dependent on the magnitude and possibly the sign of the applied stress state. Current modeling efforts also indicate that a strong interaction exists between swelling and creep through the stress state. Because the macroscopic distortions arise from the integrated microscopic strains associated with specific microstructural elements, the effect of applied stress on microstructural development has been studied

  18. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofman, G.L.; Ryu, Woo-Seog.

    1989-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and microstructural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide disperson fuel. 5 refs., 10 figs

  19. Study on the saturating and swelling behavior of an engineering bentonite barrier using a test model

    International Nuclear Information System (INIS)

    Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fujisaki, Katsutoshi

    2007-01-01

    The conceptual design of a disposal facility with additional buffer depth for radioactive waste is mainly constituted from the multi-barrier system that is constructed around the waste form so that it prevents radionuclide transfer to the biosphere. The engineered bentonite barrier is one of the elements of the multi-barrier system and is constructed with homogeneous bentonite-containing material compacted to a high density so that there are no voids. Due to the swelling characteristics of the bentonite material, the self-sealing function which is an important function of the bentonite barrier can work, but at the same time it mechanically affects the neighboring structures. Therefore, an experimental study was implemented in order to evaluate the mechanical effect of the bentonite swelling behavior throughout the construction, emplacement operations and closure re-saturation phase. In this article, the results of swelling tests to obtain the mechanical properties of the bentonite and three types of test model experiments performed for the event observations in the different saturation processes are described. As a result, the effects of a seepage pattern of ground water and a variation in the density produced by construction on the swelling pressure distribution of the bentonite barrier could be reproduced and validated. It is thought that they will be important events when ground water permeates the bentonite layer of a multiple barrier system. (author)

  20. Effect of Lime on characteristics of consolidation, strength, swelling and plasticity of fine grained soil

    Science.gov (United States)

    Estabragh, A. R.; Bordbar, A. T.; Parsaee, B.; Eskandari, Gh.

    2009-04-01

    Using Lime as an additive material to clayey soil is one of the best effective technique in building the soil structures to get some purposes such as soil stabilization, soil reinforcement and decreasing soil swelling. In this research the effect of Lime on geotechnical characteristics of a clayey soil was investigated. Soil specimen types used in this study were consisted of clayey soil as the control treatment and clay mixed with different weight fractions of lime, 4, 6, 8 & 10 percent. Some experiments such as CBR, atterburg limits, compaction, consolidation and swelling was conducted on specimens. Results revealed that adding lime to soil would change its physical and mechanical properties. Adding lime increase the compression strength and consolidation coefficient and decrease swelling potential and maximum dry density. According to the results, Atterburg experiments show that presence of lime in soil increase the liquid limit of low plasticity soil and decrease the liquid limit of high plasticity soil, but totally it decreases the plasticity index of soils. Key words: soil stabilization, lime, compression strength, swelling, atterburg limits, compaction

  1. Swelling and tribological properties of melt-mixed fluoroelastomer/nitrile rubber blends under crude oil

    Science.gov (United States)

    Tagelsir, Yasin; Li, San-Xi; Lv, Xiaoren; Wang, Shijie; Wang, Song; Osman, Zeinab

    2018-01-01

    The melt-mixed fluoroelastomer (FKM)/ nitrile rubber (NBR) blends of (90/10, 80/20, 70/30, 60/40 and 50/50) ratios with same hardness were prepared, and their swelling and tribological properties under crude oil were investigated for the purpose of developing high performance cost-effective elastomers meeting requirement of oil extraction progressive cavity pump stator. Differential scanning calorimetry confirmed compatible blend system for all blends. Field emission scanning electron microscopy (FE-SEM) showed co-continuous morphology of 200-400 nm phase size for all blends, expect FKM/NBR (90/10) which exhibited partially continuous phase morphology of 100-250 nm phase size. The results of swelling and linear wear tests under crude oil indicated that swelling percentage, coefficient of friction and specific wear rate of FKM/NBR blends were much better than NBR, with FKM/NBR (90/10 and 80/20) showing swelling percentage and specific wear rate very close to FKM. Attenuated total reflectance-Fourier transform infrared spectroscopy disclosed that fracture of macromolecular chains was the main mechanochemical effect of unswollen and swollen worn surfaces, in addition to oxygenated degradation detected with increasing NBR ratio in the blends. The fracture of macromolecular chains resulted in slight fatigue wear mechanism, which was also confirmed by FE-SEM of the worn surfaces.

  2. The role of bulk recombination in the theory of void swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.

    1978-01-01

    Bulk point defect recombination in the rate theory of void swelling is considered in two ways. First the importance of recombination in the overall void swelling problem is assessed in the light of current experimental data on the temperature dependence of the sink densities. It is found that the assumption that recombination is negligible at and above the peak swelling temperature is not generally true, and is often the reverse of this. Secondly recombination is included in the sink strengths themselves very much in the same spirit as the interactive correction terms have been for losses to other sinks. An approximate numerical procedure has been used to evaluate the resulting coupled sink strengths. Using only the corrections to the cavity sink strengths we have shown that these new terms are only significant at temperatures well in excess of the swelling peak in ST316 under HVEM irradiations and that they need not be included as a general rule in rate theory calculations. Comparisons with a mathematical, perturbation theory treatment of the same problem and with full numerical cellular model results confirm the usefulness of the prsent method. (author)

  3. Effect of grain size on void swelling in irradiated materials: A phase-field approach

    International Nuclear Information System (INIS)

    Chang, Kunok; Lee, Gyeonggeun; Kwon, Junhyun

    2014-01-01

    The progress of swelling is retarded as the average grain diameter increases in a pure copper case. Within the framework of the production bias model (PBM), their experimental results were quantitatively explained. The phase-field method has already been used to investigate the void/bubble behavior in the irradiated materials. In particular, Millett et al. already incorporated the interaction between the point defect and the grain boundary in their study. Therefore, they described the void denuded zones and void peaked zones adjacent to the grain boundaries, which are already observed in the experimental investigations. We performed the phase-field simulation in order to verify the role of the grain diameter on the void swelling in the cascade damage condition. In addition, our results will be compared with the experimental observations or the theoretical works, such as PBM. Two-dimensional phase-field simulations were performed to investigate the void swelling process in the irradiated materials. We clearly observed the void denuded and void peaked zones, which were already observed in formal experimental and computational approaches. We also found that the progress of swelling was retarded as the average grain diameter increased. The triple junctions, which are believed to be a critical factor t affecting the fracture, are the main cites for the void nucleation and growth in our simulations

  4. Modeling of bubble growth in complex fluids. Application to radiolytic swelling of nuclear bituminized waste products

    International Nuclear Information System (INIS)

    Marchal, Antoine

    2015-01-01

    The aim of this PhD thesis is to predict the swelling of bitumen barrels in which radioactive salts are mixed. The bitumen exposed to radioactivity undergoes a chemical reaction: the radiolysis. This implies a generation of dihydrogen. The created is solubilized until the concentration reaches a limit value which is called saturation. Over this limit nucleation of bubbles is observed. Then they will grow thank to the contribution of the gas generated by radiolysis and they will be submitted to Archimede's principle so that they will rise in the fluid. The swelling is the result of the competition between generation and evacuation of gas. A model has been built to describe the evolution of a bubble population. Because of it is not possible to solve it analytically, a numerical program was developed. The results show that an increase of the fluid viscosity, the gas generation or the container height lead to an increase of the swelling and that an increase of the diffusion coefficient contributes to a decrease of the swelling. In the particular case of a yield stress fluid, the behavior of the bubble population is modified and the evacuation of gas is done with several shots, at the opposite of the case of a Newtonian fluid for which a stationary evacuation is reached. (author)

  5. Simulating the swelling and deformation behaviour in soft tissues using a convective thermal analogy

    Directory of Open Access Journals (Sweden)

    Herzog Walter

    2002-12-01

    Full Text Available Abstract Background It is generally accepted that cartilage adaptation and degeneration are mechanically mediated. Investigating the swelling behaviour of cartilage is important because the stress and strain state of cartilage is associated with the swelling and deformation behaviour. It is well accepted that the swelling of soft tissues is associated with mechanical, chemical, and electrical events. Method The purpose of the present study was to implement the triphasic theory into a commercial finite element tool (ABAQUS to solve practical problems in cartilage mechanics. Because of the mathematical identity between thermal and mass diffusion processes, the triphasic model was transferred into a convective thermal diffusion process in the commercial finite element software. The problem was solved using an iterative procedure. Results The proposed approach was validated using the one-dimensional numerical solutions and the experimental results of confined compression of articular cartilage described in the literature. The time-history of the force response of a cartilage specimen in confined compression, which was subjected to swelling caused by a sudden change of saline concentration, was predicted using the proposed approach and compared with the published experimental data. Conclusion The advantage of the proposed thermal analogy technique over previous studies is that it accounts for the convective diffusion of ion concentrations and the Donnan osmotic pressure in the interstitial fluid.

  6. To evaluate the efficacy of ultrasonography compared to clinical diagnosis, radiography and histopathological findings in the diagnosis of maxillofacial swellings

    Energy Technology Data Exchange (ETDEWEB)

    Pallagatti, Shambulingappa, E-mail: dr.shambulingappa@gmail.com [Department of Oral Medicine and Radiology, M.M. College of Dental Sciences and Research, Mullana, Ambala, Haryana (India); Sheikh, Soheyl; Puri, Nidhi; Mittal, Amit; Singh, Balwinder [Department of Oral Medicine and Radiology, M.M. College of Dental Sciences and Research, Mullana, Ambala, Haryana (India)

    2012-08-15

    Aim: To evaluate the efficacy of Ultrasonography compared to clinical diagnosis, radiography and histopathological findings in the diagnosis of maxillofacial swellings. Material and methods: The study was conducted on forty-five patients with maxillofacial swellings. The clinical diagnosis, radiographic diagnosis and ultrasonographic diagnosis were made which was compared to the histopathological diagnosis. The maxillofacial swellings included cystic lesions, benign swellings, malignant swellings, lymphadenopathies and abscesses and space infections. Results: The diagnostic accuracy and contingency coefficient was evaluated considering histopathology as gold standard. The diagnostic accuracy of ultrasound was found to be 92.30% in the diagnosis of cystic lesions, 87.5% in benign tumors, 81.8% in malignant tumors, 100% in lymphadenopathies and 90% in space infections and abscesses. The contingency coefficient of 0.934 was obtained when ultrasonography was compared to the histopathology, which was highly significant. Similar significant results were obtained comparing ultrasonography with clinical diagnosis (0.895) and radiographic diagnosis (0.889). Conclusion: Ultrasonography provides accurate imaging of the head and neck region and provides information about the nature of the lesion, its extent, and relationship with the surrounding structures. As the conventional and digital radiography enable the diagnosis of the presence of the disease, but do not give any indication of its nature. So, together with clinical and histopathological examinations, real time ultrasound imaging works out as a valuable adjunct in the diagnosis of orofacial swellings.

  7. The swelling behavior of Ti-stabilized austenitic steels used as structural materials of fissile subassemblies in Phenix

    International Nuclear Information System (INIS)

    Seran, J.L.; Touron, H.; Maillard, A.; Dubuisson, P.; Hugot, J.P.; Blanchard, P.; Pelletier, M.

    1988-06-01

    In this paper we analyse the main results obained on pressurized tubes, fissile pins and hexagonal cans, allowing us to characterize the swelling and irradiation creep resistance of Ti-Mod. austenitic steels, used as reference materials for the fast breeder subassembly. After having compared the global behavior of 316Ti and 15-15Ti steels irradiated as fissile pins we examine in more detail the leading variables acting on swelling and irradiation creep resistance of CW 316Ti clads and wrappers. The irradiation creep associated to the principal mechanical stresses (sodium pressure for the wrapper, fission gas pressure for the clad) explain the plastic deformation observed on the wrappers not on the clads. Fissile pins swell more and the scatter of the results is larger than for wrappers or samples. It does not seem possible to invoque flux or primary stress differences to explain this fact. On the opposite the thermal gradient in the thickness of the components appears to be a significant parameter. In fissile pins it gives rise to a swelling gradient observed by electron microscopy that must be taken into account when comparing to the wrapper. As compared to CW 316Ti, CW 15-15Ti is an important improvement since its incubation dose for swelling is far beyond 100 dpa. Further more since it swelling temperature dependence does not seem to be as important as for 316Ti, it should be less sensitive to the effect of thermal gradients

  8. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    Science.gov (United States)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  9. Exercise-Induced Changes in Caveolin-1, Depletion of Mitochondrial Cholesterol, and the Inhibition of Mitochondrial Swelling in Rat Skeletal Muscle but Not in the Liver

    Directory of Open Access Journals (Sweden)

    Damian Jozef Flis

    2016-01-01

    Full Text Available The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1 plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.

  10. Third cranial nerve palsy (ptosis, diplopia accompanied by orbital swelling: case report of unusual clinical presentation of giant cell arteritis associated with polymyalgia rheumatica

    Directory of Open Access Journals (Sweden)

    Prassede Bravi

    2012-12-01

    Full Text Available IntroductionGiant cell arteritis (GCA is the most common systemic vasculitis in older individuals, characterized by granulomatosus inflammation of the wall of large and medium-sized arteries. The wide spectrum of arterial sites involved leads to ischemia of different organs resulting in a wide range of clinical signs and symptoms. Temporal artery is commonly involved (temporal arteritis. Unusual patterns of presentation, such as extraocular motility disorders and orbital swelling, may be early and transient manifestations of GCA and precede the permanent visual loss due to ischemic optic neuropathy.Case reportWe describe a patient with uncommon manifestations of GCA consisting of transient recurrent diplopia, ptosis, orbital swelling together with more typical clinical features of the disease such as musculoskeletal manifestations (polymyalgia rheumatica and facial pain: all signs and symptoms promptly resolved under corticosteroid therapy without relapse.Conclusions A high level of suspicion of GCA in individuals over the age of 50 years is needed to prevent the development of severe complications. Clinicians should be aware of uncommon manifestations of the disease such as head–neck swelling and ophthalmoplegia: management guidelines have stated that prompt administration of adequate dose of corticosteroids as soon as ocular manifestations of GCA are noted may almost totally prevent blindness.

  11. Influences of neutralization of superabsorbent hydrogel from hydroxyethyl cellulose on water swelling capacities

    Science.gov (United States)

    Adair, Ajaman; Klinpituksa, Pairote; Kaesaman, Azizon

    2017-08-01

    In this research, superabsorbent hydrogels were synthesized by graft copolymerization of hydroxyethyl cellulose (HEC) and polyacrylamide (PAM) under the initiation of potassium persulfate (KPS). The polymer networks were constructed using N,N'-methylenebisacrylamide (MBA), and the reaction was performed in an aqueous solution. The extent of grafting products was evaluated form grafting efficiency (%GE) and percentage of add-ons at HEC/AM ratios of 1: 10. The water swelling capacities, in terms of swelling capacity and weight loss, of resultant superabsorbent polymers (SAPs) after solvent extraction were determined for swelling behaviors. The result showed that the SAP had poor water absorption of approximately up to 23 g/g. To enhance swelling capacity of SAPs, an alkaline hydrolysis was done by using two types of alkaline bases, i.e., 2 M NaOH and 2 M KOH solution. The obtained treatment SAPs were neutralized by washing with distilled water and 0.5 M HCl until the liquors pH was nearly 7. They were found that the treatment SAPs showed the highest water absorption up to 317 g/g. Influences of various fluids pH values ranging between 4 and 10, on water swelling capacities of SAPs were also investigated. Under optimal pH value, the highest water absorptions of SAP was 382 g/g. To confirm the grafting reaction of PAM onto HEC backbone, FT-IR analysis was used. The results revealed absorption bands of the HEC backbone and new absorption bands from the grafted copolymer. Furthermore, the FT-IR spectrum was proved that washing with distilled water can alter the chemical functional group of SAPs.

  12. Bilateral optic nerve swelling after thyroidectomy followed by a course of radioiodine therapy

    Directory of Open Access Journals (Sweden)

    Ioyleva E.E.

    2018-03-01

    Full Text Available The most common cancer of the endocrine system is thyroid cancer, representing 1.0–1.5 % all newly diagnosed cases of cancer. According to the cancer society of Russia, the thyroid cancer in children is much rarer than in adults. Thyroid cancer in children and adolescents is characterized by an adverse clinical course and a high risk of developing metastases in the lymph nodes. The main method of treatment for pediatric thyroid cancer is total thyroidectomy with central neck lymph node dissection followed by radioactive iodine therapy. In foreign and domestic literature, complications of the organ of vision, namely, changes of the optic disc, after surgical treatment for thyroid cancer are poorly understood. The risk of transient hypocalcemia and hypothyroidism increases after thyroidectomy. In the literature, there are two reported cases of the optic nerve swelling combined with hypoparathyroidism and hypocalcemia. While hypocalcemia intracranial hypertension and swelling of the optic nerves are often recorded. In this article, the authors present their own clinical observation of a 13-year-old patient after thyroidectomy and radioactive iodine therapy with detailed analysis of the clinical data and study results. According to the survey of the patient, bilateral swelling of the optic disc was revealed, which could occur due to hypothyroid state. Objective: to identify the cause of the development of bilateral optic nerve swelling in a patient after thyroidectomy and treatment course with radioactive iodine.

  13. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.

    Science.gov (United States)

    Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L

    2012-10-23

    One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.

  14. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck

    Directory of Open Access Journals (Sweden)

    Allan Joseph Bright

    2016-05-01

    Full Text Available Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI. At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over one year following a series of large swells in March 2008 that fragmented 30 to 93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01 with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006.

  15. The comparison of manual lymph drainage and ultrasound therapy on the leg swelling caused by wearing high heels.

    Science.gov (United States)

    Lee, Dong-Yeop; Han, Ji-Su; Jang, Eun-Ji; Seo, Dong-Kwon; Hong, Ji-Heon; Lee, Sang-Sook; Lee, Dong-Geol; Yu Lee, Jae-Ho

    2014-01-01

    One of the major symptoms when women are wearing high heels for a long time is leg swelling. The purpose of this study was to compare the effect of manual lymph drainage with ultrasound therapy. The forty-five healthy women of twenties were participated in this study and divided randomly into three groups; manual lymph drainage group (n=15), ultrasound therapy group (n=15) and control group (n=15). Swelling was measured before wearing the high heels (10 cm-height), after one-hour of wearing the high heels, wearing the high heels of one-hour after the intervention of 15 minutes. Also swelling was calculated by using a tape measure, volumeter and body composition analyzer. Statistical analysis of the comparison between the three groups was performed by one-way ANOVA. Also comparison to the mean value in swelling according to the time was performed by repeated measure ANOVA. As the result of this study, a significant changes have emerged within each of manual lymph drainage, ultrasound therapy and control group (p 0.05). But the mean value of manual lymph drainage group showed the tendency of fast recovering before causing swelling. Therefore, we consider that the clinical treatment of manual lymph drainage and ongoing studies will be made since manual lymph drainage is very effective in releasing the leg swelling caused by wearing high heels and standing for a long time at work.

  16. Carrageenan-based semi-IPN nanocomposite hydrogels: Swelling kinetic and slow release of sequestrene Fe 138 fertilizer

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Bahrami

    2016-09-01

    Full Text Available Nanocomposite hydrogels based on kappa-carrageenan were synthesized by incorporating natural sodium montmorillonite (Cloisite nanoclay. Acrylamide (AAm and methylenebisacrylamide (MBA were used as a monomer and a crosslinker, respectively. Effects of reaction variables on the swelling kinetics were studied. The results revealed that the rate of swelling for nanocomposites with high content of MBA was higher than those of nanocomposites consisting of low content of MBA. Similar to the effect of MBA, the rate of swelling enhanced as the carrageenan content was decreased. The influence of clay content on swelling rate was not remarkable. The experimental swelling data were evaluated by pseudo-first-order and pseudo-second-order kinetic models. The swelling data described well by pseudo-second-order kinetic model. Sequestrene Fe 138 (Sq as an agrochemical was loaded into nanocomposites and releasing of this active agent from nanocomposites was studied. The clay-free hydrogel released the whole loaded Sq; whereas the presence of clay restricted the release of Sq.

  17. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck)

    Science.gov (United States)

    Bright, Allan J.; Rogers, Caroline S.; Brandt, Marilyn E.; Muller, Erinn; Smith, Tyler B.

    2016-01-01

    Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI). At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over 1 year following a series of large swells in March 2008 that fragmented 30–93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01) with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006).

  18. The numerical simulation on swelling factor and extraction rate of a tight crude oil and SC-CO2 system

    Science.gov (United States)

    Zou, Hongjun; Gong, Houjian; Li, Yajun; Dong, Mingzhe

    2018-03-01

    A method was established to study swelling and extraction between CO2 and crude oil, and the influences of pressure, temperature and molecular weight were investigated. Firstly, laboratory analysis was conducted to determine the pseudo-component and other parameters of the crude oil. Then swelling and extraction of the crude oil and SC-CO2 system were calculated by computer simulation. The results show that the pressure and temperature have little influence on the swelling and extraction between CO2 and crude oil when the mole fraction of CO2 is lower. A higher pressure and temperature is more beneficial to the interaction of CO2 and crude oil, while the swelling and extraction will not be obvious when the system is miscible. And the smaller the molecular weight of the oil is, the larger the maximum value of the swelling factor of CO2 and crude oil changes. The study of swelling and extraction plays an important role in the oilfield stimulation.

  19. Radioactive contamination level of vehicles resulted from transporting fine rare-earth minerals by rail

    International Nuclear Information System (INIS)

    Han Kaichun; Yu Boyong; Gao Shengwei

    1997-01-01

    This paper presents monitoring results of radioactive contamination level of steel open wagon surface resulted from transporting fine rare-earth minerals. Under promising transport conditions (the packaging consists of two layers of plastic bags and two layers of plastic net sacks, each package contains 50 kg of minerals, each vehicle carries 60 t), the surface radioactivity (total α and total β) of 16 vehicles on two lines from Baotou to Wujiachuan (924 km) and from Baotou to Sankeshu (2236 km) was measured before loading, after unloading and washing, using α and β surface contamination detector. The results showed that the radioactive contamination level of the vehicle surface after unloading appeared significantly different. The contamination level of vehicle bases was higher than that of both sides, long distance vehicles was higher than that of short distance vehicles. The radioactive contamination level of vehicles surface after washing was below the standard limits, these vehicles can be used for ordinary goods transport

  20. The swelling of clays and its effects on underground storage works; Le Gonflement des argiles et ses effets sur les ouvrages souterrains de stockage

    Energy Technology Data Exchange (ETDEWEB)

    Gaombalet, J

    2004-03-15

    The aim of this work is to study the swelling of clays and more generally the clayey media in relation to storage. Different types of clays, natural or reworked, have been studied in a rheological point of view, with the aim to result in behavior laws allowing to reproduce some identified phenomena. The first part of this work is a presentation of the concept of geological underground storage. The second part deals with clays. They are studied at a microscopic level and their macroscopic behavior are presented too. In the third part, the equations of the couplings: mechanics/transport in the porous media in general and applied to clays are formulated. Three types of clays have particularly been studied: a stiff clay, a plastic clay and a reworked clay. The following part deals with the swelling of clays. The analysis carried out through a bibliographical study has led us to propose a behavior law for the swelling-retirement. This part concerns essentially the mechanics. The behavior model, which integrates the swelling, involves the concentration of the ions present in solution in the interstitial water. Concerning the transport, of water or ions, the research of coherent models have led us to revise some models described in the second part and concerning the transport of solutions in porous media. The last part concerns the computerized simulation. It begins by a brief description of the computer code. We show how the equations described in the work are dealt with in the computer code. At last, some storage applications (computerized simulation) are given. (O.M.)

  1. Internal structure and swelling behaviour of in silico microgel particles

    Science.gov (United States)

    Rovigatti, Lorenzo; Gnan, Nicoletta; Zaccarelli, Emanuela

    2018-01-01

    Microgels are soft colloids that, by virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the ‘in-silico’ synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study.

  2. French Polynesia Hotspot Swells Explained By Dynamic Topography

    Science.gov (United States)

    Adam, C.; Yoshida, M.; Isse, T.; Suetsugu, D.; Shiobara, H.; Sugioka, H.; Kanazawa, T.; Fukao, Y.; Barruol, G.

    2007-12-01

    Situated on the South Pacific Superswell, French Polynesia is a region characterized by numerous geophysical anomalies among which a high volcanism concentration. Seven hotspots are required to explain the observed chains, volcanism ages and geochemical trends. Many open questions still remain on the origin of these hotspot chains: are they created by passive uplift of magma due to discontinuities in the structure of the lithosphere or by the ascent of mantle plumes? In this case, at which depth do these plumes initiate in the mantle? Many geophysical observations (bathymetry, gravity, magnetism, volcanism ages..) are used to understand the unique phenomenon occurring on this region. The most useful information may come from tomography models since they provide a 3D view of the mantle. Until recently, the tomography models over the region were quite inaccurate because of the sparse location of the seismic stations. The deployment of two new seismic stations networks (BBOBS and temporary island stations) has lately remedied this failing. The resulting tomography model obtained through the inversion of Rayleigh waves provides the most accurate view of the shallowest part of the mantle (depths ≤ 240 km) beneath French Polynesia. Indeed, for the first time the accuracy of a tomography model is good enough to provide information about plume phenomenology in this complex region. In order to quantify the plumes effect on the seafloor, we compute the dynamic topography through an instantaneous flow model. The general trend of the observed depths anomalies (highs and lows) is well recovered. For example the amplitude, location and extension of the swells associated with the Society, Macdonald and Rarotonga are accurately described by the dynamic model. We also find that dynamic uplift is associated with the Tuamotu archipelago which means that a part of the observed swell is due to the present day action of plumes. Since no volcanism ages are available over this chain

  3. Pengaruh Penambahan Kapur terhadap Kekuatan dan Pengembangan (Swelling) pada Tanah Lempung Ekspansif Bojonegoro

    OpenAIRE

    Ranggaesa, Riota Abeng; Zaika, Yulvi; Suroso

    2017-01-01

    Expansive clay soil has a low bearing capacity on condition that the high water level, the nature and development of shrinkage (swelling) were large and high plasticity. One method of stabilization of the soil used in an attempt to improve the quality of the soil is poor, among others, chemical stabilization. Chemical stabilization is done by adding stabilizing agents on the basis of land that will be upgraded. Stabilizing agents used in this study is lime (lime). In this study, the object be...

