WorldWideScience

Sample records for level radiation sources

  1. Radiation sources, radiation environment and risk level at Dubna

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1991-01-01

    The overall information about ionizing radiation sources, which form radiation environment and risk at Dubna, is introduced. Systematization of the measurement results is performed on the basis of the effective dose and losses of life expectancy. The contribution of different sources to total harm of Dubna inhabitants has been revealed. JINR sources carry in ∼ 4% from the total effective dose of natural and medicine radiation sources; the harm from them is much less than the harm from cigarette smoking. 18 refs.; 2 tabs

  2. Approaches to assign security levels for radioactive substances and radiation sources

    International Nuclear Information System (INIS)

    Ivanov, M.V.; Petrovskij, N.P.; Pinchuk, G.N.; Telkov, S.N.; Kuzin, V.V.

    2011-01-01

    The article contains analyzed provisions on categorization of radioactive substances and radiation sources according to the extent of their potential danger. Above provisions are used in the IAEA documents and in Russian regulatory documents for differentiation of regulatory requirements to physical security. It is demonstrated that with the account of possible threats of violators, rules of physical protection of radiation sources and radioactive substances should be amended as regards the approaches to assign their categories and security levels [ru

  3. Assessment of environmental gamma radiation levels at locations having different source characteristics using TLDs

    International Nuclear Information System (INIS)

    Sahu, S.K.; Swarnkar, M.; Takale, R.A.; Shetty, P.G.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Naturally occurring radionuclides are the major contributor to the total effective dose of ionizing radiation received by the population (UNSCEAR, 1993). The dose in environment thus depends largely on natural radiation than manmade or artificially produced radiation. In the last few decades, there is a growing concern all over the world about radiation and their exposure to population. Thus, it is a necessity to conduct frequent radiological environmental surveillance in order to assess population exposure accurately. Recently, application of thermoluminescence dosimeters (TLDs) has been extended to the measurement of mixed radiation field as encountered in the environment. The advantages of passive TL dosimeters for environmental monitoring are that they are small, cheap and do not require power supply during application. The passive TL dosimeters play an important role to provide data on natural background radiation and to determine the contribution to the dose to public from man-made sources. In the present study, three different sites were chosen to compare environmental gamma radiation levels in different scenarios. Kaiga has been chosen as site 1, where four unit of pressurized heavy water reactor (PHWR) of 220 MWe each are in operation. Site 2 is chosen at natural high background radiation area (NHBRA) of Kerala and Vishakhapatnam was chosen as site 3, which is situated at a normal background area. The objective of the study is to illustrate the effect, if any, of an operating nuclear power reactor on environmental gamma radiation levels

  4. Alternative high-level radiation sources for sewage and waste-water treatment

    International Nuclear Information System (INIS)

    Ballantine, D.S.

    1975-01-01

    The choice of an energy source for the radiation treatment of waste-water or sludge is between an electron accelerator or a gamma-ray source of radioactive cobalt or caesium. A number of factors will affect the ultimate choice and the potential future adoption of radiation as a treatment technique. The present and future availability of radioactive sources of cobalt and caesium is closely linked to the rate of nuclear power development and the assumption by uranium fuel reprocessors of a role as radioactive caesium suppliers. Accelerators are industrial machines which could be readily produced to meet any conceivable market demand. For energy sources in the 20-30 kW range, electron accelerators appear to have an initial capital cost advantage of about seven and an operating cost advantage of two. While radioisotope sources are inherently more reliable, accelerators at voltages to 3 MeV have achieved a reliability level adequate to meet the demands of essentially continuous operations with moderate maintenance requirements. The application of either energy source to waste-water treatment will be significantly influenced by considerations of the relative penetration capability, energy density and physical geometrical constraints of each option. The greater range of the gamma rays and the lower energy density of the isotopic sources permit irradiation of a variety of target geometrics. The low penetration of electrons and the high-energy density of accelerators limit application of the latter to targets presented as thin films of several centimetres thickness. Any potential use of radiation must proceed from a clear definition of process objectives and critical comparison of the radiation energy options for that specific objective. (Author)

  5. Sources of pulsed radiation

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table

  6. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  7. New sources of radiation

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1979-09-01

    An attempt is made to select examples of radiation sources whose application may make new or unconventional demands on radiation protection and dosimetry. A substantial body of knowledge about high energy facilities exists and, partly for this reason, the great high energy accelerators are mentioned only briefly

  8. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  9. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  10. Radiation Source Replacement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  11. Categorization of radiation sources

    International Nuclear Information System (INIS)

    Antonova, M.

    2000-01-01

    Through one-parameter (factor) analysis it is proved a hypothesis that the value of a radiation source (RS) activity of an application correlates with the category (the rank) given to it by the IAEA categorization although it is based on other parameters of the RS applications (practices like devices with radiation sources in industry, science, medicine and agriculture). The principles of the new IAEA categorization, taking into account the potential harm the sources may cause and the necessary regulatory control, are described. (author)

  12. Synchroton Radiation Sources

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Williams, G.P.

    1998-01-01

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light

  13. Safe handling of radiation sources

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    This chapter discussed the subjects related to the safe handling of radiation sources: type of radiation sources, method of use: transport within premises, transport outside premises; Disposal of Gamma Sources

  14. Categorization of radiation sources

    International Nuclear Information System (INIS)

    2000-12-01

    The objective of this report is to develop a categorization scheme for radiation sources that could be relevant to decisions both in a retrospective application to bring sources under control and in a prospective sense to guide the application of the regulatory infrastructure. The Action Plan envisages that the preparation of guidance on national strategies and programmes for the detection and location of orphan sources and their subsequent management should commence after the categorization of sources has been carried out. In the prospective application of the system of notification, registration, and licensing, the categorization is relevant to prioritize a regulatory authority's resources and training activities; to guide the degree of detail necessary for a safety assessment; and to serve as a measure of the intensity of effort which a regulatory authority should apply to the safety and security of a particular type of source

  15. Radiation sources working group summary

    International Nuclear Information System (INIS)

    Fazio, M.V.

    1998-01-01

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, components technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigation, and phenomena that impact source design such as fatigue in resonant structures due to RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations

  16. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  17. Tuned sources of submillimetre radiation

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.

    1981-01-01

    The main present directions of development of sources of frequency coherent tuned radiation of electromagnetic waves in the submillimeter range: nonlinear mixing of different frequencies; semiconductor lasers; molecular lasers with optical pumping; relativistic electron beams in a magnetic field as submillimeter radiation sources; submillimeter radiation sources on the basis of SHF classical electrovacuum devices - are considered. The designs of generator systems and their specifications are presented. The main parameters of electromagnetic radiation of different sources, such as: power, stability, frequency, tuning range - are presented. The methods of improving sources and electromagnetic radiation parameters are proposed. The examples of possible applications of submillimeter radiation in different spheres of science and technology are given [ru

  18. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  19. Radiation sources and process

    International Nuclear Information System (INIS)

    Honious, H.B.; Janzow, E.F.; Malson, H.A.; Moyer, S.E.

    1980-01-01

    The invention relates to radiation sources comprising a substrate having an electrically-conductive non-radioactive metal surface, a layer of a metal radioactive isotope of the scandium group, which in addition to scandium, yttrium, lanthanum and actinium, includes all the lanthanide and actinide series of elements, with the actinide series usually being preferred because of the nature of the radioactive isotopes therein, particularly americium-241, curium-244, plutonium-238, californium-252 and promethium-147, and a non-radioactive bonding metal codeposited on the surface by electroplating the isotope and bonding metal from an electrolytic solution, the isotope being present in the layer in minor amount as compared to the bonding metal, and with or without a non-radioactive protective metal coating covering the isotoype and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating. The invention also relates to a process for providing radiation sources comprising codepositing a layer of the metal radioactive isotope with a non-radioactive bonding metal from an electrolytic solution in which the isotope is present in minor molar amount as compared to the bonding metal such that the codeposited layer contains a minor molar amount of the isotope compared to the bonding metal by electroplating on an electrically-conductive non-radioactive metal surface of a cathode substrate, and with or without depositing a nonradioactive protective metal coating over the isotope and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating

  20. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  1. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Martine, Remy-Jardin; Colas, Lucie; Jean-Baptiste, Faivre; Remy, Jacques [CHU Lille (EA 2694) University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Santangelo, Teresa [CHU Lille (EA 2694) University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Bambino Gesu Children' s Hospital, Department of Imaging, Rome (Italy); Duhamel, Alain [University of Lille (EA 2694), Department of Biostatistics, CHU Lille, Lille (France); Deschildre, Antoine [CHU Lille - University of Lille, Department of Pediatric Pulmonology, Lille (France)

    2017-02-15

    The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution. To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children. We retrospectively recorded the dose-length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10-20 kg, n = 176); group 3 (20-30 kg, n = 99), group 4 (30-40 kg, n = 58) and group 5 (40-49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage. CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol{sub 32}) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP{sub 32} was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP{sub 32}, CTDI{sub vol32} and SSDE were found to be statistically significant in the five weight categories (P < 0.0001). This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15-37 mGy.cm for the DLP{sub 32}, 0.78-1.25 mGy for the CTDI{sub vol32} and 1.6-2.1 mGy for the SSDE. (orig.)

  2. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

    International Nuclear Information System (INIS)

    Martine, Remy-Jardin; Colas, Lucie; Jean-Baptiste, Faivre; Remy, Jacques; Santangelo, Teresa; Duhamel, Alain; Deschildre, Antoine

    2017-01-01

    The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution. To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children. We retrospectively recorded the dose-length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10-20 kg, n = 176); group 3 (20-30 kg, n = 99), group 4 (30-40 kg, n = 58) and group 5 (40-49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage. CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol 32 ) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP 32 was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP 32 , CTDI vol32 and SSDE were found to be statistically significant in the five weight categories (P < 0.0001). This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15-37 mGy.cm for the DLP 32 , 0.78-1.25 mGy for the CTDI vol32 and 1.6-2.1 mGy for the SSDE. (orig.)

  3. Natural sources of ionizing radiations

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Natural sources of ionizing radiations are described in detail. The sources are subdivided into sources of extraterrestrial origin (cosmic radiation) and sources of terrestrial origin. Data on the concentration of different nuclides in rocks, various soils, ground waters, atmospheric air, tissues of plants and animals, various food stuffs are presented. The content of natural radionuclides in environmental objects, related to human activities, is discussed

  4. Low-level radiation

    International Nuclear Information System (INIS)

    Myers, D.K.

    1982-05-01

    It is known that the normal incidence of cancer in human populations is increased by exposure to moderately high doses of ionizing radiation. At background radiation levels or at radiation levels which are 100 times greater, the potential health risks are considered to be directly proportional to the total accumulated dose of radiation. Some of the uncertainties associated with this assumption and with the accepted risk estimates have been critically reviewed in this document. The general scientific consensus at present suggests that the accepted risk estimates may exaggerate the actual risk of low levels of sparsely ionizing radiations (beta-, gamma- or X-rays) somewhat but are unlikely to overestimate the actual risks of densely ionizing radiations (fast neutrons, alpha-particles). At the maximum permissible levels of exposure for radiation workers in nuclear power stations, the potential health hazards in terms of life expectancy would be comparable to those encountered in transportation and public utilities or in the construction industry. At the average radiation exposures received by these workers in practice, the potential health hazards are similar to those associated with safe categories of industries. Uranium mining remains a relativly hazardous occupation. In terms of absolute numbers, the genetic hazards, which are less well established, are thought to be smaller than the carcinogenic hazards of radiation when only the first generation is considered but to be of the same order of magnitude as the carcinogenic hazards when the total number of induced genetic disorders is summed over all generations

  5. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  6. Conditioning of low level radioactive wastes, spent radiation sources and their transport at the interim storage building of the Institute of Nuclear Physics in Albania

    International Nuclear Information System (INIS)

    Qafmolla, L.

    2000-01-01

    Aspects of treatment and management of radioactive wastes resulting from the use of radiation sources and radioisotopes in research, medicine and industry, are described. The methods applied for the conditioning of low-level radioactive wastes and spent radiation sources are simple. Solid radioactive wastes with low-level activity, after accumulation, minimization, segregation and measurement, are burned or compressed in a simple compactor of the PGS type. Spent radiation sources are placed into 200 l drums, are cemented and conditioned. Conditioned drums from the Radiation Protection Division of the Institute of Nuclear Physics (INP), which is the responsible Institution for the treatment and management of radioactive wastes in Albania, are transported to the interim storage building of the Institute of Nuclear Physics in Tirana. Work to construct a new building for treatment and management of radioactive wastes and spent radiation sources within the territory of INP is underway. Funds have been allocated accordingly: based on the Law No. 8025 of 25.11.1995, it is the Albanian Government's responsibility to finance activities concerned with the treatment and management of radioactive wastes generating from the use of ionizing radiation in science, medicine and industry in the country. (author)

  7. Incidents with hazardous radiation sources

    International Nuclear Information System (INIS)

    Schoenhacker, Stefan

    2016-01-01

    Incidents with hazardous radiation sources can occur in any country, even those without nuclear facilities. Preparedness for such incidents is supposed to fulfill globally agreed minimum standards. Incidents are categorized in incidents with licensed handling of radiation sources as for material testing, transport accidents of hazardous radiation sources, incidents with radionuclide batteries, incidents with satellites containing radioactive inventory, incidents wit not licensed handling of illegally acquired hazardous radiation sources. The emergency planning in Austria includes a differentiation according to the consequences: incidents with release of radioactive materials resulting in restricted contamination, incidents with release of radioactive materials resulting in local contamination, and incidents with the hazard of e@nhanced exposure due to the radiation source.

  8. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    International Nuclear Information System (INIS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-01-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  9. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe

    2012-01-01

    -conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  10. The sources of radiation exposure

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1992-01-01

    Radiation protection of workers and of members of the public requires an assessment of the various sources of exposure, their variations in time or under specific conditions or circumstances, and the possibilities for control or limitation. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has evaluated the various components of natural and man-made sources in some detail. Natural exposures form the largest component of radiation exposure of man. Variability in exposures depends on elevation, the concentrations of radionuclides in soil, food and water, the composition of building materials and the susceptibility of indoor spaces to radon build-up. Man-made sources have included exposures to fallout from atmospheric nuclear testing and discharged from nuclear fuel cycle installations in routine operations or in accidents. The other main source of radiation exposures of individuals is in medical diagnostic examinations and therapeutic treatments. (author)

  11. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  12. Searching for Orphan radiation sources

    International Nuclear Information System (INIS)

    Bystrov, Evgenij; Antonau, Uladzimir; Gurinovich, Uladzimir; Kazhamiakin, Valery; Petrov, Vitaly; Shulhovich, Heorhi; Tischenko, Siarhei

    2008-01-01

    Full text: The problem of orphan sources cannot be left unaddressed due high probability of accidental exposure and use of sources for terrorism. Search of objects of this kind is complex particularly when search territory is large. This requires devices capable of detecting sources, identifying their radionuclide composition, and correlating scan results to geographical coordinates and displaying results on a map. Spectral radiation scanner AT6101C can fulfill the objective of search for gamma and neutron radiation sources, radionuclide composition identification, correlation results to geographical coordinates and displaying results on a map. The scanner consists of gamma radiation scintillation detection unit based on NaI(Tl) crystal, neutron detection unit based on two He 3 counters, GPS receiver and portable ruggedized computer. Built-in and application software automates entire scan process, saving all results to memory for further analysis with visual representation of results as spectral information diagrams, count rate profile and gamma radiation dose rates on a geographical map. The scanner informs operator with voice messages on detection of radiation sources, identification result and other events. Scanner detection units and accessories are packed in a backpack. Weighing 7 kg, the scanner is human portable and can be used for scan inside cars. The scanner can also be used for radiation mapping and inspections. (author)

  13. Radiation Level Changes at RAM Package Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Opperman, Erich [Washington Savannah River Company; Hawk, Mark B [ORNL; Kapoor, Ashok [U.S. Department of Energy, Office of Packaging and Transportation; Natali, Ronald [R. B. Natali Consulting, Inc.

    2010-01-01

    This paper will explore design considerations required to meet the regulations that limit radiation level variations at external surfaces of radioactive material (RAM) packages. The radiation level requirements at package surfaces (e.g. TS-R-1 paragraphs 531 and 646) invoke not only maximum radiation levels, but also strict limits on the allowable increase in the radiation level during transport. This paper will explore the regulatory requirements by quantifying the amount of near surface movement and/or payload shifting that results in a 20% increase in the radiation level at the package surface. Typical IP-2, IP-3, Type A and Type B packaging and source geometries will be illustrated. Variations in surface radiation levels are typically the result of changes in the geometry of the surface due to an impact, puncture or crush event, or shifting and settling of radioactive contents.

  14. Background radiation levels and standards for protection from ionizing radiations

    International Nuclear Information System (INIS)

    Farai, I.

    1999-01-01

    Apart from the amount of radiation which a worker may receive while he performs his work, he is also exposed to radiation because of the nature of his environment. In other words, all individuals are subject to some irradiation even though they may not work with radioactive substances. This source of radiation exposure is often referred to as background radiation. In most environments, it is low-level and can be grouped into two natural and man-made. Background radiation provides the basis on which allowable exposure limits for workers are drawn

  15. Assessment of risk from radiation sources

    International Nuclear Information System (INIS)

    Subbaratnam, T.; Madhvanath, U.; Somasundaram, S.

    1976-01-01

    Assessment of risk from exposure to ionizing radiations from man-made radiation sources and nuclear installations has to be viewed from three aspects, namely, dose-effect relationship (genetic and somatic) for humans, calculation of doses or dose-commitments to population groups, assessment of risk to radiation workers and the population at large from the current levels of exposure from nuclear industry and comparison of risk estimates with other industries in a modern society. These aspects are discussed in brief. On the basis of available data, it is shown that estimated incidence of genetic diseases and cancers due to exposure of population to radiation from nuclear industry is negligible in comparison with their natural incidence, and radiation risks to the workers in nuclear industry are much lower than the risks in other occupations. (M.G.B.)

  16. Overview of terahertz radiation sources

    International Nuclear Information System (INIS)

    Gallerano, G.P.; Biedron, S.G.

    2004-01-01

    Although terahertz (THz) radiation was first observed about hundred years ago, the corresponding portion of the electromagnetic spectrum has been for long time considered a rather poorly explored region at the boundary between the microwaves and the infrared. This situation has changed during the past ten years with the rapid development of coherent THz sources, such as solid state oscillators, quantum cascade lasers, optically pumped solid state devices and novel free electron devices, which have in turn stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. For a comprehensive review of THz technology the reader is addressed to a recent paper by P. Siegel. In this paper we focus on the development and perspectives of THz radiation sources.

  17. Fabrication of sealed radiation sources

    International Nuclear Information System (INIS)

    Mars, Jean.

    1977-01-01

    The description is given for fabricating a sealed radiation source, consisting in depositing on a metal substrate a thin active coat of a radioelement, termed first coat, submitting this coated substrate to an oxidation treatment in order to obtain on the first coat an inactive coat of an oxide of the metal, termed second coat, and depositing a coat of varnish on this second inactive coat [fr

  18. Radiation Sources Working Group Summary Report

    International Nuclear Information System (INIS)

    Fazio, Michael V.

    1999-01-01

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, component technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigarion, and phenomena that impact source design such as fatigue in resonant structures due to pulsed RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations

  19. Radiation Sources Working Group Summary Report

    International Nuclear Information System (INIS)

    Fazio, M.V.

    1999-01-01

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, component technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigarion, and phenomena that impact source design such as fatigue in resonant structures due to pulsed RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations. copyright 1999 American Institute of Physics

  20. Radiation sources and technical services

    International Nuclear Information System (INIS)

    Stonek, K.; Satorie, Z.; Vyskocil, I.

    1981-01-01

    Work is briefly described of the department for sealed sources production of the Institute, including leak testing and surface contamination of sealed sources. The department also provides technical services including the inspections of sealed sources used in medicine and geology and repair of damaged sources. It carries out research of the mechanical and thermal strength of sealed sources and of the possibility of reprocessing used 226 Ra sources. The despatch department is responsible for supplying the entire country with home and imported radionuclides. The department of technical services is responsible for testing imported radionuclides, assembling materials testing, industrial and medical irradiation devices, and for the collection and storage of low-level wastes on a national scale. (M.D.)

  1. Radiation studies in the antiproton source

    International Nuclear Information System (INIS)

    Church, M.

    1990-01-01

    Experiment E760 has a lead glass (Pb-G) calorimeter situated in the antiproton source tunnel in the accumulator ring at location A50. This location is exposed to radiation from several sources during antiproton stacking operations. A series of radiation studies has been performed over the last two years to determine the sources of this radiation and as a result, some shielding has been installed in the antiproton source in order to protect the lead glass from radiation damage

  2. Human exposure to low level ionising radiation

    International Nuclear Information System (INIS)

    Paix, David

    1988-01-01

    This paper describes the low-level radiation sources and their effects on human populations, from a global perspective. 'Low-level' means exposures in the range of the natural background to which everybody is exposed. The quoted values are whole-world averages, but individual variations are mentioned in a few cases. (author). 22 refs

  3. The HAW project. Test storage of high-level radiation sources in the Asse salt mine. Documentation and assessment of the storage system

    International Nuclear Information System (INIS)

    Mueller, K.; Rothfuchs, T.

    1994-01-01

    The HAW project aimed primarily at studying the interaction between high-level radioactive waste moulds and rock salt as the respository medium. Another priority was the prototype development and testing of a technical system for the emplacement of high-level radioactive moulds in deep storage boreholes. To simulate real high-level radioactive wastes, special high-level radiation sources (Cs-137, Sr-90) were produced in the United States of America under a German-American cooperation contract, for carrying out the tests at the Asse salt mine. The components of the storage system are described, their position and task within the entire handling procedure explained. Questions of radiation protection and accident protection, of functioning and operating reliability, of quality assurance and examination of documents, materials, of manufacture and functioning, and of documentation are dealt with in detail. With a view to the planning of storage techniques for a mine respository, the experience of development and operation is recorded, and recommendation of further developments are given. Problems which arose during work on the HAW project were partly due to test-specific reasons and will not or not in this form occur in a mine respository. It was planned to start the test emplacement in 1987, and it could have been executed in 1993 after appropriate preparation and approval of the storage system by the mining authority and the Hanover TUEV in 1991. In December 1992, however, the Federal Government decided to give up to the project due to the uncertain licensing situation, and to immediately stop all preparatory work. (orig./HP) [de

  4. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    packages for shipment of radiation sources; State registration of radiation sources; licensing of radiation material transportation. In 1997, the Government of Ukraine decided to establish a unified computerized system of accountancy, control and registration of radiation sources - the State Register of Radiation Sources (Register). In 1998, under the Ukrainian State Production Enterprise 'Isotope' a separate subdivision 'State Register of Radiation Sources' was established. This subdivision functions as the main registration centre, and has been supplied with computer equipment with the assistance of the IAEA. During 1999-2000, the basic documents that regulate the legal status of the Register, the radiation source registration procedure and the State inventory of radiation source procedure were developed and approved by the relevant ministries. Urgent commissioning of the Register and starting the State registration of radiation sources will form a good basis for considerable upgrading of the level of safety and security of radiation sources, reduction of illicit trafficking in radiation sources, and investigation of illicit trafficking cases. Lack of funds is the main problem impeding the commissioning of the Register. On the basis of analysis of safety regulation system for activities dealing with radiation sources in Ukraine, we can draw a conclusion about its sufficiency for effective safety regulation of radiation sources and security of radioactive materials. (author)

  5. Ambient radioactivity levels and radiation doses. Annual report 2011

    International Nuclear Information System (INIS)

    Bernhard-Stroel, Claudia; Hachenburger, Claudia; Trugenberger-Schnabel, Angela; Peter, Josef

    2013-07-01

    The annual report 2011 on ambient radioactivity levels and radiation doses covers the following issues: Part A: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. Part B; Current data and their evaluation: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. The Appendix includes Explanations of terms, radiation doses and related units, external and internal radiation exposure, stochastic and deterministic radiation effects, genetic radiation effects, induction of malignant neoplasm, risk assessment, physical units and glossary, laws, ordinances, guidelines, recommendations and other regulations concerning radiation protection, list of selected radionuclides.

  6. Regulatory control of radiation sources in Slovakia

    International Nuclear Information System (INIS)

    Auxtova, L.

    2001-01-01

    In Slovakia, there are two regulatory authorities. Regulatory control of the utilization of nuclear energy, based on the Slovak National Council's law No. 130/1998 on the peaceful uses of nuclear energy, is exercised by the Nuclear Regulatory Authority of the Slovak Republic. The second regulatory authority - the Ministry of Health - is empowered by law No. 72/1994 on the protection of human health to license radiation sources and is responsible for radiation protection supervision (there are nearly 3000 establishments with sealed sources, radiation generators and unsealed sources in Slovakia). Pursuant to a new radiation protection regulation based on international standards, radiation sources are to be categorized in six classes according to the associated exposure and contamination hazards. A national strategy for improving the safety of radiation sources over their life-cycle and for the management of disused and orphan sources is being prepared for governmental approval. (author)

  7. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  8. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    Loken, M.K.

    1983-01-01

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  9. Radiation attenuation gauge with magnetically coupled source

    International Nuclear Information System (INIS)

    Wallace, S.A.

    1978-01-01

    Disclosed is a radiation attenuation gauge for measuring thickness and density of a material which includes, in combination, a source of gamma radiation contained within a housing of magnetic or ferromagnetic material, and a means for measuring the intensity of gamma radiation. The measuring means has an aperture and magnetic means disposed adjacent to the aperture for attracting and holding the housed source in position before the aperture. The material to be measured is placed between the source and the measuring means

  10. Control of radiation sources in Japan

    International Nuclear Information System (INIS)

    Maki, S.

    2001-01-01

    The report refers to the regulations for radioactive material in force in Japan, and to the organizations with responsibilities for regulating radiation sources. An outline of the law regulating the use of radiation sources and radioactive materials is provided, including its scope, types of radiation sources under control, exemptions and the system of notification, authorization and inspection. The experience of Japan with orphan sources is presented in three different cases, and the measures carried out to store the orphan sources in safe conditions. (author)

  11. Regulation for radiation protection in applications of radiation sources

    International Nuclear Information System (INIS)

    Sonawane, Avinash U.

    2016-01-01

    Applications of ionising radiation in multifarious field are increasing in the country for the societal benefits. The national regulatory body ensures safety and security of radiation sources by enforcing provisions in the national law and other relevant rules issued under the principle law. In addition, the enforcement of detailed requirements contained in practice specific safety codes and standard and issuance of safety directives brings effectiveness in ensuring safe handling and secure management of radiation sources. The regulatory requirements for control over radiation sources throughout their life-cycle have evolved over the years from experience gained. Nevertheless, some of the regulatory activities which require special attention have been identified such as the development of regulation to deal with advance emerging radiation technology in applications of radiation in medicine and industry; sustaining continuity in ensuring human resource development programme; inspections of category 3 and 4 disused sources and their safe disposal; measures for controlling transboundary movement of radiation sources. The regulatory measures have been contemplated and are being enforced to deal with the above issues in an effective manner. The complete involvement of the management of radiation facilities, radiation workers and their commitment in establishing and maintaining safety and security culture is essential to handle the radiation sources safely and efficiently at all times

  12. Radiation protection problems with sealed Pu radiation sources

    International Nuclear Information System (INIS)

    Naumann, M.; Wels, C.

    1982-01-01

    A brief outline of the production methods and most important properties of Pu-238 and Pu-239 is given, followed by an overview of possibilities for utilizing the different types of radiation emitted, a description of problems involved in the safe handling of Pu radiation sources, and an assessment of the design principles for Pu-containing alpha, photon, neutron and energy sources from the radiation protection point of view. (author)

  13. Radiation effects on light sources and detectors

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1985-01-01

    The rapidly expanding field of optoelectronics includes a wide variety of both military and non-military applications in which the systems must meet radiation exposure requirements. Herein, we review the work on radiation effects on sources and detectors for such optoelectronic systems. For sources the principal problem is permanent damage-induced light output degradation, while for detectors it is ionizing radiation-induced photocurrents

  14. Regulated control of practices and radiation sources

    International Nuclear Information System (INIS)

    1992-01-01

    Excepting the radiation caused by the natural background radiation, the Executive Secretariat for Nuclear Affairs (SEAN) does not authorize any source no practice within the national territory that may imply exposure of a person to ionizing radiation unless this use is ruled. This document establishes the basic criteria to set up such system as well as to exclude or exempt practices and sources from this regulated control

  15. Radiation exposure by using unsealed radiation sources

    International Nuclear Information System (INIS)

    Preitfellner, J.

    1999-05-01

    Investigations on patients using radioactive substances are performed on a routinely basis in nuclear medicine facilities at many hospitals in our days. These investigations are performed by administering a radiopharmacon to the patient which, depending on several parameters, remains in the body of the patient for various periods of time. All these investigations have in common a g-ray exposure of the environment by the radioactive substance in the body of the patient. Among others, doctors, technical personnel, cleaning personnel, and accompanying persons of patients are exposed to g-rays. Based on these facts, the degree of danger for persons who get into contact with these patients is repeatedly questioned. An additional problem is the health risk of persons employed at a nuclear medicine facility. To answer the first question, the local dose rate in the environment of 102 patients was evaluated immediately after application of the radioactive substance, in intervals from 30 minutes up to several hours, over a period of up to 2 weeks. Depending on the nature of the investigation, the patients were subdivided into 6 groups of 16-20 persons. From the data measured, the effective and the biological half life as well as the local dose were computed. With the aid of concrete case examples, the possible radiation exposure for contact persons was estimated. Postulating unfavorable local and temporal factors in our estimations, the actual radiation exposure is to be estimated about 10-30 % lower. As a reference value for the danger of persons, the maximum permissible boundary values from the Austrian Regulations for Protection against Radiation were used. Referring to these boundary values, for none of the six nuclear medicine investigation methods a danger for contact persons could be derived, indicating that available security measures offer a sufficient protection for affected contact persons. To answer the question about the risk for persons employed at a nuclear

  16. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  17. Radiation safety and inventory of sealed radiation sources in Pakistan

    International Nuclear Information System (INIS)

    Ali, M.; Mannan, A.

    2001-01-01

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  18. Radiation sources and methods for producing them

    International Nuclear Information System (INIS)

    Malson, H.A.; Moyer, S.E.; Honious, H.B.; Janzow, E.F.

    1979-01-01

    The radiation sources contain a substrate with an electrically conducting, non-radioactive metal surface, a layer of a metal isotope of the scandium group as well as a percentage of non-radioactive binding metal being coated on the surface by means of an electroplating method. Besides examples for β sources ( 147 Pm), γ sources ( 241 Am), and neutron sources ( 252 Cf) there is described an α-radiation source ( 241 Am, 244 Cu, 238 Pu) for smoke detectors. There are given extensive tables and a bibliography. (DG) [de

  19. Sources of radiation exposure - an overview

    International Nuclear Information System (INIS)

    Mason, G.C.

    1990-01-01

    Sources of radiation exposure are reviewed from the perspective of mining and milling of radioactive ores in Australia. The major sources of occupational and public exposure are identified and described, and exposures from mining and milling operations are discussed in the context of natural radiation sources and other sources arising from human activities. Most radiation exposure of humans comes from natural sources. About 80% of the world average of the effective dose equivalents received by individual people arises from natural radiation, with a further 15-20% coming from medical exposures*. Exposures results from human activities, such as mining and milling of radioactive ores, nuclear power generation, fallout from nuclear weapons testing and non-medical use of radioisotopes and X-rays, add less than 1% to the total. 9 refs., 4 tabs., 10 figs

  20. There are radiation sources out there!

    International Nuclear Information System (INIS)

    Bahran, M.Y.

    2001-01-01

    During the past few years we have been working in the area of the safety of radiation sources and radioactive materials. In this paper we summarize our findings and describe the recovery of an abandoned source. We call for further international co-operation in this area. In particular, we suggest an international system for the tagging and tracking of radioactive sources. (author)

  1. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  2. Radiation Safety and Orphan Sources

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    The wide spread use of radioactive and particularly of nuclear materials which started in the last century very quickly also demonstrated negative sides. The external exposure and radiotoxicity of these materials could be easily used in a malevolent act. Due to the fact that these materials could not be detected without special equipment designed for that purpose, severe control over their use in all phases of a life cycle is required. An orphan source is a radioactive source which is not under regulatory control, either because it has never been under regulatory or because it has been abandoned, lost, misplaced, stolen or transferred without proper authorization. In the last ten years a few international conferences were dedicated to the improvement of the safety and security of radioactive sources. Three main tasks are focused, the maintenance of data bases related to events with orphan sources and the publications of such events, the preparation of recommendations and guidelines to national regulatory bodies in order to prevent and detect the events related to orphan sources as well as to develop the response strategies to radiological or nuclear emergency, appraisals of the national strategies of radioactive sources control. Concerning Slovenia, strengthening control over orphan sources in Slovenia started after the adoption of new legislation in 2002. It was carried out through several tasks with the aim to prevent orphan sources, as well as to identify the sources which could be potentially orphan sources. The comprehensive methodology was developed by the Slovenian nuclear safety administration (S.N.S.A.) based on international guidelines as well as on the study of national lesson learned cases. The methodology was developed and used in close cooperation with all parties involved, namely other regulatory authorities, police, customs, agency for radioactive waste management (A.R.A.O.), technical support organisations (T.S.O.), users of source, authorised

  3. Radiation Safety and Orphan Sources

    Energy Technology Data Exchange (ETDEWEB)

    Janzekovic, H.; Krizman, M. [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2006-07-01

    The wide spread use of radioactive and particularly of nuclear materials which started in the last century very quickly also demonstrated negative sides. The external exposure and radiotoxicity of these materials could be easily used in a malevolent act. Due to the fact that these materials could not be detected without special equipment designed for that purpose, severe control over their use in all phases of a life cycle is required. An orphan source is a radioactive source which is not under regulatory control, either because it has never been under regulatory or because it has been abandoned, lost, misplaced, stolen or transferred without proper authorization. In the last ten years a few international conferences were dedicated to the improvement of the safety and security of radioactive sources. Three main tasks are focused, the maintenance of data bases related to events with orphan sources and the publications of such events, the preparation of recommendations and guidelines to national regulatory bodies in order to prevent and detect the events related to orphan sources as well as to develop the response strategies to radiological or nuclear emergency, appraisals of the national strategies of radioactive sources control. Concerning Slovenia, strengthening control over orphan sources in Slovenia started after the adoption of new legislation in 2002. It was carried out through several tasks with the aim to prevent orphan sources, as well as to identify the sources which could be potentially orphan sources. The comprehensive methodology was developed by the Slovenian nuclear safety administration (S.N.S.A.) based on international guidelines as well as on the study of national lesson learned cases. The methodology was developed and used in close cooperation with all parties involved, namely other regulatory authorities, police, customs, agency for radioactive waste management (A.R.A.O.), technical support organisations (T.S.O.), users of source, authorised

  4. ROSY - Rossendorf synchrotron radiation source

    International Nuclear Information System (INIS)

    Einfeld, D.; Matz, W.

    1993-11-01

    The electron energy of the storage ring will be 3 GeV and the emitted synchrotron radiation is in the hard X-ray region with a critical energy of the spectrum of E c =8,4 keV (λ c =0,14 nm). With a natural emittance of 28 π nm rad ROSY emits high brilliance radiation. Besides the radiation from bending magnets there will be the possibility for using radiation from wigglers and undulators. For the insertion devices 8 places are foreseen four of which are located in non-dispersion-free regions. The storage ring is of fourfold symmetry, has a circumference of 148 m and is designed in a modified FODO structure. An upgrade of ROSY with superconducting bending magnets in order to shift the spectrum to higher energy can easily be done. Part I contains the scientific case and a description of the planned use of the beam lines. Part II describes the design of the storage ring and its components in more detail. (orig.) [de

  5. Ionizing radiation sources. Ionizing radiation interaction with matter

    International Nuclear Information System (INIS)

    Popits, R.

    1976-01-01

    Fundamentals of nuclear physics are reviewed under the headings: obtaining of X-rays and their properties; modes of radioactive decay of natural or man-made radionuclides; radioactive neutron sources; nuclear fission as basis for devising nuclear reactors and weapons; thermonuclear reactions; cosmic radiation. Basic aspects of ionizing radiation interactions with matter are considered with regard to charged particles, photon radiation, and neutrons. (A.B.)

  6. The utilization of radiation sources in Angola

    International Nuclear Information System (INIS)

    Lemos, P.C.D.

    2001-01-01

    The report describes the situation that Angola, which joined the IAEA in September 1999, is facing with the lack of an appropriate infrastructure for the control of radiation sources. It emphasizes the country's needs in technical assistance from the IAEA and other Member States for improving its regulatory infrastructure for radiation safety. (author)

  7. Management of Spent Radiation Source from Radiotherapy

    International Nuclear Information System (INIS)

    Aisyah

    2008-01-01

    Nowadays the use of radioactive source for both radiodiagnostic and radiotherapy in Indonesia hospital increases rapidly. Sealed source used in radiotherapy among others for brachytherapy, teletherapy, bone densitometry, whole blood irradiation and gamma knife (radiosurgery). In line with this, the waste of spent radiation sources will be generated in hospitals. Of course these spent radiation sources must be treated correctly in order to maintain the safety of both the public and the environment. According to the Act No. 10/1997, BATAN, in care of the Radioactive Waste Management Center is the national appointed agency for the management of radioactive waste. The option for waste management by hospitals needs to be expound, either by re-exporting to the supplier of origin, re-exporting to other supplier, re-use by other licensee or sending to the Radioactive Waste Management Center. Usually the waste sent by the hospitals to the center comprises of sealed radiation source of 60 Co, 137 Cs or 226 Ra. The management of spent radiation source in the center is carried out in several steps i.e. conditioning, temporary storage, and long-term storage (final disposal). The conditioning of non 226 Ra is carried out by placing the waste in a 200 litter drum shell, 950 or 350 litter concrete shells, depends on the activity and dimension of the spent radiation source. The conditioning of 226 Ra is carried out by encapsulating the waste in a stainless steel container for long-term storage shield which then placed in a 200 litter drum shell. The temporary storage of the conditioned spent radiation source is carried out by storing it in the center’s temporary storages, either low or medium activity waste. Finally, the conditioned spent radiation source is buried in a disposal facility. For medium half-life spent radiation source, the final disposal is burial it in a shallow-land disposal; mean while, for long half-life spent radiation source, the final disposal is burial it in

  8. Irradiation device using radiation sources

    International Nuclear Information System (INIS)

    Perraudin, Claude; Amarge, Edmond; Guiho, J.-P.; Horiot, J.-C.; Taniel, Gerard; Viel, Georges; Brethon, J.-P.

    1981-01-01

    The invention refers to an irradiation appliance making use of radioactive sources such as cobalt 60. This invention concerns an irradiation appliance delivering an easily adjustable irradiation beam in accurate dimensions and enabling the radioactive sources to be changed without making use of intricate manipulations at the very place where the appliance has to be used. This kind of appliance is employed in radiotherapy [fr

  9. Radiation Levels around the LHC

    CERN Document Server

    Mala, P; Calviani, M; Nordt, A

    2013-01-01

    This work discuss on the radiation levels measured around the LHC machine during the 2012 operational year. The doses and particle fluences are measured primarily by RadMon detectors – about 300 RadMons are installed around the accelerator – and by thermoluminescent detectors. In addition, BLMs, IG5/PMI ionisation chambers as well as FGCs can be used for corresponding cumulated dose evaluations. The probability of SEE depends directly on the high-energy hadron (HEH) fluence, so this is the main parameter that is calculated based on RadMons counts.

  10. Devices for obtaining information about radiation sources

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions which are not photoconductor elements each at the end of a slit. A positioner operates to change the transverse position of the slits and radiation transducing portions relative to the source, wherein each radiation transducing element is positioned within its respective slit between the slit defining walls. Full details and preferred embodiments are given. (U.K.)

  11. Radiation therapy sources, equipment and installations

    International Nuclear Information System (INIS)

    2011-03-01

    The safety code for Telegamma Therapy Equipment and Installations, (AERB/SC/MED-1) and safety code for Brachytherapy Sources, Equipment and Installations, (AERB/SC/MED-3) were issued by AERB in 1986 and 1988 respectively. These codes specified mandatory requirements for radiation therapy facilities, covering the entire spectrum of operations ranging from the setting up of a facility to its ultimate decommissioning, including procedures to be followed during emergency situations. The codes also stipulated requirements of personnel and their responsibilities. With the advent of new techniques and equipment such as 3D-conformal radiation therapy, intensity modulated radiation therapy, image guided radiation therapy, treatment planning system, stereotactic radiosurgery, stereotactic radiotherapy, portal imaging, integrated brachytherapy and endovascular brachytherapy during the last two decades, AERB desires that these codes be revised and merged into a single code titled Radiation Therapy Sources, Equipment, and Installations

  12. Security of radioactive sources in radiation facilities

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and safety standards are formulated on the basis of internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides and guidelines elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Board before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. In India, radiation sources are being widely used for societal benefits in industry, medical practices, research, training and agriculture. It has been reported from all over the world that unsecured radioactive sources caused serious radiological accidents involving radiation injuries and fatalities. Particular concern was expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). There is a concern about safety and security of radioactive sources and hence the need of stringent regulatory control over the handling of the sources and their security. In view of this, this guide is prepared which gives provisions necessary to safeguard radiation installations against theft of radioactive sources and other malevolent acts that may result in radiological consequences. It is, therefore, required that the radiation sources are used safely and managed securely by only authorised personnel. This guide is intended to be used by users of radiation sources in developing the necessary security plan for

  13. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  14. Ionization detector with improved radiation source

    International Nuclear Information System (INIS)

    Solomon, E.F.

    1977-01-01

    The detector comprises a chamber having at least one radiation source disposed therein. The chamber includes spaced collector plates which form a part of a detection circuit for sensing changes in the ionization current in the chamber. The radiation source in one embodiment is in the form of a wound wire or ribbon suitably supported in the chamber and preferably a source of beta particles. The chamber may also include an adjustable electrode and the source may function as an adjustable current source by forming the wire or ribbon in an eliptical shape and rotating the structure. In another embodiment the source has a random shape and is homogeneously disposed in the chamber. 13 claims, 5 drawing figures

  15. Exposures to natural radiation sources. Annex B

    International Nuclear Information System (INIS)

    1982-01-01

    The assessment of the radiation doses from natural sources in humans is presented. Both external sources of extraterrestrial origin (cosmic rays) and of terrestrial origin, and internal sources, comprising the naturally-occurring radionuclides which are taken into the human body, are discussed. This Annex is to a large extent a summary of Annex B of the 1977 report of the Committee. The doses due to the radon isotopes and to their short-lived decay products are briefly reviewed.