  4. Do US Ambient Air Lead Levels Have a Significant Impact on Childhood Blood Lead Levels: Results of a National Study

    Directory of Open Access Journals (Sweden)

    LuAnn L. Brink

    2013-01-01

    Full Text Available Introduction. Although lead paint and leaded gasoline have not been used in the US for thirty years, thousands of US children continue to have blood lead levels (BLLs of concern. Methods. We investigated the potential association of modeled air lead levels and BLLs ≥ 10 μg/dL using a large CDC database with BLLs on children aged 0–3 years. Percent of children with BLLs ≥ 10 μg/dL (2000–2007 by county and proportion of pre-50 housing and SES variables were merged with the US EPA's National Air Toxics Assessment (NATA modeled air lead data. Results. The proportion with BLL ≥ 10 μg/dL was 1.24% in the highest air lead counties, and the proportion with BLL ≥ 10 μg/dL was 0.36% in the lowest air lead counties, resulting in a crude prevalence ratio of 3.4. Further analysis using multivariate negative binomial regression revealed that NATA lead was a significant predictor of % BLL ≥ 10 μg/dL after controlling for percent pre-l950 housing, percent rural, and percent black. A geospatial regression revealed that air lead, percent older housing, and poverty were all significant predictors of % BLL ≥ 10 μg/dL. Conclusions. More emphasis should be given to potential sources of ambient air lead near residential areas.

  5. Simplified modeling of HM behavior of swelling clays for nuclear waste disposal buffers

    International Nuclear Information System (INIS)

    Hoxha, Dashnor; Belayachi, Naima; Do, Duc-Phi; Poutrel, Adrien; Wendling, Jacques

    2010-01-01

    Document available in extended abstract form only. The swelling clays are extensively studied these last decades in relation with many industrial applications: foundations in civil engineering, sealing of waste disposals., etc. Especially in the case of waste disposals buffers the swelling pressure and its kinetics are of great importance. In the research programme of ANDRA (French National Radioactive Waste Management Agency), a mixing of bentonite MX80 with 30% of sands has been chosen as a buffering material. The modelling of behaviour of this material has been object of several works and several sophisticated models have been proposed. However as the practice of nuclear waste disposals proves, the needs for robust and simple models, able to describe the most important features of buffers, are yet to be meet by engineers and researches. This paper aims at a simplified model for the buffers behaviour based upon an extension of previous works and laboratory results. As discussed and proposed by many authors modeling of swelling clays behavior needs to consider both crystalline and osmotic swelling. While molecular dynamics could be used to understand the relation between the structure of clay minerals and its swelling properties a multiscale approach counting for chemical and hydro-mechanical couplings in various scale is revealed to give insights on the mechanisms governing clayey soil swelling. However in many industrial application large scale problems would be considered for which macroscopic and robust models should be used. From macroscopic point of view, basically two alternative approaches are used: effective stress approach and so called independent stress state variables. For an isotropic material, the volumetric strain of unsaturated media predicted by BBM model, could be written as a function of: the mean stress of applied mechanical stress, the air pressure, the suction (or pore pressure where the media is fully saturated), the drained bulk

  6. Experimental study of swelling of irradiated solid methane during annealing

    International Nuclear Information System (INIS)

    Shabalin, E.; Fedorov, A.; Kulagin, E.; Kulikov, S.; Melikhov, V.; Shabalin, D.

    2008-01-01

    Solid methane, notwithstanding its poor radiation properties, is still widely in use at pulsed neutron sources. One of the specific problems is radiolytic hydrogen gas pressure on the walls of a methane chamber during annealing of methane. Results of experimental study of this phenomenon under fast neutron irradiation with the help of a specially made low temperature irradiation rig at the IBR-2 pulsed reactor are presented. Peak pressure on the wall of the experimental capsule during heating of a sample irradiated at 23-35 K appeared to have a maximum of 27 bar at the absorbed dose 20 MGy, and then falls down with higher doses. Pressure always reached its peak value within the temperature range 72-79 K. Generally, three phases of methane swelling during heating can be distinguished, each characterized by proper rate and intensity. Results of this study were accounted for in design of the solid methane moderator of the second target station of the ISIS facility (England)

  7. Experimental Results on the Level Crossing Intervals of the Phase of Sine Wave Plus Noise

    Science.gov (United States)

    Youssef, Neji; Munakata, Tsutomu; Mimaki, Tadashi

    1993-03-01

    Experimental study was made on the level crossing intervals of a phase process of a sine wave plus narrow-band Gaussian noise. Since successive level crossings of phase do not necessarily occur alternately in the upward and downward direction due to the phase jump beyond 2π, the usual definitions of the probability densities of the level crossing intervals for continuous random processes are not applicable in the case of the phase process. Therefore, the probability densities of level crossing intervals of phase process are newly defined. Measurements of these densities were performed for noise having lowpass spectra of Gaussian and 7th order Butterworth types. Results are given for various values of the signal-to-noise power ratio and of the crossing level, and compared with corresponding approximation developed under the assumption of quasi-independence. The validity of the assumption depends on the spectrum shape of the noise.

  8. Factors Affecting Result in Chinese Proficiency Test (HSK Level 6: Reading Section and Preparation Strategies

    Directory of Open Access Journals (Sweden)

    Sri Haryanti

    2013-11-01

    Full Text Available Chinese Proficiency Test (HSK is an internationally standardized exam which tests and rates Chinese language proficiency. The highest level in this test is level 6. The writing part of the test consists of 3 (three parts, namely, (1 listening, (2 reading, (3 writing. Furthermore, the reading part is made of 4 components. Level 6 of this test implies a high degree of difficulty. This paper specifically looked on how to prepare effectively for participants to be able to work on the reading part in order to achieve best result. This article used the methods of literature review and observational study as well as field research and would also incorporate the author’s personal experience in taking the test into recommending strategies for doing the reading part in a level 6 HSK test. Finally, research suggested several techniques and tips that might assist participants in achieving maximum scores in handling the reading part of level 6 HSK test.

  9. Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2017-11-01

    We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.

  10. Scrotal Swelling as a Complication of Hydrochlorothiazide Induced Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Ivan Nikiforov

    2015-01-01

    Full Text Available Background. Scrotal swelling is a rare complication of acute pancreatitis with few reported cases in the literature. In this case report, we present a 59-year-old male with hydrochlorothiazide induced pancreatitis who developed scrotal swelling. Case Presentation. A 59-year-old male presented to the emergency department with sharp epigastric abdominal pain that radiated to the back and chest. On physical examination, he had abdominal tenderness and distention with hypoactive bowel sounds. Computed tomography (CT scan of the abdomen showed acute pancreatitis. The patient’s condition deteriorated and he was admitted to the intensive care unit (ICU. After he improved and was transferred out of the ICU, the patient developed swelling of the scrotum and penis. Ultrasound (US of the scrotum showed large hydrocele bilaterally with no varicoceles or testicular masses. Good blood flow was observed for both testicles. The swelling diminished over the next eight days with the addition of Lasix and the patient was discharged home in stable condition. Conclusion. Scrotal swelling is a rare complication of acute pancreatitis. It usually resolves spontaneously with conservative medical management such as diuretics and elevation of the legs.

  11. Molecular accessibility in solvent swelled coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1994-04-01

    The conversion of coal by an economically feasible catalytic method requires the catalyst to diffuse into the coal sample so that hydrogenation catalysis can occur from within as well as the normal surface catalysis. Thus an estimate of the size, shape, and reactivity, of the pores in the coal before and after the swelling with different solvents is needed so that an optimum sized catalyst will be used. This study characterizes the accessible area found in Argonne Premium Coal Samples (APCS) using a EPR spin probe technique. The properties deduced in this manner correlate well with the findings deduced from SANS, NMR, SEM, SAXS and light scattering measurements. The use of nitroxide spin probes with swelling solvents is a simple way in which to gain an understanding of the pore structure of coals, how it changes in the presence of swelling solvents and the chemistry that occurs at the pore wall. Hydrogen bonding sites occur primarily in low-rank coals and vary in reactive strength as rank is varied. Unswelled coals contain small, spherical pores which disappear when coal is swelled in the presence of polar solvents. Swelling studies of polystyrene-divinyl benzene copolymers implied that coal is polymeric, contains significant quantities of covalent cross-links and the covalent cross-link density increases with rank.

  12. Overview of the swelling behavior of 316 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.

    1985-01-01

    The austenitic stainless steel designated as A1S1 316 is currently being used as the major structural material for fast breeder reactors in the United States, Britain and France. Efforts are now underway in each country to optimize the swelling resistance of this alloy for further application to both fission and fusion power generating devices. The optimization effort requires knowledge of the factors which control swelling in order that appropriate compositional and fabricational modifications can be made to the alloy specification. The swelling data for this alloy are reviewed and the conclusion is reached that optimization efforts must focus on the incubation or transient regime of swelling rather than the post-transient or ''steady-state'' regime. Attempts to reduce the swelling of this steel by solute modification have focused on elements such as phosphorous and titanium. It is shown that the action of these solutes is manifested only in their ability to extend the transient regime. It is also shown that irradiation at high helium/dpa ratios does not appear to change the conclusions of this study. Another important conclusion is that small differences in reactor environmental history can have a larger influence than either helium or solutes

  13. Overview of the swelling behavior of 316 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.

    1984-01-01

    The austenitic stainless steel designated as AISI 316 is currently being used as the major structural material for fast breeder reactors in the United States, Britain and France. Efforts are now underway in each country to optimize the swelling resistance of this alloy for further application to both fission and fusion power generating devices. The optimization effort requires knowledge of the factors which control swelling in order that appropriate compositional and fabricational modifications can be made to the alloy specification. The swelling data for this alloy are reviewed and the conclusion is reached that optimization efforts must focus on the incubation or transient regime of swelling rather than the post-transient or ''steady-state'' regime. Attempts to reduce the swelling of this steel by solute modification have focused on elements such as phosphorus and titanium. It is shown that the action of these solutes is manifested only in their ability to extend the transient regime. It is also shown that irradiation at high helium/dpa ratios does not appear to change the conclusions of this study. Another important conclusion is that small differences in reactor environmental history can have a larger influence than either helium or solutes. 31 refs., 27 figs., 1 tab

  14. Association of serum prostate-specific antigen levels with the results of the prostate needle biopsy.

    Science.gov (United States)

    Janbaziroudsari, Hamid; Mirzaei, Arezoo; Maleki, Nasrollah

    2016-09-01

    To investigate the relationship of serum prostate-specific antigen (PSA) levels with outcomes of prostate needle biopsy in men 50 or more years old. We measured serum PSA levels in 1472 healthy men 50 or more years old. Men who had serum PSA values 4.0ng/mL or higher underwent digital rectal examination. If there were either an elevated PSA level (≥4ng/mL) or abnormal digital rectal examination, a transrectal ultrasound-guided prostate biopsy was performed. The mean serum total PSA level was 13.73±11.44ng/mL, and the mean serum free PSA level was 4.99±0.97ng/mL. Of the 260 men who had serum total PSA levels of≥4ng/mL, 139 underwent biopsy. Of these 139 men, 45 (32.4%) had prostate cancer. Benign prostatic hyperplasia with or without prostatitis was diagnosed in 94 patients (67.6%). There was no significant correlation between age and histologic results of prostate needle biopsy (P-value=0.469). The serum free PSA showed no significant correlation with histologic results of prostate needle biopsy, whereas the serum total PSA level had a significant correlation in patients with adenocarcinoma compared with other diagnosis. The overall frequency of detection of prostate adenocarcinoma was 32.4%. This study revealed that no level of PSA was associated with a 100% positive predictive value and negative biopsy can occur virtually at any PSA level. There is a need to create awareness among the general population and health professionals for an early diagnosis of this common form of cancer. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  15. Correlation of results of skeleton gammagraphy with CEA and TPA levels in mammary gland carcinoma

    International Nuclear Information System (INIS)

    Makaiova, I.; Kausitz, J.; Hupka, S.; Michalikova, B.; Vivodova, M.; Simko, S.; Urbanova, M.; Bohunicky, L.

    1986-01-01

    A comparison is submitted of the results obtained with whole-body skeleton gammagraphy using 99m Tc-MDP and levels of carcinoembryonic antigen and tissue polypeptide antigen in 147 patients with breast cancer. In 123 cases (83.7%) the results agreed, i.e., in 72 patients the negative results and in 51 patients the positive results of skeleton gammagraphy with at least one of the above tumor markers. In other 15 cases (10.2%) the positivity of the tumor marker was confirmed by extraosseous tumor manifestations. The reasons are discussed of possible disagreement in the results and a preliminary thought is proposed on the use of assessment of tumor antigen levels in combination with skeleton gammagraphy and other imaging methods, in monitoring patients with breast cancer. (author)

  16. Experimental Analysis on Shrinkage and Swelling in Ordinary Concrete

    Directory of Open Access Journals (Sweden)

    Barbara Kucharczyková

    2017-01-01

    Full Text Available The paper deals with the experimental determination of shrinkage development during concrete ageing. Three concrete mixtures were made. They differed in the amount of cement in the fresh mixture, 300, 350, and 400 kg/m3. In order to determine the influence of plasticiser on the progress of volume changes, another three concrete mixtures were prepared with plasticiser in the amount of 0.25% by cement mass. Measurements were performed with the goal of observing the influence of cement and plasticiser content on the overall development of volume changes in the concrete. Changes in length and mass losses of the concrete during ageing were measured simultaneously. The continuous measurement of concrete mass losses caused by drying of the specimen’s surface proved useful during the interpretation of results obtained from the concrete shrinkage measurement. During the first 24 hours of ageing, all the concrete mixtures exhibited swelling. Its magnitude and progress were influenced by cement, water, and plasticiser content. However, a loss of mass caused by water evaporation from the surface of the specimens was also recorded in this stage. The measured progress of shrinkage corresponded well to the progress of mass loss.

  17. Hereditary angioedema: a bradykinin-mediated swelling disorder.

    Science.gov (United States)

    Björkqvist, Jenny; Sala-Cunill, Anna; Renné, Thomas

    2013-03-01

    Edema is tissue swelling and is a common symptom in a variety of diseases. Edema form due to accumulation of fluids, either through reduced drainage or increased vascular permeability. There are multiple vascular signalling pathways that regulate vessel permeability. An important mediator that increases vascular leak is the peptide hormone bradykinin, which is the principal agent in the swelling disorder hereditary angioedema. The disease is autosomal dominant inherited and presents clinically with recurrent episodes of acute swelling that can be life-threatening involving the skin, the oropharyngeal, laryngeal, and gastrointestinal mucosa. Three different types of hereditary angiodema exist in patients. The review summarises current knowledge on the pathophysiology of hereditary angiodema and focuses on recent experimental and pharmacological findings that have led to a better understanding and new treatments for the disease.

  18. Effect of temperature on swelling and bubble growth in metals

    International Nuclear Information System (INIS)

    Tiwari, G.P.

    1982-01-01

    The effect of temperature on the swelling of copper-boron alloys has been studied in the temperature range of 900-1040deg C. It is observed that beyond 1030deg C, swelling as well as the rate of bubble growth decrease. Similar characteristics of the bubble growth have been observed in aluminium-boron alloys also. At 590deg C, the bubble growth in aluminium-boron alloys is faster as compared to that at 640deg C. It thus appears that the swelling as well as the growth of the gas bubble are retarded at temperatures near the melting point in metals. Possible reasons for this kind of behaviour are discussed. (author)

  19. Spinal-cord swelling in acute multiple sclerosis

    International Nuclear Information System (INIS)

    Kikuchi, Seiji; Tashiro, Kunio; Naganuma, Mutsuo; Hida, Kazutoshi; Iwasaki, Yoshinobu; Abe, Hiroshi; Miyasaka, Kazuo

    1986-01-01

    Despite the frequent involvement of the spinal cord by multiple sclerosis, reports concerning neuroradiological findings regarding these lesions have been limited; most of them have demonstrated a normal or small spinal cord. Two cases of acute paraparesis showed evidence of spinal-cord swelling on myelography and CT myelography, initially suggesting the diagnosis of an intramedullary tumor. Spinal-cord swelling was demonstrated more clearly on CT myelography than on conventional myelography. The diagnosis of multiple sclerosis was made with the aid of the CSF findings, the clinical course, and the contracting-cord sign. The ''contracting-cord sign'' means the diminution of the spinal-cord diameter in the chronic stage. Since acute multiple sclerosis may produce spinal-cord swelling simulating a tumor, careful investigations are necessary to avoid unwarranted surgical interventions. (author)

  20. The results of transrectal prostate biopsy in patients with low levels of prostate specific antigen

    Directory of Open Access Journals (Sweden)

    Ahmet Ali Sancaktutar

    2012-06-01

    Full Text Available Objectives: The aim of this study is to evaluate the resultsof prostate biopsy of patients who had the prostatespecificantigen (PSA levels below 4 ng/ml.Material and methods: The medical records of 63 patientswho underwent transrectal prostate biopsy, betweenJanuary 2005 and December 2011, due to suspicionof prostate cancer with the PSA levels under 4 ng/mlwere retrospectively reviewed.Results: Transrectal Prostate biopsy was performed to63 patients. Prostate cancer was detected in 12 (19%patients. The mean value of PSA was 2.5 ng/ml. TheGleason score of Prostate cancer patients was 6,8 (5-7and the number of positive cores were 3.Conclusions: The rate of prostate cancer was found as19% in patients with levels of PSA under 4 ng/ml and thisratio is compatible with the results of previous reports.

  1. Updating the results of glacier contribution to the sea level change

    Science.gov (United States)

    Dyurgerov, Mark B.; Abdalati, Waleed Dr. (Technical Monitor)

    2005-01-01

    I have completed an update of global glacier volume change. All data of glacier annual mass balances, surface area over the period 1945/46 till 2004, outside the Greenland and Antarctic ice sheets were included in this update. As the result global glacier volume change have been calculated, also in terms of glacier contribution to sea level change. These results were sent to Working Group 1 and 2 of IPCC-4 as the basis for modeling of sea level towards the end of 2100. In this study I have concentrated on studying glacier systems of different scales, from primary (e.g. Devon ice cap) to regional (e.g. Canadian Arctic), continental scale (e,g., entire Arctic), and global (e.g., change in glacier volume and contribution to sea level rise).

  2. Comparison of specimen adequacy in fine needle aspiration cytology performed with different gauge needles in palpable external swellings

    International Nuclear Information System (INIS)

    Sarfraz, T.; Bashir, S.; Tariq, H.; Malik, T.M.

    2013-01-01

    Background: Fine Needle Aspiration Cytology (FNAC) of external swellings may yield different specimen adequacy depending on different gauge needles used for aspiration. Objective: To compare the specimen adequacy aspirated by various gauge (21 and 22) needles in external palpable swellings of lymph nodes, thyroid gland, salivary glands, breast and soft tissue. Study Design: Comparative cross sectional study. Duration: Six months (1st Jan 2012 to 30th June 2012). Setting: Histopathology/Cytology department Combined Military Hospital Peshawar (Pakistan). Methodology: This was a prospective study of 200 cases in which FNAC was performed with either 21 or 22 gauge needles (100 cases with 21 gauge and 100 with 22 gauge needles). Equal number of aspirations were done with 21 and 22 gauge needles from the swellings of thyroid gland, lymph nodes, salivary glands, breast and soft tissue. Results were analyzed for specimen adequacy by using SPSS 17. Results: A total number of 200 cases were recruited in this study, out of which 100 were aspirated with 21 gauge needles and 100 with 22 gauge needles. Specimen adequacy in swellings of thyroid, lymph nodes and salivary glands was better with 22 gauge amounting 90%, 80% and 80% respectively, as compared to yield with 21 gauge needles which was 85%, 70% and 60% respectively. On the other hand in swellings of breast and soft tissue, the specimen adequacy was better with 21 gauge needles giving 98% and 90 % adequate yield respectively as compared to 22 gauge needles which was 70% and 40 % respectively. Conclusion: Needles of smaller gauge (22 gauge) give a better yield in swellings of thyroid, lymph nodes and salivary gland while in swellings of breast and soft tissue sample adequacy is better with larger gauge needle (21 gauge). (author)

  3. The distinct element analysis for swelling pressure test of bentonite. Discussion on the effects of wall friction force and aspect ratio of specimen

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Kikuchi, Hirohito; Fujita, Tomoo; Tanai, Kenji

    2011-10-01

    For geological isolation systems for radioactive waste, bentonite based material is assumed to be used as a buffer material. The swelling characteristics of the bentonite based material are expected to fill up the void space around the radioactive wastes by swelling. In general, swelling characteristics and properties of bentonite are evaluated by the laboratory tests. However, due to the lack of standardization of testing method for bentonite, the accuracy and reproducibility of the testing results are not sufficiently proved. In this study, bentonite swelling pressure test were simulated by newly developed Distinct Element Method (DEM) code, and the effects of wall friction force and aspect ratio of bentonite specimen were discussed. As a result, the followings were found. In the beginning of the swelling pressure test, since swelling occurs only around the fluid injection side of the specimen, wall friction force acts only in the swelling area and the specimen moves to opposite side from fluid injection side. However, when the entire specimen started swelling, displacement of the specimen prevented by the wall friction force, and the specimen is pressed against the pressure measurement side. Then, the swelling pressure measured on the pressure measurement side increases. Such displacement in the specimen is significantly affected by the decreasing of mechanical properties and the difference of saturation in the bentonite specimen during the fluid infiltration. Moreover, when the aspect ratio of the specimen is large, the displacement of the particle in the specimen becomes large and the area on which the wall frictional force acts is also large. Therefore, measured swelling pressure increases more greatly as the aspect ratio of the specimen increases. To contributes to the standardization of laboratory test methods for bentonite, these effects of wall friction force revealed by the DEM simulation should be verified through laboratory experiments. (author)

  4. Calcium in the Mechanism of Ammonia-Induced Astrocyte Swelling

    Science.gov (United States)

    Jayakumar, A.R.; Rao, K.V. Rama; Tong, X.Y; Norenberg, M.D.

    2016-01-01

    Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress (ONS) appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator BAPTA-AM. We then examined the activity of Ca2+-dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS) and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pretreatment of cultures with 7-nitroindazole, apocyanin and quinacrine, respective inhibitors of cNOS, NOX and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling. PMID:19393035

  5. High-resolution study of levels in the astrophysically important nucleus 26Mg and resulting updated level assignments

    Science.gov (United States)

    Adsley, P.; Brümmer, J. W.; Faestermann, T.; Fox, S. P.; Hammache, F.; Hertenberger, R.; Meyer, A.; Neveling, R.; Seiler, D.; de Séréville, N.; Wirth, H.-F.

    2018-04-01

    Background: The 22Ne(α ,n )25Mg reaction is an important source of neutrons for the s -process. Direct measurement of this reaction and the competing 22Ne(α ,γ )26Mg reaction are challenging due to the gaseous nature of both reactants, the low cross section and the experimental challenges of detecting neutrons and high-energy γ rays. Detailed knowledge of the resonance properties enables the rates to be constrained for s -process models. Purpose: Previous experimental studies have demonstrated a lack of agreement in both the number and excitation energy of levels in 26Mg. To try to resolve the disagreement between different experiments, proton and deuteron inelastic scattering from 26Mg have been used to identify excited states. Method: Proton and deuteron beams from the tandem accelerator at the Maier-Leibnitz Laboratorium at Garching, Munich, were incident upon enriched 26MgO targets. Scattered particles were momentum-analyzed in the Q3D magnetic spectrograph and detected at the focal plane. Results: Reassignments of states around Ex=10.8 -10.83 MeV in 26Mg suggested in previous works have been confirmed. In addition, new states in 26Mg have been observed, two below and two above the neutron threshold. Up to six additional states above the neutron threshold may have been observed compared to experimental studies of neutron reactions on 25Mg, but some or all of these states may be due to 24Mg contamination in the target. Finally, inconsistencies between measured resonance strengths and some previously accepted Jπ assignments of excited 26Mg states have been noted. Conclusion: There are still a large number of nuclear properties in 26Mg that have yet to be determined and levels that are, at present, not included in calculations of the reaction rates. In addition, some inconsistencies between existing nuclear data exist that must be resolved in order for the reaction rates to be properly calculated.

  6. Swelling variability of reference steels in HVEM studies

    International Nuclear Information System (INIS)

    Garner, F.A.; Mastel, B.

    1975-09-01

    A series of low-fluence electron irradiation experiments (0-15 dpa) were conducted on 316 stainless steels to explore the effects of the following variables: heat variations, FTR duct vs tubes, fabrication, annealing, Si content. Conclusions: the swelling rate became constant (max 1.3 percent/dpa) in all irradiations after an incubation period, which is variable. There is no difference in the steady-state swelling rate between various FTR heats, for annealing temperature variations, or for variation of Si content from 0.4 to 2 percent

  7. Swelling in neutron irradiated nickel-base alloys

    International Nuclear Information System (INIS)

    Brager, H.R.; Bell, W.L.

    1972-01-01

    Inconel 625, Incoloy 800 and Hastelloy X were neutron irradiated at 500 to 700 0 C. It was found that of the three alloys investigated, Inconel 625 offers the greatest swelling resistance. The superior swelling resistance of Inconel 625 relative to that of Hastelloy-X is probably related to differences in the concentrations of the minor rather than major alloy constituents, and can involve (a) enhanced recombination of defects in the Inconel 625 and (b) preferential attraction of vacancies to incoherent precipitates. (U.S.)

  8. Increase of volume swelling by a temperature gradient

    International Nuclear Information System (INIS)

    Herschbach, K.; Schneider, W.; Stober, T.