  16. Safe management of spent radiation source

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Valdezco, E.M.; Choi, Kwang-Sub

    2003-01-01

    Presented are 8 investigation reports concerning the safe management of spent radiation source (SRS) during the current 2 years. Four reports from Japan are: Scheme for SRS management (approach and present status of the SRS management and consideration toward solving problems); Current International Atomic Energy Agency (IAEA) activities related to safety of radiation sources (Chronology of action plan development, Outline of revised action plan, and Asian regional activities); Current status of SRS management in Japan (Regulation system, Obligations of licensed users, Regulatory system on sealed sources, Status in the incidents on sources occurred, Incident of source loss, and Incidents of orphan sources); and SRS management system in Japan (Current status of using of sealed sources, collection system of SRS-Japan Radioisotope Association (JRIA) services, and Disposal of SRS). Four reports from the Asian countries also concern the current statuses of SRS management in the Philippine (Radioactive waste sources, Waste management strategies, Conditioning of Ra sources, Ra project action plan, as low as reasonably achievable (ALARA) program, Dose assessment, Regulations on radioactive waste, Action plan on the safety and security of sources, IAEA Regional Demonstration Centers, and sitting studies for a near surface disposal facility); Thailand (Current status of using sealed sources, Inventory of SRS, and Current topics of SRS management); Indonesia (Principles of management of radiation sources, Legislative framework of SRS management practices, Regulatory on SRS, management of sealed SRS, management hurdles, and reported incidents); and Korea (Regulatory frame work, Collection systems of SRS, Radioisotope waste generation, Radiation exposure incident, and Scrap monitoring system). (N.I.)

  17. Calculation of Water Levels in Spent Fuel Pool and Effective Dose Followed by the Worker Geometrically Exposed to Radiation using Gamma-ray Source

    International Nuclear Information System (INIS)

    Lee, Donghee; Park, Kwangheon; Yoon, Hyoungju

    2013-01-01

    If the total effective dose value is lower than the surface dose rate of the water, the worker is able to work in a safe environment. In the case that the level of spent fuel pool is up to 550cm, there exists the limitation for workers to access to the storage pool because the result value is about 8 times higher than surface dose rate. In the case that the level of spent fuel pool is higher than 600cm, however, it can be safe work environment because the result value is lower than surface dose rate. Therefore, in the case of ISO geometry which is the same with practical situation, when considering Gamma-ray emission from spent fuel, effective dose is much higher than surface dose rate when the level of storage pool is lower than the height of fuel, 452.8cm. On the other hand, the level of effective dose decreases rapidly when the level of storage pool is higher than the level of the fuel. This means that it is not the safe environment when the level of fuel below 140cm is lower than surface dose rate. That is why the access of workers should be limited. Whereas, in the case of the level of storage pool above 600cm which is about 140cm higher than the level of the fuel, it is the safe environment for workers because the result value becomes lower than surface dose rate As a result, the level of wet storage of spent fuel should be at least 600cm for workers to work in safe environment because lower dose than surface dose rate makes less radiation exposure

  18. Ionizing radiation: levels and effects. Volume I. Levels

    International Nuclear Information System (INIS)

    1972-01-01

    This is the sixth substantive report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. It reviews the levels of radiation received from all sources to which man is exposed and, among the effects of ionizing radiation, it considers the genetic effects, the effects on the immune response and the induction of malignancies in animals and man. These are not the only effects of ionizing radiation. The acute consequences of massive amounts of radiation that may be received accidentally or during nuclear warfare are not reviewed here (the short discussion of this subject in the 1962 report is still largely valid, at least as an introduction), nor are the effects on the nervous system and the induction of chromosome anomalies in somatic cells, which were both considered by the Committee in its 1969 report. Unlike previous reports of the Committee, the present report is submitted to the General Assembly without the technical annexes in which the evidence considered by the Committee is discussed in detail and in which the bases for the Committee's conclusions, which are stated in the report, are fully documented. However, the annexes are being made available at the same time as the report in a separate publication, issued in two volumes and the Committee wishes to draw the attention of the General Assembly to the fact that the separation of the report from the annexes is for convenience only and that major importance attaches to the scientific evidence given in the annexes.

  19. The safe use of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  20. The safe use of radiation sources

    International Nuclear Information System (INIS)

    1995-01-01

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  1. X radiation sources based on accelerators

    International Nuclear Information System (INIS)

    Couprie, M.E.; Filhol, J.M.

    2008-01-01

    Light sources based on accelerators aim at producing very high brilliance coherent radiation, tunable from the infrared to X-ray range, with picosecond or femtosecond light pulses. The first synchrotron light sources were built around storage rings in which a large number of relativistic electrons produce 'synchrotron radiation' when their trajectory is subjected to a magnetic field, either in bending magnets or in specific insertion devices (undulators), made of an alternating series of magnets, allowing the number of curvatures to be increased and the radiation to be reinforced. These 'synchrotron radiation' storage rings are now used worldwide (there are more than thirty), and they simultaneously distribute their radiation to several tens of users around the storage ring. The most effective installations in term of brilliance are the so-called third generation synchrotron radiation light sources. The radiation produced presents pulse durations of the order of a few tens of ps, at a high rate (of the order of MHz); it is tunable over a large range, depending on the magnetic field and the electron beam energy and its polarisation is adjustable (in the V-UV-soft-X range). Generally, a very precise spectral selection is made by the users with a monochromator. The single pass linear accelerators can produce very short electron bunches (around 100 fs). The beam of very high electronic density is sent into successive undulator modules, reinforcing the radiation's longitudinal coherence, produced according to a Free Electron Laser (FEL) scheme by the interaction between the electron bunch and a light wave. The very high peak brilliance justifies their designation as fourth generation sources. The number of users is smaller because an electron pulse produces a radiation burst towards only one beamline. Energy Recovery Linacs (ERL) let the beam pass several times in the accelerator structures either to recover the energy or to accelerate the electrons during several turns

  2. Sources and levels of radioactivity in the Philippine environment

    International Nuclear Information System (INIS)

    Duran, E.B.; De Vera, C.M.; De la Cruz, F.M.; Enriquez, E.B.; Garcia, T.Y.; Palad, L.H.; Enriquez, S.O.; Eduardo, J.M.; Asada, A.A.

    1996-01-01

    Over the years, the Health Physics Research Section has assessed the sources and levels of radiation exposure in the Philippine environment. The data show that although Filipinos are exposed to both natural and artificial sources of environmental radioactivity, natural sources contribute much more significantly to the dose received by Filipinos than artificial sources. The average equivalent dose rate due to external sources of natural radiation in the Philippines is 45 μSv h -1 . Of this total dose rate, an average of 22 μSv h -1 is due to cosmic radiation while an average of 23 μSv h -1 is due to terrestrial radiation. External sources of natural radiation in the Philippines thus account for an annual per caput effective dose of about 400 μSv. In contrast, the annual per caput dose due to an artificial source, i.e., nuclear power production, was estimated by UNSCEAR (1988) to be only 0.6 μSv. Based on levels of background radioactivity due to external sources of natural radiation which were measured in 1600 locations, a radiation map of the country was developed. Among the internal sources of natural radiation, radon is the large contributor to dose and is considered as a serious indoor pollutant. Indoor radon levels in about 400 Filipino houses ranged from 1 to 63 Bq m -3 with a mean of 24 Bq m -3 . Significantly higher levels ranging from 30 to 347 Bq m -3 were observed in underground, non-uranium mines. Since there are no operational nuclear power plant in the Philippines, artificial radionuclides in the environment consist mainly of long-lived 137 Cs and 90 Sr from atmospheric nuclear weapons tests

  3. Cosmical sources of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuchowicz, B [Warsaw Univ. (Poland)

    1974-01-01

    A brief historical outline of the X-ray and ..gamma..-ray astronomies is given first, then a summary of the recent status of X-ray astronomy follows. Further chapters include information on ..gamma..-ray sources in the solar system, in our Galaxy, and beyond it. In discussing linear gamma spectra attention is paid to the possibility of studying explosive nucleo-synthesis by observation of gamma lines from supernova remnants, etc. Questions of the isotropic gamma background are discussed at the end of the survey.

  4. Radiation levels in eastern Europe

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Simmonds, J.R.; Wilkins, B.T.

    1986-01-01

    Immediately after news of the accident at Chernobyl became available on 28 April, the National Radiological Protection Board (NRPB) was asked by the UK Foreign and Commonwealth Office (FCO) for an appraisal of the radiation situation on the basis of which advice would be given to embassy staff, residents in affected countries and prospective travellers. The first Swedish measurements, external gamma dose rates and, later, concentrations of atmospheric and ground radioactivity, were used to estimate the quantity of radioactivity released by means of NRPB's accident consequence code (1), MARC. Our first predictions of 29 April indicated a substantial release of the order of 10 17 - 10 18 Bq, which was expected to lead to tens of early radiation-induced deaths in the area around the site. On the basis of NRPB's recommended Emergency Reference Levels (ERL's), it was thought that there would be a need for evacuation out to 20 to 30 km and for temporary food restrictions out to a few hundred kilometres from the site. FCO accordingly decided to evacuate students from Kiev and Minsk and to advise people not to travel to the western Soviet Union or to north-east Poland unless absolutely necessary

  5. Devices for obtaining information about radiation sources

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast, high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one transverse direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions, each at the end of a slit. A positioner changes the transverse position of the slits and radiation transducer (a photoconductor) relative to the source. Applications are in nuclear medicine and industry. Full details and preferred embodiments are given. (U.K.)

  6. Challenges in Regulating Radiation Sources and Associated Waste Management

    International Nuclear Information System (INIS)

    Shehzad, A.

    2016-01-01

    Radiation sources are widely used in the fields of medical, industry, agriculture, research, etc. Owing to the inherent risk of exposure to ionizing radiations while using the radiation sources and management of associated waste, safety measures are of utmost importance including robust regulatory control. Pakistan Nuclear Regulatory Authority (PNRA) is responsible for supervising all matters pertaining to nuclear safety and radiation protection in the country. Since its inception, PNRA has made rigorous efforts to regulate the radiation facilities for which regulatory framework was further strengthened by taking into account international norms/practices and implemented afterwards. However, due to vibrant use of these facilities, there are numerous challenges being faced while implementing the regulatory framework. These challenges pertains to shielding design of some facilities, control over service provider for QC/repair maintenance of radiation equipment, assessment of patient doses, and establishment of national diagnostic reference levels for radiological procedures. Further, the regulatory framework also delineate requirements to minimize the generation of associated radioactive waste as low as practicable. The requirements also necessitates that certain sealed radioactive sources (SRS) are returned to the supplier upon completion of their useful life, while other radioactive sources are required to be transported for storage at designated radioactive waste storage facilities in the country, which requires commitment from the licensee. This paper will briefly describe the challenges in regulating the radiation sources and issues related to the waste management associated with these facilities. (author)

  7. Radiation in the living environment: sources, exposure and effects

    International Nuclear Information System (INIS)

    Gupta, Rashi

    2013-01-01

    We are living in a milieu of radiations and continuously exposed to radiations from natural sources from conception to death. We are exposed to radiation from Sun and outer space, radioactive materials present in the earth, house we live in, buildings and workplace, food we eat and air we breath. Each flake of snow, grain of soil, drop of rain, a flower, and even each man in the street is a source of this radiation. Even our own bodies contain naturally occurring radioactive elements. The general belief is that the radiations are harmful and everybody is scared of the same. The cancer is the most important concern on account of exposure to Ionizing Radiation which is initiated by the damage to DNA. The level of exposure depends on the environmental and working conditions and may vary from low to moderate to high and depending on the same the exposed humans can be classified as general public, non nuclear workers (NNW) and nuclear workers (NW). Though, the LNT theory which is considered to be the radiation paradigm considers all radiation at all levels to be harmful and the -severity of the deleterious effect increases with the increase in dose, however, the available literature, data and reports (epidemiological and experimental) speaks otherwise particularly at low levels. The purpose of this paper is to address the question, whether the radiation is harmful at all levels or it is simply media hype and the truth is different, and to promote harmony with nature and to improve our quality of life with the knowledge that cancer mortality rates decrease following exposure to LLIR. Various sources of radiation exposure and the subsequent consequences will be discussed. (author)

  8. Plasma x-ray radiation source.

    Science.gov (United States)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  9. Occupational exposure to natural sources of radiation

    International Nuclear Information System (INIS)

    Ortiz, T.; Sciocchetti, G.; Rannou, A.

    1993-01-01

    The most important natural sources of radiation are analyzed. The situation in France, Italy, and Spain concerning protection against natural radiation is described, including the identification of sources, and defined practices, organizations charged of national surveys and the responsibility of regulatory bodies and the role of operating management. The activities of the international organizations (ICRP, CEC and IAEA) are presented and discussed, and existing actions toward harmonization in the CEC, IAEA and other international programs is also discussed. (R.P.) 23 refs., 2 tabs

  10. Photon acceleration-based radiation sources

    International Nuclear Information System (INIS)

    Hoffman, J. R.; Muggli, P.; Katsouleas, T.; Mori, W. B.; Joshi, C.

    1999-01-01

    The acceleration and deceleration of photons in a plasma provides the means for a series of new radiation sources. Previous work on a DC to AC Radiation Converter (DARC source) has shown variable acceleration of photons having zero frequency (i.e., an electrostatic field) to between 6 and 100 GHz (1-3). These sources all had poor guiding characteristics resulting in poor power coupling from the source to the load. Continuing research has identified a novel way to integrate the DARC source into a waveguide. The so called ''pin structure'' uses stainless steel pins inserted through the narrow side of an X band waveguide to form the electrostatic field pattern (k≠0, ω=0). The pins are spaced such that the absorption band resulting from this additional periodic structure is outside of the X band range (8-12 GHz), in which the normal waveguide characteristics are left unchanged. The power of this X band source is predicted theoretically to scale quadratically with the pin bias voltage as -800 W/(kV) 2 and have a pulse width of -1 ns. Cold tests and experimental results are presented. Applications for a high power, short pulse radiation source extends to the areas of landmine detection, improved radar resolution, and experimental investigations of molecular systems

  11. Level gauge using neutron radiation

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1985-01-01

    Apparatus for determining the level of a solid or liquid material in a container comprises: a vertical guide within or alongside the container; a sensor positioned within the guide; means for moving the sensor along the guide; and means for monitoring the position of the sensor. The sensor comprises a source of fast neutrons, a detector for thermal neutrons, and a body of a neutron moderating material in close proximity to the detector. Thermal neutrons produced by fast neutron irradiation of the solid or liquid material, or thermal neutrons produced by irradiation of the neutron-moderating material by fast or epithermal neutrons reflected by the solid or liquid material, are detected when the sensor is positioned at or below the level of the material in the container

  12. Split energy level radiation detection

    International Nuclear Information System (INIS)

    Barnes, G.T.

    1986-01-01

    This patent describes an energy discriminating radiation detector comprising: (a) a first element comprising a first material of a kind which is preferentially responsive to penetrative radiation of a first energy range; (b) a second element comprising a second material different in kind from the first material and of a kind which is preferentially responsive to penetrative radiation of second energy range extending higher than the first energy range. The element is positioned to receive radiation which has penetrated through a portion of the first element; and (c) a filter of penetrative radiation interposed between the first and second elements

  13. Radiation measurement practice for understanding statistical fluctuation of radiation count using natural radiation sources

    International Nuclear Information System (INIS)

    Kawano, Takao

    2014-01-01

    It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)

  14. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  15. 76 FR 6692 - Radiation Sources on Army Land

    Science.gov (United States)

    2011-02-08

    ... possession of ionizing radiation sources by non-Army entities (including their civilian contractors) on an... Radiation Permit (ARP) from the garrison commander to use, store, or possess ionizing radiation sources on an Army installation. For the purpose of this rule, ``ionizing radiation source'' means any source...

  16. Synchrotron radiation sources in the Soviet Union

    International Nuclear Information System (INIS)

    Kapitza, S.P.

    1987-01-01

    Synchrotron radiation (SR) is now recognized to be an important instrument for experimental work in many fields of science. Recently the application of SR in medicine and industry, especially as a light source for microelectronics production have been demonstrated. Thus the development of SR sources has now grown to become a significant and independent dimension for accelerator research and technology. This article describes SR work in the Soviet Union

  17. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  18. Trade and transport of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The guide specifies the obligations pertaining to the trade in and transport of radiation sources and other matters to be taken into account in safety supervision. It also specifies obligations and procedures relating to transfrontier movements of radioactive waste contained in the EU Council Directive 92/3/Euratom. (7 refs.)

  19. Optimization of industrial processes using radiation sources

    International Nuclear Information System (INIS)

    Salles, Claudio G.; Silva Filho, Edmundo D. da; Toribio, Norberto M.; Gandara, Leonardo A.

    1996-01-01

    Aiming the enhancement of the staff protection against radiation in operational areas, the SAMARCO Mineracao S.A. proceeded a reevaluation and analysis of the real necessity of the densimeters/radioactive sources in the operational area, and also the development of an alternative control process for measurement the ore pulp, and introduced of the advanced equipment for sample chemical analysis

  20. Radiation as a source of risk

    International Nuclear Information System (INIS)

    Katoh, Kazuaki

    1999-01-01

    Essence and nature of ionizing radiation as a source of risk are reviewed. Following to the appeal of necessity and importance of campaign for enlightening risk management, of individual and of society, background knowledge and information helpful to the promotion and discussion are summarized, also. (author)

  1. Underdense radiation sources: Moving towards longer wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Back, C.A.; Kilkenny, J.D. [General Atomics, San Diego, California (United States); Seely, J.F.; Weaver, J.L. [Naval Research Laboratory, Washington, DC (United States); Feldman, U. [Artep Inc., Ellicott City, MD (United States); Tommasini, R.; Glendinning, S.G.; Chung, H.K.; Rosen, M.; Lee, R.W.; Scott, H.A. [Lawrence Livermore National Laboratory, California (United States); Tillack, M. [U. C. San Diego, La Jolla, CA (United States)

    2006-06-15

    Underdense radiation sources have been developed to provide efficient laboratory multi-keV radiation sources for radiography and radiation hardening studies. In these plasmas laser absorption by inverse Bremsstrahlung leads to high x-ray conversion efficiency because of efficient ionization of the low density aerogel or gas targets. Now we performing experiments in the soft x-ray energy regime where the atomic physics models are much more complicated. In recent experiments at the NIKE laser, we have irradiated a Ti-doped SiO{sub 2} aerogel with up to 1650 J of 248 nm wavelength light. The absolute Ti L-shell emission in the 200-800 eV range is measured with a diagnostic that uses a transmission grating coupled to Si photodiodes. We will give an overview of the temporally-resolved absolutely calibrated spectra obtained over a range of conditions. (authors)

  2. Underdense radiation sources: Moving towards longer wavelengths

    International Nuclear Information System (INIS)

    Back, C.A.; Kilkenny, J.D.; Seely, J.F.; Weaver, J.L.; Feldman, U.; Tommasini, R.; Glendinning, S.G.; Chung, H.K.; Rosen, M.; Lee, R.W.; Scott, H.A.; Tillack, M.

    2006-01-01

    Underdense radiation sources have been developed to provide efficient laboratory multi-keV radiation sources for radiography and radiation hardening studies. In these plasmas laser absorption by inverse Bremsstrahlung leads to high x-ray conversion efficiency because of efficient ionization of the low density aerogel or gas targets. Now we performing experiments in the soft x-ray energy regime where the atomic physics models are much more complicated. In recent experiments at the NIKE laser, we have irradiated a Ti-doped SiO 2 aerogel with up to 1650 J of 248 nm wavelength light. The absolute Ti L-shell emission in the 200-800 eV range is measured with a diagnostic that uses a transmission grating coupled to Si photodiodes. We will give an overview of the temporally-resolved absolutely calibrated spectra obtained over a range of conditions. (authors)

  3. Guidelines for testing sealed radiation sources

    International Nuclear Information System (INIS)

    1989-01-01

    These guidelines are based on article 16(1) of the Ordinance on the Implementation of Atomic Safety and Radiation Protection dated 11 October 1984 (VOAS), in connection with article 36 of the Executory Provision to the VOAS, of 11 October 1984. They apply to the testing of sealed sources to verify their intactness, tightness and non-contamination as well as observance of their fixed service time. The type, scope and intervals of testing as well as the evaluation of test results are determined. These guidelines also apply to the testing of radiation sources forming part of radiation equipment, unless otherwise provided for in the type license or permit. These guidelines enter into force on 1 January 1990

  4. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  5. Intermittent Astrophysical Radiation Sources and Terrestrial Life

    Science.gov (United States)

    Melott, Adrian

    2013-04-01

    Terrestrial life is exposed to a variety of radiation sources. Astrophysical observations suggest that strong excursions in cosmic ray flux and spectral hardness are expected. Gamma-ray bursts and supernovae are expected to irradiate the atmosphere with keV to GeV photons at irregular intervals. Supernovae will produce large cosmic ray excursions, with time development varying with distance from the event. Large fluxes of keV to MeV protons from the Sun pose a strong threat to electromagnetic technology. The terrestrial record shows cosmogenic isotope excursions which are consistent with major solar proton events, and there are observations of G-stars suggesting that the rate of such events may be much higher than previously assumed. In addition there are unknown and unexplained astronomical transients which may indicate new classes of events. The Sun, supernovae, and gamma-ray bursts are all capable of producing lethal fluences, and some are expected on intervals of 10^8 years or so. The history of life on Earth is filled with mass extinctions at a variety of levels of intensity. Most are not understood. Astrophysical radiation may play a role, particularly from large increases in muon irradiation on the ground, and changes in atmospheric chemistry which deplete ozone, admitting increased solar UVB. UVB is strongly absorbed by DNA and proteins, and breaks the chemical bonds---it is a known carcinogen. High muon fluxes will also be damaging to such molecules, but experiments are needed to pin down the rate. Solar proton events which are not directly dangerous for the biota may nevertheless pose a major threat to modern electromagnetic technology through direct impact on satellites and magnetic induction of large currents in power grids, disabling transformers. We will look at the kind of events that are expected on timescales from human to geological, and their likely consequences.

  6. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  7. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume I: Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Over the past few years the United Nations Scientific Committee on the effects of Atomic Radiation has undertaken a broad review of the sources and effects of ionizing radiation. In the present report, the Committee, drawing on the main conclusions of its scientific assessment summarizes the developments in radiation science in the years leading up to the next millennium. It covers the following: the effects of radiation exposure; levels of radiation exposure; radiological consequences of the Chernobyl accident; sources of radiation exposure including natural exposures, man-made environmental exposures, medical and occupational exposures; radiation associated cancer. This volume includes five Annexes covering: dose assessment methodologies; exposure from natural sources; exposures to the public from man-made sources of radiation and occupational radiation exposures

  8. Chromosome Aberration on High Level Background Natural Radiation Areas

    International Nuclear Information System (INIS)

    Yanti-Lusiyanti; Zubaidah-Alatas

    2001-01-01

    When the body is irradiated, all cells can suffer cytogenetic damage that can be seen as structural damage of chromosome in the lymphocytes. People no matter where they live in world are exposed to background radiation from natural sources both internal and external such as cosmic radiation, terrestrial radiation, cosmogenic radiation radon and thoron. Level of area natural ionizing radiation is varies depending on the altitude, the soil or rock conditions, particular food chains and the building materials and construction features. Level of normal areas of background exposure is annual effective dose 2.4 mSv and the high level areas of background exposure 20 mSv. This paper discuses the frequency of aberration chromosome especially dysenteries in several countries having high level radiation background. It seems that frequency of chromosome aberrations increase, generally with the increase of age of the people and the accumulated dose received. (author)

  9. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Abdel Hamid, S. M.

    2010-12-01

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  10. Experience of water chemistry and radiation levels in Swedish BWRs

    International Nuclear Information System (INIS)

    Ivars, R.; Elkert, J.

    1981-01-01

    From the BWR operational experience in Sweden it has been found that the occupational radiation exposures have been comparatively low in an international comparison. One main reason for the favourable conditions is the good water chemistry performance. This paper deals at first with the design considerations of water chemistry and materials selection. Next, the experience of water chemistry and radiation levels are provided. Finally, some methods to further reduce the radiation sources are discussed. (author)

  11. Radiation protection and regulatory aspects in the use of radiation sources

    International Nuclear Information System (INIS)

    Sen, Amit; Dash Sharma, P.K.; Sonawane, A.U.

    2012-01-01

    The uses of ionising radiation sources (i.e. radioisotopes and radiation generating equipment such as accelerators and X-ray machines) for multifarious applications in industry, medicine, agriculture, research and teaching have been significantly increasing all over the world. In India, the application of radiation sources in various fields has registered phenomenal growth during the last decade. The use of radiation sources mainly include radiation processing for food preservation and sterilization of healthcare products, radiotherapy for treatment of cancer, nuclear medicine for diagnosis and therapy, gamma chambers for several R and D studies, blood irradiators, industrial radiography for non destructive examinations of steel structures, industrial ionising radiation gauging devices for monitoring/measurement of on-line quality control parameters (e.g. thickness, level, density, moisture, elemental analysis), consumer products such as gaseous tritium light sources (GTLS), gaseous tritium light devices (GTLD), ionisation chamber smoke detectors (ICSD), fluorescent light starters, antistatic devices and incandescent gas mantles containing thorium etc. All these beneficial applications involve use of both sealed and unsealed radioactive sources and amount of radioactivity varies from few kBq (μCi) to hundreds of TBq (thousands of curies). Radiation sources emit ionising radiations and if not handled properly and safely, may give rise to potential exposures leading to an unacceptable hazard. Therefore, it is necessary to ensure a high standard of safety and reliability in handling of radiation equipment and sources through their careful design by ensuring adequate built-in-safety as per applicable national/international standard, safe operation and periodic maintenance procedures, safe transport from one place to another, secured storage when not in use, physical security to radiation sources, effective emergency response plans and preparedness, including safe

  12. Natural sources of ionizing radiation in Europe

    International Nuclear Information System (INIS)

    Green, B.M.R.; Hughes, J.S.; Lomas, P.R.

    1993-01-01

    This publication maps levels of radiation of natural origin throughout the European Community (except in the Lander of the former German Democratic Republic), in Scandinavia and in Austria. The booklet explains in simple terms the basic properties and origin of different types of radiation (cosmic rays, gamma rays and radon) and their contribution to the overall exposure of the population. A glossary, a list of administrative regions used in the maps and detailed references to the data for each country are included

  13. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  14. Source of broadband Jovian Kilometric radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Leblanc, Y.

    1987-02-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients.

  15. Source of broadband Jovian Kilometric radiation

    International Nuclear Information System (INIS)

    Jones, D.; Leblanc, Y.

    1987-01-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients

  16. Course of radiation protection: technical level

    International Nuclear Information System (INIS)

    2002-01-01

    The course handbook on radiation protection and nuclear safety, technical level prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 19 chapters and 2 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, occupational exposure, radiation shielding, radioactive waste management, criticality accidents, safe transport of radioactive materials, regulatory aspects

  17. Applications and opportunities for radiation sources

    International Nuclear Information System (INIS)

    Round, K.J.

    1984-01-01

    An important spin-off benefit from the nuclear industry has been the ability to produce a wide variety of ionizing radiation sources for industrial, medical and scientific applications. These sources include radionuclides produced by irradiation of target material in reactors and cyclotrons or recovered from spent fuels, and accelerators. The uses of radiation in both medicine and industry can be expected to evolve. Traditional uses such as cancer therapy will mature and in some cases be displaced by new technology. Major new applications, including food processing and waste treatment, are expected to maintain the demand for isotopes such as cobalt 60 and to stimulate the development of economical and reliable accelerator systems. (L.L.) (Tab., 2 figs.)

  18. Facility - Radiation Source Features and User Applications

    International Nuclear Information System (INIS)

    Gover, A.; Abramovich, A.; Eichenbaum, A.L.; Kanter, M.; Sokolowski, J.; Yahalom, A.; Shiloh, J.; Schnitzer, I.; Pinhasi, Y.

    1999-01-01

    Recent measurements of the radiation characteristics of the tandem FEL prove .that the device operates as a high quality, tunable radiation source in the mm wave regime. Tuning range of 60% around a central frequency of 100 GHz was demonstrated by varying the tandem accelerator energy from 1 to 1.5 MeV with 1-1.5 Amp. Beam current. Fourier transform limited linewidth of Δ f/f -5 was measured in single-mode lasing operation. The FEL power in pulse operation (10μsec) was 10 kWatt. Operating the FEL at high repetition rate with 0.1 to 1 mSec pulses will make it possible to obtain high average power (1 kWatt) and narrow linewidth (10 -7 ). Based ,on these exceptional properties of the FEL as a high quality spectroscopic tool and as a source of high average power radiation, the FEL consortium, supported by a body of 10 radiation user groups from various universities and research institutes, embark on a new project for development of an Israeli FEL radiation user laboratory. The laboratory is presently in a design and building stage in the academic campus in Ariel. The FEL will be moved to this laboratory after completion of X-ray protection structure in the allocated building. In the first phase of development, the radiation user laboratory will consist of three user stations: a. Spectroscopic station (low average power). Material studies are planned in the fields of H.T.S.C., submicron semiconductor devices, gases. b. Material processing station (high average power). Experiments are planned in the fields of thin film ceramic sintering (including H.T.S.C.), functionally graded materials, surface treatment of metals, interaction with biological tissues. c. Atmospheric study station. Experiments are planned in the fields of aerosol, dust and clouds mapping, remote sensing of gases, wide-band mm wave communication The FEL experimental results and the user laboratory features will be described

  19. Regulation of radiation sources in Canada

    International Nuclear Information System (INIS)

    Brown, W.R.

    1989-04-01

    This paper describes in general the Canadian program for the regulation of radiation sources, with particular emphasis on radioisotope licences. The Atomic Energy Control Board is described, as are the most significant parts of the Regulations. Licensing, which is the method chosen for control, is explained by describing the assessment of an application through the enforcement of the requirements, and the overall effectiveness of the program is measured by analyzing the incidents and overexposures that have occurred in recent years

  20. Apparatus for radiation source depth determination in a material

    International Nuclear Information System (INIS)

    Campbell, P.J.

    1979-01-01

    An apparatus is disclosed for determining the depth of a radiation source within a body of material utilizing a radiation source holder moving the radiation source within the body. A plurality of switches have contacts that are fixed in relation to the movement of the radiation source within the material. Trigger means activates a particular switch at a preselected depth of the radiation source. Means for indicating the activation of a switch would thus produce a signal as a representative of the depth of the radiation source

  1. Standard Syllabus for Postgraduate Educational Courses in Radiation Protection and the Safe use of Radiation Sources

    International Nuclear Information System (INIS)

    Arias, C.; Biaggio, A.; Nasazzi, N.

    2004-01-01

    The International Atomic Energy Agency (IAEA) published the Standard Syllabus for Post Graduate Educational Courses in Radiation Protection and the Safety of Radiation Sources in 2002. Along more than two decades, Argentina has obtained valuable experience on building professional knowledge at postgraduate level in Radiation Protection and Nuclear Safety. Such experience made advisable to review the IAEA Standard Syllabus and to modify it accordingly. The whole content of the Standard Syllabus is included in the syllabus developed for the Argentinean Regional Post Graduate Course in Radiation Protection and Safety of Radiation Sources. But a few additional topics were incorporated and changes were introduced in the sequence of subjects. The paper describes those modifications and explains the pedagogic motivations that induce them. (Author) 3 refs

  2. Safety of radiation sources in Slovenia

    International Nuclear Information System (INIS)

    Belicic-Kolsek, A.; Sutej, T.

    2001-01-01

    The Republic of Slovenia, a central European country which has been independent since 1991, has about 2 million inhabitants and an area of 20,256 km 2 . The Constitutional Law on Enforcement of the Basic Constitutional Charter on the Autonomy and Independence of the Republic of Slovenia, adopted on 23 June 1991 (Off. Gaz. of the R of Slovenia No. 1/91), provided that all the laws adopted by the Socialist Federal Republic (SFR) of Yugoslavia should remain in force in the Republic of Slovenia pending the adoption of appropriate legislation by the Slovene Parliament. Under the Slovene Constitution, all international treaties ratified by Slovenia constitute an integral part of Slovenia's legislation and can be applied directly. In Slovenia, all regular types of ionizing radiation source are being used for peaceful purposes and are covered by a system for their safe use and control. All radiation sources and radioactive materials are registered and under regulatory control. Inspections are carried out periodically by the Health Inspectorate of the Republic of Slovenia (HIRS) and, in the case of nuclear installations, the Slovene Nuclear Safety Administration (SNSA). Technical checks on radiation sources are carried out periodically by technical support organizations: the Jozef Stefan Institute and the Institute for Occupational Safety (IOS). (author)

  3. Radiation exposure management over a decade in sealed sources fabrication

    International Nuclear Information System (INIS)

    Chougule, Nitin V.; Swaminathan, N.; Singh, P.; Sreenivas, V.; Bairwa, S.M.; Rath, D.P.; Patil, B.N.; Sastry, K.V.S.

    2008-01-01

    Radioactive sealed sources find innumerable applications in medical and industrial applications. 60 Co teletherapy sources are used for the treatment of cancer. In brachytherapy; 137 Cs and 192 Ir are used. Industrial sources using 60 Co, 137 Cs find applications in nucleonic gauges, tracer studies etc. 60 Co and 192 Ir sources are used in radiography also. In addition, 60 Co is widely used in irradiator facilities. Board of Isotopes and Radiation Technology (BRIT) has committed in supply of these sealed sources to various hospitals and industrial institutions in India. Annually, PetaBq (PBq) level of above mentioned isotopes are handled remotely in hot cells, RLG, BARC. This paper brings out a detailed account on the radiological surveillance provided during the fabrication of these sources implementing ALARA. The decrease in collective dose per activity handled is the outcome of improved operation practices which were carried out at various stages of source fabrication. (author)

  4. Radiation exposure of airplane crews. Exposure levels

    International Nuclear Information System (INIS)

    Bergau, L.

    1995-01-01

    Even at normal height levels of modern jet airplanes, the flying crew is exposed to a radiation level which is higher by several factors than the terrestrial radiation. There are several ways in which this can be hazardous; the most important of these is the induction of malignant growths, i.e. tumours. (orig./MG) [de

  5. Area radiation monitor at the intense pulsed-neutron source

    International Nuclear Information System (INIS)

    Eichholz, J.J.; Lynch, F.J.; Mundis, R.L.; Howe, M.L.; Dolecek, E.H.

    1981-01-01

    A tissue-equivalent ionization chamber with associated circuitry has been developed for area radiation monitoring in the Intense Pulsed-Neutron Source (IPNS) facility at Argonne National Laboratory. The conventional chamber configuration was modified in order to increase the electric field and effective volume thereby achieving higher sensitivity and linearity. The instrument provides local and remote radiation level indications and a high level alarm. Twenty-four of these instruments were fabricated for use at various locations in the experimental area of the IPNS-1 facility

  6. Radiation problems expected for the German spallation neutron source

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  7. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  8. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  9. Standard light source utilizing spontaneous radiation

    International Nuclear Information System (INIS)

    Yamamoto, O.; Takenaga, M.; Tsujimoto, Y.

    1975-01-01

    A standard light source is described utilizing spontaneous radiation made by mixing a fluorescent substance LnVO 4 :X (wherein Ln is Y or Gd, and X is Dy or Eu) with a radioactive substance containing a radioactive isotope which is less in the degree of temperature variation of the intensity of emitted light and excellent in stability. Particularly when used in a light-receiving device having photomultiplier tubes, the said light source emits light quite similar to that of a thermoluminescent substance such as CaSO 4 :X (wherein X is Im, Dy, Sm or Mn), LiF or Mg 2 SiO 4 :Tb, and is excellent as a calibration high-stability standard light source for use in the above-mentioned light-receiving device. (auth)

  10. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  11. The handling with orphan sources of ionizing radiation in Belarus

    International Nuclear Information System (INIS)

    Dubrovskij, A.I.; Beresneva, V.A.; Pribylev, S.V.

    2013-01-01

    In Belarus, the emergency response actions, when detecting orphan sources, provide specific organs of government within their competence. Overall coordination and work on the collection, processing, exchange, accounting and transfer in the established order information about the sources of ionizing radiation interacting organs and relevant international organizations assigned to the Emergency Situations Ministry. Created in Belarus response system in case of detection of orphan sources can provide the level of emergency preparedness and response, and generally satisfy international best practice in this area. (authors)

  12. Stabilization of radionuclides applied in radiation sources

    International Nuclear Information System (INIS)

    Mielcarski, M.

    1989-01-01

    An attempt of comprehensive treatment of problems connected with the production of sealed radiation sources is made. In the introductory part of this work the basic information and definitions are contained. The classification systems currently applied are discussed. Attention was paid to the main fields of application. The methods of stabilization of radionuclides used for preparing radiation sources are discussed. The results of own investigations are presented, comprising the adsorption of some radionuclides on anodic Al 2 O 3 layers, stabilization in glazes and enamels, and the preparation of radioactive ceramics. In the adsorption investigations, these problems were considered as predominant which could form the basis for technological solutions. The results obtained allowed to establish the most favourable conditions of performing the process of stabilization by the use of this technique. In the case of radioactive enamels, the effect of glass composition on the yield of ionization has been investigated. Lowering of the content of radioactive component with simultaneous preserving the useful ionization ability was considered as being important. The mechanism of the observed increase of ionization caused by some inactive glass components is discussed. As concerns radioactive ceramics, a simplified method for preparing the ceramic core of cesium-137 sources is presented. This synthesis is based on the thermal transformation of moulded zeolite pellets into radioactive pollucite. Practical usefulness of different methods for the stabilization is discussed with emphasis given to those elaborated and applied in Poland. 131 refs., 37 figs., 20 tabs. (author)

  13. 75 FR 19302 - Radiation Sources on Army Land

    Science.gov (United States)

    2010-04-14

    ... possession of ionizing radiation sources by non-Army agencies (including their civilian contractors) on an... radiation sources on Army land. The Army requires Non-Army agencies (including their civilian contractors... ionizing radiation sources on an Army Installation. For the purpose of this proposed rule, ``ionizing...

  14. Ambient radioactivity levels and radiation doses. Annual report 2014; Umweltradioaktivitaet und Strahlenbelastung. Jahresbericht 2014

    Energy Technology Data Exchange (ETDEWEB)

    Trugenberger-Schnabel, Angela; Loebke-Reinl, Angelika; Peter, Josef (comps.) [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2016-08-15

    The annual report 2014 on ambient radioactivity levels and radiation doses covers the following topics: (1) Actual data and their evaluation: natural environmental radioactivity, artificial environmental radioactivity, occupational radiation exposure, radiation exposures from medical applications, handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. (2) Fundamentals and general information: legal basis and explanations, basic information on natural environmental radioactivity, basic information on artificial radioactivity in the environment, basic information on occupational radiation exposure, basic information on radiation exposures from medical applications, basic information on the handling of radioactive materials and sources of ionizing radiation, basic information on non-ionizing radiation. (3) Tables.

  15. Capillary discharge sources of hard UV radiation

    International Nuclear Information System (INIS)

    Cachoncinlle, C; Dussart, R; Robert, E; Goetze, S; Pons, J; Mohanty, S R; Viladrosa, R; Fleurier, C; Pouvesle, J M

    2002-01-01

    We developed and studied three different extreme ultraviolet (EUV) capillary discharge sources either dedicated to the generation of coherent or incoherent EUV radiation. The CAPELLA source has been developed especially as an EUV source for the metrology at 13.4 nm. With one of these sources, we were able to produce gain on the Balmer-Hα (18.22 nm) and Hβ (13.46 nm) spectral lines in carbon plasma. By injecting 70 GW cm -3 we measured gain-length products up to 1.62 and 3.02 for the Hα and Hβ, respectively optimization of the EUV capillary source CAPELLA led to the development of an EUV lamp which emits 2 mJ in the bandwidth of the MoSi mirror, per joule stored, per shot and in full solid angle. The wall-plug efficiency is 0.2%. Stability of this lamp is better than 4% and the lamp can operate at repetition rate of 50 Hz

  16. Ionizing radiation source detection by personal TLD

    International Nuclear Information System (INIS)

    Marinkovic, O.; Mirkov, Z.

    2002-01-01

    The Laboratory for personal dosimetry has about 3000 workers under control. The most of them work in medicine. Some institutions, as big health centers, have different ionizing radiation sources. It is usefull to analyze what has been the source of irradiation, special when appears a dosimeter with high dose. Personal dosimetry equipment is Harshaw TLD Reader Model 6600 and dosimeters consist of two chips LiF TLD-100 assembled in bar-coded cards which are wearing in holders with one tissue-equivalent filter (to determine H(10)) and skin-equivalent the other (to determine H(0.07)). The calibration dosimeters have been irradiated in holders by different sources: x-ray (for 80keV and 100keV), 6 0C o, 9 0S r (for different distances from beta source) and foton beem (at radiotherapy accelerator by 6MeV, 10MeV and 18MeV). The dose ratio for two LiF cristals was calculated and represented with graphs. So, it is possible to calculate the ratio H(10)/H(0.07) for a personal TLD and analyze what has been the source of irradiation. Also, there is the calibration for determination the time of irradiation, according to glow curve deconvolution

  17. A quality control program for radiation sources

    International Nuclear Information System (INIS)

    Almeida, C.E. de; Sibata, C.H.; Cecatti, E.R.; Kawakami, N.S.; Alexandre, A.C.; Chiavegatti Junior, M.

    1982-01-01

    An extensive quality control program was established covering the following areas: physical parameters of the therapeutical machines, dosimetric standards, preventive maintenance of radiation sources and measuring instruments. A critical evaluation of this program was done after two years (1977-1979) of routine application and the results will be presented. The fluctuation on physical parameters strongly supports the efforts and cost of a quality control program. This program has certainly improved the accuracy required on the delivery of the prescribed dose for radiotherapy treatment. (Author) [pt

  18. The TAC Radiation Source for Bremsstrahlung Application

    International Nuclear Information System (INIS)

    Demir, N.

    2008-01-01

    The TAC is a project for the first Turkish radiation source and currently design study is produced with funding from the DPT (State Planning Unity). Two main part of the project will be IR-FEL and Bremsstrahlung facility. Each LINAC will provide max. electron energy of 20 MeV. The Bremsstrahlung facility at TAC will consist two of the LINAC module and will be obtained 35 MeV photon energy. This would provide a chance to investigate nuclear structure at this energy range and also some application of photonuclear physics. In this work the main parameter and plans for those of facility will be detailed

  19. Can low-level radiation cause cancer?

    International Nuclear Information System (INIS)

    Trosko, J.E.

    1995-01-01

    Health in a multicellular organism is maintained by homeostatic processes. Disruption of these homeostatic controls at the molecular, biochemical, cellular, and organ systems levels can be brought about by irreversible changes in the genetic material (mutagenesis), cell death (cytotoxicity), or reversible changes in the expression of genes at the transcriptional, translational, or posttranslational levels (epigenesis). While radiation is known to induce DNA damage/mutations, cell, death and epigenetic changes, in addition to cancers that are found in radiation-exposed animals, experimentally, and in humans, epidemiologically, the question is, At low-level exposure, what is the risk that cancers are open-quotes causedclose quotes by the radiation?

  20. Health aspects of low-level radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1979-06-01

    A brief description of natural background radiation is given. To understand the relationship between doses and effects the magnitude and distribution over time are stressed. The derivation of radiation protection standards and corresponding risks are discussed. The risks to the occupational worker and to the public from nuclear power are placed in context of risks in other industries and from alternate energy sources, including conservation. (author)

  1. Low-level radiation risks in people

    International Nuclear Information System (INIS)

    Goloman, M.; Filjushkin, V. lgor

    1993-01-01

    Using the limited human data plus the relationships derived from the laboratory, a leukemia risk model has been developed as well as a suggested model for other cancers in people exposed to low levels of radiation. Theoretical experimental and epidemiological evidence will be presented in an integrated stochastic model for projection of radiation-induced cancer risks

  2. Applications of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2003-01-01

    Indus-1 is a 450 MeV electron storage ring. This is a soft X-ray and Vacuum Ultra Violet radiation source with the critical wavelength being 61 A. In this source, the first beam was stored in mid-1999 and was then made available, after initial storage and beam cleaning of the vacuum components, for beamline installation in the early 2000. Two beamlines are commissioned and are working. Other beamlines are in the advanced stage of commissioning. For Indus-1, the injection system consists of a 20 MeV classical microtron as a preinjector and a booster synchrotron that can go up to 700 MeV. For Indus-1, the injection into the storage ring is at full 450 MeV from this booster synchrotron

  3. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  4. Plasma focus - a pulsed radiation source

    International Nuclear Information System (INIS)

    Blagoev, Alexandar; Zapryanov, Stanislav; Gol'tsev, Vasilii; Gemishev, Orlin

    2014-01-01

    The article is devoted to the applications of plasma focus (PF) in radiobiology. Briefly describes the principle of operation of the device and the parameters of the PF type 'Mader' at the Physics Department of the University. Phase pinch discharge zones appear hot and dense plasma, which is a source of X-ray and neutron pulse when the working gas is deuterium. These radiations are essential for biological applications. Besides these bundles are obtained from accelerated charged particles and shock wave of ionized gas. Described are some of the contributions of other authors using PF in radiobiology. Given the results in the exposure of living organisms with soft X-ray emission of PF. We examined the viability of the cells of the two types of yeasts, after irradiation with X-rays at a dose of 65 mSv, where no change was found on the performance. It is shown that soft X-ray radiation doses on the order of tens of mSv, cause a significant change in the productivity of the electronic transport in the photosynthetic apparatus of Chlamydomonas reinhardtii. Trichoderma reesei M7 shows remarkable vitality irradiation with substantial doses of hard X-ray radiation (tens Sv). Appear endoglyukonazata changes in the protein component and the residual mass

  5. Source region of aurora kilometric radiation

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi; Tokumaru, Munetoshi

    1981-01-01

    This paper discusses the source region of aurora kilometric radiation (AKR), and the relation between the particle acceleration region and the polar ionosphere. The observation was made by the satellite 'Jikiken'. The AKR can be transferred to Jikiken without any interception, when the magnetic latitude of the apogee of the satellite is low. The spectra taken in June, 1980, were analyzed. The observed spectra showed the source regions of the AKR were in the aurora bands of the north and south poles. One example showed that the 200 kHz component of AKR from both poles showed the similar behavior, and another example showed that the AKR spectra from both poles showed different behavior. The altitude distribution of source regions was able to be obtained. The altitude of AKR-A was in the range between 6200 and 12000 km, and that of AKR-B was in the range of 3500 and 5200 km. The source of AKR-A was identified as that in the south hemisphere, and that of AKR-B in the north hemisphere. The asymmetric spectra of AKR-A and B showed that the spread and intensity of the electric field along magnetic lines generated above the polar ionosphere were related with the conditions of the ionosphere. (Kato, T.)

  6. About the principles of radiation level normalization

    International Nuclear Information System (INIS)

    Nosovskij, A.V.

    2000-01-01

    The paper highlights the impact being made by the radiation level normalization principles upon the social and economic indicators. The newly introduced radiation safety standards - 97 are taken as an example. It is emphasized that it is necessary to use a sound approach while defining radiation protection standards, taking into consideration economic and social factors existing in Ukraine at the moment. Based on the concept of the natural radiation background and available results of the epidemiological surveys, the dose limits are proposed for the radiation protection standards. The paper gives a description of the dose limitation system recommended by the International Committee for Radiation Protection. The paper highlights a negative impact of the line non threshold concept, lack of special knowledge in the medical service and mass media to make decisions to protect people who suffered from the Chernobyl accident

  7. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1990-01-01

    The present report is prepared for planners of radiation processing of any material. Sources with cobalt-60 are treated marginally, because most probably, there will be no installation of technically meaningful activity in Poland before the year 2000. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV and accelerators of lower energy, below 2 MeV, of better energetical yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of twenty years of exploitation of the machine. One has to realize that from the 150 kV input power from the mains, only 5 kV of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, sometimes only a few percent, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of losses at the edges of the scanned area and in the spaces between boxes, and of losses during the dead time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical in case of objects of optimum type. At the first stage, that is of the conversion of electrical power into that of the low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating bremsstrahlung similar to gamma radiation. The advantages of these technologies, which make it possible to control the shape of the processed object are stressed. Ten parameters necessary for a proper calculation of technological yields of radiation processing are listed. Additional conditions which must be taken into account in the comparison of the cost of radiation processing with the cost of other technologies are also

  8. Training in radiation protection and the safe use of radiation sources

    International Nuclear Information System (INIS)

    2001-01-01

    The need for education and training in the various disciplines of radiation protection has long been recognized by the IAEA, the International Labour Organization (ILO), the United Nations Educational, Scientific and Cultural Organization, the World Health Organization and the Pan American Health Organization (PAHO). This need has been partially met through the many training courses undertaken by these organizations, either individually or in collaboration. The IAEA has assisted developing Member States in the training of specialists in radiation protection and safety through its organized educational and specialized training courses, workshops, seminars, fellowships and scientific visits. Training is an important means of promoting safety culture and enhancing the level of competence of personnel involved in radiation protection activities, and has acquired a place in the IAEA's programme accordingly. For example, the IAEA Post-graduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is regularly offered in countries around the world, and has been provided in Arabic, English, French, Spanish and Russian. The training provided by the IAEA is primarily aimed at regulators, professionals working in radiation protection and those responsible for the development of training programmes in their own countries. The importance of adequate and appropriate training for all those working with ionizing radiation has been highlighted by the results of the IAEA's investigations of radiological accidents. A significant contributory factor in a number of the accidents has been a lack of adequate training, which gave rise to errors with serious consequences. This report provides assistance in organizing training and complying with the requirements on training of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The previous version of this report. Technical Reports

  9. Radiation hormesis: an outcome of exposure to low level ionizing radiation

    International Nuclear Information System (INIS)

    Kant, Krishan

    2012-01-01

    Ionizing radiation is a benign environmental agent at background levels. Human population is always exposed to ionizing radiation from natural sources. Important sources are cosmic rays which come from outer space and from the surface of the sun, terrestrial radionuclides which occur in the earths crust in various geological formations in soils, rocks, building materials, plants, water, food, air and in the human body itself. With the increasing use of radiation in health facilities, scientific research, industry and agriculture, the study of impact of low-level ionizing radiation on environment and possible health effects on future generations has been a cause of concern in recent years. As regards the effects, it is established fact that high doses of ionizing radiation are harmful to health, there exists, however, a substantial controversy regarding the effects of low doses of ionizing radiation (LLIR). In the present paper, brief review of the available literature, data and reports on stimulation by low-dose irradiation and recent data supporting radiation hormesis. A linear quadratic model has been given illustrating the validity of radiation hormesis, besides the comparison of the dose rates arising from natural and manmade sources to the Indian population. This overview summarizes various reports

  10. Nuclear power and low level radiation hazards

    International Nuclear Information System (INIS)

    Myers, D.K.; Newcombe, H.B.

    1979-03-01

    Even in the future, nuclear power is expected to contribute less than 1/10th of the present total population exposure to man-made radiation. By the best estimates available, the current health risks of nuclear power generation appear to be much less than those associated with the major alternative sources of energy, with the exception of natural gas which is about equally safe. Uncertainties concerning the radiation risks from nuclear power, from medical x-rays and from the effects of reduced ventillation to conserve heat appear to be less than those associated with estimates of risks from the use of coal and various other sources of energy. This is in part because of the large amount of effort devoted to studies of radiation effects. The benefits in terms of current life expectancy associated with any of the conventional or unconventional methods of power production appear to greatly outweigh the associated current health hazards. (author)

  11. SGR-76 gamma radiation level indicator

    International Nuclear Information System (INIS)

    Chubinskij-Nadezhdin, I.V.

    1978-01-01

    The design of a gamma-radiation level indicator is described; the instrument is part of a mobile radiometric laboratory (MRL). The design of the instrument permits gamma-radiation dose rates recording at 0.2-200 R/hr, and signals on gamma-background levels. The instrument has two separate threshold levels of signalling actuation. The light signalling at the first level is precautionary, and the sound signalling at the second level indicates the necessity of taking a decision as to whether or not the MRL can remain in the gamma-radiation field. Halogenic counters operating in a current mode are used as detectors. The basic error in recording the dose rate amounts to +-25%. Overall dimensions of the instrument 150x280x100 mm; weight less than 2.5 kg

  12. Natural external radiation level and population dose in Hunan province

    International Nuclear Information System (INIS)

    1985-01-01

    A survey of the natural external radiation level in Hunan Province is reported. The measurements were performed with FD-71 scintillation radiometers. On the basis of measurements at about 1,600 locations, the contribution from cosmic radiation is found to be 3.0 x 10 -8 Gy.h -1 , and the average absorbed dose rates in air from terrestrial γ-radiation for outdoors, indoors and roads are determined to be 9.2, 13.1 and 9.0 x 10 -8 Gy.h -1 , respectively. The γ-radiation indoors is markedly higher than that outdoors by a factor of 1.42. The lowest γ-radiation level is found in the sedimentary plain around Donting Lake, while the highest absorbed dose rates in air from terrestrial radiation are observed in some areas with exposed granites. The indoor γ-radiation in brick houses is markedly higher than that in wooden houses. Tarred roads have evidently lower radiation level than sand-gravel roads or concrete roads. The annual effective dose equivalents to the population from cosmic and terrestrial sources are 0.256 and 0.756 mSv, respectively, with a total value of 1.012 mSv

  13. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  14. Annual individual doses for personnel dealing with ionizing radiation sources

    International Nuclear Information System (INIS)

    Poplavskij, K.K.

    1982-01-01

    Data on annual individual doses for personnel of national economy enterprises, research institutes, high schools, medical establishments dealing with ionizing radiation sources are presented. It is shown that radiation dose for the personnel constitutes only shares of standards established by sanitary legislation. Numeral values of individual doses of the personnel are determined by the type, character and scope of using ionizing radiation sources

  15. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  16. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  17. A new radiation source: the 'CASSITRON'

    International Nuclear Information System (INIS)

    Sadat, T.; Aucouturier, J.

    1984-01-01

    The CASSITRON, a radiation source conceived and made by CGR MeV, is intended for food processing, the sterilization of disposable medical supplies, sludge sterilization, and the treatment of polymers and chemical products. Its physical characteristics are described. Also the industrial characteristics, i.e. security, simplicity, reliability, easy insertion in a production line system and multipurpose use are explained. Meeting the physical, industrial and economic needs, the CASSITRON is a secure, reliable and simple electric machine. It is a multipurpose accelerator, and can be easily inserted in a production line system. The machine is composed mainly of an electron generator, a modulator, a conversion-device to produce hard x-ray with the electron beam, and a control console. (Mori, K.)

  18. An industrial radiation source for food processing

    International Nuclear Information System (INIS)

    Sadat, R.

    1986-01-01

    The scientific linacs realized by CGR MeV in France have been installed in several research centers, the medical accelerators of CGR MeV have been installed in radiotherapy centers all over the world, and the industrial linacs have been used for radiography in heavy industries. Based on the experience for 30 years, CGR MeV has realized a new industrial radiation source for food processing. CARIC is going to install a new machine of CGR MeV, CASSITRON, as the demand for radiation increased. This machine has been devised specially for industrial irradiation purpose. Its main features are security, simplicity and reliability, and it is easy to incorporate it into a production line. The use of CASSITRON for food industry, the ionizing effect on mechanically separated poultry meat, the capital and processing cost and others are explained. Only 10 % of medical disposable supplies is treated by ionizing energy in France. The irradiation for food decontamination, and that for industrial treatment are demanded. Therefore, CARIC is going to increase the capacity by installing a CASSITRON for sterilization. The capital and processing cost are shown. The start of operation is expected in March, 1986. At present, a CASSITRON is being installed in the SPI food processing factory, and starts operation in a few weeks. (Kako, I.)

  19. Cesium-137 as a radiation source

    International Nuclear Information System (INIS)

    McMullen, W.H.; Sloan, D.P.

    1985-01-01

    The U.S. Department of Energy (DOE) Byproducts Utilization Program (BUP) seeks to develop and encourage widespread commercial use of defense byproducts that are produced by DOE. Cesium-l37 is one such byproduct that is radioactive and decays with emission of gamma rays. The beneficial use of this radiation to disinfect sewage sludge or disinfest food commodities is actively being pursued by the program. The radiation produced by cesium-l37(Cs-l37) is identical in form to that produced by cobalt-60(Co-60), an isotope that is widely used in commercial applications such as medical product sterilization. The choice of isotope to use depends on several factors ranging from inherent properties of the isotopes to availability and cost. The BUP, although centrally concerned with the beneficial use of Cs-l37, by investigating and assessing the feasibility of various uses hopes to define appropriate circumstances where cesium or cobalt might best be used to accomplish specific objectives. This paper discusses some of the factors that should be considered when evaluating potential uses for isotopic sources

  20. Establishing control over nuclear materials and radiation sources in Georgia

    International Nuclear Information System (INIS)

    Basilia, G.

    2010-01-01

    Regulatory control over radiation sources in Georgia was lost after disintegration of the Soviet Union. A number of radiation accidents and illegal events occurred in Georgia. From 1999 Nuclear and Radiation Safety Service of the Ministry of Environmental Protection and Natural Resources is responsible for regulatory control over radiation sources in Georgia. US NRC Regulatory Assistance Program in Georgia Assist the Service in establishing long term regulatory control over sources. Main focuses of US NRC program are country-wide inventory, create National Registry of sources, safe storage of disused sources, upgrade legislation and regulation, implementation licensing and inspection activities

  1. Radiobiologic effects at low radiation levels

    International Nuclear Information System (INIS)

    Casarett, G.W.

    1975-01-01

    Data are reviewed on the effects of low radiation doses on mammals. Data from the 1972 report on the Biological Effects of Ionizing Radiation issued by the Advisory Committee of the National Academy of Sciences and National Research Council are discussed. It was concluded that there are certain radiosensitive systems in which low doses of radiation may cause degenerative effects, including gametogenic epithelium, lens of the eye, and developing embryos. Despite extensive investigation of genetic effects, including chromosomal effects, neither the amount of change that will be caused by very low levels of irradiation nor the degree of associated detriment is known

  2. General problems associated with the control and safe use of radiation sources (199)

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1993-01-01

    There are problems at various levels in ensuring safety in the use of radiation sources. A relatively new problem that warrants international action is the smuggling of radioactive material across international borders. An international convention on the control and safe use of radiation sources is essential to provide a universally harmonized mechanism for ensuring safety

  3. Methods to identify and locate spent radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs and tabs.

  4. Methods to identify and locate spent radiation sources

    International Nuclear Information System (INIS)

    1997-06-01

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs, tabs

  5. Methods to identify and locate spent radiation sources

    International Nuclear Information System (INIS)

    1995-07-01

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs and tabs

  6. Evaluation of radiation protection educational level of professional exposed workers

    International Nuclear Information System (INIS)

    Marinkovic, O.; Krstev, S.; Jovanovic, S.

    2006-01-01

    Full text: Serbia and Montenegro legislation concerning with radiation protection was upgrading after publication ICRP- 60 and B.S.S., No.115. Present Law on the Protection against Ionizing Radiation is in force from 1996. Among quite new issues in radiation protection regulations there was article relate to obligatory refresher training. Due to adverse political and economic situation through many years radiation protection regulations were not fulfill completely. The aim of this investigation was to get real view to education level of professional exposed workers. In Serbia and Montenegro the most of ionizing radiation sources are in medical use and the most exposed workers are radiographers and radiologists. The test was passed by 200 radiographers and 50 radiologists. Main groups of questions were: Radiation protection and safety; difference between safety and security; legislation: law and regulations; incidents, accidents and operational failures: recording, learning. Usually, knowledge from school pales. New quantities (as ambient and personal dose equivalent) are mostly unknown. It is easier to understand the real difference between safety and security than to understand linguistic differences. Discussing regulations workers are more interesting in syndicate regulations than radiation protection ones. Operational failures and incidents are hidden. Better to say: nobody dare to speak about them. The results imposed conclusion that regulatory body has to pay more attention to upraise safety culture and radiation protection education level of professional exposed workers. (authors)

  7. Low-level radiation effects: a fact book

    International Nuclear Information System (INIS)

    Brill, A.B.; Adelstein, S.J.; Saenger, E.L.; Webster, E.W.

    1982-01-01

    Low Level Raidation Effects: A Fact Book, prepared by the Society of Nuclear Medicine Subcommittee on the Risks of Low-Level Ionizing Radiation, attempts to examine the health effects of small doses of radiation. For immediate questions, this work provides a well-organized brief summary of recent radiologic data from refereed scientific literature and from the publications of advisory groups such as the National Council of Radiation Protection and Measurement (NCRP), the International Commission on Radiological Protection (ICRP), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the National Academy of Sciences (NAS). Since it consists almost entirely of tables and graphs from the above-mentioned sources along with summary paragraphs, the Fact Book is very useful in the preparation of lectures. The book is divided into seven sections. Chapter One, Glossary, Units and Conversion Factors, is useful because nearly all data given in the rest of the book is in conventional units and should be converted to SI units for future technical audiences. Chapter 2, Radiobiology, covers the fundamental principles of the field. Chapter 3, Radiation Doses, can be used to help an audience appreciate the relative magnitudes of radiation exposures they may read about or encounter. Chapter 4, Late Somatic Effects of Low Doses of Ionizing Radiation, gives data concerning cancer induction and embryonic effects, and Chapter 5 provides data on genetic effects Chapter 6, Risks, Statistical Facts and Public Perception can be used to compare the risks of radiation exposure with more commonly encountered risks

  8. Regulatory control of low level radiation exposure in Tanzania

    International Nuclear Information System (INIS)

    Nyanda, A.M.; Muhogora, W.E.

    1997-01-01

    In Tanzania, the radiation protection law was issued in 1983. Under this law, the National Radiation Commission is responsible for safe uses of ionizing radiation. The regulatory control of the resulting doses from the uses of radiation sources in medicine, industry, research and teaching is presented. The system of control reflects the existing interactions between the National Radiation Commission and users through the established radiation protection infrastructure. From the national dose registry data, it is found that the highest annual individual doses over 10 years ago, came from less than 5% of total monitored workers and were in the range 10 - 15 mSv y -1 . The experienced radiation levels in uncontrolled areas of potential workplaces is less than 1 μSv h -1 . The possibility for associating such low dose levels to the effectiveness of the existing regulatory dose control framework is discussed. Despite of this achievement, the need to improve further the radiation protection and safety programs is found necessary. (author)

  9. Safety issues in the handling of radiation sources in category IV gamma radiation facilities

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    There is potential for incidents/accidents related to handling of radiation sources. This is increasing due to the fact that more number of plants that too with much larger levels of activity are now coming up. Such facilities produce very high levels of exposure rates during irradiation. A person accidentally present in the irradiation cell can receive a lethal dose within a very short time. Apart from safety requirements during operation and maintenance of these facilities, safety during loading and unloading of sources is important. Category IV type irradiators are the most common. Doubly encapsulated Co-60 slugs are employed to form the source pencils. These irradiators employ a water pool for safely storing the source pencils when irradiation of the products is not going on or when human access is needed into the irradiation cell for some maintenance or source loading/unloading operations. Safety during loading/unloading operations of source pencils is important. In design itself care needs to be taken such that all such operations are convenient and any incident will not lead to a situation where it becomes difficult to come out. Different situations, which can arise during handling of radiation sources and suggested designs to obviate such tight situations, are discussed. (Author)

  10. The regulatory control of radiation sources in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Birol, E.

    2001-01-01

    In Turkey, the national competent authority for regulating activities involving radioactive sources is the Turkish Atomic Energy Authority, which implements the responsibility for the safety and security of radiation sources through its Radiation Health and Safety Department. The report describes the organization of the regulatory infrastructure for radiation safety in Turkey and, after a brief explanation of the current legal framework for such purpose, it refers to how the management of radiation sources is carried out and to the new provisions regarding radiation sources, including inspections of licensees and training on source safety. Finally, the report provides information on the Ikitelli radiological accident in Turkey and the current public concern about radiation sources after it happened. (author)

  11. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  12. Health effects of low level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1998-12-31

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted `Radiation Hormesis` on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm `is it true or not?` After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey`s claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  13. Health effects of low level radiation

    International Nuclear Information System (INIS)

    Hattori, Sadao

    1998-01-01

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted 'Radiation Hormesis' on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm 'is it true or not?' After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey's claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  14. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  15. [Use of ionizing radiation sources in metallurgy: risk assessment].

    Science.gov (United States)

    Giugni, U

    2012-01-01

    Use of ionizing radiation sources in the metallurgical industry: risk assessment. Radioactive sources and fixed or mobile X-ray equipment are used for both process and quality control. The use of ionizing radiation sources requires careful risk assessment. The text lists the characteristics of the sources and the legal requirements, and contains a description of the documentation required and the methods used for risk assessment. It describes how to estimate the doses to operators and the relevant classification criteria used for the purpose of radiation protection. Training programs must be organized in close collaboration between the radiation protection expert and the occupational physician.

  16. Background compensation for a radiation level monitor

    Science.gov (United States)

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  17. Low-level radiation waste management system

    International Nuclear Information System (INIS)

    Kubofcik, K.W.

    1990-01-01

    This patent describes a low-level radiation waste container set for use in conjunction with an open-topped receptacle. It comprises: a receptacle liner having a closed end and an open end, the receptacle liner sized for deployment as an inserted liner in an open-topped receptacle for collecting low-level radiation waste material within the receptacle liner within the open-topped receptacle; a cover sized and shaped to fit over the open top of the open-topped receptacle and the receptacle liner therein with the cover is in a closed position. The cover having a depending skirt which, when the cover is in the closed position, extends downwardly to overlap the open-topped receptacle adjacent the open top thereof and a portion of the receptacle liner received therein; and the receptacle liner and cover being fabricated of flexible radiation shielding material

  18. Radiological control in fires involving radiation sources

    International Nuclear Information System (INIS)

    Franco, J.O.A.; Coelho, C.P.

    1984-01-01

    The copies used during the chatter by techniques from CDTN in the I Mineiro Symposium of Fire Engineering, are presented. The chatter was based on emergency radiation control course, given by CDTN. Basic concepts, such as nuclear physics fundaments, radiation nature and detection, radiation protection and practical aspects of radiological fire emergency, were enphasized. (M.C.K.) [pt

  19. Potential GTCC LLW sealed radiation source recycle initiatives

    International Nuclear Information System (INIS)

    Fischer, D.

    1992-04-01

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities

  20. Acceptance criteria for deposition of low-level and intermediate-level radiation levels radioactive wastes

    International Nuclear Information System (INIS)

    2002-09-01

    This norm establishes the criteria for acceptance low and intermediate radiation level for safe deposition in repositories, for assuring the protection of workers, population and environment against the hazardous effects of the ionizing radiations. The criteria of this norm applies to the low and intermediate radiation levels

  1. Ambient radioactivity levels and radiation doses. Annual report 2009

    International Nuclear Information System (INIS)

    Bernhard-Stroel, Claudia; Hachenburger, Claudia; Trugenberger-Schnabel, Angela; Peter, Josef

    2010-12-01

    The annual report on environmental radioactivity and radiation exposure 2009 consists of two parts. Part A: General information: natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposures from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. Part B includes current data and their evaluation for natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposures from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation.

  2. Nature and magnitude of the problem of spent radiation sources

    International Nuclear Information System (INIS)

    1991-09-01

    Various types of sealed radiation sources are widely used in industry, medicine and research. Virtually all countries have some sealed sources. The activity in the sources varies from kilobecquerels in consumer products to hundreds of pentabecquerels in facilities for food irradiation. Loss or misuse of sealed sources can give rise to accidents resulting in radiation exposure of workers and members of the general public, and can also give rise to extensive contamination of land, equipment and buildings. In extreme cases the exposure can be lethal. Problems of safety relating to spent radiation sources have been under consideration within the Agency for some years. The first objective of the project has been to prepare a comprehensive report reviewing the nature and background of the problem, also giving an overview of existing practices for the management of spent radiation sources. This report is the fulfilment of this first objective. The safe management of spent radiation sources cannot be studied in isolation from their normal use, so it has been necessary to include some details which are relevant to the use of radiation sources in general, although that area is outside the scope of this report. The report is limited to radiation sources made up of radioactive material. The Agency is implementing a comprehensive action plan for assistance to Member States, especially the developing countries, in all aspects of the safe management of spent radiation sources. The Agency is further seeking to establish regional or global solutions to the problems of long-term storage of spent radiation sources, as well as finding routes for the disposal of sources when it is not feasible to set up safe national solutions. The cost of remedial actions after an accident with radiation sources can be very high indeed: millions of dollars. If the Agency can help to prevent even one such single accident, the cost of its whole programme in this field would be more than covered. Refs

  3. System level modelling with open source tools

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Koefoed; Madsen, Jan; Niaki, Seyed Hosein Attarzadeh

    , called ForSyDe. ForSyDe is available under the open Source approach, which allows small and medium enterprises (SME) to get easy access to advanced modeling capabilities and tools. We give an introduction to the design methodology through the system level modeling of a simple industrial use case, and we...

  4. Molecular environmental science and synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E. Jr. [Stanford Univ., CA (United States)

    1995-12-31

    Molecular environmental science is a relatively new field but focuses on the chemical and physical forms of toxic and/or radioactive contaminants in soils, sediments, man-made waste forms, natural waters, and the atmosphere; their possible reactions with inorganic and organic compounds, plants, and organisms in the environment; and the molecular-level factors that control their toxicity, bioavailability, and transport. The chemical speciation of a contaminant is a major factor in determining its behavior in the environment, and synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy is one of the spectroscopies of choice to quantitatively determine speciation of heavy metal contaminants in situ without selective extraction or other sample treatment. The use of high-flux insertion device beam lines at synchrotron sources and multi-element array detectors has permitted XAFS studies of metals such as Se and As in natural soils at concentration levels as low as 50 ppm. The X-ray absorption near edge structure of these metals is particularly useful in determining their oxidation state. Examples of such studies will be presented, and new insertion device beam lines under development at SSRL and the Advanced Photon Source for molecular environmental science applications will be discussed.

  5. Evidence for beneficial low level radiation effects and radiation hormesis

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2005-01-01

    Low doses in the mGy range cause a dual effect on cellular DNA. One effect concerns a relatively low probability of DNA damage per energy deposition event and it increases proportional with dose, with possible bystander effects operating. This damage at background radiation exposure is orders of magnitudes lower than that from endogenous sources, such as ROS. The other effect at comparable doses brings an easily obeservable adaptive protection against DNA damage from any, mainly endogenous sources, depending on cell type, species, and metabolism. Protective responses express adaptive responses to metabolic perturbations and also mimic oxygen stress responses. Adaptive protection operates in terms of DNA damage prevention and repair, and of immune stimulation. It develops with a delay of hours, may last for days to months, and increasingly disappears at doses beyond about 100 to 200 mGy. Radiation-induced apoptosis and terminal cell differentiation occurs also at higher doses and adds to protection by reducing genomic instability and the number of mutated cells in tissues. At low doses, damage reduction by adaptive protection against damage from endogenous sources predictably outweighs radiogenic damage induction. The analysis of the consequences of the particular low-dose scenario shows that the linear-no-threshold (LNT) hypothesis for cancer risk is scientifically unfounded and appears to be invalid in favor of a threshold or hormesis. This is consistent with data both from animal studies and human epidemiological observations on low-dose induced cancer. The LNT hypothesis should be abandoned and be replaced by a hypothesis that is scientifically justified. The appropriate model should include terms for both linear and non-linear response probabilities. Maintaining the LNT-hypothesis as basis for radiation protection causes unressonable fear and expenses. (author)

  6. Radiation levels in nuclear diagnostic examinations

    International Nuclear Information System (INIS)

    Vermeulen, A.M.T.I.

    1987-01-01

    To estimate the risks for a pregnant radiological worker, radiation level measurements are executed for common nuclear diagnostic techniques. These measurements are combined with the time which the radiologic worker is present during the performance of the diagnostic techniques. It is concluded that a radiologic worker is receiving less than 5 mSv during pregnancy. This is the case with in vivo determination in a department of nuclear medicine with common diagnostic techniques. Reduction of radiation doses during pregnancy is possible by reduction of heart function examinations, skeletal examinations and brain scans. 1 figure; 13 tabs

  7. Natural radiation source fabricated from commercially available instant coffee

    International Nuclear Information System (INIS)

    Kawano, Takao; Ando, Yoshiaki; Izumi, Yuuichi

    2015-01-01

    Commercially available instant coffee, Nescafe Excella, contained the radionuclide 40 K. From the instant coffee, sixteen coffee-block radiation sources were successfully fabricated with sufficiently low production dependences. The coffee-block radiation sources were examined their suitability for a radiation protection course. Although a part of radiation counts(cpm) obtained with 1 minute measurement were largely deviated, those determined by 5 minute measurements and five times of 1 minute measurement were less deviated, enabling better comprehension of the three cardinal principles of radiation protection. (author)

  8. Protection in handling ionizing radiation sources in national economy

    International Nuclear Information System (INIS)

    1986-01-01

    The collection of study texts is divided into 13 chapters giving an explanation of the structure of the atom, the properties of ionizing radiation and its interactions, quantities and units used, basic dosimetric methods, biological radiation effects, the sources of population exposure, the principles of radiation protection, technological applications of ionizing radiation, the monitoring of personnel and environment, the method of recording and filing, the method of protection from external radiation and internal contamination, health care, and requirements for protection in handling nonsealed sources. (M.D.)

  9. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    Science.gov (United States)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  10. Safety of radiation sources and other radioactive materials in Jordan

    International Nuclear Information System (INIS)

    Majali, M.M.

    2001-01-01

    Since joining the IAEA Model Project for upgrading radiation protection infrastructure in countries of West Asia, Jordan has amended its radiation safety legislation. The Regulatory Authority is improving its inventory system for radiation sources and other radioactive materials and also its notification, registration, licensing, inspection and enforcement systems. It has established national provisions for the management of orphan sources after they have been found. The system for the control of the radiation sources and other radioactive materials entering the country has been improved by the Regulatory Authority. (author)

  11. Sterilization plants equipped with the isotopic gamma radiation sources

    International Nuclear Information System (INIS)

    Mehta, K.; Chmielewski, A.G.

    2007-01-01

    Presentation describes different isotopic gamma radiation sources applicable for sterilization of food and medical materials. Certain gamma pallet irradiators, mini gamma irradiators and different scale gamma tote irradiators are presented. It is concluded, that about two hundreds plants with gamma radiation sources operates in different countries. However, industrially developed countries must construct much more plants than operates now

  12. Indirect detection of radiation sources through direct detection of radiolysis products

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Fischer, Larry E [Los Gatos, CA; Felter, Thomas E [Livermore, CA

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  13. Transition undulator radiation as bright infrared sources

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  14. Ocular exposure to ultraviolet and visible radiation from light sources

    International Nuclear Information System (INIS)

    Hietanen, M.

    1992-01-01

    Exposure of the eyes to UV radiation and blue light of artificial light sources and the sun was evaluated. A spectroradiometer was used to determine the spectral irradiance at 1 nm intervals from 250 to 800 nm. Various groups of workers are at risk of ocular over-exposure to optical radiation, outdoor workers maintenance personnel of bright light source as and wear eye-protectors with effective filtering of UV radiation and blue light. (author)

  15. Incidents with hazardous radiation sources; Zwischenfaelle mit gefaehrlichen Strahlenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenhacker, Stefan [Bundesministerium fuer Inneres, Traiskirchen (Austria). Abt. 1/9 - Zivilschutzschule

    2016-07-01

    Incidents with hazardous radiation sources can occur in any country, even those without nuclear facilities. Preparedness for such incidents is supposed to fulfill globally agreed minimum standards. Incidents are categorized in incidents with licensed handling of radiation sources as for material testing, transport accidents of hazardous radiation sources, incidents with radionuclide batteries, incidents with satellites containing radioactive inventory, incidents wit not licensed handling of illegally acquired hazardous radiation sources. The emergency planning in Austria includes a differentiation according to the consequences: incidents with release of radioactive materials resulting in restricted contamination, incidents with release of radioactive materials resulting in local contamination, and incidents with the hazard of e@nhanced exposure due to the radiation source.

  16. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  17. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Arabic ed.)

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  18. Possible sources of radiation in indoor environment

    International Nuclear Information System (INIS)

    Djukanovic, M.

    1997-01-01

    More locations and building material will be needed to solve the housing needs, actually the future quantities will equal the total of all the previous building. And presently one quarter of the world population is already homeless. The development of human civilization in the new technological era goes on extremely quickly. In the search for new spaces, in the last decade of the 20th century, in town renovation planning the application of subterranean civil engineering is very popular. Below ground level, the new towns are built with many stories, with exclusively artificial light and artificial climate. There is not the slightest possibility of natural ventilation. These spaces have not been investigated as regards the contents of radon. Man is not adapted to spend most of the time in under artificial conditions. It is still to be discovered how it will affect humans and what is the degree of exposure to ionizing radiation in such conditions. It might be better to abandon underground construction before the adverse effects are proved. Previous mistakes in building must be overcome and new technologies applied as well as sustainable development in the future. (author)

  19. Low-level radiation: The cancer controversy

    International Nuclear Information System (INIS)

    Stewart, A.M.

    1990-01-01

    According to early studies it would be safe to assume there are no late effects of radiation apart from cancer, no lasting selective effects of the early deaths of A-bomb victims, and no cancer risk at low dose levels (below 20 rad). The nuclear establishment had good reason to believe that a potentially dangerous situation had been completely defused, and optimists were still free to regard daily exposure to background radiation as a benign influence. For several years the only indication to the contrary was the Oxford survey's finding on prenatal X-rays. But today we face the possibility that there are other late effects of radiation besides cancer; and the possibility that the selection effects of the two nuclear explosions are still reflected in death rates among survivors and are the reason why no cancer effects have been found at low dose levels. If these possibilities are confirmed, we may one day realize how fortunate it was that the Oxford survey findings put a brake on the enthusiasms of nuclear power advocates. Otherwise, we might never have pressed for direct studies of the effects of low doses of radiation. 7 refs

  20. The safety of radiation sources and radioactive materials in China

    International Nuclear Information System (INIS)

    Liu, H.

    2001-01-01

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  1. UV radiation sources for artificial skin tanning and protection

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.

    1999-01-01

    UV radiation sources for artificial tanning are more utilized at the last time. UV radiation is not harmless, so there are not safety devices for tanning. If people do not want to avoid exposure to their radiation, than it is necessary to take the prevention measure: strictly dose of UV radiation according to skin type, use of appropriate protective eye-wears and respect for inhibit of some medicaments and some cosmetic products use. (author)

  2. Basic experiment on scattering type level gauge using neutron source

    International Nuclear Information System (INIS)

    Kumazaki, Hiroshi; Fukuchi, Ryoichi; Horiguchi, Yasuhiro

    1984-01-01

    The level gauges using sealed radiation sources have been utilized for pulp and chemical industries, however, for those gauges, transmission type gamma sources are used, which require considerably large radioactivity, and it hinders the spread to medium and small enterprises. Recently, Cf-252 has become easily available, and various He-3 counters are on the market, consequently, the scattering type level gauges combining them have been examined. With the level gauges of this type, the judgement of level can be made sufficiently with the Cf-252 below 3.7 x 10 6 Bq, therefore, if the practical instruments are made, they seem to spread into medium and small enterprises because of the safety and the chief handling radiation being unnecessary. For the purpose of developing and manufacturing for trial this scattering type level gauge, the basic experiment was carried out to examine the effects of the change of salt content and the thickness of vessels and the effect of scattering materials. The possibility of the on-off operation as level gauges was also examined. The experimental method and the results are reported. The count considerably decreased with increasing salt content. Scattering materials worked effectively to increase the count. (Kako, I.)

  3. New legislative regulations for ensuring radiation protection using ionizing radiation sources in medicine

    International Nuclear Information System (INIS)

    Boehm, K.

    2018-01-01

    European Commission Directive No. 2013/59 / EURATOM laying down basic safety requirements for the provision of radiation protection regulates the provision of radiation protection for workers with radiation sources and residents in all areas of use of ionizing radiation sources. This Directive also addresses radiation protection in the use of ionizing radiation sources in medicine. The European Commission Directive regulates the requirements for radiation protection but also extends to its scope and provisions on the use of medical radiation sources (so-called m edical exposure ) in the scope of further legislation in the field of health care, which has to be amended and modified or possibly issued new. It was necessary in the preparation of the new act on radiation protection to amend simultaneously Act no. 576/2004 on the provision of health care and services related to provision of health care and Act no. 578/2004 on Health care Providers, Health care Professionals and Organizations in Health Care and to prepare a series of implementing regulations not only to the Law on Radiation Protection but also to the Laws governing the Provision of Health Care. The paper presents changes to existing legislation on radiation protection in medical radiation and new requirements for the construction and operation of health workplaces with radiation sources, the protection of the health of patients, the requirements for instrumentation used for medical radiation and radiological instrumentation tests. (authors)

  4. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  5. Separation of radiation from two sources from their known radiated sum field

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey

    2011-01-01

    This paper presents a technique for complete and exact separation of the radiated fields of two sources (at the same frequency) from the knowledge of their radiated sum field. The two sources can be arbitrary but it must be possible to enclose the sources inside their own non-intersecting minimum...

  6. State Register of Sources of Ionizing Radiation and Occupational exposure

    CERN Document Server

    2002-01-01

    One of main tasks of Radiation Protection Centre is to collect, process, systematize, store and provide the data on sources of ionizing radiation and occupational exposures. The number of sources in 2002 is provided and compared with previous year. Distribution of workers according to the type of practice is compared with previous year. Distribution of sealed sources and x-ray machines according their use is presented.

  7. Production of radioisotopic gamma radiation sources in JAERI

    International Nuclear Information System (INIS)

    Katoh, Hisashi; Kogure, Hiroto; Suzuki, Kyohei

    1980-04-01

    The present state of production of gamma radiation sources in Japan Atomic Energy Research Institute (JAERI) is described. Sources of 192 Ir, 60 Co and 170 Tm for industrial and 198 Au and 192 Ir for medical applications are produced and delivered routinely by JAERI. Prefabricated assembly targets are irradiated in JRR-2, JRR-3, JRR-4 or JMTR. The irradiated targets are disassembled in a heavy density concrete cave or a lead-shielded cell, depending on the level of radioactivity. The yield of radioactivity in each target is measured with the aid of an ionization chamber. Where necessary, irradiated targets are encapsulated hermetically in capsules of aluminium, stainless steel or other material. The yield of radioactivity is estimated in relation with the burn-up of target nuclide and product nuclide. (author)

  8. Dosimetric analysis of radiation sources to use in dermatological lesions

    International Nuclear Information System (INIS)

    Tada, Ariane

    2010-01-01

    Skin lesions undergoing therapy with radiation sources may have different patterns of malignancy. Malignant lesions or cancer most commonly found in radiotherapy services are carcinomas. Radiation therapy in skin lesions is performed with low penetration beams and orthovoltage X-rays, electron beams and radioactive sources ( 192 Ir, 198 Au, e 90 Sr) arranged on a surface mold or in metal applicator. This study aims to analyze the therapeutic radiation dose profile produced by radiation sources used in skin lesions radiotherapy procedures. Experimental measurements for the analysis of dosimetric radiation sources were compared with calculations obtained from a computer system based on the Monte Carlo Method. Computational results had a good agreement with the experimental measurements. Experimental measurements and computational results by the MCNP4C code have been used to validate the calculations obtained by MCNP code and to provide a reliable medical application for each clinical case. (author)

  9. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1985-01-01

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10 -9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.) [pt

  10. Radiation sources EB and UV curing machines

    International Nuclear Information System (INIS)

    Takashi Sasaki

    1993-01-01

    This paper describes electron beam processors and related technologies for curing applications to facilitate those industrial personals who are trying to understand and evaluate the applicability and benefits of radiation curing to their products. 4 tabs., 10 figs

  11. Radiation sources EB and UV curing machines

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    This paper describes electron beam processors and related technologies for curing applications to facilitate those industrial personals who are trying to understand and evaluate the applicability and benefits of radiation curing to their products. 4 tabs., 10 figs.

  12. Development of Yb-169 radiation source for new nondestructive inspection

    International Nuclear Information System (INIS)

    Yamabayashi, Hisamichi

    1994-01-01

    As the nondestructive inspection method for large structures, there has been radiography, and X-ray and γ-ray have been used as the radiation. The transmissivity of radiation through materials changes by the energy of the radiation and the density and thickness of the materials. At present about 880 γ-ray radiography apparatuses are used in Japanese private enterprises, and about 70% of them use 192 Ir γ-ray sources, and about 30% use 60 Co or 137 Cs sources. Recently the defect inspection for the worlded parts of thin wall small tubes and so on have become to be regarded as important, and the 169 Yb source that emits lower energy γ-ray is suitable to the purpose. There are many reports that 169 Yb radiography was applied successfully. As the 169 Yb radiation source, pellets and balls are on the market. 169 Yb is made by the neutron irradiation of 168 Yb in nuclear reactors. The characteristics of 169 Yb, the manufacture of 169 Yb radiation sources and the applicability of 169 Yb radiation sources to nondestructive inspection are reported. Also in Japan, many basic experiments on 169 Yb radiation sources have been carried out, and the irradiation apparatuses are small and light, and the control area can be set small. (K.I.)