    1996-11-01

    The temperature gradient in the cladding of a Fast Reactor fuel pin leads to increased dilatation compared to material irradiations. Investigations of a specially designed fuel pin reached the conclusion that the cause is enhanced volume swelling. It is induced by He-bubbles, which migrate upwards the temperature gradient and coalesce. The critical size of nuclei for void swelling is thus reached much faster. Consequently, the p in deformation is larger than expected from materials irradiations, in the present case (DIN 1.4981 sa) by about 50%. (orig.) [de

  9. Temporomandibular joint osteochondromatosis: an unusual cause of preauricular swelling.

    LENUS (Irish Health Repository)

    Phelan, Eimear

    2012-02-01

    We report an unusual and rare cause of preauricular swelling and review the most recent literature concerning synovial osteochondromatosis of the temporomandibular joint. We report the clinical and radiologic findings of a case of synovial osteochondromatosis of the temporomandibular joint that presented as preauricular swelling in a female patient. This disease typically affects large joints; fewer than 100 cases reported in the literature affect the temporomandibular joint. This case illustrates that disorders of the temporomandibular joint should also be included in the differential diagnosis of patients who present with a preauricular mass.

  10. Influence of effective stress on swelling pressure of expansive soils

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available The volume change and shear strength behaviour of soils are controlled by the effective stress. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress. The latter can be established based on the soil-water characteristic curve (SWCC of the soil. In the present study, the evolution of swelling pressure in compacted bentonite-sand mixtures was investigated. Comparisons were made between magnitudes of applied suction, suction stress, and swelling pressure.

  11. Radiation-induced void swelling in metals and alloys

    International Nuclear Information System (INIS)

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  12. Glial K(+) Clearance and Cell Swelling

    DEFF Research Database (Denmark)

    Macaulay, Nanna; Zeuthen, Thomas

    2012-01-01

    An important feature of neuronal signalling is the increased concentration of K(+) in the extracellular space. The K(+) concentration is restored to its original basal level primarily by uptake into nearby glial cells. The molecular mechanisms by which K(+) is transferred from the extracellular...... space into the glial cell are debated. Although spatial buffer currents may occur, their quantitative contribution to K(+) clearance is uncertain. The concept of spatial buffering of K(+) precludes intracellular K(+) accumulation and is therefore (i) difficult to reconcile with the K(+) accumulation...

  13. Detection of radiographically occult-ankle fractures. Positive predictive value of post-traumatic soft-tissue swelling

    International Nuclear Information System (INIS)

    Kumar, M.; Caruana, E.

    2000-01-01

    The objective of this study was to assess the value of soft-tissue swelling on plain radiographs as a predictor of radiographically occult fracture, after acute ankle injury (trauma). Patients with acute ankle trauma and plain radiographic evidence of soft-tissue swelling were included in this study. Patients were excluded if ankle trauma was sustained more than 48 hours previously or if fracture was visible on plain radiographs. All subjects (n=25) underwent computed tomography (CT) of the ankle in sagittal and coronal planes. Size of soft-tissue swelling was measured from initial Antero-posterior (AP) radiographs. The subjects in the study were placed into two groups according to whether a fracture was identified on CT or not. The results identified that those subjects without a fracture demonstrated by CT, had a soft-tissue swelling of less than 12.6 mm, while those with over 17.1mm swelling, showed a fracture on CT. Twelve patients (48 per cent) had radiographically occult fractures identified with CT. Fracture sites included: Talus/Talar Dome (n=9), posterior or lateral malleolos (n=2), distal tibia/fibula (n=1). CT detected significant soft-tissue injuries in six patients (24 per cent), composed of damaged anterior talo-fibular ligament (n=4), torn flexor tendons (n=1), and damaged fibular calcaneal ligament (n=1). One patient also showed gas in the talar dome. This study concludes that presence of a large soft-tissue swelling on plain radiographs after acute ankle trauma suggests an underlying fracture. A soft-tissue swelling of >15 mm is a reasonable threshold to prompt further imaging. Helical computed tomography provides good visualisation of subtle bone injuries and may detect clinically important soft-tissue injuries. While the study has a small sample, there is clear evidence that there is a trend worth investigating. Future research will seek to investigate a larger sample. Copyright (1999) Australian Institute of Radiography

  14. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  15. Early age sealing of buffer-rock gap by artificial wetting to induce bentonite swelling

    International Nuclear Information System (INIS)

    Holt, Erika; Marjavaara, Pieti

    2012-01-01

    400% of the buffer. The area near the top of the sample often had a higher water content, attributed to the concentration of material and upward swelling. Two weeks after wetting, the dry density of the gap area with plain water filling or pellets is on the order of 1000 kg/m 3 . The small-scale artificial wetting laboratory test program has provided the basis for some aspects of the First Phase Test of Bentonite Buffer. This test was started in autumn 2011 in Onkalo, Finland at the depth of 140 m below surface. The test is scaled 40% from the current repository hole dimensions, having two separate holes of 800 mm in diameter and three meters depth, both holes have heaters. The 35 mm gap between the rock and bentonite buffer was filled with custom-made roller-compacted MX- 80 pellets. Both the buffer and pellets were made from the same material and had a water content of 17%. In this field demonstration, one hole was artificially wetted and the other was left to dry only exposed to the natural water coming from host rock. The start of the test showed that it was possible to artificially wet the buffer-pellet system as the buffer was confined with a lid. The tests are on-going in ONKALO at the moment and it is planned for them to run for least of two years but it can be continued longer if necessary. The planning of the second phase, full-scale test to be done at the level 420 m below ground in ONKALO has started. Overall, this initial 2009-10 experimental research project showed that it was possible to uniformly wet the buffer to induce a high level of swelling within the first days, which would provide a higher level of safety with respect to thermal, mechanical and chemical stability during the waste deposition construction phase. The uncertainties that remain were the up-scaling of results to full-size deposition scale, especially with respect to the level of buffer uplift

  16. Relevance of PLUREL's results to policies at EU, national, regional and local level

    DEFF Research Database (Denmark)

    Fertner, Christian; Nielsen, Thomas Alexander Sick

    and results to policies and policy development at the EU-level, as well as the national and regional level. PLUREL has peri-urban land use relationships as its main focus. This includes analysis of drivers, consequences, policies and scenarios for the future. Even though PLUREL aims for pan-European coverage...... of natural resources as well as an attractive development in general. Besides these spatial relevant sector policies, the EU enforces legislation which is translated into spatial explicit instruments on sub-regional level. E.g. the Habitat and Birds Directive caused the development of Natura 2000 areas......, an EU-wide network of nature protection areas. The implementation of Trans-European Networks through funding programmes is another sector policy having an impact on land-use change and rural-urban relations. On the sub-regional scale the perception on overall goals like sustainability can be very...

  17. Morphological changes within Florida Bay as a result of sea level rise

    Science.gov (United States)

    Holmes, C. W.

    2011-12-01

    Data from Florida Bay indicates that from 10,000 year BP to 6000 BP, the rate of sea level rise averaged about 10 mm/yr. The rate slowed at the end of this period flooding the shallow shelves surrounding the reef platforms of the western Atlantic. The relative flat South Florida shelf, because of its slight tilt to the southwest is an ideal local to assess the effects of this flooding. From 6000 BP to the present, numerous banks were formed within Florida Bay. A morphological model of bank formation based on the sea level oscillations was constructed from analysis of over 120 cores. These cores record sedimentological changes which are correlated to climatic events. In the central bay, the sediment accumulation was controlled by variations in rate of progressive sea-level rise. The Key West sea-level record shows that sea level has been rising incrementally over the last century. Between 1931 and 1950, sea level rose at a rate of 5 mm/yr. After 1950, it remained stable until 1971, when it again began to rise, but at a rate of 3 mm/yr. On the leeward side of mud banks, these variations resulted in shifts in sediment- accumulation rates, with accretion increasing during rising sea level and decreasing during stable periods. Between late 1970 and early 1972, a sharp jump in sea-level rise occurred that was approximately 10 cm higher than the preceding period. This jump coincided with a strongly positive North Atlantic Oscillation (NAO), a la Niña (negative ENSO), and a negative Pacific Decadal Oscillation (PDO). Water driven northward into Florida Bay eroded banks along the northern coastline, increased sediment accumulation in the northern lakes, and increased accretion rates on the banks. In addition to the sedimentological variations in the central portion of the bay, there was significant changes along the northern fringe. Around 1950, the northern fringe of the bay morphed from a fresh water environment to a marine environment. As a result, carbonate production

  18. LONG-TERM TREATMENT RESULTS OF BONE SARCOMA PATIENTS WITH CONSIDERATION OF SERUM METALLOPROTEINASE LEVELS

    Directory of Open Access Journals (Sweden)

    I. V. Babkina

    2015-01-01

    Full Text Available Background: Bone sarcomas are extremely malignant prone to rapid hematogenic metastasing. Evaluation of biological marker expression by the tumor is important not only for the search of new potential chemotherapy targets, but for the assessment of the disease prognosis.Aim: A comparative evaluation of matrix metalloproteinases (MMP-2, -7, -9 and tissue inhibitor of metalloproteinase-1 (TIMP-1 in the serum of patients with primary bone tumors and in healthy people to identify their potential association with the histological characteristics of the tumor and the disease prognosis.Materials and methods: A comparative study of serum MMP-2, -7, -9, and TIMP-1 levels was performed in 54 patients with primary bone tumors (malignant, 45 patients, including central osteosarcoma in 21, periosteal osteosarcoma in 4, Ewing's sarcoma in 11, primary chondrosarcoma in 6, undifferentiated pleomorphic sarcoma in 3, and borderline giant cell tumors in 9 and in 26 healthy individuals with the use of the immunoenzyme technique (Biosource, USA, for TIMP-1 and R&D, USA, for MMP-2, -7, and -9. Results: The TIMP-1 levels in the serum of patients with central and periosteal osteosarcomas were significantly higher than in the serum of healthy controls (р = 0.038 and p = 0.007, respectively. The MMP-9 levels in patients with bone malignancies were significantly lower than that in the normal controls (p < 0.05. There was a positive correlation between serum TIMP-1 and MMP-9 levels in patients with central, periosteal and Ewing's sarcomas (r = 0.37, p = 0.024. No significant differences in the 5-year survival rates related to serum TIMP-1, MMP-2, -7, -9 levels were found in patients with bone sarcomas. However, in those with osteosarcoma and serum MMP-2 > 160 ng/ml, the overall 5-year survival rate was 1.6-fold higher than in those with lower MMP-2 levels, and in those with ММP-9 levels < 377 ng/ml, the 5-year survival rate was 1.4-fold higher than in patients with

  19. Compressive and swelling behavior of cuttlebone derived hydroxyapatite loaded PVA hydrogel implants for articular cartilage

    Science.gov (United States)

    Kumar, B. Y. Santosh; Kumar, G. C. Mohan; Isloor, Arun M.

    2018-04-01

    Developing a novel antibacterial, nontoxic and biocompatible hydrogel with superior physio mechanical properties is still becoming a challenge. Herein, we synthesize hydroxyapatite (HA) powder from cuttlefish bone and prepare a series of stiff, tough, high strength, biocompatible hydrogel reinforced with HA by integrating glutaraldehyde into PVA/HA. Powder was characterized by SEM and XRD. Compressive strength and swelling properties are studied and compare the results with the properties of healthy natural articular cartilage.

  20. Study of the Effect of Swelling on Irradiation Assisted Stress Corrosion Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the methodology used to study the effect of swelling on the crack growth rate of an irradiation-assisted stress corrosion crack that is propagating in highly irradiated stainless steel 304 material irradiated to 33 dpa in the Experimental Breeder Reactor-II. The material selection, specimens design, experimental apparatus and processes are described. The results of the current test are presented.

  1. Chronic swelling from entrapment of acrylic resin in a surgical extraction site

    OpenAIRE

    Weiting Ho; Pin-Chuang Lai; John D Walters

    2010-01-01

    When acrylic resin is inadvertently embedded in oral tissue, it can result in a pronounced chronic inflammatory response. This report describes a case in which temporary crown and bridge resin was forced into a surgical extraction site after the two adjacent teeth were prepared for a bridge immediately following extraction of a maxillary premolar. The patient experienced swelling at the extraction site over a ten month period despite treatment with antibiotics and anti-inflammatory drugs. Aft...

  2. Penelitian pengaruh campuran karet alam dan karet nitril kompon sol sepatu terhadap sifat swelling

    Directory of Open Access Journals (Sweden)

    Sofyan Karani

    1997-06-01

    Full Text Available The objective of this research is to find the quality of oil resistant soles indicated by swelling test in Benzol. The compound is made of natural rubber (RSS and synthetic rubber (NBR the part of which vary from 45/55; 50/50; 55/45. The result of the test indicates that the sole compound of RSS 45 part and NBR 55 part gives the best oil resistant.

  3. The dependence of sea surface slope on atmospheric stability and swell conditions

    Science.gov (United States)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  4. Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model.

    Science.gov (United States)

    Brisbois, Elizabeth J; Major, Terry C; Goudie, Marcus J; Bartlett, Robert H; Meyerhoff, Mark E; Handa, Hitesh

    2016-06-01

    Blood-contacting devices, including extracorporeal circulation (ECC) circuits, can suffer from complications due to platelet activation and thrombus formation. Development of nitric oxide (NO) releasing polymers is one method to improve hemocompatibility, taking advantage of the ability of low levels of NO to prevent platelet activation/adhesion. In this study a novel solvent swelling method is used to load the walls of silicone rubber tubing with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). This SNAP-silicone rubber tubing exhibits an NO flux of ca. 1×10(-10)molcm(-2)min(-1), which mimics the range of NO release from the normal endothelium, which is stable for at least 4h. Images of the tubing before and after swelling, obtained via scanning electron microscopy, demonstrate that this swelling method has little effect on the surface properties of the tubing. The SNAP-loaded silicone rubber and silicone rubber control tubing are used to fabricate ECC circuits that are evaluated in a rabbit model of thrombogenicity. After 4h of blood flow, the SNAP-loaded silicone rubber circuits were able to preserve the blood platelet count at 64% of baseline (vs. 12% for silicone rubber control). A 67% reduction in the degree of thrombus formation within the thrombogenicity chamber was also observed. This study demonstrates the ability to improve the hemocompatibility of existing/commercial silicone rubber tubing via a simple solvent swelling-impregnation technique, which may also be applicable to other silicone-based blood-contacting devices. Localized nitric oxide (NO) release can be achieved from biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP). Despite the promising in vitro and in vivo biocompatibility results reported for these NO releasing polymers, many of these materials may face challenges in being translated to clinical applications, especially in the areas of polymer processing and manufacturing. In this study, we report a solvent

  5. Stepwise swelling of a thin film of lamellae-forming poly(styrene-b- butadiene) in cyclohexane vapor

    KAUST Repository

    Di, Zhenyu; Posselt, Dorthe; Smilgies, Detlef Matthias; Li, Ruipeng; Rauscher, Markus; Potemkin, Igor I.; Papadakis, Christine M.

    2012-01-01

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each step were followed in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). During the first step, the lamellar thickness increases strongly, before it decreases again. At the same time, the full width at half-maximum (FWHM) of the diffuse Bragg reflection along the film normal has a sharp maximum. These observations point to the formation of new lamellae. During the subsequent swelling steps, the lamellar thickness overshoots only weakly. The behavior thus resembles qualitatively our previous results on a similar thin film during swelling in saturated vapor of cyclohexane; however, it deviates from earlier theoretical predictions. We propose a theory that is quantitatively correct for the description of the dependence of the lamellar thickness on the polymer volume fraction in the late stage of the swelling steps. © 2012 American Chemical Society.

  6. Stepwise swelling of a thin film of lamellae-forming poly(styrene-b- butadiene) in cyclohexane vapor

    KAUST Repository

    Di, Zhenyu

    2012-06-26

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each step were followed in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). During the first step, the lamellar thickness increases strongly, before it decreases again. At the same time, the full width at half-maximum (FWHM) of the diffuse Bragg reflection along the film normal has a sharp maximum. These observations point to the formation of new lamellae. During the subsequent swelling steps, the lamellar thickness overshoots only weakly. The behavior thus resembles qualitatively our previous results on a similar thin film during swelling in saturated vapor of cyclohexane; however, it deviates from earlier theoretical predictions. We propose a theory that is quantitatively correct for the description of the dependence of the lamellar thickness on the polymer volume fraction in the late stage of the swelling steps. © 2012 American Chemical Society.

  7. Characteristics of the development of the radiological situation resulting from the accident, intervention levels and countermeasures

    International Nuclear Information System (INIS)

    Belyaev, S.T.; Demin, V.F.; Kutkov, V.A.; Bariakhtar, V.G.; Petriaev, E.P.

    1996-01-01

    Great efforts have been made in the frame of the national and international research programs to get complete data on the radioactive releases, environmental contamination and radiological situation resulted from the Chernobyl accident. Beginning from the first publication (IAEA meeting, August 1986) these data have been considerably improved and added. The most important change of them with their influence on the decision making in the mitigation activity and the current situation is described and analyzed. The national and international regulatory documents at the moment of the accident were neither complete nor perfect in some necessary aspects especially in respect to the countermeasures at the intermediate and long-term phases. New documents have been worked out during the intervention activity. From 1986 series of documents were developed on the national and international levels. These documents are considered and analyzed in the context of their practical implementation and by the modern experience and research results. The history of countermeasures adopted on the different intervention phases are described. These documents mainly establish intervention levels in terms of averted doses and regulate only radiation protection. They don't content any intervention levels in terms of residual doses and risk, which are necessary for regulation of social and health protection of population suffered from the accident. Other restriction for the optimal regulation comes from use of the effective dose for establishing intervention levels. These and other respective aspects are discussed

  8. Neurofibromas as bilateral cystic chest wall swellings.

    African Journals Online (AJOL)

    secondary to an infection, usually parasitic infections. [6,7]. However, cystic tumours of the chest wall result- ing from degenerative changes in peripheral nerves of its layers are rare, and we did not see any in the pub- lished literature. We are reporting a single case of bilat- eral cystic degenerative changes in neurofibromas ...

  9. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  10. Results of survey for assessing awareness level regarding radiological hazards of tobacco smoking

    International Nuclear Information System (INIS)

    Tahir, S. N. A.

    2009-01-01

    Human consumption of tobacco is as old as human history. However, injurious health effects due to tobacco smoking may not be evident to the public at large. This article presents results of a questionnaire based on a survey carried out in the metropolitan city of Lahore of Pakistan with an aim to understand the awareness level of the general population about the radiological hazards associated with tobacco smoking. Some 3600 participants from different educational backgrounds from all segments of the society participated in this survey. Analysis of the data collected concluded that the awareness level of the representative participants regarding the radiological hazards associated with tobacco smoking was alarmingly poor. These results suggest that a nationwide mass media campaign may be launched by the government authorities in Health and Environment departments to enlighten the general public in this respect to avoid tobacco-smoking-associated health risks. (authors)

  11. Level-set-based reconstruction algorithm for EIT lung images: first clinical results.

    Science.gov (United States)

    Rahmati, Peyman; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz; Adler, Andy

    2012-05-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure-volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM.

  12. Level-set-based reconstruction algorithm for EIT lung images: first clinical results

    International Nuclear Information System (INIS)

    Rahmati, Peyman; Adler, Andy; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz

    2012-01-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure–volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM. (paper)

  13. The influence of combined addition of phosphorus and titanium on void swelling of austenitic Fe-Cr-Ni alloys at 646-700 K

    International Nuclear Information System (INIS)

    Watanabe, H.; Muroga, T.; Yoshida, N.

    1994-01-01

    The influence of combined addition of phosphorus and titanium on void swelling of model Fe-Cr-Ni austenitic alloys at 646 to 700 K under fast neutron irradiation has been investigated, in comparison with that of a complex austenitic alloy (JPCA-2). In the model alloys, void swelling decreased with increasing phosphorus content. Void average size and density of JPCA-2 were comparable to those of the 0.024P alloy. The fact that these two alloys have the same phosphorus level suggests the void swelling of the model alloys would be strongly suppressed by increasing the phosphorus concentration and/or coaddition of phosphorus and titanium. The present study demonstrated that the phosphorus level is the strongest determinant of void swelling of both model and complex austenitic alloys. ((orig.))

  14. Journal of EEA, Vol. 30, 2013 PREDICTION OF SWELLING ...

    African Journals Online (AJOL)

    dell

    Dakshanamurthy [8] to represent the swelling-time relationship by a hyperbolic equation. A versatile mathematical model presented by. Richard and Abbott [9] has been used to represent the stress-strain spectrum of different types of concrete as well as ...

  15. Effects of solute interstitial elements on swelling of stainless steel

    International Nuclear Information System (INIS)

    Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.

    1975-01-01

    High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)

  16. Grewia Gum 1: Some Mechanical and Swelling Properties of ...

    African Journals Online (AJOL)

    Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide ...

  17. Swelling of cross-linked polymers: interpretations and misinterpretations

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková-Smrčková, Miroslava

    2017-01-01

    Roč. 254, 20 August (2017), s. 102 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  18. Laboratory tests of hydraulic fracturing and swell healing

    DEFF Research Database (Denmark)

    Thunbo, Christensen Claes; Foged, Christensen Helle; Foged, Niels

    1998-01-01

    New laboratory test set-ups and test procedures are described - for testing the formation of hydraulically induced fractures as well as the potential for subsequent fracture closurefrom the relase of a swelling potential. The main purpose with the tests is to provide information on fracturing str...

  19. Thermodynamics of swelling of latex particles with two monomers

    NARCIS (Netherlands)

    Maxwell, I.A.; Kurja, J.; van Doremaele, G.H.J.; German, A.L.

    1992-01-01

    The partitioning of 2 monomers between the latex particle, monomer droplet, and aq. phases of an emulsion polymer latex are measured at satn. swelling of the latex particle phase (corresponding to intervals I and II of an emulsion polymn.). The monomer (Me acrylate, Bu acrylate, styrene) and polymer

  20. Kimura's disease: A case presentation of postauricular swelling ...

    African Journals Online (AJOL)

    Kimura's disease: A case presentation of postauricular swelling. A Rajesh, T Prasanth, V.C. Naga Sirisha, M.D.S. Azmi. Abstract. Kimura's disease (KD) is a rare chronic inflammatory disease of subcutaneous tissues and occurs predominantly in head and neck region. It is seen primarily in young Asian males. Typical clinical ...

  1. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  2. Mechanism of activation of liver glycogen synthase by swelling

    NARCIS (Netherlands)

    Meijer, A. J.; Baquet, A.; Gustafson, L.; van Woerkom, G. M.; Hue, L.

    1992-01-01

    The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High

  3. Ward Round - a boy with multiple joint swellings | Tickell | Malawi ...

    African Journals Online (AJOL)

    Ward Round - a boy with multiple joint swellings. D Tickell. Abstract. No Abstract Malawi Medical Journal Vol. 20 (3) 2008: pp. 99-100. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/mmj.v20i3.10968 · AJOL African Journals Online.

  4. Relationship between swelling and irradiation creep in cold worked PCA stainless steel to 178 DPA at∼400 degrees C

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Garner, F.A.

    1993-01-01

    At 178 dpa and ∼400 degrees C, the irradiation creep behavior of 20% cold-worked PCA has become dominated by the creep disappearance phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however

  5. Gaseous swelling of B4C and UO2 fuel: similarities and differences

    International Nuclear Information System (INIS)

    Evdokimov, I.; Khoruzhii, O.; Kourtchatov, S.; Likhanskii, V.; Matweev, L.

    2001-01-01

    A major factor limiting the resource of control rods (CRs) for WWER-1000 reactors is their radiation damage. Radiation induced embrittlement of the CRs cladding, core swelling and gaseous internal pressure in CRs result in mechanical core-cladding interaction. This work is devoted to the physical analysis of processes that control the structural changes in neutron absorber elements with B 4 C under irradiation in water reactors. Particularly, the analysis of mechanisms of the helium porosity formation in B 4 C is undertaken. In view of the deficiency of experimental data on the subject, a fruitful approach to the problem is a comparative analysis of the swelling mechanisms in B 4 C absorber and UO 2 fuel. Using this similarity a phenomenological model of fission gas behavior in boron carbide is proposed. The model predictions for radial profile of 10 B burnup under influence of thermal and epithermal neutrons are compared with experimental results. The main results show that despite the external similarity of the process of fission gas accumulation in UO 2 and in B 4 C, phenomenology of gaseous swelling is much different for the fuel and the CR core. The reason for that difference is the distinction of physical conditions in irradiated fuel and CR core

  6. Modeling injected interstitial effects on void swelling in self-ion irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Short, M.P., E-mail: hereiam@mit.edu [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology (United States); Gaston, D.R. [Idaho National Laboratory (United States); Jin, M. [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology (United States); Shao, L. [Dept. of Nuclear Engineering, Texas A& M University (United States); Garner, F.A. [Radiation Effects Consulting, LLC (United States)

    2016-04-01

    Heavy ion irradiations at high dose rates are often used to simulate slow and expensive neutron irradiation experiments. However, many differences in the resultant modes of damage arise due to unique aspects of heavy ion irradiation. One such difference was recently shown in pure iron to manifest itself as a double peak in void swelling, with both peaks located away from the region of highest displacement damage. In other cases involving a variety of ferritic alloys there is often only a single peak in swelling vs. depth that is located very near the ion-incident surface. We show that these behaviors arise due to a combination of two separate effects: 1) suppression of void swelling due to injected interstitials, and 2) preferential sinking of interstitials to the ion-incident surface, which are very sensitive to the irradiation temperature and displacement rate. Care should therefore be used in collection and interpretation of data from the depth range outside the Bragg peak of ion irradiation experiments, as it is shown to be more complex than previously envisioned. - Highlights: • A model of the spatially dependent point defect kinetics equations with injected interstitials has been implemented. • The results predict a double peak in the void nucleation rate, helping to explain a recent experiment. • The double peak is predicted to be evident within a narrow (+/− 30 °C) temperature window for self-irradiation of pure iron. • The ballistic damage profile may not match the resultant void swelling profile from ion irradiation experiments.