  13. Challenges in Regulating Radiation Sources and Radioactive Waste in Nigeria

    International Nuclear Information System (INIS)

    Ngwakwe, C.

    2016-01-01

    Identifying challenges that hamper the efficiency and efficacy of Regulatory Infrastructure (People and Processes) as regards ensuring safety & security of radiation sources and radioactive waste is a major step towards planning for improvement. In a world constantly motivated by technological advancements, there has been considerable increase in the use of new technologies incorporating radioactive sources in both medical and industrial applications due to its perceived benefits, hence changing the dynamics of regulation. This paper brings to the fore, contemporary challenges experienced by regulators in the course of regulating radiation sources and radioactive waste in Nigeria. These challenges encountered in the business of regulating radiation sources and radioactive waste in Nigeria amongst others include; knowledge gap in the use of novel technologies for industrial applications (e.g. radiotracers in oil & gas and wastewater management), inadequate collaboration with operators to ensure transparency in their operations, inadequate cooperation from other government agencies using ionizing radiation sources, lack of synergy between relevant government agencies, difficulty in establishing standard radioactive waste management facility for orphan & disused sources, and inadequate control of NORMS encountered in industrial activities (e.g. well logging, mining). Nigerian Nuclear Regulatory Authority (NNRA), the body saddled with the responsibility of regulating the use of ionizing radiation sources in Nigeria is empowered by the Nuclear Safety and Radiation Protection Act to ensure the protection of life, property, and the environment from the harmful effects of ionizing radiation, hence are not immune to the aforementioned challenges. (author)

  14. The regulatory control of ionizing radiation sources in Lithuania

    International Nuclear Information System (INIS)

    Mastauskas, A.; Ziliukas, J.; Morkunas, G.

    1998-01-01

    The Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for radiation protection of the public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the control of radioactive sources, which includes keeping the registry, investigating persons arrested while illegally carrying or in possession of radioactive material, decision making and control of users of radioactive sources. The computer based registry contains a directory of more than 24,000 sources and some 800 users in research, medicine and industry. Most of these sources are found in smoke detectors and X ray equipment. The potentially most dangerous sources for therapy and industry (sealed and unsealed) are also listed in this registry. Problems connected with the regulatory control of radioactive sources in Lithuania are presented and their solution is discussed. (author)

  15. Low-level radiation and cancer deaths

    International Nuclear Information System (INIS)

    Sanders, B.S.

    1978-01-01

    It is stated that although the proportion of cancer deaths among males is somewhat higher for Hanford employees with recorded occupational radiation exposure compared with males in the general population of the State of Washington, there is no indication that radiation is the cause of this difference. Statistics are given for mean doses received and for deaths from cancer and other causes for male employees. It is shown that for each year the mean dose level of those who died from cancer is not significantly different from the mean of those who died from other causes. The mean dose level for the majority of those who died in a specific year is lower than the mean for the survivors in the year of death, in the year preceding the year of death, or in the two years preceding the year of death. This is true whether the mean was for those dying from cancer or from other causes. These relationships are similar for female exposed employees and agree with other similar studies. The latest analysis on longevity of exposed male Hanford employees vs those nonexposed and the out-of-plant controls from date of hire to April 1974 are considered and show no firm indication of any lasting adverse health effects among employees attributable to occupational exposure to radiation within permissible limits. (U.K.)

  16. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  17. Rendering harmless and deposition of spent sealed radiation sources

    International Nuclear Information System (INIS)

    Cholerzynski, A.

    1999-01-01

    The sealed radiation sources are commonly used in medicine, agriculture, industry and scientific research. There is millions of such sources being used all over the world. The purpose of this article is to present a modes of management and disposal of spent sealed radioactive sources in different countries as well as methods being recommended in Poland

  18. Natural radiation sources fabricated from potassic chemical fertilizers and application to radiation education

    International Nuclear Information System (INIS)

    Kawano, Takao

    2010-01-01

    Potassic chemical fertilizers contain potassium, a small part of which is potassium-40. Since potassium-40 is a naturally occurring radioisotope, potassic chemical fertilizers are often used for demonstrations of the existence of natural radioisotopes and radiation. To fabricate radiation sources as educational tools, the compression and formation method developed by our previous study was applied to 13 brands of commercially available chemical fertilizers containing different amounts of potassium. The suitability (size, weight, and solidness) of thus fabricated sources was examined and 12 of them were selected as easy-to-use radiation sources at radiation educational courses. The radiation strength (radiation count rate measured by a GM survey meter) and potassium content of the 12 sources were examined. It was found that the count rate was wholly proportional to the percentage of potassium, and a new educational application was proposed and discussed for understanding that the substance emitting radiation must be the potassium present in the raw fertilizers. (author)

  19. THE ROLE OF RADIATION ACCIDENTS AND INDUSTRIAL APPLICATIONS OF IONIZING RADIATION SOURCES IN THE PROBLEM OF RADIATION DAMAGE

    OpenAIRE

    Кіхтенко, Ігор Миколайович

    2016-01-01

    Subject of research – the relevance of radiation damage at modern development of industry and medicine. In the world of radiation sources used in different fields of practice and their application in the future will increase, which greatly increases the likelihood of injury in a significant contingent of people.Research topic – the definition of the role of nuclear energy and the industrial use of ionizing radiation sources in the problem of radiation damage. The purpose of research – identif...

  20. Introduction to radiation protection practical knowledge for handling radioactive sources

    CERN Document Server

    Grupen, Claus

    2010-01-01

    The book presents an accessible account of the sources of ionising radiation and the methods of radiation protection. The basics of nuclear physics which are directly related to radiation protection are briefly discussed. The book describes the units of radiation protection, the measurement techniques, biological effects of radiation, environmental radiation, and many applications of radiation. For each chapter there is a problem section with full solutions. A detailed glossary and many useful information in appendixes complete the book. The author has addressed the issue of internationality to make sure that the text and, in particular, the complicated regulations can be easily interpreted not only in Europe and the United States but also in other countries. The subject of radiation protection requires a certain amount of mathematics. For those who have forgotten the basic rules of calculus a short refresher course in the form of a mathematical appendix is added.

  1. The adaptive collision source method for discrete ordinates radiation transport

    International Nuclear Information System (INIS)

    Walters, William J.; Haghighat, Alireza

    2017-01-01

    Highlights: • A new adaptive quadrature method to solve the discrete ordinates transport equation. • The adaptive collision source (ACS) method splits the flux into n’th collided components. • Uncollided flux requires high quadrature; this is lowered with number of collisions. • ACS automatically applies appropriate quadrature order each collided component. • The adaptive quadrature is 1.5–4 times more efficient than uniform quadrature. - Abstract: A novel collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order used for each. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This method allows for an optimal use of processing power, by using a high order quadrature for the first iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and is referred to as the adaptive collision source (ACS) method. The ACS methodology has been implemented in the 3-D, parallel, multigroup discrete ordinates code TITAN. This code was tested on a several simple and complex fixed-source problems. The ACS implementation in TITAN has shown a reduction in computation time by a factor of 1.5–4 on the fixed-source test problems, for the same desired level of accuracy, as compared to the standard TITAN code.

  2. Regulatory control of radiation sources in Germany

    International Nuclear Information System (INIS)

    Coy, K.

    1998-01-01

    The regulatory programme governing the safe use of radioisotopes in Germany is based on the federal legislation enacted as Atomic Energy Control Act (Atomgesetz) and Radiation Protection Ordinance (Strahlen-schutzverordnung) and its implementation by the competent authorities of the individual states. Despite this highly decentralized infrastructure of enforcement the basic principles of regulations described in this paper such as authorization criteria, conditions imposed as well as depth and intensity of inspection balanced according to the individual radiation hazard involved are harmonized to the greatest possible extent by regular coordination among the competent authorities as well as a series of technical regulations such as standards and guidelines. (author)

  3. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    2001-01-01

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  4. Categorization of radioactive sources. Revision of IAEA-TECDOC-1191, Categorization of radiation sources

    International Nuclear Information System (INIS)

    2003-07-01

    Radioactive sources are used throughout the world for a wide variety of peaceful purposes in industry, medicine, agriculture, research and education; and they are also used in military applications. The International Basic Safety Standards provide an internationally harmonized basis for ensuring the safe and secure use of sources of ionizing radiation. Because of the wide variety of uses and activities of radiation sources, a categorization system is necessary so that the controls that are applied to the sources are commensurate with the radiological risks. In September 1998, following an assessment of the major findings of the first International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, held in Dijon, France, from 14 to 18 September 1998 (the Dijon Conference), the IAEA's General Conference (in resolution GC(42)/RES/12), inter alia, encouraged all governments 'to take steps to ensure the existence within their territories of effective national systems of control for ensuring the safety of radiation sources and the security of radioactive materials' and requested the Secretariat 'to prepare for the consideration of the Board of Governors a report on: (i) how national systems for ensuring the safety of radiation sources and the security of radioactive materials can be operated at a high level of effectiveness; and, (ii) whether international undertakings concerned with the effective operation of such systems and attracting broad adherence could be formulated'. In February 1999, the Secretariat submitted to the IAEA Board of Governors a report prepared in response to the request made of it by the General Conference. The Board took up the report at its March 1999 session and, inter alia, requested the Secretariat to prepare an action plan that took into account the conclusions and recommendations in the report, and the Board's discussion of the report. In August 1999, the Secretariat circulated a proposed Action Plan for

  5. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Stochastic electromagnetic radiation of complex sources

    NARCIS (Netherlands)

    Naus, H.W.L.

    2007-01-01

    The emission of electromagnetic radiation by localized complex electric charge and current distributions is studied. A statistical formalism in terms of general dynamical multipole fields is developed. The appearing coefficients are treated as stochastic variables. Hereby as much as possible a

  7. Transport of cobalt-60 industrial radiation sources

    Science.gov (United States)

    Kunstadt, Peter; Gibson, Wayne

    This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.

  8. WADOSE, Radiation Source in Vitrification Waste Storage Apparatus

    International Nuclear Information System (INIS)

    Morita, Jun-ichi; Tashiro, Shingo; Kikkawa, Shizuo; Tsuboi, Takashi

    2007-01-01

    1 - Description of program or function: This is a radiation shielding program which analyzes unknown dose rates using known radiation sources. It can also evaluate radiation sources from measured dose rates. For instance, dose rates measured at several points in the hot cell of WASTEF are introduced into WADOS, and as a result, Ci of radiation sources and their positions are estimated with structural arrangement data of the WASTEF cells. The later functional addition is very useful for actual operation of a hot cell and others. NEA-1142/02: The code was originally written in non standard Fortran dialect and has been fully translated into Fortran 90, Fortran 77 compatible. 2 - Method of solution: Point kernel ray tracing method (the same method as QAD code). 3 - Restrictions on the complexity of the problem: Modeling of source form for input is available for cylinder, plate, point and others which are simplified geometrically

  9. Stability of high-brilliance synchrotron radiation sources

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-12-01

    This paper discusses the following topics: characteristics of synchrotron radiation sources; stability of the orbits; orbit control; nonlinear dynamic stability; and coherent stability and control. 1 ref., 5 figs., 1 tab

  10. Rules and regulations on ionizing radiations sources installations

    International Nuclear Information System (INIS)

    1980-01-01

    The finality of this legislative text is to establish the standards and procedures for site, design, building, operation and decommissioning of nuclear installations, radioactive installations and ionizing radiations sources. This text include the commercialization of radioactive substances and equipment fabrication

  11. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    Science.gov (United States)

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  12. Regulatory requirements of radiation and radioactive sources in India

    International Nuclear Information System (INIS)

    Sundara Rao, I.S.

    1993-01-01

    Manufacture and supply of radiation sources, their use and the disposal of radioactive materials are regulated through the application of Safe Disposal Radioactive Wastes Rules 1987. Salient aspects of these are discussed

  13. Regulatory aspects of radiation sources safety in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Kushe, R.

    1998-01-01

    In this paper are presented the regulatory aspects of the radiation sources safety in Albania, based in the new Radiological Protection Act and Regulations. The radiation protection infrastructures and procedures are described as well as their functioning for the implementation of relevant activities such as licensing and regular inspection, personal dose monitoring, emergency preparedness which are developed in the frame of the IAEA Technical Co-operation Programme. The issue of the security of radiation sources is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country. A special attention is paid to the identification and location of lost sources for their finding and secure storage. (author)

  14. Guidelines on radiation protection for work with open radioactive sources

    International Nuclear Information System (INIS)

    1995-01-01

    The Danish National Institute of Radiation Protection (SIS) has published this, fourth edition of guidelines on radiation protection for work with open radiation sources. There are few changes compared to the previous edition, film doses are updated and preparation of the Danish legislation with respect to the 1991 ICRP recommendations (ICRP publication 60) is discussed. In this future recommendation the new dose limits will be proposed and new risk factors enlightened. (EG)

  15. Radiation safety aspects of the LINAC coherent light source

    International Nuclear Information System (INIS)

    Vylet, V.; Fasso, A.; Rokni, S.H.

    1998-01-01

    The radiation protection systems, which comprise the Personnel Protection System (PPS), Beam Containment System (BCS), and shielding, are described. The radiation sources and methods of their assessment are highlighted; these include bremsstrahlung and neutrons from electron beam losses, gas bremsstrahlung, synchrotron radiation, muons, and induced activity. By way of example, a plot of tissue dose as a function of distance from beam axis at the end of the experimental hutch is reproduced. (P.A.)

  16. Radiation Source Mapping with Bayesian Inverse Methods

    Science.gov (United States)

    Hykes, Joshua Michael

    We present a method to map the spectral and spatial distributions of radioactive sources using a small number of detectors. Locating and identifying radioactive materials is important for border monitoring, accounting for special nuclear material in processing facilities, and in clean-up operations. Most methods to analyze these problems make restrictive assumptions about the distribution of the source. In contrast, the source-mapping method presented here allows an arbitrary three-dimensional distribution in space and a flexible group and gamma peak distribution in energy. To apply the method, the system's geometry and materials must be known. A probabilistic Bayesian approach is used to solve the resulting inverse problem (IP) since the system of equations is ill-posed. The probabilistic approach also provides estimates of the confidence in the final source map prediction. A set of adjoint flux, discrete ordinates solutions, obtained in this work by the Denovo code, are required to efficiently compute detector responses from a candidate source distribution. These adjoint fluxes are then used to form the linear model to map the state space to the response space. The test for the method is simultaneously locating a set of 137Cs and 60Co gamma sources in an empty room. This test problem is solved using synthetic measurements generated by a Monte Carlo (MCNP) model and using experimental measurements that we collected for this purpose. With the synthetic data, the predicted source distributions identified the locations of the sources to within tens of centimeters, in a room with an approximately four-by-four meter floor plan. Most of the predicted source intensities were within a factor of ten of their true value. The chi-square value of the predicted source was within a factor of five from the expected value based on the number of measurements employed. With a favorable uniform initial guess, the predicted source map was nearly identical to the true distribution

  17. Source book of educational materials for radiation therapy. Final report

    International Nuclear Information System (INIS)

    Pijar, M.L.

    1979-08-01

    The Source Book is a listing of educational materials in radiation therapy technology. The first 17 sections correspond to the subjects identified in the ASRT Curriculum Guide for schools of radiation therapy. Each section is divided into publications and in some sections audiovisuals and training aids. Entries are listed without endorsement

  18. Regulatory control and safety of radiation and radioactive sources in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2001-01-01

    The application of ionizing radiation and radioactive sources in different fields such as, medicine, industry, agriculture, research and teaching is constantly increasing in Bangladesh. Any system enacted to control exposure to ionizing radiation has as primary objective the protection of health of people against the deleterious effects of radiation. Establishing the appropriate level of radiological protection and safety of radiation sources used in practice or intervention attains this objective. The regulatory program governing the safe use of radioactive and radiation sources in Bangladesh is based on the legislation enacted as Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97 and its implementation by the competent authority. The radiation control infrastructures and procedure are described as well as their functioning for the implementation of relevant activities such as licensing, regular inspection, personal dose monitoring, emergency preparedness, etc. The issue of security of radiation source is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country

  19. Control of sources of ionizing radiation in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Mastauskas, Albinas; Ziliukas, Julius; Morkunas, Gendrutis [Radiation Protection Centre, Vilnius (Lithuania)

    1997-12-31

    Aspects connected with regulatory control of radioactive sources in Lithuania, such as keeping of the computer-based registry, investigation of arrested illegal radioactive material, decision making, control of users of radioactive sources are discussed. Most of the sources of ionizing radiation are smoke detectors and x-ray equipment. Potentially most dangerous sources (both sealed and unsealed) of therapy and industry are also presented 2 refs., 2 tabs.; e-mail: rsc at post.omnitel.net

  20. Control of sources of ionizing radiation in Lithuania

    International Nuclear Information System (INIS)

    Mastauskas, Albinas; Ziliukas, Julius; Morkunas, Gendrutis

    1997-01-01

    Aspects connected with regulatory control of radioactive sources in Lithuania, such as keeping of the computer-based registry, investigation of arrested illegal radioactive material, decision making, control of users of radioactive sources are discussed. Most of the sources of ionizing radiation are smoke detectors and x-ray equipment. Potentially most dangerous sources (both sealed and unsealed) of therapy and industry are also presented

  1. Experience with qualification examinations of workers handling ionizing radiation sources

    International Nuclear Information System (INIS)

    Skokanova, K.

    1976-01-01

    The organization is described of examinations which have to be passed by supervising staff and workers using radioactive ionizing radiation sources. The requirements are listed of the examination in which these workers have to prove their professional knowledge and skills. The said examinations significantly contribute to the establishment of a system of safeguards at workplaces using ionizing radiation sources and may help economize operations at these workplaces

  2. Design and Construction of a Radiation Source of Extreme Flux

    OpenAIRE

    Valle Brozas, Francisco

    2017-01-01

    [EN]The present thesis consists of the design and construction of an X-ray source through the interaction of an ultra-intense laser with a solid and/or liquid target. Specifically, the laser technology suitable for this purpose has been investigated, the characteristics of the laser-matter interaction have been studied and possible applications of the generated X-radiation (and accelerated electrons) have been explored. Nowadays, the development of sources of ionizing radiation through la...

  3. Feed network and electromagnetic radiation source

    Science.gov (United States)

    Ardavan, Arzhang; Singleton, John; Linehan, Kevin E.; Ardavan, Houshang; Schmidt-Zwiefel, Andrea Caroline

    2017-01-17

    An antenna may include a volume polarization current radiator and a feed network. The volume polarization current radiator, includes a dielectric solid (such as a dielectric strip), and a plurality of closely-spaced excitation elements (24), each excitation element (24) being configured to induce a volume polarization current distribution in the dielectric solid proximate to the excitation element when a voltage is applied to the excitation element. The feed network is coupled to the volume polarization current radiator. The feed network also includes a plurality of passive power divider elements (32) and a plurality of passive delay elements (d1-d6) coupling the first port (30) and the plurality of second ports (108, 109, 164), the plurality of power divider elements (32) and the plurality of phase delay elements (d1-d6) being configured such that a radio-frequency signal that is applied to the first port (30) experiences a progressive change of phase as it is coupled to the plurality of second ports (108, 109, 164) so as to cause the volume polarization current distribution to propagate along the dielectric solid.

  4. Application of PSA techniques to synchrotron radiation source facilities

    International Nuclear Information System (INIS)

    Sanyasi Rao, V.V.S.; Vinod, G.; Vaze, K.K.; Sarkar, P.K.

    2011-01-01

    Synchrotron radiation sources are increasingly being used in research and medical applications. Various instances of overexposure in these facilities have been reported in literature. These instances have lead to the investigation of the risks associated with them with a view to minimise the risks and thereby increasing the level of safety. In nuclear industry, Probabilistic Safety Assessment (PSA) methods are widely used to assess the risk from nuclear power plants. PSA presents a systematic methodology to evaluate the likelihood of various accident scenarios and their possible consequences using fault/event tree techniques. It is proposed to extend similar approach to analyse the risk associated with synchrotron radiation sources. First step for such an analysis is establishing the failure criteria, considering the regulatory stipulations on acceptable limits of dose due to ionization radiation from normal as well as beam loss scenarios. Some possible scenarios considered in this study are (1) excessive Bremsstrahlung in the ring due to loss of vacuum, (2) Target failure due to excessively focused beam (3) mis-directed/mis-steered beam (4) beam loss and sky shine. Hazard analysis needs to cover the beam transfer line, storage ring and experimental beam line areas. Various safety provisions are in place to minimize the hazards from these facilities such as access control interlock systems, radiation shielding for storage ring and beam lines and safety shutters (for beam lines). Experimental beam line area is the most vulnerable locations that need to be critically analysed. There are multiple beam lines, that have different safety provisions and consequences from postulated beam strikes will also be different and this increases the complexity of analysis. Similar studies conducted for such experimental facilities have identified that the radiation safety interlock system, used to control access to areas inside ring and the hutches of beamline facilities has an

  5. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  6. Evaluation of methods to leak test sealed radiation sources

    International Nuclear Information System (INIS)

    Arbeau, N.D.; Scott, C.K.

    1987-04-01

    The methods for the leak testing of sealed radiation sources were reviewed. One hundred and thirty-one equipment vendors were surveyed to identify commercially available leak test instruments. The equipment is summarized in tabular form by radiation type and detector type for easy reference. The radiation characteristics of the licensed sources were reviewed and summarized in a format that can be used to select the most suitable detection method. A test kit is proposed for use by inspectors when verifying a licensee's test procedures. The general elements of leak test procedures are discussed

  7. The hazards of low-level radiation

    International Nuclear Information System (INIS)

    Blackith, R.

    1979-01-01

    Safety standards are questioned, particularly in relation to the risk of inducing cancer at low doses of radiation. Statements are made on the following topics: incidence of leukaemia among children around reactors, general aging effect due to radiation, leukaemia among radiation workers in a shipyard repairing nuclear submarines, official withdrawal of funds from research workers in the field of radiation hazards, discrepancies between different measurements of radiation near nuclear power plants. (U.K.)

  8. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  9. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1993-01-01

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs

  10. Background radiation and man-made and sources of radiation

    International Nuclear Information System (INIS)

    Babalola, I.A.

    1997-01-01

    This paper describes the development of the use of the atom and its present applications in food and agriculture, industry medicine and health care, energy-environment and research. These applications have inevitably led to concerns about nuclear safety and radioactive waste management and the need for the adoption of procedures for control, safe use and disposal of radioactive sources

  11. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  12. Radiation levels in Ecuadorian Cattle Milk

    International Nuclear Information System (INIS)

    Reinoso, Teresa; Vasquez, Ramiro

    2008-01-01

    Full text: The radiation and natural radioactivity present in the ground from a radioactive decay of 238 U, 235 U and 232 Th, and of the radioisotope 40 K can be transferred to the nutritional chain of the human being. Milk is a food considered basic within population's diet. The Ecuadorian Highlands has the greater production of cattle milk in the country, this industry needs great extensions of graze and available superficial water, which the cows consumed for crude milk production, with the consequent product industrialization. In the present research, gamma radiation levels where monitoring in 12 crude milk representative samples of the zone. The measurements where carried out using an equipment of spectrometry gamma ray system, with a detector of Hiperpuro Germanium (GeHp), which has been used in the analysis of standard and samples spectrums, with a constant geometry of the sample holder. The spectrums of the milk analysis show the presence of the radioisotopes coming from uranium radioactive decay. The majority of the values of activity concentration are below the minimum detection activity, unlike the potassium that presents a detectable but a non quantitative spectrum. So far, with the results obtained it is possible to guarantee the milk consumption and its derivatives in the Andean Region of the country. Related research will allow us implementing the radiological monitoring of this and other foods in the country, in order to protected population health. (author)

  13. Beam size measurement at high radiation levels

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    At the end of the Stanford Linear Accelerator the high energy electron and positron beams are quite small. Beam sizes below 100 μm (σ) as well as the transverse distribution, especially tails, have to be determined. Fluorescent screens observed by TV cameras provide a quick two-dimensional picture, which can be analyzed by digitization. For running the SLAC Linear Collider (SLC) with low backgrounds at the interaction point, collimators are installed at the end of the linac. This causes a high radiation level so that the nearby cameras die within two weeks and so-called ''radiation hard'' cameras within two months. Therefore an optical system has been built, which guides a 5 mm wide picture with a resolution of about 30 μm over a distance of 12 m to an accessible region. The overall resolution is limited by the screen thickness, optical diffraction and the line resolution of the camera. Vibration, chromatic effects or air fluctuations play a much less important role. The pictures are colored to get fast information about the beam current, size and tails. Beside the emittance, more information about the tail size and betatron phase is obtained by using four screens. This will help to develop tail compensation schemes to decrease the emittance growth in the linac at high currents. 4 refs., 2 figs

  14. Future radiation sources and identification of irradiated foods

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1989-01-01

    Two major questions regarding irradiation that are raised today are: (1) Which sources should be used for irradiating food? and (2) How can irradiated foods be identified? This article considers both questions. After briefly mentioning a few of the historical stepping stones in the development of radiation sources, present and future radiation sources are discussed. Next the changes in foods caused by irradiation are considered. These changes are extremely small-so minor in fact that it is difficult to detect if the food has been irradiated. Still, these are several detection methods available, and this article describes them

  15. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Sadagopan, Geetha [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Shukla, V.K. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2000-05-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are {sup 85}Kr, {sup 147}Pm, {sup 3}H and {sup 232}Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  16. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    International Nuclear Information System (INIS)

    Sadagopan, Geetha; Shukla, V.K.

    2000-01-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are 85 Kr, 147 Pm, 3 H and 232 Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  17. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  18. Ionizing radiation sources used in medical applications in Brazil

    International Nuclear Information System (INIS)

    Araujo, A.M.C.; Carlos, M.T.; Cruz, L.R.F.; Domingues, C.; Farias, J.T.; Ferreira, R.; Figueiredo, L.; Peixoto, J.E.; Oliveira, S.M.V.; Drexler, G.

    1991-02-01

    Preliminary data about ionizing radiation sources used in medical applications and obtained through a national programme by IRD/CNEN together with Brazilian health authorities are presented. The data presentation follows, as close as possible, recommendations given by the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). This programme has two main aims: First: to contribute for research in the field of ionizing radiation effects and risks including information about equipment quality control and procedures adopted by professionals working in Radiation Medicine. Second: to investigate the radiation protection status in Brazil, in order to give assistance to Brazilian health authorities for planning regional radiation programmes and training programmes for medical staffs. (F.E.). 13 refs, 19 figs, 34 tabs

  19. Solar radiation data sources, applications, and network design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided about solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.

  20. Radiometric analyzer with plural radiation sources and detectors

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring characteristics of a material by radiation comprises a plurality of systems in which each consists of a radiation source and a radiation detector which are the same in number as the number of elements of the molecule of the material and a linear calibration circuit having inverse response characteristics (calibration curve) of the respective systems of detectors, whereby the measurement is carried out by four fundamental rules by operation of the mutual outputs of said detector system obtained through said linear calibration circuit. One typical embodiment is a radiometric analyzer for hydrocarbons which measures the density of heavy oil, the sulfur content and the calorific value by three detector systems which include a γ-ray source (E/sub γ/ greater than 50 keV), a soft x-ray source (Ex approximately 20 keV), and a neutron ray source. 2 claims, 6 figures

  1. Control of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Oliveira, Silvia Maria Velasques de; Menezes, Sergio Ferreira; Alves Filho, Aristeu Dacio; Xavier, Ana Maria

    1997-01-01

    The radiological accident occurred in Goiania, in 1987, brought to light several deficiencies in the conduction of the licensing processes of medical, industrial and research facilities that handle radioisotopes as well as int he control of radioactive sources in Brazil. The objective of this article is to describe some of the technical and administrative measures taken to ensure the adoption of appropriate radiological safety standards throughout the country, thus reducing the incidence of radiological accidents. (author)

  2. Regulatory control for safe usage of radiation sources in India

    International Nuclear Information System (INIS)

    Ghosh, P.K.; Sonawane, A.U.

    1998-01-01

    The widespread applications of radioactive materials and radiation generating equipment in the field of industry, medicine agriculture and research in India necessitated the establishment of an efficient regulatory framework and consequently the Atomic Energy Regulatory Board (AERB) was constituted to exercise regulatory control over the safe usage of the radioactive materials and the radiation generating equipment. The Atomic Energy Act, 1962 and the Radiation Protection Rules, 1971 promulgated under the Act forms the basis of radiation safety in India and Chairman, AERB is the Competent Authority to enforce the regulatory provisions of the Radiation Protection Rules, 1971, for safe use of radiation source in the country. AERB has published a number of documents such as Radiation Surveillance Procedures, Standards, Codes, Guides and Manuals for safe use and handling of radioactive materials and radiation generating equipment. Apart from nuclear fuel cycle documents, these publications pertain to industrial radiography, medical application of radiation, transport of radioactive material, industrial gamma irradiators, X-ray units etc. AERB safety related publications are based on international standards e.g. BSS, IAEA, ICRP, ISO etc. This paper outlines the methodology of regulatory control exercised by AERB for safe use of the radioactive materials and the radiation generating equipment in the country. (author)

  3. Training of human resources on radiation protection and safe use of radiation sources. Argentine experience

    International Nuclear Information System (INIS)

    Biaggio, Alfredo L.; Nasazzi, Nora B.; Arias, Cesar

    2004-01-01

    Argentina has a long experience in Radiation Protection training since 25 years ago. In the present work we analyse those variable and non variable training aspects according to scientific development, increasing radiation source diversity (including new concepts like orphan sources and security), mayor concern about patient in Radiation Protection, previous exposures, etc. We comment what we consider the main steps in the training of Radiation Protection specialists, like university degree, post graduate education distinguishing between formative and informative contents and on the job training. Moreover, we point out the trainees aptitudes and attitudes to be developed in order to work properly in this interdisciplinary field. (author)

  4. The characteristics of peripheral blood leukocytes in persons working with ionizing radiation sources

    International Nuclear Information System (INIS)

    Zykova, I.A.; Sokolova, N.B.; Yas'kova, V.Z.

    1984-01-01

    Functional and qualitative changes of peripheral blood cellular composition were studied in persons working over a long period of time with ionizing radiation sources under the action of various factors of production upon an organism. Appression of a function and increase of T-lymphocyte chromosome damages were revealed against the background of a decrease both of enzymatic activity level and leukocyte number in persons operating for a long time (more than 10 years) with ionizing radiation sources. Discovered changes occurred under the action upon a human being not only of small doses of ionizing radiation but a whole complex of industrial factors which may initiate changes of adapted character

  5. IAEA standard syllabus of a course to acquire competence on ionizing radiation sources activities

    International Nuclear Information System (INIS)

    Antonova, M.

    2004-01-01

    The specialized training for Ionizing Radiation Sources (IRS) activities is conducted according to educational syllabuses developed for every job position in compliance with art. 12, (3) of new Regulation of the conditions and procedure for acquiring professional qualification and for the procedure for issuing licenses for specialized training and certificates for qualification for use of nuclear energy. A brief review of the modular structure of the standard syllabus of the Postgraduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is presented in this paper. The content and level of training for categories of persons engaged in different practices are also listed

  6. A basic radiation-education method using a handy-type cloud chamber and natural radiation sources

    International Nuclear Information System (INIS)

    Kushita, K. N.

    2010-10-01

    Nuclear human resources development becomes increasingly important due to the world trend of expanding nuclear energy utilization in this century. At the Nuclear Human Resource Development Center of the Japan Atomic Energy Agency, many kinds of nuclear and radiation education have been conducted consistently and continuously through its half-century history though having several organizational changes. High level education is required for the specialists of nuclear technology including nuclear power plants operators and engineers, while basic knowledge on nuclear energy and, specially, on radiations and radioisotopes should be given to school students and public. Besides lectures on radiation and radioisotopes, some basic experiments are useful to understand what are radiations and radioisotopes. One of such basic experiments is the cloud chamber experiment. It is a great fun and excitement even for small children as one can actually see the radiation tracks by his/her naked eyes at hand. While there are many types of cloud chambers, we have developed a new-type cloud chamber to use for the radiation education and training s. Using the new-type cloud chamber, we have further developed a new method of this experiment so that the participants can more deeply understand the phenomena and the nature of radiation and radioisotopes. In this method, using a radiation source of natural uranium ore and gaseous radiation source containing Rn-220 obtained from thorium-containing material, they not only observe the radiation tracks but also measure the length and count the number of the tracks. Then they can calculate the energy of the radiation (alpha ray) and can estimate the half-life of the radioisotope (Rn-220). This method can be applied for high-school and general university students as well as for the public as a useful and effective method in the radiation education. (Author)

  7. A basic radiation-education method using a handy-type cloud chamber and natural radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, K. N., E-mail: Kushita.kouhei@iaea.go.j [Japan Atomic Energy Agency, Nuclear Human Resource Development Center, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 309-1195 (Japan)

    2010-10-15

    Nuclear human resources development becomes increasingly important due to the world trend of expanding nuclear energy utilization in this century. At the Nuclear Human Resource Development Center of the Japan Atomic Energy Agency, many kinds of nuclear and radiation education have been conducted consistently and continuously through its half-century history though having several organizational changes. High level education is required for the specialists of nuclear technology including nuclear power plants operators and engineers, while basic knowledge on nuclear energy and, specially, on radiations and radioisotopes should be given to school students and public. Besides lectures on radiation and radioisotopes, some basic experiments are useful to understand what are radiations and radioisotopes. One of such basic experiments is the cloud chamber experiment. It is a great fun and excitement even for small children as one can actually see the radiation tracks by his/her naked eyes at hand. While there are many types of cloud chambers, we have developed a new-type cloud chamber to use for the radiation education and training s. Using the new-type cloud chamber, we have further developed a new method of this experiment so that the participants can more deeply understand the phenomena and the nature of radiation and radioisotopes. In this method, using a radiation source of natural uranium ore and gaseous radiation source containing Rn-220 obtained from thorium-containing material, they not only observe the radiation tracks but also measure the length and count the number of the tracks. Then they can calculate the energy of the radiation (alpha ray) and can estimate the half-life of the radioisotope (Rn-220). This method can be applied for high-school and general university students as well as for the public as a useful and effective method in the radiation education. (Author)

  8. Environmental radiation safety source term evaluation program

    International Nuclear Information System (INIS)

    Moss, O.R.; Filipy, R.E.; Cannon, W.C.; Craig, D.K.

    1977-04-01

    Plutonium-238 is currently used in the form of a pure refractory oxide as a power source on a number of space vehicles that have already been or will be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere and impact with the earth's surface without releasing any plutonium, the possibility of such an event can never be absolutely excluded. Three separate tasks were undertaken in this study. The interactions between soils and 238 PuO 2 aerosols which might be created in a space launch about environment were examined. Aging of the plutonium-soil mixture under a humid atmosphere showed a trend toward the slow coagulation of two dilute aerosols. Studies on marine animals were conducted to assess the response of 238 PuO 2 pellets to conditions found 60 feet below the ocean surface. Ultrafilterability studies measured the solubility of 238 PuO 2 as a function of time, temperature, suspension concentration and molality of solvent

  9. Control of radioisotopes and radiation sources in Indonesia

    International Nuclear Information System (INIS)

    Ridwan, M.

    2001-01-01

    Radioisotopes and radiation sources are extensively used in Indonesia in medicine, industry, mining, agriculture and research. These materials are controlled by the regulatory authority, according to established legal procedures. The Nuclear Energy Control Board of Indonesia (BAPETEN), which was established in 1998 through the Nuclear Energy Act No. 10/1997, is entrusted with the control of any application of nuclear energy, including the application of radioisotopes and radiation sources, through regulation, licensing and inspection. The control is aimed to assure welfare, security and peace, the safety and health of workers and the public, and environmental protection. The number of licences issued to date is around 2400, consisting of 1600 licences for radioisotopes and radiation sources used in hospitals, 347 in radiography, 256 in industry, 53 in mining, and the rest in many other areas such as research and agriculture. A licence can cover one or more radioisotopes or radiation sources, depending on the location of the user institution. These radioisotopes and radiation sources are Co-60, Cs-137, Ir-192, Ra-226, Am-241, Sr-90, Kr-85, Pm-147, linear accelerator and X-ray, and short half-life radioisotopes such as I-125, I-131 and Tc-99m. There are 10 LINACs, 27 X-ray medicines, 61 radioisotope devices for Co-60 and Cs-137, and 10 mHDR Ir-192 for therapeutic purposes currently used in Indonesia and some Ra-226 in storage. Any activity related to the application of nuclear energy is required to be conducted in a manner which observes safety and security. According to the legal requirements, each user has to employ at least one radiation safety officer. To improve the control of the application of radiation sources and radioactive material in the country, BAPETEN introduced some new approaches to the users, including regular dialogues with radiation safety officers and the management of the users, requalification for radiation protection officers twice in five

  10. Evaluation of integrity of radiation sources of nuclear gauges

    International Nuclear Information System (INIS)

    Torohate, Wiclif Francisco

    2016-01-01

    Nuclear equipment meters are mainly used in the industry in quality control and process control. The principle of operation consists in a shielded radioactive source together with a radiation detector such that the radiation interacts with the material to be analyzed before reaching the detector, providing real time data. Can be as their fixed and mobile mobility, the unique properties of ionizing radiation are used in three basic modes, transmission, backscatter or dispersion or induced (reactive). With the advancement and technological modernization in the world, the demand for nuclear gauges becomes increasingly larger. Currently in Brazil there are about 465 process control plants and 21 portable systems and Mozambique about 45 facilities using nuclear gauges. This font registration is done through a process called source inventory that allows also to know the category of the source, the danger or risk to human health that the source offers. The handling of this equipment requires personnel, certified, skilled and well trained in radiation protection area in accordance with the requirements of the various CNEN Rules. Due to the presence of radioactive source and because these devices are used by workers risk because there external radiation. In this context, we made the smear test in two fixed meters from the IRD industry laboratory, which determines the integrity of the source package, mandatory item in periodic integrity testing of the radiation source of this type of device. A set of procedures is made for its implementation as an evaluation of the radiological risk by radiological survey. It was intended to contribute to the learning handling and safe use of these meters. (author)

  11. Feasibility study on utilization of vitrified radioactive waste as radiation sources

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Yoshii, Fumio; Hyakutake, Kenichiro

    1995-01-01

    A feasibility study on utilization of vitrified high level radioactive waste (VW) as radiation source has been carried out. Natural rubber latex was radiation vulcanized with VW to demonstrate the feasibility. The dose rate was 0.1 kGy/hr. As a sensitizer, n-butyl acrylate was added. Negligible small activation of natural rubber (NR) latex by neutron from the VW was observed. The residual sensitizer in the irradiated latex and physical properties of film molded from the irradiated latex were the same level with the conventional radiation vulcanization of NR latex with γ-rays from Co-60. Surgical gloves and protective rubber gloves for radioactive contamination were produced from 20 litters of NR latex vulcanized with 2 VWs. The physical properties of both gloves were acceptable. These results suggested that vitrified high level waste can be used as an industrial radiation source. (author)

  12. Dosimetry services for internal and external radiation sources

    International Nuclear Information System (INIS)

    1988-01-01

    The Canadian Atomic Energy Control Board (AECB) sets radiation dose limits for the operation of nuclear facilities and the possession of prescribed substances within Canada. To administer these regulations the AECB must be satisfied that the dosimetry services used by a licensee meet adequate standards. Licensees are required to use the Occupational Dosimetry Service operated by the Bureau of Radiation and Medical Devices, Department of National Health and Welfare (BRMD) to determine doses from external sources of radiation, except where a detailed rationale is given for using another service. No national dosimetry service exists for internal sources of radiation. Licensees who operate or use a dosimetry service other than the BRMD must provide the AECB with evidence of the competence of the staff and adequacy of the equipment, techniques and procedures; provide the AECB with evidence that a quality assurance program has been implemented; and send individual dose or exposure data to the National Dose Registry. (L.L.)

  13. Strengthening the security of radiation sources in Ghana

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.; Flecther, J.J.; Ennison, I.; Schandorf, C.

    1998-01-01

    Legislative instrument LI 1559 of 1993 established the Radiation Protection Board (RPB) as the National Competent Authority (NCA) on radiation matters in Ghana. The Board advises Government through the Ghana Atomic Energy Commission on matters relating to radiation safety, security of sources, sales, import and export, contamination in food and environment, among others. It has wide ranging regulatory power and works in association with country authorities. The regulations in place for controlling the movement and use of radioactive materials in Ghana are discussed. Accountability for radioactive materials especially for those which were brought in before the establishment of the RPB have been the focus of our discussion. The need to for intensify educational programs for the public on matters relating to effect of radiation on man and environment is recommended. Strengthening of regulatory control of sources and intensifying efforts against smuggling, unauthorised use and systems for notification on radioactive transport accidents are noted. (author)

  14. Radiological Protection Experience with natural sources of radiation

    International Nuclear Information System (INIS)

    Quindos, L. S.; Fernandez, P. L.; Vinuela, J.; Arteche, J.; Sainz, G.; Gomez, J.; Matarranz

    2003-01-01

    During the last twenty five years the research Radon Group of the Medical Physics Unit of the University of Cantabria has been involved in projects concerning the measurement of natural radiation, in special that coming from radon gas. At this moment we have available for this field a lot of information in different formats, as paper, video and CD, interesting not only for public in general but also for professionals interested in the evaluation of doses coming from natural sources of radiation. (Author)

  15. Protection from potential exposures: application to selected radiation sources

    International Nuclear Information System (INIS)

    1997-09-01

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)

  16. Radiation safety of sealed sources and equipment containing them

    International Nuclear Information System (INIS)

    1993-01-01

    The guide gives information and requirements concerning the technical construction, installation, use and licensing of devices containing sealed radioactive sources in order to ensure the operational safety. The requirements are in accordance with the international standards ISO 1677, ISO 2919, ISO 7205 and Nordic Recommendations on radiation protection for radionuclide gauges in permanent installation. The guide explains also the practical measures that must be taken into account when a radiation device is repaired, maintained or removed from the use. (8 refs.)

  17. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume II: Effects

    International Nuclear Information System (INIS)

    2000-01-01

    Over the past few years the United Nations Scientific Committee on the effects of Atomic Radiation has undertaken a broad review of the sources and effects of ionizing radiation. In the present report, the Committee, drawing on the main conclusions of its scientific assessment summarizes the developments in radiation science in the years leading up to the next millennium. It covers the following: the effects of radiation exposure; levels of radiation exposure; radiological consequences of the Chernobyl accident; sources of radiation exposure including natural exposures, man-made environmental exposures, medical and occupational exposures; radiation associated cancer. This volume includes five Annexes covering: DNA repair and mutagenesis; biological effects at low radiation doses; combined effects of radiation and other agents; epidemiological evaluation of radiation-induced cancer and exposure effects of the Chernobyl accident

  18. Radiation accident caused by an iridium-192 radiographic source

    International Nuclear Information System (INIS)

    Kumatori, T.; Hirashima, K.; Ishihara, T.; Kurisu, A.; Sugiyama, H.; Hashizume, T.

    1977-01-01

    Owing to the carelessness of a radiographer, six construction workers, aged from twenty to thirty, were accidentally exposed to gamma rays of a 192 Ir source for a non-destructive radiography. These exposed persons were not directly involved with radiographic work. One case revealed severe leucopenia and thrombopenia accompanied by moderate anaemia. In three cases including the case considered, skin lesions were observed on hands and hips, arising from close contact with a 192 Ir rod. The effects to the gonads consisted of impaired spermatogenesis in all cases and elevation of follicle-stimulating hormone in the sera of four cases. The ratio of one metabolite to another seemed to be more indicative of the injuries than the level of any given metabolite itself. In the physical estimate of the dose, the thermoluminescence intensity of rubies in the wrist watches of the exposed persons was measured, which was useful for the determination of the location of the source. The mean whole-body absorbed doses ranged from 10 to 133 rads. Local radiation doses were approximately 3000 to 9000 rads to the skin and 175 rads to the gonads of one case, respectively. The biological dose estimates were made by using the dose-response relations for 60 Co gamma rays and for Linac X-rays on the basis of the yields of dicentrics and rings. The doses were in the range of about 10 to 150 rads. Skin lesions and chromosome aberrations are still observed. (author)

  19. Exposure of the Spanish population to radiation from natural sources

    International Nuclear Information System (INIS)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L.

    2006-01-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value by a conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  20. Exposure of the Spanish population to radiation from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L. [Consejo de Seguridad Nuclear. Justo Dorado, Madrid (Spain)

    2006-07-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  1. Dosimetric analysis of radiation sources for use dermatological lesions

    International Nuclear Information System (INIS)

    Tada, Ariane

    2010-01-01

    Skin lesions undergoing therapy with radiation sources may have different patterns of malignancy. Malignant lesions or cancer most commonly found in radiotherapy services are carcinomas. Radiation therapy in skin lesions is performed with low penetration beams and orthovoltage X-rays, electron beams and radioactive sources ( 192 Ir, 198 Au, e 90 Sr) arranged on a surface mold or in metal applicator. This study aims to analyze the therapeutic radiation dose profile produced by radiation sources used in skin lesions radiotherapy procedures . Experimental measurements for the analysis of dosimetric radiation sources were compared with calculations obtained from a computer system based on the Monte Carlo Method. Computational results had a good agreement with the experimental measurements. Experimental measurements and computational results by the MCNP4C code were both physically consistent as expected. These experimental measurements compared with calculations using the MCNP-4C code have been used to validate the calculations obtained by MCNP code and to provide a reliable medical application for each clinical case. (author)

  2. Experience and problems of the automated measuring and sorting of sealed radiation sources

    International Nuclear Information System (INIS)

    Shmidt, G.

    1979-01-01

    It has been shown that with the help of a serial device for samples changing and a mini-computer with a suitable software it is possible to organize the radioactivity measuring and sorting of sealed gamma-sources with activity in the microcuri region. Application of the computer permits to rise accuracy of the data on the radiation sources radioactivity, sorted according to the preset activity level groups and, in the casa of necessity, to perform the activity measurements with lower error. The method listed, gives the working-time economy of nearly 4 hours in measuring and sorting of some 500 sealed radiation sources [ru

  3. Terrestrial radiation level in selected asphalt plants in Port Harcourt ...

    African Journals Online (AJOL)

    Terrestrial radiation level in selected asphalt plants in Port Harcourt, Nigeria. ... An environmental radiation survey in asphalt processing plants in Rivers State was been carried out ... Therefore the results show significant radiological risk.

  4. Personnel selection and training for radiation protection and safe use of radiation sources

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2000-01-01

    For proper implementation of the radiation protection programs in the work place, several persons with different qualifications and training are involved. Among these persons are regulatory personnel managers, operators, workers, health professional, health physics technicians, health physicists, qualified experts, and emergency personnel. The current status of education and training of these persons is discussed in order to build competence in radiation protection and the safe use of radiation sources

  5. ELBE Center for High-Power Radiation Sources

    Directory of Open Access Journals (Sweden)

    Peter Dr. Michel

    2016-01-01

    Full Text Available In the ELBE Center for High-Power Radiation Sources, the superconducting linear electron accelerator ELBE, serving  two free electron lasers, sources for intense coherent THz radiation, mono-energetic positrons, electrons, γ-rays, a neutron time-of-flight system as well as two synchronized ultra-short pulsed Petawatt laser systems are collocated. The characteristics of these beams make the ELBE center a unique research instrument for a variety of external users in fields ranging from material science over nuclear physics to cancer research, as well as scientists of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  6. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  7. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.; Oldfather, D.; Lindner, A.

    1993-05-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 GeV synchrotron light source facility consisting of a 120 keV electron gun, 50 MeV linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  8. MCNP model for the many KE-Basin radiation sources

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1997-01-01

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with

  9. Smart material-based radiation sources

    Science.gov (United States)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  10. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  11. Radiation source states on-line supervision system design and implementation based on RFID technology

    International Nuclear Information System (INIS)

    Yang Binhua; Ling Qiu; Yin Guoli; Yang Kun; Wan Xueping; Wang Kan

    2011-01-01

    It puts forward radiation source states on-line monitoring resolution based on RFID technology. Firstly, the system uses RFID in real-time transmission of the radiation dose rate, and monitors the radiation source states and dose rate of the surrounding environment on-line. Then it adopts regional wireless networking mode to construct enterprise level monitoring network, which resolves long-distance wiring problems. And then it uses GPRS wireless to transport the real-time data to the monitoring center and the government supervision department, By adopting randomly dynamic cording in display update every day, it strengthens the supervision of the radiation source. At last this system has been successful applied to a thickness gauge project, which verifies the feasibility and practicality is good. (authors)

  12. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  13. Romanian experience on safety and security of radiation sources

    International Nuclear Information System (INIS)

    Botgros, Madalina; Coroianu, Anton; Negreanu, Mircea

    2008-01-01

    Romania has established the first administrative structure for controlling the deployment of the nuclear activities in 1961 and the first Romanian nuclear law was published in 1974. In the present, it is in force the Law no. 111, published in 1996 and republished in 2003. Moreover, there are available facilities and services to the persons authorized to manage radioactive sources. The regulation for safety and security of radioactive sources was amended two times in order to implement the international recommendations for setting up the national system for accounting and control of radiation sources and to coordinate the recovery activities. As part of national control programme, the national inventory of sources and devices is updated permanently, when issuing a new authorization, when modifying an existing one, or when renewing an authorization system and records in the database. The government responsibility for the orphan sources is stated in the law on radioactive waste management and decommissioning fund. There is a protocol between CNCAN, Ministry of Internal and Ministry of Health and Family regarding the co-operation in the case of finding orphan sources. When a radiation source is spent, it becomes radioactive waste that has to be disposed off properly. Depending on the case, the holder of a spent source has the possibility either to return the radioactive source to its manufacturer for regeneration or to transfer it to the Radioactive Waste Treatment Facility. (author)

  14. On the choice of working conditions for isotope radiation sources in irradiation plants

    International Nuclear Information System (INIS)

    Syrkus, N.P.; Breger, A.Kh.; Putilov, A.V.

    1975-01-01

    The problems of selecting an optimal regime for isotopic sources of radiation in powerful radiational installations depending on the costs, parameters of the radiational process (epsilon) and the radioactive isotope halflife are considered. When the radiation sources are simultaneusly replaced, then the optimal time of replacement of sources increases in the radiational installation with the radiation process parameter epsilon<0. Although the cost of a radiational product is lower during continuous replacement of radiation sources, the cost of products in the regime of simultaneous replacement of sources can be decreased, particularly, in the case of a secondary use of the radiactive sources

  15. Low-level radiation: a high-level concern

    International Nuclear Information System (INIS)

    Holden, C.

    1979-01-01

    The role of DOE in radiation health effects research is discussed. The possibility of conflict of interest is presented. The Mancuso episode is cited as evidence. The roles of several agencies (EPA, NRC, and OSHA) in establishing safe limits of radiation exposure are discussed

  16. The German radiation protection infrastructure with emphasis on the safety of radiation sources and radioactive material

    International Nuclear Information System (INIS)

    Czarwinski, R.; Weimer, G.

    2001-01-01

    Through federalism, Germany has a complicated but well functioning regulatory infrastructure for the safety and security of radiation sources based on a clear legal system. The main features of this infrastructure include the legal framework, the authorization and control systems and the responsibilities of different regulatory authorities, which this paper will describe. In connection with the legal framework, the provisions to control the import/export of radiation sources are briefly discussed and some information is given about the registries of sources. Protection and response measures related to unusual events concerning radiation sources, including orphan sources, will be cited. Also, the education and training of different target groups and punitive actions are touched upon in the paper. Conclusions will be drawn for future national and international actions. (author)

  17. Investigation of the electromagnetic radiation field level in the vicinity of Damascus international airport

    International Nuclear Information System (INIS)

    Abukassem, I.

    2011-07-01

    The aim of this work is to estimate the electromagnetic radiation exposure of Damascus international airport workers.Different kinds of electromagnetic wave sources exist in the vicinity of the airport, for example, mobile phone base stations. It was found that the exposure level in all studied points (offices, halls, traffic control tour, etc) is lower than the international restriction levels. Few recommendations were given for some work situation or places where the measured electromagnetic radiation levels were relatively high.(author)

  18. Potential sources for the radiation treatment of food

    International Nuclear Information System (INIS)

    Sande, W.E.; Libby, R.A.

    1976-01-01

    The present, near-term, and potential (through year 2000) supply of radiation sources for large-scale radiosterilization applications is discussed. Principal sources considered are 60 Co produced in nuclear power reactors, 137 Cs presently available from ERDA encapsulation operations, and a mixture of 134 Cs- 137 Cs potentially available from the reprocessing of spent nuclear fuel. Some consideration is also given to electron accelerators

  19. Impurity radiation from a beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1995-01-01

    Impurity radiation, in a worst case evaluation for a beam-plasma neutron source (BPNS), does not limit performance. Impurities originate from four sources: (a) sputtering from walls by charge exchange or alpha particle bombardment, (b) sputtering from limiters, (c) plasma desorption of gas from walls and (d) injection with neutral beams. Sources (c) and (d) are negligible; adsorbed gas on the walls of the confinement chamber and the neutral beam sources is removed by the steady state discharge. Source (b) is negligible for impinging ion energies below the sputtering threshold (T i ≤ 0.025 keV on tungsten) and for power densities to the limiter within the capabilities of water cooling (30-40 MW/m 2 ); both conditions can be satisfied in the BPNS. Source (a) radiates 0.025 MW/m 2 to the neutron irradiation samples, compared with 5 to 10 MW/m 2 of neutrons; and radiates a total of 0.08 MW from the plasma column, compared with 60 MW of injected power. The particle bombardment that yields source (a) deposits an average of 2.7 MW/m 2 on the samples, within the capabilities of helium gas cooling (10 MW/m 2 ). An additional worst case for source (d) is evaluated for present day 2 to 5 s pulsed neutral beams with 0.1% impurity density and is benchmarked against 2XIIB. The total radiation would increase a factor of 1.5 to ≤ 0.12 MW, supporting the conclusion that impurities will not have a significant impact on a BPN. (author). 61 refs, 7 figs, 2 tabs

  20. Background radiation levels and medical exposure levels in Australia

    International Nuclear Information System (INIS)

    Webb, D.V.; Solomon, S.B.; Thomson, J.E.M.

    1999-01-01

    The average effective background dose received by the Australian population has been reassessed to be ∼1.5 millisievert (mSv) per year. Over half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This background is to be compared with medical radiation, primarily diagnostic, which could add half as much again to the population exposure. This paper reviews research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background and from medical use. While the latter exposure is accepted to have a social benefit, there is a need to ensure that doses are no more than necessary to provide effective diagnosis and optimal treatment. Copyright (1999) Australasian Radiation Protection Society Inc

  1. Management of Spent and Disused Radiation Sources - The Zambian Experience

    International Nuclear Information System (INIS)

    Chabala, F.

    2002-01-01

    Zambia like all other countries in the world is faced with environmental problems brought about by a variety of human activities. In Zambia the major environmental issues as identified by Nation Environmental Action Plan (NEAP) of 1994 are water pollution, poor sanitation, land degradation, air pollution, poor waste management, misuse of chemicals, wildlife depletion and deforestation. Zambian has been using a lot of radioactive materials in its various industries. The country has taken several projects with help of external partners. These partners however left these projects in the hands of the Zambians without developing their capacities to manage these radioactive sources. The Government recognized the need to manage these sources and passed legislation governing the management of radioactive materials. The first act of Parliament on Radiation Protection work was passed in 1975 to legislate the use of ionizing radiation. However, because of financial constraints the Country is facing, these regulations have remained unimplemented. Fortunately the international Community has been working in partnership with the Zambian Government in the Management of Radioactive Material. Therefore this paper will present the following aspects of radioactive waste management in Zambia: review Existing Legislation in Zambia regarding management of spent/radioactive sources; capacity building in the field of management of radioactive waste; management of spent and disused radiation sources; existing disposal systems in Zambia regarding spent/orphaned sources; existing stocks of radioactive sources in the Zambian industries

  2. Analysis of polymer foil heaters as infrared radiation sources

    International Nuclear Information System (INIS)

    Witek, Krzysztof; Piotrowski, Tadeusz; Skwarek, Agata

    2012-01-01

    Infrared radiation as a heat source is used in many fields. In particular, the positive effect of far-infrared radiation on living organisms has been observed. This paper presents two technological solutions for infrared heater production using polymer-silver and polymer-carbon pastes screenprinted on foil substrates. The purpose of this work was the identification of polymer layers as a specific frequency range IR radiation sources. The characterization of the heaters was determined mainly by measurement of the surface temperature distribution using a thermovision camera and the spectral characteristics were determined using a special measuring system. Basic parameters obtained for both, polymer silver and polymer carbon heaters were similar and were as follows: power rating of 10–12 W/dm 2 , continuous working surface temperature of 80–90 °C, temperature coefficient of resistance (TCR) about +900 ppm/K for polymer-carbon heater and about +2000 ppm/K for polymer-silver, maximum radiation intensity in the wavelength range of 6–14 μm with top intensity at 8.5 μm and heating time about 20 min. For comparison purposes, commercial panel heater was tested. The results show that the characteristics of infrared polymer heaters are similar to the characteristics of the commercial heater, so they can be taken into consideration as the alternative infrared radiation sources.

  3. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  4. Mapping of auroral kilometric radiation sources to the aurora

    International Nuclear Information System (INIS)

    Huff, R.L.; Calvert, W.; Craven, J.D.; Frank, L.A.; Gurnett, D.A.

    1988-01-01

    Auroral kilometric radiation (AKR) and optical auroral emissions are observed simultaneously using plasma wave instrumentation and auroral imaging photometers acrried on the DE 1 spacecraft. The DE 1 plasma wave instrument measures the relative phase of signals from orthogonal electric dipole antennas, and from these measurements, apparent source directions can be determined with a high degree of precision. Wave data are analyzed for several strong AKR events, and source directions are determined for several emission frequencies. By assuming that the AKR originates at cyclotron resonant altitudes, a condidate source field line is identified. When the selected source field line is traced down to auroral altitudes on the concurrent DE 1 auroral image, a striking correspondence between the AKR source field line and localized auroral features is produced. The magnetic mapping study provides strong evidence that AKR sources occur on field lines associated with discrete auroral arcs, and it provides confirmation that AKR is generated near the electron cyclotron frequency

  5. Overview in Argentina on spent/disused radiation sources

    International Nuclear Information System (INIS)

    Lavalle, M.B.

    2001-01-01

    Argentine nuclear activities have begun since about 1950. Since those days the peaceful applications of nuclear energy have been developed and together with then radioactive wastes have taken more and more relevance day by day. To deal with this special subject the Radioactive Waste Management Programme (RWMP) has been established. Spent/disused radiation sources are a very important task to consider in the management of radioactive waste. A great number of sources have been received along these years by the RWMP. Different sources categories handled together with their figures and radionuclide activities will be presented. Also described will be the steps that have to be followed by the users/owners of spent/disused radiation sources to transfer them to the RWMP. Once the sources are in the RWMP custody, they can be stored or they can be conditioned in order to be stored in an interim storage or disposed of. It is shown how the different sources are managed, taking into account the radionuclide's half life, its activity and the available facilities. Besides a record-keeping system for tracking all spent/disused radiation sources has been developed. It consists on a computerized database that contains essential information about the sources as well as the whole radioactive wastes managed by the RWMP. The main objective of the waste management registry-database system is to collect, identify, process and follow the related information about the radioactive wastes among al the management steps. It is also able to calculate the actualized activity inventory for the storage and final disposal facilities. In order to implement this system, it was necessary to write the related technical documentation. These documents established the radioactive waste acceptance requirements, that together with others integrates the Quality Assurance System applied to the radioactive waste management. Regarding the disused sources little could be done. They are stored in an appropriate

  6. Sources of ionizing radiation in industry: licensing and control

    International Nuclear Information System (INIS)

    Dimitrov, V.

    2001-01-01

    In this paper are presented several methods, which the Inspection on the Safe Use of Atomic Energy applies for the control on the use of sources of ionizing radiation in industry. It reviews some problems, which we have to solve during our inspections. An analysis and assessment of them is done. The prescribed safety ensuring measures are discussed. (author)

  7. Review of radiation sources, calibration facilities and simulated workplace fields

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, V., E-mail: veronique.lacoste@irsn.f [Institut de Radioprotection et de Surete Nucleaire, BP3, Bat. 159, F-13115 Saint-Paul Lez Durance (France)

    2010-12-15

    A review on radiation sources, calibration facilities and realistic fields is presented and examples are given. The main characteristics of the fields are shortly described together with their domain of applications. New emerging fields are also mentioned and the question of needs for additional calibration fields is raised.

  8. Experience with first aid in radiation sources accidents

    International Nuclear Information System (INIS)

    Klener, V.

    1979-01-01

    More than 20 years of experience at the Radiation Hygiene Centre of the Prague Institute of Hygiene and Epidemiology with prevention of accidents involving sources of radiation and the Centre's participation in providing medical aid in such accidents are described. A list is given of major types of accidents over the past decade. Prevalent were accidents involving sealed gamma sources, resulting in excessive local irradiation with serious skin damage or injury to some of the deeper structures of the hands, requiring plastic operation. Chromosomal picture investigation allows the estimation of the equivalent body dose which only reached higher values in a single case recorded (1.5 Gy = 150 rad). Organisational measures are described for emergencies and the task is shown by radiation hygiene departments attached to regional hygiene stations. The present system is capable of providing adequate, prompt and effective assistance. (author)

  9. Control of radiation sources and general regulations for accidental situations

    International Nuclear Information System (INIS)

    Slimani, A.

    1998-01-01

    In order to prevent accidents caused by application of radiation sources the Tunisian O.N.P.C. established straightforward strategy made up of 3 phases: prevention, planning and intervention. Civil Protection conducts prevention studies of all radiation sources by examining normal application conditions as well as possible accidental situations. It keeps up with scientific, technical and statistical aspects of radiation risks, elaborates specific plans and programs for intervention operations and cooperates with administrative and security services as well as international organisations. The O.N.P.C. established a model intervention plan based on observation (according to preliminary information), evaluation of the situation (according to the head of operation) intervention (specialized units) and post intervention (testing of personnel)

  10. Experience in the development and practical use of working control levels for radiation safety

    International Nuclear Information System (INIS)

    Epishin, A.V.

    1981-01-01

    The experience of development and practical use of working control levels (WCL) of radiation safety in the Gorky region, is discussed. WCL are introduced by ''Radiation Safety Guides'' (RSG-76) and have great practical importance. Regional control levels of radiation safety are determined for certain types of operations implying radioactive hazard and differentiated according to the types of sources applied and types of operation. Dose rates, radioactive contamination of operating surfaces, skin, air and waste water are subject to normalization. Limits of individual radiation doses specified according to operation categories are included. 10 tables of regional WCL indices are developed [ru

  11. Doses arising from natural radiation sources in Hong Kong

    International Nuclear Information System (INIS)

    Tso Man-yin, W.

    1993-01-01

    The first reactor of the Daya Bay Nuclear Power Plant, located 30 km from Hong Kong, should become operational at the end of 1993. People in Hong Kong are more concerned with their exposures to radiation, both man-made and natural. The local environmental background radiation baseline values should be established well before 1993 so that the radiological impact of the power plant on the environment can be assessed. However, there has not been much information on these aspects. In view of the situation, the Radioisotope Unit of the University of Hong Kong has launched a series of studies with the general goal of gaining a better understanding of Hong Kong's natural background radiation and a more accurate estimate of the natural radiation exposure of the local people. The scope of the measurement programmes is described and the doses from the various sources are derived. (1 tab.)

  12. Earth as a radio source: terrestrial kilometric radiation. Progress report

    International Nuclear Information System (INIS)

    Gurnett, D.A.

    1974-02-01

    Radio wave experiments on the IMP-6 and 8 satellites have shown that the earth emits very intense electromagnetic radiation in the frequency range from about 50 kHz to 500 kHz. A peak intensity the total power emitted in this frequency range is about 1 billion watts. The earth is, therefore, a very intense planetary radio source, with a total power output comparable to the decametric radio emission from Jupiter. This radio emission from the earth is referred to as terrestrial kilometric radiation. Terrestrial kilometric radiation appears to originate from low altitudes (less than 3.0 Re) in the auroral region. Possible mechanisms which can explain the generation and propagation of the terrestrial kilometric radiation are discussed. (U.S.)

  13. Radiation exposures of workers resulting from the transport of gamma radiography sources in Germany

    International Nuclear Information System (INIS)

    Sentuc, F.N.; Schwarz, G.

    2006-01-01

    Gamma radiation sources are widely used for industrial purposes e.g. for non-destructive material testing. Many of these sources are permanently installed at a facility within instruments e.g. for level or thickness gauging. Other radioactive sources are implemented in portable devices for industrial gamma radiography which have to be carried to the various remote usage sites. In Germany, approximately 20 000 - 25 000 shipments of gamma radiography sources are proceeding annually on public transport routes. Since routine radiation monitoring programmes do not permit task-specific determination of occupational doses e.g. doses incurred during the movement phase and handling related doses, work has been carried out with the objective to determine the radiation exposures of the personnel attributable to transportation. For this purpose, a survey was launched in 2005 collecting data about e.g. the number and conditions of transports, the activity and type of transported radiation sources and the radiation level within the driver's cab to allow a dose assessment to be made for transport workers. The results of this survey covering the most important companies for gamma radiography services in Germany are presented in this paper. (authors)

  14. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  15. Health effects of low level radiation exposure among radiation workers

    International Nuclear Information System (INIS)

    Murata, Motoi

    2003-01-01

    In Japan, a cohort study of radiation workers has been conducted since 1990. The cohort population consisted of about 176,000 workers (mostly males) who had been registered in the centralized radiation dose registry system and engaged in various radiation works at nuclear facilities. Statistical analyses were performed mainly on the 2,934 deaths, of which 1,191 were cancer cases, detected among 119,000 male subjects during the prospective follow-up. The standardized mortality ratio showed that for any cancers mortality was not different between this population and Japanese general population. By the trend test, though significantly increasing trend in accord with increasing doses was not observed for both cancer in all sites and leukemia, it was highly significant for esophagus cancer and external causes of deaths. Results of the questionnaire survey study of lifestyle of radiation workers suggested that increasing trend of these diseases was at least partly due to the influence of some confounding factors. As a result of reviewing published studies, including the present work, trend of mortality from cancer in all sites with increasing doses seems still unclear, whereas for leukemia it appears to stay flat under 100 mSv but rapidly rise up in the doses higher than this as if fitting to either a linear-quadratic or threshold models. (author)

  16. Noise characteristics of U. S. synchrotron radiation sources

    International Nuclear Information System (INIS)

    Powers, L.

    1986-01-01

    Noise characteristics of the U. S. x-ray synchrotron sources are compared in the 0--2.5-kHz region. In general, little difference is found in the characteristic frequencies of the noise on focused and unfocused beamlines of a particular source, but the magnitude and white-noise levels differ. The National Synchrotron Light Source shows the least characteristic noise and the noise that is observed is small in magnitude (2--3 times the white-noise level)

  17. Nuisance Source Population Modeling for Radiation Detection System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial

  18. Cherenkov Radiation from a Pseudospark-sourced Electron Beam

    International Nuclear Information System (INIS)

    Phelps, A.D.R.; Yin, H.; Cross, A.W.; He, W.; Ronald, K.

    2003-01-01

    Electron beam generation from a multi-gap pseudospark discharge was investigated. A pseudospark-sourced electron beam has two phases, an initial hollow cathode phase (HCP) beam followed by a conductive phase (CP) beam. The beam brightness was measured by a field-free collimator to be 109 and 1011 Am-2rad-2 for the hollow cathode phase (HCP) beam and the conductive phase (CP) beam respectively. The initial HCP beam from an eight-gap pseudospark discharge was applied in a Cherenkov interaction between the electron beam and the TM01 mode of a 60-cm long alumina-lined waveguide. It was found experimentally that significant microwave radiation was generated only when the dielectric was present in the interaction space. If there was no dielectric in the cylindrical waveguide, then a very small background microwave output was detected even when the guide B-field was absent. This demonstrated, in conjunction with the observation that the microwave output signal was independent of the guide magnetic field over the range 0.13 to 0.26 T, that the radiation from the experiment was due to the Cherenkov interaction mechanism. In addition, two components of the microwave pulse were observed corresponding to the two energy components of the electron beam during the pseudospark discharge breakdown. These results demonstrated that the microwave radiation was generated by Cherenkov amplification of the broadband emission from the pseudospark discharge itself. A background signal level of around 100 W was measured in the frequency range 20 - 50 GHz with a percentage of (2.7 ± 0.6)% in the frequency range 25.5 - 28.6 GHz, when the dielectric lining was removed from the maser. The frequency of the microwave output after the Cherenkov maser interaction was measured to be mainly around 25.5 GHz and the dominating mode was identified as being TM01. The duration of the microwave pulse was approximately 80 ns, with a peak power of around 2 ± 0.2 kW. The gain of this amplifier was measured

  19. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    Science.gov (United States)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  20. Research sources of ionizing radiation based on transplutonium elements

    Science.gov (United States)

    Radchenko, V. M.; Ryabinin, M. A.

    2010-03-01

    Scientific and technical demand stimulates an extension of the practical implementation field of TPE, requirements to their ecological safety calling for the development of such materials which could be most resistant to the environment and most suitable for the production of a wide range of sources different in their application and design. Such materials can involve pure metals of transplutonium elements and their alloys with metals of platinum group as well as their chemically stable compounds (such as silicides, carbides etc.) At SSC RIAR production processes of sources of different type and application have been implemented. Examples of the most recent developments of the sources are presented below. Presented is the analysis of the current state of issues related to designing, production and application of radionuclide research sources based on transplutonium elements. Examples of the development of the most up-to-date sources of alpha-, gamma- and neutron radiation and also fission ones are considered.

  1. A knowledge and awareness level survey of radiation protection among the radiation workers in Henan Province

    International Nuclear Information System (INIS)

    Cheng, Xiao-jun; Tian, Chong-bin; Zhang, Qin-fu; Liu, Cheng; Ding, Li

    2008-01-01

    Full text: Objective: To reveal the knowledge and awareness level of radiation protection among radiation workers in Henan province and to explore the methods to improve it. Methods: A questionnaire survey was carried out among 208 radiation workers. Results: The correct rate of the answer to radiation protection knowledge from radiation workers in Henan province is 53.78%. Most of them (88.9%) realized that it is important to protect patients and their companions. They adhere to the principles of justification of medial exposure and optimization of radiation protection and follow the management system of radiation protection. However, a few workers didn't follow the principles strictly. Sometime, during the radio diagnosis and radiotherapy services, the patients and their companions were not well protected from the radiation, and some patients were given unnecessary X-ray examine. Even worse, some workers did not attach importance to the regulations of radiation protection and disobey them frequently. Again, some hospital leaders disregard the regulation of radiation protection and didn't follow the regulation of health surveillance and radiation protection monitoring properly. And those behaviors and attitude, in fact, influence some workers' attitude to radiation protection. Conclusion: The level of radiation protection knowledge and awareness among the radiation workers in Henan province needs to be improved. It is necessary to strengthen radiation protection knowledge by strengthening training, and to improve safety awareness among the radiation staff, and, more important, the hospital leaders as well. (author)

  2. Definition of loss-of-coolant accident radiation source

    International Nuclear Information System (INIS)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist

  3. Programmes and Systems for Source and Environmental Radiation Monitoring

    International Nuclear Information System (INIS)

    2010-01-01

    The discharge of radionuclides to the atmosphere and aquatic environments is a legitimate practice in the nuclear and other industries, hospitals and research. Where appropriate, monitoring of the discharges and of relevant environmental media is an essential regulatory requirement in order to ensure appropriate radiation protection of the public. Such monitoring provides information on the actual amounts of radioactive material discharged and the radionuclide concentrations in the environment, and is needed to demonstrate compliance with authorized limits, to assess the radiation exposure of members of the public and to provide data to aid in the optimization of radiation protection. Uncontrolled releases of radionuclides to the atmosphere and aquatic environments may occur as a result of a nuclear or radiological accident. Again, monitoring at the source of the release and of the environment is necessary. In this case, monitoring is used both to assess the radiation exposure of members of the public and to determine the actions necessary for public protection, including longer term countermeasures. Source and environmental monitoring associated with the release of radionuclides to the environment is the subject of a number of IAEA Safety Standards, particularly IAEA Safety Standard RS-G-1.8 (Environmental and Source Monitoring for Purposes of Radiation Protection). This publication is intended to complement this Safety Guide and, by so doing, replaces Safety Series No. 41 (Objectives and Design of Environmental Monitoring Programmes for Radioactive Contaminants) and Safety Series No. 46 (Monitoring of Airborne and Liquid Radioactive Releases from Nuclear Facilities to the Environment). Like Safety Standard RS-G-1.8, this Safety Report deals with monitoring at the source and in the environment associated with authorized releases of radionuclides to the environment. It also deals with the general issues of emergency monitoring during and in the aftermath of an

  4. Overview of physical safety of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    The threat of 'radiological terrorism' has been recognized worldwide after the event of September 11, 2001. Radioactive sources can be used for the development of DDR ('dirty bomb') devices. Studies show that the use of a DDR could cause health damage, psychosocial and economic and environmental damage. Brazil follows this worldwide concern, since it has a large medical-industrial park that uses radioactive sources. This paper presents an overview of the physical safety of radioactive sources in Brazil, based on the inventory of radiative facilities, regulatory aspects and international recommendations. For the preparation of the study, the database of radioactive sources of the regulatory body, the current normative status and the international recommendations were used. In Brazil there are approximately 2,500 radiative installations, with about 400 radioactive sources Category 1 and 2, which are the biggest concern in terms of physical safety. The Brazilian licensing standard addresses only some aspects of physical protection, not providing a clear orientation for the elaboration and implementation of physical protection systems, in accordance with international recommendations. For Brazil to be included in the world scenario of physical safety of radioactive sources, it is urgent to elaborate specific legislation with well-defined regulatory criteria. The lack of more detailed requirements makes it difficult to make a more careful regulatory assessment of the physical protection conditions of the facilities, either through the evaluation of plans and other physical protection documents or through regulatory inspections

  5. Radiation safety supervisory system in Latvia and its role in prevention of unauthorised practices with radiation sources

    International Nuclear Information System (INIS)

    Eglajs, A.; Salmins, A.

    2001-01-01

    This report provides an overview of the practical and legal aspects of the use of radiation sources. The existing regulatory infrastructure is briefly analysed and proposed systems are described. The proposed interactions between the regulatory body and the advisory board are presented and some details about joint activities of different institutions concerning radiation safety are given. An implementation example of the supervisory system in combating illicit trafficking is analysed and the essential components in the prevention of illicit trafficking are assessed. Some findings of investigations are quoted regarding improvements in protection and prevention on the national and the international level. (author)

  6. Outdoor radiofrequency radiation levels in the West Bank-Palestine.

    Science.gov (United States)

    Lahham, Adnan; Hammash, Alaa

    2012-05-01

    This work presents the results of exposure levels to radio frequency (RF) emission from different sources in the environment of the West Bank-Palestine. These RF emitters include FM and TV broadcasting stations and mobile phone base stations. Power densities were measured at 65 locations distributed over the West Bank area. These locations include mainly centres of the major cities. Also a 24 h activity level was investigated for a mobile phone base station to determine the maximum activity level for this kind of RF emitters. All measurements were conducted at a height of 1.7 m above ground level using hand held Narda SRM 3000 spectrum analyzer with isotropic antenna capable of collecting RF signals in the frequency band from 75 MHz to 3 GHz. The average value of power density resulted from FM radio broadcasting in all investigated locations was 0.148 μW cm(-2), from TV broadcasting was 0.007 μW cm(-2) and from mobile phone base station was 0.089 μW cm(-2). The maximum total exposure evaluated at any location was 3.86 μW cm(-2). The corresponding exposure quotient calculated for this site was 0.02. This value is well below unity indicating compliance with the International Commission on non-ionising Radiation protection guidelines. Contributions from all relevant RF sources to the total exposure were evaluated and found to be ~62 % from FM radio, 3 % for TV broadcasting and 35 % from mobile phone base stations. The average total exposure from all investigated RF sources was 0.37 μW cm(-2).

  7. Outdoor radiofrequency radiation levels in the West Bank-palestine

    International Nuclear Information System (INIS)

    Lahham, A.; Hammash, A.

    2012-01-01

    This work presents the results of exposure levels to radio frequency (RF) emission from different sources in the environment of the West Bank-Palestine. These RF emitters include FM and TV broadcasting stations and mobile phone base stations. Power densities were measured at 65 locations distributed over the West Bank area. These locations include mainly centres of the major cities. Also a 24 h activity level was investigated for a mobile phone base station to determine the maximum activity level for this kind of RF emitters. All measurements were conducted at a height of 1.7 m above ground level using hand held Narda SRM 3000 spectrum analyzer with isotropic antenna capable of collecting RF signals in the frequency band from 75 MHz to 3 GHz. The average value of power density resulted from FM radio broadcasting in all investigated locations was 0.148 μW cm -2 , from TV broadcasting was 0.007 μW cm -2 and from mobile phone base station was 0.089 μW cm -2 . The maximum total exposure evaluated at any location was 3.86 μW cm -2 . The corresponding exposure quotient calculated for this site was 0.02. This value is well below unity indicating compliance with the International Commission on non-ionising Radiation protection guidelines. Contributions from all relevant RF sources to the total exposure were evaluated and found to be ∼62 % from FM radio, 3 % for TV broadcasting and 35 % from mobile phone base stations. The average total exposure from all investigated RF sources was 0.37 μW cm -2 . (authors)

  8. Radiation damage at the molecular level: Nanodosimetry

    International Nuclear Information System (INIS)

    Blanco, F.; Munoz, A.; Lagares, J. I.; Nunez, L.; Garcia, G.

    2013-01-01

    One of the main practical use of the model is its use as a tool of nanodosimetry which basically consists in characterizing the effect of radiation on nano volumes (comparable to the DNA of volumes) in terms of link breaks and molecular dissociations. (Author)

  9. Lecture notes on the safety aspects in the industrial applications of radiation sources - Part I

    International Nuclear Information System (INIS)

    The report comprises the notes of the lectures delivered on the safety aspects in industrial applications of radiation sources. The notes are presented in 9 chapters. Basic mathematics relevant to the topic and basic concepts of nuclear physics are introduced in chapters I and II respectively. Various aspects of interaction of radiation with matter and living cells are discussed in chapters III and IV respectively. The biological effects of ionizing radiations are described in chapter V. Various commonly used units of measurement of radiation and radioactivity are defined and explained and measuring methods of radiation exposure are described in chapter VI. Chapter VII deals with the maximum permissible levels of radiation, both internal and external, for occupational workers as well as population. The same chapter also deals with ICRP recommendations in this connection. Commonly used radiation detectors and instruments with associated electronics are described in chapter VIII. Production of radioisotopes, radiation sources and labelled compounds is described in chapter IX. A table of useful radioisotopes is appended to this chapter. A bibliography in which references are arranged chapterwise is also given at the end. (M.G.B.)

  10. Responses to the low-level-radiation controversy

    International Nuclear Information System (INIS)

    Bond, V.P.

    1981-01-01

    Some data sets dealing with the hazards of low-level radiation are discussed. It is concluded that none of these reports, individually or collectively, changes appreciably or even significantly the evaluations of possible low-level radiation effects that have been made by several authoritative national and international groups

  11. Physiological benefits from low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1982-01-01

    Extensive literature indicates that minute doses of ionizing radiation benefit animal growth and development, fecundity, health and longevity. Specific improvements appear in neurologic function, growth rate and survival of young, wound healing, immune competence, and resistance to infection, radiation morbidity, and tumor induction and growth. Decreased mortality from these debilitating factors results in increased average life span following exposure to minute doses of ionizing radiation. The above phenomena suggest the possibility that ionizing radiation may be essential for life. Limited data with protozoa suggest that reproduction rates decrease when they are maintained in subambient radiation environments. This may be interpreted to be a radiation deficiency. Evidence must now be obtained to determine whether or not ionizing radiation is essential for growth, development, nutrient utilization, fecundity, health and longevity of higher animals. Whether or not ionizing radiation is found to be essential for these physiologic functions, the evidence reviewed indicates that the optimal amount of this ubiquitous agent is imperceptibly above ambient levels. (author)

  12. Environmental policy. Ambient radioactivity levels and radiation doses in 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The report is intended as information for the German Bundestag and Bundesrat as well as for the general population interested in issues of radiological protection. The information presented in the report shows that in 1996, the radiation dose to the population was low and amounted to an average of 4 millisievert (mSv), with 60% contributed by natural radiation sources, and 40% by artificial sources. The major natural source was the radioactive gas radon in buildings. Anthropogenic radiation exposure almost exclusively resulted from application of radioactive substances and ionizing radiation in the medical field, for diagnostic purposes. There still is a potential for reducing radiation doses due to these applications. In the reporting year, there were 340 000 persons occupationally exposed to ionizing radiation. Only 15% of these received a dose different from zero, the average dose was 1.8 mSv. The data show that the anthropogenic radiation exposure emanating from the uses of atomic energy or applications of ionizing radiation in technology is very low. (orig./CB) [de

  13. Radiological protection issues in endovascular use of radiation sources

    International Nuclear Information System (INIS)

    2006-02-01

    The use of radiation from radioactive materials for cancer treatment is well established. However, examples of uses of radiation therapy for benign conditions have been limited. Placing a radioactive source in the blood vessel so as to irradiate the surrounding inner periphery of the vessel has been attempted in recent years to prevent restenosis after percutaneous coronary and peripheral interventions. This kind of endovascular application provides treatment options that are less invasive for various vascular conditions compared with open surgery. As a part of the International Atomic Energy Agency's (IAEA) function for providing for application of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) that were jointly sponsored by the IAEA, FAO, ILO, OECD/NEA, PAHO and WHO, the IAEA planned a coordinated research project (CRP) that was to start in 2002 on radiological protection problems in endovascular use of radiation sources. However, as experts soon realized that the interest in this modality was waning, the CRP was not initiated. Nevertheless, it was felt that it would be appropriate to compile the information available on radiological protection problems observed so far and their possible solutions. This work was seen as part of a broader IAEA programme that covered accident prevention in radiotherapy. Publications on this topic have included, inter alia, Lessons Learned from Accidental Exposures in Radiotherapy (Safety Reports Series No. 17); Accidental Overexposure of Radiotherapy Patients in Bialystok; Investigation of an Accidental Exposure of Radiotherapy Patients in Panama; Accidental Overexposure of Radiotherapy Patients in San Jose, Costa Rica; and Investigation of an Accidental Exposure of Radiotherapy Patients in Poland. Keeping in mind that endovascular applications involve specialists such as cardiologists, angiologists and surgeons, all of whom might not have a

  14. Medical and industrial radiation sources as radiological weapons

    International Nuclear Information System (INIS)

    Bielefeld, T.; Fischer, H.W.

    2006-01-01

    The execution of attacks with radiological weapons are well within the capabilities of both local terrorist groups and transnational terrorist networks. In a research project, plausible attack scenarios have been developed, based on medical and industrial radioactive sources widely used in Germany. Special emphasis was put on how such sources could be obtained applying criminal tactics. To this end, working procedures in hospitals and companies have been analyzed. Furthermore, by means of simulations, the consequences of a terrorist attack using such sources were estimated. None of the scenarios we investigated led to doses at the site of the explosion which might cause acute radiation effects. However, in some scenarios, an attack would result in the necessity of a potentially very costly clean-up of large urban areas. Therefore, improvements in sources security are recommended. (orig.)

  15. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  16. Study of spear as a dedicated source of synchrotron radiation

    International Nuclear Information System (INIS)

    Cerino, J.; Golde, A.; Hastings, J.; Lindau, I.; Salsburg, B.; Winick, H.; Lee, M.; Morton, P.; Garren, A.

    1977-11-01

    A study was made of the potential of SPEAR as a dedicated source of synchrotron radiation, based on the expectation that SPEAR will become increasingly available for this purpose as PEP, the 18-GeV colliding-beam storage ring now under construction by LBL and SLAC, becomes operational. A synchrotron radiation research program has been underway since May, 1974. Two beam ports capable of serving 9 simultaneous users are now operational. In single-beam multi-bunch operation high currents are possible (225 mA has been achieved and > approximately 300 mA is expected) and the electron beam emittance can be made smaller, resulting in higher source point brightness. Descriptions are given of SPEAR capabilities and of plans to expand the research capability by adding beam runs and by inserting wiggler magnets in SPEAR straight sections

  17. Regulatory control of radiation sources in the Philippines

    International Nuclear Information System (INIS)

    Daroy, Rosita R.