  7. Women swell ranks of working poor.

    Science.gov (United States)

    1996-01-01

    Despite expanded global female employment (45% of women aged 15-64 years are economically active), women still comprise 70% of the world's 1 billion people living in poverty. Moreover, women's economic activities remain largely confined to low-wage, low-productivity forms of employment. A report by the International Labor Organization (ILO), prepared as a follow-up to the Fourth World Conference on Women and the World Summit for Social Development, identified discrimination in education as a central cause of female poverty and underemployment. Each additional year of schooling is estimated to increase a woman's earnings by 15%, compared to 11% for a man. At the workplace, women face inequalities in terms of hiring and promotion standards, access to training and retraining, access to credit, equal pay for equal work, and participation in economic decision making. In addition, even women in higher-level jobs in developing countries spend 31-42 hours per week in unpaid domestic activities. The ILO has concluded that increasing employment opportunities for women is not a sufficient goal. Required are actions to improve the terms and conditions of such employment, including equal pay for work of equal value, improved occupational safety and health, enhanced security in informal or atypical forms of work, guarantees of freedom of association and the right to organize and bargain collectively, and appropriate maternity protection and child care provisions. Finally, taxation and social welfare policies must be rewritten to accommodate the reality that women are no longer the dependent or secondary earner in families.

  8. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available The study involved utilization of an industrial waste, Phosphogypsum (PG, as an additive to lime stabilization of an expansive soil. Three lime dosages, namely, initial consumption of lime (ICL, optimum lime content (OLC, and less than ICL (LICL, were identified for the soil under study for stabilizing the soil. Along with lime, varying doses of PG were added to the soil for stabilization. The effect of stabilization was studied by performing index tests, namely, liquid limit, plastic limit, shrinkage limit, and free swell test, on pulverized remains of failed unconfined compression test specimens. The samples were also subjected to a microstructural study by means of scanning electron microscope. Addition of PG to lime resulted in improvement in the plasticity and swell-shrink characteristics. The microstructural study revealed the formation of a dense compact mass of stabilized soil.

  9. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results

  10. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  11. Protoplasmic Swelling as a Symptom of Freezing Injury in Onion Bulb Cells 1

    Science.gov (United States)

    Arora, Rajeev; Palta, Jiwan P.

    1986-01-01

    Freezing injury, in onion bulb tissue, is known to cause enhanced K+ efflux accompanied by a small but significant loss of Ca2+ following incipient freezing injury and swelling of protoplasm during the postthaw secondary injury. The protoplasmic swelling of the cell is thought to be caused by the passive influx of extracellular K+ into the cell followed by water uptake. Using outer epidermal layer of unfrozen onion bulb scales (Allium cepa L. cv Big Red), we were able to stimulate the irreversible freezing injury symptoms, by bathing epidermal cells in 50 millimolar KCl. These symptoms were prevented by adding 20 millimolar CaCl2 to the extracellular KCl solution. Our results provide evidence that loss of cellular Ca2+ plays an important role in the initiation and the progression of freezing injury. Images Fig. 1 PMID:16665083

  12. Fission induced swelling and creep of U–Mo alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cheon, J.S. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-06-15

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  13. Impetigo presenting as an acute necrotizing swelling of the lower lip in an adult patient.

    Science.gov (United States)

    Ghafoor, Mohammed; Halsnad, Moorthy; Fowell, Christopher; Millar, Brian G

    2012-06-01

    The authors present an unusual case of an acute swelling of the lower lip and septicemia in a 35-year-old, recent immigrant male arriving from India. The patient presented in our emergency department with a 48-hour history of a worsening, painful swelling of the lower lip. On presentation, he was pyrexial and the lip was found to be acutely inflamed with honey-colored crusting, pustular lesions, and induration . A diagnosis of impetigo leading to necrosis of the lip was established, a rare phenomenon potentially resulting in significant tissue destruction. Appropriate medical management achieved a good outcome and prevented disabling tissue loss of the orofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Swelling behavior detection of irradiated U-10Zr alloy fuel using indirect neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong; Huo, He-yong; Wu, Yang [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Li, Jiangbo [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Zhou, Wei; Guo, Hai-bing [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Li, Hang, E-mail: lihang32@gmail.com [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Cao, Chao; Yin, Wei; Wang, Sheng; Liu, Bin; Feng, Qi-jie; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2016-11-21

    It is hopeful that fusion-fission hybrid energy system will become an effective approach to achieve long-term sustainable development of fission energy. U-10Zr alloy (which means the mass ratio of Zr is 10%) fuel is the key material of subcritical blanket for fusion-fission hybrid energy system which the irradiation performance need to be considered. Indirect neutron radiography is used to detect the irradiated U-10Zr alloy because of the high residual dose in this paper. Different burnup samples (0.1%, 0.3%, 0.5% and 0.7%) have been tested with a special indirect neutron radiography device at CMRR (China Mianyang Research Reactor). The resolution of the device is better than 50 µm and the quantitative analysis of swelling behaviors was carried out. The results show that the swelling behaviors relate well to burnup character which can be detected accurately by indirect neutron radiography.

  15. Bone pain caused by swelling of mouse ear capsule static xylene and effects on rat models of cervical spondylosis

    Science.gov (United States)

    Zhang, Xuhui; Xia, Lei; Hao, Shaojun; Chen, Weiliang; Guo, Junyi; Ma, Zhenzhen; Wang, Huamin; Kong, Xuejun; Wang, Hongyu; Zhang, Zhengchen

    2018-04-01

    To observe the effect of intravenous bone pain Capsule on the ear of mice induced by xylene, swelling of rat models of cervical spondylosis. Weighing 18 ˜ 21g 50 mice, male, were randomly divided into for five groups, which were fed with service for bone pain static capsule suspension, Jingfukang granule suspension 0.5%CMC liquid and the same volume of. Respectively to the mice ear drop of xylene 0.05 ml, 4h after cervical dislocation, the mice were sacrificed and the cut two ear, rapid analytical balance weighing, and calculate the ear swelling degree and the other to take the weight of 200 - 60 250g male SD rats, were randomly divided into for 6 groups, 10 rats in each group, of which 5 groups made cervical spondylosis model. Results: with the blank group than bone pain static capsule group and Jingfukang granule group can significantly reduce mouse auricular dimethylbenzene swelling, significantly reduce ear swelling degree (P cervical spondylosis. With the model group ratio, large, medium and small dose of bone pain static capsule group, Jingfukang granule group (P pain static capsule group, Jingfukang granule group can significantly reduce the rat X-ray scores (P pain static capsule can significantly reduce mouse auricular dimethylbenzene swelling. The bone pain capsule has a good effect on the rat model of cervical spondylosis.

  16. Main Aspects and Results of Level 2 PSA for KNPP WWER-1000/B320

    International Nuclear Information System (INIS)

    Mancheva, Kaliopa

    2014-01-01

    The PSA Level 2 for Kozloduy NPP (KNPP) is an update of an older study with wider scope of analysis. The older study represented the status of the units up to 2001. The current PSA Level 2 is based on the PSA Level 1 and represents the status of the units up to 2007 year concerning the systems and procedures included in PSA level 1 and status up to 2011 for the systems and procedures (e.g. SAMG) related to containment and severe accident aspects. The study is performed after the PSA level 1 has been finished and approved by the customer. Compare to the older analysis all modes of operation for analyzed in PSA level 1 event groups as well Spent Fuel Pool accidents are investigated. The analysis consists of both deterministic and probabilistic analysis. As part of deterministic analysis a contemporary containment strength analysis and accident progression deterministic analysis using last version of MELCOR are performed. The probabilistic analysis contains of two part: Interface PSA and CET are calculated using Riskspectrum program code. Two types of models for CET have been developed: one for conditional probabilities calculations and a set of simplified CET's for each PDS group-for integral model. The purpose of the first model is to be able to perform quick calculations and for sensitivity analyses as well. The simplified CET's are used for integral calculation of the model. Source Term analysis is mainly based on the MELCOR analyses results. All characteristics of the releases have been defined, i.e. location, mass, energy of radionuclide groups and activity of the released isotopes (most important are reported only). The main goals of the study are to analyze the status of the containment, systems designed to prevent containment failure and operator action required under the severe accident and to give quantitative assessment of the risk parameter LERF (Large Early Release Frequency). This report will present main aspects, results, finding and

  17. Strategies used to inhibit postoperative swelling following removal of impacted lower third molar

    Directory of Open Access Journals (Sweden)

    Francesco Sortino

    2011-01-01

    Full Text Available Postoperative swelling following different surgical strategies is an area of great interest. The main part of literature on the topic deals with swelling after extraction of low impacted third molar. In this review, we have analyzed publications of the last 20 years with a pubmed search using the following key words: impacted third molar, swelling third molar, wisdom tooth, edema jaw, corticosteroids and extraction third molar, antibiotic prophylaxis and tooth extraction. Attention has often been focused on corticosteroid therapy administered by diverse routes (orally, IV, IM, topically and at different time schedules (before or after surgery or both. This investigation revealed how the use of different molecules and dosages makes the obtained results hardly comparable. Similar conclusions can be drawn from studies aimed at evaluating the efficacy of antibiotic therapy administered either before or after surgery. A complete review has also to take into account different surgical strategies used including various flaps, no traumatic osteothomy, and primary or secondary closure. The use of pharmacological therapy and application of an ice pack is critical in the postoperative period and has always provided positive results. However, even if it is difficult to come to definite conclusions, due to the variability of the design of studies analyzed, the postoperative discomfort identified with edema, pain and trismus following wisdom tooth removal is influenced by various factors such as the difficulty of the surgical procedure involved, age and gender of the patient, and experience of the surgeon. The pharmacological therapy when performed with corticosteroids seems to improve control of the postoperative swelling related with this kind of surgeries.

  18. Correlation of analysis with high level vibration test results for primary coolant piping

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1992-01-01

    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results

  19. Results after ten years of field testing low-level radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.; Sanford, W.E.; Larsen, I.L.; Sullivan, T.M.

    1995-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. Ion-exchange resins from a commercial nuclear power station were solidified into waste forms using portland cement and vinyl esterstyrene. These waste forms are being tested to: (a) obtain information on performance of waste forms in typical disposal environments, (b) compare field results with bench leach studies, (c) develop a low-level waste data base for use in performance assessment source term calculations, and (d) apply the DUST computer code to compare predicted cumulative release to actual field data. The program, funded by the Nuclear Regulatory Commission (NRC), includes observed radionuclide releases from waste forms in field lysimeters. The purpose of this paper is to present the experimental results of two lysimeter arrays over 10 years of operation, and to compare those results to bench test results and to DUST code predicted releases. Further analysis of soil cores taken to define the observed upward migration of radionuclides in one lysimeter is also presented

  20. Prediction of high level vibration test results by use of available inelastic analysis techniques

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Park, Y.J.; Costello, J.F.

    1991-01-01

    As part of a cooperative study between the United States and Japan, the US Nuclear Regulatory Commission and the Ministry of International Trade and Industry of Japan agreed to perform a test program that would subject a large scale piping model to significant plastic strains under excitation conditions much greater than the design condition for nuclear power plants. The objective was to compare the results of the tests with state-of-the-art analyses. Comparisons were done at different excitation levels from elastic to elastic-plastic to levels where cracking was induced in the test model. The program was called the high Level Vibration Test (HLVT). The HLVT was performed on the seismic table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center in Japan. The test model was constructed by modifying the 1/2.5 scale model of one loop of a PWR primary coolant system which was previously tested by NUPEC as part of their seismic proving test program. A comparison of various analysis techniques with test results shows a higher prediction error in the detailed strain values than in the overall response values. This prediction error is magnified as the plasticity in the test model increases. There is no significant difference in the peak responses between the simplified and the detailed analyses. A comparison between various detailed finite element model runs indicates that the material properties and plasticity modeling have a significant impact on the plastic strain responses under dynamic loading reversals. 5 refs., 12 figs

  1. Benefits resulting from 1- and 6-hour parathyroid hormone and calcium levels after thyroidectomy.

    Science.gov (United States)

    Payne, Richard J; Tewfik, Marc A; Hier, Michael P; Tamilia, Michael; Mac Namara, Elizabeth; Young, Jonathan; Black, Martin J

    2005-09-01

    Previous studies have established the efficacy of post-thyroidectomy hypocalcemia monitoring using parathyroid hormone (PTH) and corrected calcium levels at 1 and 6 hours. The goal of this study was to measure the impact of managing patients based on the above findings with respect to: duration of hospital stays, rates of transient hypocalcemia, number of blood tests, cost savings, and discharge from the hospital as early as 8 hours post-thyroidectomy without compromising safety. This is a prospective study involving 95 total thyroidectomy patients using historical data as controls. The previous protocol was modified in that all blood tests ceased for patients meeting the 6-hour critical level of PTH > or = 28 ng/L and simultaneous corrected calcium > or = 2.14 mmol/L (8.56 mg/dL). Furthermore, patients with 1-hour PTH levels cost savings of 766 Canadian dollars per patient. The new algorithm resulting from PTH and corrected calcium monitoring at 1 and 6 hours post-thyroidectomy has led to significant cost savings for our institution. It has also translated into greater patient satisfaction as a result of fewer blood tests, a lower incidence of transient hypocalcemia, and significantly shorter hospital stays.

  2. BDNF serum levels in schizophrenic patients during treatment augmentation with sarcosine (results of the PULSAR study).

    Science.gov (United States)

    Strzelecki, Dominik; Kałużyńska, Olga; Wysokiński, Adam

    2016-08-30

    Finding a relationship between schizophrenia symptoms severity and initial level of BDNF and its changes during augmentation of antipsychotic treatment with sarcosine. 57 individuals with schizophrenia with predominantly negative symptoms completed a 6-month RCT prospective study. The patients received 2g of sarcosine (n=27) or placebo (n=30) daily. At the beginning, after 6 weeks and 6 months BDNF levels were measured. Severity of symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS). BDNF serum levels were stable after 6 weeks and 6 months in both groups. We noted improvement in negative symptoms, general psychopathology and total PANSS score in sarcosine group comparing to placebo, however there was no correlations between serum BDNF concentrations and PANSS scores in all assessments. Initial serum BDNF concentrations cannot be used as a predictor of the improvement resulting from adding sarcosine. Our results indicate that either BDNF is not involved in the NMDA-dependent mechanism of sarcosine action or global changes in BDNF concentrations induced by amino-acid cannot be detected in blood assessments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Swelling/shrinkage of compacted and natural clayey soils

    International Nuclear Information System (INIS)

    Nowamooz, H.

    2007-12-01

    This thesis presents an experimental study performed on compacted loose and natural dense expansive soils using osmotic odometers. Several successive cycles were applied under three different low constant vertical net stresses. The loose soil presents a significant shrinkage accumulation while the dense one produces the swelling accumulation during the suction cycles. The suction cycles induced an equilibrium stage which indicates an elastic behaviour of the samples. At the end of suction cycles, a loading/unloading test was performed at the constant suctions for both materials. The mechanical parameters, i.e. the virgin compression index lambda(s), the apparent pre-consolidation stress p0(s) and the elastic compression index values lambda are completely dependent on the followed stress paths. The whole experimental results made it possible to define the yielding surfaces: suction limit between micro and macrostructure (Lm/M), loading collapse (LC) and saturation curve (SCS). The suction limit (Lm/M) depends completely to the soil fabrics and to the diameter separating the micro- and macrostructure. The pre-consolidation stress variation with suction is represented by the LC surface. The compression curves at different imposed suctions converge towards the saturated state for the high applied vertical stresses. We consider the saturation pressure (Psat) as the necessary pressure to reach the saturated state for an imposed suction. The higher the suction, the higher the saturation pressure. The yielding surface representing this pressure as a function of suction is called the saturation curve (SCS). Generally we can state that the suction cycles unified the LC and SC surfaces and increased the (Lm/M) up to a higher value. (author)

  4. Results after nine years of field testing low-level radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.; Sanford, W.E.; Sullivan, T.M.

    1995-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. Ion-exchange resins from a nuclear power station were solidified into waste forms using Portland cement and vinyl ester-styrene. These waste forms are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. This paper reviews radionuclide releases from those waste forms in the first 9 years of sampling. Included is a discussion of the recently discovered upward migration of radionuclides. Also, lysimeter data are applied to a performance assessment source term model, and initial results are presented

  5. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  6. Study Results on Knowledge Requirements for Entry-Level Airport Operations and Management Personnel

    Science.gov (United States)

    Quilty, Stephen M.

    2005-01-01

    This paper identifies important topical knowledge areas required of individuals employed in airport operations and management positions. A total of 116 airport managers and airfield operations personnel responded to a survey that sought to identify the importance of various subject matter for entry level airport operations personnel. The results from this study add to the body of research on aviation management curriculum development and can be used to better develop university curriculum and supplemental training focused on airport management and operations. Recommendations are made for specialized airport courses within aviation management programs. Further, this study identifies for job seekers or individuals employed in entry level positions those knowledge requirements deemed important by airport managers and operations personnel at different sized airports.

  7. Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study

    International Nuclear Information System (INIS)

    Tatumi, S.H.; Kowata, E.A.; Gozzi, G.; Kassab, L.R.P.; Suguio, K.; Barreto, A.M.F.; Bezerra, F.H.R.

    2003-01-01

    Quartz and feldspar crystals were selected from the samples as eolic dunes, beach-rock and marine terraces, all collected in the coast area of Paraiba State, located in northeastern Brazil, in order to obtain ages of deposition of the sediments. It is a systematic study in the area. The results of the ages will be used in local sea-level changes study and a correlation between highstands of marine oxygen-isotopes stages will be made. Optically stimulated luminescence and thermoluminescence have been measured and the regeneration method with multiple aliquot protocol was applied to obtain the paleodose values. Preliminaries ages spanning 3.2-229 kyr were evaluated

  8. Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study

    Energy Technology Data Exchange (ETDEWEB)

    Tatumi, S.H. E-mail: tatumi@fatecsp.br; Kowata, E.A.; Gozzi, G.; Kassab, L.R.P.; Suguio, K.; Barreto, A.M.F.; Bezerra, F.H.R

    2003-05-01

    Quartz and feldspar crystals were selected from the samples as eolic dunes, beach-rock and marine terraces, all collected in the coast area of Paraiba State, located in northeastern Brazil, in order to obtain ages of deposition of the sediments. It is a systematic study in the area. The results of the ages will be used in local sea-level changes study and a correlation between highstands of marine oxygen-isotopes stages will be made. Optically stimulated luminescence and thermoluminescence have been measured and the regeneration method with multiple aliquot protocol was applied to obtain the paleodose values. Preliminaries ages spanning 3.2-229 kyr were evaluated.

  9. LEVEL OF TOXICITY WATER AREA «TULENIY» AS A RESULT OF BIOASSAY

    Directory of Open Access Journals (Sweden)

    A. F. Sokolsky

    2014-01-01

    Full Text Available Aim. To determine the toxicity of marine waters area " tuleniy ".Location. Area " tuleniy ".Methods. Determining the level of toxicity of marine waters area "seal" method for biological testing was conducted according tothe guidelines approved by the Ministry of natural resources (guidance on the definition of ..., 2002; Dolzhenko, 1978. Guide prepared by the Center for Russian register of hydraulic structures and the state water cadastre of the MNR of Russia jointly with specialists of the Institute Committee of Russia and the UNION of ecological problems of the Ministry of Ukraine. The basis of the proposed system of marine toxicity biotests based on the results of generalization of experimental research based on the problem of pollution of water bodies and numerous literature data, making it possible to identify features of the response of aquatic organisms of different taxonomic groups to toxic impurities of different nature and origin. Experimental studies were conducted on the culture of marine unicellular algae Phaeodactylum tricornutum on planktonic crustacea Acartia tonsa, the larvae of the chironomid Chironomus gr.salinarius and juvenile guppies Poecillia reticulata Peters.Results. Comparative analysis of the results of research from 2001 to 2006 showed no acute toxic effect on the test object zooplankton and phytoplanton.Main conclusions. Throughout the study period (2001-2003, 2005-2006, you must allocate the spring of 2002, when it was recorded,the average of the lowest five years of research, the level of toxicity of water for the analyzed area.Considering the results of biological testing of the surveyed area by periods, it should be noted that the average level of toxicity of the waters did not undergo significant changes and were on the same level, not exceeding 17,6% (table. 1. According to the classification shown in table 2, the water in the surveyed area is assessed as "non-toxic".

  10. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.

    Science.gov (United States)

    Yang, Baixue; Wei, Chen; Yang, Yang; Wang, Qifang; Li, Sanming

    2018-04-06

    To evaluate parameters about wettability, water absorption or swelling of excipients in forms of powders or dosage through various methods systematically and explore its correlation with tablet disintegration. The water penetration and swelling of powders with different proportions of excipients including microcrystalline cellulose (MCC), mannitol, low-substituted hydroxypropyl cellulose (L-HPC), crospolyvinylpyrrolidone (PVPP), carboxymethyl starch sodium (CMS-Na), croscarmellose sodium (CCMC-Na) and magnesium stearate (MgSt) were determined by Washburn capillary rise. Both contact angle of water on the excipient compacts and surface swelling volume were measured by sessile drop technique. Moreover, the test about water absorption and swelling of compacts was fulfilled by a modified method. Eventually, the disintegration of tablets with or without loratadine was performed according to the method described in USP. These parameters were successfully identified by the methods above, which proved that excipient wettability or swelling properties varied with the structure of excipients. For example, MgSt could improve the water uptake, while impeded tablet swelling. Furthermore, in the present study it is verified that tablet disintegration was closely related to these parameters, especially wetting rate and initial water absorption rate. The higher wetting rate of water on tablet or initial water absorption rate, the faster swelling it be, resulting in the shorter tablet disintegration time. The methods utilized in the present study were feasible and effective. The disintegration of tablets did relate to these parameters, especially wetting rate and initial water absorption rate.

  11. The swelling behavior of montmorillonite as affected by the grain size by in situ X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Morodome, S.; Kawamura, K.; Owada, H.; Yahagi, R.; Kobayashi, I.

    2012-01-01

    Document available in extended abstract form only. In many existing researches, the swelling behavior and impermeability of smectitic engineered barrier materials in disposal facilities of radioactive waste was investigated. In the RWMC-project, the effect of smectite content on the mechanical and hydraulic behavior of smectitic materials is investigated and modeled to introduce into THMC analysis. However, since smectite is a natural resource, physical and chemical properties are different with places of production. In order to model the swelling behavior and impermeability of smectitic materials, not only the smectite content but also layer charge and crystal size will be the primary factors. In addition, smectite types and impurity minerals contents or soluble salts affect bentonite characteristic, as well. In this research, in order to focus on the effect of grain size of smectite, the swelling behavior of smectitic materials which are the same place of production but are different grain size were investigated. The smectitic material used in this study was Kunipia-F (Kunimine Industry Co. Ltd., Japan), which is from the Tukinuno Mine, Yamagata prefecture, Japan, and is purified montmorillonite produced by hydraulic elutriation. It is considered that the montmorillonite, Kunipia-F, has large crystal size, and for example Kunipia-F is able to make a sheet when drying weak solution. The grain size was conditioned by jet mill pulverizer. The pulverizing was conducted by making each other collide with high speed. The grain size of the intact and pulverized samples was measured by using of the laser scattering particle distribution analyzer and SEM. The swelling behavior was measured by in situ X-ray diffraction using of a sample chamber which can control the temperature and humidity precisely. The result of the laser scattering analysis denoted that the pulverized sample fined down expressly. The difference of the crystal aspect ratio of the pre- and post

  12. The influence of sand content on swelling pressures and structure developed in statically compacted Na-bentonite

    International Nuclear Information System (INIS)

    Gray, M.N.; Cheung, S.C.H.; Dixon, D.A.

    1984-09-01

    A laboratory investigation of the vertical and lateral swelling pressures developed in statically compacted, air-dry specimens of sodium (Na)-bentonite:silica sand mixtures as they are saturated in confined conditions with double-distilled, deionized water is described. The results are interpreted with the aid of observations of the compacted soil structures made in a scanning electron microscope. It is shown that the sand acts as an inert filler material and vertical swelling pressures are controlled by a parameter termed the effective clay dry density (qsub(c)). A limiting value of qsub(c) exists below which vertical and lateral swelling pressures do not differ and are theoretically predictable. Above this value, vertical pressures exceed lateral ones. This is related to a change from an isotropic to an anisotropic soil fabric as qsub(c) is increased above the limiting value

  13. Effect of swelling behavior of organoclays in styrene on flammability of polystyrene nanocomposites obtained through in situ incorporation

    International Nuclear Information System (INIS)

    Timochenco, Licinia; Sayer, Claudia; Machado, Ricardo A.F.; Araujo, Pedro H.H.

    2009-01-01

    In this work the effect of the interaction between organoclays and styrene on the flammability of polystyrene/clay nanocomposites obtained through in-situ incorporation was investigated. The reactions were carried out in bulk polymerization. The interaction between organoclays and styrene was inferred by swelling of the organoclay in styrene. The nanocomposites were characterized by X-ray diffraction and Transmission Electron Microscopy. The heat release rate was obtained by Cone Calorimeter and the nanocomposites were tested through UL94 horizontal burn test. Thermogravimetric analysis were also performed. Results showed that intercalated and partially exfoliated nanocomposites were obtained depending on the swelling behavior of the organoclay in styrene. It was also observed an increase of the higher decomposition temperature and an accentuated decrease on the peak of heat release of the nanocomposites when comparing to the virgin polymer. No remarkable effect between the swelling behavior of the organoclay in styrene and the flammability properties was observed. (author)

  14. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  15. INFLUENCE OF CARBOXYMETHYLCELLULOSE SODIUM AND LUTROL ON THE SWELLING INDEX AND DISINTEGRATION TIME OF BIOMUCOADHESIVE TABLETS WITH MICONAZOLE NITRATE.

    Science.gov (United States)

    Birsan, Magdalena; Scutariu, Monica Mihaela; Cojocaru, Ileana

    2016-01-01

    PURPOSE. To develop original pharmaceutical formulation with miconazole nitrate, biomucoadhesive tablets, used in antifungal medication. The oral biomucoadhesive tablets with miconazole nitrate were developed by direct compression of the excipient mixture: carboxymethylcellulose sodium and lutrol 6000, excipients used for bioadhesivity, mannitol as a sugar substitute and aerosil as a lubricant. The main goal of the study is to determine the disintegration time and the swelling index of biomucoadhesive tablets with miconazole nitrate in order to estimate the time of contact with mucosa, respectively the prolongation of drug substance release. The swelling index was calculated depending on time in all the 5 formulations that included the carboxymethylcellulose sodium and Lutrol 6000 as matrix-forming, and the studied were time and association ratio between polymers. Analysing the results, we noticed that out of the four excipients we used, carboxymethylcellulose sodium had the higher influence on the swelling index and disintegration time.

  16. Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria.

    Science.gov (United States)

    Jang, Sehwan; Javadov, Sabzali

    2017-09-15

    Although mitochondrial Ca 2+ overload and ROS production play a critical role in mitochondria-mediated cell death, a cause-effect relationship between them remains elusive. This study elucidated the crosstalk between mitochondrial swelling, ROS production, and electron transfer chain (ETC) supercomplexes in rat heart mitochondria in response to Ca 2+ and tert-butyl hydroperoxide (TBH), a lipid-soluble organic peroxide. Results showed that ROS production induced by TBH was significantly increased in the presence of Ca 2+ in a dose-dependent manner. TBH markedly inhibited the state 3 respiration rate with no effect on the mitochondrial swelling. Ca 2+ exerted a slight effect on mitochondrial respiration that was greatly aggravated by TBH. Analysis of supercomplexes revealed a minor difference in the presence of TBH and/or Ca 2+ . However, incubation of mitochondria in the presence of high Ca 2+ (1 mM) or inhibitors of ETC complexes (rotenone and antimycin A) induced disintegration of the main supercomplex, respirasome. Thus, PTP-dependent swelling of mitochondria solely depends on Ca 2+ but not ROS. TBH has no effect on the respirasome while Ca 2+ induces disintegration of the supercomplex only at a high concentration. Intactness of individual ETC complexes I and III is important for maintenance of the structural integrity of the respirasome. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1982-01-01

    The injection of swelling-clay slurries into joints or faults at a deep-burial nuclear waste disposal site may result in signficant permeability reductions for the effective containment of radioactive wastes. In an experiment conducted to illustrate the permeability change accompanying clay swelling, a coarse stone with interconnected pore spaces was injected with a clay-electrolyte slurry, modelling the pressure-grouting of a fractured repository rock. Subsequently, solutions with lower electroylte concentrations were driven through the clay-filled stone, corresponding to migration of lower salinity ground-waters through the clay-grouted fracture. The initial injection procedure reduced the permeability of the stone from 1--10 darcies to 700 nanodarcies; the changes in solution composition decreased permeability by more than 2 additional orders of magnitude to 3 nanodarcies. For application at a nuclear waste repository, the electrolyte concentration of the injected clay slurry should be made higher than that of the ground-water in the host rock. Subesquent interaction of the ground-water with the clays would initiate swelling and create the additional, post-injection permeability reductions that may be important in preventing the escape of buried radioactive wastes. The measured permeability of the clay filling is considerably lower than that of cement tested for borehole plugging. Clays also have the advantage over cement and chemical grouts in that they are geologically stable at relatively low temperatures and have a high capacity for radionuclide adsorption

  18. Recurrent parotid swelling secondary to masseter muscle hypertrophy: a multidisciplinary diagnostic and therapeutic approach.

    Science.gov (United States)

    Capaccio, Pasquale; Gaffuri, Michele; Pignataro, Lorenzo; Assandri, Fausto; Pereira, Pollyanna; Farronato, Giampietro

    2016-11-01

    To present a patient with an atypical recurrent parotid swelling due to masseter muscle hypertrophy and the diagnostic/therapeutic assessment to treat this condition. A patient referring recurrent right facial swelling underwent a complete multidisciplinary assessment of the parotid region that revealed masseter muscle hypertrophy, confirmed by means of clinical (otolaryngological and gnathological evaluation), radiological (utrasonography, dynamic magnetic resonance imaging, and cone beam computed tomography), instrumental (electromyography to evaluate the right masseter muscle function and kinesiography to evaluate maximum right deflection - MaxRDefl and maximum opening - MaxMO) and sialendoscopy assessment where T0 indicates the pre-treatment values. All electromyographic and kinesiographic parameters were evaluated six months after the orthodontic application of a neuromuscular orthosis at T1. At T1, the effectiveness of the orthodontic therapy was demonstrated by the complete resolution of symptoms, and instrumental results documented more efficient muscle activity at rest and during clenching and a better mandibular position. At EMG T1, the resting and post-TENS values were, respectively, 1.2 and 1.8 microV. At kinesiography, MaxRDefl increased from 10.2 (T0) to 10.5 mm (T1); maxMO increased from 41.2 (T0) to 48 mm (T1). The proposed multidisciplinary assessment based on otolaryngological, gnathological, and radiological evaluation may be useful in the case of recurrent parotid swelling secondary to masseter muscle hypertrophy to plan an appropriate management with a removable neuromuscular orthosis.

  19. Quantitative Studies on PDMS-PDMS Interface Bonding with Piranha Solution and its Swelling Effect

    Directory of Open Access Journals (Sweden)

    Choon-Lai Chiang

    2012-05-01

    Full Text Available In this paper, a low-cost yet effective method of irreversible bonding between two elastomeric polydimethylsiloxane (PDMS interfaces using Piranha solution is investigated. Piranha solutions at a weight ratio of 3:1 using different acids and hydrogen peroxide were attempted. The average tensile strengths of the device bonded with concentrated sulfuric acid-based piranha solution and nitric acid-based piranha solution were found to be 200 ± 20 kPa and 100 ± 15 kPa respectively. A PDMS surface treated with Piranha Solution demonstrated an increase in hydrophilicity. In addition, relatively straightforward swelling studies of PDMS using a weight loss method with common organic solvents were also investigated. Experimental results show that hexane, toluene, ethyl acetate, n-propyl alcohol and acetone swell PDMS significantly over a duration of up to 1 h and above; PDMS samples reached a steady state of swelling only after 5 min of immersion in other solvents. This will enable researchers to develop devices for the future according to the interaction between the material and the solvents in contact.

  20. Effects of dual-ion irradiation on the swelling of SiC/SiC composites

    International Nuclear Information System (INIS)

    Kishimoto, Hirotatsu; Kohyama, Akira; Ozawa, Kazumi; Kondo, Sosuke

    2005-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibers is a candidate structural material of fusion gas-cooled blanket system. From the viewpoint of material designs, it is important to investigate the swelling by irradiation, which results from the accumulation of displacement damages. In the fusion environment, (n, α) nuclear reactions are considered to produce helium gas in SiC. For the microstructural evolution, a dual-ion irradiation method is able to simulate the effects of helium. In the present research, 1.7 MeV tandem and 1 MeV single-end accelerators were used for Si self-ion irradiation and helium implantation, respectively. The average helium over displacement per atom (dpa) ratio in SiC was adjusted to 60 appm/dpa. The irradiation temperature ranged from room temperature to 1400degC. The irradiation-induced swelling was measured by the step height method. Helium that was implanted simultaneously with displacement damages in dual-ion irradiated SiC increased the swelling that was larger than that by single-ion irradiated SiC below 800degC. Since this increase was not observed above 1000degC, the interaction of helium and displacement damages was considered to change above 800degC. In this paper, the microstructural behavior and dimensional stability of SiC materials under the fusion relevant environment are discussed. (author)

  1. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    Science.gov (United States)

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A new scleroglucan/borax hydrogel: swelling and drug release studies.

    Science.gov (United States)

    Coviello, Tommasina; Grassi, Mario; Palleschi, Antonio; Bocchinfuso, Gianfranco; Coluzzi, Gina; Banishoeib, Fateme; Alhaique, Franco

    2005-01-31

    The aim of the work was the characterization of a new polysaccharidic physical hydrogel, obtained from Scleroglucan (Sclg) and borax, following water uptake and dimension variations during the swelling process. Furthermore, the release of molecules of different size (Theophylline (TPH), Vitamin B12 (Vit. B12) and Myoglobin (MGB)) from the gel and from the dried system used as a matrix for tablets was studied. The increase of weight of the tablets with and without the loaded drugs was followed together with the relative variation of the dimensions. The dry matrix, in the form of tablets was capable, during the swelling process, to incorporate a relevant amount of solvent (ca. 20 g water/g dried matrix), without dissolving in the medium, leading to a surprisingly noticeable anisotropic swelling that can be correlated with a peculiar supramolecular structure of the system induced by compression. Obtained results indicate that the new hydrogel can be suitable for sustained drug release formulations. The delivery from the matrix is deeply dependent on the size of the tested model drugs. The experimental release data obtained from the gel were satisfactorily fitted by an appropriate theoretical approach and the relative drug diffusion coefficients in the hydrogel were estimated. The release profiles of TPH, Vit. B12 and MGB from the tablets have been analyzed in terms of a new mathematical approach that allows calculating of permeability values of the loaded drugs.

  3. A high resolution interferometric method to measure local swelling due to CO2 exposure in coal and shale

    NARCIS (Netherlands)

    Pluymakers, A.; Liu, J.; Kohler, F.; Renard, F.; Dysthe, D.

    2018-01-01

    We present an experimental method to study time-dependent, CO2-induced, local topography changes in mm-sized composite samples, plus results showing heterogeneous swelling of coal and shale on the nano- to micrometer scale. These results were obtained using high resolution interferometry

  4. Preliminary results of measurement of natural environmental radiation levels and doses to population in China

    International Nuclear Information System (INIS)

    Wang Qiliang; He Miaoting; Shu Qi

    1985-01-01

    In this paper the preliminary results of measurement of natural environmental radiation levels in China with RSS-111 high pressure ionization chamber and estimated doses to population are reported. A total of 2,723 indoor locales throughout China were measured. The results showed that the average absorbed dose rates in air due to gamma radiation for indoors and outdoors were 11.0 x 10 -8 Gy.h -1 and 7.4 x 10 -8 Gy.h -1 , respectively, and those due to cosmic rays were 3.2 x 10 -8 Gy.h -1 and 3.7 x 10 -8 Gy.h -1 , respectively. The annual average effective dose equivalent to population was 919 μSv, including 630 μSv from natural gamma radiation and 289 μSv from cosmic rays

  5. Study of short-time mechanical properties changes for BN-350 reactor spent fuel assemblies jacket material from vacancy swelling

    International Nuclear Information System (INIS)

    Karaulov, V.N.; Blynskij, A.P.; Yakovlev, I.L.; Golovin, S.V.; Lambert, D.

    1999-01-01

    Variations of mechanical properties (ultimate strength and limit of plasticity) for irradiated stainless steels, materials of BN-350 reactor cased fuel assemblies tubes, namely: 12X18H10T MTO, 08X16H11M3 MTO, 10X17H13M2T, 12X13M2BRF from vacancy swelling and neutron damaging doze have been studied. Flat samples cut out from hexagonal fuel assemblies casing were tested. The data on casing profilometry, and also the results from hydrostatic weighing of steel samples, were used to evaluate swelling. All measurements and testing were made at temperature 25 degrees C

  6. Influence of fuel-matrix interaction on the breakaway swelling of U-Mo dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Yeon Soo [Nuclear Engineering Division, Argonne National Laboratory, Arogonne (United States)

    2014-04-15

    In order to advance understanding of the breakaway swelling behavior of U-Mo/Al dispersion fuel under a high-power irradiation condition, the effects of fuel-matrix interaction on the fuel performance of U-Mo/Al dispersion fuel were investigated. Fission gas release into large interfacial pores between interaction layers and the Al matrix was analyzed using both mechanistic models and observations of the post-irradiation examination results of U-Mo dispersion fuels. Using the model predictions, advantageous fuel design parameters are recommended to prevent breakaway swelling.

  7. Allowable residual contamination levels for decommissioning. Part 2. A summary of example results

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1985-01-01

    This paper contains a description of the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for decommissioning facilities in the 100 Areas of the Hanford Site. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm 2 ) and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are discussed for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement for a selected annual dose limit. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste. 6 references, 1 figures, 4 tables

  8. A three-scale model for ionic solute transport in swelling clays incorporating ion-ion correlation effects

    Science.gov (United States)

    Le, Tien Dung; Moyne, Christian; Murad, Marcio A.

    2015-01-01

    A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of

  9. Use of oral antineoplastic in special situations in a third level hospital: real life results

    Directory of Open Access Journals (Sweden)

    José Miguel Ferrari-Piquero

    2018-01-01

    Full Text Available Objective: To analyse the effectiveness and safety of oral antineoplastic drugs (ANEOs that are authorized in special situations in a third-level hospital and to compare the results obtained with the clinical evidence used for this authorization. Method: Descriptive observational and retrospective study. We included all adult patients who started treatment with ANEO in special situations during the year 2016. We collected demographic, treatment-related and clinical variables (overall survival (OS, progression-free survival (PFS. Adverse reactions and detected interactions were collected. An unadjusted comparison was made between the results of the available evidence and those of the study patients. Results: 34 patients were treated, 50% were men, the median age was 58 years (38-80 and they presented ECOG 1 in 64.7%. Most of the treated patients were diagnosed with advanced colorectal cancer, treated with trifluridine-tipiracil, followed by palbociclib in breast cancer, obtaining results similar to those of the evidence. The median PFS was 2.8 months (95% CI 0.8- 4.8 and the 8-month SG (95% CI 3.4-12.5 for all patients. 26% of patients required dose reduction because of treatment toxicity. We found 13 interactions, which affected 15 patients, only two of category X. Conclusions: The effectiveness of ANEO in special situations in our center is similar to that of available evidence. The impact on survival is low and adverse effects are common.

  10. Hydric transfer in swelling clayey soils: influence of confinement

    International Nuclear Information System (INIS)

    Rolland, S.

    2002-01-01

    Description of imbibition and swelling mechanisms in clayey soils represents an important stake in different scientific domains such as agronomy, geotechnics or petroleum industry. The aim of the present work is to show the effects of hydro-mechanical couplings during imbibition in a swelling clayey medium, under different confinement conditions. Our material is a bentonite-silt mixture, prepared with a known water content and compacted with a double-piston technique. This method allows us to produce uniform soil samples, in terms of humidity and bulk density. Experiments related to bottom imbibition are then carried out for three types of mechanical boundary conditions (free, oedometric, fixed volume). The non-intrusive dual-energy gamma-ray technique is used to assess the local variation of bulk density and humidity. Finally, the three imbibition kinetics are compared for each experiment in terms of hydraulic diffusivity, described in a Lagrangian way. (author)

  11. Depleted depletion drives polymer swelling in poor solvent mixtures.

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M; Stuehn, Torsten; Kremer, Kurt

    2017-11-09

    Establishing a link between macromolecular conformation and microscopic interaction is a key to understand properties of polymer solutions and for designing technologically relevant "smart" polymers. Here, polymer solvation in solvent mixtures strike as paradoxical phenomena. For example, when adding polymers to a solvent, such that all particle interactions are repulsive, polymer chains can collapse due to increased monomer-solvent repulsion. This depletion induced monomer-monomer attraction is well known from colloidal stability. A typical example is poly(methyl methacrylate) (PMMA) in water or small alcohols. While polymer collapse in a single poor solvent is well understood, the observed polymer swelling in mixtures of two repulsive solvents is surprising. By combining simulations and theoretical concepts known from polymer physics and colloidal science, we unveil the microscopic, generic origin of this collapse-swelling-collapse behavior. We show that this phenomenon naturally emerges at constant pressure when an appropriate balance of entropically driven depletion interactions is achieved.

  12. Structure and radiation induced swelling of steels and alloys

    International Nuclear Information System (INIS)

    Parshin, A.M.

    1983-01-01

    Regularities of vacancy void formation and radiation induced swelling of austenitic chromium-nickel steels and alloyse ferritic steels as well as titanium α-alloys under radiation by light and heavy ions and neutrons are considered. Possible methods for preparation of alloys with increased resistance to radiation swelling are described. Accounting for investigations into ferritic steels and α-alloys of titanium the basic way of weakening vacancy smelling is development of continuous homogeneous decomposition of solid solution using alloying with vividly expressed incubation period at a certain volumetric dilatation as well as decompositions of the type of ordering, K-state, lamination of solid solutions, etc. Additional alloying of solid solutions is also shown to be necessary for increasing recrystallization temperature of cold-deformed steel

  13. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  14. Mid Arm Swelling- A Rare Presentation of Filariasis

    OpenAIRE

    Haren Oza; Jignasa Bhalodia; Ami Shah; Palak Modi

    2014-01-01

    Bancroftian Filariasis is a tropical and subtropical disease caused by Wuchereria bancrofti and transmitted by the Culex mosquitoes. The diagnosis of it is conventionally made by demonstrating microfilariae in the peripheral blood smear. Microfilaria and adult filarial worm have been incidentally detected in fine needle aspirates of various lesions. We here report a rare case presentation of Bancroftian filariasis in 20 years old asymptomatic male coming from an endemic area with swelling in ...

  15. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  16. A FACSIMILE code for calculating void swelling, version VS1

    International Nuclear Information System (INIS)

    Windsor, M.; Bullough, R.; Wood, M.H.

    1979-11-01

    VS1 is the first of a series of FACSIMILE codes that are being made available to predict the swelling of materials under irradiation at different temperatures, using chemical rate equations for the point defect losses to voids, interstitial loops, dislocation network, grain boundaries and foil surfaces. In this report the rate equations used in the program are given together with a detailed description of the code and directions for its use. (author)

  17. Atypical Post Kala Azar Dermal Leishmaniasis with ?Muzzle Area? Swelling

    OpenAIRE

    Arora, Sandeep; Bal, Arvinder Singh; Baveja, Sukriti; Sood, Aradhana; Rathi, Khushi Ram; Patil, Pradeep

    2015-01-01

    A 50-year-old male presented with recurrent swelling of the muzzle area of the face with history of low-grade intermittent fever of 3 year duration managed variously with antibiotics, systemic steroids, and antituberculous therapy. Skin biopsy revealed a granulomatous infiltration negative for acid-fast bacilli and leishmania donovan bodies. Immunochromatography test for rK 39 antigen and polymerase chain reaction for leishmania was positive. He was diagnosed as a case of post kala azar derma...

  18. Application of the Group Contribution Approach to Nafion Swelling

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Hovorka, Š.; Poloncarzová, M.; Kolská, Z.; Izák, Pavel

    2009-01-01

    Roč. 111, č. 4 (2009), s. 1745-1750 ISSN 0021-8995 R&D Projects: GA ČR GA104/08/0600; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : group contribution method * structure-property relations * swelling Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.203, year: 2009

  19. SuperLig Ion Exchange Resin Swelling and Buoyancy Study

    International Nuclear Information System (INIS)

    Hassan, N.M.

    2000-01-01

    The objective of this study was to achieve a fundamental understanding of SuperLig resin swelling and shrinking characteristics, which lead to channeling and early breakthrough during loading cycles. The density of salt solution that causes resin floating was also determined to establish a limit for operation. Specific tests performed include (a) pH dependence, (b) ionic strength dependence and (c) buoyancy effect vs. simulant composition

  20. Reasons for nonadherence to the dapivirine vaginal ring: narrative explanations of objective drug-level results.

    Science.gov (United States)

    Montgomery, Elizabeth T; Stadler, Jonathan; Naidoo, Sarita; Katz, Ariana W K; Laborde, Nicole; Garcia, Morgan; Reddy, Krishnaveni; Mansoor, Leila E; Etima, Juliane; Zimba, Chifundo; Chitukuta, Miria; Soto-Torres, Lydia

    2018-07-17

    MTN-020/ASPIRE trial and IPM-027/Ring Study recently proved the dapivirine vaginal ring was safe and effective with consistent use. To optimize the ring's impact, the barriers and facilitators to ring adherence must be understood and addressed. Former ASPIRE participants were stratified by age group (18-21; 22-45) and randomly selected at seven sites in Malawi, South Africa, Uganda and Zimbabwe, 12-17 months after trial exit. Using in-depth interviews or focus group discussions, ring use barriers were explored using structured guides and visual tools including individual-level depictions of dapivirine levels detected in plasma and returned rings. A total of 187 were enrolled; 37% were 18-21 years when they began ASPIRE. Most (75%) had drug-level results, suggesting inconsistent ring use throughout ASPIRE. Participants viewed themselves as adherent, while simultaneously describing regular instances and reasons for ring removal (e.g. for sex or menses). Less adherent women reported fears that partners would oppose the ring or feel it during sex. High adherers expressed altruistic motivations for ring use. Women of all ages attributed young women's nonadherence to their tendency to be less 'serious' about the future, HIV prevention and the study; motivated predominantly by benefits; more fearful of fertility-related consequences; and to having less relationship control. When presented with objective adherence data, participants provided reasons for intermittent ring use, while simultaneously portraying themselves as consistent ring users. Further research is needed to understand how women could use the ring in a way that fits into the context of their relationships and their lives while still conferring adequate HIV prophylaxis.

  1. Bias factors for radiation creep, growth and swelling

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1980-01-01

    Central to the present concepts of the origin of the radiation-induced creep, growth and swelling phenomena is the relative interaction of interstitials and vacancies with various sinks. Radiation-induced climb of dislocations, which figures in many theories of radiation creep and growth, requires the absorption of an excess of either vacancies or interstitials. On the other hand, radiation swelling requires the absorption of an excess of vacancies to effect void growth. These relative preferences are normally expressed in theoretical models by certain bias factors, or capture efficiencies, usually assumed to be constant. Several attempts have been made to estimate their magnitude theoretically but all are seen to involve errors or physically unrealistic assumptions. We present here a unified treatment in which these various bias factors are estimated in a self-consistent model which incorporates, for the first time, all the essential physics, i.e., defect production, interactions of both vacancies and interstitials with sinks and the presence of two types of sinks. We present quantitative evaluations for the SIPA creep model and for radiation swelling, and compare with previous estimates of these phenomena. (orig.)

  2. Early results of studies on the levels of depleted uranium excreted by Balkan residents

    International Nuclear Information System (INIS)

    Priest, N.D.; Thirlwell, M.

    2002-01-01

    Urine samples collected from residents of Bosnia and Herzegovina and Kosovo were analysed to determine their natural and depleted uranium content using MC-ICP-MS. All may have been exposed to depleted uranium released as a consequence of the deployment of armour-piercing rounds by the US Air Force. A 236 U tracer was employed to determine chemical recovery. Early results suggest that the levels of natural and depleted uranium excretion by the subjects, which ranged in age from 1 to 71 years, ranged from 2.8 - 58.2 ng d -1 and 1.3 - 46.3 ng d -1 , respectively. The results suggest accumulated body burdens of depleted uranium ranging from close to zero to 46 μg. All the body burdens predicted are lower than published values for the uranium content of the body (90μg) and health effects are not predicted. Further studies are underway to check the provenance of the results. (author)

  3. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  4. What Causes Ankle Swelling During Pregnancy - And What Can I do About it?

    Science.gov (United States)

    ... the ankles or calves. Some research suggests that foot massage and reflexology, which involves applying pressure to certain areas of the feet, hands and ears, might help decrease foot and ankle swelling during pregnancy. Also, swelling doesn' ...

  5. Wage Inequalities: A Result of Different Levels and Fields of Tertiary Education?

    Directory of Open Access Journals (Sweden)

    Darjan Petek

    2017-03-01

    Full Text Available In this article we examine the impact of tertiary education on the amounts of wages in Slovenia for 2011. We use micro data from the statistical survey Structure of Earnings Statistics and micro data from the survey of graduates from tertiary education. We found out that there are significant differences in the amounts of wages as regards the level and field of education. Region and activity of the company where the person is employed also plays an important role in wage determination. Also the effects of gender and public/private sector are statistically significant. Using the average wage per hour as dependent variable gives similar results as the average annual wages.

  6. Characterization of the Rheological and Swelling Properties of Synthetic Alkali Silicate Gels in Order to Predict Their Behavior in ASR Damaged Concrete

    Science.gov (United States)

    Vayghan, Asghar Gholizadeh

    Alkali-silica reaction (ASR) is a major concrete durability concern that is responsible for the deterioration of concrete infrastructure in the world. The resultant of the reaction between the cement alkali hydroxides and the metastable silicates in the aggregates is a hygroscopic and expansive alkali-silicate gel (referred to as ASR gel in this document). The swelling behavior of ASR gels determines the extent of damage to concrete structures and, as such, mitigation of ASR relies on understanding these gels and finding ways to prevent them either from formation, or from swelling after formation. This dissertation focuses on the synthesis and characterization of ASR gels with wide ranges of compositions similar to what has been reported for the filed ASR gels in the literature. The experimental work consisted of three phases as follow. Phase I: Investigation of rheology, chemistry and physics of ASR gels produced through sol-method. Inspired from the existing literature, two sol-gel methods have been developed for the synthesis of ASR gels. The rheological (primarily gelation time, yield stress, and equilibrium stress), chemical (pore solution pH, pore solution composition, osmotic pressure, solid phase composition, stoichiometry of gelation reactions) and physical (evaporable water, solid content, etc.) properties of synthetic ASR gels have been extensively investigated in this phase. Ca/Si, Na/Si and K/Si, and water content were considered as the main chemical composition variables. In order to investigate the suppressing effects of lithium on the swelling properties of ASR gels, the gels were added with lithium in a part of the experimental program. The results strongly suggested that Ca/Si has a positive effect on the yield stress of the gels and their rate of gelation. Na/Si was found to have a decreasing effect on the yield stress and gelation rate (especially at low Ca/Si levels). K/Si and Li/Si had second-order (i.e., polynomial) effects on the yield

  7. Laboratory corrosion tests on candidate high-level waste container materials: Results from the Belgian programme

    International Nuclear Information System (INIS)

    Druyts, F.; Kursten, B.; Iseghem, P. Van

    2004-01-01

    The Belgian SAFIR-2 concept foresees the geological disposal of conditioned high-level radioactive waste in stainless steel containers and overpacks placed in a concrete gallery backfilled with Boom clay or a bentonite-type backfill. In addition to earlier in situ experiments, we used a laboratory approach to investigate the corrosion properties of selected stainless steels in Boom clay and bentonite environments. In the SAFIR-2 concept, AISI 316L hMo is the main candidate overpack material. As an alternative, we also investigated the higher alloyed stainless steel UHB 904L. Our study focused on localised corrosion and in particular pitting. We used cyclic potentiodynamic polarisation measurements to determine the pit nucleation potential E NP and the protection potential E PP . The evolution of the corrosion potential with time was determined by monitoring the open circuit potential in synthetic clay-water over extended periods. In this paper we present and discuss some results from our laboratory programme, focusing on long-term interactions between the stainless steel overpack and the backfill materials. We describe in particular the influence of chloride and thio-sulphate ions on the pitting corrosion behaviour. The results show that, under geochemical conditions typical for geological disposal, i.e. [Cl-] ∼ 30 mg/L for a Boom clay backfill and [Cl-] ∼ 90 mg/L for a bentonite backfill, neither AISI 316L hMo nor UHB 904L is expected to present pitting problems. An important factor in the long-term prediction of the corrosion behaviour however, is the robustness of the model for the evolution of the geochemistry of the backfill. Indeed, at chloride levels higher than 1000 mg/L, we predict pitting corrosion for AISI 316L hMo. (authors)

  8. Intermediate and high level earthquakes testing at the HDR - overview, objectives, results

    International Nuclear Information System (INIS)

    Jehlicka, P.; Malcher, L.