    1995-01-01

    This paper is concerned with the radiation protection and safety infrastructure providing emphasis on the regulation and control of radiation sources in the Philippines. It deals with the experiences of the Philippine Nuclear Research Institute, as a regulatory body, in the regulation and control of radioactive materials in radiotherapy, nuclear medicine, industrial radiography, industrial gauges, industrial irradiators, and well logging. This paper includes an inventory of the sources and types of devices/equipment used by licensed users of radioactive materials in the Philippines as a contribution to the data base being prepared by the IAEA. The problems encountered by the regulatory body in the licensing and enforcement process, as well as the lessons learned from incidents involving radioactive materials are discussed. Plans for improving compliance to the regulations and enhancing the effectiveness of PNRI's regulatory functions are presented. (author)

  18. Science experiments via telepresence at a synchrotron radiation source facility

    International Nuclear Information System (INIS)

    Warren, J. E.; Diakun, G.; Bushnell-Wye, G.; Fisher, S.; Thalal, A.; Helliwell, M.; Helliwell, J. R.

    2008-01-01

    The application of a turnkey communication system for telepresence at station 9.8 of the Synchrotron Radiation Source, Daresbury, is described and demonstrated, including its use for inter-continental classroom instruction and user training. Station 9.8 is one of the most oversubscribed and high-throughput stations at the Synchrotron Radiation Source, Daresbury, whereby awarded experimental time is limited, data collections last normally no longer than an hour, user changeover is normally every 24 h, and familiarity with the station systems can be low. Therefore time lost owing to technical failures on the station has a dramatic impact on productivity. To provide 24 h support, the application of a turnkey communication system has been implemented, and is described along with additional applications including its use for inter-continental classroom instruction, user training and remote participation

  19. System for selection of radiation source transfer trucks

    International Nuclear Information System (INIS)

    Tanimoto, Yoshinori; Ito, Kojiro.

    1970-01-01

    A device for selection of trucks each of which load and transfer a radiation source to an irradiation room above a water pool is installed at the end of a pair of rails fixed to the bottom of the pool. This device is equipped with a number of laterally shiftable rail pairs which may be brought into successive alignment with the fixed rails and is adapted to receive, carry and fix a truck on each rail pair. If one of said trucks is selected for irradiation in a desired irradiation room, the rail pair carrying this truck is shifted to align and couple with the fixed rail pair whereupon the truck is driven and transferred to a position on the fixed rails below the desired room and elevated thereinto. Accordingly, a plurality of trucks can optionally be shunted on a line of fixed rails without unloading the respective radiation sources. (Ohno, Y.)

  20. Five-level Z-source diode-clamped inverter

    DEFF Research Database (Denmark)

    Gao, F.; Loh, Poh Chiang; Blaabjerg, Frede

    2010-01-01

    This study proposes a five-level Z-source diode-clamped inverter designed with two intermediate Z-source networks connected between the dc input sources and rear-end inverter circuitry. By partially shorting the Z-source networks, new operating states not previously reported for two-level Z......-source inverter are introduced here for operating the proposed inverter with voltage buck–boost energy conversion ability and five-level phase voltage switching. These characteristic features are in fact always ensured at the inverter terminal output by simply adopting a properly designed carrier modulation...

  1. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  2. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  3. Starting material radiation source for Moessbauer investigations of tellurium compounds

    International Nuclear Information System (INIS)

    Alexandrov, A.J.; Grushko, J.S.; Makarov, E.F.; Mishin, K.Y.; Baltrunas, D.A.J.

    1977-01-01

    A method is described of preparing a radiation source for Mossbauer investigations of tellurium compounds manufactured on the basis of 5 MgO . Te 124 O 3 . 5 MgO . Te 124 O 3 is irradiated in a reactor by means of thermal neutrons, followed by annealing at a temperature ranging from 600 0 to 1,100 0 C for a period of from 5 to 10 hours

  4. Experiments planned to be made with the synchrotron radiation source

    International Nuclear Information System (INIS)

    Matz, W.

    1993-01-01

    For this working meeting, various research groups from the Land Sachsen and from the neighbouring countries Poland and the Czech Republic have been invited in order to present their materials research programmes or task-specific experiments intended to be carried out with the synchrotron radiation source to be installed in the near future. The proceedings volume in hand presents the discussion papers, which have been directly reproduced from the original foils. (orig.) [de

  5. Limitation of population's irradiation by natural sources of ionizing radiation

    International Nuclear Information System (INIS)

    Krisyuk, Eh.M.

    1989-01-01

    Review of works devoted to evaluating the human irradiation doses at the expense of the main sources of ionizing radiation, is given. It is shown that the human irradiation doses at the expense of DDP can be reduced 10 times and more. However to realize such measures it is necessary to study the efficiency and determine the cost of various protective activities as well as to develop the criteria of their realization necessity

  6. A proposal for prevention of acute radiation hazard and social panic regarding orphan sources in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takahash, T. [Research Reactor Institute, Kyoto Univ., Osaka (Japan); Kai, M. [Oita Univ., of Nursing and Health Sciences, Oita (Japan); Yamazaki, K. [Chiyoda Technol Corporation, Tokyo (Japan); Gomi, K. [Japan Radioisotope Association, Tokyo (Japan); Nakazato, K. [School of Medicine, Keio univ., Tokyo (Japan); Iida, T. [Nagoya Univ., Nagoya (Japan)

    2002-07-01

    To respond to an increase of social problems concerning orphan sources in Japan, a working group was formed in the Japan Health Physics Society. In this working group, we investigated how to prevent acute radiation hazard or social panic regarding orphan sources in scrap metal and detection system for orphan sources brought into scrap yards before recycle. For detection system in a scrap yard we conducted an experiment on detectability of monitoring instrument using a radiation source mixed in scrap metal on a truck. The result showed that it was not easy to detect even a high-level source if it was shielded by scrap metal. We also estimated detection limits for radioactive materials in scrap metal by calculation that was validated with experimental data. We summarized present status about orphan sources in Japan and proposed a categorization of orphan sources according to dose rates to deal with unknown sources in a scrap yard. Our report includes some proposals to the government, industry and academic world for preventing acute radiation hazard and social panic.

  7. A proposal for prevention of acute radiation hazard and social panic regarding orphan sources in Japan

    International Nuclear Information System (INIS)

    Takahash, T.; Kai, M.; Yamazaki, K.; Gomi, K.; Nakazato, K.; Iida, T.

    2002-01-01

    To respond to an increase of social problems concerning orphan sources in Japan, a working group was formed in the Japan Health Physics Society. In this working group, we investigated how to prevent acute radiation hazard or social panic regarding orphan sources in scrap metal and detection system for orphan sources brought into scrap yards before recycle. For detection system in a scrap yard we conducted an experiment on detectability of monitoring instrument using a radiation source mixed in scrap metal on a truck. The result showed that it was not easy to detect even a high-level source if it was shielded by scrap metal. We also estimated detection limits for radioactive materials in scrap metal by calculation that was validated with experimental data. We summarized present status about orphan sources in Japan and proposed a categorization of orphan sources according to dose rates to deal with unknown sources in a scrap yard. Our report includes some proposals to the government, industry and academic world for preventing acute radiation hazard and social panic

  8. Regulatory control of radiation sources in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Daroy, Rosita R

    1996-12-31

    This paper is concerned with the radiation protection and safety infrastructure providing emphasis on the regulation and control of radiation sources in the Philippines. It deals with the experiences of the Philippine Nuclear Research Institute, as a regulatory body, in the regulation and control of radioactive materials in radiotherapy, nuclear medicine, industrial radiography, industrial gauges, industrial irradiators, and well logging. This paper includes an inventory of the sources and types of devices/equipment used by licensed users of radioactive materials in the Philippines as a contribution to the data base being prepared by the IAEA. The problems encountered by the regulatory body in the licensing and enforcement process, as well as the lessons learned from incidents involving radioactive materials are discussed. Plans for improving compliance to the regulations and enhancing the effectiveness of PNRI`s regulatory functions are presented. (author). Paper presented during the IAEA Regional (RCA) Workshop on System of Notification, Registration, Licensing, and Control of Radiation Sources and Installations, Jakarta, Indonesia, 24-28 April 1995. 6 refs., 2 figs., 12 tabs.

  9. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  10. Risks and hazards from conventional and radiation sources

    International Nuclear Information System (INIS)

    Iyer, P.S.; Ganguly, A.K.

    1978-01-01

    Beneficial uses of radioisotopes in medicine, industry, agriculture and research are discussed. In absence of adequate safety precautions, uses of radiation may also result in harmful biological effects or genetic effects. Radiation risks and hazards are evaluated by comparing with other risks and hazards which are routinely encountered. The risk of fatality per year by various causes in U.S.A. is given. It is stated with examples and observations that some of the routine habits and necessities and minor luxuries are more risky than radiation risks. Countrywide radiation safety program in India by the Department of Atomic Energy is described in brief. Data are given to show that the risks from radiation are much lower in comparison with many conventional sources. More efficient equipment such as image intensifier is recommended to help to reduce the patient dose. It is stated that caution has to be exercised while handling the X-ray machines which may be harmful not only to patients but to doctors also. As regards, nuclear medicine, it is mentioned that though it is a fast expanding speciality in India, the number of procedures carried out in various centres is small as compared to U.S.A. and France. Some instances are given to show the consequences of the ignorance of the radiation hazards in operating machines in X-ray and gamma ray beam therapy facilities. A survey made by DRP, BARC revealed that some research laboratories lacked basic radiation protection requirements in using X-ray crystallography or analytical equipment. (B.G.W.)

  11. Natural Sources of Radiation Exposure and the Teaching of Radioecology

    Science.gov (United States)

    Anjos, R. M.; Veiga, R.; Carvalho, C.; Sanches, N.; Estellita, L.; Zanuto, P.; Queiroz, E.; Macario, K.

    2008-01-01

    We have developed an experimental activity that introduces concepts of the natural ionizing radiation and its interaction with our contemporary environment that can be used with students from secondary to college level. The experiment is based on the use of traditional and cheap portable Geiger-Muller detectors as survey meters for "in situ"…

  12. Natural sources of radiation exposure and the teaching of radioecology

    International Nuclear Information System (INIS)

    Anjos, R M; Veiga, R; Carvalho, C; Sanches, N; Estellita, L; Macario, K; Zanuto, P; Queiroz, E

    2008-01-01

    We have developed an experimental activity that introduces concepts of the natural ionizing radiation and its interaction with our contemporary environment that can be used with students from secondary to college level. The experiment is based on the use of traditional and cheap portable Geiger–Müller detectors as survey meters for in situ measurements

  13. Health effects of low-level radiations

    International Nuclear Information System (INIS)

    Tubiana, M.

    1982-01-01

    Epidemiological surveys have attempted to assess the carcinogenic risk induced by exposure to low doses of ionizing radiation. Such studies are difficult to carry out because the incidence of radiation induced cancers is of only a few per cent, even following relativity large doses, and because there is no way to distinguish radiation induced cancer from the background of natural human cancers; moreover these surveys are exposed to many biases due to relatively small sizes of the populations studied and the difficulties of finding an appropriate control group, of estimating the absorbed doses and of collecting the data. A few national or international expert committees have analysed the available data and evaluated the carcinogenic effects. Their estimations of the risk, are similar and allow one to quantify the carcinogenic risk for doses above 100 rads. The risks of lower doses must be determined by extrapolation from human data at high doses. This extrapolation requires the knowledge of the dose-effect relationship. A linear extrapolation is most common and probably leads to a conservative estimate of the risk. A linear-quadratic function is probably more realistic and in better accordance with most scientific data. However the validity of its use for the estimation of carcinogenic risk is still debated. In experimental animals, the influence of dose-rate is important and some data suggest that this is the same for the carcinogenic effect in human beings. The genetic effects are probably less important than was feared a few years ago. The most important recent observation is the absence of any significant genetic effect in the progeny of the survivors of the A. bombs in Hiroshima and Nagasaki. This allows a conservative estimate of the maximum genetic risk for human beings [fr

  14. Regulatory control of radiation sources and radioactive materials in Ireland

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fenton, D.; O'Flaherty, T.

    2001-01-01

    The primary legislation governing safety in uses of ionizing radiation in Ireland is the Radiological Protection Act, 1991. This Act provided for the establishment in 1992 of the Radiological Protection Institute of Ireland, and gives the Institute the functions and powers which enable it to be the regulatory body for all matters relating to ionizing radiation. A Ministerial Order made under the Act in 2000 consolidates previous regulations and, in particular, provides for the implementation in Irish law of the 1996 European Union Directive which lays down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Under the legislation, the custody, use and a number of other activities involving radioactive substances and irradiating apparatus require a licence issued by the Institute. Currently some 1260 licences are in force. Of these, some 850 are in respect of irradiating apparatus only and are issued principally to dentists and veterinary surgeons. The remaining licences involve sealed radiation sources and/or unsealed radioactive substances used in medicine, industry or education. A schedule attached to each licence fully lists the sealed sources to which the licence applies, and also the quantities of radioactive substances which may be acquired or held under the licence. It is an offence to dispose of, or otherwise relinquish possession of, any licensable material other than in accordance with terms and conditions of the licence. Disused sources are returned to the original supplier or, where this is not possible, stored under licence by the licensee who used them. Enforcement of the licensing provisions relies primarily on the programme of inspection of licensees, carried out by the Institute's inspectors. The Institute's Regulatory Service has a complement of four inspectors, one of whom is the Manager of the Service. The Manager reports to one of the Institute's Principal

  15. Locating gamma radiation source by self collimating BGO detector system

    Energy Technology Data Exchange (ETDEWEB)

    Orion, I; Pernick, A; Ilzycer, D; Zafrir, H [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center; Shani, G [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The need for airborne collimated gamma detector system to estimate the radiation released from a nuclear accident has been established. A BGO detector system has been developed as an array of separate seven cylindrical Bismuth Germanate scintillators, one central detector symmetrically surrounded by six detectors. In such an arrangement, each of the detectors reduced the exposure of other detectors in the array to a radiation incident from a possible specific spatial angle, around file array. This shielding property defined as `self-collimation`, differs the point source response function for each of the detectors. The BGO detector system has a high density and atomic number, and therefore provides efficient self-collimation. Using the response functions of the separate detectors enables locating point sources as well as the direction of a nuclear radioactive plume with satisfactory angular resolution, of about 10 degrees. The detector`s point source response, as function of the source direction, in a horizontal plane, has been predicted by analytical calculation, and was verified by Monte-Carlo simulation using the code EGS4. The detector`s response was tested in a laboratory-scale experiment for several gamma ray energies, and the experimental results validated the theoretical (analytical and Monte-Carlo) results. (authors).

  16. Intermediate bands versus levels in non-radiative recombination

    International Nuclear Information System (INIS)

    Luque, Antonio; Marti, Antonio; Antolin, Elisa; Tablero, Cesar

    2006-01-01

    There is a practical interest in developing semiconductors with levels situated within their band gap while preventing the non-radiative recombination that these levels promote. In this paper, the physical causes of this non-radiative recombination are analyzed and the increase in the density of the impurities responsible for the mid-gap levels to the point of forming bands is suggested as the means of suppressing the recombination. Simple models supporting this recommendation and helping in its quantification are presented

  17. Overview of the hazards of low-level exposure to radiation

    International Nuclear Information System (INIS)

    Ritenour, E.R.

    1984-01-01

    In this chapter the authors are concerned with low-level radiation, doses of ionizing radiations that are ten to thousands of times smaller than those required to contract ARS. Low-level radiation may be defined as an absorbed dose of 10 rem or less delivered over a short period of time. A larger dose delivered over a long period of time, for instance, 50 rem in 10 years, may also be considered low level. The definition is purposely loose so as to cover a wide variety of sources of radiation exposure, such as natural background (100 mrem/year) occupational exposures (<5 rem/year), and medical applications, such as diagnostic radiography (<1 rem). Low-level radiation exposure does not produce ARS. The health effects that may be of concern in regard to low-level radiation are its long-term sequelae. Studies of survivors of high-level radiation exposure (both human and laboratory animals) have indicated that there are three health effects that should be examined at low levels of exposure: induction of cancer, birth abnormalities (from irradiation in utero), and genetic effects. No other long-term effects of low-level exposure have been conclusively demonstrated in animals or humans

  18. Main results and tasks in studies on radiation safety ensurance when using nuclear power and radiation sources in national economy

    International Nuclear Information System (INIS)

    Semenov, A.P.; Ivanov, V.I.

    1978-01-01

    The basic problems and the results of work in the field of ensuring radiation safety for personnel engaged in work related to the use of nuclear energy and sources of ionizing radiation are discussed. Long standing observation of labour hygiene and health conditions of people engaged at research nuclear reactors have shown that the irradiation levels under normal operating conditions do not exceed the established standards. Radiation conditions in radiological laboratories have been studied. Much attention is given to studies of internal irradiation due to inhalation of radioactive aerosols. New methods and apparatuses have been developed for analysis of aerosols and control of intake of radioactive substances by man. Work has been done to improve the methods of emergency dosimetry and design of individual emergency dosimeters. Investigations have been performed to determine the safety levels in working with rare-metal ores containing naturally occurring radioactive substances and industrial radiochemical processes. It is of interest to study small load doses. Different documents for providing safety in working with sources of ionizing radiation have been developed

  19. Fabrication of radiation sources for educational purposes from chemical fertilizers using compressing and forming method

    International Nuclear Information System (INIS)

    Kawano, Takao

    2008-01-01

    Chemical fertilizers contain potassium, which is composed of a small amount of naturally occurring potassium-40. The potassium-40 radionuclide emits beta and gamma radiation. Three brands of chemical fertilizer were used to fabricate disk-shaped radiation sources and the fabricated radiation sources were examined for applicability to an educational radiation course. In the examination, tests to determine dependence of count rate on distance, shielding thickness, and shielding materials were conducted using the radiation sources. Results showed that radiation sources fabricated from the three brands of chemical fertilizer were equivalent for explaining radiation characteristics, particularly those related to the dependence of radiation strength on distance and shielding thickness. The relation between shielding effect and mass density can be explained qualitatively. Thus, chemical fertilizer radiation sources can be a useful teaching aid for educational courses to better promote understanding of radiation characteristics and the principles of radiation protection. (author)

  20. Health effects of low-level radiation in shipyard workers

    International Nuclear Information System (INIS)

    Matanoski, G.M.

    1991-06-01

    The Nuclear Shipyard Workers Study (NSWS) was designed to determine whether there is an excess risk of leukemia or other cancers associated with exposure to low levels of gamma radiation. The study compares the mortality experience of shipyard workers who qualified to work in radiation areas to the mortality of similar workers who hold the same types of jobs but who are not authorized to work in radiation areas. The population consists of workers from six government and two private shipyards

  1. The concept of recommended working life applied to radiation sources

    International Nuclear Information System (INIS)

    Lorch, E.A.

    1980-01-01

    Consideration is given to the background behind the Radiochemical Centre's decision to introduce values of recommended working life (RWL) of 5, 10 or 15 years for the majority of its radiation sources. Criteria used in assessing RWL included toxicity, half-life and total initial activity of the nuclide, source construction, typical application environments, experience of safety in use and test performance data. The introduction of the concept of RWL has meant that users are becoming aware of the need for regular inspection and assessment of sources, but it is emphasized that the RWL does not constitute a guarantee of performance. It represents an effort by the Radiochemical Centre to ensure the proper use of its products. (U.K.)

  2. Characterization of the radiation background at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Hall-Wilton, Richard J.; Bentley, Phillip M.; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.

    2016-01-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4 He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden. (paper)

  3. An overview of radiation protection at national level in Greece

    International Nuclear Information System (INIS)

    Dimitriou, P.A.

    1997-01-01

    The Greek radiation protection Regulations were revised extensively and harmonized with the relevant Euratom Directives in 1991, covering almost all applications of ionizing radiation. According to the low in force, Greek Atomic Energy Commission (GAEC) is the regulatory and competent authority on radiation protection matters. Among others is responsible: for evaluating the environmental radiation, for introducing emergency plans to responsible Ministries to cope with radiation accidents or increased radioactivity levels, for issuing safety regulation concerning the operation employing ionizing radiation, performing inceptions to all installations or laboratories where radioisotopes or radiation producing machines are employed including all medical applications and issuing the certificate of compliance with the radiation protection regulations. GAEC is the governmental licensing authority for import, export, possession, use, transport and disposal of radioactive materials including fissile materials, and is also responsible for providing training and education to scientists and technical personnel on radiation protection and operates a two years postgraduate course in Medical radiation Physics in collaboration with three Greek Universities, leading to an M Sc degree.The achievements, initiatives and perceptivities of GAEC in the fields of its responsibility are discussed. Statistical data concerning the application of ionising radiation in Greece during the last five years are also presented (author)

  4. Environmental levels of microwave radiation around a satellite earth station

    International Nuclear Information System (INIS)

    Joyner, K.H.; Bangay, M.J.

    1986-01-01

    This paper discusses the background to claims of possible adverse health effects arising from exposure to environmental levels of microwave radiation around satellite earth stations. Results of a recent survey of the environmental levels of microwave radiation around two 32 metre diameter satellite communications antennas owned and operated by the Overseas Telecommunications Commission (OTC) of Australia are presented. From the measurements obtained in this survey it can be concluded that the environmental levels of microwave radiation around the OTC and similar satellite facilities do not pose a health risk to persons in the vicinity

  5. A general description of the Swedish radiation protection regulations of radioactive sources

    International Nuclear Information System (INIS)

    Staalnacke, C.-G.

    2001-01-01

    The regulation of ionizing radiation in Sweden is based on both the Radiation Protection Act and Ordinance from 1998. The Swedish Radiation Protection Institute (SSI) acts as the regulatory authority for radiation safety and issues detailed regulations in specific areas. The report summarizes how the SSI controls radiation sources, including orphan sources for which a process for analyzing their occurrence has started in Sweden. A number of proposed procedures for the control and follow-up of sealed radioactive sources is provided. (author)

  6. Radiation levels on empty cylinders containing heel material

    Energy Technology Data Exchange (ETDEWEB)

    Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  7. Viking observations at the source region of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Bahnsen, A.; Jespersen, M.; Ungstrup, E.; Pedersen, B.M.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Blomberg, L.; Holmgren, G.; Zanetti, L.J.

    1989-01-01

    The orbit of the Swedish satellite Viking was optimized for in situ observations of auroral particle acceleration and related phenomena. In a large number of the orbits, auroral kilometric radiation (AKR) was observed, and in approximately 35 orbits the satellite passed through AKR source regions as evidenced by very strong signals at the local electron cyclotron frequency f ce . These sources were found at the poleward edge of the auroral oval at altitudes, from 5,000 to 8,000 km, predominantly in the evening sector. The strong AKR signal has a sharp low-frequency cutoff at or very close to f ce in the source. In addition to AKR, strong broadband electrostatic noise is measured during the source crossings. Energetic (1-15 keV) electrons are always present at and around the AKR sources. Upward directed ion beams of several keV are closely correlated with the source as are strong and variable electric fields, indicating that a region of upward pointing electric field below the observation point is a necessary condition for AKR generation. The plasma density is measured by three independent experiments and it is generally found that the density is low across the whole auroral oval. For some source crossings the three methods agree and show a density depletion (but not always confined to the source region itself), but in many cases the three measurements do not yield consistent results. The magnetic projection of the satellite passes through auroral forms during the source crossings, and the strongest AKR events seem to be connected with kinks in an arc or more complicated structures

  8. An inverse source location algorithm for radiation portal monitor applications

    International Nuclear Information System (INIS)

    Miller, Karen A.; Charlton, William S.

    2010-01-01

    Radiation portal monitors are being deployed at border crossings throughout the world to prevent the smuggling of nuclear and radiological materials; however, a tension exists between security and the free-flow of commerce. Delays at ports-of-entry have major economic implications, so it is imperative to minimize portal monitor screening time. We have developed an algorithm to locate a radioactive source using a distributed array of detectors, specifically for use at border crossings. To locate the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron transport equation given an estimated source position. The source position is updated using the steepest descent method, where the gradient of the objective function with respect to the source position is calculated using adjoint transport calculations. If the objective function is smaller than the convergence criterion, then the source position has been identified. This paper presents the derivation of the underlying equations in the algorithm as well as several computational test cases used to characterize its accuracy.

  9. Genetic effects of low level radiation

    International Nuclear Information System (INIS)

    Sumner, D.

    1988-01-01

    The author outlines the evidence for genetic effects. The incidence of congenital abnormalities, stillbirths and child deaths has been examined in 70,000 pregnancies in Hiroshima and Nagasaki and compared with pregnancies in an unirradiated control group. No difference was detected in incidence of congenital abnormalities of stillbirths, but there was a small insignificant increase in child deaths when both parents were exposed. The number of children born with chromosome aberrations was slightly higher, but insignificant in the exposed group compared with controls. However, surveys of congenital malformations in children of radiologists and in children of Hanford workers suggest a genetic effect of radiation. Absolute and relative methods of calculating risks and the ICRP risk factor is also briefly discussed. (U.K.)

  10. Radiation levels in the SSC interaction regions

    Energy Technology Data Exchange (ETDEWEB)

    Groom, D.E. [ed.

    1988-06-10

    The radiation environment in a typical SSC detector has been evaluated using the best available particle production models coupled with Monte Carlo simulations of hadronic and electromagnetic cascades. The problems studied include direct charged particle dose, dose inside a calorimeter from the cascades produced by incident photons and hadrons, the flux of neutrons and photons backscattered from the calorimeter into a central cavity, and neutron flux in the calorimeter. The luminosity lifetime at the SSC is dominated by collision losses in the interaction regions, where the luminosity is equivalent to losing an entire full-energy proton beam into the apparatus every six days. The result of an average p-p collision can be described quite simply. The mean charged multiplicity is about 110, and the particles are distributed nearly uniformly in pseudorapidity ({eta}) over all the angles of interest. The transverse momentum distribution is independent of angle, and for our purposes may be written as p{perpendicular}exp(-p{perpendicular}/{beta}). The mean value of p{perpendicular} may be as high as 0.6 GeV/c. Most of the radiation is produced by the very abundant low-p{perpendicular} particles. The dose or neutron fluence produced by individual particles in this energy region are simulated over a wide variety of conditions, and several measurements serve to confirm the simulation results. In general, the response (a dose, fluence, the number of backscattered neutrons, etc.) for an incident particle of momentum p can be parameterized in the form Np{sup {alpha}}, where 0.5 < {alpha}< 1.0. The authors believe most of their results to be accurate to within a factor of two or three, sufficiently precise to serve as the basis for detailed designs.

  11. High level radiation dosimetry in biomedical research

    International Nuclear Information System (INIS)

    Inada, Tetsuo

    1979-01-01

    The physical and biological dosimetries relating to cancer therapy with radiation were taken up at the first place in the late intercomparison on high LET radiation therapy in Japan-US cancer research cooperative study. The biological dosimetry, the large dose in biomedical research, the high dose rate in biomedical research and the practical dosimeters for pulsed neutrons or protons are outlined with the main development history and the characteristics which were obtained in the relating experiments. The clinical neutron facilities in the US and Japan involved in the intercomparison are presented. Concerning the experimental results of dosimeters, the relation between the R.B.E. compared with Chiba (Cyclotron in National Institute of Radiological Sciences) and the energy of deuterons or protons used for neutron production, the survival curves of three cultured cell lines derived from human cancers, after the irradiation of 250 keV X-ray, cyclotron neutrons of about 13 MeV and Van de Graaff neutrons of about 2 MeV, the hatchability of dry Artemia eggs at the several depths in an absorber stack irradiated by 60 MeV proton beam of 40, 120 and 200 krad, the peak skin reaction of mouse legs observed at various sets of average and instantaneous dose rates, and the peak skin reaction versus three instantaneous dose rates at fixed average dose rate of 7,300 rad/min are shown. These actual data were evaluated numerically and in relation to the physical meaning from the viewpoint of the fundamental aspect of cancer therapy, comparing the Japanese measured values to the US data. The discussion record on the high dose rate effect of low LET particles on biological substances and others is added. (Nakai, Y.)

  12. Effects of low levels of radiation on humans

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1981-01-01

    The state of knowledge on effects of low-level ionizing radiations on humans is reviewed. Several problems relating to dose thresholds or lack of thresholds for several types of cancer and high LET radiations and the effects of fractionation and dose protection are discussed

  13. Level of Radiofrequency (RF) Radiations from GSM Base Stations ...

    African Journals Online (AJOL)

    Levels of radiofrequency radiations around two global systems for mobile communication (GSM) base stations located in the vicinity of a residential quarter and workplace complex were measured. The effects of the radiofrequency radiations on albino mice placed in exposure cages and located around the base stations ...

  14. Radiation levels from computer monitor screens within Benue State ...

    African Journals Online (AJOL)

    Investigation of possible presence of soft X-ray levels from Computer Screens at distances of 0.5m and 1.0m was carried out within Benue State University, Makurdi, using ten different monitor models. Radiation measurement was carried out using a portable digital radiation meter, INSPECTOR 06250 (SE international Inc.

  15. Radiation Protection Aspects of the Linac Coherent Light Source Front End Enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Vollaire, J.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, S.H.; Leitner, M.Santana; /SLAC

    2010-08-26

    The Front End Enclosure (FEE) of the Linac Coherent Light Source (LCLS) is a shielding housing located between the electron dump area and the first experimental hutch. The upstream part of the FEE hosts the commissioning diagnostics for the FEL beam. In the downstream part of the FEE, two sets of grazing incidence mirror and several collimators are used to direct the beam to one of the experimental stations and reduce the bremsstrahlung background and the hard component of the spontaneous radiation spectrum. This paper addresses the beam loss assumptions and radiation sources entering the FEE used for the design of the FEE shielding using the Monte-Carlo code FLUKA. The beam containment system prevents abnormal levels of radiations inside the FEE and ensures that the beam remains in its intended path is also described.

  16. Risk perception in the process of working with radiation sources

    International Nuclear Information System (INIS)

    Carneiro, J.C.G.; Levy, D.; Sanches, M.P.; Rodrigues, D.L.; Sordi, G.M.A.A.

    2017-01-01

    This study discusses occupational risk under three distinct aspects, which are often interconnected or interdependent in the work environment. These are: environmental risks, human failures and equipment failures. The article addresses the potential exposure in the workplace, caused by the agent's physical radiation risk, resulting from handling with sources of ionizing radiation. Based on the history of accidents occurring in normal operations, the study summarizes the main accidents in various facilities and possible causes involving the three aspects of risk. In its final considerations, it presents the lessons learned and the measures to be taken with the intention of contributing to the prevention and mitigation of risks in the work environment. The analysis of accident cases and their causes provide valuable information to prevent the risk of similar accidents and contribute to the improvement of operational projects and procedures

  17. Effects of low-level radiation on biologic systems: a literature review

    International Nuclear Information System (INIS)

    Best, T.L.; Hoditschek, B.

    1980-12-01

    This review presents an organized survey of scientific literature dealing with the biologic effects of low-level radiation. It includes brief discussions of topics of particular interest, a listing of useful review articles, an extensive bibliography, and listings of sources that can be used to update this document in the future. The topics discussed include experimental studies, the linear hypothesis, medical effects, occupational effects, effects of exposure to naturally occurring radiation, consumer products, and laws and regulations

  18. National system of notification, authorization and inspection for the control of radiation sources in Ghana

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, E.O.; Yeboah, J.; Asiamah, S.D.

    2001-01-01

    The Radiation Protection Board (RPB) was established in 1993 in Ghana as the regulatory authority for radiation protection and safety of radiation sources; its functions are prescribed in the 1993 national radiation protection regulation. The report describes how the country's radiation protection and safety infrastructure have been established, including the RPB's organizational structure, with reference in particular to the main activities carried out by both the Regulatory Control Department and the Radiation and Waste Safety Department. It also briefly mentions the existing RPB human resources; the national system of notification, authorization and inspection of radiation sources; the inventory of radiation sources; and the management of disused radiation sources. Finally, the report identifies the two main problem areas regarding the regulatory control of radiation sources in the country. (author)

  19. Examining a link between SPEs and ground level radiation

    Science.gov (United States)

    Overholt, Andrew

    2015-01-01

    Researchers have previously found a correlation between solar proton events (SPEs) and congenital malformations (CMs). A similar correlation has also been found between long term solar variability and CMs. We examine the ionizing radiation dose from these events as well as the largest events on record to determine whether these events are capable of producing these effects. We show that the total ionizing radiation dose (consisting of neutrons and muons) at ground level is insufficient for production of the observed increases in CM rate under the current paradigm regarding ionizing radiation from muons and neutrons. Current research on the subject shows that our assumptions regarding muonic ionizing radiation may be underestimating their biologic effect. We recommend further experimentation regarding the radiation dose due to muons, as this may prove to be a more substantial contribution to our radiation environment than previously assumed.

  20. Measurement of Background Gamma Radiation Levels at Two ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: An in-situ measurement of the background radiation level was carried out at the vicinity of three ... Soil contains small quantities of radioactive elements along with their progeny. .... assessment for soil samples from Kestanbol.

  1. Production of iridium-192 radiation sources: Indian Experience

    International Nuclear Information System (INIS)

    Sastry, K.V.S.; Kolhe, O.T.; Nagarja, P.S.; Paramr, Y.D.

    2002-01-01

    Board of Radiation and Isotope Technology (BRIT), a unit under the Department of Atomic Energy is fabricating and supplying Ir-192 industrial radiography sources for various models of radiography cameras for use in the industry for non-destructive testing. Basically these sources are fabricated by encapsulating the required quantity of the activity in stainless steel 316 L capsules using Tungsten Inert gas welding process and crimping/attaching to the respective pigtail assemblies of the radiography cameras. The inactive iridium pellets are irradiated in the DHRUVA reactor at a flux on 1.8 X 10 14 n/cm 2 /sec. The performance classification of these source encapsulation for various conditions of normal and accidental nature are tested by subjecting the prototype sources as per the standard laid down by the regulatory authority, Atomic Energy Regulatory Board, in India. The sources are fabricated as per the national and international standards. Activity of the sources varies from 37O GBq (10 Ci ) to 2.96 TBq (80 Ci ) source strength depending on the requirement of the user. The specific activity of the Ir-192 sources supplied is around 7.4 TBq/gm (200 Ci/gm ). Quality control /Assurance for the manufacture of the source begins from the procurement of the raw material and ends with the finished source. Ir- 192 in the form of -0.3 mm diameter (0.1 mm dia wire of Ir-25 % and Pt-75% sheathed in pure platinum of 0.1 mm thick) is being supplied for use in the treatment of cancer of cervix, tongue etc. by brachytherapy. This is supplied in lengths of 50 cm / 100 cm with 37 - 185 GBq/cm ( 1-5 mCi/cm) activity. Annually 925 TBq (25 kCi) of Ir-192 for industrial radiography and about 60 meters of wire for brachytherapy are being fabricated and supplied. Because of the quality of these sources BRIT not only caters to the Indian industry but also is able to export sources to the third world countries. (Author)

  2. The competent person in radiation protection: practical radiation protection for industry and research - unsealed sources

    International Nuclear Information System (INIS)

    Bruchet, H.

    2009-01-01

    The mission of the competent person in radiation protection has been broadly developed these last years to take an essential function in firm:study of working place, delimitation of regulated areas, monitoring of exposure, relations with authorities. The competent person in radiation protection must follow a training, defined by decree and shared in two parts: a theoretical part used as compulsory subjects and a practical part specific to the different sectors of activity (research, industry, medical centers, nuclear facilities) as well as the radiation use type. This volume corresponds to the practical module devoted to the industrial and research facilities concerned by the possession of management of sealed or unsealed sources. In accordance with the regulations stipulating that this module must allow to apply the theoretical knowledge to concrete situations in work. It includes eight chapters as following: radiation protection in industrial and research facilities, use of sources and associated risks, fitting out professional premises, evaluation of exposure, control of radiation protection; use of detection equipment and radioactive contamination and exposure measurement equipment, associated to methods and calculation tools; radioactive waste management; accidental or damaged situations management; methodology of working place analysis completed by the application to practical cases found in laboratories. (N.C.)

  3. Inspection of radiation sources and regulatory enforcement (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2010-08-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depends on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for carrying out regulatory inspections, and taking necessary enforcement actions. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the processes for carrying out regulatory inspections and taking enforcement actions. It includes information on the development and use of procedures and standard review plans (i.e. checklists) for inspection. Specific procedures for inspection of radiation practices and sources are provided in the Appendices

  4. Inspection of radiation sources and regulatory enforcement (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2007-04-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depends on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for carrying out regulatory inspections, and taking necessary enforcement actions. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the processes for carrying out regulatory inspections and taking enforcement actions. It includes information on the development and use of procedures and standard review plans (i.e. checklists) for inspection. Specific procedures for inspection of radiation practices and sources are provided in the Appendices

  5. Measurement of radiation skyshine with D-T neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Nishitani, T. E-mail: nisitani@naka.jaeri.go.jp; Ochiai, K.; Kaneko, J.; Hori, J.; Sato, S.; Yamauchi, M.; Tanaka, R.; Nakao, M.; Wada, M.; Wakisaka, M.; Murata, I.; Kutsukake, C.; Tanaka, S.; Sawamura, T.; Takahashi, A

    2003-09-01

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of {approx}1.7x10{sup 11} n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9x0.9 m{sup 2} was open during the experimental period. The radiation dose rate outside the target room was measured a maximum distance of 550 m from the D-T target point with a spherical rem-counter. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation counters. The highest neutron dose was about 9x10{sup -22} Sv/(source neutron) at a distance of 30 m from the D-T target point and the dose rate was attenuated to 4x10{sup -24} Sv/(source neutron) at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 230 m. The line source model agrees well with the experimental results within the distance of 350 m.

  6. Effects of high vs low-level radiation exposure

    International Nuclear Information System (INIS)

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved

  7. Risks of low-level radiation - the evidence of epidemiology

    International Nuclear Information System (INIS)

    Gloag, D.

    1980-01-01

    The difficulties involved in estimating risks from very low levels of radiation and the use of dose-response models for cancer incidence are discussed with reference to the third BEIR Committee report on the Effects on Populations of Exposure to low levels of Ionizing Radiation (1980). Cancer risk estimates derived from different epidemiological studies are reviewed. They include atom bomb survivors, medically irradiated groups and occupational groups. (36 references). (author)

  8. Public trust in sources of information about radiation risks in the UK

    International Nuclear Information System (INIS)

    Hunt, S.; Frewer, L.J.; Shepherd, R.

    1998-01-01

    Full text of publication follows: perceptions of trust have been identified as crucial to successful risk communication. This research is concerned with establishing the degree of trust the public places in various sources of information about radiation hazards, and identifying a maximally trusted source for communicating risks about these hazards. Participants were asked directly about the degree to which they would trust information about radiation risks from a variety of sources. They were also asked about the putative components of trust: the degree of 'vested interest' they believed each source had in misinforming the public about radiation risks, and the 'degree of knowledge' they believed each source had about these risks. The results indicated that while perceptions of low 'vested interest' and high 'degree of knowledge' are important elements in determining positive trust ratings, neither alone is sufficient to guarantee a high trust rating. The implications of these findings are discussed in terms of a maximally, trusted source for risk communication that could achieve optimal 'vested interest' and 'degree of knowledge' ratings, the principal features for which are identified as independence of government and commercial organisations; high level of technical expertise; and being specifically dedicated to the interests of the public. (authors)

  9. Freeze drying method for preparing radiation source material

    International Nuclear Information System (INIS)

    Mosley, W.C. Jr.; Smith, P.K.

    1975-01-01

    A solution containing radioisotope and palladium values is atomized into an air flow entering a cryogenically cooled chamber where the solution is deposited on the chamber walls as a thin layer of frozen material. The solvent portion of the frozen material is sublimated into a cold trap by elevating the temperature within the chamber while withdrawing solvent vapors. The residual crystals are heated to provide a uniformly mixed powder of palladium metal and a refractory radioisotope compound. The powder is thereafter consolidated into a pellet and further shaped into rod, wire or sheet form for easy apportionment into individual radiation sources. (U.S.)

  10. Research Activities Using Indus-1 Synchrotron Radiation Source

    International Nuclear Information System (INIS)

    Lodha, G. S.; Deb, S. K.

    2010-01-01

    Indus-1 is an efficient SR source in the soft x-ray / vacuum ultra violet region of the electromagnetic spectrum. For Indus-1, the higher order energy contamination in soft x-ray region, heat load and radiation safety problems are also significantly low. At present, soft x-ray-VUV reflectivity, angle integrated and angle resolved photo electron spectroscopy (ARPES), photo physics and high resolution vacuum ultra violet spectroscopy, beamlines are operational. The paper presents some of the recent studies carried out using In-dus-1.

  11. Search begins for missing radiation sources in Republic of Georgia

    International Nuclear Information System (INIS)

    2002-01-01

    An international team assembled by the IAEA will begin a search today for two abandoned Strontium 90 generators in a ca. 550 sq. km area of Western Georgia. About 80 people will take part in the two-week search beginning on Monday, 10 June. Radiation experts for the IAEA, India, France, Turkey and the U.S. are also part of the team, which will set out on horseback, foot and by car. The second phase - an aerial and road survey covering different territory - is scheduled to begin in early September. The objective is to locate and recover other known or suspected orphaned radioactive sources in the country

  12. Radiation protection data sheet. Radiation protection data sheets for the use of radionuclides in unsealed sources

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    These radiation protection data sheet are devoted to responsible persons and employees of various laboratories or medical, pharmaceutical, university and industrial departments where radionuclides are handled as well as all the persons who attend to satisfy in this field. They contain the essential radiation protection data for the use of unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography. This new series includes the following radionuclides: californium 252, curium 244, gallium 67, indium 113m, plutonium 238, plutonium 239, polonium 210, potassium 42, radium 226, thorium 232, uranium 238 and zinc 65. (O.M.)

  13. Radiation protection for the illegal governmental use of radiation sources. A case study

    International Nuclear Information System (INIS)

    Becker, K.

    2000-01-01

    Probably for the first time, illegal governmental uses of radiation sources, including the administrative infrastructure such as special radiation protection regulation, an advisory body etc., have been documented by the evaluation of the documents of the Ministry of State Security in the former German Democratic Republic (East Germany). Over a thousand persons, but also documents, money bills etc. were marked with a wide variety of radionuclides and traced with specially developed detectors. Among the many different nuclides provided regularly from the Rossendorf Research Center near Dresden, in particular 46 Sc was popular. (orig.) [de

  14. Environmental gamma radiation levels around various DAE research centres

    International Nuclear Information System (INIS)

    Takale, R.A.; Swarnakar, M.; Shetty, P.G.; Sahu, S.K.; Pandit, G.G.