    1981-01-01

    The main objective of these earthquake investigations is the verification of calculation methods relating to structure dynamics which are used for the seismic design of nuclear power plants. Structures analyzed by tests and precalculations were the reactor building, the reactor pressure vessel, two large-diameter piping systems and one of the flood water tanks. Excitation methods used were eccentric mass shakers, snapback devices, explosives and solid propellant rockets. Some of the tests involving excitation of the building by shakers and two of the blast tests were carried out with the reactor pressure vessel and the pipes under operating conditions. The precalculations using both linear and nonlinear methods were made by German industry groups, independent experts groups and international partners. Soil-structure interaction can be determined accurately by means of simplified methods using frequency dependent soil springs. The reduction in the eigenfrequencies of the building when the load was increased by a factor of 25 could be predicted. Comparison of the results obtained for the vibrational behaviour of the building show that a simplification to the rotationally symmetric shell model appears to be a reasonable compromise between simple beam models and sophisticated 3D-shell models. The strong decrease in eigenfrequencies observed in the experiments during the transition from empty to partly filled reactor pressure vessel, and the resultant change of the mode shapes was perfectly reflected if the virtual mass of water was introduced in the calculation. Damping values evaluated from the measurements demonstrate that for some structures damping can remain low, even at levels of response leading to local yielding, while for other structures damping was very high at a rather low level of response. It appears that the use of generalized damping values for the seismic analysis of mechanical and structural systems is not appropriate. (orig./HP)

  9. Controlled swelling and degradation studies of alginate microbeads in dilute natrium-citrate solutions

    Directory of Open Access Journals (Sweden)

    Mitrović Dragana D.

    2010-01-01

    Full Text Available Alginate hydrogels are widely used in biomedicine due to alginate availability, hydrophilic nature, biocompatibility and biodegradability. Alginate microbeads are particularly attractive for applications in pharmacy and regenerative medicine due to high surface to volume ratio, low mass transfer limitations and simple implantation by injection. Aim of this work was to investigate possibilities for controlled degradation of alginate microbeads in cell culture medium (Dulbecco’s modified Eagle’s medium with Na-citrate added in small concentrations (0.05 - 0.5 mM. Alginate microbeads (1.5% w/w, 800 m in diameter were produced by electrostatic droplet extrusion and evaluated over a period of 10 days regarding appearance, kinetics and degree of swelling as well as biomechanical properties determined in a novel bioreactor with mechanical stimulation under in vivo-like conditions in articular cartilage (10% strain, 337.5 m/s compression rate. In the citrate concentration range investigated, microbeads initially swelled reaching an equilibrium value (~150-170% with respect to the initial mass, upon which they appeared stable for a certain period of time (1 to over 7 days followed by bead bursting and degradation. This degradation process indicated that Na+ ions from the solution initially replaced Ca2+ ions bound mainly to COO- groups in polymannuronate sequences inducing electrostatic repulsion of polymer chains and, consequently, swelling of the beads. Citrate ions assisted in this process by forming insoluble calcium citrate. Thus, the specific rate of the bead swelling increased with the increase in citrate concentration approaching a maximal value of ~0.34 d-1. In the last phase, the beads burst into pieces, which slowly continued to degrade by replacement of Ca2+ ions bonded to polyguluronate blocks in the egg-box structure. Compression moduli for packed beds of control, freshly produced microbeads, and microbeads swelled at the equilibrium

  10. Swelling, ion uptake and biodegradation studies of PE film modified through radiation induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Inderjeet, E-mail: ij_kaur@hotmail.com [Department Chemistry, HPU Shimla 171005 (India); Gupta, Nitika; Kumari, Vandna [Department Chemistry, HPU Shimla 171005 (India)

    2011-09-15

    An attempt to develop biodegradable polyethylene film grafting of mixture of hydrophilic monomers methacrylic acid (MAAc) and acrylamide (AAm) onto PE film has been carried out by preirradiation method using benzoyl peroxide as the radical initiator. Since ether linkages are susceptible to easy cleavage during degradation process, PE film was irradiated before the grafting reactions by {gamma}-rays to introduce peroxidic linkages (PE-OO-PE) that offer sites for grafting. The effect of irradiation dose, monomer concentration, initiator concentration, temperature, time and amount of water on the grafting percent was determined. Maximum percentage of grafting of binary mixture (MAAc+AAm), (1792%) was obtained at a total concentration of binary monomer mixture=204.6x10{sup -2} mol/L ([MAAc]=176.5x10{sup -2} mol/L, [AAm]=28.1x10{sup -2} mol/L), [BPO]=8.3x10{sup -2} mol/L at 100 deg. C in 70 min. The grafted PE film was characterized by the Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopic (SEM) methods. Some selective properties of grafted films such as swelling studies, ion uptake and biodegradation studies have been investigated. The grafted films show good swelling in water, ion uptake studies shows promising results for desalination of brackish water and the soil burial test shows that PE film grafted with binary monomer mixture degrades up to 47% within 50 days. - Highlights: > Binary mixture of methacrylic acid (MAAc) and acrylamide (AAm) onto PE film by preirradiation method was carried out. > Graft copolymers of MAAc+AAm and PE film were characterized by FTIR, TGA and SEM studies and was found to be thermally stable. > Grafting of MAAc+AAm improved swelling behavior giving maximum swelling (485.71%) in water as against PE with 0% swelling. > The grafted PE-g-poly (MAAc-co-AAm) behaves as an excellent material for ion separation. > Biodegradation studies by soil burial test showed 47.19% of

  11. Swelling behaviour in n-pentane and mechanical properties of epoxidized natural rubber with different epoxide content

    Science.gov (United States)

    Kinasih, N. A.; Fathurrohman, M. I.; Winarto, D. A.

    2017-07-01

    Epoxidized natural rubber (ENR) with different level of epoxidation (i.e. 10, 20, 30, 40 and 50 mol% indicated as ENR ENR10, ENR20, ENR30, ENR40 and ENR50, respectively) were prepared. They were then vulcanized by using efficient system vulcanization. The effect of epoxide content on curing characteristic, swelling and mechanical properties in N-pentane was investigated. The Attenuated Resonance Fourier Transform Infrared (ATR-FTIR) and H-Nuclear Magnetic Resonance (H-NMR) were used to determine the epoxidation level. Glass transition (Tg) of ENR samples was determined by using Direct Scanning Calorimetry (DSC). The result revealed that the resistance of ENR in N-pentane increased with increasing epoxidation level, which indicated by decreasing equilibrium mol uptake and diffusion coefficient. The compression set of ENR and aging resistance increased with increasing epoxide content, except ENR50 was due to ENR 50 have two Tg value. However, the value of hardness and tensile strength were not effected by epoxidation level.

  12. Results of interagency effort to determine carbon-14 source term in low-level radioactive waste

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Meyer, G.L.; Neiheisel, J.

    1987-01-01

    A preliminary estimate of the risks from the shallow land disposal of low-level radioactive wastes by EPA in 1984-1985 indicated that Carbon-14 caused virtually all of the risk and that these risks were relatively high. Therefore, an informal interagency group, which included the US Department of Energy, US Geological Survey, US Nuclear Regulatory Commission, and US Environmental Protection Agency, formed in 1985 to obtain up-to-date information on the activity and chemical form of Carbon-14 in the different types of LLW and how Carbon-14 behaves after disposal. The EPA acted as a focal point for collating the information collected by all of the Agencies and will publish a report in Fall 1986 on the results of the Carbon-14 data collection effort. Of particular importance, the study showed that Carbon-14 activity in LLW was overestimated approximately 2000%. This paper summarizes results of the Carbon-14 data collection effort. 40 references, 1 figure, 3 tables

  13. Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves

    Czech Academy of Sciences Publication Activity Database

    Drahota, Zdeněk; Endlicher, R.; Staňková, P.; Rychtrmoc, D.; Milerová, Marie; Červinková, Z.

    2012-01-01

    Roč. 44, č. 3 (2012), s. 309-315 ISSN 0145-479X R&D Projects: GA MZd(CZ) NT12370 Grant - others:GA ČR(CZ) GP305/09/P145 Institutional support: RVO:67985823 Keywords : mitochondrial swelling * mitochondrial permeability transition pore * Calcium, phosphate and peroxide interactions Subject RIV: FG - Pediatrics Impact factor: 1.604, year: 2012

  14. Three-dimensional Electromagnetic Modeling of the Hawaiian Swell

    Science.gov (United States)

    Avdeev, D.; Utada, H.; Kuvshinov, A.; Koyama, T.

    2004-12-01

    An anomalous behavior of the geomagnetic deep sounding (GDS) responses at the Honolulu geomagnetic observatory has been reported by many researchers. Kuvshinov et al (2004) found that the predicted GDS Dst C-response does not match the experimental data -- 10-20% disagreement occurs for all periods of 2 to 30 days, qualitatively implying a more resistive, rather than conductive, structure beneath the Hawaiian Islands. Simpson et al. (2000) found that the GDS Sq C-response at the Honolulu observatory is about 4 times larger than that at a Hawaii island site, again suggesting a more resistive (than elsewhere around) structure beneath the observatory. Constable and Heinson (2004, http://mahi.ucsd.edu/Steve/swell.pdf), presenting a 2-D interpretation of the magnetotelluric (MT) and GDS responses recently obtained at 7 seafloor sites to the south of the Hawaii Islands, concluded that the dataset require the presence of a narrow conducting plume just beneath the islands. The main motivation of our work is to reveal the reason of the anomalous behavior of the Honolulu response. Obviously, the cause may be due to heterogeneity of either the conductivity or the source field. We examine this problem in some detail with reference to the Constable and Heinson's seafloor dataset, as well as the available dataset from the Honolulu observatory. To address the problem we apply numerical modeling using the three-dimensional (3-D) forward modeling code of Avdeev et al. (1997, 2002). With this code we simulate various regional 3-D conductivity models that may produce EM responses that better fit the experimental datasets, at least qualitatively. Also, to explain some features of the experimental long-period GDS responses we numerically studied a possible effect in the responses caused by the equatorial electrojet. Our 3-D modeling results show that, in particular: (1) The GDS responses are better explained by models with a resistive lithosphere whereas the MT data are better fit by

  15. Recent experimental and theoretical insights on the swelling of austenitic alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Wolfer, W.G.

    1983-01-01

    Once void nucleation subsides, the swelling rate of many austenitic alloys becomes rather insensitive to the variables that determine the duration of the transient regime of swelling. Models are presented which describe the roles of nickel, chromium and silicon in void nucleation. The relative insensitivity of steady-state swelling to temperature and composition is also discussed

  16. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Neustroev, V.S. [FSUE ' SSC RF Research Institute of Atomic Reactors' , Dimitrovgrad (Russian Federation)], E-mail: neustroev@niiar.ru; Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2009-04-30

    Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components and introducing limitations on low temperature handling especially. It is shown that the degradation is actually a form of quasi-embrittlement arising from intense flow localization with high levels of localized ductility involving micropore coalescence and void-to-void cracking. Voids initially serve as hardening components whose effect is overwhelmed by the void-induced reduction in shear and Young's moduli at high swelling levels. Thus the alloy appears to soften even as the ductility plunges toward zero on a macroscopic level although a large amount of deformation occurs microscopically at the failure site. Thus the failure is better characterized as 'quasi-embrittlement' which is a suppression of uniform deformation. This case should be differentiated from that of real embrittlement which involves the complete suppression of the material's capability for plastic deformation.

  17. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels.

    Science.gov (United States)

    Hallaq, Haifa; Pinter, Emese; Enciso, Josephine; McGrath, James; Zeiss, Caroline; Brueckner, Martina; Madri, Joseph; Jacobs, Harris C; Wilson, Christine M; Vasavada, Hemaxi; Jiang, Xiaobing; Bogue, Clifford W

    2004-10-01

    The homeobox gene Hhex has recently been shown to be essential for normal liver, thyroid and forebrain development. Hhex(-/-) mice die by mid-gestation (E14.5) and the cause of their early demise remains unclear. Because Hhex is expressed in the developing blood islands at E7.0 in the endothelium of the developing vasculature and heart at E9.0-9.5, and in the ventral foregut endoderm at E8.5-9.0, it has been postulated to play a critical role in heart and vascular development. We show here, for the first time, that a null mutation of Hhex results in striking abnormalities of cardiac and vascular development which include: (1) defective vasculogenesis, (2) hypoplasia of the right ventricle, (3) overabundant endocardial cushions accompanied by ventricular septal defects, outflow tract abnormalities and atrio-ventricular (AV) valve dysplasia and (4) aberrant development of the compact myocardium. The dramatic enlargement of the endocardial cushions in the absence of Hhex is due to decreased apoptosis and dysregulated epithelial-mesenchymal transformation (EMT). Interestingly, vascular endothelial growth factor A (Vegfa) levels in the hearts of Hhex(-/-) mice were elevated as much as three-fold between E9.5 and E11.5, and treatment of cultured Hhex(-/-) AV explants with truncated soluble Vegfa receptor 1, sFlt-1, an inhibitor of Vegf signaling, completely abolished the excessive epithelial-mesenchymal transformation seen in the absence of Hhex. Therefore, Hhex expression in the ventral foregut endoderm and/or the endothelium is necessary for normal cardiovascular development in vivo, and one function of Hhex is to repress Vegfa levels during development.

  18. Use of oral antineoplastic in special situations in a third level hospital: real life results.

    Science.gov (United States)

    Garcia-Muñoz, Carmen; Rodriguez-Quesada, Pedro Pablo; Ferrari-Piquero, José Miguel

    2018-01-01

    To analyse the effectiveness and safety of oral antineoplastic drugs  (ANEOs) that are authorized in special situations in a third-level hospital and to  compare the results obtained with the clinical evidence used for this  authorization. Descriptive observational and retrospective study. We included all  adult patients who started treatment with ANEO in special situations during the  year 2016. We collected demographic, treatment-related and clinical variables  (overall survival (OS), progression-free survival (PFS)). Adverse reactions and  detected interactions were collected. An unadjusted comparison was made  between the results of the available evidence and those of the study patients. 34 patients were treated, 50% were men, the median age was 58  years (38-80) and they presented ECOG 1 in 64.7%. Most of the treated  patients were diagnosed with advanced colorectal cancer, treated with  trifluridine-tipiracil, followed by palbociclib in breast cancer, obtaining results  similar to those of the evidence. The median PFS was 2.8 months (95% CI 0.8- 4.8) and the 8-month SG (95% CI 3.4-12.5) for all patients. 26% of patients  required dose reduction because of treatment toxicity. We found 13 interactions,  which affected 15 patients, only two of category X. The effectiveness of ANEO in special situations in our center is  similar to that of available evidence. The impact on survival is low and adverse  effects are common. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Results of Sludge Mobilization Testing at Hanford High Level Waste (HLW) Tank

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2001-01-01

    Waste stored in the Tank 241-AZ-101 at the US DOE Hanford is scheduled as the initial feed for high-level waste vitrification. Tank 241-AZ-101 currently holds over 3,000,000 liters of waste made up of a settled sludge layer covered by a layer of liquid supernant. To retrieve the waste from the tank, it is necessary to mobilize and suspend the settled sludge so that the resulting slurry can be pumped from the tank for treatment and vitrification. Two 223.8-kilowatt mixer pumps have been installed in Tank 241-AZ-101 to mobilize the settled sludge layer of waste for retrieval. In May of 2000, the mixer pumps were subjected to a series of tests to determine (1) the extent to which the mixer pumps could mobilize the settle sludge layer of waste, (2) if the mixer pumps could function within operating parameters, and (3) if state-of-the-art monitoring equipment could effectively monitor and quantify the degree of sludge mobilization and suspension. This paper presents the major findings and results of the Tank 241-AZ-101 mixer pump tests, based on analysis of data and waste samples that were collected during the testing. Discussion of the results focuses on the effective cleaning radius achieved and the volume and concentration of sludge mobilized, with both one and two pumps operating in various configurations and speeds. The Tank 241-AZ-101 mixer pump tests were unique in that sludge mobilization parameters were measured using actual waste in an underground storage tank at the hanford Site. The methods and instruments that were used to measure waste mobilization parameters in Tank 241-AZ-101 can be used in other tanks. It can be concluded from the testing that the use of mixer pumps is an effective retrieval method for the mobilization of settled solids in Tank 241-AZ-101

  20. The effect of radiation dose on the crosslink density of ultra-high molecular weight polyethylene (UHMWPE) measured by a novel swelling method

    International Nuclear Information System (INIS)

    Muratoglu, O.K.; Bragdon, C.R.; O'Connor, D.O.; Jasty, M.; Harris, W.H.

    1998-01-01

    The crosslink density of a polyethylene network structure can be determined by swelling in hot xylene (130 deg C). The Flory's swelling theory is generally used to calculate the crosslink density, dx (ln(l-q -1 )+q -1 +Xq -1 )/(V 1 q -1/3 ), where V 1 is the molar volume of xylene at 130 deg C (136 cc/mol), X is the xylene-polyethylene interaction parameter, and q is the equilibrium volume swelling ratio of cross-linked network in hot xylene. Conventionally, q is measured using gravimetric methods as described in ASTM D2765-95. However, as noted in the ASTM standard, the gravimetric method has a large error factor associated with the measurement of q (as much as 100%). UHMWPE was irradiated (range of 25 to 300 kGy) using an AECL I 10/1 linear electron beam accelerator operated at 1 kW. The irradiated specimens were subsequently melt-annealed at 150 deg C for 2 hours in vacuum. For swelling experiments, 2 mm thin samples were machined using a diamond blade. The sample sizes were kept at around 3x3x2 mm and the bottom and top surfaces were machined parallel to each other. The equilibrium volume swelling ratios were determined using a Perkin-Elmer TMA/DMA 7 (n=3 for each radiation dose level). The samples were placed in a quartz basket-probe assembly and lowered into a xylene/antioxidant bath at room temperature. The xylene was then heated to 130 deg C at 5 deg C/min and held at 130 deg C for 2 hours. The swelling was then recorded with the upward motion of the probe until the equilibrium swelling was achieved. (The experiments were carried out in 3 orthogonal directions which confirmed the isotropy of swelling). (author)

  1. Results of the Safety probabilistic analysis of Level 2 of the CNSNS

    International Nuclear Information System (INIS)

    Lopez M, R.; Godinez S, V.

    2004-01-01

    The National Commission of Nuclear Safety and Safeguards (CNSNS) it has concluded the one develop of their Probabilistic Analysis of Safety (APS) of Level 2. The reach of the study it considers internal events to full power and it was developed on the base of the methodology of the NUREG-1150, for what you it was built an Event Tree of the Progression of the Accident (APET) to analyze the 25 States of Damage to the Plant (PDS) obtained of the APS Nl of the CNSNS. In the APET are considered the phenomenology of severe accidents, the performance of mitigation systems and actions of the operator that could modify the evolution of a severe accident in the CNLV, as well as the diverse modes of failure of the primary container and it identifies the trajectories of liberation of radioactive material to the exterior. The conditional probabilities of failure of the primary container were obtained and it was characterized the time so much to which happens the liberation of radioactive material as the quantity of the term liberated source. Also, to establish the times and parameters of the evolution of accidents were selected representative accident sequences of the diverse accident types and their conditions were simulated by means of the MELCOR computer code. Also it was developed a code of parametric compute type XSOR, specific for Laguna Verde, with which it was carried out the estimate of the term source in each one of the release trajectories. In this work the main characteristic ones are presented and results of the APS N2 developed in the CNSNS and they are compared against the model and results of the EIP of the CNLV. (Author)

  2. Effects of container material on PCT leach test results for high-level nuclear waste glasses

    International Nuclear Information System (INIS)

    Xing, S.B.; Pegg, I.L.

    1994-01-01

    A glass-based waste form used for the immobilization of high-level nuclear wastes should exhibit good resistance to aqueous corrosion since typically this is the primary process by which radionucleides could be released into the environment upon failure of other barriers. In the USA, the Waste Acceptance Product Specifications (WAPS) provides a set of requirements to ensure the consistency of the waste forms produced and specifies the Product Consistency Test (PCT) as a measure of relative chemical durability. While the PCT procedure permits usage of both Teflon and stainless steel vessels for testing of simulated development glasses, Teflon is not permitted for testing of production glasses due to radiative degradation. The results presented in this paper indicate that there are very significant differences between tests conducted in the two types of vessels due to the well-known permeability of Teflon to atmospheric carbon dioxide which results in lowering of the solution pH and a consequent reduction in the leach rate of silicate glasses. A wide range of nuclear waste glass compositions was subjected to the PCT procedure using both Teflon and stainless steel vessels. The magnitude of the effect (up to a factor of four for B, Na, Li concentrations) depends strongly on glass composition, therefore the isolated checks performed previously were inconclusive. The permeability to CO, of two types of Teflon vessels specified in the PCT procedure was directly measured using buffer solutions: ingress of CO, is linear in time, strongly pH-dependent, and was as high as 100 ppm after 7 days. In actual PCT tests in Teflon vessels, the total CO, content was 560 ppm after 87 days and 1930 ppm after one year

  3. Slice Test Results of the ATLAS Barrel Muon Level-1 Trigger

    CERN Document Server

    Aielli, G; Alviggi, M G; Bocci, V; Brambilla, Elena; Canale, V; Caprio, M A; Cardarelli, R; Cataldi, G; De Asmundis, R; Della Volpe, D; Di Ciaccio, A; Di Simone, A; Distante, L; Gorini, E; Grancagnolo, F; Iengo, P; Nisati, A; Pastore, F; Patricelli, S; Perrino, R; Petrolo, E; Primavera, M; Salamon, A; Santonico, R; Sekhniaidze, G; Severi, M; Spagnolo, S; Vari, R; Veneziano, Stefano; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The muon spectrometer of the ATLAS experiment makes use of the Resistive Plate Chambers detectors for particle tracking in the barrel region. The level-1 muon trigger system has to measure and discriminate muon transverse momentum, perform a fast and coarse tracking of the muon candidates, associate them to the bunch crossing corresponding to the event of interest, measure the second coordinate in the non-bending projection. The on-detector electronics first collects front-end signals coming from the two inner RPC stations on the low-pT PAD boards, each one covering a region of DetaxDphi=0.2x0.2, and hosting four Coincidence Matrix ASICs. Each CMA performs the low-pT trigger algorithm and data readout on a region of DetaxDphi=0.2x0.1. Data coming from the four CMAs are assembled by the low-pT PAD logic. Each low-pT PAD board sends data to the corresponding high-pT PAD boards, located on the outer RPC station. Four CMA on each board make use of the low-pT trigger result and of the front-end signals coming from...

  4. The TETRA-II Experiment to Observe Terrestrial Gamma Flashes at Ground Level - Preliminary Results

    Science.gov (United States)

    Cherry, M. L.; Adams, C.; Al-Nussirat, S.; Bai, S.; Banadaki, Y.; Bitzer, P. M.; Hoffmann, J.; Khosravi, E.; Legault, M.; Orang, M.; Pleshinger, D. J.; Rodriguez, R.; Smith, D.; Trepanier, J. C.; Sunda-Meya, A.; Zimmer, N.

    2017-12-01

    An upgraded version of the TGF and Energetic Thunderstorm Rooftop Array (TETRA-II) consists of an array of BGO scintillators to detect bursts of gamma rays from thunderstorms at ground level in four separate locations: the campus of Louisiana State University in Baton Rouge, Louisiana; the campus of the University of Puerto Rico at Utuado, Puerto Rico; the Centro Nacional de Metrologia de Panama (CENAMEP) in Panama City, Panama; and the Severe Weather Institute and Radar & Lightning Laboratories in Huntsville, Alabama. The original TETRA-I array of NaI scintillators at Louisiana State University detected 37 millisecond-scale bursts of gamma rays at energies 50 keV-2 MeV associated with nearby (brief description of the TETRA-I observations, a description of TETRA-II, and preliminary results of the first events observed by TETRA-II will be presented including frequency and time history of events, spectral information, and correlation with local radar and radio data.

  5. Characterization of a low-level radioactive waste grout: Sampling and test results

    International Nuclear Information System (INIS)

    Martin, P.F.C.; Lokken, R.O.

    1992-12-01

    WHC manages and operates the grout treatment facility at Hanford as part of a DOE program to clean up wastes stored at federal nuclear production sites. PNL provides support to the grout disposal program through pilot-scale tests, performance assessments, and formulation verification activities. in 1988 and 1989, over one million gallons of a low-level radioactive liquid waste was processed through the facility to produce a grout waste that was then deposited in an underground vault. The liquid waste was phosphate/sulfate waste (PSW) generated in decontamination of the N Reactor. PNL sampled and tested the grout produced during the second half of the PSW campaign to support quality verification activities prior to grout vault closure. Samples of grout were obtained by inserting nested-tube samplers into the grout slurry in the vault. After the grout had cured, the inner tube of the sampler was removed and the grout samples extracted. Tests for compressive strength, sonic velocity, and leach testing were used to assess grout quality; results were compared to those from pilot-scale test grouts made with a simulated PSW. The grout produced during the second half of the PSW campaign exceeded compressive strength and leachability formulation criteria. The nested tube samplers were effective in collecting samples of grout although their use introduced greater variability into the compressive strength data

  6. Tracking How Science Resources Result in Educator- and Community-Level Outcomes

    Science.gov (United States)

    Dusenbery, P.; Harold, J. B.; Fitzhugh, G.; LaConte, K.; Holland, A.