    2014-01-01

    This paper presents the gamma radiation levels of four research centres viz. Bhabha Atomic Research Centre (BARC), Trombay; Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam; Variable Energy Cyclotron Centre (VECC), Kolkata; Raja Ramanna Centre for Advanced Technology (RRCAT), Indore; and an industry Board of Radiation and Isotope Technology (BRIT), Vashi. BARC is India's premier nuclear research facility and is a multi-disciplinary research centre with extensive infrastructure for advanced research and development (R and D). IGCAR, Kalpakkam is engaged in scientific research and advanced engineering programme towards the development of Fast Breeder Reactor technology. VECC Kolkata is dedicated to carry out frontier R and D in the fields of Accelerator Science and Technology, Nuclear Science (Theoretical and Experimental), and Material Science etc. RRCAT, Indore has rapidly grown into a premier institute for R and D in lasers, accelerators and their applications. BRIT, Vashi unit is involved in production, development, and supply of radioisotope based products and provision of isotope applications, radiation processing, radio analytical services etc. With an objective to keep a watch on the prevailing environmental background gamma radiation level around all the DAE installations, routine monitoring programme are being carried out using the Thermo Luminescent Dosimeters (TLDs). TLDs provide the simple, inexpensive and precise measurement of small, integrated, external gamma radiation dose rate. The general practice of this programme is to observe the outdoor gamma radiation levels. This paper summarizes the methodology and gamma radiation levels of four research centres viz. BARC, IGCAR, VECC, RRCAT and an industry BRIT, Vashi

  15. The physical protection of radiation sources and radioactive materials in Tanzania

    International Nuclear Information System (INIS)

    Sungita, Y.Y.; Massalu, I.

    2002-01-01

    Full text: In recognition of the legal deficiency and the awareness of radiation safety, the parliament of the United Republic of Tanzania enacted the protection from radiation act no. 5 of 1983, which established the national radiation commission (NRC) as a regulatory authority. The main objective of the act was to provide for a legal framework and guidance of the control of the use of radiation sources and radioactive materials with the view to achieve an assurance for acceptance level of radiation protection and safety standard. Due to trade liberalization that is currently experienced in the country, the increase in the number of radiation practices is observed yearly. medical diagnostic x-ray facilities constitute 72 % of all radiation installations in the country. Radioactive materials used in research, teaching and industrial application constitute 24 % and those used in therapy and nuclear medicine is 4 %. About seven radioactive materials incidents occurred in Tanzania during 1996-2000. Among these cases, some were illegal possession and across-boarder trafficking of radioactive materials. Theft and losses radioactive equipments or sources were also experienced. This presentation discusses the experienced incidents of illegal possession, theft and loss of radioactive materials and the lesson learnt from those events in connection with our operational laws. The needs for improvement of the whole system of notification, authorization, registration and licensing to cope up with increase in radiation practices and cross-border illegal trafficking of radioactive materials. The importance of involving immigration officers, police and custom officer with proper training in radiation safety aspect is emphasized. The recommendation are given in an attempt to rescue the situation. (author)

  16. Sources of gamma radiation in a reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Matts

    1959-05-15

    In a thermal reactor the gamma ray sources of importance for shielding calculations and related aspects are 1) fission, 2) decay of fission products, 3) capture processes in fuel, poison and other materials, 4) inelastic scattering in the fuel and 5) decay of capture products. The energy release and the gamma ray spectra of these sources have been compiled or estimated from the latest information available, and the results are presented in a general way to permit application to any thermal reactor, fueled with a mixture of {sup 235}U and {sup 238}U. As an example the total spectrum and the spectrum of radiation escaping from a fuel rod in the Swedish R3-reactor are presented.

  17. Definition of loss-of-coolant accident radiation source: summary and conclusions

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Lurie, N.A.; Houston, D.H.; Naber, J.A.

    1978-05-01

    The radiation energy release rates and spectra corresponding to those sources specified in USNRC Regulatory Guide 1.89 for the radiation qualification of Class 1E equipment were calculated. The effects of several parameters (some not specific in the Guide), such as reactor fuel composition, operating duration and power level, and treatment of progeny, are evaluated. The results are presented as time-dependent beta and gamma-ray energy release rates and spectra which are fundamental quantities that are not specific to a plant design but are generally applicable to any nuclear power station

  18. Characterization of the radiation field of a 137Cs source in a calibration laboratory

    International Nuclear Information System (INIS)

    Barbosa, E.F.; Freitas, C.; Freire, D.; Almeida, C.E.

    2001-01-01

    Due to the broad range of radiation levels found in practice, the calibration of radiation detector requires that the laboratory have a large range of values of air kerma rates for a reference distance to the source, in order to allow the calibration of all scales. The dosimetry performed for open beam and with the different attenuators has shown deviations smaller than 5% in relation to the data supplied by the manufacturer that is acceptable. These results are in accordance with the recommendations of the ISO/DIS 4037-2

  19. The Radiation Levels for Household Goods Made in Korea

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Park, Doo Won; Lee, Wan No; Choi, Sang Do; Chung, Kun Ho; Kang, Mun Ja; Choi, Geun Sik; Lee, Chang Woo

    2008-01-01

    The environmental radiation based on a natural and artificial radiation always exists in the environment. The natural radiation includes cosmic ray coming into the atmosphere from outer space, radiation emitted from the earth's crust or soil, radiation by the radon in the air and its progenies. These natural radiation comes from various buildings like a house and an apartment, agricultural and stock breeding products like rice and milk, and a body, etc. The artificial radiation emanates from a nuclear power plant, a radioisotope facility, a radioactive waste disposal site, a medical or research facility treating a radioactive material, a radiation generation device for an industry, TV, a microwave oven, appliances like a fluorescent clock, an airport security table, etc. Among the various kinds of radioactive nuclides that existed in the earth's crust at the time of the earth's formation about 4,000 million years ago, all the short half life nuclides decayed and the long half life nuclides remain amid the nuclides of a half life with more than 100 million years and their progenies now. In fact, the natural radiation level is determined by the nuclides of the Thorium series which have K-40 (half life 1.25 billion years), Th-232 (half life 14.5 billion years) as a parent nuclide, the nuclides of the uranium series which have U-238 (half life 4.5 billon years) as a parent nuclide, and the cosmic ray like photon and muon. These nuclides are distributed in the soil, sea water, construction material and body with different concentrations. Different radiation dose rates are presented in different regions due to the different concentrations of the radioactive minerals included at the materials. Actually, Brazil and India reveal a relatively high natural radiation level

  20. Radiation monitoring policy at the advanced light source

    International Nuclear Information System (INIS)

    Donahue, R.; Heinzelman, K.; Perdue, G.

    1998-01-01

    When the accelerator first began operation it was decided that, until we had the necessary dosimetry data to decide otherwise, we would badge the entire worker and experimental population. Each person was issued a dosimetry badge that contained 4 TLD elements. Badges were processed on a monthly basis. After three years of analyzing a total of 65,000 TLD elements, the decision was made to modify the radiation monitoring policy at the ALS. Only those individuals in the workforce that have any potential for exposure, no matter how small, would be badged. Subsequently, DOE conducted an independent review of the ALS radiation monitoring and dosimetry program. This review concluded that the ALS program, if expanded as proposed, would be adequate under the 10 CFR 835 Rule to establish radiation exposures to an acceptable level of confidence. The review team recommended the ALS provide more comprehensive documentation on the basis for its radiation protection and monitoring program. This document describes the technical justification for that program

  1. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  2. Probable sources of errors in radiation therapy (abstract)

    International Nuclear Information System (INIS)

    Khan, U.H.

    1998-01-01

    It is fact that some errors are always in dose-volume prescription, management of radiation beam, derivation of exposure, planning the treatment and finally the treatment of the patient ( a three dimensional subject). This paper highlights all the sources of error and relevant methods to decrease or eliminate them, thus improving the over-all therapeutic efficiency and accuracy. It is a comprehensive teamwork of the radiotherapist, medical radiation physicist, medical technologist and the patient. All the links, in the whole chain of radiotherapy, are equally important and duly considered in the paper. The decision for Palliative or Radical treatment is based on the nature and extent disease, site, stage, grade, length of the history of condition and biopsy reports etc. This may entail certain uncertainties in Volume of tumor, quality and quantity of radiation and dose fractionation etc, which may be under or over-estimated. An effort has been made to guide the radiotherapist in avoiding the pitfalls in the arena of radiotherapy. (author)

  3. Borehole disposal of spent radiation sources: 1. Principles

    International Nuclear Information System (INIS)

    Blerk, J.J. van; Kozak, M.W.

    2000-01-01

    Large numbers of spent radiation sources from the medical and other technical professions exist in many countries, even countries that do not possess facilities related to the nuclear fuel cycle, that have to be disposed. This is particularly the case in Africa, South America and some members of the Russian Federation. Since these sources need to be handled separately from the other types of radioactive waste, mainly because of their activity to volume ratio, countries (even those with access to operational repositories) find it difficult to manage and dispose this waste. This has led to the use of boreholes as disposal units for these spent sources by some members of the Russian Federation and in South Africa. However, the relatively shallow boreholes used by these countries are not suitable for the disposal of isotopes with long half-lifes, such as 226 Ra and 241 Am. With this in mind the Atomic Energy Corporation of South Africa initiated the development of the BOSS disposal concept - an acronym for Borehole disposal Of Spent Sources - as part of an International Atomic Energy Agency (IAEA) AFRA I-14 Technical Corporation (TC) project. In this paper, the principles of this disposal concept, which is still under development, will be discussed. (author)

  4. Insurance of Radioisotopes and Ionizing Radiation Sources in France

    International Nuclear Information System (INIS)

    Stanislas, A.

    2008-01-01

    Since the early sixties, Assuratome has amassed quite a long experience in the insurance of radioisotopes and more generally of ionising radiation sources when they are used transported or stored outside a nuclear installation. Aware of the specific dangers of such devices, and having no experience in this domain French insurers were looking for a pragmatic solution which would permit to continue to provide cover for users or fabricants of small radioactive sources and in the meantime to keep a rigorous control on the claims and on the loss ratio which would be achieved over the years. Hence the decision was taken by the French Insurance market to entrust the French Nuclear Insurance Pool, Assuratome, as the recommended body for delivering specific 'nuclear policies' as an expert for this category of business. The next step was to make sure that the 'conventional policies' would not provide the same cover. Therefore, an appropriate exclusion clause was introduced in all the general conditions of the TPL Policies of the conventional market and consequently in the majority, if not all, the reinsurance treaties. Besides the obvious advantage resulting in the management of this category of business in a centralised body, a major benefit of this situation is based on the strict control by the insurer of the compulsory authorisation delivered by the authorities to the owner of the radioactive source. Unofficial sources having in principal no insurance possibilities in France their use would be virtually impossible.(author)

  5. 27-Level DC–AC inverter with single energy source

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2012-01-01

    Highlights: ► This paper reports a novel 27-level DC–AC inverter using only single renewable energy source. ► The efficiency of the inverter is very high. The output waveform is almost sinusoidal. ► The cost is low as the number of power switches required is only 12. - Abstract: A novel design of multilevel DC–AC inverter using only single renewable energy source is presented in this paper. The proposed approach enables multilevel output to be realised by a few cascaded H-bridges and a single energy source. As an illustration, a 27-level inverter has been implemented based on three cascaded H-bridges with a single energy source and two capacitors. Using the proposed novel switching strategy, 27 levels can be realized and the two virtual energy sources can be well regulated. Experimental results are included to demonstrate the effectiveness of the proposed inverter.

  6. What happens at very low levels of radiation exposure ? Are the low dose exposures beneficial ?

    International Nuclear Information System (INIS)

    Deniz, Dalji

    2006-01-01

    Full text: Radiation is naturally present in our environment and has been since the birth of this planet. The human population is constantly exposed to low levels of natural background radiation, primarily from environmental sources, and to higher levels from occupational sources, medical therapy, and other human-mediated events. Radiation is one of the best-investigated hazardous agents. The biological effects of ionizing radiation for radiation protection consideration are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain t hreshold a n appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Sendromes, ARS) occurs days to months after an acute radiation dose. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels. Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. For this reason, a stochastic effect is called a Linear or Zero-Threshold (LNT) Dose-Response Effect. There is a stochastic correlation between the number of cases of cancers or genetic defects developed inside a population and the dose received by the population at relatively large levels of radiation. These changes in gene activation seem to be able to modify the response of cells to subsequent radiation exposure, termed the a daptive response

  7. Global Sourcing: Evidence from Spanish Firm-level Data

    DEFF Research Database (Denmark)

    Kohler, Wilhelm; Smolka, Marcel

    2012-01-01

    We investigate the link between productivity of firms and their sourcing behavior. Following Antràs and Helpman (2004) we distinguish between domestic and foreign sourcing, as well as between outsourcing and vertical integration. A firm's choice is driven by a hold-up problem caused by lack of en...... of enforceable contracts. We use Spanish firm-level data to examine the productivity premia associated with the different sourcing strategies....

  8. Data survey about radiation protection and safety of radiation sources in research laboratories

    International Nuclear Information System (INIS)

    Paura, Clayton L.; Dantas, Ana Leticia A.; Dantas, Bernardo M.

    2005-01-01

    In Brazil, different types of research using unsealed sources are developed with a variety of radioisotopes. In such activities, professionals and students involved are potentially exposed to internal contamination by 14 C, 45 Ca, 51 Cr, 3 H, 125 I, 32 P, 33 P, 35 S, 90 Sr and 99m Tc. The general objective of this work is to evaluate radiological risks associated to these practices in order to supply information for planning actions aimed to improve radiation protection conditions in research laboratories. The criteria for risk evaluation and the safety aspects adopted in this work were based on CNEN Regulation 6.02 and in IAEA and NRPB publications. The survey of data was carried out during visits to laboratories in public Universities located in the city of Rio de Janeiro where unsealed radioactive sources are used in biochemistry, biophysics and genetic studies. According to the criteria adopted in this work, some practices developed in the laboratories require evaluation of risk of internal contamination depending on the conditions of source manipulation. It was verified the need for training of users of radioactive materials in this type of laboratory. This can be facilitated by the use of basic guides for the classification of areas, radiation protection, safety and source security in research laboratories. It was also observed the need for optimization of such practices in order to minimize the contact with sources. It is recommended to implement more effective source and access controls as a way to reduce risks of individual radiation exposure and loss of radioactive materials (author)

  9. Radiological impact of natural and artificial sources of ionizing radiation. Report UNSCEAR 2000

    International Nuclear Information System (INIS)

    Cancio, D.

    2001-01-01

    The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was established by the General Assembly in 1995. It has the mandate to assess the levels and effects of ionizing radiation. During the last years UNSCEAR has undertaken a broad review of the natural and artificial sources of ionizing radiation. The results of these evaluations have been presented in a Report to the General Assembly with Scientific Annexes including extensive data for the world community (Report UNSCEAR 2000). The greatest contribution to radiation exposure comes from natural background sources. There are considerable variation in the exposures of the population depending on the altitude and latitude, characteristics of the soil and diet and the construction and ventilation features of houses. The global annual average per caput is 2.4 mSv with typical range 1 to 10 mSv. The next largest component comes from medical radiation examinations and treatments with an annual average of 0.4 mSv ranging from 0.04 to 1.0 mSv depending on the level o f medical care. The man-made practices, activities, and events in which radionuclides are released to the environment are always of much concern, but usually they contribute quite low to radiation exposure to humans. Atmospheric testing caused the greatest releases but nowadays very low residual annual levels of exposures persist (0.005 mSv). Nuclear Power production is responsible for only very low exposure and may reach in the future an average annual level of 0.0002 mSv. (Author)

  10. Risk estimation and decision making: the health effects on populations of exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1982-01-01

    Presented is a background for an understanding of the potential health effects in populations exposed to low-level radiation. Discussed is the knowledge about the health effects of low-level radiation. Comments on how the risks of radiation-induced cancer and genetically-related ill-health in man may be estimated, the sources of the scientific and epidemiological data, the dose-response models used, and the uncertainties which limit precise estimates of excess risks from radiation. Also discussed are the implications of numerical risk estimation for radiation protection and decision-making for public health policy

  11. Methods of computer experiment in gamma-radiation technologies using new radiation sources

    CERN Document Server

    Bratchenko, M I; Rozhkov, V V

    2001-01-01

    Presented id the methodology of computer modeling application for physical substantiation of new irradiation technologies and irradiators design work flow. Modeling tasks for irradiation technologies are structured along with computerized methods of their solution and appropriate types of software. Comparative analysis of available packages for Monte-Carlo modeling of electromagnetic processes in media is done concerning their application to irradiation technologies problems. The results of codes approbation and preliminary data on gamma-radiation absorbed dose distributions for nuclides of conventional sources and prospective Europium-based gamma-sources are presented.

  12. Management of radiation sources and personal dosimeters based on the optical identification using two-dimensional barcode

    International Nuclear Information System (INIS)

    Takao, Hideaki; Yoshida, Masahiro; Kaneko, Mamoru; Miura, Miwa; Hayashida, Rika; Okumura, Yutaka; Matsuda, Naoki

    2006-01-01

    For accurate and efficient radiation safety management in facilities using radioisotopes, two-dimensional barcode (2-DC) was applied to the optical identification of radiation sources and personal dosimeters. The mobile personal computer (PC) equipped with a barcode reader, which has imported inventory records from the pre-existing radiation management system, enabled us to finish inventory procedures for 170 2-DC-labelled radiation sources in as short as 20min by one person. Identification of 270 personal dosimeters in their monthly replacement procedures also successfully completed within 20 min by incorporating pre-labeled 2-DC to PC installed with inventory records of dosimeters and radiation workers. As equipments and software required for 2-DC are affordable, easy to operate, and potentially expandable, the introduction of 2-DC system may help to establish practically higher level of radiation management. (author)

  13. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  14. The IAEA Regional Training Course on Regulatory Control of Radiation Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Materials of the IAEA Regional Training Course contains 8 presented lectures. Authors deals with regulatory control of radiation sources. The next materials of the IAEA were presented: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. (IAEA-TECDOC-1067); Safety assessment plants for authorization and inspection of radiation sources (IAEA-TECDOC-1113); Regulatory authority information system RAIS, Version 2.0, Instruction manual

  15. The actuality and discussion for the data management of radiation sources

    International Nuclear Information System (INIS)

    Yang Yaoyun; Huang Chaoyun; Wang Xiaofeng; Chen Dongliang; Fu Jie

    2008-01-01

    Large amounts of data and information in radiation safety license permits, supervision and inspection have been accumulated in China. Data management of radiation sources is an important aspect of radiation sources security. This paper introduces the main elements, tache and actuality of data management, the strengths and weaknesses of RAIS system in use. This paper analyzes and discusses the approach of establishing radiation sources monitoring information system network. (authors)

  16. Low-level radioactive waste disposal: radiation protection laws

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Guetat, P.; Garbay, H.

    1991-01-01

    The politics of radioactive waste management is a part of waste management and activity levels are one of the components of potential waste pollutions in order to assume man and environment safety. French regulations about personnel and public' radiation protection defines clearly the conditions of radioactive waste processing, storage, transport and disposal. But below some activity levels definite by radiation protection laws, any administrative procedures or processes can be applied for lack of legal regulations. So regulations context is not actually ready to allow a rational low-level radioactive waste management. 15 refs.; 4 tabs.; 3 figs

  17. Environmental policy. Ambient radioactivity levels and radiation doses in 1998

    International Nuclear Information System (INIS)

    1999-11-01

    The report contains information on the natural (background) radiation exposure (chapter II), the natural radiation exposure as influenced by anthropogenic effects (chapter III), the anthropogenic radiation exposure (chapter IV), and the radiation doses to the environment and the population emanating from the Chernobyl fallout (chapter V). The natural radiation exposure is specified referring to the contributions from cosmic and terrestrial background radiation and intake of natural radioactive substances. Changes of the natural environment resulting from anthropogenic effects (technology applications) inducing an increase in concentration of natural radioactive substances accordingly increase the anthropogenic radiation exposure. Indoor air radon concentration in buildings for instance is one typical example of anthropogenic increase of concentration of natural radioactivity, primarily caused by the mining industry or by various materials processing activities, which may cause an increase in the average radiation dose to the population. Measurements so far show that indoor air concentration of radon exceeds a level of 200 Bq/m 3 in less than 2% of the residential buildings; the EUropean Commission therefore recommends to use this concentration value as a maximum value for new residential buildings. Higher concentrations are primarily measured in areas with relevant geological conditions and abundance of radon, or eg. in mining areas. (orig./CB) [de

  18. Flux and brightness calculations for various synchrotron radiation sources

    International Nuclear Information System (INIS)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring

  19. A Source-level Energy Optimization Framework for Mobile Applications

    DEFF Research Database (Denmark)

    Li, Xueliang; Gallagher, John Patrick

    2016-01-01

    strategies. The framework also lays a foundation for the code optimization by automatic tools. To the best of our knowledge, our work is the first that achieves this for a high-level language such as Java. In a case study, the experimental evaluation shows that our approach is able to save from 6.4% to 50...... process. The source code is the interface between the developer and hardware resources. In this paper, we propose an energy optimization framework guided by a source code energy model that allows developers to be aware of energy usage induced by the code and to apply very targeted source-level refactoring...

  20. Analysis of radiation level on dinosaur fossil in Zigong

    International Nuclear Information System (INIS)

    Yang Changshu; Liang Shuzhi; Fan Zhengnian.

    1995-01-01

    Study on radiation level of dinosaur fossil and environment in conservation zone in Zigong, Sichuan has been done. The results showed that the γ radiation dose and radioactivity strength of 232 Th and 40 K in dinosaur fossil, soil and rock in the conservation zone were within the limits of radioactive background value in Zigong. Radioactivity strength of 238 U, 226 Ra in dinosaur fossil were 26.6 and 29.2 times higher than the rock of same layer respectively

  1. Global source attribution of sulfate aerosol and its radiative forcing

    Science.gov (United States)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  2. Immediate Dose Assessment for Radiation Accident in Laboratory Containing Gamma Source and/or Neutron Source

    International Nuclear Information System (INIS)

    Ahmed, E.M.

    2012-01-01

    One of the most important safety requirements for any place containing radiation sources is an accurate and fast way to assess the dose rate in both normal and accidental case. In normal case, the source is completely protected inside its surrounded shields in case of non use. In some cases this source may stuck outside its shield. In this case the walls of the place act as a shield. Many studies were carried for obtaining the most appropriate materials that may be used as shielding depending on their efficiency and also their cost. As concrete- with different densities- is the most available constructive material, this study presented a theoretical model using MCNP-4B code, based on Monte Carlo method to estimate the dose rate distribution in a laboratory with concrete walls in case of source stuck accident. The study dealt with Cs-137 as gamma source and Am-Be-241 as neutron source. Two different densities of concrete and also different thicknesses of walls were studied. The used model was verified by comparing the results with a practical study concerning with the effect of adding carbon powder to the concrete. The results showed good agreement

  3. Reduction of the pool-top radiation level in HANARO

    International Nuclear Information System (INIS)

    Lee, Choong-Sung; Park, Sang-Jun; Kim, Heonil; Park, Yong-Chul; Choi, Young-San

    1999-01-01

    HANARO is an open-tank-in-pool type reactor. Pool water is the only shielding to minimize the pool top radiation level. During the power ascension test of HANARO, the measured pool top radiation level was higher than the design value because some of the activation products in the coolant reached the pool surface. In order to suppress this rising coolant, the hot water layer system (HWL) was designed and installed to maintain l.2 meter-deep hot water layer whose temperature is 5degC higher than that of the underneath pool surface. After the installation of the HWL system, however, the radiation level of the pool-top did not satisfy the design value. The operation modes of the hot water layer system and the other systems in the reactor pool, which had an effect on the formation of the hot water layer, were changed to reduce pool-top radiation level. After the above efforts, the temperature and the radioactivity distribution in the pool was measured to confirm whether this system blocked the rising coolant. The radiation level at the pool-top was significantly reduced below one tenth of that before installing the HWL and satisfied the design value. It was also confirmed by calculation that this hot water layer system would significantly reduce the release of fission gases to the reactor hall and the environment during the hypothetical accident as well. (author)

  4. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    2002-05-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  5. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    1999-09-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  6. Spectroscopy with synchrotron radiation sources: challenges and opportunities

    International Nuclear Information System (INIS)

    Jagatap, B.N.

    2011-01-01

    Spectroscopy and energetics of atoms, molecules and cluster in ultra-violate (UV), vacuum ultra-violate (VUV) and soft X-ray region is one of the frontier topics of research today, These high energy photons allow us to prepare atomic and molecular systems in energy levels far away from their ground levels; the energy region that is characterized by the complex and highly degenerate energy level structure and multiple channels for reaction and energy dissipation. In this talk we provide a bird's eye view of the progress in this area, with a particular emphasis on spectroscopy research using Indian synchrotron sources. We shall also cover the avenues for collaborative research on Indus synchrotron sources, and the challenges and opportunities that await the Indian spectroscopy community

  7. Acceptable level of radiation risk and its perception

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, Tomoko; Shinozaki, Motoshi; Yoshizawa, Yasuo

    1987-03-01

    The acceptable level of radiation risk for public members, that is 10/sup -5//y, was proposed by ICRP and other international organizations. We studied to survey basic procedures of deriving this value and to derive an acceptable risk value in Japan by using similar procedures. The basic procedures to derive 10/sup -5//y were found as follows; (1) 0.1 percent of annual mortality from all diseases, (2) 0.1 percent of life time risk, (3) one percent of mortality from all causes in each age cohort and (4) corresponding value to 1 mSv annual radiation exposure. From these bases we derived the value of 10/sup -5//y as acceptable risk level in Japan. The perception to risk level of 10/sup -5//y in conventional life was investigated by means of questionnaires for 1,095 college students living in Tokyo. The risks considered in this study were natural background radiation, coffee, skiing, X-ray diagnosis, spontaneous cancer, passive smoking and air pollution. The most acceptable risk was the risk related with natural background radiation. And the risk of natural background radiation was more easily accepted by the students who had knowledges on natural background radiation. On the other hand, the risk from air pollution or passive smoking was the most adverse one.

  8. Acceptable level of radiation risk and its perception

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Shinozaki, Motoshi; Yoshizawa, Yasuo

    1987-01-01

    The acceptable level of radiation risk for public members, that is 10 -5 /y, was proposed by ICRP and other international organizations. We studied to survey basic procedures of deriving this value and to derive an acceptable risk value in Japan by using similar procedures. The basic procedures to derive 10 -5 /y were found as follows; (1) 0.1 percent of annual mortality from all diseases, (2) 0.1 percent of life time risk, (3) one percent of mortality from all causes in each age cohort and (4) corresponding value to 1 mSv annual radiation exposure. From these bases we derived the value of 10 -5 /y as acceptable risk level in Japan. The perception to risk level of 10 -5 /y in conventional life was investigated by means of questionnaires for 1,095 college students living in Tokyo. The risks considered in this study were natural background radiation, coffee, skiing, X-ray diagnosis, spontaneous cancer, passive smoking and air pollution. The most acceptable risk was the risk related with natural background radiation. And the risk of natural background radiation was more easily accepted by the students who had knowledges on natural background radiation. On the other hand, the risk from air pollution or passive smoking was the most adverse one. (author)

  9. Evaluating natural radiation level by existing airborne radioactive data

    International Nuclear Information System (INIS)

    Mingkao, Hu; Changqing, Han; Jiangqi, Fang; Zhengxin, Shen

    2002-01-01

    Airborne Survey and Remote Sensing Center of Nuclear Industry, founded in the middle of 1950s, is a unique unit specialized in uranium exploration by airborne radioactive survey in China. Large numbers of airborne data of radioactivity and abundant experience have been accumulated for more than 40 years. All-round detailed investigation of environmental radiation levels in our country will not be completed in the near future. Thus, at present it is considered to evaluate natural radiation levels using the existing radioactive data. This paper introduces the results of analysis and study comparing airborne radioactive data for radiation environmental evaluation obtained from survey area in Gansu, China, in the 2001 with the measurement results by ground gamma ray radiation dose-rate instrument for environment. The air-earth inter-comparison error does not exceed 30% at radiation fields with a definite area, and the air-earth inter-comparison error does not exceed 60% at outcrop of granite. In 6km long profile that has various circumstances, such as desert, Gobi, farmland and residential area, minimum of air absorbed dose rate is 47nGy/h at an altitude of 1 meter above the soil plane, maximum is 68nGy/h. The inter-comparison errors are usually less than 20%, and maximum is 25.38%. This shows that it is feasible to obtain natural radiation levels rapidly if we could use the existing radioactive data adequately and make some correction, such as geology factor

  10. Regulatory infrastructure for the control of radiation sources in the Africa region: Status, needs and programmes

    International Nuclear Information System (INIS)

    Skornik, K.

    2001-01-01

    In recent years, several African countries have taken steps towards creating or strengthening legal, administrative and technical mechanisms for the regulation and control of peaceful uses of nuclear technology, and towards improving the effectiveness and sustainability of radiation protection measures based on international standards. This stems from a growing awareness that a proper national infrastructure is a prerequisite for the implementation of safety standards to achieve and maintain the desired level of protection and safety, particularly in such sectors as public health and industry. Also, other issues of global and regional interest, such as the control of radiation sources, including the handling of hazardous waste, and response capabilities in the case of a radiological emergency, have contributed to a better perception of risks associated with deficiencies in or lack of adequate national radiation protection control mechanisms. Too often, however, this awareness has not been matched with adequate progress in the establishment of a regulatory framework for the control of radiation sources. This paper presents a summary of the current status of radiation protection infrastructure in all African Member States. On a background of still existing weaknesses and challenges, an overview of the Agency's response to assistance needs and programmes in this field is discussed. (author)

  11. Leakage of an irradiator source: The June 1988 Georgia RSI [Radiation Sterilizers, Inc.] incident

    International Nuclear Information System (INIS)

    1990-02-01

    On June 6, 1988, operators of a pool irradiator in Decatur, Georgia, were prevented by a safety system from raising sources from the pool. Radiation levels of 60 millirem per hour at the surface of the pool water were found, indicative of a leak of one or more of the 252 Cs-137 source capsules used at the irradiator. A summary of the Incident Evaluation Task Force's First Interim Report has been prepared for person's needing an overview of the incident and lessons learned to date. This report provides a summary of Agreement States' views and recommendations on some of the issues raised by the incident

  12. Contamination levels of domestic water sources in Maiduguri ...

    African Journals Online (AJOL)

    The study examines the levels of contamination of domestic water sources in Maiduguri Metropolis area of Borno State based on their physicochemical and bacteriological properties. It was informed by the global concern on good drinking water quality which is an indicator of development level; hence the focus on domestic ...

  13. Radiation level survey of a mobile phone base station

    International Nuclear Information System (INIS)

    Campos, M.C.; Schaffer, S.R.

    2006-01-01

    Electromagnetic field (E.M.F.) evaluations were carried out in the surroundings of a roof-top mobile-phone radio-base station (R.B.S.). Four of its sector-panel antennas are installed on two parallel vertical masts, each supporting two panels in a vertical collinear-array. The geometry is such that the vertical plane containing both masts is about 10 meters distant and parallel to the backside of an educational institution. This proximity provoked great anxiety among the local community members regarding potential health hazards.1. Introduction: To keep up with the expansion of the mobile-phone services, the number of Radio-Base Stations (R.B.S.) installations is increasing tremendously in Brazil. Efficient control and radiation monitoring to assess R.B.S. compliance to existing regulations are still lacking and particularly in big cities, clearly non - compliant R.B.S. can be seen which represent potentially hazardous E.M.F. sources to the nearby population. This first survey of an irregular R.B.S. revealed significant E-field strengths outside, as well as inside a classroom of an educational building where an usually prolonged stay is necessary. These results confirm that this problem deserves further attention, moreover, if one considers that public and occupational exposure limits set by I.C.N.I.R.P. (also adopted in Brazil) are exclusively based on the immediate thermal effects of acute exposure, disregarding any potential health risk from prolonged exposure to lower level radiation. Research activities focusing on quantitative aspects of electromagnetic radiation from R.B.S., as well as on biological and adverse health effects are still at a very incipient level, urging for immediate actions to improve this scenario in our country. 2. Material, methods and results Measurements were carried out with a broadband field strength monitor, E.M.R.-300 (W and G) coupled to an isotropic E-field probe (100 khz to 3 GHz). Preliminary measurements helped locating

  14. Research using synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1982-01-01

    The National Synchrotron Light Source (NSLS) is now becoming operational with synchrotron radiation experiments beginning on the 700 MeV VUV electron storage ring. Commissioning of the 2.5 GeV x-ray storage ring has also begun with the experimental program expected to begin in 1983. The current status of the experimental program and instrumentation and the plans for future developments, will be discussed. Although some early results have been obtained on VUV beam lines no attempt will be made in this paper to describe them. Instead, an overview of the beam line characteristics will be given, with an indication of those already operational. In the oral presentation some initial experimental results will be discussed

  15. Device for forming the image of a radiation source

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1980-01-01

    An improvement can be made to the space resolution of systems providing the image of a radiation source by means of a slit collimator. In order to do so, a lateral movement of the collimator (with its detectors) is superimposed on the movement of the collimator, in a transversal direction in relation to the transmission direction through the collimator as well as in relation to the walls defining the slits. The total amplitude of the lateral movement is at least equal to the distance between centres of a slit and the following one. In the near field operating system, the lateral movement is a rectilinear movement perpendicular to the walls of the slits. In the distance field operating systems, it is an angular movement about an axis perpendicular to the direction of transmission through the slits [fr

  16. Tabulation of Fundamental Assembly Heat and Radiation Source Files

    International Nuclear Information System (INIS)

    T. deBues; J.C. Ryman

    2006-01-01

    The purpose of this calculation is to tabulate a set of computer files for use as input to the WPLOAD thermal loading software. These files contain details regarding heat and radiation from pressurized water reactor (PWR) assemblies and boiling water reactor (BWR) assemblies. The scope of this calculation is limited to rearranging and reducing the existing file information into a more streamlined set of tables for use as input to WPLOAD. The electronic source term files used as input to this calculation were generated from the output files of the SAS2H/ORIGIN-S sequence of the SCALE Version 4.3 modular code system, as documented in References 2.1.1 and 2.1.2, and are included in Attachment II

  17. Exposure to natural sources of radiation in Spain

    International Nuclear Information System (INIS)

    Quindos, L.S.; Fernandez, P.L.; Soto, J.

    1992-01-01

    Studies carried by us during last three years have produced a map of natural radiation for Spain. The map contains, by administrative region, the respective contributions of terrestrial gamma rays, both outdoors and indoors, cosmic rays and indoor radon. Terrestrial gamma rays have been measured outdoors 'in situ' in more than 1,000 locations. Data for indoor gamma rays were derived from the radioactivity content of more typical spanish building materials as also by 'in situ'measurements in approximately 100 houses. The cosmic ray component is calculated from latitude and altitude. Values for indoor radon exposure have been derived from a national survey and covering more than 2,000 individual measurements employing active and passive detectors. When account is taken of exposures elsewhere, the mean annual effective dose equivalent from these sources is evaluated. Doses from thoron decay products and internal exposure due to natural activity retained in the body from diet are not dealt with in this evaluation. (author)

  18. How much can be learned from populations exposed to low levels of radiation

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1984-05-01

    The assessment of health effects from low-level exposure to radiation is a matter of considerable controversy. Many of the problems in analyzing and interpreting data on populations exposed to low levels of radiation are well illustrated by a current study of the effects on mortality of occupational exposure to radiation at the Hanford plant. The conclusion drawn is that the amount that can be learned from the Hanford population, and other populations exposed to low levels of radiation, is extremely limited. The data are not adequate to determine reliable estimates of risks, or to investigate the appropriateness of various models. Although there are problems in using data from populations exposed at high levels to estimate risks of low level exposure to radiation, the problems in obtaining such estimates directly are even more severe. Thus data from populations such as the Japanese A-bomb survivors and the British ankylosing spondylitis patients must continue to serve as our primary source of information on radiation effects. 27 references, 3 tables

  19. Building materials as a source of a possible radiation exposure of the population

    International Nuclear Information System (INIS)

    Pensko, J.; Burkart, W.

    1986-12-01

    Two main pathways of exposure contribute to the human radiation exposure indoors: external whole body irradiation from gamma-rays originating from the walls, and exposure of lung tissue by alpha-rays emitted by radon daughters present in the inhaled air. Natural radioactive elements present in building materials produce both kinds of radioactive exposure. Uranium, thorium and potassium are sources of gamma radiations. Materials containing radium can create an alpha-radiation hazard for the human respiratory system through the exhalation of radon from room surfaces. Measurements of the natural radioactivity of building materials made in several European countries are reviewed. A preliminary assessment of the radioactivity content of potentially hazardous materials on the Swiss market shows elevated levels in imported phosphogypsum and tuff. (author)

  20. The regulatory control over radiation sources: the Brazilian experience and some lessons learned from industrial applications

    International Nuclear Information System (INIS)

    Costa, E.L.C.; Gomes, J.D.R.L.; Gomes, R.S.; Costa, M.L.L.; Thomé, Z.D.; Instituto Militar de Engenharia

    2017-01-01

    This study gives an overview of the activities of the National Commission of Nuclear Energy (CNEN), as the Brazilian nuclear regulatory authority. These activities are described, especially those related to management of orphan sources and radioactive material in scrap metal considering the actions already put into place by CNEN during the licensing and controlling of radioactive sources in the industry and other facilities. In Brazil, there is not yet an effective system for controlling the scrap metal and recycling industry, thus a coordinated approach to achieve a harmonized and effective response with the involvement of third parties is needed, especially the metal industries and ores facilities. These practices call for stringent regulatory control, in order to reduce the occurrence of orphan sources, and consequently, radioactive material appearing in scrap metal. Some challenges of managing the national radiation sources register systems will be discussed, in order to cover effectively all the radiation source history (in a 'from the cradle to the grave' basis), and the dynamic maintenance and update of these data. The main industrial applications considered in this work are those dealing with constant movement of sources all over the country, with geographical issues to be considered in the managing and controlling actions, such as gammagraphy and well-logging. This study aims to identify and promote good practices to prevent inadvertent diversion of radioactive material, taking into account existing international recommendations and some lessons learned in national level. (author)

  1. The regulatory control over radiation sources: the Brazilian experience and some lessons learned from industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Costa, E.L.C.; Gomes, J.D.R.L.; Gomes, R.S.; Costa, M.L.L.; Thomé, Z.D., E-mail: evaldo@cnen.gov.br, E-mail: jlopes@cnen.gov.br, E-mail: rogeriog@cnen.gov.br, E-mail: mara@cnen.gov.br, E-mail: zielithome@gmail.com [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-11-01

    This study gives an overview of the activities of the National Commission of Nuclear Energy (CNEN), as the Brazilian nuclear regulatory authority. These activities are described, especially those related to management of orphan sources and radioactive material in scrap metal considering the actions already put into place by CNEN during the licensing and controlling of radioactive sources in the industry and other facilities. In Brazil, there is not yet an effective system for controlling the scrap metal and recycling industry, thus a coordinated approach to achieve a harmonized and effective response with the involvement of third parties is needed, especially the metal industries and ores facilities. These practices call for stringent regulatory control, in order to reduce the occurrence of orphan sources, and consequently, radioactive material appearing in scrap metal. Some challenges of managing the national radiation sources register systems will be discussed, in order to cover effectively all the radiation source history (in a 'from the cradle to the grave' basis), and the dynamic maintenance and update of these data. The main industrial applications considered in this work are those dealing with constant movement of sources all over the country, with geographical issues to be considered in the managing and controlling actions, such as gammagraphy and well-logging. This study aims to identify and promote good practices to prevent inadvertent diversion of radioactive material, taking into account existing international recommendations and some lessons learned in national level. (author)

  2. Doses of radiation from natural and artificial radioactive sources. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, L F; Myszynski, G; Wiesenack, G

    1957-01-01

    Only since quite recently has man been subjected to irradiation which, as the result of medical and industrial development has been added to the radiation from natural sources. According to the investigations quoted artificial radiation accounts for 20 to 25 per cent of the total radiation level. Atomic test explosions have so far only made an insignificant contribution. The same can still be said of the industrial application of nuclear energy which is still in its infancy. It has been estimated that people living in Europe will over a period of 30 years be subjected to a total dose of radiation from 2500 to 4000 mr. Of this total dose received in 30 years about 750 to 850 mr will be contributed by medical and industrial appurtenances, the overwhelming share of 600 to 700 mr being the result of medical x-ray diagnosis. The atmospheric radioactivity has been estimated (incl. rainfall, etc.) at 20 to 30 mr over a period of 30 years and will therefore not represent any hazards as far as external, direct radiation is concerned. The possible absorption by and accumulation of radiation substances in the body must, however, be carefully studied and special consideration must be given to fission products with a long half-life.

  3. Measurement uncertainty in broadband radiofrequency radiation level measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav D.

    2014-01-01

    Full Text Available For the evaluation of measurement uncertainty in the measurement of broadband radio frequency radiation, in this paper we propose a new approach based on the experience of the authors of the paper with measurements of radiofrequency electric field levels conducted in residential areas of Belgrade and over 35 municipalities in Serbia. The main objective of the paper is to present practical solutions in the evaluation of broadband measurement uncertainty for the in-situ RF radiation levels. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  4. Ionizing radiations used in medical diagnostics as a source of radiation exposure of the Bulgarian population

    International Nuclear Information System (INIS)

    Ingilizova, K.; Vasilev, G.

    1998-01-01

    X-ray and radionuclide application in medical diagnosing is the major sources of Bulgarian population exposure to ionizing radiations exceeding the radiation background. The number of X-ray examination on a nationwide scale shows an increase from 1600 thousand annually in 1950 to 10300 thousand in 1980 and decreases to about 4700 thousand annually for the period 1992-1993. The frequency for the above mentioned time intervals varies in the range 0.22 to 1.17 examinations per capita annually and decreases to 0.56. The roentgenoscopy to roentgenography ratio varies from 2.5:1 to 0.9:1 (1975) and increases to 2.0:1 (1993). The number of radioisotope examinations increased from 34 thousand in 1970 to 170 thousand annually in 1985 and decreased to about thousand annually in 1992-1993 with a number of studies per capita varying from 0.004 to 0.020 and decreasing to 0.010. In 1993 the annual collective effective dose due to X-ray diagnostics amounts to about 7000 man-Sv/a which exceeds the radiation background exposure by 76%. Radioisotope diagnostics in the period reviewed accounted for nearly 700 man-Sv/a with an exposure exceeding the radiation background by 7.7%. The major problems relating to patient protection and benefit/risk ratio improvement are discussed. (author)

  5. Consequences of intense intermittent astrophysical radiation sources for terrestrial planets

    Science.gov (United States)

    Melott, Adrian

    2011-11-01

    Life on Earth has developed in the context of cosmic radiation backgrounds. This in turn can be a base for comparison with other potential life-bearing planets. Many kinds of strong radiation bursts are possible by astrophysical entities ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere: on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. One of the mechanisms which comes into play even at moderate intensities is the ionization of the Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet-B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. We characterize intensities at the Earth and rates or upper limits on rates. We estimate how often a major extinction-level event is probable given the current state of knowledge. Moderate level events are dominated by the Sun, but the far more severe infrequent events are dominated by gamma-ray bursts and supernovae. So-called ``short-hard'' gamma-ray bursts are a substantial threat, comparable in magnitude to supernovae and greater than that of the higher-luminosity long bursts considered in most past work. Short bursts may come with little or no warning.