    2017-12-01

    Learners frequently need to access increasingly complex information to help them understand our changing world. More and more libraries are transforming themselves into places where learners not only access STEM information, but interact with professionals and undertake hands-on learning. Libraries are beginning to position themselves as part of learning ecosystems that contribute to a collective impact on the community. Traveling STEM exhibits are catalyzing these partnerships and engaging students, families, and adults in repeat visits through an accessible venue: their public library. This talk will explore impacts from two STAR Library Network's (STAR_Net) exhibitions (Discover Earth and Discover Tech) on partnerships, the circulation of STEM resources, and the engagement of learners. The STAR_Net project's summative evaluation utilized mixed methods to investigate project implementation and its outcomes. Methods included pre- and post-exhibit surveys administered to staff from each library that hosted the exhibits; interviews with staff from host libraries; patron surveys; exhibit-related circulation records; web metrics regarding the online STAR_Net community of practice; and site visits. The latter provides a more complete view of impacts on the community, including underserved audiences. NASA@ My Library is a new STAR_Net initiative, which provides STEM facilitation kits, training, and other resources to 75 libraries nationwide. Initial results will be presented that show high levels of engagement by librarians and strong response rate from patrons on surveys.

  7. results

    Directory of Open Access Journals (Sweden)

    Salabura Piotr

    2017-01-01

    Full Text Available HADES experiment at GSI is the only high precision experiment probing nuclear matter in the beam energy range of a few AGeV. Pion, proton and ion beams are used to study rare dielectron and strangeness probes to diagnose properties of strongly interacting matter in this energy regime. Selected results from p + A and A + A collisions are presented and discussed.

  8. Poly (Ethylene Glycol)-Based Hydrogels as Self-Inflating Tissue Expanders with Tunable Mechanical and Swelling Properties.

    Science.gov (United States)

    Jamadi, Mahsa; Shokrollahi, Parvin; Houshmand, Behzad; Joupari, Mortaza Daliri; Mashhadiabbas, Fatemeh; Khademhosseini, Ali; Annabi, Nasim

    2017-08-01

    Tissue expansion is used by plastic/reconstructive surgeons to grow additional skin/tissue for replacing or repairing lost or damaged soft tissues. Recently, hydrogels have been widely used for tissue expansion applications. Herein, a self-inflating tissue expander blend composition from three different molecular weights (2, 6, and 10 kDa) of poly (ethylene glycol) diacrylate (PEGDA) hydrogel with tunable mechanical and swelling properties is presented. The in vitro results demonstrate that, of the eight studied compositions, P6 (PEGDA 6 kDa:10 kDa (50:50)) and P8 (PEGDA 6 kDa:10 kDa (35:65)) formulations provide a balance of mechanical property and swelling capability suitable for tissue expansion. Furthermore, these expanders can be compressed up to 60% of their original height and can be loaded and unloaded cyclically at least ten times with no permanent deformation. The in vivo results indicate that these two engineered blend compositions are capable to generate a swelling pressure sufficient to dilate the surrounding tissue while retaining their original shape. The histological analyses reveal the formation of fibrous capsule at the interface between the implant and the subcutaneous tissue with no signs of inflammation. Ultimately, controlling the PEGDA chain length shows potential for the development of self-inflating tissue expanders with tunable mechanical and swelling properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A randomized clinical trial to compare the efficacy of submucosal aprotinin injection and intravenous dexamethasone in reducing pain and swelling after third molar surgery: a prospective study.

    Science.gov (United States)

    Arakeri, Gururaj; Rai, Kirthi Kumar; Shivakumar, H R; Jayade, Bhushan

    2013-03-01

    The purpose of this study was to compare two different groups of drugs, aprotinin and dexamethasone for its efficacy in reducing post operative swelling and pain after third molar surgery. Fifty consecutive patients requiring surgical removal of single mandibular third molar (class II position B) under local anesthesia were randomly divided into two groups, each group consisting of 25 patients. One group was administered 8 mg dexamethasone through intravenous route pre-operatively. The other group received 1 ml of Aprotinin through submucosal route in operating area after the onset of local anesthesia. Swelling was assessed by measuring facial contours at baseline and at 1st, 3rd and 7th post-operative days. Pain was measured on the 1st, 3rd and 7th post-operative days using visual analog scale. Based on statistical analysis (paired t test and Wilcoxon's signed ranking test), the results showed statistically significant difference in post operative swelling and pain on 3rd postoperative day in dexamethasone group as compared to aprotinin group. The results of present study showed a similar reduction in the severity of pain and swelling at the aprotinin and dexamethasone sites on 1st and 7th postoperative day. It was also noticed that the aprotinin promoted a greater reduction of swelling and pain on 3rd postoperative day. It appeared that, benefits of aprotinin against the risks of dexamethasone and its efficacy in controlling pain and swelling after third molar surgery makes aprotinin to be a valuable alternative to dexamethasone.

  10. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, Jason W. [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Neaman, Alexander [Facultad de Agronomia, P. Universidad Catolica de Valparaiso, Centro Regional de Estudios en Alimentos Saludables (Chile); Ravella, Ramesh; Komarneni, Sridhar [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Martinez, Carmen Enid [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States)], E-mail: cem17@psu.edu

    2009-01-15

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg{sup -1} and Sector 3: pH 4.2, total Cu = 112 mg Cu kg{sup -1}) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg{sup -1} (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. - In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.

  11. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures

  12. Treating metabolic syndrome's metaflammation with low level light therapy: preliminary results

    Science.gov (United States)

    Yoshimura, Tania M.; Kato, Ilka T.; Deana, Alessandro M.; Ribeiro, Martha S.

    2014-02-01

    Metabolic syndrome comprises a constellation of morbidities such as insulin resistance, hyperinsulinemia, atherogenic dyslipidemia, dysglycemia and obesity (especially abdominal). Metabolic alterations are observed in major insulin target organs, increasing the risk of cardiovascular diseases, type-2 diabetes and therefore mortality. Tissue alterations are characterized by immune cells infiltrates (especially activated macrophages). Released inflammatory mediators such as TNF-α induce chronic inflammation in subjects with metabolic syndrome, since inflammatory pathways are activated in the neighboring cells. The intra-abdominal adipose tissue appears to be of particular importance in the onset of the inflammatory state, and strategies contributing to modulate the inflammatory process within this adipose tissue can mitigate the metabolic syndrome consequences. Considering the low level light therapy (LLLT) recognized benefits in inflammatory conditions, we hypothesized this therapeutic approach could promote positive effects in modulating the inflammatory state of metabolic syndrome. That being the scope of this study, male C57BL/6 mice were submitted to a high-fat/high-fructose diet among 8 weeks to induce metabolic syndrome. Animals were then irradiated on the abdominal region during 21 days using an 850 nm LED (6 sessions, 300 seconds per session, 60 mW output power, ~6 J/cm2 fluence, ~19 mW/cm2 fluence rate). Before and during treatment, blood was sampled either from the retroorbital plexus or from tail puncture for glucose, total cholesterol and triglycerides analysis. So far our results indicate no alterations on these metabolic parameters after LLLT. For further investigations, blood was collected for plasma inflammatory cytokine quantification and fresh ex vivo samples of liver and intra-abdominal adipose tissue were harvested for immunohistochemistry purposes.

  13. Effect of vacancy loops on swelling of metals under irradiation

    International Nuclear Information System (INIS)

    Golubov, S.I.

    1981-01-01

    Subsequent analysis of vacancy loops formation in metals under irradiation is carried out and effect of vacancy loops on vacancy porosity is studied. Expression for quasistationary function of vacancy loops distribution according to sizes taking into consideration two mechanisms of their initiation-cascade and fluctuational ones - is obtained. It is shown that rate of vacancy absorption and interstitials by vacancy loops in quasiequilibrium state is similar and depends only on summary length of loops, for its calculations the self-coordinated procedure is formulated. For the rate of metal swelling under irradiation obtained is the expression taking into consideration the presence of vacancy loops [ru

  14. Effect of fusion burn cycle on first wall swelling

    International Nuclear Information System (INIS)

    Choi, Y.H.; Bement, A.L.; Russell, K.C.

    1976-01-01

    A mathematical simulation of first wall swelling has been performed for stainless steel under a hypothetical duty cycle of 50 sec burn, 50 sec cool. In most instances steady state nucleation conditions were not established during the burn cycle, thereby necessitating the use of transient nucleation theory. The effects of transmutation helium and of surface active impurities were modelled in an approximate way. Both kinds of impurity were found to give large increases in the void nucleation rate. Suggestions for refining and extending the calculations are also given

  15. Atypical post kala azar dermal leishmaniasis with "muzzle area" swelling.

    Science.gov (United States)

    Arora, Sandeep; Bal, Arvinder Singh; Baveja, Sukriti; Sood, Aradhana; Rathi, Khushi Ram; Patil, Pradeep

    2015-01-01

    A 50-year-old male presented with recurrent swelling of the muzzle area of the face with history of low-grade intermittent fever of 3 year duration managed variously with antibiotics, systemic steroids, and antituberculous therapy. Skin biopsy revealed a granulomatous infiltration negative for acid-fast bacilli and leishmania donovan bodies. Immunochromatography test for rK 39 antigen and polymerase chain reaction for leishmania was positive. He was diagnosed as a case of post kala azar dermal leishmaniasis, managed with injection sodium stibogluconate and followed-up thereafter.

  16. Genital tuberculosis: A rare cause of vulvovaginal discharge and swelling

    Directory of Open Access Journals (Sweden)

    Malak Alhakeem

    2013-09-01

    Full Text Available Herein, we report a patient with vulvovaginal tuberculosis (TB presented with a vulvovaginal mass and vaginal discharge.The diagnosis was made by both histopathological examination of the excised specimen which was clinicallysuspected to be a malignant lesion and cervical smear culture positivity for Mycobacterium tuberculosis. The patientwas prescribed a full course of anti-tuberculous drugs. In this report, we discuss the genital TB and its gynecologicaleffects in the light of medical literature. J Microbiol Infect Dis 2013; 3(3: 140-142Key words: Genital tuberculosis, vulvovaginal swelling

  17. A boy with recurrent swelling of the jaw

    Directory of Open Access Journals (Sweden)

    Lien Haverals

    2018-01-01

    Full Text Available We present a 10-year old boy with recurrent swelling of the right mandibular region. Based on the diagnosis of chronic recurrent parotitis, he received only supportive treatment. Because of frequent relapses, the diagnosis was reconsidered. Magnetic resonance imaging, scintigraphy and biopsy were compatible with chronic osteomyelitis. This lead to a diagnosis of mandibular primary chronic osteomyelitis, an uncommon non-suppurative inflammatory disease of unknown origin. After decortication of the mandible, the patient recovered well. Because there were no further complaints, the follow-up was ended 18 months after the operation.

  18. Baseline results of the first malaria indicator survey in Iran at the health facility level

    Directory of Open Access Journals (Sweden)

    Taghizadeh-Asl Rahim

    2011-10-01

    Full Text Available Abstract Background Malaria continues to be a global public health challenge, particularly in developing countries. Delivery of prompt and effective diagnosis and treatment of malaria cases, detection of malaria epidemics within one week of onset and control them in less than a month, regular disease monitoring and operational classification of malaria are among the major responsibilities of the national malaria programme. The study was conducted to determine these indicators at the different level of primary health care facilities in malaria-affected provinces of Iran Methods In this survey, data was collected from 223 health facilities including health centres, malaria posts, health houses and hospitals as well as the profile of all 5, 836 recorded malaria cases in these facilities during the year preceding the survey. Descriptive statistics (i.e. frequencies, percentages were used to summarize the results and Chi square test was used to analyse data. Results All but one percent of uncomplicated cases took appropriate and correctly-dosed of anti-malarial drugs in accordance to the national treatment guideline. A larger proportion of patients [85.8%; 95% CI: 84.8 - 86.8] were also given complete treatment including anti-relapse course, in line with national guidelines. About one third [35.0%; 95% CI: 33.6 - 36.4] of uncomplicated malaria cases were treated more than 48 hours after first symptoms onset. Correspondingly, half of severe malaria cases took recommended anti-malarial drugs for severe or complicated disease more than 48 hours of onset of first symptoms. The latter cases had given regular anti-malarial drugs promptly. The majority of malaria epidemics [97%; 95% CI: 90.6 - 100] in study areas were detected within one week of onset, but only half of epidemics were controlled within four weeks of detection. Just half of target districts had at least one health facility/emergency site with adequate supply and equipment stocks. Nevertheless

  19. Evaluation of the swelling behaviour of iota-carrageenan in monolithic matrix tablets.

    Science.gov (United States)

    Kelemen, András; Buchholcz, Gyula; Sovány, Tamás; Pintye-Hódi, Klára

    2015-08-10

    The swelling properties of monolithic matrix tablets containing iota-carrageenan were studied at different pH values, with measurements of the swelling force and characterization of the profile of the swelling curve. The swelling force meter was linked to a PC by an RS232 cable and the measured data were evaluated with self-developed software. The monitor displayed the swelling force vs. time curve with the important parameters, which could be fitted with an Analysis menu. In the case of iota-carrageenan matrix tablets, it was concluded that the pH and the pressure did not influence the swelling process, and the first section of the swelling curve could be fitted by the Korsmeyer-Peppas equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Influence of applied stress on swelling behavior in Type 304 stainless steel

    International Nuclear Information System (INIS)

    Igata, N.; Fujihira, T.; Kohno, Y.; Tsunakawa, M.

    1984-01-01

    The swelling behavior of Type 304 stainless steel during stress application was investigated by means of electron irradiation using a high-voltage electron microscope (HVEM). The dose dependence of swelling under stress is similar to the linearafter-incubation swelling scheme of other electron irradiation studies. The effect of applied stress on the swelling characteristics appeared through the control of incubation regime of swelling rather than of the swelling rate. The incubation dose first increases, then decreases, and increases again with increasing applied stress. The prominent finding in this study, based on the advantage of HVEM in situ observation, is that the saturated void density is equal to the number density of interstitial dislocation loops observed in the early stage of irradiation. Essentially, applied stress affects the loop nucleation process. The dislocation loop density then affects the incubation dose of swelling through its control of dislocation behavior and the saturation dose of dislocation density

  1. Influence of solutes on heavy ion induced void-swelling in binary copper alloys

    International Nuclear Information System (INIS)

    Leister, K.H.

    1983-05-01

    As radiation induced swelling of metals depends on their constitution, swelling of copper and copper alloys with low solute concentration is studied. Diffusion coefficients and solubility of solute in copper were used as criteria of selection of the alloys. The samples were irradiated by 200keV copper ions. Swelling and void densities were measured by transmission electron microscopy. The measurements show low dependence of swelling upon the diffusibility of the solute in the solvent and a strong dependence on their concentration. Alloys of 0.1at% solute show more swelling than pure copper, and alloys of 1at% show less swelling under the irradiation conditions. The different swelling behavior in Cu-Ni alloys is due to the different void densities. (orig.) [de

  2. Development and validation of constitutive equation of HBS irradiation swelling considering hydrostatic pressure

    International Nuclear Information System (INIS)

    Gao Lijun; Jiang Shengyao; Yu Jiyang; Chen Bingde; Xiao Zhong

    2014-01-01

    The mechanism of hydrostatic pressure affecting the irradiation swelling of UO_2 high burnup structure was analyzed. Three basic assumptions used to develop the constitutive equation of irradiation swelling were made accordingly. It is concluded that hydrostatic pressure imposes an important impact on irradiation swelling mainly through compressing the UO_2 high burnup structure pores. Based on the already developed correlation of the irradiation swelling of UO_2 high burnup structure, pore shrinkage due to the application of hydrostatic pressure and thus the reduction of irradiation swelling of UO_2 high burnup structure were determined quantitatively, and the constitutive equation of irradiation swelling of UO_2 high burnup structure considering the hydrostatic pressure was constructed successfully. The constitutive equation is validated using available irradiation swelling data of UO_2 high burnup structure, which demonstrates its reasonability. (authors)

  3. Pyrolysis and liquefaction of acetone and mixed acetone/ tetralin swelled Mukah Balingian Malaysian sub-bituminous coal-The effect on coal conversion and oil yield

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Mohd Azlan Mohd Ishak; Khudzir Ismail

    2008-01-01

    The effect of swelling on Mukah Balingian (MB) Malaysian sub-bituminous coal macrostructure was observed by pyrolysing the swelled coal via thermogravimetry under nitrogen at ambient pressure. The DTG curves of the pyrolyzed swelled coal samples show the presence of evolution peaks at temperature ranging from 235 - 295 degree Celsius that are due to releasing of light molecular weight hydrocarbons. These peaks, however, were not present in the untreated coal, indicating some changes in the coal macrostructure has occurred in the swelled coal samples. The global pyrolysis kinetics for coal that follows the first-order decomposition reaction was used to evaluate the activation energy of the pyrolyzed untreated and swelled coal samples. The results thus far have shown that the activation energy for the acetone and mixed acetone/ tetralin-swelled coal samples exhibit lower values than untreated coal, indicating less energy is required during the pyrolysis process due to the weakening of the coal-coal macromolecular interaction network. Moreover, liquefaction on the swelled coal samples that was carried out at temperatures ranging from 360 to 450 degree Celsius at 4 MPa of nitrogen pressure showed the enhancement of the coal conversion and oil yield at temperature of 420 degree Celsius, with retrogressive reaction started to dominate at higher temperature as indicated by decreased and increased in oil yield and high molecular weight pre-asphaltene, respectively. These observations suggest that the solvent swelling pre-treatment using acetone and mixed acetone/ tetralin can improve the coal conversion and oil yields at less severe liquefaction condition. (author)

  4. Herd-level interpretation of test results for epidemiologic studies of animal diseases

    DEFF Research Database (Denmark)

    Christensen, Jette; Gardner, Ian A.

    2000-01-01

    Correct classification of the true status of herds is an important component of epidemiologic studies and animal disease-control programs. We review theoretical aspects of herd-level testing through consideration of test performance (herd-level sensitivity, specificity and predictive values......), the factors affecting these estimates, and available software for calculations. We present new aspects and considerations concerning the effect of precision and bias in estimation of individual-test performance on herd-test performance and suggest methods (pooled testing, targeted sampling of subpopulations...... with higher prevalence, and use of combinations of tests) to improve herd-level sensitivity when the expected within-herd prevalence is low....

  5. Depositional environments as a guide to uranium mineralization in the Chinle formation, San Rafael Swell, Utah

    International Nuclear Information System (INIS)

    Lupe, R.

    1977-01-01

    The sedimentary textures resulting from depositional processes operating in low-energy environments appear to have influenced uranium mineralization. The Chinle consists of three fining-upward, fluvial-lacustrine sequences. Uranium minerals are concentrated in the lower part of the lowest sequence in areas where sediments of low-energy environment are complexly interbedded with sediments of other environments. Areas favorable for uranium exploration exist in the subsurface to the north, west, and south of the Chinle outcrop in the Swell. This determination is based on the spatial distribution of depositional environments and the pattern of Chinle deposition through time. 8 refs

  6. Effects of point defect trapping and solute segregation on irradiation-induced swelling and creep

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1978-01-01

    The theory of irradiation swelling and creep, generalized to include impurity trapping of point defects and impurity-induced changes in sink efficiencies for point defects, is reviewed. The mathematical framework is developed and significant results are described. These include the relation between vacancy and interstitial trapping and the effectiveness of trapping as compared to segregation-induced changes in sink efficiencies in modifying void nucleation, void growth, and creep. Current understanding is critically assessed. Several areas requiring further development are identified. In particular those given special attention are the treatment of nondilute solutions and the consequences of current uncertainties in fundamental materials properties whose importance has been identified using the theory

  7. The effect of swelling in Inconel 600 on the performance of FFTF [Fast Flux Test Facility] reflector assemblies

    International Nuclear Information System (INIS)

    Makenas, B.J.; Trenchard, R.G.; Hecht, S.L.; McCarthy, J.M.; Garner, F.A.

    1986-02-01

    The Fast Flux Test Facility (FFTF) is designed with non-fueled outer row assemblies, each of which consists of a stack of Inconel 600 blocks penetrated by 316 stainless steel (SS) coolant tubes. These assemblies act as a radial neutron reflector and as a straight but flexible core boundary. During an FFTF refueling outage it was observed that the degree of difficulty in withdrawing an outer row driver fuel assembly was a function of the peak fast fluence of neighboring reflector assemblies. It was subsequently determined through various postirradiation examinations that the reflector assemblies were both bowed and stiff. Measurements of the individual Inconel 600 blocks indicated that the blocks had distorted into a trapezoidal cross section due to differential swelling of Inconel 600 in a steep radial flux gradient. Immersion density results indicate greater irradiation induced volumetric swelling than any previously reported data or correlation for Inconel 600 at equivalent fast fluence. The Inconel 600 swelled approximately the same amount as the SA 316 SS reflector components. Transmission electron microscopy studies on the Inconel blocks and swelling measurements on related materials have been performed and these data have been related to the performance of the reflector materials

  8. Improvements on the synthesis and properties of fluorinated polyimide-clay nanocomposites by using double-swelling agents

    International Nuclear Information System (INIS)

    Wang, H.-W.; Dong, R.-X.; Chu, H.-C.; Chang, K.-C.; Lee, W.-C.

    2005-01-01

    Polyimide (6FBpA-6FDA)-montmorillonite nanocomposites (PiCN) were synthesized from modified montmorillonite (MMT) and poly(amic acid), using single- and double-swelling agents. The silicate layers of clay in the matrix of 6FBpA-6FDA were intercalated and became more exfoliated when double (DAETPB-ODA) swelling agents were used to modify the montmorillonite. Structures of exfoliation were confirmed by wide-angle X-ray diffraction (WAXRD) and transmission electron microscopy (TEM). The improved exfoliation of nanocomposites by the double-swelling agents resulted in enhanced thermal and mechanical properties. In particular, the maximum increase in T d , T g , and storage modulus of these nanocomposites was found to be those with addition of 5.0 wt% DAETPB-ODA modified-MMT. The moisture absorption of these nanocomposites was also reduced by the addition of double-swelling agent-modified MMT. The dielectric properties of PiCN in the form of film with MMT loading from 1.0 to 5.0 wt% were measured under frequencies of 100 Hz-1 MHz at 35-150 deg. C. Reduced dielectric constants were observed for these fluorinated polyimide-clay nanocomposites

  9. [Experimental study of acute brain swelling under acute intracranial hypertension (author's transl)].

    Science.gov (United States)

    Shigemori, M; Watanabe, M; Kuramoto, S

    1976-12-01

    There are many problems about the cause, pathophysiology and treatment of acute brain swelling under intracranial hypertension frequently encountered in the neurosurgical clinics. Generally, rapid increase of the cerebral vasoparesis caused by unknown etiology is thought to be the main cause of acute brain swelling under intracranial hypertension. Moreover, disturbance of the cerebral venous circulatory system is discussed recently by many authors. But, research from the point of systemic respiration and hemodynamics is necessary for resolving these problems. This experiment was designed to study the effects of respiration and hemodynamics on the cerebral vasoparesis. Using 22 adult dogs, acute intracranial hypertension was produced by epidural balloon inflation sustained at the level of 300 - 400 mmH2O. Simultaneously with measurement of intracranial pressure at the epidural space, superior sagittal sinus pressure, respirogram, systemic blood pressure (femoral artery), central venous pressure, common carotid blood flow, EKG and bipolar lead EEG were monitored continuously. The experimental group was divided by the respiratory loading into 5 groups as follows: control (6 cases), 10% CO2 hypercapnia (4 cases), 10% O2 hypoxia (4 cases), stenosis of airway (5 cases), 100% O2-controled respiration (3 cases). 1) Cerebral vasoparesis under acute intracranial hypertension took place earlier and showed more rapid progression in groups of stenosis of airway, hypercapnia and hypoxia than control group of spontaneous respiration in room air. No occurrence of cerebral vasoparesis was found out in a group of 100% O2 controlled respiration. It is proved that increased airway resistance or asphyxia, hypercapnia and hypoxia have strictly reference to the occurrence and progression of cerebral vasoparesis and for the prevention of cerebral vasoparesis, correct 100% O2 cont rolled respiration is effective. 2) From the hemodynamic change, the progression of rapid increase of cerebral

  10. New investigations into carbon dioxide flooding by focusing on viscosity and swelling factor changes

    Energy Technology Data Exchange (ETDEWEB)

    Enayati, M.; Mokhtari, B. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of); Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch

    2008-07-01

    Carbon dioxide flooding (CO{sub 2}) is an effective method of enhanced oil recovery (EOR). This paper presented an experimental and theoretical investigation to determine the viscosity and swelling factor changes of the oil in the Cheshmeh Khoshk reservoir in southern Iran as well as the minimum miscible pressure. The study involved setting up of a series of slim tube experiments. The purpose of the slim tube experiments were to indicate the microscopic efficiency of the process. A numerical simulator was used to calculate the results on certain conditions. The paper discussed the validity of recombined sample as well as the slim tube tests and its results. Simulator results were also presented. It was concluded that viscosity reduction and oil swelling by CO{sub 2} contribute to oil recovery. The viscosity showed an almost linear decrease with CO{sub 2} concentration. Last, it was shown that the results of the study combined with the results of other gas injection projects could be utilized as a basic input parameter for the economic feasibility study and a decision could then be made whether to implement or abandon the prospective project or which type of injection leads to better performance. 12 refs., 5 tabs., 11 figs.

  11. New insights on the mechanisms controlling the nickel dependence of swelling in irradiated Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Hoyt, J.J.; Garner, F.A.