  6. Time course of cerebellar catalase levels after neonatal ionizing radiations

    International Nuclear Information System (INIS)

    Di Meglio, A.; Caceres, L.; Zieher, L.M.; Guelman, L.R.

    2005-01-01

    Full text: Reactive oxygen species are physiologically generated as a consequence of aerobic respiration, but this generation is increased in response to external stimuli, including ionizing radiation. The central nervous system (CNS) is vulnerable to oxidative stress due to its high oxygen consumption rate, its high level of polyunsaturated fatty acids and low levels of antioxidant defences. An important compound of this defence system is the antioxidant enzyme catalase, an heme protein that removes hydrogen peroxide from the cell by catalyzing its conversion to water. The aim of the present work was to study if catalase is susceptible to oxidative stress generated by ionizing radiation on the cerebellum. Neonatal rats were irradiated with 5 Gy of X rays and the levels of catalase were measured at 15, 30 and 60 days of age. Results show that there is a decrease in the activity of catalase in irradiated cerebellum at 15 (% respect the control, 65.6 ± 14.8), 30 (51.35± 5.8%), and 60 days (9.3 ± 0.34%). Catalase activity at 15 and 30 days has shown to be positively correlated with the radiation-induced decrease in tissue's weight, while at 60 days there is an extra decrease. It would be suggested that, at long term, radiation exposure might induce, in addition to cerebellar atrophy, the oxidation of the radiosensitive heme group of the enzyme, leading to its inactivation. In conclusion, the antioxidant enzyme catalase has shown to be especially sensitive to ionizing radiation. (author)

  7. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  8. Regulation for oil wells logging using ionizing radiation sources. A draft

    International Nuclear Information System (INIS)

    Hidrowoh, Jacob

    2000-01-01

    A project to regulate logging activities using ionizing radiation sources in oil wells in Ecuador is proposed. Its development is based on basic concepts of energy, radiation protection and characteristics of oil exploitation in Ecuador

  9. Global Sourcing, Technology, and Factor Intensity: Firm-level Relationships

    OpenAIRE

    TOMIURA Eiichi

    2007-01-01

    This paper empirically examines how technology and capital intensity are related with the firm's global sourcing decision. Firm-level data are derived from a survey covering all manufacturing industries in Japan without any firm-size threshold. Firms are disaggregated by their make-or-buy decision (in-house or outsourcing) and by their choice of sourcing location (offshore or domestic). Capital-intensive or R&D-intensive firms tend to source in-house from their FDI affiliates rather than outs...

  10. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am–Be neutron source

    International Nuclear Information System (INIS)

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2015-01-01

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am–Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am–Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. - Highlights: • The scope of the affected area for

  11. Converting the GSR part3 into a national regulations for the protection and safety of radiation sources

    International Nuclear Information System (INIS)

    Hatim, Abdulrahman

    2016-04-01

    The achievement and maintenance of a high level of Radiation Protection and Safety of Radiation Sources depends on a sound legal and governmental infrastructure, including a regulatory body with well-defined responsibilities and functions. The project aimed at converting the IAEA GRS Part 3 into National regulations in Sudan for the protection against the harmful effects of ionizing radiation and safety of radiation sources. The regulations developed covered general requirements for radiation protection, verification of safety, planned exposure situations, emergency exposure situations and existing exposure situation. The Government of Sudan is expected to empower the Sudanese Nuclear Radiological Regulatory Authority (SNRAA) and other relevant authorities to undertake the conversion of IAEA GSR Part 3 into national regulations to be used to regulate all facilities and activities in Sudan. (au)

  12. Impact of intentionally introduced sources on indoor VOC levels

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.S. [BOVAR Environmental, Downsview, Ontario (Canada); Otson, R. [Health Canada, Ottawa, Ontario (Canada). Environmental Health Centre

    1997-12-31

    The concentrations of 33 target volatile organic compounds (VOC) were measured in outdoor air and in indoor air before and after the introduction of dry-cleaned clothes, and consumer products into two suburban homes. Emissions from the household products (air fresheners, furniture polishes, mothballs, and dry-cleaned clothes), showering, and two paints were analyzed to obtain source profiles. There were measurable increases in the 24 h average concentrations for 10 compounds in one house and 8 compounds in the second house after introduction of the sources. A contribution by showering to indoor VOC was not evident although the impact of the other sources and outdoor air could be discerned, based on results for the major constituents of source emissions. Also, contributions by paints, applied three to six weeks prior to the monitoring, to indoor VOC concentrations were evident. The pattern of concentrations indicated that sink effects need to be considered in explaining the indoor concentrations that result when sources are introduced into homes. Quantitative estimates of the relative contributions of the sources to indoor VOC levels were not feasible through the use of chemical mass balance since the number of tracer species detected (up to 6) and that could be used for source apportionment was similar to the number of sources to be apportioned (up to 7).

  13. Radiation doses from radiation sources of neutrons and photons by different computer calculation

    International Nuclear Information System (INIS)

    Siciliano, F.; Lippolis, G.; Bruno, S.G.

    1995-12-01

    In the present paper the calculation technique aspects of dose rate from neutron and photon radiation sources are covered with reference both to the basic theoretical modeling of the MERCURE-4, XSDRNPM-S and MCNP-3A codes and from practical point of view performing safety analyses of irradiation risk of two transportation casks. The input data set of these calculations -regarding the CEN 10/200 HLW container and dry PWR spent fuel assemblies shipping cask- is frequently commented as for as connecting points of input data and understanding theoric background are concerned

  14. Krypton gas cylinders as a source of radiation.

    Science.gov (United States)

    Fischer, Helmut W; Bielefeld, Tom; Hettwig, Bernd

    2010-07-01

    A standard 40 foot shipping container with a cargo of pressurized krypton gas in 159 steel cylinders, which had triggered a radiation alarm, was investigated to address radiation safety and illicit nuclear trafficking concerns. The investigation included contamination and dose rate measurements as well as in situ high resolution gamma spectroscopy. The dose rate measurements gave a maximum value of 0.07 microSv h(-1) above background (0.08 to 0.11 microSv h(-1)) on the cylinder surface and no detectable increase above background at distances of 1 m and higher. Contamination monitor readings showed a similar relative increase (plus 8 cpm) above background (about 12 cpm) to the dose rate readings. Quantitative gamma spectroscopy revealed a contamination of the gas with 85Kr at a level of 3.5 x 10(5) Bq kg(-1). This value was found to be consistent with analytical and numerical estimates based on current data for atmospheric 85Kr, which is captured from ambient air together with stable krypton during the production process. This incident demonstrates an apparent lack of radiation-related knowledge by those who handle krypton gas, as well as by border control personnel and emergency responders. We therefore propose to improve labeling and documentation standards for such shipments. This effort may be facilitated by introducing the new category of "technically enhanced artificial radioactive material," or "TEARM" (similar to the existing "naturally occurring radioactive material" or "NORM" and "technically enhanced naturally occurring radioactive material" or "TENORM" categories).

  15. Radiation exposure in the young level 1 trauma patient: a retrospective review.

    Science.gov (United States)

    Gottschalk, Michael B; Bellaire, Laura L; Moore, Thomas

    2015-01-01

    Computed tomography (CT) has become an increasingly popular and powerful tool for clinicians managing trauma patients with life-threatening injuries, but the ramifications of increasing radiation burden on individual patients are not insignificant. This study examines a continuous series of 337 patients less than 40 years old admitted to a level 1 trauma center during a 4-month period. Primary outcome measures included number of scans; effective dose of radiation from radiographs and CT scans, respectively; and total effective dose from both sources over patients' hospital stays. Several variables, including hospital length of stay, initial Glasgow Coma Scale score, and Injury Severity Score, correlated with greater radiation exposure. Blunt trauma victims were more prone to higher doses than those with penetrating or combined penetrating and blunt trauma. Location and mechanism of injury were also found to correlate with radiation exposure. Trauma patients as a group are exposed to high levels of radiation from X-rays and CT scans, and CT scans contribute a very high proportion (91.3% ± 11.7%) of that radiation. Certain subgroups of patients are at a particularly high risk of exposure, and greater attention to cumulative radiation dose should be paid to patients with the above mentioned risk factors.

  16. Radiation level analysis for the port cell of the ITER electron cyclotron-heating upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Weinhorst, Bastian, E-mail: bastian.weinhorst@kit.edu [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Fischer, Ulrich; Lu, Lei [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Strauss, Dirk; Spaeh, Peter; Scherer, Theo [KIT, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Leichtle, Dieter [F4E, Analysis & Codes/Technical Support Services, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2016-11-01

    Highlights: • First detailed neutronic modelling of the ECHUL port cell with ECHUL equipment (including beam lines with diamond windows, the beam lines mounting box, conduit boxes and rails). • Three different bioshield port plug configurations and two different neutron source configurations are investigated. • Radiation Levels are calculated in the port cell, focusing on the position of the diamond window. • The dose rate in the port cell is below the limit for maintenance in the port cell. • The radiation level at the diamond window is very low and should not influence its performance. - Abstract: The electron cyclotron-heating upper launcher (ECHUL) will be installed in four upper ports of the ITER tokamak thermonuclear fusion reactor. Each ECHUL is able to deposit 8 MW power into the plasma for plasma mode stabilization via microwave beam lines. An essential part of these beam lines are the diamond windows. They are located in the upper port cell behind the bioshield to reduce the radiation levels to a minimum. The paper describes the first detailed neutronic modelling of the ECHUL port cell with ECHUL equipment. The bioshield plug is modelled including passageways for the microwave beam lines, piping and cables looms as well as rails and openings for ventilation. The port cell is equipped with the beam lines including the diamond windows, the beam lines mounting box, conduit boxes and rails. The neutrons are transported into the port cell starting from a surface source in front of the bioshield. Neutronic results are obtained for radiation levels in the port cell at different positions, mainly focusing on the diamond windows position. It is shown that the radiation level is below the limit for maintenance in the port cell. The radiation level at the diamond window is very low and should not influence its performance.

  17. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    International Nuclear Information System (INIS)

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-01-01

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering

  18. Non-Ionizing Radiation - sources, exposure and health effects

    International Nuclear Information System (INIS)

    Hietanen, M.

    2003-01-01

    Non-ionizing radiation contains the electromagnetic wavelengths from ultraviolet (UV) radiation to static electric and magnetic fields. Optical radiation consists of UV, visible and infrared (IR) radiation while EM fields include static, extremely low (ELF), low frequency (LF) and radiofrequency (RF) fields. The principal scientific organization on non-ionizing radiation is the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The main activity of ICNIRP is to provide guidance on safe exposure and protection of workers and members of the public by issuing statements and recommendations. (orig.)

  19. Low-level radioactive waste performance assessments: Source term modeling

    International Nuclear Information System (INIS)

    Icenhour, A.S.; Godbee, H.W.; Miller, L.F.

    1995-01-01

    Low-level radioactive wastes (LLW) generated by government and commercial operations need to be isolated from the environment for at least 300 to 500 yr. Most existing sites for the storage or disposal of LLW employ the shallow-land burial approach. However, the U.S. Department of Energy currently emphasizes the use of engineered systems (e.g., packaging, concrete and metal barriers, and water collection systems). Future commercial LLW disposal sites may include such systems to mitigate radionuclide transport through the biosphere. Performance assessments must be conducted for LUW disposal facilities. These studies include comprehensive evaluations of radionuclide migration from the waste package, through the vadose zone, and within the water table. Atmospheric transport mechanisms are also studied. Figure I illustrates the performance assessment process. Estimates of the release of radionuclides from the waste packages (i.e., source terms) are used for subsequent hydrogeologic calculations required by a performance assessment. Computer models are typically used to describe the complex interactions of water with LLW and to determine the transport of radionuclides. Several commonly used computer programs for evaluating source terms include GWSCREEN, BLT (Breach-Leach-Transport), DUST (Disposal Unit Source Term), BARRIER (Ref. 5), as well as SOURCE1 and SOURCE2 (which are used in this study). The SOURCE1 and SOURCE2 codes were prepared by Rogers and Associates Engineering Corporation for the Oak Ridge National Laboratory (ORNL). SOURCE1 is designed for tumulus-type facilities, and SOURCE2 is tailored for silo, well-in-silo, and trench-type disposal facilities. This paper focuses on the source term for ORNL disposal facilities, and it describes improved computational methods for determining radionuclide transport from waste packages

  20. Effects of dietary oil sources and calcium : phosphorus levels on ...

    African Journals Online (AJOL)

    The study investigated the effects of varying dietary calcium (Ca) levels and sources of oil on performance of broiler chickens. A total of 378 one-day-old birds were fed 6% palm oil (PO), soybean oil (SO) or linseed oil (LO) in combination with three levels of Ca, 1%, 1.25% and 1.5%, for six weeks in a 3 x 3 factorial ...

  1. Low sound level source path contribution on a HVAC

    NARCIS (Netherlands)

    Bree, H.E. de; Basten, T.G.H.

    2008-01-01

    For compliance test purposes, the noise level of a HVAC is usually measured with a pressure microphone positioned at a certain distance. This measurement is normally performed in an anechoic room. However, this method doesn't provide the engineer any insight on what noise sources do contribute to

  2. Arsenic levels in groundwater aquifer of the Neoplanta source area ...

    African Journals Online (AJOL)

    As part of a survey on the groundwater aquifer at the Neoplanta source site, standard laboratory analysis of water quality and an electromagnetic geophysical method were used for long-term quantitative and qualitative monitoring of arsenic levels. This study presents only the results of research conducted in the ...

  3. Offshore dredger sounds: Source levels, sound maps, and risk assessment

    NARCIS (Netherlands)

    Jong, C.A.F. de; Ainslie, M.A.; Heinis, F.; Janmaat, J.

    2016-01-01

    The underwater sound produced during construction of the Port of Rotterdam harbor extension (Maasvlakte 2) was measured, with emphasis on the contribution of the trailing suction hopper dredgers during their various activities: dredging, transport, and discharge of sediment. Measured source levels

  4. Effect of Knowledge Sources on Firm Level Innovation in Tanzania

    NARCIS (Netherlands)

    Osoro, Otieno; Kahyarara, Godius; Knoben, Joris; Vermeulen, P.A.M.

    In this paper we analyse the impact of different sources of knowledge on product innovation in Tanzania using firm level data from 543 firms. Specifically, we assess the separate impacts of internal knowledge and external knowledge and the combined impact of both on a firm’s likelihood of

  5. Effect of Knowledge Sources on Firm Level Innovation in Tanzania

    NARCIS (Netherlands)

    Osoro, O.; Vermeulen, P.A.M.; Knoben, J.; Kahyarara, G.

    2016-01-01

    This paper analyses the impact of different sources of knowledge on product and process innovation in Tanzania using firm-level data. We specifically analyse the separate impacts of internal knowledge, external knowledge and the combined impact of both types of knowledge on firms’ product and

  6. Biological monitors for low levels of ionising radiation

    International Nuclear Information System (INIS)

    Mohankumar, M.N.; Jeevanram, R.K.

    1995-01-01

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author)

  7. Biological monitors for low levels of ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, M N; Jeevanram, R K [Safety Research and Health Physics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1996-12-31

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author). 98 refs., 11 figs., 4 tabs.

  8. Comparative Study on Radiological Impact Due To Direct Exposure to a Radiological Dispersal Device Using A Sealed Radiation Source

    International Nuclear Information System (INIS)

    Margeanu, C.A.

    2011-01-01

    Nowadays, one of the most serious terrorist threats implies radiological dispersal devices (RDDs), the so-called dirty bombs, that combine a conventional explosive surrounded by an inflammatory material (like thermit) with radioactive material. The paper objective is to evaluate the radiological impact due to direct exposure to a RDD using a sealed radiation source (used for medical and industrial applications) as radioactive material. The simulations were performed for 60Co, 137Cs and 192Ir radiation sources. In order to model the contamination potential level and radiation exposure due to radioactive material spreading from RDD, Lawrence Livermore National Laboratory's HOTSPOT 2.07 computer code was used. The worst case scenario has been considered, calculations being performed for two radioactive material dispersion models, namely General radioactive Plume and General Explosion. Following parameters evolution with distance from the radiation source was investigated: total effective dose equivalent, time-integrated air concentration, ground surface deposition and ground shine dose rates. Comparisons between considered radiation sources and radioactive material dispersion models have been performed. The most drastic effects on population and the environment characterize 60Co sealed radiation source use in RDD.

  9. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity.

    Science.gov (United States)

    Jelonek, Karol; Pietrowska, Monika; Widlak, Piotr

    2017-07-01

    Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.

  10. Novel particle and radiation sources and advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mako, Frederick [FM Technologies, Inc. and Electron Technologies, Inc. (United States)

    2016-03-25

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and “green” klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  11. Novel particle and radiation sources and advanced materials

    International Nuclear Information System (INIS)

    Mako, Frederick

    2016-01-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and “green” klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  12. Novel particle and radiation sources and advanced materials

    Science.gov (United States)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  13. Protection during work with ionizing radiation sources; Ochrana pri praci se zdroji ionizujiciho zareni

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The publication has been set up as a textbook for training courses dealing with health protection during work with ionizing radiation, designed for supervisory staff and persons directly responsible for activities which involve the handling of ionizing radiation sources. The book consists of a preface and the following chapters: (1) Fundamentals of ionizing radiation physics; (2) Quantities and units used in ionizing radiation protection; (3) Principles of ionizing radiation dosimetry; (4) Biological effects of ionizing radiation; (5) An overview of sources of public irradiation; (6) Principles and methods of health protection against ionizing radiation; (7) Examples of technical applications of sources of ionizing radiation; (8) Personnel and working environment monitoring; (9) Documentation maintained at sites with ionizing radiation sources; (10) Methods of personnel protection against external irradiation and internal radionuclide contamination; (11) Radiation incidents and accidents; (12) Health care of personnel exposed to the ionizing radiation risk; (12) Additional radiation protection requirements in handling radioactive substances other than sealed sources; (13) Measurement and metrology. (P.A.).

  14. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  15. Assessing risks from occupational exposure to low-level radiation

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1989-06-01

    Currently, several epidemiological studies of workers who have been exposed occupationally to radiation are being conducted. These include workers in the United States, Great Britain, and Canada, involved in the production of both defense materials and nuclear power. A major reason for conducting these studies is to evaluate possible adverse health effects that may have resulted because of the radiation exposure received. The general subject of health effects resulting from low levels of radiation, including these worker studies, has attracted the attention of various news media, and has been the subject of considerable controversy. These studies provide a good illustration of certain other aspects of the statistician's role; namely, communication and adequate subject matter knowledge. A competent technical job is not sufficient if these other aspects are not fulfilled

  16. Vessel used in radiation counting to determine radioactivity levels

    International Nuclear Information System (INIS)

    Charlton, J.C.; Glover, J.S.; Shephard, B.P.

    1977-01-01

    This invention concerns the vessels used in radiation counting to determine radioactivity levels. These vessels prove to be particularly useful in analyses of the kind where a radioactive element or compound is separated into two phases and the radioactivity of one phase is determined. Such a vessel used in the counting of radiation includes an organic plastic substance tube appreciably cylindrical in shape whose upper end is open whilst the lower end is closed and integral with it, and an anti-radiation shield in metal or in metal reinforced plastic located at the lower end of the tube and extending along the wall of the tube up to a given height. The vessel contains a reaction area of 1 to 10 ml for holding fluid reagents [fr

  17. Diffraction-enhanced imaging at the UK synchrotron radiation source

    International Nuclear Information System (INIS)

    Ibison, M.; Cheung, K.C.; Siu, K.; Hall, C.J.; Lewis, R.A.; Hufton, A.; Wilkinson, S.J.; Rogers, K.D.; Round, A.

    2005-01-01

    The Diffraction-Enhanced Imaging (DEI) system, which shares access to Beamline 7.6 on the Daresbury Synchrotron Radiation Source (SRS), is now in its third year of existence. The system was developed under a European Commission grant PHase Analyser SYstem (PHASY), won during the Fourth Framework. Typical applications continue to be the imaging of small biological specimens, using a beam of 12-17 keV after monochromation and up to 40 mm in width and 1-2 mm in height, although it is planned to investigate other materials as opportunity permits and time becomes available for more routine scientific use. Recent improvements have been made to the optical alignment procedure for setting up the station before imaging: a small laser device can now be set up to send a beam down the X-ray path through the four crystals, and a small photodiode, which has much better signal-to-noise characteristics than the ion chamber normally used for alignment, has been trailed successfully. A 3-D tomographic reconstruction capability has recently been developed and tested for DEI projection image sets, and will be applied to future imaging work on the SRS, in conjunction with volume visualization software. The next generation of DEI system, planned to operate at up to 60 keV on an SRS wiggler station, is in its design stage; it will feature much improved mechanics and mountings, especially for angular control, and a simplified alignment procedure to facilitate the necessary sharing of the SRS station

  18. Investigation of environmental natural penetrating radiation level in Hubei Province

    International Nuclear Information System (INIS)

    Zhang Sihui; Zhang Jiaxian

    1992-01-01

    The methods and results of the investigation on natural penetrating radiation level in Hubei Province are presented, 290 measuring points of 25 x 25 km-grid were set uniformly up all over the province, with 385 densely measuring points of different types added. The results show that: (1) The area-weighted, population-weighted and point-weighted average value of natural γ radiation dose rate for field is 60.8, 58.5 and 60.9 nGy ·h -1 , respectively; (2) The point-weighted average value of natural γ radiation dose rate for road is 55.3 nGy·h -1 ; (3) The population-weighted and point-weighed average value of natural γ radiation dose rate inside buildings is 94.5 and 93.2 x 10 nGy·h -1 , respectively; (4) The point-weighted and population-weighted average value of the dose rate inside buildings from cosmic ray is 27.8 and 26.3 nGy·h -1 , and outside buildings is 31.8 and 30.4 nGy·h -1 , respectively; (5) The point-weighted and population-weighted average value of natural penetrating radiation dose rate inside building is 121.0 and 120.7 nGy·h -1 , outside buildings is 92.8 and 88.9 nGy·h -1 , respectively; (6) The annual effective dose equivalent from cosmic ray, natural γ radiation and natural penetrating radiation is 0.24, 0.52 and 0.76 mSv, respectively; and correspondingly, the annual collective effective dose equivalent is 1.2, 2.5 and 3.7 x 10 4 man·Sv, respectively

  19. Investigation of environmental natural penetrating radiation level in Heilongjiang Province

    International Nuclear Information System (INIS)

    Liu Yuncheng; Wu Chengxiang; Zhang Juling; Zhao Defeng

    1994-01-01

    The methods and results of the investigation on natural penetrating radiation level in Heilongjiang Province are presented. 221 25 km x 25 km-grid measuring points were set uniformly up all over the province, with 555 densely measuring points of different types added. The results show that: (1)The area-weighted, population-weighted and point-weighted average value of natural γ radiation dose rate for field is 53.5, 58.5 and 54.2 nGy·h -1 , respectively; (2) The point-weighted average value of natural γ radiation dose rate for road is 58.4 nGy·h -1 ; (3) The population-weighted and point-weighted average value of natural γ radiation dose rate inside buildings is 85.2 and 78.9 nGy·h -1 , respectively; (4) The point-weighted and population-weighted average value of the dose rate inside buildings from cosmic ray is 28.6 and 28.1 nGy·h -1 , and outside buildings is 32.4 and 32.2 nGy·h -1 , respectively; (5) The point-weighted and population-weighted average value of natural penetrating radiation dose rate inside buildings is 109.7 and 112.8 nGy·h -1 , outside buildings is 84.8 and 91.0 nGy·h -1 , respectively; (6) The annual effective dose equivalent from cosmic ray, natural γ radiation and natural penetrating radiation is 0.26, 0.48 and 0.73 mSv, respectively; and correspondingly, the annual collective effective dose equivalent is 0.8 x 10 4 , 1.6 x 10 4 and 2.4 x 10 4 man·Sv, respectively

  20. Investigation of environmental natural penetrating radiation level in Jiangsu province

    International Nuclear Information System (INIS)

    Liu Ming; Wang Chengbao.

    1993-01-01

    The methods and results of in investigation on natural penetrating radiation level in Jiangsu Province are presented. 182 25 km x 25 km-grid measuring points were set up uniformly all over the province, with 236 densely measuring points of different types added. The results show that: (1) The area-weighted, population-weighted and point-weighted average value of natural γ radiation dose rate for field is 50.3, 50.6 and 50.4 nGy · h -1 , respectively; (2) The point-weighted average value of natural γ radiation dose rate for road is 47.1 nGy · h -1 ; (3) The population-weighted and point-weighted average value of natural γ radiation dose rate inside buildings is 89.7 and 89.2 nGy · h -1 , respectively; (4) The point-weighted and population-weighted average value of the dose rate inside buildings from cosmic ray is 26.0 and 25.8 nGy · h -1 , and outside buildings is 29.2 and 29.1 nGy · h -1 , respectively; (5) The point-weighted and population-weighted average value of natural penetrating radiation dose rate inside buildings is 115.1 and 115.5 nGy · h -1 , outside buildings is 79.5 and 79.7 nGy · h -1 , respectively; (6) The annual effective dose equivalent from cosmic ray, natural γ radiation and natural penetrating radiation is 0.23, 0.48 and 0.71 mSv, respectively; and correspondingly, the annual collective effective dose equivalent is 3.0, 1.5 and 4.5 x 10 4 man · Sv, respectively

  1. Investigation of environmental natural penetrating radiation level in Shaanxi Province

    International Nuclear Information System (INIS)

    Zhang Chunfang; Li Jiyin

    1994-01-01

    The methods and results of the investigation on natural penetrating radiation level in Shaanxi Province are presented. 359 25 km x 25 km-grid measuring points were set uniformly up all over the province, with 433 densely measuring points of different types added. The results show that: (1) The area-weighted, population-weighted and point-weighted average value of natural γ radiation dose rate for field is 62.0, 63.0 and 61.0 nGy·h -1 , respectively; (2) The point-weighted average value of natural γ radiation dose rate for road is 63.0 nGy · h -1 ; (3)The population-weighted and point-weighted average value of natural γ radiation dose rate inside buildings is 100.0 and 98.0 nGy·h -1 , respectively; (4)The point-weighted and population-weighted average value of the dose rate inside buildings from cosmic ray is 32.0 and 31.0 nGy·h -1 , and outside buildings is 37.0 and 36.0 nGy·h -1 , respectively; (5)The point-weighted and population-weighted average value of natural penetrating radiation dose rate inside buildings is 130.0 and 131.0 nGy·h -1 , outside buildings is 130.0 and 130.0 nGy·h -1 , respectively; (6)The annual effective dose equivalent from cosmic ray, natural γ radiation and natural penetrating radiation is 0.55, 0.28 and 0.83 mSv, respectively; and correspondingly, the annual collective effective dose equivalent is 1.63, 0.83 and 2.46 x 10 4 man·Sv, respectively

  2. Investigation of environmental natural penetrating radiation level in Anhui province

    International Nuclear Information System (INIS)

    Zhu Jingqiu; Chen Shuping; Jiang Shan; Zhu Xingsheng; Huang Jiangbin; Wu Chuanyong; Wang Weining

    1992-01-01

    The methods and results of the investigation on natural penetrating radiation level in Anhui Province in 1987 are presented. The results show that: (1) The point-weighted, area-weighted and population-weighted average value of natural γ radiation dose rate for field is 5.67, 5.62 and 5.55 x 10 -8 Gy· -1 , respectively; (2) The point-weighted average value of natural γ radiation dose rate for road is 5.38 x 10 -8 Gy·h -1 ; (3) The point-weighted and population-weighted average value of natural γ radiation dose rate inside buildings is 9.59 and 9.36 x 10 -8 Gy·h -1 , respectively; (4) The point-weighted and population-weighted average value of the dose rate inside buildings from cosmic ray is 2.64 and 2.62 x 10 -8 ·h -1 , and outside buildings is 2.95 and 2.94 x 10 -8 ·h -1 , respectively; (5) The point-weighted and population-weighted average value of natural penetrating radiation dose rate inside buildings is 12.23 and 11.99 x 10 -8 Gy·h -1 , outside buildings is 8.62 and 8.49 x 10 -8 ·h -1 , respectively; (6) The annual effective dose equivalent from natural γ radiation, cosmic ray and natural penetrating radiation is 0.51, 0.24, and 0.75 mSv, respectively; and correspondingly, the annual collective effective dose equivalent is 2.5, 1.2 and 3.7 x 10 4 man·Sv, respectively

  3. Disk shaped radiation sources for education purposes made of chemical fertilizer

    International Nuclear Information System (INIS)

    Kawano, Takao

    2008-01-01

    A method for fabricating a disk-shaped radiation source from material containing natural radioisotopes was developed. In this compression and formation method, a certain amount of powdered material is placed in a stainless steel formwork and compressed to form a solid disk. Using this method, educational radiation sources were fabricated using commercially available chemical fertilizers that naturally contain the radionuclide, 40 K, which emits either beta or gamma rays, at each disintegration. The compression and formation method was evaluated by inspecting eleven radiation sources thus fabricated. Then the suitability of the fertilizer radiation source as an education aid was evaluated. The results showed that the method could be used to fabricate radiation sources without the need for learning special skills or techniques. It was also found that the potassium fertilizer radiation source could be used to demonstrate that the inverse-square law can be applied to the distance between the radiation source and detector, and that an exponential relationship can be seen between the shielding effectiveness and the total thickness of the shielding materials. It is concluded that a natural fertilizer radiation source is an appropriate aid for demonstrating the characteristics of radiation. (author)

  4. Permissible dose from external sources of ionizing radiation. Recommendations of the National Committee on Radiation Protection. Handbook 59

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1954-09-24

    The Advisory Committee on X-ray and Radium Protection was formed in 1929 upon the recommendation of the International Commission on Radiological Protection, under the sponsorship of the National Bureau of Standards, and with the cooperation of the leading radiological organizations. The small committee functioned effectively until the advent of atomic energy, which introduced a large number of new and serious problems in the field of radiation protection. The present report deals primarily with the protection of persons occupationally exposed to ionizing radiation from external sources. An attempt has been made to cover most of the situations encountered in practice. However, it has not always been possible to make recommendations in quantitative terms. In such cases the recommendations are intended to serve as practical guides. The recommendations are based on presently available information and cannot be regarded as permanent. For this reason and on general grounds it is strongly recommended that exposure to radiation be kept at the lowest practicable level in all cases.

  5. Permissible dose from external sources of ionizing radiation. Recommendations of the National Committee on Radiation Protection. Handbook 59

    International Nuclear Information System (INIS)

    1954-01-01

    The Advisory Committee on X-ray and Radium Protection was formed in 1929 upon the recommendation of the International Commission on Radiological Protection, under the sponsorship of the National Bureau of Standards, and with the cooperation of the leading radiological organizations. The small committee functioned effectively until the advent of atomic energy, which introduced a large number of new and serious problems in the field of radiation protection. The present report deals primarily with the protection of persons occupationally exposed to ionizing radiation from external sources. An attempt has been made to cover most of the situations encountered in practice. However, it has not always been possible to make recommendations in quantitative terms. In such cases the recommendations are intended to serve as practical guides. The recommendations are based on presently available information and cannot be regarded as permanent. For this reason and on general grounds it is strongly recommended that exposure to radiation be kept at the lowest practicable level in all cases

  6. Characterisation of a protection level Am-241 calibration source

    Science.gov (United States)

    Bass, G. A.; Rossiter, M. J.; Williams, T. T.

    1992-11-01

    The various measurements involved in the commissioning process of an Am-241 radioactive source and transport mechanisms to be used for protection level calibration work are detailed. The source and its handling mechanisms are described and measurements to characterize the resultant gamma ray beam are described. For the beam measurements, the inverse square law is investigated and beam uniformity is assessed. A trial calibration of ionization chambers is described. The Am-241 irradiation facility is concluded to be suitable for calibrating secondary standards as part of the calibration service offered for protection level instruments. The umbra part of beam is acceptably uniform for a range of chambers and the measurements obtained were predictable and consistent. This quality will be added to the range of qualities offered as part of the protection level secondary standard calibration service.

  7. Epidemiological surveys on the effects of low-level radiation dose: a comparative assessment. V. E

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.S.B.

    1990-01-01

    These tables present data on the effects of low-level radiation dose for the following effects:- pre-conception irradiation and Down's Syndrome, pre-conception irradiation and reproductive damage, surveys of effect in relation to the source of radiation, distribution by maternal preconception exposure of the 7 most common major congenital abnormalities in the Japanese, pre-conception irradiation and childhood malignancies, parental gonadal dose at Hiroshima and Nagasaki in relation to leukemia, sex chromosome aneuploids in children of A-bomb survivors, untoward pregnancy outcomes by parental gonad dose, pre-conception irradiation and chromosomal abnormalities, and intra-uterine irradiation and intelligence. (author).

  8. Radioactivity levels in Indian coal and some technologically enhanced exposure to natural radiation environment of India

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Mishra, U.C.

    1988-01-01

    The summary of results of gamma-spectrometric measurements of natural radioactivity levels in coal from mines, coal, fly-ash, slag and soil samples from thermal power plants in India are presented. These constitute the sources of technologic ally enhanced exposures to natural radiation. Brief description of sampling and measurement procedure is given. Radiation dose to the population from coal fired power plants for electricity generation have been calculated using the model developed by UNSCEAR and ORNL reports with correction for local population density. (author). 13 refs., 7 tabs., 8 figs

  9. Epidemiological surveys on the effects of low-level radiation dose: a comparative assessment. V. E

    International Nuclear Information System (INIS)

    Rose, K.S.B.

    1990-01-01

    These tables present data on the effects of low-level radiation dose for the following effects:- pre-conception irradiation and Down's Syndrome, pre-conception irradiation and reproductive damage, surveys of effect in relation to the source of radiation, distribution by maternal preconception exposure of the 7 most common major congenital abnormalities in the Japanese, pre-conception irradiation and childhood malignancies, parental gonadal dose at Hiroshima and Nagasaki in relation to leukemia, sex chromosome aneuploids in children of A-bomb survivors, untoward pregnancy outcomes by parental gonad dose, pre-conception irradiation and chromosomal abnormalities, and intra-uterine irradiation and intelligence. (author)

  10. Energy levels and radiative rates for transitions in Ti VI

    International Nuclear Information System (INIS)

    Aggarwal, K M; Keenan, F P; Msezane, A Z

    2013-01-01

    We report on calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 253 levels of the (1s 2 2s 2 2p 6 ) 3s 2 3p 5 , 3s3p 6 , 3s 2 3p 4 3d, 3s3p 5 3d, 3s 2 3p 3 3d 2 , 3s 2 3p 4 4s, 3s 2 3p 4 4p and 3s 2 3p 4 4d configurations of Ti VI. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 253 levels, although calculations have been performed for a much larger number of levels. Comparisons are made with existing available results and the accuracy of the data is assessed. Additionally, lifetimes for all 253 levels are listed, although comparisons with other theoretical results are limited to only 88 levels. Our energy levels are estimated to be accurate to better than 1% (within 0.03 Ryd), whereas results for other parameters are probably accurate to better than 20%. A reassessment of the energy level data on the National Institute of Standards and Technology website for Ti VI is suggested. (paper)

  11. Situational awareness of hazards: Validation of multi-source radiation measurements

    Science.gov (United States)

    Hultquist, C.; Cervone, G.

    2016-12-01

    Citizen-led movements producing scientific hazard data during disasters are increasingly common. After the Japanese earthquake-triggered tsunami in 2011, and the resulting radioactive releases at the damaged Fukushima Daiichi nuclear power plants, citizens monitored on-ground levels of radiation with innovative mobile devices built from off-the-shelf components. To date, the citizen-led SAFECAST project has recorded 50 million radiation measurements worldwide, with the majority of these measurements from Japan. The analysis of data which are multi-dimensional, not vetted, and provided from multiple devices presents big data challenges due to their volume, velocity, variety, and veracity. While the SAFECAST project produced massive open-source radiation measurements at specific coordinates and times, the reliability and validity of the overall data have not yet been assessed. The nuclear disaster provides a case for assessing the SAFECAST data with official aerial remote sensing radiation data jointly collected by the governments of the United States and Japan. A spatial and statistical assessment of SAFECAST requires several preprocessing steps. First, SAFECAST ionized radiation sensors collected data using different units of measure than the government data, and they had to be converted. Secondly, the normally occurring radiation and decay rates of Cesium from deposition surveys were used to properly compare measurements in space and time. Finally, the GPS located points were selected within overlapping extents at multiple spatial resolutions. Quantitative measures were used to assess the similarity and differences in the observed measurements. Radiation measurements from the same geographic extents show similar spatial variations and statistically significant correlations. The results suggest that actionable scientific data for disasters and emergencies can be inferred from non-traditional and not vetted data generated through citizen science projects. This

  12. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  13. An assessment of the effects of radiation on permanent magnet material in the ALS [Advanced Light Source] insertion devices

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Jenkins, T.M.; Namito, Y.; Nelson, W.R.; Swanson, W.P.

    1989-08-01

    Electrons that are lost from the beam during normal operation of a synchrotron radiation source and during a beam dump at the end of a run produce both ionizing radiation and neutrons. This radiation has the potential for damaging sensitive materials, in particular those that need to be very close to the beam. The wigglers and undulators for the Advanced Light Source (ALS) at LBL will use magnetic materials such as the very high performance neodymium-iron-boron, which will be as close as 1 cm away from the electron beam during operation. This material, which is preferred because of its high remanence, is known to be more sensitive to radiation than some other magnetic materials. Simple energy loss estimates and the EGS4 code were used to estimate the radiation levels in the ALS insertion devices in the regions of the magnetic materials. The radiation levels were estimated for both aluminum and stainless steel vacuum chambers to determine if one would provide significantly better shielding. We conclude that Nd-Fe-B can be used in the ALS insertion devices and that there is little difference in the radiation levels for aluminum and stainless vacuum vessels. 8 refs., 7 figs., 1 tab

  14. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    International Nuclear Information System (INIS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-01-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  15. The new atomic act. Radiation exposure from radon and natural radiation sources in workplaces and the experience of surveillance

    International Nuclear Information System (INIS)

    Sinaglova, R.

    2018-01-01

    In this presentation the new atomic act approved in the Czech republic is analyzed from the point of view of irradiation from radon and natural radiation sources in workplaces. Experience of supervision are also discussed. (authors)

  16. Protocol of source shielding maintenance in a level measurement systems

    International Nuclear Information System (INIS)

    Gonzales, E.; Figueroa, J.

    1996-01-01

    Maintenance labor of the source shielding and locking system is not performed in many Venezuelan enterprises that employ radioactive level gauge in large container. The lack of maintenance and the ambient long lasting action have produced impairment of many devices and their given parts rise to economical and radiological protection problems. In order to help to solve the mentioned problems, principally to reduce the unjustified dose to workers, the IVIC Health Physics Service worked out a protocol to perform, in a safety way, the maintenance of source shielding and its locking system. This protocol is presented in this paper. (authors)

  17. Low level radiation: how low can you get?

    International Nuclear Information System (INIS)

    Townsley, M.

    1990-01-01

    Information stored on the world's largest data bank concerning the health of nuclear industry workers is to be handed over to researchers at Birmingham University by the US Department of Energy. The data bank contains detailed information on 300,000 nuclear employees, going back to the 1940s. Such a large sample size will allow the results of a previous study conducted on workers in the US nuclear industry to be verified. That study was concluded in 1978 and showed that the risk estimates set by the International Commission on Radiological Protection (ICRP) were between 10 and 30 times too low. The current ICRP estimate allows workers up to 50mSv of exposure to low level radiation per year. Risk estimates have been derived from data relating to the atomic bombings of Hiroshima and Nagasaki. However in those cases the radiation doses were relatively high but over a short period. In the nuclear industry the doses are lower but are long term and this may account for the apparent anomalies such as the incidence of leukaemia amongst children whose fathers have worked in the nuclear industry compared with that for the children whose fathers received radiation doses from the atomic bombings. It is expected the study will show that low-level radiation is more damaging than has previously been thought. (author)

  18. High level natural radiation areas with special regard to Ramsar

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1993-01-01

    The studies of high level natural radiation areas (HLNRAs) around the world are of great importance for determination of risks due to long-term low-level whole body exposures of public. Many areas of the world possess HLNRAs the number of which depends on the criteria defined. Detailed radiological studies have been carried out in some HLNRAs the results of which have been reported at least in three international conferences. Among the HLNRAs, Ramsar has so far the highest level of natural radiation in some areas where radiological studies have been of concern. A program was established for Ramsar and its HLNRAs to study indoor and outdoor gamma exposures and external and internal doses of the inhabitants, 226 Ra content of public water supplies and hot springs, of food stuffs, etc., 222 Rn levels measured in 473 rooms of near 350 houses, 16 schools and 89 rooms and many locations of old and new Ramsar Hotels in different seasons, cytogenetic effects on inhabitants of Talesh Mahalleh, the highest radiation area, compared to that of a control area and radiological parameters of a house with a high potential for internal and external exposures of the inhabitants. It was concluded that the epidemiological studies in a number of countries did not show any evidence of increased health detriment in HLNRAs compared to control groups. In this paper, the conclusions drawn from studies in some HLNRAs around the world in particular Ramsar are discussed. (author). 20 refs, 2 figs, 1 tab

  19. Somatic and genetic effects of low-level radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1974-01-01

    Although the biological effects of ionizing radiation are probably better known than those of any other physical or chemical agent in the environment, our information about such effects has come from observations at doses and dose rates which are orders of magnitude higher than natural background environmental radiation levels. Whether, therefore biological effects occur in response to such low levels can be estimated only by extrapolation, based on assumptions about the dose-effect relationship and the mechanisms of the effects in question. Present knowledge suggests the possibility that several types of biological effects may result from low-level irradiation. The induction of heritable genetic changes in germ cells and carcinogenic changes in somatic cells are considered to be the most important from the standpoint of their potential threat to health. On the basis of existing data, it is possible to make only tentative upper limit estimates of the risks of these effects at low doses. The estimates imply that the frequency of such effects attributable to exposure at natural background radiation levels would constitute only a small fraction of their natural incidence. 148 references

  20. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.