    1990-01-01

    In a previous report the interstitial and vacancy biases for an edge dislocation in a binary alloy were examined, assuming the existence of an equilibrium Cottrel atmosphere around the line defect. The Larche' and Cahn treatment of stress relaxation due to a solute atmosphere was employed with the Wolfer and Ashkin formulation for the bias of an edge dislocation to compute the bias as a function of nickel concentration in the Fe-Ni system. Using the minimum critical void radius concept, the concentration-dependent bias was shown to offer a plausible explanation for the minimum in swelling observed at intermediate nickel levels and the gradual increase in swelling at higher nickel levels. In this report, a more realistic description of the composition dependence of vacancy diffusion has also been included, an addition which improves the model substantially. 18 refs., 8 figs

  12. Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons.

    Science.gov (United States)

    Mattei, César; Molgó, Jordi; Benoit, Evelyne

    2014-10-01

    Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Analysis of Student and School Level Variables Related to Mathematics Self-Efficacy Level Based on PISA 2012 Results for China-Shanghai, Turkey, and Greece

    Science.gov (United States)

    Usta, H. Gonca

    2016-01-01

    This study aims to analyze the student and school level variables that affect students' self-efficacy levels in mathematics in China-Shanghai, Turkey, and Greece based on PISA 2012 results. In line with this purpose, the hierarchical linear regression model (HLM) was employed. The interschool variability is estimated at approximately 17% in…

  14. School-Level Genetic Variation Predicts School-Level Verbal IQ Scores: Results from a Sample of American Middle and High Schools

    Science.gov (United States)

    Beaver, Kevin M.; Wright, John Paul

    2011-01-01

    Research has consistently revealed that average IQ scores vary significantly across macro-level units, such as states and nations. The reason for this variation in IQ, however, has remained at the center of much controversy. One of the more provocative explanations is that IQ across macro-level units is the result of genetic differences, but…

  15. Linking natural microstructures with numerical modeling of pinch-and-swell structures

    Science.gov (United States)

    Peters, Max; Berger, Alfons; Herwegh, Marco; Regenauer-Lieb, Klaus

    2016-04-01

    dominated deformation at relatively high extensional strains in the pinches. The numerical simulations indicate that viscosity weakening due to dissipated heat from grain size reduction marks the onset of localization, resulting in continuous necking of the layer. Interestingly, there exist multiple steady states, i.e. a first homogeneous state out of which localization arises, steady states of the stable end-member structure, expressed by homogeneous conditions in both pinches and swells, and in the surrounding matrix, the latter obeying a linear rheology. Based on our microstructural and numerical results, we suggest that the onset of localization represents a fundamental material bifurcation. This implies that the studied structures can be described as ductile instabilities. Finally, we discuss the profound role of the energy theory of localization described here, which allows deriving the paleo-deformation conditions, as well as fundamental material properties in a self-consistent manner. REFERENCES Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (2014): Journal of Geophysical Research 119, doi:10.1002/2013JB010701 Peters, M., Veveakis, M., Poulet, T., Karrech, A., Herwegh, M. and Regenauer-Lieb, K. (2015): Journal of Structural Geology 78, doi:10.1016/j.jsg.2015.06.005

  16. Controlled swelling and adsorption properties of polyacrylate/montmorillonite composites

    Energy Technology Data Exchange (ETDEWEB)

    Natkanski, Piotr [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kustrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Bialas, Anna; Piwowarska, Zofia [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Krakow (Poland)

    2012-10-15

    A series of novel polyacrylate/montmorillonite composites was synthesized by in situ polymerization in aqueous slurry of clay. Dissociated (obtained by adding ammonium or sodium hydroxide) and undissociated forms of acrylic acid were used as monomers in the hydrogel synthesis. The structure and composition of the samples were studied by powder X-ray diffraction, diffuse reflectance infra-red Fourier transform spectroscopy, thermogravimetry and elemental analysis. It has been found that the kind of monomer influences strongly the location of a polymer chain in the formed composite. Complete intercalation of hydrogel into the interlayer space of montmorillonite was observed for sodium polyacrylate, whereas polyacrylic acid and ammonium polyacrylate mainly occupied the outer surface of the clay. The position of hydrogel determined the swelling and adsorption properties of the studied composites. The important factor influencing the kinetics of Fe(III) cation adsorption was pH. The analysis of adsorption isotherms allowed to propose the mechanism of Fe(III) cation adsorption. Highlights: Black-Right-Pointing-Pointer Polyacrylate hydrogels can be introduced into the interlayers of clay. Black-Right-Pointing-Pointer The position of hydrogel in the composite depends on the polymer type. Black-Right-Pointing-Pointer Ammonium polyacrylate places outside the clay, sodium one is intercalated into it. Black-Right-Pointing-Pointer Swelling and adsorption capacities can be controlled by the polymer position. Black-Right-Pointing-Pointer High adsorption efficiency in Fe(III) removal was observed.

  17. Swelling, Structure, and Phase Stability of Soft, Compressible Microgels

    Science.gov (United States)

    Denton, Alan R.; Urich, Matthew

    Microgels are soft colloidal particles that swell when dispersed in a solvent. The equilibrium particle size is governed by a delicate balance of osmotic pressures, which can be tuned by varying single-particle properties and externally controlled conditions, such as temperature, pH, ionic strength, and concentration. Because of their tunable size and ability to encapsulate dye or drug molecules, microgels have practical relevance for biosensing, drug delivery, carbon capture, and filtration. Using Monte Carlo simulation, we model suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial size changes governed by the Flory-Rehner free energy of cross-linked polymer gels. We analyze the influence of particle compressibility and size fluctuations on bulk structural and thermal properties by computing swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities. With increasing density, microgels progressively deswell and their intrinsic polydispersity broadens, while compressibility acts to forestall crystallization. This work was supported by the National Science Foundation under Grant No. DMR- 1106331.

  18. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  19. Swelling Behaviour of Superabsorbent Polymers for Soil Amendment under Different Loads

    Directory of Open Access Journals (Sweden)

    Krzysztof Lejcuś

    2018-03-01

    Full Text Available One of the most important among the numerous applications of superabsorbent polymers (SAPs, also known as hydrogels, is soil improvement and supporting plant vegetation in agriculture and environmental engineering. Currently, when water scarcity involves water stress, they are becoming still more commonly used for water retention in soil. As it turns out, one of the major factors influencing the superabsorbent polymers water retention capacity (WRC is the load of soil. The study presents test results of absorbency under load (AUL of SAPs. The object of the analysis was cross-linked copolymer of acrylamide and potassium acrylate, of a granulation of 0.50–3.15 mm. The authors analysed the water absorption capacity of the superabsorbent polymers under loads characteristic for 3 different densities of soil (1.3 g∙cm−3, 0.9 g∙cm−3, 0.5 g∙cm−3 and three different depths of application (10 cm, 20 cm, and 30 cm. Soil load and bulk densities were simulated by using weights. The experiments were conducted with a Mecmesin Multitest 2.5-xt apparatus. The obtained results demonstrate a very significant reduction in water absorption capacity by SAP under load. For a 30 cm deep layer of soil of bulk density of 1.3 g∙cm−3, after 1 h, this value amounted to 5.0 g∙g−1, and for the control sample without load, this value amounted to more than 200 g∙g−1. For the lowest load in the experiment, which was 0.49 kPa (10 cm deep layer of soil of a bulk density of 0.5 g∙cm−3, this value was 33.0 g∙g−1 after 60 min. Loads do not only limit the volume of the swelling superabsorbent polymer but they also prolong the swelling time. The soil load caused a decrease in the absorption capacity from 338.5 g∙g−1 to 19.3 g∙g−1, as well as a prolongation of the swelling time. The rate parameter (time required to reach 63% of maximum absorption capacity increased from 63 min for the control sample to more than 300 min for the largest analysed

  20. Heat treatments of irradiated uranium oxide in a pressurised water reactor (P.W.R.): swelling and fission gas release; Traitements thermiques de l`oxyde d`uranium irradie dans un reacteur a eau pressurisee (R.E.P.): gonflement et relachement des gaz de fission

    Energy Technology Data Exchange (ETDEWEB)

    Zacharie, I

    1997-03-27

    In order to keep pressurised water reactors at a top level of safety, it is necessary to understand the chemical and mechanical interaction between the cladding and the fuel pellet due to a temperature increase during a rapid change in reactor. In this process, the swelling of uranium oxide plays an important role. It comes from a bubble precipitation of fission gases which are released when they are in contact with the outside. Therefore, the aim of this thesis consists in acquiring a better understanding of the mechanisms which come into play. Uranium oxide samples, from a two cycles irradiated fuel, first have been thermal treated between 1000 deg C and 1700 deg C for 5 minutes to ten hours. The gas release amount related to time has been measured for each treatment. The comparison of the experimental results with a numerical model has proved satisfactory: it seems that the gases release, after the formation of intergranular tunnels, is controlled by the diffusion phenomena. Afterwards, the swelling was measured on the samples. The microscopic examination shows that the bubbles are located in the grain boundaries and have a lenticular shape. The swelling can be explained by the bubbles coalescence and a model was developed based on this observation. An equation allows to calculate the intergranular swelling in function of time and temperature. The study gives the opportunity to predict the fission gases behaviour during a fuel temperature increase. (author) 56 refs.

  1. Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice.

    Directory of Open Access Journals (Sweden)

    Miroslava Anderova

    Full Text Available Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4. As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD or 50 mM K(+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+.

  2. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.

    Science.gov (United States)

    Fang, Aiping; Cathala, Bernard

    2011-01-01

    This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Production bias and void swelling in the transient regime under cascade damage conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Foreman, A.J.E.

    1992-01-01

    Molecular dynamics (MD) studies of collision cascades have firmly established that, in addition to clusters of vacancies, clusters of self-interstitial atoms (SIAs) are formed within the cascade volume during the thermal spike phase of a cascade. These clusters are formed in a segregated fashion such that the vacancy-rich core is surrounded by SIA clusters. At temperatures above stage V the vacancies evaporate from the vacancy cluster and diffuse into the medium whereas the SIA clusters remain thermally stable at temperatures even above the peak swelling temperature. This asymmetry in the production of free and mobile vacancies and SIAs gives rise to a production bias. Some of the vacancies evaporating from the vacancy-rich core annihilate at the SIA clusters surrounding it and others escape into the medium. It is this escaping fraction of vacancies which determines the strength of the production bias. Diffusion calculations have been performed to estimate the magnitude of this escaping fraction of vacancies. The necessary cascade parameters for this calculation are obtained from MD simulation experiments. Almost 80% of vacancies retained in the vacancy-rich core of a 20 keV cascade are found to escape the cascade volume containing SIA clusters. We have taken this escape rate to be effective vacancy production rate in the medium and calculated the temporal evolution of SIA clusters, void size and swelling for fully annealed pure copper under neutron irradiation at 523 K. The general trends of the calculated swelling behaviour are found to be in agreement with experimental results. The present calculations provide further validity and support to the concept of production bias. (Author)

  4. Swelling kinetics and antimicrobial activity of radiolytically synthesized nano-Ag/PVA hydrogels

    International Nuclear Information System (INIS)

    Krstic, J.; Spasojevic, J.; Krkljes, A.; Kacarevic-Popovic, Z.

    2011-01-01

    Complete text of publication follows. Synthesis of nanocomposite materials for biomedical applications, is being systematically developed. The materials having metal nanoparticles incorporated into polymer network have been widely investigated due to their unique properties induced by the synergy of two different materials. Silver nanoparticles (nano-Ag) have been proved to be effective antimicrobial agent and their enhanced antibacterial properties have been demonstrated both in vitro and in vivo. Recent research efforts are directed towards exploiting the in situ synthesis of nano-Ag within polymeric network architectures and products of these approaches are new hybrid nanocomposite systems. Due to characteristic properties such as swellability in water, hydrophilicity, biocompatibility and lack of toxicity, hydrogels have been utilized in a wide range of biological, medical, pharmaceutical and environmental applications. Among different synthetic methods, γ-irradiation induced synthesis has been recognized as highly suitable tool for production of hydrogel nanocomposites due to formation and sterilization of material in one technological step. In this work, the swelling kinetics of PVA and nano-Ag/PVA hydrogels in distilled water and Kokubo's Simulated Body Fluid (SBF), at 25 and 37 deg C, was investigated. The obtained hydrogel nanocomposites had greater swelling capacity and diffusion coefficient compared to PVA hydrogel. Both hydrogel systems show non-Fickian diffusion and Schott second order kinetics, at early and extensive stage of swelling, respectively. Investigated nano-Ag/PVA hydrogel nanocomposites show continuous release of silver over a long period of time and, as consequence, the test of antimicrobial activity was performed. Antimicrobial efficiency was determined by agar-diffusion test and the obtained results clearly show the formation of inhibition zone towards Escherichia coli and Staphylococcus aureus in the case of higher nano

  5. A Critical Evaluation of Survey Results of Vitamin A and Fe Levels in ...

    African Journals Online (AJOL)

    A nationwide survey was conducted to ascertain the levels of Vitamin A and Fe in wheat and maize flours, sugar and vegetable oils and some flour-based processed foods to assess compliance to the Nigerian Industrial Standard. Samples were collected from factories and markets in all the 36 states of the six geopolitical ...

  6. In Situ Swelling Behavior of Chitosan-Polygalacturonic Acid/Hydroxyapatite Nanocomposites in Cell Culture Media

    Directory of Open Access Journals (Sweden)

    Rohit Khanna

    2010-01-01

    Full Text Available The molecular and mechanical characteristics of in situ degradation behavior of chitosan-polygalacturonic acid/hydroxyapatite (Chi-PgA-HAP nanocomposite films is investigated using Fourier Transform Infrared spectroscopy (FTIR, Atomic Force Microscopy (AFM, and modulus mapping techniques for up to 48 days of soaking in cell culture media. The surface molecular structure of media-soaked samples changes over the course of 48 days of soaking, as indicated by significant changes in phosphate vibrations (1200–900 cm−1 indicating apatite formation. Chitosan-Polygalacturonic acid polyelectrolyte complexes (PECs govern structural integrity of Chi-PgA-HAP nanocomposites and FTIR spectra indicate that PECs remain intact until 48 days of soaking. In situ AFM experiments on media-soaked samples indicate that soaking results in a change in topography and swelling proceeds differently at the initial soaking periods of about 8 days than for longer soaking. In situ modulus mapping experiments are done on soaked samples by probing ∼1–3 nm of surface indicating elastic moduli of ∼4 GPa resulting from proteins adsorbed on Chi-PgA-HAP nanocomposites. The elastic modulus decreases by ∼2 GPa over a long exposure to cell culture media (48 days. Thus, as water enters the Chi-PgA-HAP sample, surface molecular interactions in Chi-PgA-HAP structure occur that result in swelling, causing small changes in nanoscale mechanical properties.

  7. Inverse association of leptin levels with renal cell carcinoma: results from a case-control study.

    Science.gov (United States)

    Spyridopoulos, Themistoklis N; Petridou, Eleni Th; Dessypris, Nick; Terzidis, Agapios; Skalkidou, Alkistis; Deliveliotis, Charalambos; Chrousos, George P

    2009-01-01

    Leptin is primarily produced in adipose tissue and appears to play a modulatory role between metabolism and immunity. Given that obesity, a state of chronic inflammation, is an established risk factor for Renal Cell Carcinoma (RCC), we investigated the association between plasma leptin levels and RCC risk. This case-control study included 70 patients with newly diagnosed, histologically confirmed RCC and 280 age-, gender- and district of residence-matched controls. Anthropometric data, socio-demographic variables, medical history, lifestyle habits and dietary data were derived from a personal interview. Serum leptin and adiponectin levels were determined using standard commercial kits. Adjusted odds ratios for RCC risk were derived through multiple logistic regression analyses. Leptin levels were inversely associated with RCC risk (OR: 0.53, CI: 0.28- 0.99, p = 0.05), even after controlling for potential confounding factors, such as Body Mass Index (BMI), recent weight change, history of diabetes mellitus and other obesity related hormones, notably adiponectin. The precise mechanism linking obesity with RCC remains unclear; however, the inverse association of leptin with RCC might be attributed, at least in part, to hormonal cross-talk with complex neuron-endocrine and immune circuits. These findings, if confirmed in prospective and interventional studies, might further elucidate the underlying mechanisms.

  8. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico); Munoz C, J L [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  9. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E. [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico)]. E-mail: ecerezo@unicaribe.edu.mx; Munoz C, J.L. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  10. Prospective evaluation of pain, swelling, and disability from copperhead envenomation.

    Science.gov (United States)

    Roth, Brett; Sharma, Kapil; Onisko, Nancy; Chen, Tiffany

    2016-03-01

    In light of the existing controversy regarding antivenin treatment for copperhead envenomation, a more detailed analysis of the disability from this species is needed. Our objective was to prospectively determine the duration of pain, swelling, and functional disability, i.e., residual venom effects, in patients with copperhead envenomation. Patients with venomous snakebite reported to the North Texas Poison Center between April 2009 and November 2011 were assessed. Patients with confirmed envenomations were contacted by a specialist in poison information. Day zero was the day of the bite and verbal phone consent for study enrollment was obtained at that time. The patient (or their guardian) was contacted by phone daily thereafter, and asked to rate their pain, edema/swelling, and disability using the modified DASH and LEFS scales. Patients were followed to resolution of all symptoms or return to baseline. About 104 cases of venomous snakebite were followed; of which 17 were excluded due to being a dry bites (5) or for having insufficient data during follow-up (11) or due to coagulopathy (1). Overall, residual venom effects from copperhead bites for most patients last between 7 and 13 days. Median time to complete pain resolution was 7 days (mean = 10.7 days). Median length of time to resolution of swelling was 10 days (mean = 13 days) and median length of time to resolution of functional disability was 9 days (mean = 12.2 days). Residual venom effects from copperhead envenomation in this study had a slightly shorter duration than some other studies. Data are skewed due to outliers where residual venom effects lasted for up to 89 days. Initial reoccurrence of some symptoms may be seen. Antivenom (AV) is currently being used for a large percentage of patients with copperhead envenomation. Finally, no differences in duration of venom effects were seen based on age or location of bite. Our study suggests that residual venom effects from copperhead

  11. Influence of smectite hydration and swelling on atrazine sorption behavior.

    Science.gov (United States)

    Chappell, Mark A; Laird, David A; Thompson, Michael L; Li, Hui; Teppen, Brian J; Aggarwal, Vaneet; Johnston, Cliff T; Boyd, Stephen A

    2005-05-01

    Smectites, clay minerals commonly found in soils and sediments, vary widely in their ability to adsorb organic chemicals. Recent research has demonstrated the importance of surface charge density and properties of exchangeable cations in controlling the affinity of smectites for organic molecules. In this study, we induced hysteresis in the crystalline swelling of smectites to test the hypothesis that the extent of crystalline swelling (or interlayer hydration status) has a large influence on the ability of smectites to adsorb atrazine from aqueous systems. Air-dried K-saturated Panther Creek (PC) smectite swelled less (d(001) = 1.38 nm) than never-dried K-PC (d(001) = 1.7 nm) when rehydrated in 20 mM KCl. Correspondingly, the air-dried-rehydrated K-PC had an order of magnitude greater affinity for atrazine relative to the never-dried K-PC. Both air-dried-rehydrated and never-dried Ca-PC expanded to approximately 2.0 nm in 10 mM CaCl2 and both samples had similar affinities for atrazine that were slightly lower than that of never-dried K-PC. The importance of interlayer hydration status in controlling sorption affinity was confirmed by molecular modeling, which revealed much greater interaction between interlayer water molecules and atrazine in a three-layer hydrate relative to a one-layer hydrate. The entropy change on moving atrazine from a fully hydrated state in the bulk solution to a partially hydrated state in the smectite interlayers is believed to be a major factor influencing sorption affinity. In an application test, choice of background solution (20 mM KCl versus 10 mM CaCl2) and air-drying treatments significantly affected atrazine sorption affinities for three-smectitic soils; however, the trends were not consistent with those observed for the reference smectite. Further, extending the initial rehydration time from 24 to 240 h (prior to adding atrazine) significantly decreased the soil's sorption affinity for atrazine. We conclude that interlayer

  12. Thermodynamic data of water on smectite surface and those applications to swelling pressure of compacted bentonite

    International Nuclear Information System (INIS)

    Sato, H.

    2009-01-01

    Swelling pressure was discussed focusing on the thermodynamic properties of water on smectite (montmorillonite) which is the major clay mineral constituent of the bentonite buffer. The thermodynamic data of the water on the smectite surface were obtained as a function of water content and temperature in a range of dry density 0.6-0.9 Mg/m 3 . Purified Na-smectite of which all interlayer cations were exchanged with Na+ ions, was used. The activity (a H 2 O ) and the relative partial molar Gibbs free energy (ΔG H 2 O ) of the water were obtained at 25 C. Both a H 2 O and ΔG H 2 O decreased with a decrease of water content, and similar results were obtained to data reported for montmorillonite (Kunipia-F bentonite). Since the specific surface area of smectite is about 800 m 2 /g, water up to approximately 2 water layers from smectite surface is thermodynamically evaluated to be bound. Swelling pressure versus smectite partial density was calculated based on ΔG H 2 O and compared to data experimentally obtained for various kinds of bentonites. The calculated results were in good agreement with the measured data over the range of smectite partial density between 1.0 and 2.0 Mg/m 3 . (author)

  13. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    Science.gov (United States)

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509

  14. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.

    2009-10-01

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  15. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    Science.gov (United States)

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  16. First results on enzymatic activities in two salt marsh soils under different hydromorphic level and vegetation

    Directory of Open Access Journals (Sweden)

    Carmen Trasar-Cepeda

    2015-12-01

    Full Text Available Salt-marsh soils are soils characterized by non-permanent hydric saturation that, depending on factors like duration of submersion periods, are dominated by different salt-tolerant plant species. The composition of microbial communities is an essential component in trophic dynamics and biogeochemical processes in salt marshes, and determines the level of enzymatic activities, which catalyze the conversion of complex molecules into simpler ones. Despite of this, the enzymatic activities in marsh-soils has not yet been investigated. The aim of this study was to analyze the enzymatic activities in two soil profiles of marsh-soils under different water saturation level and dominated by different plant species [Juncus maritimus Lam and Spartina maritima (Curtis Fernald (Sp]. In both soils, the enzymatic activities were much lower than the levels typically found in terrestrial ecosystems. The enzymatic activities were measured both in air-dried and in re-moistened and incubated soil samples. In air-dried samples, the enzymatic activities were higher in Juncus than in Spartina soil and tended to decrease with depth, being sharper the decrease in Juncus than in Spartina soil. Re-moistened and pre-incubated soils showed a general increase in all the enzymatic activities and throughout the whole soil profile, especially in Spartina soils. Hydrolase activities showed a strong and positive relationship with organic matter content both in air-dried and in re-moistened soil samples, higher in these latter. In general, oxidoreductase activities only showed this relationship in re-moistened soil samples. More studies, preferably using freshly collected soil samples, are needed to understand the relationship between enzymatic activities and these environmental conditions.

  17. New results on order and spacing of levels for two- and three-body systems

    International Nuclear Information System (INIS)

    Grosse, H.; Martin, A.; Richard, J.M.; Taxil, P.

    1987-01-01

    The authors propose sufficient conditions on the potential binding a two-body system to compare; the energy of a state with angular momentum iota+1 to the average of the energies of the neighbouring states with angular momentum iota, the spacings of the successive iota = O excitations. Applications to quarkonium physics are given. The authors also find a condition giving the sign of the parameter Δ controlling the pattern of levels obtained by perturbing the lowest positive parity excitation of a three-body system bound by harmonic oscillator two body forces

  18. Unconscious fearful priming followed by a psychosocial stress test results in higher cortisol levels.

    Science.gov (United States)

    Hänsel, Alexander; von Känel, Roland

    2013-10-01

    Human perception of stress includes an automatic pathway that processes subliminal presented stimuli below the threshold of conscious awareness. Subliminal stimuli can therefore activate the physiologic stress system. Unconscious emotional signals were shown to significantly moderate reactions and responses to subsequent stimuli, an effect called 'priming'. We hypothesized that subliminal presentation of a fearful signal during the Stroop task compared with an emotionally neutral one will prime stress reactivity in a subsequently applied psychosocial stress task, thereby yielding a significant increase in salivary cortisol. Half of 36 participants were repeatedly presented either a fearful face or a neutral one. After this, all underwent a psychosocial stress task. The fearful group showed a significant increase in cortisol levels (p = 0.022). This change was not affected by sex, age and body mass index, and it also did not change when taking resting cortisol levels into account. Post-hoc analyses showed that the increase in cortisol in the fearful group started immediately after the psychosocial stress test. Hence, subliminal exposure to a fearful signal in combination with the Stroop and followed by a psychosocial stress test leads to an increase in stress reactivity. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Radon levels in underground workplaces – results of a nationwide survey in Italy

    International Nuclear Information System (INIS)

    Trevisi, Rosabianca; Orlando, Claudia; Orlando, Paolo; Amici, Mario; Simeoni, Carla

    2012-01-01

    In Italy an extensive survey has been carried out with the aim to evaluate annual average radon concentration in underground workplaces. The survey covered 933 underground rooms located in 311 bank workplaces spread throughout in all Italian regions; at this scope the sampling was stratified random in order to be representative on national scale. The annual radon concentration was estimated by using passive radon dosemeters (NRPB/SSI type holder and CR-39 as detector): the devices were exposed for a period of about 3 months and 4 cycles were performed to cover a solar year. The radon levels in underground workplaces ranged from 27 to 4851 Bq/m 3 with an overall mean value of 153 Bq/m 3 . As expected, radon distribution is not uniform throughout Italy: in several regions high radon annual averages have been found, confirming previous surveys. The analysis of data shows a high variability among regions and intra-region but low spread among rooms belonging to the same workplace. About 5% of underground workplaces displayed radon concentration exceeding 400 Bq/m 3 , and the 4.4% exceeds 500 Bq/m 3 , the national action level for the exposure to natural radioactivity in workplaces.

  20. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.